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Abstract 
Vineyard yield estimation can bring several benefits to all the grape and wine 

production chain. Among several methods the ones based on estimation of yield 
components are the most used at farm level. However, as they are manual, destructive 
and very time-consuming, there is a strong demand to replace them with low-cost and 
reliable automated methods. Recent advances in machine vision have provided 
accurate tools for bunch and/or berry recognition. However, converting the visible 
bunch area on the images into bunch mass is still a big challenge. In the frame of the 
EU VINBOT research project (www.vinbot.eu), an experiment was set up using the 
cultivars Viosinho (white; 100 bunches) and ‘Trincadeira’ (red, 48 bunches) to study 
the relationships between the projected bunch area (Ba) on the 2D images and the 
corresponding bunch weight (Bw) measured at harvest. In the laboratory, bunches 
were submitted to image acquisition using a compact RGB camera. Then each bunch 
was assessed to obtain the following morphological attributes: Bw, bunch volume 
(Bv), berry number (BE#) and weight (BEw) and rachis length (Rl). Bunch 
compactness (Bc) was calculated as the ratio between BE# and Rl, while the Ba was 
computed using ImageJ® software. Correlation analysis shows that most part of these 
variables are significantly and positively correlated with Bw. However, as not all 
variables are easy to obtain by automated image analysis, some were excluded and a 
forward stepwise regression between Bw (dependent variable) and the variables BE#, 
Ba, Bv and Bc (independent variables) was performed. The final models obtained 
explained a very high proportion of bunch weight variability (R2=0.98 and 0.99 for 
‘Viosinho’ and ‘Trincadeira’, respectively) with a very small error. These results 
indicate that grapevine bunch weight can be estimated with high accuracy from 2D 
images using explanatory variables derived from bunch morphological attributes. 

Keywords: bunch compactness, bunch volume, precision viticulture, vineyard yield 
estimation 

INTRODUCTION 
Vineyard yield estimation can bring several benefits to all the grape and wine 

production chain as evidenced in the following examples: planning cluster thinning (in order 
to prevent excessive production and consequent poor wine quality); planning and 
organizing harvest operations (hand labor, equipment, etc.); planning cellar needs 
(scheduling grape intake; allocating tank space, purchasing tanks, barrels, oenological 
products, bottles and others); planning purchases and/or grape sales; establishing grape 
prices and managing wine stocks; managing grape and wine market; programming 
investments and development of marketing strategies. All these potential benefits make 
yield estimation one of the major current research topics in viticulture. 

Vineyard yield estimation can be obtained by several methods, being the methods 
based on manual sampling of yield components (number and/or weight) the most used at 
farm level (Clingeleffer et al., 2001). These methods are based on manual counting and/or 
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weighing of samples of yield components (e.g., inflorescences, berries and bunches) 
combined with historical data. These procedures, besides being destructive, are very labor 
intensive and could provide inaccurate results as they are extrapolated for the entire 
vineyard based only on the assessment of a small sample. 

Recently, several attempts have been made to apply image analysis and other machine 
vision technologies for bunch and/or berry automatic recognition from 2D images and 
processing methods for grape yield estimation (see review by Seng et al., 2018). These 
studies showed that bunch detection in images and the estimation of the corresponding 
bunch area using image analysis technologies is feasible and is becoming more and more 
accurate (e.g., Diago et al., 2012; Reis et al., 2012; Nuske et al., 2013, 2014; Font et al., 2015; 
Aquino et al., 2018, Di Gennaro et al., 2019). The detection and counting of grape berries 
using computer vision and machine learning techniques has also been successfully tested in 
several studies (e.g., Battany, 2008; Nuske et al., 2013, 2014; Diago et al., 2015; Liu et al., 
2015; Aquino et al., 2017; Pérez-Zavala et al., 2018). The automatic evaluation of bunch 
dimensions (length, width and volume) was also successfully achieved by the analysis of 2D 
images as reported by Herrero-Huerta et al. (2015) who were able to reconstruct bunches in 
3D from images and develop algorithms and techniques to estimate bunch volume. Also, 
Tello et al. (2016) showed that the geometric reconstruction of the bunch morphological 
volume from 2D features can be obtained with high accuracy based on dimensional analysis 
of bunches. Concerning bunch compactness (density of berry distribution within the bunch) 
several imaging methods have also been developed to automate the assessment of this 
important bunch feature (e.g., Cubero et al., 2015; Tello et al., 2016; Chen et al., 2018). 

All the above-mentioned technologies, when combined with on-the-go image 
acquisition, can provide continuous and massive data on yield and yield components from 
an entire vineyard. The recent EU research project VINBOT (www.vinbot.eu) is an example 
where it was used an all-terrain autonomous mobile robot with a set of sensors for 
capturing vineyard images and obtain yield maps (Lopes et al., 2017). In this project, the 
approach of “Convolutional Neural Networks inside of Deep Learning Field”, based on a 
structure of stacked multi-layer neural networks (Krizhevsky et al., 2012), was used for 
image segmentation and grape recognition. Once the bunches were recognized, the total 
area occupied by the bunches or bunch fractions in the image was computed in pixels, 
converted into actual area and then converted into mass of grapes, using empirical 
relationships between bunch projected area and weight. The first results indicate that the 
algorithms underestimated yield, being bunch occlusions the major explanation (Lopes et 
al., 2017). However, the empirical models used to convert the projected area into kilograms 
of grapes could have also amplified the errors, contributing to reduce the prediction ability 
of the Vinbot algorithms. Indeed, this conversion was done using only a linear relationship 
between the projected bunch area and the corresponding weight. As this relationship 
depends on several factors related to bunch traits (length, width, form, volume, 
compactness, etc.), adding other bunch attributes as explanatory variables will contribute to 
improve the accuracy of the algorithms used to convert the projected bunch area into 
weight. The aim of this work was to explore the relationships between bunch morphological 
attributes and weight on two Portuguese grapevine cultivars, in order to improve the 
accuracy of the algorithms used for the estimation of bunch weigh from 2D images. 

MATERIAL AND METHODS 

Plant material 
The bunches used in this work were picked during the 2014 vintage from two plots of 

the “Instituto Superior de Agronomia” experimental vineyard, located in Lisbon (lat. 
38.71°N; long. 9.18°W). The grapevines of the white cultivar ‘Viosinho’ (9 years old) were 
grafted on 1103 Paulsen rootstock and spaced 1.0 m within and 2.5 m between rows, while 
the grapevines of the red cultivar ‘Trincadeira’ (16 years old) were grafted on 140 Ru 
rootstock and spaced 1.2 m within and 2.5 m between rows. Both cultivars were trained to a 
vertical shoot positioning with two pairs of movable wires and spur-pruned to a Royat 
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Cordon system (unilateral for ‘Viosinho’ and bilateral for ‘Trincadeira’). Similar standard 
cultural practices were applied to both vineyard plots, except for defoliation, carried out at 
pre-bloom in the ‘Trincadeira’ plot to reduce the potential detrimental effects of bunch rot. 
In order to encompass the maximum bunch weight variability, all bunches from five vines (a 
total of 100 for ‘Viosinho’ and 48 for ‘Trincadeira’) were harvested at commercial maturity 
(~23 °Brix), labeled and then transported to the laboratory for detailed assessments. 

Bunch assessments 
In the laboratory, each bunch was photographed in front of a white background with a 

compact RGB digital camera (Figure 1). Using ImageJ® software, the total area of the bunch 
was computed as the number of pixels in the segmented image and converted into square 
centimeters. Then each bunch was assessed to obtain the following attributes: weight (Bw), 
morphological volume (Bv), projected area (Ba), berry number (BE#), total weight of the 
berries (TBEw), average weight per berry (BEw) and rachis length (Rl). Bunch compactness 
(Bc) was calculated as the ratio between BE# and Rl, while Bv was assessed by the water 
displacement method (Tello and Ibáñez, 2014). 

 

Figure 1. Three selected bunch images of the white cultivar ‘Viosinho’ (left) and of the red 
cultivar ‘Trincadeira’ (right) showing a big variability in size and shape. 

Data analysis 
Correlation and regression analysis were performed to evaluate the relationships 

between all variables. The selection of explanatory variables to estimate Bw was done using 
a forward stepwise regression with 0.05 critical F statistic. All the statistical analyses were 
performed using SAS® statistical software. 

RESULTS AND DISCUSSION 

Bunch attribute variability 
The bunches of both cultivars are described in the Portuguese grapevine catalog 

(www.ivv.gov.pt/np4/home.html) (Instituto da Vinha e do Vinho, 2011) as having a small 
(‘Viosinho’) and medium (‘Trincadeira’) size and medium compactness but, as shown in 
Table 1 and Figure 1, when considering all bunches present in a vine, a high variability was 
observed in all the assessed attributes, due to the natural variability of bunch morphology. 
As compared to ‘Viosinho’, the bunches of ‘Trincadeira’ presented a lower average weight 
and a higher variability of all attributes, differences that can be explained, in addition to the 
genetic effect, by the effects of the early defoliation that was performed at pre-bloom to 
reduce cluster compactness (Palliotti et al., 2012). 

Relationships between variables 
Table 2 shows the Pearson correlation coefficients (r) of the relationships between Bw 

and all the variables measured and calculated on the bunches of the two cultivars. For 
‘Viosinho’, all variables were significantly and positively correlated with Bw being the 
highest r-value shown by the variables TBEw, BE# and Bv, while the lowest r-value was 
obtained with the variable BEw. The variables Ba and Bc also presented very high and 
significant correlation with Bw (r=0.93 and 0.89, respectively). ‘Trincadeira’ showed a 
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similar pattern to that reported for ‘Viosinho’, except for the variable BEw, which showed a 
non-significant correlation with Bw. 

Table 1. Summary statistics of measured and calculated variables for each bunch of the 
cultivars ‘Viosinho’ (n=100) and ‘Trincadeira’ (n=48): number of berries per bunch 
(BE#); total weight of berries per bunch (TBEw); average weight per berry (BEw); 
bunch volume (Bv); rachis length (Rl), bunch compactness (Bc) and bunch 
projected area in the 2D image (Ba). Avg: average; Max: maximum value; Min: 
minimum value; C.V.: coefficient of variation. 

Bunch attributes Viosinho Trincadeira 
Min Avg Max C.V. Min Avg Max C.V. 

BW (g) 19.2 175.8 512.0 55.6 6.9 85.6 290.8 85.4 
BE# 14.0 101.1 276.0 53.0 4.0 54.1 174.0 86.7 
TBEw (g) 18.3 168.6 493.1 55.9 6.4 81.8 280.6 86.3 
BEw (g) 1.1 1.6 2.1 11.9 0.7 1.7 3.3 32.6 
Bv (mL) 18.0 157.8 460.0 55.2 8.0 78.5 260.0 84.4 
Rl (cm) 6.3 13.0 17.3 17.7 4.0 9.2 15.0 29.7 
Bc (berries cm-1) 1.9 7.5 17.6 43.6 0.5 5.1 13.8 69.2 
Ba (cm2) 21.9 101.0 210.4 39.0 9.9 52.0 119.6 58.4 

Table 2. Pearson correlation coefficients (r) obtained from the correlations between Bw and 
all the variables measured and calculated on the bunches of ‘Viosinho’ (n=100) and 
‘Trincadeira’ (n=48). BE#: number of berries per bunch; TBEw: total weight of 
berries per bunch; BEw: average weight per berry; Bv: bunch morphological 
volume; Rl: rachis length, Bc: bunch compactness; Ba: bunch projected area in the 
image. 

Cultivar BE# TBEw BEw Bv Rl Bc Ba 
Viosinho 0.98 0.99 0.40 0.98 0.71 0.93 0.89 
Trincadeira 0.95 0.99 -0.25 0.99 0.76 0.92 0.92 

The high and significant correlation coefficients obtained indicate that many of the 
studied variables can be used as predictors of bunch weight. In order to find the best 
explanatory variables to estimate Bw, a stepwise regression analysis between Bw 
(dependent variable) and a subset of the above variables that can be easily extracted by 
automated image analysis (Ba, Bv, BE# and Bc) was performed. 

For ‘Viosinho’, the first variable selected was Bv (partial R2=0.978). In the second and 
third steps of the regression, the variables BE# and Ba were chosen respectively, but with a 
very low contribution to the explanation of Bw variance (partial R2<0.01). The variable Bc 
did not meet the significance level to be included in the model. The final model obtained for 
‘Viosinho’ is reported in Equation 1. 

Bw = -9.37240 + 0.71166Bv + 0.56362B# + 0.15765Ba  (1) 

Adj. R2=0.985 (p<0.001); n=100; RMSE=11.9 g 

For ‘Trincadeira’, the variable Bv was also the first one to enter the model, explaining 
almost all the Bw variance (partial R2=0.999). In the second step the variable Ba was chosen 
but with a very low contribution (partial R2<0.001). No other variable met the significance 
level to be included in the model (Equation 2). 

Bw = -0.13914 + 1.12519Bv – 0.04853Ba  (2) 
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Adj. R2=0.999 (p<0.001); n=48; RMSE=2.2 g 

In order to check the possibility of using a single model for both cultivars the stepwise 
regression was repeated for the pooled data (n=148 bunches). The results mirrored those 
obtained for ‘Viosinho’ (Table 3). The final model is reported in Equation 3 and, as shown in 
Figure 2, the estimated values fit very well with the actual Bw. 

Bw = -5.85999 + 0.85301Bv + 0.33324BE# + 0.13123Ba  (3) 

Adj. R2=0.989 (p<0.001); n=148; RMSE=10.7 g 

Table 3. Summary of stepwise regression analysis between bunch weight (Bw) (dependent 
variable) and the independent variables bunch volume (Bv), number of berries per 
bunch (BE#) and bunch projected area (Ba). Pooled data of ‘Viosinho’ (n=100) and 
‘Trincadeira’ (n=48) grapevine cultivars. 

Step Var. entered Partial R2 Model R2 Cpa F value Prob. F RMSEa (g) 
1 Bv 0.9856 0.9856 44.2 9978.7 <0.0001 12.1 
2 B# 0.0027 0.9883 11.3 33.0 <0.0001 10.9 
3 Ba 0.0006 0.9888 6.1 7.1 0.0085 10.7 
aCp Mallows; RMSE – root mean square error. 

 

Figure 2. Relationship between observed and estimated bunch weight values (BW) using 
the model reported in Equation 3 and based on pooled data of the cultivars 
‘Viosinho’ (n=100) and ‘Trincadeira’ (n=48). The dotted line represents the 1:1 
line. *** indicates significance at P<0.001. 

In all models, the variable Bv was the first variable selected with a very high partial R2 
showing that this bunch attribute is a very important predictor of Bw, as also reported by 
other authors for other grapevine cultivars (Nuske et al., 2014; Font et al., 2015). These 
results reinforce the need to use automated image analysis methods for extracting Bv as 
described in previous reports (e.g., Nuske et al., 2014; Font et al., 2015; Herrero-Huerta et al., 
2015; Liu et al., 2015; Tello et al., 2016), and/or to develop new ones. 

BE# was the second variable selected (except for ‘Trincadeira’) confirming its 
importance as a yield predictor (Clingeleffer et al., 2001). However, in the multiple 
regression model, after the selection of the variable Bv, the contribution of BE# to explain 
Bw variance was almost negligible. 
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As reported in several publications (Diago et al., 2012; Reis et al., 2012; Nuske et al., 
2013, 2014; Font et al., 2015; Aquino et al., 2018; Di Gennaro et al., 2019) bunch projected 
area in the image is an easy feature to extract with image analysis and machine vision 
technologies. However, despite having a very high and significant correlation coefficient with 
BW, in the multiple regression model, Ba showed a very low contribution to explain Bw 
variance when the variable Bv was present. 

In all models, the variable Bc, an indicator of bunch density (Tello and Ibáñez, 2018), 
never met the 0.05 significance level to be included in the model indicating that, despite 
being a variable that combines two bunch traits (BE# and Rl), in presence of other variables 
like Bv, its contribution to explain Bw becomes negligible. 

CONCLUSIONS 
In order to improve the accuracy of the algorithms for the estimation of bunch weight 

from 2D images and find the best yield predictors, in this work, the relationships between 
bunch attributes and corresponding weight were explored in two Portuguese grapevine 
cultivars. In both cultivars, most of the assessed bunch attributes (volume, projected area, 
berry number and weight, rachis length and bunch compactness) were significantly and 
positively correlated with bunch weight, indicating that they can be used as explanatory 
variables to predict bunch weight. Using a multiple stepwise regression approach, bunch 
volume resulted a very powerful estimator of bunch weight. After the selection of bunch 
volume, the other variables included in the model were the number of berries and bunch 
area but with a very low contribution to explain bunch weight variance. The obtained 
models (per cultivar or combined) presented a very good fit with actual bunch weight and a 
very low error, indicating that grapevine bunch weight can be estimated with high accuracy 
from 2D images using explanatory variables derived from automated non-intrusive 
assessment of bunch morphological attributes. Further research is needed to validate these 
models on other cultivars, sites and seasons. Moreover, additional research effort should be 
done to improve the methodologies for automated image-based technologies to determine 
bunch volume. 
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