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ABSTRACT 

 

 

 The general objective of this thesis was to step forward in the application of aerial 3D-data in 

the forest characterization context. To meet this goal, the thesis focused on four cutting-edge 

research topics related to the forestry applications of 3D data collected by airborne laser scanning 

(ALS) and digital aerial photogrammetry (DAP).  

Four common algorithms were deeply investigated to filter ALS ground points. The results 

showed that performing exhaustive filter calibration is not mandatory to derive accurate digital terrain 

models (DTM), that the applications of software defaults can derive accurate DTM as well, and that 

filter calibration has a significant but low practical improvement on the prediction of forest attributes 

using area-based approach (ABA). 

The application of the high-flexible Johnson’s SB probability density function (PDF) was 

adapted to the ALS data and compared with the Weibull PDF to estimate diameter distributions in 

two forest stands, an eucalyptus stand and a radiate pine stand. Johnsons SB was highly sensitive 

to the prediction of the inputs used to fit the parameters, reasons why this function was just slightly 

better than Weibull.  

The ALS data from five different forest sites were used to compare three common modeling 

approaches used to estimate growing stock volume, ordinary least squares (OLS), random forest 

(RF), and k-nearest neighbor (kNN). The estimation was more accurate with OLS and RF. The kNN-

based models had the worst prediction accuracy and may result in overfitting.  

The point clouds derived from ALS and DAP presented comparable results when it comes to 

detect and estimate individual tree volumes in eucalyptus plantations. This result benefits the DAP 

since it is an inexpensive approach to collect 3D forest data, especially when associated with 

unmanned aerial vehicles.  

 

Keywords: lidar, point cloud, forest modelling, forest inventory; remote sensing 
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RESUMO 

 

A tese teve como objetivo geral explorar e analisar a aplicação das nuvens de pontos 

provenientes de varredura a laser aerotransportado (VLA) e aerofotogrametria digital (AFD) para 

modelação de atributos florestais. Quatro trabalhos foram então conduzidos com especial atenção 

ao método VLA dada a sua importância global.  

O primeiro trabalho analisou quatro algoritmos populares para filtrar pontos de terreno de 

dados do VLA. Estes foram calibrados e os efeitos foram observados na qualidade dos modelos 

digitais de terreno (MDT) e nas estimativas de volume e altura dominante através do método 

baseado em área (ABA). A calibração dos algoritmos melhorou a qualidade do MDT e das 

estimativas florestais, mas bons resultados são também obtidos usando os algoritmos com sua 

parametrização padrão.  

O segundo trabalho testou o modelo SB de Johnson em comparação ao Weibull para simular 

distribuição diamétrica em plantios homogêneos utilizando VLA e ABA. O modelo SB se mostrou 

ligeiramente melhor que o modelo Weibull para simular distribuição diamétricas. Tal resultado se 

justifica pela alta sensibilidade do modelo SB aos erros de estimativa dos parâmetros usados no seu 

ajustamento.   

O terceiro trabalho comparou três técnicas de modelação: k-vizinhos mais próximos (kVMP), 

floresta aleatória (FA) e regressão por mínimos quadrados ordinários (MQO). A técnica kVMP é 

menos eficiente que as demais, sendo mais propensa ao superajustamento. Já os modelos 

baseados em MQO e FA tiveram resultados semelhantes.  

O quarto e último trabalho comparou as técnicas VLA e AFD na estimativa de atributos de 

árvores individuais. Ambas as tecnologias apresentaram resultados semelhantes tanto para a 

deteção das árvores quanto nas estimativas de seus atributos. Este facto é vantajoso para a AFD 

por se tratar de uma técnica mais acessível que a VLA, especialmente quando associada a veículos 

aéreos não tripulados. 

 

Palavras chave: nuvem de pontos; lidar; modelação florestal; inventário florestal; deteção remota 
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RESUMO EXTENDIDO 

 

 

Os métodos tradicionais de inventário florestal vêm sendo substituídos aos poucos pelas 

técnicas de deteção remota baseadas em nuvem de pontos, nomeadamente a varredura a laser 

aerotransportada (VLA) e a aerofotogrametria digital (AFD). Tais tecnologias se tornaram populares 

pela capacidade de recolher dados tridimensionais de alta precisão e por permitir examinar áreas 

extensas com eficiência. Entretanto, a implementação dessas tecnologias é onerosa e complexa, 

pois requerem equipamentos sofisticados. Além disso elas demandarem ajustes do fluxo de 

processamento dos dados para as diferentes situações. Nas últimas décadas, diversas pesquisas 

foram desenvolvidas para avaliar e desenvolver metodologias de modelação florestal baseadas em 

nuvem de pontos, porém ainda há muitas lacunas científicas a serem investigadas.  

Portanto, esta tese teve como objetivo geral explorar e analisar a aplicação das nuvens de 

pontos provenientes de VLA e AFD para modelação de atributos florestais. Especial atenção foi 

dada à técnica VLA devido a sua maior relevância no cenário mundial. Nesse sentido, quatro linhas 

de investigação foram traçadas: i) calibrar algoritmos para filtrar pontos do terreno provenientes de 

VLA e avaliar seus impactos na qualidade dos modelos digitais de terreno (MDT) e na estimativa de 

atributos florestais através da abordagem baseada em área (ABA); ii) avaliar a função de densidade 

de probabilidade (FDP) SB de Johnson para simular a distribuição diamétrica de povoamentos 

florestais; iii) comparar eficiência da modelação do estoque de emadeira via ABA utilizando três 

técnicas de aprendizagem automática, nomeadamente, k-vizinhos mais próximos (kVMP), floresta 

aleatória (FA) e regressão por mínimos quadrados ordinários (MQO); iv) comparar as técnicas VLA 

e AFD na estimativa de atributos de árvores individuais.  

No primeiro trabalho foram estudados quatro algoritmos popularmente utilizados para filtrar 

dados de terreno, sendo eles a rede irregular de triângulos progressiva (RITP), interpolação linear 

por mínimos quadrados ponderados (ILMQP), classificação de curvatura por múltiplas escalas 

(CME) e o filtro morfológico progressivo (FMP). Os filtros calibrados foram comparados com a 

parametrização padrão. Foram utilizados milhares de pontos recolhidos com GPS de alta precisão 

para aferir a qualidade dos MDTs produzidos. Além disso, dados provenientes de um povoamento 

de eucalipto foram utilizados para analisar o impacto da calibração dos algoritmos de filtragem na 

estimativa do estoque de madeira e da altura dominante via ABA. Como conclusão, foi demonstrado 

que i) a calibração dos filtros melhora a qualidade do MDT, embora bons resultados também podem 

ser produzidos usando a parametrização padrão; ii) a calibração dos algoritmos ILMQP, CME e FMP 

possibilita obter melhores estimativas dos atributos florestais, enquanto que a calibração do RITP 

não resultou em melhorias significativas. 

No segundo trabalho a FDP SB de Johnson foi adaptada pela primeira vez na literatura para 

estimar distribuição diamétrica de povoamentos florestais utilizando dados derivados de VLA. Foram 

testadas diferentes técnicas de ajustamento dos parâmetros da FDP aos dados de povoamentos de 

eucalipto e de pinheiro bravo localizados na Península Ibérica. A FDP Weibull de dois parâmetros 
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foi utilizada para efeito de comparação. Apesar de altamente flexível, a FDP SB de Johnson mostrou 

ser de difícil ajustamento devido à alta sensibilidade aos erros de estimativa do atributes florestais. 

Uma vez que o ajustamento da FDP requer diferentes equações (de 3 a 5), os erros acumulados 

por elas podem gerar fortes alterações na forma da distribuição. Entretanto, a FDP SB de Johnson 

teve eficiência semelhante ou melhor que a da Weibull, de modo que a sua aplicação pode ser vista 

como promissora para simulação de distribuição diamétrica de povoamentos florestais.  

No terceiro trabalho, três técnicas de modelação (MQO, kVMP e FA) foram comparadas 

entre si sendo aplicadas com diferentes esquemas de seleção de variáveis preditoras para a 

estimativa do volume do povoamento via ABA. Todos as três técnicas foram testadas utilizando 

cinco variáveis preditoras, as quais foram selecionadas por meio de metaheurísticas. Outro método 

de seleção de variáveis foi também aplicado ao MQO; neste caso foi aplicada uma busca exaustiva 

para selecionar três melhores variáveis preditoras. Como alternativa à seleção de variáveis, a 

técnica FA foi também aplicada utilizando todas as variáveis disponíveis. Os dados utilizados nessa 

análise envolveram florestas localizadas na América do Sul e do Norte, e três florestas boreais do 

norte da Europa. Os modelos foram comparados através de validação cruzada. Adicionalmente, os 

modelos foram validados com dados independentes em duas áreas de florestas boreais. Os 

resultados demonstraram que a técnica kVMP é menos eficiente que as demais, sendo mais 

propensa ao superajustamento. Já os modelos baseados em MQO e FA tiveram resultados 

semelhantes. As técnicas de seleção empregadas para o MQO não apresentaram diferenças 

significativas. Já a seleção de variáveis para FA não oferece muitos benefícios e, portanto, tal 

modelo deve ser empregada com todas as variáveis disponíveis. 

O último trabalho comparou as tecnologias VLA e AFD na obtenção de dados de árvores 

individuais em plantações puras e equiâneas de eucalipto. O filtro de máximo local foi aplicado na 

deteção das copas sendo em seguida extraídas as alturas das árvores para estimação dos 

diâmetros e seus volumes individuais. Ambas as tecnologias apresentaram resultados semelhantes 

tanto para a deteção das árvores quanto nas estimativas de seus atributos. Este facto é vantajoso 

para a AFD por se tratar de uma técnica mais acessível que a VLA, especialmente quando associada 

a veículos aéreos não tripulados. Além disso, ambas as abordagens são promissoras para futuras 

aplicações em plantios eucalipto equiâneo. 

Todas as conclusões descritas acima compreendem avanços significativos no emprego de 

deteção remota para caracterização de povoamentos florestais. Após 50 anos de esforços da 

comunidade científica a VLA se tornou uma tecnologia madura e se transformou numa alternativa 

confiável para obtenção de dados florestais. Além das informações contidas nesta tese há ainda 

uma vasta coleção de metodologias que podem ser empregadas para o melhor aproveitamento 

desta técnica, razão pela qual ela já está a ser aplicada por companhias públicas e privadas em 

diversos países. Já a tecnologia FAD é mais recente e estar a ganhar espaço no panorama científico 

mundial dado ao seu baixo custo de implementação.  

Entretanto a carência de profissionais especializados para lidar com estes dados e os custos 

operacionais (especialmente do VLA) ainda são fatores que dificultam a difusão destas tecnologias. 

Neste caso, mesmo com um número crescente de adeptos pelo mundo, há ainda a oportunidade 

para o desenvolvimento de novas tecnologias mais acessíveis e aplicações mais amigáveis para 
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atrair usuários iniciantes. Além disso, há ainda muitas dúvidas relacionadas ao VLA e AFD que 

necessitam esclarecimento, especialmente aquelas que interferem nos custos dos inventários. 

Por fim, o desenvolvimento das metodologias de medição florestal é imperativo para permitir 

diagnosticar as florestas e definir diretrizes de gestão. Longe de ser um fim em si mesmo, a ciência 

do inventário conjuntamente com a deteção remota objetiva oferecer informações de qualidade para 

o planeamento florestal, portanto cada contribuição científica anunciada significa um passo adiante 

em direção à sustentabilidade.  

 

Palavras chave: nuvem de pontos; lidar; modelação florestal; inventário florestal; deteção remota
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1 General Introduction 

 

The pressure for improving forestry practices in private and public forest management has 

been increasing in the last decades due to the socio-environmental concerns and the high demand 

for quality in the production process. This paradigm has pushed practitioners worldwide to seek novel 

approaches able to provide more detailed information of the forest stands and better control the 

production. As consequence, there were an increasing development of remote sensing techniques 

to collect aerial three-dimensional (3D) data from forest, with light detection and ranging (LiDAR) 

technology receiving special attention.  

Differently from the traditional forest inventory, LiDAR surveys allow predicting forest attributes 

at pixel- or tree-level so it is possible to generate high-quality maps of the predictions (Reutebuch et 

al. 2005). These characteristics are crucial in the context of precision forestry as they allow optimizing 

practices according to the spatial distribution of the forest attributes (Holopainen et al. 2014; Dash et 

al. 2016). When adapted to aerial platforms, called then as airborne laser scanning (ALS), a large 

forest area can be quickly scanned so the inventories become more efficient and less laborious 

(Vauhkonen et al. 2014). Furthermore, ALS allows deriving high-detailed digital terrain models (DTM) 

which are extremely valuable for topography studies and forest operation planning (Hollaus 2015). 

For these reasons, LiDAR application using ALS has conquered a notorious space in remote sensing 

and forest science. 

However, the application of LiDAR in forestry is not straightforward. In the case of the ALS, 

the flight must be carefully planned considering the properties of the platform, the LiDAR system, the 

characteristics of the target area, and the goals of the survey (Goodwin et al. 2006; Wulder et al. 

2008). The produced point cloud must be pre-processed to derive the desired dataset. For 

topography studies, the main product of the survey is the DTM since all desired information is derived 

directly from it. Thus, the ground points must be filtered from the point cloud and interpolated to 

derive the DTM (Liu 2008; Chen et al. 2017). In the forest assessments, the DTM is used to normalize 

point clouds by scaling point heights to ground level so the above-ground points can be processed. 

The survey must also be followed by a forest inventory, which will provide data to build the regression 

models (Lefsky et al. 2002). The user must choose an approach to estimate the forest attributes. The 

plot-level estimation through the area-based approach (ABA) (see Næsset 2002, 2004) is the most 

used, but the tree-level estimation using individual tree detection (ITD) (see Lindberg and Holmgren 

2017) is also common. Therefore, working with LiDAR is a multidisciplinary task that demands 

knowledge related to remote sensing, geoprocessing, data analysis, and forestry. 

Many researchers concentrated their efforts on the development of LiDAR techniques for 

different situations, where each work gives special attention to one of the above-mentioned 

processes of the LiDAR workflow. Considering the forestry context, forest characterization is a 

general goal and different approaches have been tested to improve the predictions of forest attributes 

or to better understand the factors involved in the modeling. The forest growing stock is the most 

modeled attribute in the related literature, but others are also approached such as those related to 

tree height and diameter. The prediction of growing stock volume and biomass have direct implication 

in forest management as they allow assessing current production and carbon storage (McRoberts et 
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al. 2013). The tree-height-based attributes such as dominant height are important to assess the 

quality of forest sites (Tesfamichael et al. 2010; Nord-Larsen and Riis-Nielsen 2010). The tree 

diameter attributes such as basal area or quadratic mean diameter are also useful to assess forest 

stands, whereas the prediction of the diameter distribution is important to study the horizontal 

structure of the forest (Maltamo and Gobakken 2014). 

Another 3D-scanning technique that has been gaining space among practitioners is digital 

aerial photogrammetry (DAP). While LiDAR system is based on laser beams emission and 

backscattering (Wehr and Lohr 1999), DAP uses passive sensors to collect high-detailed 

photographs of the area so they can be matched to produce multispectral point cloud (Baltsavias 

1999; Iglhaut et al. 2019). This technique has also been increasingly applied in the last decade due 

to its low costs involved and the popularization of unmanned aerial vehicles (UAV) (Nex and 

Remondino 2014; Colomina and Molina 2014; Guimarães et al. 2020). The workflow to process DAP 

point clouds is similar to one of ALS and their results are also promising (Goodbody et al. 2019). 

In summary, 3D scanning is a cutting-edge technology that is changing the way to perform 

forest inventory worldwide. However, even with the increasing number of published works, its 

application is not thoroughly understood given the complexity involved in its workflows and the 

different forest ecosystems.  

 

1.1 Objectives of the thesis 

This thesis aimed to analyze the application of aerial 3D data in the forest characterization 

context by expanding its use and understandings to better support forest inventory. The focus was 

given to the ALS approach for its greater relevance in the global scenario.  

Following this general goal, four research lines were proposed to explore the use of 3D data 

in different respects:  

i) To analyze the impact of calibrating ground point filtering algorithms on the DTM accuracy 

and ABA-based estimation.  

ii) To test the high-flexible probability density function Johnson’s SB to simulate diameter 

distributions of homogeneous forest plantations. 

iii) To benchmark three popular modeling techniques, namely, ordinary least square, k-

nearest neighbor, and random forest for predicting growing stock volume using ABA. 

iv) Benchmark ALS and DAP point clouds for estimating three individual attributes through 

ITD. 

The following sections of this chapter bring a brief historical contextualization of aerial 3D 

scanning in forestry and the state of the art related to each research topic. The researches are then 

presented in the following chapters by their respective published papers, where each one has its 

specific literature review, discussion, and conclusions. Finally, the general conclusions of this thesis 

are given so as the final considerations and future perspectives. 
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1.2 State of the art 

1.2.1 Historical contextualization 

The comprehensive review of Nelson (2013) pointed out that the firsts forest-oriented studies 

with airborne laser scanning (ALS) were developed in the late 1970s in Russia (part of the Soviet 

Union at the time) and early 1980s in North America. The available technology imposed strong 

limitations in this period, and the works approached the vertical measurements or density of the 

forest content using laser perfilograms (e.g., Aldred and Bonnor 1985). In the late 1980s, the studies 

related to photogrammetry inspired researchers to extend the estimations to stand-level attributes, 

such as growing stock volume and biomass, achieving promising results (Maclean and Krabill 1986; 

Nelson et al. 1988). Then, with the technological advances, the approaches continued expanding in 

the 1990s and more possibilities were opened to ALS (Dubayah and Drake 2000; Lefsky et al. 2002; 

Lim et al. 2003). Given the success of the pioneer works, the popularity of the ALS spread worldwide 

in the 2000s and upwards inviting more researchers to explore it in the different fields of the forest 

science so that it is now a consolidated approach to provide high-quality data for companies and 

governments (Hudak et al. 2009; Wulder et al. 2012; Eitel et al. 2016) 

The increasing number of related works from the 2000s was pushed especially by the 

technological advances in the scanning systems and computers, which allowed users to obtain more 

accurate point clouds, reduce the cost of the flights, and process data with less difficulty. Additionally, 

software oriented to manipulate ALS-data for forest applications became available, so the users did 

not need to build their own codes to deal with the point clouds, letting the processing workflow more 

practical and attractive for beginners. Such evolution brought to the present the futuristic concepts 

of remote-sensing experts from the ’70-’90s, and nowadays the ALS technique achieved such degree 

of reliability that can be used as a data source for nationwide forest surveys (Næsset 2014; Kotivuori 

et al. 2016; Nilsson et al. 2017). 

The first application of point clouds derived by digital aerial photogrammetry (DAP) on forestry, 

on the other hand, dated from the beginning of the 2010s and had an abrupt increasing number of 

published works in the second half of the decade (Iglhaut et al. 2019). The technique of combining 

multiple images follows a principle similar to the traditional stereoscopy, where overlapped images 

are reproduced in three dimensions (3D). A sequence of images is used in DAP to reconstruct 3D 

objects through a computational technique called structure from motion (SfM) where a multi-view 

stereo algorithm is used to match the images and produce the point clouds (Eltner et al. 2016). The 

great advantage of the SfM is that the images can be taken using simple digital cameras from 

different orientations, which allows practitioners to implement it in relatively simple platforms such as 

recreative unmanned aerial vehicles (UAV) (Eltner et al. 2016). 

Because it is passive sensing, DAP is highly dependent on the quality of the images, which is 

related to the environmental conditions and structure of the forest. In the case of UAV-based DAP, 

the point clouds can be affected by weather conditions such as lightning, clouds, and wind, so they 

can reduce the number of points and their positioning (Dandois et al. 2015). In dense forests, DAP 

has a lower ability to collect data of the ground so the derived digital terrain models (DTM) are 

expected to be less accurate than the ones derived from ALS (Graham et al. 2019). If an ALS-derived 

DTM is available from previous campaigns, it could be used to assist the DAP point cloud processing 



Diogo N. Cosenza | Forest biometric characterization through remote sensing applications  11 

(Iqbal et al. 2019). Therefore, DAP can be considered as a low-cost alternative to provide good 3D 

data for forest studies.  

 

1.2.2 The ground point filtering 

The airborne laser scanning (ALS) survey has great power to collect data of the ground even 

under dense canopy covers so it is popularly used to derive high-detailed digital terrain models 

(DTM). To derive DTM, the ground points must be selected from the point clouds in a process known 

as filtering so they can be interpolated. The filtering is one of the most critical and difficult proceedings 

to derive a DTM from ALS data (Liu 2008). Besides, because the DTM is used in the point cloud 

normalization, it can directly impact the forest characterization since the ALS-based estimations are 

derived from normalized point clouds. The existing filtering algorithms usually have many parameters 

so they require a certain degree of experience from practitioners to be set. The filtering must therefore 

be carefully conducted to ensure quality in the information produced by ALS data.  

Many filtering algorithms are available in the literature. Comparative studies have 

demonstrated that they perform relatively well in flat terrains, but have less comparable efficiency in 

steeped slopes (Sithole and Vosselman 2004; Meng et al. 2010). However, despite their efficiency, 

the popularity of the filters is also related to their availability in the ALS processing software, which 

demands a good understanding of their calibration and application. Four filtering algorithms are 

frequently applied in ALS literature when it comes to forest applications: the progressive triangulated 

irregular network (PTIN, Axelsson 2000), weighted linear least-squares interpolation (WLS, Kraus 

and Pfeifer 1998), multiscale curvature classification (MCC, Evans and Hudak 2007), and the 

progressive morphological filter (PMF, Zhang et al. 2003). These filters were developed following 

different principles so they require special attention when applied. Besides, the practical effect of 

their parameters over the accuracy of the DTM is unclear, so there is a gap of knowledge in this 

matter. Additionally, it is important to understand the effect of the filter parametrization over the forest 

modeling when the point cloud is used assess forest stands. 

In this thesis, these four filters were calibrated, and the effects of their parameters were 

assessed based on DTM accuracy (Chapter 2). The impact of the filter calibration on the forest 

modeling was also assessed using the growing stock volume and dominant height as target 

variables. A heterogeneous terrain covered by eucalyptus forest plantation in Portugal was used as 

a case study dataset.  

 

1.2.3 ALS-derived diameter distribution 

Modeling diameter distributions is a traditional proceeding of forest practitioners worldwide 

that aims to study the horizontal structure of forest stands. It is also particularly important for the 

initialization of individual tree models. In this process, a probability density function (PDF) is used to 

model diameter dataset so the tree density and growing stock can be computed for each diameter 

class (Burkhart and Tomé 2012). Because airborne laser scanning (ALS) cannot collect diameter 

data, at least directly, the diameter distribution can be estimated indirectly by using ALS metrics 

computed from the point cloud (Maltamo and Gobakken 2014).  
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Many attempts have been made to derive diameter distributions from ALS data using 

traditional PDFs such as the Weibull function (Gobakken and Næsset 2005; Maltamo et al. 2018) or 

even nonparametric approaches such as percentile-based distribution (Maltamo et al. 2006a; 

Bollandsås and Næsset 2007). The parametric approaches have the advantage of following  

statistical principles and providing a smoothed distribution, whereas nonparametric approaches can 

reproduce unusual distribution shapes. A good alternative is thus to search for a high-flexible PDF 

to reproduce diameter distributions in different forest conditions. In this context, the Johnson’s SB 

(Johnson 1949) is a candidate since it has been demonstrated to suit the most to different forest 

conditions (Parresol 2003; Fonseca et al. 2009; Mateus and Tomé 2011). 

Therefore, this thesis assessed the ability of Johnson’s SB to model diameter distributions 

having the popular Weibull PDF as benchmark (Chapter 3). Datasets from two common forest 

plantations were used in this assessment, a eucalyptus stand in Portugal and a pine stad in Spain.  

 

1.2.4 ALS-based growing stock models 

Collecting data from the forest growing stock can be labor-intensive and time-consuming. For 

these reasons, the growing stock is one of the most modeled forest attribute in applications of 

airborne laser scanning (ALS). The area-based approach (ABA) is the technique commonly applied 

to estimate forest growing stock volume using ALS since it provides high-accurate estimations at 

pixel-level (Balenović et al. 2013).  

The ordinary least squares regression (OLS) is by far the most used approach to fit ABA-

models, although nonparametric approaches are also used (Fassnacht et al. 2014). The advantage 

of nonparametric approaches is the ability to handle high-dimensional datasets without the statistical 

rigid assumptions that must be assumed in OLS, for instance. Two popular nonparametric methods 

in ABA are the k-nearest neighbors (kNN, Dudani, 1976) and random forest (RF, Breiman, 2001). 

They popularity might be justified by their efficiency in making predictions and the relative simplicity 

when compared to other nonparametric approaches, such as neural networks or support vector 

machines (see both in Haykin, 2009).  

Both kNN and RF are well-known techniques in remote sensing applications as described in 

the reviews of Chirici et al. (2016) for kNN and Belgiu and Drăgu (2016) for RF. Because kNN can 

predict multiple responses, it has been used to estimate species-specific growing stock in boreal 

forests using ALS data (Packalén and Maltamo 2006, 2007; Packalén et al. 2012), although it has 

been also used for a single response (McRoberts et al. 2015, 2017). However, kNN has proved to 

overfit the data depending on how it is applied (Packalén et al. 2012). RF on the other hand does not 

allow multiple responses, but it calls attention from scientific community given its ability to providing 

robust accurate without overfitting (Shataee et al. 2011; Latifi and Koch 2012). Some studies 

benchmarked these two modeling approaches and OLS for temperate forest (Latifi et al. 2012; 

Fassnacht et al. 2014; Tompalski et al. 2019), but a broader study for different site conditions is still 

not available. Furthermore, the conditions for which kNN overfits are not well-understood nor the 

effect of using many variables in RF modeling.  

Considering the above-mentioned gaps of knowledge, this thesis compared in Chapter 4 the 

OLS, kNN, and RF to estimate growing stock volume in different forest sites worldwide: boreal forest, 
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temperate forest, and a forest plantation in a tropical region. Different settings of these approaches 

were assessed in this benchmark.  

 

1.2.5 Tree characterization through DAP and ALS 

One of the remarkable possibilities of working with point cloud data is to estimate forest 

attributes at tree level based on individual tree detection approach (ITD). In ITD, trees are identified 

using specific algorithms and biometric attributes are estimated by previously calibrated models 

(Lindberg and Holmgren 2017). There are many algorithms available to individualize tree canopies 

from normalized point clouds, such as the ones based on watershed, image segmentation, or local 

maxima filter, an each approach has its own specificities–see details in the comprehensive 

benchmarks of Kaartinen et al. (2012), Vauhkonen et al. (2012), and Wang et al. (2016). By 

identifying trees, practitioners can automatically obtain the stand tree densities, tree heights, and 

crow measures. However, aerial surveys such as airborne laser scanning (ALS) and digital aerial 

photogrammetry (DAP) cannot collect diameter data from tree directly, so this variable must be 

obtained using models based on the tree heigh and crow attributes (e.g., Chen et al., 2007; Cao and 

Dean, 2013; de Oliveira et al., 2014). Likewise, tree volumes and biomass must be also estimated 

using other tree variables so the growing stock is computed by summing up the individual tree 

estimates (e.g., Popescu 2007).  

ITD is mostly applied with ALS, although its applications with DAP is becoming more frequent 

(Bonnet et al. 2017; Mohan et al. 2017; Picos et al. 2020). However, there is a lack of studies 

comparing both techniques. The exception was the work of Guerra-Hernández et al. (2018), who 

conducted a study in a eucalyptus plantation applying the local maxima filter. In their work it was 

showed that more accurate tree detection was achieved with ALS point cloud than with the DAP one, 

while both techniques had comparable performance in the estimation of tree heights. In this case, 

further studies must also compare both techniques regarding the tree volume and diameter 

estimation.  

To fill this gap of knowledge this thesis compared ALS and DAP point clouds to obtain 

individual tree diameters and volumes by using ITD approach (Chapter 5). In this work was used the 

same dataset of Guerra-Hernández et al. (2018).  
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Abstract: Ground point filtering of the airborne laser scanning (ALS) returns is crucial to derive digital
terrain models (DTMs) and to perform ALS-based forest inventories. However, the filtering calibration
requires considerable knowledge from users, who normally perform it by trial and error without
knowing the impacts of the calibration on the produced DTM and the forest attribute estimation.
Therefore, this work aims at calibrating four popular filtering algorithms and assessing their impact
on the quality of the DTM and the estimation of forest attributes through the area-based approach.
The analyzed filters were the progressive triangulated irregular network (PTIN), weighted linear
least-squares interpolation (WLS) multiscale curvature classification (MCC), and the progressive
morphological filter (PMF). The calibration was established by the vertical DTM accuracy, the root
mean squared error (RMSE) using 3240 high-accuracy ground control points. The calibrated parameter
sets were compared to the default ones regarding the quality of the estimation of the plot growing
stock volume and the dominant height through multiple linear regression. The calibrated parameters
allowed for producing DTM with RMSE varying from 0.25 to 0.26 m, against a variation from 0.26
to 0.30 m for the default parameters. The PTIN was the least affected by the calibration, while the
WLS was the most affected. Compared to the default parameter sets, the calibrated sets resulted in
dominant height equations with comparable accuracies for the PTIN, while WLS, MCC, and PFM
reduced the models’ RMSE by 6.5% to 10.6%. The calibration of PTIN and MCC did not affect the
volume estimation accuracy, whereas calibrated WLS and PMF reduced the RMSE by 3.4% to 7.9%.
The filter calibration improved the DTM quality for all filters and, excepting PTIN, the filters increased
the quality of forest attribute estimation, especially in the case of dominant height.

Keywords: point classification; ALS; forest modeling

1. Introduction

The success of airborne laser scanning (ALS) on collecting accurate measurements of forest
ecosystems consolidated this technique worldwide as a state-of-the-art approach in forest inventories.
The term ALS refers to light detection and ranging system (LiDAR) onboard an aerial platform, aiming
to quickly scan large areas to produce detailed three-dimensional point clouds of the surface [1,2].
These characteristics allow the ALS data to be used for many purposes including topographic- and
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forest-related studies [3–5]. Among the forest-oriented applications, the area-based approach (ABA)
has been widely applied to estimate forest attributes, where the tree dominant height and growing stock
volume are commonly targeted [6–8]. However, the interpretation of ALS data requires successive
steps to process, filter and re-scale the information. The calibration of the algorithms used on each step
during the processes can turn into a prohibitively time-consuming operation for the users. Furthermore,
the experience in handling of the ALS data is essential to properly assess the calibration of the algorithms
when it comes, for instance, to generate the digital terrain model (DTM).

Despite the many developments related to the ALS data processing, ground point filtering is a
critical procedure for deriving DTM [9], and it is necessary to classify raw ALS returns as coming from
the ground or non-ground. Once the ground returns are interpolated to build the DTM (see [10]),
the point cloud is normalized in a process by which the Z coordinates of all non-ground returns
are re-scaled to above-ground elevation. In the case of the ABA, several metrics are extracted from
the normalized point cloud and used to estimate the forest attributes (see, for example, [11]). Thus,
the DTM has a great influence on the computation of ALS metrics and consequently on the statistical
modeling based on ABA, so the filtering process can be regarded as the cornerstone step in the data
processing when using ALS in forest inventory.

Great efforts have been made to develop enhanced filtering algorithms [12]. Besides the
quality of the filtering, the usability of an algorithm is partially related to its availability on the
ALS-oriented processing software. Among the most common filtering algorithms available, good
solutions have been reported when using progressive triangulated irregular network (PTIN, [13]),
weighted linear least-squares interpolation (WLS, [14]), multiscale curvature classification (MCC, [15]),
or the progressive morphological filter (PMF, [16]).

The performance of the above-mentioned methods has been tested in forest areas where the
results point to a higher discrepancy among filters as the terrain becomes steep and as the undergrowth
increases [17–19]. This fact is common in other benchmarks, which shows the higher difference among
the filter efficiencies as the terrain complexity increases [20–25]. As presented by Montealegre et al. [26],
the steeped slopes affect the way the filters recognize the returns belonging to the vegetation from
ones coming from the ground, causing excessive removal of returns and reducing the details of the
ground surfaces. Another source of errors in the filtering process is caused by the border effect, which
is the misclassification of returns on the border of the dataset due to the lack of returns outside the
boundary [21]. Consequently, many returns in the border are removed causing an erosion in the DTM,
so that it cannot extend above all non-ground returns. In this regard, the interpolation process of
ground returns located on the edge of the ALS coverage is challenging and can substantially impact
the quality of the ALS-based inventory workflow.

The filter calibration is often required to improve the filtering performance, where trial and error
are the most common praxis. Using and calibrating a filtering algorithm can involve several parameters
that may require considerable knowledge from forest practitioners along a tedious and time-consuming
process. Many benchmark studies applied parameters calibration to compare filters [18,26], but the
practical effects of the calibration on the accuracy of the DTM and the forest attribute estimation are
still unknown. This understanding would be valuable for ALS users by supporting them during the
data processing to produce the DTM, especially when the forest characterization is the goal.

The aims of this study are: i) To assess the calibration of four filtering algorithms (PTIN, WLS,
MCC, and PMF) commonly used in ALS-based forest inventory; ii) to evaluate the impact of the
calibration on the DTM quality and forest modeling, particularly for plot growing stock volume and
dominant height estimation. The analysis was oriented to the forest data users or the ones who need
to process ALS data of forested areas. We applied alternative combinations of parameter values for
each tested algorithm in the software implementation, and the different parameters were calibrated
according to the accuracy of the DTM derived from the filtered ground returns. More than 3000 ground
control points were used to assess the quality of the produced DTM. The effect of calibrating the
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filters was traced from the DTM generation to its impact on the performance of the models, where the
multiple linear regression approach and a eucalyptus forest plantation was used as showcase.

2. Material and Methods

2.1. Study Area

The study area is located in Northwest Portugal (40◦36′N, 8◦25′W), close to the city of Águeda,
comprising 9 km2 of forested landscapes. The terrain presents a heterogenic topography, with altitude
varying from 70 to 220 m and slopes ranging from 2.5% to 34.2%. At the time of the forest data
collection (July 2008), the forest area was mainly covered by pure even-aged Eucalyptus globulus Labill
stands, harvested every 10–12 years during three or four rotations, with some stands of Pinus pinaster
Aiton. The eucalyptus stands had a mean tree density around 1600 trees per hectare, with regular or
irregular spacings, and they were composed by stands from seedling (first rotation) and regenerated by
coppice (following rotations) for pulp supplying. Many stands were multi-layered, with E. globulus in
the uppermost layer and suppressed trees, shrubby and herbaceous vegetation in the lowermost layer.

2.2. Field Data Collection

The forest and the topographic surveys occurred between 10 June and 3 July 2008 through
41 circular plots with 400 m2 of area (11.28 m of radius). The plots were systematically installed over the
area (Figure 1a) and covered a large range of terrain slopes (Figure 1b). Within each plot, the diameters
at breast height (dbh, at 1.30 m height) were measured from all trees higher than 2 m, together with the
height of the dominant and co-dominant trees. For each plot, a concentric subplot of 200 m2 (7.98 m of
radius) was used to collect the heights of all trees higher than 2 m. The missing tree heights of each plot
were estimated using the Prodan’s model [27] fitted with the respective subplot data. The individual
tree volumes with bark were estimated using an equation provided by Tomé et al. [28], and the tree
volumes were summed to obtain the ground reference volume for each plot (V, m3). The 41 plots were
used for the filter calibration assessment, from which 25 plots were selected to evaluate the impact of
the calibration on the forest modeling. The selection of the 25 plots was needed to remove plots that
were located in the transition boundary between two stands, or crossed by roads, that could bias the
forest modeling (see [29]). The biometrical description of the forest content within plots is presented in
Table 1.
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Figure 1. (a) Map of plots distributed over the area. (b) Histogram of mean terrain slope within plots
used on the filtering calibration assessment (41 plots) and forest modeling assessments (25 plots).
(c) Exemplification of a digital terrain model (DTM) with their respective control points within a plot.
(d) A showcase example of an eroded DTM for the plot (c).
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Table 1. Biometrical description of the forest within plots with their minimum, mean, maximum and
standard deviation (σ) values.

Assessment Plots * Attribute Unit Minimum Mean Maximum σ

Calibration 41

dg cm 3.0 11.7 19.3 4.4
hd m 3.67 15.54 26.50 5.79
V m3 0.011 2.937 11.726 2.605
N trees ha−1 875 1528 3613 534

Forest modeling 25

dg cm 5.6 12.3 18.2 3.6
hd m 6.55 16.74 23.10 4.48
V m3 0.088 3.134 7.891 2.232
N trees ha−1 875 1470 2343 361

* V = growing stock volume within plot area; hd = dominant height; dg = quadratic mean diameter; N = stand density.

The coordinates of each tree within each plot were recorded as well as the coordinates of prominent
terrain points, like breaklines or spot heights (Figure 1c), resulting in 3240 ground control points,
a mean of 79 points per plot (σ = 24). The accuracy of the coordinates of points using a geodetic Global
Navigation Satellite Systems (GNSS) on land covered with dense vegetation is not reliable; therefore,
the devised strategy for measuring the coordinates of ground control points was not straightforward.
Firstly, those coordinates were measured in each plot by means of a topographic survey using the
radial method [30]. As these coordinates are in a local system, they were converted to that of the LiDAR
data by using GNSS receivers. To this end, it was decided to attach to each plot two GNSS-derived
points, named GNSS base, whose coordinates were measured with two GNSS receivers. They allow
for coordinating the surveyed points directly in the referred coordinate system. Two points are needed
to orient the total station. These two points were placed as close as possible to the plot and as much
as possible in an open space. The method used to measure the coordinates of the two GNSS-derived
points was the relative positioning by using a fixed receiver on a geodetic pillar with known coordinates
on the same system as the LiDAR data. This method, in post-processing, is the most precise and may
reach levels of precision in the order of centimeters [31].

2.3. ALS Data Collection and Pre-Processing

The ALS survey was carried out in July 2008, a few days after the forest inventory, using a
LiteMapper-5600 laser system from RIEGL (www.riegl.com), which has as main components the
high-resolution laser scanner LMS-Q560, the positioning system AEROcontrol, and the digital camera
DigiCAM (see [32] for more technical details on the system). The airplane flew 600 m above ground
with a mean speed of 46.26 m s−1. The parameters of the laser system were: 0.5 mrad of beam
divergence, ±45º of scan angle and pulse rate of 150 kHz. The resulted swath was 497 m (60% of
overlap) and the returns density was 9.5 returns m−2. More details about the ALS survey is described
in [31,33]. The ALS point clouds were inspected for outliers and further clipped using the plot center
coordinates with a 15-m radius buffer (706.85 m2) for each plot. The clipping process was carried
out to avoid edge-effect over the ground returns during the filtering process. The FUSION software
V3.60 [34] was used for this pre-processing.

2.4. Filtering Calibration

The used filters were chosen based on their recurrent utilization on the related literature [20,26].
We gave preference to those filters implemented into line-code-based software that allows being
incorporated into programming routines; in our case the R environment [35] was used. Each filter was
applied to the last returns of the point clouds of the 41 plots using different parameter sets. The choice
of which parameters to be calibrated was done for each filter since they follow different principles
described in the following sections. This work is focused on the filtering process for forest applications,
so settings regarding urban terrain or smoothing filters were not considered. The values tested in the

www.riegl.com
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calibration were defined considering the ones close to the software defaults and recommendations
(Table 2).

Table 2. The default filtering parameter values and the corresponding set of values for calibration
of the progressive triangulated irregular network (PTIN), weighted linear least-squares interpolation
(WLS), multiscale curvature classification (MCC), and progressive morphological filter (PMF).
The particularities of the parameters are defined in Sections 2.4.1–2.4.4.

Filter Software Parameters Default Set of Values for Calibration

PTIN LASground
Spike 0.5 0.0, 0.5, 1.0, 1.5, 2.0

Step size 5 1,3,5,7
Granularity Fine None, coarse, fine, extra fine

WLS FUSION

g −2.5 −3.0, −2.5, −2.0, . . . , 0.0
w 2.5 0.0, 0.5, 1.0, . . . , 3.0

Iterations 5 3, 5, 7
Window size 5 * 1, 3, 5

MCC MCC-LIDAR
Scale (λ) 1.5 0.5, 1.0, 1.5, . . . , 5.0

Tolerance (t) 0.3 0.1, 0.2, 0.3, . . . , 1.0

PMF lidR
Threshold 0.3 0.1, 0.2, 0.3 . . . , 1.5

Window size 5, 9, 13, 17 1, 3, 5, . . . , 19

* Exemplified value by the software’s manual.

2.4.1. Progressive Triangulated Irregular Network (PTIN)

The PTIN is frequently applied in forest studies [36–38]. The algorithm starts with a sparse
triangulated irregular network (TIN) created from seed points and then performs the densification
of the TIN iteratively. In this process, the densification occurs by including the returns according to
their distance to the TIN facets and their angles to the nodes. We used the adaptation of PTIN of
the LASground software (rapidlasso.com), which comprises the following three assessed parameters:
Spike, which is the threshold at which spikes get removed; step size, defines the size of the initial search
window and it is dependent on the terrain roughness, where values around 5 are suggested for forest
or mountain areas; and granularity, related to the computational effort invested into finding the initial
ground estimate.

2.4.2. Weighted Linear Least-Squares Interpolation (WLS)

The applied WLS filter was the adaptation of the Kraus and Pfeifer’s algorithm [14] into the
FUSION software [34], which was used in many works [39–41]. This filter averages reiteratively the
return heights inside a defined search window, assigning the weights according to their residuals in
relation to the mean height. In this case, the weights are recalculated in each iteration according to the
weighting function (Equation (1)), so that height values associated with lower residuals receive higher
weights, whereas those with higher residuals receive lower weights. The parameter values a = 1 and
b = 4 are commonly used and are recommended by the software developers for most applications so
they were kept in the analysis [14,26]. The parameters g, w, window size and the number of iterations
(iteration) are supposed to be defined by the user according to the data, thus they were chosen to be
calibrated (Table 2). Among these parameters, the window size is the only one without a specified
default value, although the software’s manual points to 5 m2. In this case, a window size equal to 5 m2

was considered as a default value.

pi =


1 vi ≤ g

1
1+a(vi−g)b g < vi ≤ g + w ,

0 vi > g + w

(1)
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where pi is the weight for the return i = 1, . . . , n; vi is the residual point height value from the average
height, being i = 1, . . . , n; the parameters a and b determine the steepness of the weight function; g is
negative and represents a threshold value after which the weights are set to 1 if vi ≤ g and to 0 if vi > g
+ w. Note that w ≤ |g| for all w values.

2.4.3. Multiscale Curvature Classification (MCC)

The MCC is a filter developed by Evans and Hudak [15] and implemented in MCC-LIDAR
software (sourceforge.net/projects/mcclidar). It uses the thin-plate spline interpolation to produce
surfaces in different resolutions and uses progressive curvature tolerances to eliminate non-ground
returns. The software uses only two parameters that should be set by the user: the initial scale (λ),
related to the search window size that is used to interpolate the points; and the initial curvature
tolerance (t), which accounts for slope interaction between the interpolated surface and the returns.
During the processing, both parameters are changed through three domains to address variable canopy
configurations and their interaction with the terrain slope: the initial value set to λ is multiplied by 0.5,
1, and 1.5, while 0.1 is added to the initial t in each domain. Values for λ =1.5 and t = 0.3 are claimed by
the developers as efficient to filter non-ground returns, so variations around those values were tested
in this work (Table 2). Applications of the MCC in forest studies can be found, for example, in [42–44].

2.4.4. The Progressive Morphological Filter (PMF)

The PMF filter was developed by Zhang et al. [16] and uses concepts of object identification in
grey-scale images by applying mathematical morphology filters like opening and closing operators.
The closing operator removes returns from objects of sizes smaller than the window size, while the
opening operator keeps the returns from larger objects. The PMF was applied using the implementation
of the lidR package [45], where the filter works at point cloud level without any rasterization process.
The PMF has been commonly applied to ALS data [18,26], and the release of the lidR package has also
promoted this filter to process photogrammetric point clouds [46]. The package uses two parameters:
the sequence of windows size, and the sequence of threshold, which is the height value below which a
return is classified as a ground return. In this study, the PMF was applied using not a sequence but a
specific value for each parameter to better isolate the effect of each component in the processing of the
ALS datasets (Table 2).

2.5. Filtering Accuracy Assessment

For each combination of filter parameters, the classified ground returns within each plot were
interpolated into a DTM (1.0 m of cell size) from a TIN surface using the grid_terrain command
implemented on the lidR package [45]. The choice of using the TIN interpolation was due to its
efficiency and frequent application to generate DTM from ALS data [9,19,47]; thus, eventual errors in
the interpolation were not considered in this analysis. Each combination of the filter parameters was
assessed using the root mean squared error (RMSE, Equation (2)) computed with the height values
interpolated from the derived DTM at the same planimetric positions as the ground control points.
Note that the DTM was generated for each plot separately to allow detecting DTM erosion, which
was defined here as the non-inclusion of all ground control points within the DTM extension of its
respective plot (Figure 1d). The efficiency of a filtering process was then evaluated using the accuracy
of the DTM (the lower the RMSE, the better) so as its integrity, where the erosions were not allowed.

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(2)

where, yi and ŷi are, respectively, the observed and estimated value for the observation i = 1, . . . , n.



Remote Sens. 2020, 12, 918 7 of 18

2.6. Forest Modeling Assessment

The calibrated parameter values for each filter were further benchmarked against the default
values by assessing the impact of the corresponding derived DTM on the estimation of forest attributes
through ABA. Each of these DTM was used further into the normalization process, which provided
the height of points above ground. The growing-stock volume (V, m3) and the dominant height (hd,
m) were estimated for each plot using ALS metrics since these attributes are frequently assessed in
the ALS applications. The ALS metrics were computed for each plot using its respective normalized
point cloud and considering only points higher than 1 m above ground. The normalization and the
computation of ALS metrics were performed using the lidR package [45]; the set of metrics (Table 3)
were used as candidate predictors in forest modeling.

Table 3. Description of candidate metrics derived from airborne laser scanning (ALS).

Metric Type Metric Description

Position Zmin, Zmean, Zmax Minimum (Zmin), mean (Zmean) and maximum (Zmax) return height
Z5, Z10, Z15, Z20, Z25, Z30, Z35, Z40,

Z45, Z50, Z55, Z60, Z65, Z70, Z75,
Z80, Z85, Z90, Z95

Zx-th percentile (quantile) of height distribution

MQ, MC Quadratic (MQ) and cubic (MC) mean height
Height
variability Zcv, Zsd Height coefficient of variation (Zcv) and standard deviation (Zsd)

Zsqew, Zkurt Height skewness (Zsqew) and kurtosis (Zkurt)
Density PFRZmean, PARZmean Percentage of first (PFRZmean) and all returns (PARZmean) above Zmean

PFR2m, PAR2m Percentage of first (PFR2m) and all returns (PAR2m) above 2 m
C1, C2, C3, C4, C5, C6, C7, C8, C9 Cumulative percentage of returns in the C-th layer, i.e., C10 = 100%

Others CR Canopy relief ratio: (Zmean – Zmin)/(Zmax – Hmin)

Although there are several methodologies to perform a forest attribute modeling [48], the multiple
linear regression fitted using ordinary least squares was used as a showcase for its simplicity, efficiency
and frequent application to ALS data [49–52]. Thus, the multiple linear model (Equation (3)) was
used to estimate each forest attribute (V and hd), where the two metrics were selected through
exhaustive search.

√

Y = β0 + β1x1 + β2x2 + ε (3)

where,
√

Y is the response variable; βi is the model parameter i = 0, 1, 2; xi is the predictor i = 1, 2; and ε
is the random error.

Despite this analysis focusing on the estimative efficiency of the models (no inference made),
the linear regression assumptions were taken into account. The response variable was square rooted to
avoid heteroscedasticity, and the residual variance component was added to the back-transformed

response variable when an equation was used to estimate a forest attribute: Ŷ =
( √̂

Y
)2
+ σ2 [8,53].

In the exhaustive search, all possible combinations of two candidate metrics were used to fit the models
using the above-mentioned dataset with 25 plots. The best model was considered to be the one with the
lowest RMSE (Equation (2)), all parameters significantly different from zero (t-test, α = 5%), and with
variance inflation factors lower than 10 [54] computed using the car package [55]. The RMSE was
chosen for this purpose for is has been proven to be a stable and robust measure to assess model
performances [52].

Each model was selected and fitted using the data from the 25 plots referred above. The fitted
equation was assessed through 5-fold cross-validation. In the cross-validation the dataset is split into
five sets (“folds”) of equal size to start an iterative process. In each iteration one fold is omitted from
the model fitting and has their values estimated by the model; the estimated values of all omitted
folds at the end of the process are used to compute the final error. The entire cross-validation was
repeated 100 times to reduce the randomness involved in this process [56]. Thus, the resultant RMSE
values from the calibrated filter were compared to the ones derived from the default values through the
Wilcoxon–Mann–Whitney test [57,58], since preliminary analysis demonstrates that the RMSE values
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were not normally distributed. The accuracy of the models was thus represented by the median of the
error values (RMSEmed) as well as its percentage from the observed mean values RMSE%med.

3. Results

3.1. Filtering Parameters Calibration

As a general result, the calibration of the filter parameters allowed to produce more accurate DTMs
than those produced using the software defaults, with RMSE from 0.25 to 0.26 m when calibrated,
against a variation from 0.26 to 0.30 m with the default (Table 4). The accuracy of the DTMs produced
with the calibrated PTIN had the smallest improvement when compared to that obtained by using the
default parameters (a reduction of 4% in the RMSE). On the other hand, the accuracy of the DTMs
produced with calibrated WLS had the highest improvement on accuracy, decreasing 16% in terms of
RMSE. Excepting the PMF, the filters have more than one calibrated parameter set, so the set that has
less impact on the computational effort was chosen.

Table 4. Root mean square error (RMSE) of the digital terrain models (DTMs) derived by the default
and the calibrated parameter values for progressive triangulated irregular network (PTIN), weighted
linear least-squares interpolation (WLS), multiscale curvature classification (MCC), and progressive
morphological filter (PMF).

Filter
RMSE (m)

Difference * Calibrated Parameters Values
Default Calibration

PTIN 0.26 0.25 −0.01 (−4%) Spike: 0
Step size: 5
Granularity: Fine, extra fine

WLS 0.30 0.25 −0.05 (−16%) |g| = w = 0.0, 0.5, 1.0, . . . , 3.0
Iterations: 3
Window size: 1

MCC 0.29 0.26 −0.03 (−10%) Scale: 1, 1.5, 2, . . . , 4.5
Tolerance: 0.1

PMF 0.27 0.25 −0.02 (−7%) Threshold: 0.1
Window size: 5

* Differences between the calibrated parameter values and the default ones.

The tested parameters of PTIN resulted in a small variation in the accuracy of DTMs, with RMSE
ranging from 0.25 to 0.29 m (Figure 2). The DTM accuracy was less affected by the spike and most
influenced by the step size—the RMSE decreased continually as the step size increased. On the other
hand, larger values for step size increased the susceptibility of the filter to border effect, producing
eroded DTMs. This effect was intensified when the coarse granularity was applied so that smaller
values of step size were needed to derive eroded DTMs. Despite the influence of the border effect,
the granularity had marginal impact on the accuracy of the DTMs, and the fine and extra fine granularity
had comparable results. Therefore, the fine granularity should be preferred since it requires less
computational effort during data processing.

The WLS presented high variation in the DTM accuracy among the different parameter settings
(RMSE between 0.25 and 0.46 m). It is strongly and similarly affected by the parameters g and w
(Figure 3), where the RMSE decreased with their decreasing in value. Additionally, the RMSE decreased
as the differences in the absolute values of these parameters decreased, which means that the filter is
more accurate as |g| and w values are closer. The tested number of iterations and window cell sizes did
not influence the accuracy of the DTMs, but they were important concerning the border effect. Eroded
DTMs occurred when |g| = w, except when the cell size was set to 1 m2 and using three or five iterations.
By setting |g| = w the filter is forced to consider only the lowest residuals to compute the averages,
and positive residuals (v) are no longer accepted. Consequently, the WLS becomes less tolerant of
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variations in the ground surface within the search window so more points are removed if a higher cell
size or a higher number of iterations are used. Furthermore, there was no difference in the filtering
performance when the number of iterations was set to either three or five, so the lower value (i.e., three)
should be preferred to speed up the computational process.
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The calibration of the MCC did not produce eroded DTMs, and their accuracy varied between 0.26
and 0.36 m (Figure 4). The tolerance had the greatest impact on the filter’s performance (i.e., the higher
its value, the higher the RMSE and thus the smaller the DTM accuracy). On the other hand, the scale
appears to have only marginal impact, tending to reduce the RMSE as the values increase. The tested
values for scale suggested that its effect on the DTM accuracy also depends on the tolerance; when the
tolerance was set to 0.1, the effect of the scale on the accuracy was marginal (RMSE between 0.26 and
0.27 m), while a wider range was observed for intermediary tolerance values (e.g., RMSE between 0.29
and 0.34 m for tolerance value equal to 0.4). Despite the most accurate DTM being produced when
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setting tolerance to 0.1, many values could be used for the scale (0.1–4.5). This parameter controls the
cell resolution of the thin-plate spline interpolation (see Section 2.4.3), so setting larger values increases
the number of returns to be interpolated. For this reason, using lower values for the scale (i.e., between
1 to 2) is advisable to reduce the computational effort.Remote Sens. 2020, 12, 918 11 of 19 

 

 

Figure 4. Root mean square error (RMSE) values of the digital terrain models (DTMs) derived from 
the calibration of the parameters of the multiscale curvature classification (MCC). 

The calibration of the PMF parameters resulted in the widest range of DTM accuracies, with 
RMSE between 0.25 and 0.56 m (Figure 5). Both tested parameters influenced the filtering efficiency. 
The RMSE of the DTMs increased with the increasing of the threshold. The changes in the accuracy 
due to the window size were more highlighted when its values shifted from 1 to 3, but a marginal 
effect was noted for values higher than three. The eroded DTMs were more frequent as the threshold 
value was lower and the window size higher. Since the PMF uses a sequence of window size values in 
the filtering, the use of higher values (i.e., ≥9) showed to be not effective for the filtering efficiency in 
the studied area. 

 

Figure 5. Root mean square error (RMSE) values of the digital terrain models (DTMs) derived from 
the calibration of the parameters of the progressive morphological filter (PMF). Grey tiles represent 
settings that produced eroded DTMs. 

3.2. Estimation of Forest Attributes 

The default and the calibrated parameter values listed in Table 4 were used to estimate the forest 
attributes through ABA. The parameters with more than one calibrated value were set as follows: 
Fine granularity for PTIN; g = 0 and w = 0 for WLS; and scale = 1.0 for MCC.  

Figure 4. Root mean square error (RMSE) values of the digital terrain models (DTMs) derived from the
calibration of the parameters of the multiscale curvature classification (MCC).

The calibration of the PMF parameters resulted in the widest range of DTM accuracies, with RMSE
between 0.25 and 0.56 m (Figure 5). Both tested parameters influenced the filtering efficiency. The RMSE
of the DTMs increased with the increasing of the threshold. The changes in the accuracy due to the
window size were more highlighted when its values shifted from 1 to 3, but a marginal effect was noted
for values higher than three. The eroded DTMs were more frequent as the threshold value was lower
and the window size higher. Since the PMF uses a sequence of window size values in the filtering, the use
of higher values (i.e., ≥9) showed to be not effective for the filtering efficiency in the studied area.
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3.2. Estimation of Forest Attributes

The default and the calibrated parameter values listed in Table 4 were used to estimate the forest
attributes through ABA. The parameters with more than one calibrated value were set as follows: Fine
granularity for PTIN; g = 0 and w = 0 for WLS; and scale = 1.0 for MCC.

The dominant height equations resulted in good accuracy for all filters, with RMSE%med between
4.9% and 5.2% for the calibrated values, and between 5.0% and 5.6% for the default values (Table 5).
The calibrated and the default parameters values originated equations with comparable performances
for the PTIN considering a confidence level (α) of 5%. The metrics used by the equations derived from
PTIN were also similar; the equation derived from the calibrated parameters used Z65, while the one
derived from the default parameters used Z60. The calibration of WLS, MCC and PFM resulted in
a significant improvement of the estimated dominant height accuracy when compared to that one
derived using the default parameter values. The decrease in the RMSEmed values due to the calibration
was 0.08 m points for WLS, 0.06 m for MCC and 0.10 for PMF, which are equivalent to an improvement
of 8.5%, 6.5% and 10.6%, respectively. Although their respective equations used the metric Z95, the ones
derived for the calibrated values used Z60 instead of C8 in the equations of the default values, which
are metrics computed with different principles (see Table 3).

Table 5. Dominant height equations with their associated variances (σ2), and the p-value for the
Wilcoxon–Mann–Whitney test obtained with different settings of the progressive triangulated irregular
network (PTIN), weighted linear least-squares interpolation (WLS), multiscale curvature classification
(MCC), and progressive morphological filter (PMF).

Filter Setting * Equation σ2 (m) ** RMSEmed (m) p-value

PTIN
Calibrated

√
hd = 1.922− 0.037 Z65 + 0.164 Z95 0.009 0.829 (4.9%) 0.011

Default
√

hd = 1.930− 0.032 Z60 + 0.159 Z95 0.009 0.844 (5.0%)

WLS
Calibrated

√
hd = 1.926− 0.032 Z60 + 0.159 Z95 0.010 0.86 (5.2%) <0.001

Default
√

hd = 1.406 + 0.006 C8 − 0.139 Z95 0.009 0.94 (5.6%)

MCC
Calibrated

√
hd = 1.331− 0.034 Z60 + 0.161 Z95 0.009 0.86 (5.1%) <0.001

Default
√

hd = 1.390 + 0.006 C8 − 0.139 Z95 0.009 0.92 (5.5%)

PMF
Calibrated

√
hd = 1.930− 0.032 Z60 + 0.159 Z95 0.009 0.84 (5.0%) <0.001

Default
√

hd = 1.393 + 0.006 C8 − 0.139 Z95 0.009 0.94 (5.6%)

* hd is the dominant height (m); Zx is the height of the x-th percentile of height distribution; Cx is the cumulative
percentage of returns in the x-thlayer. ** Median of root mean square error (RMSE) values computed through
100 repetitions of five-fold cross-validation. The RMSE%med is shown in parenthesis.

Regarding the volume estimation, the models presented RMSE%med between 16.3% and 16.7%
when using the calibrated values and 16.5% and 17.7% when using the default values (Table 6).
Although these errors are higher than those encountered in the estimation of the dominant height,
they could be considered low in the case of volume modeling when assessed through cross-validation.
The estimation efficiency when using the calibrated PTIN and MCC did not differ from those derived
with filters using their respective default values. The use of WLS and PMF with calibrated parameters
significantly improved the volume estimation when comparing to their respective default values.
Despite the related equations used the same metrics, the decrease of the RMSEmed values by using
the calibrated parameters were 0.018 m3 for WLS and 0.044 m3 for PMF, which is equivalent to an
improvement of 3.4% and 7.9%, respectively.
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Table 6. Volume equations with their associated variances (σ2), and the p-value for the
Wilcoxon–Mann–Whitney test obtained with different settings of the progressive triangulated irregular
network (PTIN), weighted linear least-squares interpolation (WLS), multiscale curvature classification
(MCC), and progressive morphological filter (PMF).

Filter Setting * Equation σ2 (m3) ** RMSEmed (m3) p-value

PTIN
Calibrated

√
V = −0.538 + 0.137 Zmax − 0.013 C2 0.021 0.522 (16.7%) 0.554

Default
√

V = −0.532 + 0.138 Zmax − 0.014 C2 0.020 0.528 (16.8%)

WLS
Calibrated

√
V = −0.518 + 0.137 Zmax − 0.014 C2 0.019 0.514 (16.4%) 0.007

Default
√

V = −0.516 + 0.139 Zmax − 0.018 C2 0.019 0.532 (17.0%)

MCC
Calibrated

√
V = −0.520 + 0.138 Zmax − 0.015 C2 0.019 0.515 (16.4%) 0.267

Default
√

V = −0.522 + 0.139 Zmax − 0.017 C2 0.018 0.517 (16.5%)

PMF
Calibrated

√
V = −0.532 + 0.138 Zmax − 0.014 C2 0.020 0.510 (16.3%) <0.001

Default
√

V = −0.516 + 0.140 Zmax − 0.021 C2 0.020 0.554 (17.7%)

* V is the plot growing stock volume (m3); Zmax is the maximum height; C2 is the cumulative percentage of returns
in the 2nd layer. ** Median of root mean square error (RMSE) values computed through 100 repetitions of five-fold
cross-validation. The RMSE%med is shown in parenthesis.

4. Discussion

This study demonstrated that a DTM derived from ALS is more accurate when the parameters of
the filtering process are calibrated. The DTM produced with the WLS was the most affected by the
calibration, followed by that of the MCC, PMF and of the PTIN (less affected). This fact influenced the
estimation of forest attributes, especially for dominant height. Except for PTIN, the estimation of the
dominant height derived by using the calibrated parameter values was significantly more accurate
than those that are derived with the default ones. In the case of the volume estimation, the calibration
of WLS and PFM derived equations with significantly better accuracies, contrary to the PTIN and MCC
filters that performed comparably when using calibrated and default parameter values.

The lower effect of the calibration for PTIN is justified by the similarity between the calibrated and
the default parameters values, which differs only by 0.5 in the spike parameter value (see Tables 2 and 4).
The calibrated parameters for the MCC differed the most with respect to the default ones, having
a large impact on the dominant height estimation as opposed to the volume estimation. The result
shows that a DTM can have different impacts on the modeling of these forest attributes and that the
calibration will lead to the best results depending on the filter and on the attribute to be estimated.

Although these two forest attributes are highly correlated, they present different aspects when are
estimated through ALS data. Many works have reported good correlations between the tree height
attributes with upper-tail percentiles of the height distribution of ALS returns [59,60]. The literature is
less consensual for the case of the volume estimation, for which good performances are found based
on ALS metrics associated to intermediary percentiles (higher than 50%), density metrics (e.g., C8)
and/or height variability measures (e.g., height kurtosis) [6,44,50]. These characteristics were also
observed in our work, where the metric Z95 appears in all dominant height equations just as the Zmax

and C2 in the volume equations. However, studies focusing on the effect of point density over the
metrics demonstrated that those ones related to the tail ends of the return distribution (e.g., C1 and C9,
or Zmin and Zmax) are more sensible and, therefore, less stable [61]. Despite the point density remaining
constant in our analysis, it is possible that those same metrics are also more sensitive to variations in
the normalized point cloud due to errors in the DTM. This fact is important in the case of ordinary least
squares regression since the predictors are selected following several rules to match the regression
assumptions, so small variations in the metric values have unpredictable effects in the final model.

It should be highlighted that the quality of the estimation of stand attributes is strongly dependent
on the applied modeling approach [52]. Nonparametric models, such as k-nearest neighbors or random
forest, have the advantage of being distribution-free and are normally used with more predictor
variables to improve their accuracy [48,62,63]. In this case, it is reasonable to suspect that using more
variables would turn the models less vulnerable against changes in the metrics and, thus, the effect of
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the filter calibration could be hidden by an improvement in the performance of the models. However,
the non-parametric approaches require a higher amount of field data for the modeling, which is not
often available (as is the case of this work). Besides, traditional parametric modeling approaches have
shown to be less affected by biased normalized point clouds, for instance, due to co-registration errors,
so that alternative combinations of ALS metrics models can result in similar estimative efficiency [51].
The co-registration effect could be ignored in this work given the high-accurate plot positioning
throughout the data collection; therefore, it corroborates that DTM quality is the major factor affecting
the performances of the model in the benchmark.

The researches focused on calibration of the above tested filters are scarce in the literature and
the few examples were oriented to digital aerial photogrammetry (DAP, [64,65]). One of them is the
study of Graham et al. [66] who analyzed the PTIN, WLS and the simple morphological filter (SMRF,
see [67]), which works similarly to the PMF. Their results share some similarities with ours: the PTIN
was mostly affected by the step size parameter, while the spike had minor or no effects over the accuracy
of the derived DTM; the WLS had the best accuracy with the |g| close to w; and low threshold for
the SMRF (analogous in PMF). On the other hand, the parameters related to the size of the search
windows of these filters (i.e., window size and step size) were exceptionally higher (≥17 m2). However,
we have demonstrated that using larger values for these parameters over ALS point clouds increases
the susceptibility of the filters to the border effect, resulting in eroded DTM.

The PTIN was also analyzed by Wallace et al. [68] using DAP-based data, where the calibration
was performed for different ecosystems. However, in contrast to the study of Wallace et al. [68], our
work did not distinguish the areas regarding the terrain conditions or forest covers due to a lack of
data for this discretization, especially in the forest modeling assessment. Instead, the filters were
analyzed considering all ALS data available so the results of the calibration can be applied to a wider
range of forest conditions. Furthermore, many works have been applied the ABA to mountainous sites
with success, demonstrating that the impact of the terrain slope over the forest attribute estimation is
not significant as expected [60,69,70], thereby it is unlikely that this effect can also compromise the
performances of our forest models.

Most of the ground filtering benchmarks assess the accuracy through visual inspection of
the filtered ground returns, which allows accounting for omission and commission errors of the
filtering [20,21,26]. Although such analysis produces detailed information about the filtering process,
it is highly time-consuming and can be impracticable in terms of the calibration routines like the
ones performed in this study. The analysis based on the quality of DTM is thus a good and practical
alternative when high-accurate ground control data is available. Additionally, further benchmarks
should also account for DTM erosion, since it is prohibitive when the goal is forest modeling.

Although this work did not aim at comparing filters, it should be highlighted that all tested filters
had comparable performances after the calibration, considering the accuracy of the derived DTM.
This fact suggests that more efforts should be given to calibrate the ground point filters instead of
finding a better one. Therefore, the software developers must be encouraged to implement adaptive
filters to reduce the number of parameters to be set to process the data (e.g., [24,71,72]).

The improvement in the estimation of dominant height is of great importance for forest
management since it ensures a more accurate analysis of forest site productivity [59,73]. Likewise,
ALS-based models play a key role in the valuation of growing stock inventory [74,75], so reducing
the errors of the estimated attributes by calibrating the filters allows increasing the liability of the
assessments. However, ALS-data users must preliminarily consider the potential improvement on
the DTM accuracy and forest attribute estimation before deciding to calibrate it instead of using the
software’s default.

This work did not consider the impact of the errors originating from different interpolation
methods on the accuracy of DTM nor on the forest attribute estimation. Previous studies demonstrated
the difference among the efficiency of interpolators while deriving DTM from ALS data [19,47]; despite
the TIN approach usually performed the best, Stereńczak et al. [19] showed that the differences
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among the interpolators were reduced after calibration. Additionally, Graham et al. [76] tested several
interpolation methods using DAP-data and showed that they do not have significant differences
regarding the accuracy of estimated forest attributes. The same may occur in the case of ALS-data,
but proper research is needed to investigate such a hypothesis. Finally, our analysis was based on a
massive ground control dataset that was collected using an exhaustive and high-accurate topographic
survey, which supports the liability of the DTM accuracy assessment [77]. For this reason, our results
can be used as a rule of thumb and the information we provided from the filter calibration can guide
the user during the ALS data processing, especially if the estimation of forest attributes is the goal.

5. Conclusions

The calibration of four algorithms to filter ground returns of airborne laser scanning data were
assessed, namely, the progressive triangulated irregular network (PTIN), weighted linear least-squares
interpolation (WLS), multiscale curvature classification (MCC) and the progressive morphological
filter (PMF). The impact of the calibration was assessed on the quality of the digital terrain models
(DTM) and on the forest attribute estimation accuracy, where the area-based approach (ABA) was
applied. The conclusions of this work are:

- The calibration of the ground filter parameters improved the quality of the DTM.
- The calibrated parameter values for WLS, MCC, and PMF allowed deriving more accurate

estimated forest attributes than those obtained when filtering using their default counterparts,
with a more highlighted impact on the estimation of dominant height than of growing stock.

- The results derived when using the PTIN filter varied the least with the calibration of
the parameters.
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Abstract: The analysis of the diameter distribution is important for forest management since the
knowledge of tree density and growing stock by diameter classes is essential to define management
plans and to support operational decisions. The modeling of diameter distributions from airborne
laser scanning (ALS) data has been performed through the two-parameter Weibull probability density
function (PDF), but the more flexible PDF Johnson’s SB has never been tested for this purpose until
now. This study evaluated the performance of the Johnson’s SB to predict the diameter distributions
based on ALS data from two of the most common forest plantations in the northwest of the Iberian
Peninsula (Eucalyptus globulus Labill. and Pinus radiata D. Don). The Weibull PDF was taken as
a benchmark for the diameter distributions prediction and both PDFs were fitted with ALS data.
The results show that the SB presented a comparable performance to the Weibull for both forest
types. The SB presented a slightly better performance for the E. globulus, while the Weibull PDF had a
small advantage when applied to the P. radiata data. The Johnson’s SB PDF is more flexible but also
more sensitive to possible errors arising from the higher number of stand variables needed for the
estimation of the PDF parameters.

Keywords: probability density function; LiDAR; remote sensing; forest horizontal structure

1. Introduction

Forest inventory is essential in forest management by providing information to diagnose the
stands, which supports decision-makers. The inventories are traditionally based on sampling of field
plots, in which tree measures are collected in a time consuming and laborious process. However, the
forest mensuration has faced a new paradigm with the improvement of light detection and ranging
(LiDAR) tools, especially with airborne laser scanning (ALS), which has the ability to quickly record
high-accuracy 3D-data in large areas [1].
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One of the most common approaches to performing an ALS forest inventory is the area-based
approach (ABA), where metrics are extracted from the normalized height of the LiDAR data cloud
(NHD) and used to predict the forest variables [2,3]. The growing stock assessment is the most frequent
target of the inventories, but effective forest management often requires information of the timber
volume distributed through the diameter at the breast height (dbh, 1.30 m) classes [4] (pp. 261–298).
In this case, even though the ABA does not allow detecting tree diameters directly, it enables obtaining
the forest stand structure indirectly by using the NHD metrics to estimate probability density functions
(PDF) that describe diameter distributions [5].

Earlier studies [6,7] succeeded in incorporating NHD metrics to obtain the diameter distribution
of boreal forests using the two-parameter Weibull distribution, especially when applying the
parameter recovery approach. Other similar applications of this approach were also used by other
researchers [8–10]. Non-parametric techniques, such as k-nearest neighbors [11] or percentiles [12],
have also been applied to capture the irregularities in the diameter distribution [13–18]. Despite
improving the accuracy, those methods usually do not follow biological principles and are focused on
reducing the prediction errors so the interpretation of their results is not straightforward.

As suggested by Gobakken and Næsset [6], Johnson’s SB distribution [19] could be tested to ALS
data as an alternative to the Weibull distribution. The SB is recognized by the scientific community as a
highly flexible distribution, since it allows the representation of a large region over the plane of the
β1 and β2 coefficients, being β1 the squared skewness and β2 the kurtosis [20]. This distribution has
shown remarkable results when fitted using field data [21–30]. Mateus and Tomé [31] also conducted
a large-scale study in Portugal and demonstrated through a skewness–kurtosis analysis that the SB

PDF is the most suitable to represent the diametric distribution of Eucalyptus globulus Labill. stands.
However, to the best of our knowledge, there are no records of its applications to ALS data.

In this context, this study evaluated the ability of the SB PDF to predict the diameter distribution
of forest plantations through ALS data. The hypothesis is that the Johnson’s SB, due to its flexibility,
is more efficient than the Weibull distribution. Two datasets from pure even-aged plantations of
Eucalyptus globulus Labill. and Pinus radiata D. Don. were used to support this study.

2. Materials and Methodology

2.1. Study Areas

The eucalyptus dataset was collected from a 9-km2 forest area located in northwest Portugal, close
to the city of Águeda (Figure 1, left). The area presented variability in its topography, with altitude
varying from 70 to 220 m and slope of 2.5–34.2%. Pure even-aged eucalyptus plantations felled every
10–12 years during three rotations were dominant at the landscape, where high forest and coppice
forest coexisted in the area. Many stands were multi-layered, with eucalyptus in the upper layer and
dense understory occupying the lower layer (see [32,33] for more details).Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 17 
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The pine dataset was collected over a large area of 9.856 km2, which represents the main distribution
area of P. radiata in the province of Lugo (Figure 1, right), located in the Galicia region (northwest
Spain). The altitude of most sites ranges 400–750 m and the slopes often exceed 15%. The forests are
representative of P. radiata stands in NW of the Iberian Peninsula and are thus mainly characterized by
high planting-density, low-intensity silvicultural treatments, and the presence of moderate shrub fuel
loads (for more details see [34,35]).

2.2. Forest Inventory

The inventory in eucalyptus plantations was carried out between 10 June and 3 July 2008, using 45
circular plots of 400 m2 that were selected based on systematic sampling, where each plot’s center was
recorded using a total station and a differential Global Navigation Satellite System (GNSS). All plots
covering two different stands or crossed by roads were discarded (20 plots). A total of 25 eucalyptus
plots were therefore used in this study (Figure 1, left). All of them were representative of the area
regarding the stand composition, structure, and rotation. Field measurements followed the Portuguese
National Forest Inventory Field Manual [36]. The dbh was measured for each tree higher than 2 m.
In the center of each plot, a 200-m2 sub-plot was used to measure the heights of all trees higher than
2 m. The missing tree heights of the 400 m2 plots were estimated using the Prodan’s model [37] fitted
using the data from their respective subplots. Table 1 presents the summary statistics for the data.
More information about the eucalyptus dataset can be found in [33,38].

Table 1. Biometrical descriptions of the field data with their minimum, mean, maximum, and standard
deviation (s) values.

Dataset Variable * Unit Minimum Mean Maximum s

Eucalyptus

dmin cm 1.0 2.7 5.0 0.9
d cm 4.8 8.8 13.0 2.3

dmax cm 10.0 17.5 23.9 4.3
dg cm 5.5 9.6 14.0 2.5
G m2 ha−1 3.9 10.9 21.3 5.2
N stems ha−1 875 1454 2343 361

Pine

dmin cm 3.2 8.9 22.8 5.6
d cm 13.5 22.2 38.2 7.6

dmax cm 25.3 37.9 59.0 10.2
dg cm 14.4 23.3 39.1 7.7
G m2 ha−1 16.7 36.9 68.1 11.0
N stems ha−1 393 1009 1820 425

* dmin, minimum dbh; d, mean dbh; dmax, maximum dbh; dg, quadratic mean dbh; G, basal area; N, number of trees
per hectare.

The pine field dataset was obtained during the winter of 2009–2010 from two different sources.
The first source comprises a network of 10 permanent rectangular plots (600–1000 m2 area, depending
on stand density). The inventory design was focused on obtaining an adequate representation of
the existing range of ages, stem densities, and site indices (for details, see [39]). The second source
comprises 15 rectangular plots (1000 m2 area) established for assessing the influence of thinning on
crown fire potential. The inventory was designed to represent young and highly stocked stands, as
these are usually fire-prone (see [40] for details). For all 25 inventory plots (Figure 1, right), dbh and
total tree heights were measured in every tree. In addition, the coordinates of the four corners of each
plot were obtained from topographic surveys by using a total station and a differential GNSS.

The individual tree volumes were predicted using allometric equations and summed up to obtain
the ground reference value for the plot growing stocks (m3 ha−1). The equations were provided by
Tomé et al. [41] for the eucalyptus dataset and by Diéguez-Aranda et al. [42] for the pine dataset.
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All datasets present similar behavior regarding the β1 and β2 coefficients computed for the tree
dbh within plots (Figure 2). They are mostly spread over the area of the SB domain, and not over the
line of the Weibull distribution. This fact corroborates the higher expectation for SB over Weibull to
obtain diameter distributions for these two species.
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Figure 2. Data dispersion over the β1 and β2 coefficients computed for the tree dbh within plots.

2.3. ALS Data Acquisition and Processing

2.3.1. Eucalyptus Data

The LiDAR data covering the E. globulus plots were acquired on 14 July 2008, few days after
the forest inventory, using a LiteMapper-5600 laser system with the full-waveform hardware RIEGL
LMS-Q560. The airplane flew 600 m from the ground at 46.26 m s−1. The parameters of the laser system
were 0.5 mrad of beam divergence, ±45◦ of scan angle, and pulse rate of 150 kHz. The resulted swath
was 497 m (60% of overlap) and the point density was 9.5 points m−2. The ALS point clouds were
processed using the FUSION software [43]. The ground points were filtered [44] and used to derive a
0.5-m-pixel digital terrain model (DTM) by triangulation. Ground reference measures collected with a
differential GNNS were used to assess the vertical accuracy of the DTM (see [33]). The vertical accuracy
of the ALS data, given by the root mean squared error (RMSE), was equal to 0.25 m. The DTM was
applied to normalize the height data cloud, a process where the points are re-scaled to aboveground
elevation. The metrics were computed for each plot considering the points higher than 1 m from the
ground. The used metrics are described in Table 2.

2.3.2. Pine Data

The LiDAR data covering the P. radiata plots was acquired in a nationwide survey for the PNOA
(Plan Nacional de Ortofotografía de España) project between 5 September and 29 October 2009, under
the direction of the Spanish Ministerio de Fomento (Dirección General del Instituto Geográfico Nacional
(IGN) and Centro Nacional de Información Geográfica–CNIG), using a RIEGL LMS-Q680 sensor operated
at 1064 nm. The airplane’s average flying height was 1300 m from the ground. The parameters of
the laser system were: ±30◦ of scan angle and pulse rate of 70 kHz. A maximum of 4 returns per
pulse was registered, reaching an average point density of 0.47 points m−2. The ALS point clouds
were also processed with the FUSION software [43]. The filtered ground points were triangulated to
derive a 2 m-pixel DTM, which was used to normalize the point cloud. As reported by the provider
(https://pnoa.ign.es/), the vertical accuracy of the ALS data, given by the RMSE, is ≤0.20 m. The set of
metrics from the points laid above 1.5 m was extracted for each plot (Table 2).

https://pnoa.ign.es/
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Table 2. Description of the normalized height data cloud (NHD) metrics.

Metric
Dataset

Description
Eucal. Pine

Hmin, Hmean, Hmax 4 4 Minimum, mean, and maximum height.

Hmode, Hsd, Hvar, Hcv 4 4
Mode, standard deviation, variance height and

height’s coefficient of variation.
Hiq 4 4 Height interquartile amplitude

Hsqew, Hkurt 4 4 Height skewness and kurtosis.
Haad 4 4 Height average absolute deviation.

Hmad.med, Hmad.mode 4 4
Median of the absolute deviations from the overall
height median (Hmad.med) and mode (Hmad.mode).

HL1, HL2, HL3, HL4 4 4 Height L moments [45].

HLskew, HLkurt, HLcv 4 4
Linear combinations of height L moments (skewness,

kurtosis and coefficient of variation).
h01, h05, h10, h20, h25, h30, h40, h50,

h60, h70, h75, h80, h90, h95, h99
4 4 Height percentile at 1%, 5%, . . . , 99%

Cnp.Ratio 4 4 Canopy ratio: (Hmean − Hmin)/(Hmax − Hmin).
MeanQuad, MeanCub 4
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Squared and cubic mean.
PercFAT, PercAAT 4 4 Percentage of first and all return above the threshold.

PercFAMean, PercAAMode 4 4 Percentage of first return above mean and mode.

RatioAAmeanF 4 4
Ratio between the first return above mean height and

the number of first returns.

RatioAAmodeF 4 4
Ratio between the first return above mode height

and the number of first returns.

S20, S40, S60, S80, S100 4
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2.4. Fitting of the Distributions

The Johnson’s SB PDF (Equation (1)) originally has four parameters: λ is the scale parameter,
responsible for the distribution extension; ε is the location parameter (lower limit); and γ and δ are the
shape parameters. Because we are dealing with sampling, a low value for the location parameter is
preferable [20,22,46], although the maximum likelihood estimation for this parameter is typically zero
or close to zero [28]. For this reason, we set the location parameter to zero (ε = 0).

f (x) =
δλ

√
2π(x− ε)(ε+ λ− x)

exp
{
−

1
2

[
γ+ δ ln

( x− ε
ε+ λ− x

)]2
}

(1)

ε < x< ε+ λ, δ >0, −∞ < γ< ∞, λ >0, and ε ≥ 0; f (x) = 0, otherwise.

The adaptation of three approaches were tested to fit this model: (i) the method of moments of
Scolforo et al. [47] (Table 3); (ii) the percentile method of Knoebel and Burkhart [48] (Table 3); and
(iii) the three-parameter recovery of Parresol [28], described below. These approaches are referred
hereafter respectively as “SB-Moments”, “SB-Percentile”, and “SB-3PR”. Other parameter estimation
approaches were also considered but previous tests with our dataset showed a poor correlation among
the parameters and NHD metrics for our dataset.

Table 3. Johnson’s SB fitting based on methods of moments and percentile.

Method ε λ δ γ Inputs

SB-Moments 0 dmax
µ(1−µ)
Sd(x) +

Sd(x)
4

[
1

µ(1−µ) − 8
]

δ ∗ ln
(

1−µ
µ

)
+

( 0.5−µ
δ

)
dmax, ds, d

SB-Percentile 0 dmax
Z95%

ln
(

d95%−ε
ε+λ−d95%

)
−ln

(
d50%−ε

ε+λ−d50%

)
−δ ∗ ln

(
d50%−ε

ε+λ−d50%

)
dmax, d95%, d50%

dmax, maximum dbh; d, mean dbh; µ = d−ε
λ ; ds, dbh standard deviation; Sd(x) = ds

λ ; Z95%, 95% quantile of the
standard normal distribution (1.6448); d95%, 95% percentile dbh; d50%, 50% percentile dbh (or median dbh).
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The SB-3PR was performed according to the algorithm of Parresol et al. [49] but adapted in this
work to R environment [50] using the minpack.lm package [51]. This approach estimates the parameters
by solving a system of nonlinear equation using Levenberg–Marquardt optimization. In summary,
the 3PR considers d as a particular diameter of the random variable D~SB (λ, ε, γ, δ). Starting from
Equation (2), it is possible to establish the property in Equation (3), whose generating function for the
r-th non-centered moment µ’r(y) is given by Equation (4).

y = f (d) =
d− ε
λ

(2)

z = γ+ δ ln
[

y
1− y

]
∼ N(0, 1) (3)

µ′r(y) =
1
√

2π

∫
∞

−∞

[
1 + e

γ−z
δ

]−r
e−z2/2 dz (4)

The PDF parameters are then obtained by solving the system of Equations (5)–(7), where G is
basal area (m2 ha−1), N is tree density (trees ha−1), and K = π/40,000 for the metric system.

γ = δ ln(λ/d50% − 1) (5)

d = ε+ λµ′1(y) (6)

G = KN
[
ε2 + 2 ελµ′1(y) + λ2µ′2(y)

]
(7)

The parameter ε is defined a priori; γ is calculated by Equation (5); and λ and δ are obtained
iteratively by Equations (6) and (7) from pre-defined values. The starting values for the parameters
were ε = 0, λ = dmax, and δ = 3, with 0.8 as lower bound for δ. Note that 3PR uses five inputs defined
above: G, N, d50%, d, and dmax.

The two-parameter Weibull (Equation (8)) was applied according to Bailey and Dell [52], where
b and c are the shape and scale parameters, respectively, and the fitting was performed through the
two-parameter recovered [53,54]. In this process, the inputs d and the quadratic mean diameter (dg)
are used to solve Equations (9) and (10) to recover the parameters b and c. Note that this approach uses
the two inputs defined above: dg and d.

f (x) =
( c

b

)(x
b

)c−1
exp

(
−

(x
b

)c)
(8)

d = b Γ
(
1 +

1
c

)
(9)

dg
2 =

d
2

Γ2
(
1 + 1

c

) Γ
(
1 +

2
c

)
(10)

where Γ(.) is the Gamma function.

2.5. Estimating the PDF’s Inputs

All distributions were fitted using stand variables as inputs in the estimation of the PDF’s
parameters. These stand variables had to be predicted from the NHD metrics. For each approach, a
system of nonlinear models was fitted to provide a consistent prediction of the stand variables for the
plots. The variables related to the diameter position were fitted with the following constraints: dmax ≥ d
for the SB-Moment; dmax ≥ d95% ≥ d50% for the SB-Percentile; dmax ≥ d50% and dmax ≥ d for the SB-3PR;
and dg ≥ d for the Weibull. In the SB-3PR approach, the additional constraint N = (40,000 G)/(π dg

2)
was added to the system to guarantee the consistency of N and G predictions. All systems are described
in Table 4.
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Table 4. Equation systems used in the fitting approaches.

Approach Equation System

SB-Moments
ds = exp(XB1) + ε1
dmax = exp(XB2) + ε2

d = dmax − exp(XB3) + ε3

SB-Percentile
dmax = exp(XB1) + ε1
d95% = dmax − exp(XB2) + ε2
d50% = d95% − exp(XB3) + ε3

SB-3PR

G = exp(XB1) + ε1
N = exp(XB2) + ε2
dmax = exp(XB3) + ε3

d = dmax − exp(XB4) + ε4
d50% = dmax − exp(XB5) + ε5

Weibull
dg = exp(XB1) + ε1

d = dg − exp(XB2) + ε2

XBi = βi0 + βi1xi1 + βi2xi2 + βi3xi3, where xi j and βi j are, respectively, the predictor variables and the parameters j of
model i; εi is the random error of model i.

Each model of the systems uses up to three NHD metrics as predictors, which were selected
through an exhaustive search of their respective linearized models. The searching was implemented
by fitting all possible combinations of three of the available metrics. The model was chosen following
three criteria: (i) the lowest value for the relative root mean squared error (RMSE%); (ii) all estimated
parameters significantly different from zero (t-test, α = 5%); and (iii) variance inflation factors (VIF)
lower than 10 [55]. The VIF, used to avoid collinearity among metrics, was computed with the car
package [56]. The models that include other stand variables as predictor have their best metrics also
found by the exhaustive search using the generic model in Equation (11),

ln(Yu −Yl) = β0 + β1x1 + β2x2 + β3x3 + ε (11)

where Yu and Yl are, respectively, the upper and the lower stand variable, e.g., Yu = dmax and Yl = d
for the SB-Moments; βi is the model parameter i = 0, . . . , 3; xi is the predictor variable i = 1, . . . 3; and ε
is the random error.

After finding the best metrics for the models, each one of the nonlinear systems was fitted
simultaneously by the three-stage least-squares method (3SLS, [57]) using the systemfit package [58].
The 3SLS combines two-stage least squares (2SLS) and seemingly unrelated regression taking into
account the cross-equation errors. Any fitted parameter not significantly different from zero was
removed from the model, and the system was refitted.

The system of equations corresponding to the best distribution fitting approach was assessed
through the mean deviation (Bias%, 12), the squared Pearson’s correlation (r2) between the observed
and predicted values, and the relative root mean squared error (RMSE%, 13) computed through the
leave-one-out cross-validation (LOOCV).

Bias% = 100
∑n

i=1

(yi − ŷi)

n y
(12)

RMSE% =
100

y

√∑n
i=1(yi − ŷi)

2

n
(13)

where yi and ŷi are the observed and estimated value for the plot i = 1, . . . , n; and y is the observed
mean value.
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2.6. PDF’s Accuracy Assessment

The fitted distributions were assessed using the two-sided Kolmogorov–Smirnov test (KS) under
the null hypothesis that the plot data could be a sample from the fitted distribution. However, as
the distribution parameters were empirically estimated, the theoretical distribution for each plot is
unknown, so that the KS test should be conducted through a Monte Carlo simulation [59]. Therefore,
for each plot and fitting approach, we used the fitted parameters to generate 1000 independent and
identically pseudo-random samples with a size equal to the number of trees of the corresponding plot.
For each sample, we refitted the corresponding distribution to compute the KS statistic. We used the
mean of the resultant KS statistics to check (one-sided t-test, α = 5%) if it is lower or equal to the critical
value of the KS distribution, considering α = 1% due to the small number of trees that could occur
inside plots [17,60]. We use the term acceptance hereinafter to refer to not rejecting the null hypothesis
of the KS test.

The error index (see [61]) was also applied to verify the accuracy of the fitted diameter distributions
to predict the relative frequency in each diameter class (5 cm amplitude). This index is frequently used
for this purpose (e.g., [6,10,31]). It was computed through Equation (14) and the values range from 0 to
200, where the fit is more accurate as the index is lower. The index was obtained for each plot (e) and
averaged for each one of the fitting approaches to obtain the mean index error (e) for each dataset.

e = 100
m∑

i=1

∣∣∣ fi − f̂i
∣∣∣ (14)

where e is the plot index error; and fi and f̂i are, respectively, the observed and the estimated relative
frequency of class i = 1, ..., m.

The predicted plot growing stock produced by each fitting approach was also compared to
the ground reference values using the RMSE%, Bias%, and the paired t-test. In this prediction, the
respective high-diameter equation fitted by plot (see Section 2.2) was applied to each diameter class,
and allometric equations for the individual tree volumes were applied according to the dataset. The
fitted probability density functions were used to obtain the number of trees in each class, and then the
plot growing stock. However, the tree density (N, trees ha−1) was predicted for each plot using an
equation fitted with the model N = exp(β0 + β1x1 + β2x2 + β3x3) + ε, where βi, xi, and ε are defined
above. The equation was fitted for each dataset and three metrics were used as a predictor. The metrics
were selected through the same exhaustive searching described in Section 2.5 and the model was also
assessed by the Bias%, r2, and RMSE% computed through LOOCV. Finally, a graphical analysis was
also conducted over the best PDF fitting approaches to illustrate the previous assessments.

3. Results

As a general result, the SB presented a comparable performance to the Weibull function in
modeling the diameter distributions using ALS data for both forest species. The SB presented a slightly
better performance for the E. globulus dataset, especially with the SB-Moments approach, while the
Weibull function had a small advantage when applied to the P. radiata dataset.

According to the KS test, the SB-Moments was accepted by 72% of the observed plot diameter
distributions (Table 5), one plot more than for the Weibull distribution (68%). On the other hand, the
Weibull distribution was accepted by 48% of plot distributions in the P. radiata dataset, against 36% for
the SB-Moments. The SB-3PR had the worst results, with 4% and 8% of acceptance for the E. globulus
and P. radiata datasets, respectively. Another important fact is the higher values of acceptance for the
eucalyptus when compared with pine for almost all tested approaches, which suggests that eucalyptus
plantations allow for better modeling of the diameter distributions based on ALS data.

The mean error indices (Table 5) showed the lower values for the SB-Percentile on the E. globulus
dataset (e = 26), while the SB-Moments and Weibull presented close values (e = 30 and e = 31,
respectively). In P. radiata, however, the lower error occurred for the Weibull distribution (e = 42),
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followed closely by the SB-Moments and SB-Percentile (e = 45 for both). The SB-3PR resulted in the
higher mean error indices (e = 57 and e = 96 for the E. globulus and P. radiata datasets, respectively).
Additionally, as verified for the KS analysis, the error index values were also higher for the P. radiata
dataset than for E. globulus dataset.

Table 5. Acceptances for the KS test (percentage inside the parenthesis) and mean error indices (range
inside the parenthesis).

Approach
KS Acceptance Mean Error Index (

¯
e)

E. globulus P. radiata E. globulus P. radiata

SB-Moments 18 (72%) 9 (36%) 30 (14–65) 45 (23–96)
SB-Percentiles 17 (68%) 8 (32%) 26 (2–55) 45 (13–77)

SB-3PR 1 (4%) 2 (8%) 57 (7–138) 96 (27–163)
Weibull 17 (68%) 12 (48%) 31 (12–53) 42 (12–88)

KS acceptance indicates the null hypothesis of the KS test was not rejected.

The results regarding the growing stock prediction for each distribution followed the previous
analysis for the E. globulus dataset and slightly different for the P. radiata dataset (Table 6). For the
eucalyptus, the SB-Moments was the most accurate and the least biased, with RMSE% and Bias% equal
to 21% and −0.8%, respectively. The Weibull approach was slightly less accurate and more biased,
with RMSE% equal to 22% and −2% for Bias%, respectively. Besides, the paired t-test showed that
all tested approaches were able to predict the growing stock without significant difference from the
ground reference values, including for the SB-3PR. In the P. radiata dataset, the Weibull was the most
accurate approach (RMSE% = 24%) and, differently from the previous analysis, the SB-3PR was the
second most accurate (RMSE% = 28%). However, these two approaches were the most biased (Bias%
equal to −16% and −12%, respectively), while the SB-Moments was the least biased (−7%). Likely, the
paired t-test did not show a significant difference among observed and predicted values.

Table 6. Accuracy of the growing stock (V, m3 ha−1) estimation through the fitted distributions.

Approach
E. globulus Data P. radiata Data

RMSE% Bias% t-statistic RMSE% Bias% t-statistic

SB-Moments 21% −0.8% −0.22 ns 35% −7% −0.95 ns

SB-Percentiles 24% −2.9% −0.69 ns 43% −10% −1.35 ns

SB-3PR 27% 0.9% 0.18 ns 28% −16% −1.72 ns

Weibull 22% −2.0% −0.65 ns 24% −12% −1.81 ns

Paired t-test, where ns means non-significant at α = 5%.

Those facts suggest that possible inefficiencies of an approach in estimating the diameter
distribution do not necessarily harm its accuracy for growing stock predictions. One explanation for
that is the error related to the N prediction (Table 7), which accumulates to the PDF estimation error.
Additionally, since the individual tree volume grows exponentially with its diameter, small errors in
the distribution could have a lower or higher effect in the growing stock prediction depending on
the dbh classes where they occur. For this reason, the SB-Moments could be considered as a suitable
approach for the growing stock analysis in both datasets, since it presented a relatively good accuracy
(RMSE% = 21% for E. globulus and RMSE% = 35% for P. radiata) and the lowest Bias%.

Since the SB-Moments and Weibull presented good results for most accuracy assessments, their
respective systems of equations are presented in Table 7. Both systems presented relatively good
accuracy for their equations, with RMSE% lower than 16%, high r2 (0.77–0.93) and a low Bias% (<3%,
in absolute values). Examples of the diameter distributions produced by each of those approaches are
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presented in Figures 3 and 4. The distributions over the E. globulus dataset showed that the SB-Moments
predictions are close to the observed frequencies for all exemplified plots (Figure 3). This fact is
confirmed by their respective error indices, where the lowest values are obtained for the SB-Moments,
reflecting in smaller discrepancies than for the Weibull. As shown for the P. radiata dataset (Figure 4),
the observed distributions are more complex and less smooth, with abrupt differences between the
frequencies of consecutive dbh classes (e.g., Plots 2 and 3 in Figure 4). This fact explains the lower
quality of the indicator values when assessing the distribution fittings. Nevertheless, the Weibull and
SB were able to reproduce those distributions satisfactorily, with a small advantage for the Weibull in
most cases (e.g., Plots 1, 3, and 4 in Figure 4).

Table 7. Fitted equations with their respective accuracy assessment.

Approach Variable
E. globulus Dataset P. radiata Dataset

Predictor bi RMSE% Bias% r2 Predictor bi RMSE% Bias% r2

- N

Constant 9.054 19% −3% 0.56 Constant 7.210 30% −9% 0.61
Hcv −3.149 h90 −0.030
h25 −0.076 PercAAT 0.027

PercFAMode 0.011 RatioAAmeanF −0.034

SB-Moments

ds

Constant 0.865 16% −3% 0.81 Constant 2.284 16% −2% 0.77
Hmad.mode −0.025 hmean 0.041
Cnp.Ratio −1.347 h01 −0.048
MeanCub 0.105 Cnp.Ratio −1.421

dmax

Constant 1.924 12% −1% 0.83 Constant 2.962 8% −1% 0.93
Hsd 0.137 Hmin 0.033
h10 0.048 Hmad.med 0.149
S60 0.024 HL4 0.585

dmax 15% −1% 0.83 dmax 18% −2% 0.82
Constant 1.731 Constant 2.530

Hmode 0.028 h05 −0.076
PercAAMode 0.021 h10 0.047

str40 −0.049 PercAAMode 0.009

Weibull

Constant 1.044 10% <1% 0.89 Constant 2.483 14% −2% 0.84
Hsd 0.164 h90 0.037
h10 0.060 PercAAT −0.010
S60 0.043 RatioAAmodeF 0.013

11% <1% 0.86 16% −2% 0.82
Constant −0.304 Constant 1.624

Hsqew −0.268 h01 −0.105
h10 0.059

Cnp.Ratio −2.992

RMSE% computed through LOOCV (see Section 2.5).

4. Discussion

This work performed a novel study by evaluating the capability of Johnson’s SB to predict diameter
distributions based on ALS data from two of the most common species used for forest plantations in
the Iberian Peninsula: E. globulus and P. radiata. The results were different among the datasets, where
the distributions resulted in better indicators when fitted over the E. globulus dataset. A plausible
explanation for this difference is the distinction between the structure of the two forests and the adopted
scanning properties. The eucalyptus ALS-data collection aimed at forest inventory while the pine flight
was planned to produce high-resolution DTM for general applications in the country. Nationwide data
have been applied to many forest-oriented studies, showing promising results in, e.g., Finland [62,63],
Sweden [64], and Denmark [65]. Likewise, the Spanish survey proved to be a consistent data source for
different forest applications [34,66–70]. However, nationwide ALS surveys are planned to reduce the
flight costs so they present non-optimum scanning parameters for forest inventory, generally deriving
low-density point clouds [71]. It is known that this characteristic has a negative impact on the forest
modeling [72,73], so it is plausible that the models related to pine dataset have been influenced by the
characteristics of the point density when compared to the ones derived from eucalyptus dataset.
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The pine dataset is located in a larger and more complex terrain when compared to the eucalyptus
area (see Section 2.1). Thus, it is reasonable to consider this difference as a possible error source for
the models since the terrain slope has a well-known influence on the accuracy of the ALS-derived
DTM (e.g., [74,75]). However, the ABA has been commonly applied in steeped slopes with success
(e.g., [76,77]) so it is not clear that the terrain complexity affects the forest models. Furthermore, the
accuracy of the ALS surveys was relatively low (RMSE ≤ 0.25 m) so it is unlikely that the variation in
the terrain had caused significant impact in the forest attribute predictions.

The SB was highly sensitive to the input variables. Because of that, small deviations in the input
predictions can result in changes in the parameters of the dbh distribution since they are interdependent
in the fitting approaches (see Section 2.6). Therefore, the prediction errors can accumulate and affect
the distribution even if the fitted equations have good performance. An example of those facts can be
seen for SB-3PR, which uses five stand variables as inputs in the parameter estimation and resulted
in the worst performance for almost all assessments. On the other hand, the SB-Moments and the
SB-Percentile use three stand variables each, while the Weibull has the advantage of using just two.

Each work involving the prediction of diameter distributions from ALS data has its particularities
regarding the forest type, prediction approaches, or assessments, thus the comparative analysis among
them is not straightforward. An exception is the work of Arias-Rodil [34], which used the same P.
radiata dataset and LiDAR flight to estimate the diameter distribution through the two-parameter
Weibull fitted also through parameter recovery approach. Our results show considerable improvement
in relation to the Weibull distribution fitting; the acceptance by the KS test changes from 28% to 48%
among plots. This fact was the result of the better equations to predict the stand variables used as
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predictors to estimate the distribution’s parameters, which use not two but up to three NHD metrics.
If the SB is taken into account, it is also considered as an improvement in the distribution’s prediction
since it presented higher acceptance according to Arias-Rodil’s baseline, with 36% for the SB-Moments.

Considering the best approaches of our work (SB-Moments and Weibull), the mean error indices
found could be considered low if compared to the literature. Maltamo et al. [10] found error index
values of 50–60 for hybrid eucalyptus (E. urophilla x E. grandis) in Brazil using the two-parameter
Weibull model. Other works involving boreal forests reported average indices varying 75–95 (“error2”
of Maltamo et al. [18] [Editor1] ), 30–45 for diameter and basal area distributions [6], and 49–87 for just
basal area distributions [7]. However, it should be highlighted that our dataset consists of homogeneous
stands, thus, despite their variable structure, a lower modeling error was already expected.

According to the assessment through the growing stock prediction, the SB-Moments presented a
good indicator for the E. globulus data, where it performed slightly better than the Weibull. The Bias%
of these estimations (≤2.0%, in absolute value) were comparable to the ones found by Gobakken and
Næsset [6,7] [Editor2], with values below 4.8%, in absolute value. However, the Bias% values could be
considered high in the case of the P. radiata data, varying 7–18% (in absolute value) for all approaches,
although many of them presented reasonable RMSE% values and no significative differences between
the predicted and ground reference values according to the paired t-test.

The deviations related to the N prediction are another source of error for the growing stock
prediction assessment. The N is frequently reported as being one of the most difficult forest variables to
be modeled from ALS data. In the related literature, it is common to find coefficients of determination
(R2, adjusted or not) of 0.50–0.82 in models with up to six metrics (e.g., [2,3,78]). One of the few studies
with E. globulus plantations showed a low accuracy for the N equation (R2 = 0.49), using 4 points
m−2 ALS data [79]. Woods et al. [80] suggested that this difficulty in modeling N could be bypassed
if a high-point-density scanning is used. In our case, the E. globulus dataset has a relatively high
density (9.5 points m−2) and the equation for the N was the least accurate, although its use is no longer
discouraged. The N fitting for the P. radiata data, otherwise, presented a better accuracy even with a
low pulse density (0.47 points m−2). In the case of availability of the tree density values of the stands,
they could be applied to improve the growing stock prediction. Additionally, the modeling approaches
could benefit from multisource data, such as multispectral images or multispectral ALS, which would
contribute to improving predictions of the stand variables used as inputs in the estimation of the
PDFs’ parameters.

The model transferability (see [77]) was not evaluated in this work so our results do not allow
us to conclude about the efficiency of the models to predict attributes in stands from other regions.
However, the models were developed using heterogeneous datasets in terms of stand age, density,
and site index, and were assessed using a robust analysis. These features suggest that the developed
models could be applied to E. globulus and P. radiata stands in the Iberian Peninsula. In the case of
the absence of validation datasets to confirm such hypothesis, the replication of our methodology is
recommended when the goal is to study different areas. Finally, this work filled the knowledge gap
involving the Johnson’s SB distribution and ALS approach and demonstrated that it allows obtaining
accurate information about the forest horizontal structure to support decisions in forest management.

5. Conclusions

This work assessed the ability of the Johnson’s SB and Weibull PDFs to model the diameter
distributions of E. globulus and P. radiata plantations. In the studied areas, the SB-Moments was the best
approach to fit the SB, while the SB-3PR was the one providing the worse results. The performance
of the SB was comparable to the Weibull, presenting small advantages when applied to E. globulus
data. SB is very sensitive to the errors related to the predicted stand variables used to estimate the
distribution parameters, so very accurate equations are required for their predictions.
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Abstract 

In this study, for five sites around the world we look at the effects of different model types and variable 

selection approaches on forest yield modeling performances in an Area-Based Approach (ABA). We 

compared ordinary least squares regression (OLS), k-nearest neighbors (kNN), and random forest (RF). 

Our objective was to test if there are systematic differences in accuracy between OLS, kNN and RF in ABA 

predictions of growing stock volume. The analyses are based on a 5-fold cross-validation at five study sites: 

an eucalyptus plantation, a temperate forest, and three different boreal forests. Two completely independent 

validation datasets were also available for two of the boreal sites. For the kNN, we evaluated multiple 

measures of distance including Euclidean, Mahalanobis, Most Similar Neighbor (MSN), and an RF-based 

distance metric. The variable selection approaches we examined included a heuristic approach (for OLS, 

kNN, and RF), exhaustive search among all combinations (OLS only), and all variables together (RF only). 

Performances varied by model type and variable selection approaches among sites. OLS and RF had similar 

accuracies and were more efficient than any of the kNN variants. Variable selection did not affect RF 

performance. Heuristic and exhaustive variable selection performed similarly for OLS. kNN fared the 

poorest amongst model types and kNN with RF distance was prone to overfitting when compared to a 

validation dataset. Additional caution is therefore required when building kNN models for volume 

prediction though ABA, being preferable instead to opt for models based on OLS with some variable 

selection, or RF with all variables together. 

Keywords: machine learning; lidar; remote sensing; forest attribute estimation; benchmarking 
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1. Introduction 

The Area-Based Approach (ABA) is commonly used in applications of forest yield modeling with 

Airborne Laser Scanning (ALS). In this approach field measured observations on plots are related to 

remotely sensed observations for the same plots using a model. Ordinary least squares regression (OLS) 

was predominately used in early studies (e.g. Næsset, 2002, 2004), but machine learning techniques such 

as k-nearest neighbor (kNN; Dudani, 1976) and random forest (RF; Breiman, 2001) have also been used 

(Maltamo et al., 2006; Packalén and Maltamo, 2006, 2007). These methods increased in popularity recently 

(e.g. Pascual et al., 2019; Silva et al., 2017). An advantage of the kNN and RF techniques is that they require 

less expertise to implement than linear modeling approaches or other more complex machine learning 

approaches such as neural networks and support vector regression (see Hastie et al., 2009; Haykin, 2009). 

While being straightforward to implement for practitioners, they are also efficient in handling high-

dimensional data, which is often useful in remote sensing applications, and their requirement for more 

computational time is less of an issue today due to the increase in computing power.  

 kNN and RF methods have been used for prediction of both individual tree attributes (Gleason and 

Im, 2012; Maltamo et al., 2009; Vauhkonen et al., 2010; Yu et al., 2011) and plot level attributes (Maltamo 

et al. 2006b; Packalén and Maltamo 2007; Shataee et al. 2011; Latifi and Koch 2012). The principle of 

kNN is to predict the target variable based on the closest observations in the training dataset (Dudani 1976; 

Hastie et al. 2009). In kNN, a distance metric is used to determine which k training observations are nearest 

to the target value in terms of the predictor variables. Parameters that the modeler must decide for kNN 

include the number of nearest neighbors to impute, how to measure distance, and the weighting scheme 

employed to average imputed values. The RF algorithm is based on decision trees formed from resamples 

of the input data. Each decision tree uses a randomly selected subset of both the available predictors and 

observations. After training the model, the average of the “forest” of decision trees is used to predict new 

observations. 

OLS and machine learning models typically require a number of decision and inspections which we 

will lump together as “parameter tuning” steps. Correct specification of tuning parameters for OLS and 

machine learning methods requires specialized expertise. For regression analysis (OLS), for example, the 

analyst must select variables, fit the model, and perform various diagnostics. kNN models also benefit from 

careful variable selection (Packalén et al. 2012) and the user must choose the number of neighbors and the 

distance metric. RF, on the other hand, has been shown to be less sensitive to variable selection (Belgiu and 

Drăgu 2016). There are a number of RF parameters than can be tuned, although it is common for analysts 

to use the defaults.   

According to a review of kNN methods by Chirici et al. (2016), k=5 is the most frequent number of 

neighbors used in remote sensing applications, although values in the range 1–10 are common. Euclidean 

and Mahalanobis distance are often applied as distance metrics as they perform well relative to other 

methods, and do not depend on response attributes which makes them simple and fast to compute. 

Canonical correlation analysis (Most Similar Neighbor–MSN; Moeur and Stage, 1995) and RF-based 

distance metrics (Lin and Jeon 2002) are also frequently used. The weighting scheme used for prediction 

from multiple neighbors (k > 1) is usually the inverse of the distances to the k nearest neighbors.  
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In the case of the RF, Belgiu and Drăgu (2016) stated that the number of trees used to train the 

models is usually 500 since it is the default value of the most popular RF implementation, the randomForest 

package in R (see Liaw and Wiener, 2002). Furthermore, an exploratory study by Lawrence et al. (2006) 

showed that the error rates become stable when the number of trees is close to 500. The other parameters 

are normally set to the default values of the software, which are similar to those proposed by Breiman 

(2001). Thus, it is common practice to train the RF model by not allowing to split the trees with less than 

five nodes and applying one-third of the available predictor variables in the inner bootstrap.  

The kNN and RF algorithms have some operational advantages. They are multivariate, non-

parametric and quick to implement; however, they also have several limitations. Since kNN and RF 

predictions are weighted averages of the training data, the algorithms cannot extrapolate beyond the range 

of the training data. kNN and RF methods also typically require a greater number of training observations 

than parametric regression to perform well. These methods work best if the training dataset is large (e.g. 

thousands of observations) such that the full range of population values is represented. The demand for 

training observations also increases with the number of predictors due to the “curse of dimensionality” 

(Bellman 1961). This issue is very important for kNN, to which increasing the dimensionality can cause 

the distance to the nearest neighbor to be barely distinguishable from that of a distant neighbor, generating 

a loss of “contrast” among the distances (Beyer et al. 1999). This problem can be further accentuated if the 

kNN model uses “irrelevant variables”, which are redundant or have a low correlation with the response 

variable (Blum and Langley 1997). Besides, irrelevant variables can also cause problems in the inversion 

of positive definite matrixes, a required step in computations of Mahalanobis and MSN distances 

(McRoberts et al. 2017). 

To reduce problems associated with high-dimensional data, studies have used various strategies to 

select a subset of ALS metrics in RF and kNN models. Many approaches can be applied for this purpose 

(see Saeys et al., 2007), but it is common to see implementations based on stepwise variable selection 

(Breidenbach et al., 2010; Hudak et al., 2008; Maltamo et al., 2006), correlation feature selection (García-

Gutiérrez et al., 2015), genetic algorithm (Latifi et al. 2010; Latifi and Koch 2012; McRoberts et al. 2015), 

or simulated annealing (Packalén et al. 2012). Some researchers have suggested that RF may result in 

overfitting in cases of irrelevant variables (Segal 2004), so it is common to see implementations of some 

form of variable selection for RF in an ABA context (see Genuer et al., 2010). To reduce dimensionality 

for RF applications, variables are often selected based on their importance (Silva et al. 2017; Shi et al. 

2018).  

OLS, kNN, and RF are common methods for ABA forest yield modeling in the literature, but there 

has not been a systematic evaluation of the differences in accuracies between these methods, especially 

when considering differences in tuning strategies. The studies that we are aware of  performed comparisons 

with at most three datasets (e.g. Fassnacht et al., 2014; Latifi and Koch, 2012; McRoberts et al., 2017), and 

most of them focused on boreal or temperate forests (e.g. Maltamo et al., 2006; Packalén et al., 2012; 

Packalén and Maltamo, 2007; Shataeea et al., 2011). Additionally, each study employed its own tuning 

approach so that comparisons among them are difficult.  

Our objective for this study is to identify whether there are modeling and tuning strategies which 

are optimal across a broad range of conditions, including sites in North America, South America, and 
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Europe, and to identify similarities and differences in OLS, RF, and kNN predictions among these datasets. 

To pursue this objective, we fit models for growing stock volume (V, m³ ha-1) from lidar data for each of 

these datasets using OLS, kNN, and RF using multiple tuning strategies. We then cross-validated model 

performances using 5-fold cross-validation. We also evaluated performances using independent validation 

datasets which were available for two boreal forest sites in Europe.   

 

2. Material and methods  

2.1. Study areas and material 

This work was conducted using datasets collected at five locations on 3 continents: a eucalyptus 

plantation in Brazil, boreal forests in eastern Finland (Kolari) and northern Finland (Liperi), a boreal forest 

in southern Norway, and a mixed temperate forest in South Carolina in the USA. The sites in Finland are 

referred to by their municipality, Kolari and Liperi, while the other sites are referred to by their country. 

Independent validation datasets were available for the two sites Liperi (Finland) and Norway (see section 

2.4 for additional details). A summary of characteristics for each dataset is provided in Table 1. All of the 

sites have also been used for previous studies; comprehensive descriptions of study areas can be found in 

the primary articles cited below. 

The site in Brazil is a commercial plantation of hybrid eucalyptus located in the state of Bahia 

(Packalén et al. 2011a, 2011b). At the time of the lidar acquisition, the plantation was composed of several 

even-aged stands, planted with the same spacing. The tree ages were between 2 and 12 years, the tree 

heights varied from 17 m to 41 m, and growing stock varied from 111 to 656 m³ ha-1. 

The Kolari site is located north of the Arctic Circle, where the forests mainly consisted of sparsely 

spaced Scots pines, although Norway spruce and deciduous trees were also present (Kotivuori et al. 2016). 

Tree heights ranged from 3 m to only 25 m, and the growing stock were between 4 and 462 m³ ha-1, the 

lowest range of volume per hectare of any of the sites.  

The other Finnish site, Liperi, was located in eastern Finland, where the forests were denser than 

Kolari and the trees achieved heights greater than 30 m (Kukkonen et al. 2019). The amount of spruce and 

pine stands was relatively similar with a minority of deciduous stands. The tree heights ranged from 6 m to 

41 m, while the growing stock varied from 20 to 797 m³ ha-1 in this dataset.  

The Norwegian boreal site is located further south than the Finnish sites and had considerably larger 

differences in elevation than the two sites in Finland (Gobakken et al. 2013). The forests were dominated 

by Norway spruce due to the better fertility of the soils. The tree heights ranged from 4 m to 37 m, while 

the growing stock varied from 4 to 692 m³ ha-1.  

The site in the USA was a mix of pine plantations and mixed native hardwoods with a total of 62 

different species present on the plots (Strunk et al. 2017). Tree heights for this site ranged from 5 m to 38 

m and the growing stock in this dataset had the greatest range, from 2 to 1227 m³ ha-1.  

The ALS metrics used for each dataset were prepared for previous studies (referred to in Table 1) 

using different data processing software and therefore differ between the sites. However, the available ALS 

metrics were comparable among all sites, representing the vertical return distributions, density metrics, 

return intensity, and return numbers. All of them are described in Appendix 1. 
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Table 1. Summary of the field and ALS data. 

Region 
Forest 

type 
Dominant species No of plots Plot radius 

Point density 

(pt m-2) 
Volume* (m³ há-1) Reference 

Brazil 

Clonal 

hybrid 

plantation 

E. urophilla x E. grandis 195 13 m 1.5 376.1 (132.8) 
(Packalén et al., 2011a, 

2011b) 

Kolari 

(Finland) 
Boreal  

Pinus sylvestris; Picea abies; 

Betula pendula 
534 

9 m; 12.62 m; 

12.65 m 
0.6 100.9 (64.2) (Kotivuori et al., 2016) 

Liperi 

(Finland) 
Boreal  

Pinus sylvestris; Picea abies; 

Betula pendula 

Training: 578 

Testing: 444 
9 m; 12.6 m 4.8 

Training: 186.4 (100.4)  

Testing: 205.6 (94.6) 
(Kukkonen et al., 2019) 

Norway Boreal  
Pinus sylvestris; Picea abies; 

Betula pendula 

Training: 499 

Testing: 78 
8.92 m 17.84 m 0.7 

Training: 211.4 (119.7) 

Testing: 230.7 (119.3) 
(Gobakken et al., 2013) 

USA Temperate  

62 species dominated by Pinus 

taeda (30.2%) and Pinus 

palustris (15.6%); all other 

species represent less than 10% 

of dominant species 

194 11.3 m; 22.6 m 6 228.3 (160.7) (Strunk et al., 2017) 

 *Plot mean growing stock volume with its respective standard deviation (in parenthesis) 
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2.2. Growing stock modeling 

The same variable selection and modeling protocols were used for each of the five datasets (Brazil, 

Kolari, Liperi, Norway, USA).  For simplification, we use the term “training” hereafter to refer to both OLS 

model fitting and the construction of non-parametric models. Each of these approaches was paired with variable 

selection schemes that were applied every time a model was trained. The same heuristic selection of five 

predictor variables was used for OLS, kNN and RF (Section 2.3), while other variable selection approaches 

differed by model type. The choice of five predictors was a compromise between not overfitting the OLS 

models and having an adequate number of predictors for the nonparametric methods. The specifics of each 

variable selection approach and modeling scheme are described in greater detail in the following sections.   

 

2.2.1. OLS modeling 

The OLS models were based on Formula 1, in which the square root transformation of the response 

variable was applied to avoid problems of heteroscedasticity. Because of this transformation, the back-

transformed value requires a correction for bias. According to Gregoire et al. (2008), the residual variance of 

the models was added as described in Formula 2. 

√𝑉𝑖 =  𝛽𝑖0 + 𝛽𝑖1𝑥𝑖1 + ⋯ + 𝛽𝑖𝑚𝑥𝑖𝑚 + 𝜀𝑖 (1) 

𝑉𝑖̂ = (√𝑉𝑖
̂ )

2

+ 𝜎²     (2) 

where Vi and 𝑉𝑖̂ are the observed and the predicted timber volume (m³ ha-1) of the plot i=1, 2,…, n; βij is the 

model parameter j=0, 1, …, m of the plot i; xij is the predictive variable j=1, 2, …, m for the plot i; εi is the 

random error for plot i; and σ² is the residual variance of the model (m³ ha-1). 

Two approaches were used for variable selection for OLS. The first was a machine-learning based 

Heuristic approach (OLS_He), which means that the derived models are just for prediction purposes since 

statistical assumptions related to the linear models were ignored. In this approach, we used a five-predictor 

model (m=5, see Formula 1) and the predictors were defined by the heuristic variable selection algorithm 

(detailed in Section 2.3). The second variable selection approach used for OLS was an all combinations 

Exhaustive search algorithm (OLS_Exh) implemented in the R statistical environment (R Core Team 2020). 

The best model met the following three criteria: smallest relative root mean squared error (RMSE%, Formula 

3), considering the constraints that estimated parameters are significantly different from zero (t-test, α=5%), 

and variance inflation factors (VIF) are less than ten (Myers 1989). A three-predictor model (m=3, see Formula 

1) was used in OLS_Exh due to computational limitations. RMSE% was computed as 

RMSE (%) = 100 ∗ 𝑉̅−1√
∑ (𝑉𝑖−𝑉𝑖)2𝑛

𝑖=1

𝑛
 (3) 

where 𝑉𝑖 and 𝑉̂𝑖 are, respectively, the observed and predicted timber volume (m³ ha-1) for plot i=1, 2, …, n; 𝑉̅ 

is the observed mean volume (m³ ha-1). 

 

2.2.2. kNN modeling 

As shown by Packalén et al. (2012) and McRoberts et al. (2015), the prediction accuracy of kNN is 

sensitive to the choice of distance metric. For this reason, we tested four commonly used distance metrics: 

Euclidean distance (kNN_Euc), Mahalanobis distance (kNN_Mah), Most Similar Neighbor (kNN_MSN), 

and a distance metric based on the Random Forest proximity matrix (kNN_RF). All the approaches were 

trained using k=5. The predicted values were obtained as weighted means of the k neighbors where the weights 
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were 1/(1+d), d being the distance between a neighbor and the target. kNN models were trained using the 

yaImpute package (Crookston and Finley 2015) with the default parameters besides distance metric and k. 

Given the large number of potential ALS-derived auxiliary variables, we used a heuristic variable selection 

routine (detailed in Section 2.3) to choose five “good” ALS metrics for each kNN model. 

 

2.2.3. RF modeling 

RF modeling was performed using the randomForest package (Liaw and Wiener 2002) with all training 

parameters set to their default values, since they are well established in the literature (Breiman 2001; Belgiu 

and Drăgu 2016). The default number of random trees was 500, the default number of predictors randomly 

selected to grow a tree from each node was one-third of the available predictors, and the default minimum 

number of nodes was five for each tree. Latifi and Koch (2012) reported that having a large number of predictor 

variables is not an issue in RF. To confirm this finding, RF was used both with a Heuristic variable selection 

with five variables (RF_He; detailed in Section 2.3) and using all the available predictor variables (RF_All). 

 

2.3. Heuristic variable selection 

Heuristic variable selection was performed with the simulated annealing metaheuristic (Kirkpatrick et 

al., 1983) adapted by Packalén et al. (2012) for kNN modelling. We also use the same variable selection 

algorithm (Algorithm 1) for kNN, OLS and RF. The idea behind a metaheuristic strategy is to find a “good” 

solution for a given “cost function” iteratively, by making changes in a given initial solution (see Talbi, 2009). 

In our case, a solution (S) is any set of five variables used to train a model, and the cost function (fcost) is the 

RMSE% obtained by computing the residuals of the trained model respective to a given solution (Formula 3). 

 

Algorithm 1- Variable selection by simulated annealing, where n is the number of iterations, i is the number of 

the current iteration (i = 1, 2,…, n), T0 is the initial temperature, T is the current temperature, S0 is the initial 

random solution, S is a temporary solution, S’ is a neighbor solution of S, Sbest is the best solution found until 

the iteration i, fneighbor is the neighbor function, fcost is the cost function, c is the associated cost of S, c’ is 

the cost associate of S’, cbest is the associated cost of Sbest. 

https://cran.r-project.org/web/packages/yaImpute/yaImpute.pdf
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The changes to the solution are induced by the neighborhood function (fneighbor), which produces an 

alternative solution (“neighbor solution”, S’) based on the current solution and the proportion of iterations (i) 

that were performed (i/n, being i= 1, 2, …, n, and n the total number of iterations). Initially, the algorithm 

randomly replaces two-thirds of the variables in the current solution with different variables. The number of 

variables replaced in each iteration is reduced over the duration of the variable selection until only one variable 

at a time is replaced after achieving 80% of the iterations. The parameter temperature (T) controls the 

probability of accepting non-improving solutions, where this probability decreases with the temperature. The 

initial temperature is high to allow exploring different solutions, and then decreases throughout the iterations 

in a process known as “cooling”. In our adaptation, it decreased linearly until achieving 80% of the iterations, 

where the temperature was set to a very small positive value. With this configuration, the solution with the 

lowest error found is exploited in the last 20% of the iterations to produce a better neighbor solution so that 

temporary solutions with higher errors are no longer allowed. The initial temperature (T0) and the number of 

iterations (n) were set to 0.2 and 500 respectively. The routine was implemented in the R environment. 

 

2.4 Accuracy assessment 

The combinations of modeling type and variable selection approaches resulted in a total of eight 

approaches including OLS_Exh, OLS_He, kNN_Euc, kNN_Mah, kNN_MSN, kNN_RF, RF_All, and RF_He. 

The performances of these approaches were assessed for each study area using cross-validation, and for two 

sites an independent validation. The relative RMSE (RMSE%, Formula 3) and squared Pearson’s correlation 

computed from validation predictions were used to evaluate performances.   

Cross-validation was implemented using a 5-fold approach in which a given dataset is randomly split 

into five evenly sized disjoint sets (“folds”). In each iteration, one of these folds was omitted and a new model 

was trained with the remaining data to predict the volume of the omitted fold. The five folds were combined 

after the five iterations, and the RMSE% was computed. The entire 5-fold cross-validation was performed 100 

times for each site, and the Mean RMSE% was used as a final measure to obtain a better view of the real 

accuracy, as the randomness involved in the variable selection process is decreased. The intervals containing 

95% of the RMSE% values were also used for comparison. 

Independent test datasets that were available for two sites (Liperi and Norway) were used for additional 

validation. For each site, a new model was first trained using the full dataset previously used in their respective 

cross-validations, and the resultant models were used to predict volume to the testing datasets. Finally, RMSE% 

was computed both for training and testing datasets. This process was repeated 100 times. The Mean RMSE% 

and the intervals containing 95% of the errors were also used for accuracy assessment.  

As a final assessment for each approach, we used the training dataset one more time to train a showcase 

model to predict volumes to the testing dataset so that we could provide figures with observed versus predicted 

values and compute squared Pearson correlation (r²). For the approaches where the heuristic variable selection 

was used, we also provide the progress of the cost function during the optimization, where the temporary 

solutions were applied to predict volume to the training and testing dataset and compute their respective 

RMSE% in each iteration. 

 

3. Results 

Overall, all eight modeling approaches demonstrated relatively similar accuracies for most of the 

datasets in the 5-fold cross-validation (Figure 1). We saw increasing Mean RMSE% values for forest conditions 
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with greater heterogeneity in forest composition (see Section 2.1). For example, the greatest relative errors 

were observed for the temperate forest conditions in the USA dataset (RMSE = 34-46%) which also had the 

greatest observed variation in structure and species. The Brazil site is very homogeneous, especially in contrast 

to the USA, and had the smallest RMSE% values, ranging from 9 to 14%. The complexity of the boreal forests 

(Kolari, Liperi, and Norway) fell between Brazil and the USA; they had RMSE% values ranging from 19 to 

30%. Additionally, the 95% intervals for RMSE% for all prediction methods overlapped for the USA dataset. 

This means that inferences about the relative performances of the tested prediction approaches are less certain 

for this site, although the trends in performances generally supported the inferences we made from other 

datasets.  

The patterns in performance relative to modeling approach varied by dataset, but there were consistent 

patterns observed across datasets. Our results suggest that Mean RMSE% varied little amongst modeling 

approaches examined. The greatest variation in performance was amongst methods for the USA where 

kNN_RF and RF_He had a difference of approximately 5% in Mean RMSE%. This was consistent with other 

sites in that kNN models almost exclusively performed poorer (had larger RMSE% values) than OLS and RF, 

and that OLS and RF generally performed similarly. There was only one exception where kNN performed 

better than other methods: for the USA, kNN_Euc performed better than OLS methods, while other kNN 

models performed worse than OLS for the USA. kNN_Euc consistently had the best performances amongst 

kNN distance metrics across all sites. Other kNN distance metrics did not demonstrate obvious trends, and 

their relative performances amongst kNN methods varied by site.   

 

Figure 1. Mean accuracy of the modeling approaches by forest sites assessed through 5-fold cross-validation 

repeated 100 times. Each bar represents the mean of the relative root mean squared error (RMSE%) values 

obtained at the end of the 5-fold cross-validations for a given modeling approach. The whiskers represent 

intervals containing 95% of the RMSE%. 

OLS and RF generally performed similarly across all sites (RMSE%). OLS performed better for Brazil 

and Norway, RF performed better for Kolari and the USA, and the result for Liperi was mixed. However, 

differences amongst OLS and RF were very small, with a maximum of 3 percentage points difference (USA), 

and most differences were less than 2 percentage points. The difference within methods (OLS_Exh versus 

OLS_He, and RF_ALL versus RF_He) were generally also very small (< 2 percentage points). 

The validation at Liperi’s and Norway's external datasets had RMSE% values ranging from 24 to 34% 

(Figure 2). These errors were greater (3 to 5 percentage points) than the cross-validation errors. In Liperi, 
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validation on independent data demonstrated a similar pattern in performance to cross-validation (see Figure 

1), where the best RF and OLS methods had nearly identical performances, kNN had the largest errors, and 

kNN_Euc performed best amongst kNN distances. Independent validation for Norway differed slightly in that 

kNN_Euc and kNN_RF performed similarly to OLS and RF models. Interestingly, the relative performance of 

RF_He clearly differed between the two sites, performing better than all other methods in Norway, and 

performing worst amongst OLS and RF methods for Liperi. Furthermore, most of the testing errors followed a 

similar pattern as the training ones. The greatest difference was observed for kNN_RF, which had notably 

smaller RMSE% values for the training than for the testing datasets, showing that RF distance metric in kNN 

had a clear tendency for overfitting.  

 

Figure 2. Mean accuracy of the modeling approaches by forest sites assessed through validation repeated 100 

times. Each bold line and bar represent, respectively, the mean of the relative root mean squared error 

(RMSE%) values obtained at the end of the validation with the application of a trained model to the training 

and testing dataset. The whiskers represent intervals containing 95% of the RMSE%. 

The relative agreement between observed and predicted values of the showcase models can be see for 

training and validation sets in Figure 3 (Liperi) and Figure 4 (Norway). As might be expected, the agreement 

between predicted (x-axis) and observed (y-axis) values was better for the training dataset than for the 

validation dataset. The r² values for the training datasets ranged from 0.89 to 0.96 and for independent 

validation datasets ranged from 0.82 to 0.89. As was observed with RMSE%, OLS and RF methods generally 

perform the best, and there is evidence that kNN_RF has a tendency to overfit the training dataset. For Liperi, 

kNN_RF performed the best for the training dataset (r²=0.94), but performed among the worst with respect to 

the validation dataset (r²=0.82). In Norway, a similar decline for kNN_RF was observed where the agreement 

(r²) between predicted and observed values was greater than for any other methods at 0.96 in the training 

dataset, but dropped to 0.88 for the validation dataset, which is in the middle amongst other methods for the 

Norway validation dataset. According to the testing correlation, the best approaches for the Liperi dataset were 

the OLS and RF models with OLS_He and RF_All reaching r²=0.87 and r²=0.86, respectively. Most approaches 

had comparable performance for the Norway dataset where the best performances were achieved for RF_All 

and RF_He, both having r²=0.89.  
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Figure 3. Observed and predicted values for testing and training dataset from Liperi.  

 

Figure 4. Observed and predicted values for testing and training datasets from Norway.  

Figures 5 and 6 show the RMSE% values during the heuristic variable selection progresses for the Liperi 

and Norway datasets, respectively. As a general pattern, the error values for the training datasets (black) 

decrease monotonically with the number of iterations. However, RMSE% values for the testing datasets (grey) 

are erratic and do not necessarily improve with number of iterations, which suggests that heuristic variable 

selection may not be suitable for some modeling approaches.  
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Figure 5. Optimization progress for the variable selection during the model training with the Liperi dataset.  

The errors were computed with the temporary solutions applied to the training and testing datasets.

 

Figure 6. Optimization progress for the variable selection during the model training with the Norway dataset.  

The errors computed with the temporary solutions applied to the training and testing datasets. 

Despite the kNN_RF having the smallest final RMSE% for the training dataset for both Liperi and 

Norway, it had the largest differences between testing and training errors. The pattern of kNN performances 

for test datasets was highly erratic relative to their testing error progress and did not show the desired systematic 
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improvement. OLS_He and RF_He showed systematic improvements in testing error as a result of each 

iteration of this variable selection and had a less erratic progress than kNN-based models. These two 

approaches also had the smallest final RMSE% values for the testing datasets. The differences between the 

initial and final RMSE% values were larger for the Liperi dataset than for the Norway dataset. The latter also 

had fewer steep decays. The exact patterns in Figures 5 and 6 vary each time that models are trained because 

the heuristic variable selection approach is stochastic in nature.  

 

4. Discussion 

This work demonstrates similarities and differences in ABA volume prediction performances between 

OLS, kNN, and RF methods for datasets collected around the world (northern Europe, North America, and 

South America). While the results differ among datasets, it was possible to distinguish some patterns which 

should prove helpful to researchers and practitioners.  

Our first inference is that kNN methods were generally systematically less precise than OLS and RF. 

Better performance for RF relative to kNN has also been demonstrated in previous studies (Latifi and Koch 

2012; Fassnacht et al. 2014; Tompalski et al. 2019). Possible explanations are that kNN has many parameters 

which need tuning, that kNN is more sensitive to correct tuning, and that the default kNN tuning parameters 

are less generic than those for RF. RF default parameters, in contrast, seem to work well across a wide variety 

of datasets. For example, Shataee (2013) demonstrated that exhaustive tuning of kNN parameters led to smaller 

errors for a Euclidean-based kNN than for an RF model. McRoberts et al. (2017) showed that kNN performance 

improves greatly through parameter tuning, which also reduced the variation in performances among kNN 

distance metrics. In contrast, studies which tune RF parameters are less common in the ALS literature (Shataee 

et al. 2011; Shataee 2013; Shi et al. 2018), and the results with respect to specific tuning parameters and their 

effects on performances are still unclear. Therefore it is common to use the RF with the parameters set to 

default, since they appear to produce sufficiently robust models (Belgiu and Drăgu 2016). However, it is 

important to highlight that the parameter tuning by itself cannot guarantee a reasonable performance since 

many factors influence a model’s accuracy, such as the inherent properties of the dataset (Fassnacht et al. 

2014). Besides, the full parameter tuning is time-consuming and considerably increases the computational 

complexity of the analysis as well as the required technical capacity of the analyst. 

Establishing a comparison between our results and the ones available in existing literature was not a 

straightforward task since all of the studies had procedural differences in their implementation. Our results 

concerning the performance of kNN distance metrics disagree with some other studies. We found that 

kNN_Euc performed best under cross-validation, while kNN_RF was among the worst and with a clear 

indication of overfitting. Other studies found that kNN_Euc was outperformed by other techniques like 

kNN_MSN and, especially, kNN_RF (Hudak et al. 2008; Latifi et al. 2010; McRoberts et al. 2017). Both of 

them were considered the most robust distance metrics in some studies (Vauhkonen et al. 2010; Shataee et al. 

2011; Packalén et al. 2012). 

The first reason for this difference in findings may be related to differences in the model performance 

assessment. Earlier studies often applied leave-one-out cross-validation (LOOCV) (e.g. Latifi et al. 2010; 

Packalén et al. 2012; McRoberts et al. 2017), which is a specific type of cross-validation in which a single 

observation is omitted each time. The use of a 5-fold cross-validation, in contrast, may provide a more robust 

set of validation data for detection of model overfitting. A related factor is that more complex models have a 

greater tendency to overfit the data (Hastie et al. 2009). Since kNN_MSN and kNN_RF are more complex than 
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the kNN_Euc, it may be that studies using LOOCV reported performances resulting from overfit models. 

Lastly, kNN_MSN models are usually applied for simultaneous prediction of several response variables, such 

as species-specific volume prediction (e.g. Packalén and Maltamo 2007; Vauhkonen et al. 2010). In such 

scenario the kNN approaches would probably perform better, as the predictions are guaranteed to remain 

logical.  

Another inference from our results relates to practical considerations of heuristic and exhaustive 

variable selection procedures for OLS. Our results showed that OLS models for both heuristic and exhaustive 

variable selection have similar performances, but they differ in some respects. A heuristic approach to variable 

selection can handle a much greater number of explanatory variables, and is more flexible with respect to model 

formulations including handling non-linear forms, and can be easily optimized for a wide range of loss 

functions. On the other hand, the stochastic process involved in the simulated annealing caused higher variation 

in the OLS_He errors. The exhaustive variable selection, although having smaller error ranges, quickly 

becomes computationally infeasible for large numbers of explanatory variables. The computational cost of 

training OLS_Exh increases factorially with the number of explanatory variables and with the number of 

variables to search for, and may hence be infeasible for high dimensional datasets.  

Among RF methods, RF_He had comparable results to RF_All in most situations. This confirms that, 

to a degree, RF is robust to overfit when dealing with high dimensional data (Belgiu and Drăgu 2016). Our 

findings suggest that variable selection may not be needed for some applications of RF.  

The cross-validation and validation with independent data are traditionally focused on the performance 

of a specific model, where a model with the same predictors is trained and used to predict values to the holdout 

folds or testing dataset. Differently, our assessment was focused on the modeling approach itself wherein the 

variable selection was also repeated before predicting the next holdout fold or testing dataset. The fact that 

these processes were repeated 100 times increased the robustness of inferences regarding the comparisons of 

modeling approaches and their efficiency. This methodology is therefore strongly recommended for future 

works that intend to test or compare modeling approaches, even if it is more computationally intensive.  

This study demonstrates the importance of validation, especially independent validation. Even with a 

fairly intensive cross-validation scheme that uses 20% of the data for holdout validation, the results suggest 

that our approach still over-estimates model performances. Part of this difference may be the result of 

differences in the conditions as the training and validation sites, but the divergence in reported performances 

deserves further investigation. While the use of an independent validation dataset is the ideal way to assess 

model performance, it is rarely available in practice (Araújo et al. 2005). Despite the divergence between cross-

validation and independent validation, our study suggests that the cross-validation can generally still provide 

information on the relative performances amongst methods, although we were not able to identify overfit by 

the kNN_RF method.  Other assessment approaches which can provide reliable errors when validation datasets 

are not available include block cross-validation  (see Roberts et al. 2017) or leaving out spatial clumps of 

observations, instead of choosing holdout data at random from across the study areas (e.g. Kotivuori et al. 

2016, 2018). Despite that, Roberts et al. (2017) showed that a cross-validation with random folds can provide 

fair error estimates when a model is developed only to predict to a dataset with the same structure, which is a 

situation that fits to our assessment.  

Our findings agree with the results of Fassnacht et al. (2014), who found that the accuracy of ABA-

based predictions is influenced by the modeling approach. Therefore, our results are of great importance to 

remote sensing experts that need to construct accurate ABA maps of the growing stock volume or above-
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ground biomass. The main results were consistent regardless of variations in ALS metrics computed for the 

different study sites, as the metrics still represented similar variations in vertical and horizontal canopy 

structure despite differences in computational methods. The differences between methods are considerably 

smaller than the differences between datasets, but we showed that they are systematic, and some methods are 

slightly better in ABA applications than others. For example, the RF_All with default parameters is robust 

across multiple forest types and can be reliably applied to high-dimensional datasets without time-consuming 

variable selection processes. OLS methods can provide similar accuracy and might be preferred over RF_all 

in situations where it is important to interpret how individual predictors influence the predicted values. We did 

not test the effects of number of training observations in this study, but it is known that OLS tends to be more 

reliable for small data sets (e.g. < 100 observations). Finally, we showed that kNN methods are suboptimal in 

situations where there is only a single response variable. 

 

5. Conclusion 

This study compared OLS, kNN, and RF modeling strategies in combination with multiple variable 

selection strategies for the prediction of growing stock volume in five forests around the globe. RF and OLS 

models performed better than kNN models, although the maximum difference was about 4 percentage points, 

and generally less. These results suggest that RF or OLS are preferable for estimating volume from ALS data. 

In addition, kNN based on RF distance was especially problematic due to its strong tendency to overfit which 

was not detected with a 5-fold cross-validation, but became clear during the validation with an independent 

test data. kNN based on Euclidean metrics outperformed other kNN approaches across all study areas. 

In the case of the OLS methods the heuristic variable selection was shown to perform as well as the 

more time-consuming exhaustive search, which is especially advantageous in the case of high-dimensional 

data where the exhaustive search algorithm may not be feasible. We did not observe an improvement to RF 

from using variable selection, which suggest that RF is a robust approach for practical applications.   
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Appendix 1. A list of the ALS metrics by data set. The abbreviations consist of a prefix that specifies the 

metric type, a statistic indicator, and a suffix showing the return type. The prefixes are the height (H), intensity 

(I), percentage of below fractional height bin (B), and return percentage above fixed height (D). The statistic 

indicators for height and intensity metrics are the minimum (min), mean (mean), maximum (max), standard 

deviation (std), median (med), skewness (skew), kurtosis (kurt), variance (var), mode (mode), coefficient of 

variation (cv), interquartile distance (iqd), average absolute deviation (aad), the n-th L-moments (mom), and 

the number x related to the x-th height percentile. The subscripted suffixes indicate that the metric is computed 

from first and single return (F), or last and single returns (L), while no suffix refers to all returns. 

Dataset 
No. of 

metrics 
Metrics 

Brazil 18 
H10F  H30F  H50F  H70F  H90F  H95F  HmeanF  HstdF D10F D30F  H10L  H30L  

H50L  H70L  H90L  H95L  HmeanL  HstdL 

Kolari 84 

D1F  D2F  D3F  D4F  D5F  D6F  D7F  D8F  D9F  D10F  D11F  D12F  D13F  D14F  

D15F  D16F  D17F  D18F  D19F  D20F  D21F  D22F  D23F  D24F  H5F  H10F  H15F  

H20F  H25F  H30F  H35F  H40F  H45F  H50F  H55F  H60F  H65F  H70F  H75F  

H80F  H85F  H90F  H95F  H99F  HmaxF  HmeanF  HstdF  D1L  D2L  D3L  D4L  D5L  

D6L  D7L  D8L  D9L  D10L  D11L  D12L  D13L  D14L  D15L  D16L  D17L  D18L  

D19L  D20L  D21L  D22L  D23L  H50L  H55L  H60L  H65L  H70L  H75L  H80L  H85L  

H90L  H95L  H99L  HmaxL  HmeanL  HstdL 

Liperi 58 

HmaxF  HminF  HstdF  HmedF  HmeanF  HskewF  HkurtF  ImaxF  IstdF  ImedF  

ImeanF  IskewF  IkurtF  H10F  H30F  H50F  H70F  H90F  I10F  I30F  I50F  I70F  I90F  

D0.5F  D2F  D5F  D10F  D15F  D20F  HmaxL  HminL  HstdL  HmedL  HmeanL  

HskewL  HkurtL  ImaxL  IminL  IstdL  ImedL  ImeanL  IskewL  IkurtL  H10L  H30L  

H50L  H70L  H90L  I10L  I30L  I50L  I70L  I90L  D0.5L  D2L  D5L  D10L  D15L 

Norway 23 
HcvF  HmaxF  HmeanF  H0F  H10F  H20F  H30F  H40F  H50F  H60F  H70F  H80F  

H90F  B0F  B10F  B20F B30F B40F B50F B60F B70F B80F B90F 

USA 53 

Hmax  Hmean  Hmode  Hstd  Hvar  Hcv  Hiqd  Hsquew  Hkurt  Haad  Hmom1  

Hmom2  Hmom3  Hmom4  H1  H5  H10  H20  H25  H30  H40  H50  H60  H70  

H75  H80  H90  H95  H99  B1 B5 B10 B20 B25 B30 B40 B50 B60 B70   

Others: 

      Percentage of first returns above 1.5 m  

      Percentage of all returns above 1.5 m  

      Ration between all returns above 1.5 m and the total of first returns  

      Number of first returns above 1.5 m  

      Number of All returns above 1.5 m  

      Percentage of first return above Hmean  

      Percentage of first return above Hmode  

      Percentage of all return above Hmean  

      Percentage of all return above Hmode  

      Ratio between all returns above Hmean and the total of first returns  

      Ratio between all returns above Hmode and the total of first returns  

      Ratio between first returns and all returns  

      Ratio between first and all returns  

      Ratio between second and all returns 
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Abstract: Estimating forest inventory variables is important in monitoring forest resources and
mitigating climate change. In this respect, forest managers require flexible, non-destructive methods
for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly
available to measure three-dimensional (3D) canopy structure and to model forest structural attributes.
The main objective of this study was to evaluate and compare the individual tree volume estimates
derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital
aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA)
techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied
correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly
identified using DAP-based point clouds acquired from Unmanned Aerial Vehicles (UAV), representing
accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression
fit based on individual tree height and individual crown area derived from the ITC provided the
following results: Model Efficiency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3

and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and
0.0004 m3) using DAP and ALS-based estimations, respectively. No significant difference was found
between the observed value (field data) and volume estimation from ALS and DAP (p-value from
t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate
basal area or biomass stocks in Eucalyptus spp. plantations.

Keywords: unmanned aerial vehicles (UAV); forest inventory; volume; canopy height model (CHM);
object based image analysis (OBIA); structure from motion (SfM)
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1. Introduction

Sustainable forest management demands accurate information that can be obtained efficiently and
rapidly [1] in order to describe forest structure and quantify forest resources [2]. However, although
accurate, traditional forest inventory is resource- and time-consuming, indicating the need for either
alternative or complementary methods that may overcome the drawbacks of field data acquisition [3].
In addition, although field-measured data are commonly assumed to be ground truth values for remote
sensing estimations, the associated errors tend to be large [3–6].

A number of alternatives to traditional field-based measurement of morphological parameters for
characterizing three-dimensional (3D) structure of trees and canopies have emerged [4,7]. Airborne
Laser Scanning (ALS), Digital Aerial Photogrammetry (DAP) and Terrestrial Laser Scanning (TLS) have
become widely established as forest mapping and monitoring methods [8–11]. In the last two decades,
DAP, ALS (e.g., [12–14]) or a combination of these methods (e.g., [15–17]) have been increasingly used
to support forest inventories at different scales.

ALS has been the primary source of 3D data on forest vertical structure since the 1990s [18,19].
There has been an abundance of research demonstrating the utility of ALS for predicting forest
biophysical variables to support forest inventories at individual tree- and stand-level [20,21]. Since the
late 2000s DAP has provided a promising alternative, as the accuracy of stand-based estimates has
been found to be similar to that achieved through ALS, at much lower cost [17,22,23].

Baltsavias [12] provided a comprehensive comparison of DAP and ALS data, highlighting the
advantages and disadvantages of both technologies with regards to acquisition, accuracy, maturity
and costs. Although ALS data have many advantages (e.g., direct measurement of height, higher
penetration through the vegetation), DAP still represents an essential source of data for the forest
inventory analyses. In fact, photogrammetric software has developed rapidly in the past 15–20 years.
Since the first studies [24], advances in computer vision, image matching algorithms and computing
power have promoted the use of aerial images for generating high-resolution 3D data by image
matching [25]. Many photogrammetric software packages (proprietary and open-source) have been
developed, offering unparalleled opportunities to produce 3D data from 2D image collections with
high overlap.

Recent advances in sensors and in image processing –particularly Structure from Motion (SfM)
technology– have also enabled the extraction of dense point clouds obtained by DAP [16,24,26–29].
In this sense, DAP derived from SfM is an emerging source of 3D data, reaching quality standards
close to those provided by ALS [25,30]. works by [26,31–33] pointed out the potential of DAP for forest
applications. During the past five years in particular, there has been an increasing interest in the use of
DAP to generate 3D data analogous to ALS data, in order to support forest inventories [17,22,25,34–39].
This interest can be attributed to the need to optimize costs while improving the temporal resolution.

Unmanned Aerial Vehicles (UAVs), also known as drones or Unmanned Aerial Systems (UAS),
have emerged as a cost-effective alternative to conventional methods based on manned fixed-wing
aircraft or helicopters for DAP imagery and ALS data collection [40–43]. Since the first studies in which
UAV-derived data was used for forest inventory purposes [44,45], UAV-based forestry applications
of both ALS and DAP have increased substantially [40,46–52]. Indeed, ALS and Red-Green-Blue
(RGB) sensors mounted on UAV platforms are becoming cost-effective tools for monitoring forest
structure because of their high spatial and temporal resolution, achieved by the low flight height,
operational flexibility and relatively low cost of the flight surveys, which meet most of forest managers
requirements [53]. In particular, light UAVs equipped with inexpensive consumer grade cameras have
recently appeared as a feasible option for monitoring 3D forest structure [54]. In addition, multi-temporal
UAV-acquired data can also be used for rapid, accurate and cost-effective tree growth assessment,
providing up-to-date information to support decision-making in forest management [48,54–58].

Two main strategies have been adopted for DAP and ALS-based analysis in forestry inventories:
(i) the Area-Based Approach (ABA), a distribution-based technique which typically provides data
at stand level, and (ii) the individual tree crown (ITC) delineation, in which individual tree crowns,
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heights and positions are the basic units of assessment. ABA has been used with ALS and DAP to
estimate forest attributes over a wide range of forest types including Temperate (e.g., [59]), Boreal
(e.g., [13,14,17,34,60]), Atlantic (e.g., [61,62]), Tropical (e.g., [37]), Alpine (e.g., [63,64]), Mediterranean
forests (e.g., [65–69]) and plantations [70]. At the stand level, results from recent research on small- to
medium-sized boreal and tropical forests have demonstrated the potential use of UAV-based DAP
data for estimating forest biomass [53,71]. On the other hand, ITC has also been applied to DAP point
clouds [72] and to ALS clouds [73,74]. ITC presents several advantages over ABA for estimation of
above-ground biomass because it can be used to derive biomass when an allometric model is available
at individual tree level [75]. At the same time, it is particularly well suited for precision forestry, which
usually requires information about individual trees.

Finally, ALS and SfM approaches to tree height estimation tend to underestimate tree
height [73,74,76,77]. Recent studies [77] have presented a model that explains the observed bias
using probability theory, developing methods for correcting several ALS metrics used for ABA
prediction of stand structure. However, few studies have evaluated the influence of this bias at
individual-tree level. In this respect, further research is needed in order to analyze the influence of this
bias in the individual-tree biomass and volume models for both technologies.

The objectives of this study were as follows: (i) to investigate the combined use of ALS- and
SfM-derived individual-tree measurements (height and crown area) with non-linear regression models
to estimate individual tree diameter and volume; and (ii) to compare the estimation of ALS- and
SfM-derived individual-tree volume models to estimate growing stock volume in relation to field data.

2. Materials and Methods

2.1. Study Area

The study area is located in the municipality of Valongo (41.213◦ N, −8.496◦ W) in the district of
Porto, Portugal (Figure 1). The site consists of a seven year old plantation of Eucalyptus spp. clonal
material (G74), covering an area of 26 ha. Tree spacing was 3.70 × 2.5 m, yielding a density of one tree
per 9.25 m−2. The elevation ranges from 163 to 294 m above the WGS84 reference ellipsoid. The terrain
is topographically complex, with steep slopes (mean slope = 24.2%), and of elevation up to 131 m.
The mean annual rainfall is 1568 mm, and 42.1% of the precipitation occurs between November and
January. The mean annual temperature is 14.2 ◦C, ranging from 8.6 ◦C in the coldest months (December
to February) to 20.1 ◦C in the warmest months (July to September). The study site is characterized by
evenly planted trees of superior genetic material with a low mortality rate.
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2.2. Field Measurements and Field Volume Estimation

The field data were collected in December 2016 (to correspond to the date of acquisition of ALS
data) from 6 square plots, each of approximately 400 m2 (Table 1). A total of 323 reference trees were
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measured and located in 6 square plots (400 m2). The height of each tree (h, m) within the plots was
measured with a Haglof Vertex IV hypsometer equipped with a T3 transponder. The diameter at
breast height (1.30 m above the ground – d, cm) was measured with a steel diameter measuring tape.
Field plots were remeasured using the same methods in September 2017 (matching with UAV-based
DAP acquisition).

Table 1. Statistical description of the field data within six field plots for a total of 323 reference trees

Plot d h ^
v

Mean Mean Mean

Dec 2016 Sep 2017 Dec 2016 Sep 2017 Dec 2016 Sep 2017

P1 13.2 13.4 19.4 20.9 0.13 0.14
P2 12.9 13.3 18.8 19.9 0.12 0.15
P3 13.4 13.8 18.6 20.0 0.13 0.15
P4 13.8 14.1 18.8 19.8 0.13 0.15
P5 13.7 14.0 18.3 19.7 0.13 0.15
P6 13.8 14.2 17.6 19.1 0.13 0.14

Min. 5.3 5.4 9.9 10.3 0.01 0.01
Mean 13.5 13.8 18.6 19.9 0.13 0.14
Max. 17.3 17.8 22.8 23.5 0.24 0.26
SD 1.7 1.7 1.5 1.6 0.03 0.04

Average (Mean), minimum (Min), maximum (Max) and standard deviation (SD), values of the individual tree
diameter (d, cm), height (h, m) and field data volume estimation (v̂, m3).

In order to obtain accurate positions of the trees, topographic surveys were conducted to determine
the position of the center of each tree within the plots. A Trimble® TSC3 GPS controller with Trimble®

R8s Integrate GNSS System Antenna (Trimble, Sunnyvale, CA, USA) (dual-frequency real-time
kinematic receiver –RTK) was used to determine the coordinates of a densified geodetic network for
the study area by applying real time kinematic (RTK). Based on the network established with GPS,
a topographic survey of the plots was conducted using a Trimble® M3 Robotic Total Station (Trimble,
Sunnyvale, CA, USA). Observations on the position of each tree within the plot were made during
the survey.

Field-derived volumes were estimated using the Equation (1), provided by [78].

v̂ = 0.2105
(

d
100

)1.8191

h1.0703 (1)

where v̂ is the estimated volume (m3), d is the diameter (cm) at the breast height (1.30 m) and h is the
tree height (m).

2.3. ALS Acquisition

The airborne surveys were conducted on 17 December 2016, covering an area of 100 ha. The data
were captured with Leica ALS80-HP laser scanner operating at pulse rate of 704 kHz, field of view
of 6.5◦ and scan rate of 73.5 Hz, which was mounted on a Cessna airplane that flew the area at an
approximately flight altitude of 2750 m.a.s.l and an average speed of 250 km.h−1. The overlap between
sweeps was 30%, achieving an average laser pulse density of 43.33 pulses m−2.

2.4. UAV Data Acquisition and Use

The airborne surveys were conducted on 6 September 2017. An RGB S.O.D.A. 10.2 (20 MP) camera
(senseFly Co, Cheseaux-Lausanne, Switzerland) was mounted, with nadir view, on a fixed-wing
UAV (SenseFly eBee) (Figure 2). The camera, which was equipped with a 12.75 × 8.5 mm sensor
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and 5472 × 3648 pixels detector, was used in manual mode. Exposure settings (ISO 150 and shutter
speed of 1/1000 s) were set before each take-off according to the light conditions. This provided ~6 cm
pixel−1 resolution for a variable altitude above ground level, which is especially useful in areas of
diverse elevation range such as mountainous regions. Atmospheric conditions during the airborne
surveys were characterized by calm winds, clear lighting at the flight time (between 11.30 am and
12.15 pm) to minimize the effect of shadowing. Flight parameters were determined using eMotion
V. 3.2.4 flight planning and monitoring software. The flight plan covered the entire study area with
longitudinal and lateral overlaps of 85% in both cases. The flight line spacing was 25 m (Figure 2).
In total, 744 images were used to generate orthomosaics and Digital Surface Models (DSMs) by the SfM
image reconstruction process. Two-block flights were required to capture the entire forest study area
(the orthomosaic covered an area 103.70 ha with average Ground Sample Distance (GSD) of 5.95 cm).
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2.5. 3D Model Generation and Preprocessing Point Clouds

The absolute orientation of the aerial photos was determined using aerotriangulation techniques
implemented in pix4D 3.3.29 (pix4D®, Ecublens, Switzerland). A set of 10 ground control points
(GCPs) measured in the field with topographic methods was used to georeference the SfM mosaics to a
projected coordinate system for both datasets. The ground control photogrammetric points (GCPs)
were captured with a Trimble TSC3 controller and a Trimble R8s GNSS antenna (RTK precision 8 mm +

1 ppm Horizontal/15 mm + 0.5 ppm Vertical) mounted on a pole. The GCPs markers comprised a set
of 1 × 1 m cross-shaped white painted timber planks with some black and white 50 × 50 cm painted
checkerboards. For reliable accuracy of GPS measurement, all GCPs were located in open areas with
no canopy cover. At each point, GPS signals were logged in RTK–global navigation satellite system
(GNSS) mode. The recordings were processed with real-time correction data retrieved from the fixed
base station in Gaia (Porto) (latitude: 41◦06′21.67048” N, longitude: 8◦35′20.73434” W, and ellipsoidal
elevation: 287.63 m above the WGS84 reference ellipsoid).

Photogrammetric point clouds were computed using SfM techniques, implemented in Pix4D 3.3.29.
The matching parameters for point cloud densification were set as follows: multiscale, image scale =

1/2 (half image size) and point density = ‘optimal’. The minimum number of matched images was also
set to 3. DEMSfM was generated from the ground points by using a natural neighbor interpolation
technique implemented in Pix4D (additional details of the algorithms are proprietary and were not
disclosed by Pix4D).

The ALS and SfM point clouds preprocessed using FUSION/LDV 3.60 software [79] and
LasTools [80]. For more details of point cloud processing see details in [74]. Finally, two CHMs
(CHMSfM and CHMALS) were obtained by subtracting the DEMs (DEMALS and DEMSfM) from the
DSMs (DSMALS and DSMSfM) in the FUSION LiDAR Toolkit [79].
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2.6. ITC Process to Derive ALS- and SfM-Variables

Individual tree position (X and Y coordinates), height (hSfM, hALS) and crown area (caSfM, caALS)
were retrieved from the respective CHMSfM and CHMALS (Figure 2). Resampling of the CHMs to
20 cm resolution and subsequent smoothing with mean filter (5 × 5 window) in the case of ALS
and median filters (3 × 3 window) for SfM were conducted using the FUSION LiDAR Toolkit [79].
Crown delineation followed the procedure detailed in [81]. The process is divided into three main
phases: segmentation, classification and iterative watershed segmentation The Chessboard Segmentation
algorithm was used to split the image into square image objects. In the second phase, a Classification
algorithm was used to classify image objects from the smoothed CHM. Objects with an elevation
value of less than 5 m were classified as gaps. The threshold was established empirically from field
observations and by trial-and-error tests. The remaining objects were assigned to the ‘temporary
canopy’ class. These objects were used to locate tree tops and delineate tree crowns in the following
iterative watershed segmentation processes. In the iteration, the Find Local Extrema algorithm was used
to classify the image objects of the ‘temporary canopy’ class, which fulfills a local extreme condition
according to image object features within a search domain in their neighborhoods. However, because
of the forest stand and tree species characteristics, the initial maximum search domain used in the
iterative process (see Figure 3 in [81]) to detect top trees was changed from 5 to 3, and 4 interactions
were applied. A search with a variable square window enables detection of apices of trees with a
large variety of crown sizes. Objects less than 3 m away from any detected tree top were retained
in the ‘temporary canopy’ class (candidates for watershed) and any other objects were disregarded.
This distance was the maximum observed crown width in the plots, which was considered the limit for
crown growing in the next step. Then, the crown delineation results (Figure 3) and tree top positions
were exported in ESRITM shapefiles as vector polygons and points respectively, for subsequent analysis.
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Figure 3. Examples of the canopy height models (cool to warm colors representing low to high heights),
crown delineation (blue lines), and tree top positions (red dots) within example plots using airborne
laser scanning (ALS) (a) and Structure from Motion (SfM) (b).
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2.7. Individual Tree Volume Estimation

Volume equation (Equation (1)) requires the measurement of tree diameter or circumference,
which is not available from UAV imagery. We therefore tested two approaches for estimating ALS- and
SfM-derived individual-tree volumes (vSfM and vALS) (Figure 4). In the first approach, the multiplicative
(power function) model in Equation (2) was fitted using d (from field data) as the dependent variable
and the pairs of explanatory variables hSfM, caSfM for SfM, or hALS, caALS for ALS. The predicted
diameter obtained by each method (dSfM and dALS) and their respective height estimates (hSfM and hALS)
were then included as independent variables in Equation (1) to predict the individual volumes for
the subset of 192 trees for ALS and 199 for SfM (vSfM and vALS, respectively). In the second approach,
the multiplicative (power function) model in Equation (3) was also fitted to predict vSfM and vALS for
the 192 and 199 trees respectively, but v was considered a dependent variable (estimated using the
field-measured d and h in Equation (1)), and the pairs hSfM, caSfM (from SfM) or hALS, caALS (from ALS)
were considered explanatory variables, without the need to estimate the diameters.

d̂ = hβ0caβ1 + ε (2)

v̂ = hβ0caβ1 + ε (3)

where v̂ is the estimated volume (m3), d̂ is the estimated tree diameter (cm), h is the tree height (m),
ca is the canopy area (m), generated from ALS or SfM, β0, β1, are the exponential parameters to be
estimated by non-linear regression analysis; and ε is the additive random error. The models were fitted
using the Non-linear Least Squares nls function implemented in the BASE package of R software (R
Core Team, 2018).

Finally, the Model Efficiency (Mef, Equation (4)), the overall root mean square error (RMSE,
Equation (5)), the relative root mean square error (rRMSE, Equation (6)) and the Bias (Equation (7))
were computed in order to determine the accuracy of ALS and SfM models for estimating diameter
and volume with the second approach. Mef compares predictions directly with observed data using
a statistic analogous to R2 [82]. This statistic provides a simple index of performance on a relative
scale, where 1 indicates a ‘perfect’ fit, 0 reveals that the model is no better than a simple average, and
negative values indicate a poor model.

Me f = 1−

 (n− 1)
∑n

i=1(yi − ŷi)
2

(n− p)
∑n

i=1

(
yi − y

)2

 (4)

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(5)

rRMSE =
RMSE

y
∗ 100 (6)

Bias =
∑n

i=1(ŷi − yi)

n
(7)

where n is the number of trees; yi is the field-measured tree diameter i; y is the the mean observed value
for the field-measured diameters; ŷi is the estimated value of diameter derived from the non-linear
regression model and p is the number of parameters in the models.

Finally, using the correctly detected and delineated trees, d was compared with dSfM, dALS and v
with vSfM, vALS in the subsample of 192 trees for SfM and 199 for ALS, respectively. Estimated and
observed values were plotted and visually examined. A paired t-test was conducted to compare ALS-
and SfM-predicted variables (dSfM, dALS, vSfM, and vALS) to verify the significance of the deviations
between the observed and estimated values. However, these deviations were previously checked using
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the Shapiro-Wilk test [83], which indicated that the distributions meet the assumption of normality.
The tests were conducted at a 5%significance level.

1 

 

 

Figure 4. Summary steps of individual tree crown (ITC) to map volume.

3. Results

Field, ALS and SfM Volume Estimation

Table 2 shows the parameter estimates and goodness-of-fit statistics for the models used to predict
d (cm) in the first approach, and v directly estimated by SfM- and ALS-variables in the second approach.

In the first approach, non-linear regression yielded an Mef value of 0.45 for the SfM-estimated
diameter and 0.47 for ALS-estimated diameter (RMSE = 1.17 and 1.12 cm, rRMSE of 8.49 % and 8.31%,
respectively). Although the UAV-based DAP method tends to underestimate tree height relative to
field measurements (hypsometers), there was no appreciable bias throughout the observed diameter
(Figure 5a,b). The bias values (0.38 and 0.35 cm) indicated a slight tendency to overestimate the initial
diameter values from field data (Figure 5a,b). On the other hand, although d was not directly measured
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in CHMs derived from UAV and ALS, hSfM and hALS were, and these variables were significant in
the SfM and ALS equations. For dSfM and dALS modelling, the crown area (caSfM and caALS) was also
statistically significant (p < 0.05 and p < 0.001, respectively).

Table 2. Models selected for estimating SfM and ALS derived individual tree diameter and volume.

Approach Dependent
variable Predictors Parameter

estimate
Standard

error p-value Mef RMSE
(cm)

rRMSE
(%)

bias
(cm)

1st

dSfM

Constant 0.863 1.170 < 0.001
0.45 1.17 8.49 0.38hSfM 0.907 0.108 < 0.001

caSfM 0.037 0.037 0.013

dALS

Constant 0.564 0.151 < 0.001
0.47 1.12 8.31 0.35hALS 1.042 0.090 < 0.001

caALS 0.062 0.015 < 0.001

Approach Dependent
variable Predictors Parameter

estimate
Standard

error p-value Mef RMSE
(m3)

rRMSE
(%)

bias
(m3)

2nd

vSfM
Constant 0.004 0.002 0.082

0.43 0.030 20.31 0.0016hSfM 1.192 0.201 < 0.001
caSfM 0.151 0.035 < 0.001

vALS

Constant 0.001 0.000 0.106
0.46 0.026 19.97 0.0004hALS 1.828 0.224 < 0.001

caALS 0.024 0.037 < 0.001

hSfM and hALS are the SfM and ALS-derived tree height (m), caSfM and caALS are the SfM and ALS-derived individual
crown area (m2), Mef is the model efficiency statistic, RMSE is the root mean squared error and rRMSE is the relative
root mean square error.
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Figure 5. Scatter plots of ALS and SfM-derived variables against field-derived variables:
(a) field-measured tree diameter (d) against ALS-estimated tree diameter (dALS); (b) field-measured
tree diameter (d) against SfM-estimated tree diameter (dSfM); (c) field-estimated volume (vfield) against
ALS-estimated volume (vALS) using the first approach; (d) field-estimated volume (vfield) against
SfM-estimated volume (vSfM) using the first approach; (e) field-estimated volume (vfield) against
ALS-estimated volume (vALS) using the second approach; (f) field-estimated volume (vfield) against SfM
-estimated volume (vSfM) using the second approach.
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In the case of vALS modelling, the second approach yielded an Mef value of 0.56. The mean
rRMSE of v estimation was 20.31% (0.030 m3) when calculated on the basis of the SfM cloud, and
19.97% (0.026 m3) when based on the ALS cloud. There were no appreciable biases from the models
throughout the observed volume range using both approaches (Figure 5c–f). However, the tendency
of ALS and SfM to underestimate h may be the main reason for the slight underestimation of v in
the first approach (Figure 5c,d). In the case of the second approach, a slightly positive bias (0.0004
and 0.0016 m3) indicated slight overestimation when volume was modeled directly form ALS- and
SfM-variables (Figure 5e,f).

The t-test (Table 3) showed that there were no evidence of significant differences between observed
and estimated values of diameter (p-values of 0.98 for both approaches in the subsample of 192 trees
for SfM and 199 for ALS, respectively) and volume using the second approach (p-values of 0.99 for
ALS and 0.98 for SfM, Figure 6b). However, there were significant differences using the 1st approach
between the observed values and estimated value at the tree level (Table 3, Figure 6b). It is important
to note that the mean values of field data for diameter and volume computed for ALS and SfM in the
subsample were similar that the values considering the 6 field plots for the total of 323 reference trees,
except for the mean volume values for volume in 2017 (Table 3).

Table 3. Field, ALS and SfM diameter and volume estimations from both approaches with their
minimum (Min.), mean (Mean), maximum (Max.) and standard deviation (SD) values and the results
for the t-test in the subsample of 192 trees for SfM and 199 for ALS, respectively. Field 16 and Field 17
are the field data acquisition years for ALS (Dec 2016) and SfM (Sep 2017), respectively.

Plot
dALS (cm) dSfM (cm) vALS (m3) vSfM (m3)

ALS Field 16 SfM Field 17 ALS 1st ALS 2sd Field 16 SfM 1st SfM 2sd Field 17

P1 14.1 13.3 14.3 13.4 0.13 0.15 0.13 0.15 0.15 0.14
P2 13.4 12.5 14.0 13.4 0.11 0.14 0.11 0.13 0.15 0.14
P3 13.1 13.3 13.9 14.0 0.10 0.13 0.12 0.12 0.14 0.15
P4 13.4 13.8 13.8 14.3 0.11 0.14 0.13 0.12 0.14 0.15
P5 13.5 13.8 14.0 14.2 0.11 0.14 0.13 0.13 0.15 0.15
P6 13.2 14.2 13.1 14.0 0.11 0.16 0.14 0.12 0.14 0.14

Min. 8.9 6.0 7.6 5.4 0.05 0.05 0.02 0.03 0.09 0.01
Mean 13.5 13.5 13.9 13.9 0.11 0.15 0.13 0.13 0.15 0.15
Max. 15.6 17.0 15.8 17.8 0.16 0.20 0.21 0.19 0.19 0.25
SD 1.0 1.5 1.1 1.6 0.02 0.02 0.03 0.02 0.02 0.03

t-test
p-value 0.98 0.98 <0.001 0.99 <0.001 0.98
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4. Discussion

Both vSfM and vALS were accurately estimated from UAV photograph and ALS-based 3-D point
clouds using SfM- and ALS-variables extracted automatically from their respective CHMs. Although
ALS-based methods and UAV-based DAP methods tend to underestimate tree height [73,74,77], relative
to field measurements (hypsometers), no appreciable biases in the observed diameter and volume
range estimations occurred with either technologies in the 2nd approach.

Variables derived from the automated processing of ALS and UAV-based DAP with ITC delineation
(hSfM, hALS, caSfM, and caALS) were found to be significant explanatory variables for predicting d and v
in both approaches; however, the Mef and RMSE values for diameter models indicate poorer fits than
reported in some recent studies in P. pinea plantations [57] (Mef = 0.79, rRMSE = 4.99%, n = 50 trees)
and Japanese Cypress (Chamaecyparis obtusa) [84] (R2 = 0.79, n = 51 individual trees where d ranged
from 11 to 58 cm) using UAV-based DAP point clouds.

In the case of ALS-based diameter models, our results were similar in terms of R2 to those reported
by Chisholm et al. [85], who extracted forest below-canopy information using UAV-based LiDAR and
developed post-processing software to detect trees and to estimate their diameters (R2 = 0.45, rRMSE =

25.1%). Finally, the results were also similar in terms of rRMSE to those reported by Cosenza et al. [86]
in a eucalyptus plantation in Brazil (rRMSE = 9%), for an exponential equation with h as explanatory
variable. Cosenza et al. [86] also observed a slight tendency to overestimate the initial diameter values
(bias = 0.12 cm).

Studies conducted in Picea abies (L.) H. Karst. and Pinus sylvestris L. stands in Sweden and in Pinus
taeda L. stands in the SE United States found that ALS-derived h and crown diameter (cd) explained
up to 87% and 91% of the variance associated with the estimation of d, with RMSE of 3.8 and 4.9 cm,
respectively [87,88]. Zhao et al. [89] reported an R2 value of 0.87 and a RMSE value of 5.2 cm for
ALS-derived tree dimension variables including h, cd and crown base height in P. taeda stands. In this
study, the diameter equation based on ALS-derived variables performed well, although the values of
Mef were slightly lower than some of those reported for other species [87,88].

Regarding volume modelling, the performance of the vALS and vSfM estimates for predicting tree
volume directly from ALS- and SfM-derived variables (the second approach, R2 = 0.46, R2 = 0.43;
RMSE = 0.026 m3, RMSE = 0.030 m3; respectively) was lower than that obtained in different conifer
species (R2 = 0.88) [88], as well as in P. taeda (R2 = 0.80) [89] and P. pinea (Mef = 0.84 − 0.85) [57].
The mean differences between the deviations of field volume and the ALS- or SfM-derived volume were
statistically significant using the 1st approach. The tendency of ALS and UAV-based DAP technologies
to underestimate h may be the main reason for the underestimation of v with 1st approach. It should be
also borne in mind that the ALS and UAV-based DAP, as a tree height estimation technique, tends to
underestimate tree height (e.g., DAP [39,90,91], UAV-based DAP [47,74,76,92] and ALS [73,77,93–95]
point cloud data). However, our volume modelling results suggest that this bias may not influence
in volume estimations using the 2nd approach, leaving open the question as to when and where
specific models should be developed for correcting the bias at tree level depending on particular
species or forest structure [77]. The results of this study are consistent with the approaches used
by other authors [57,73], in which the use of linear regression improved the accuracy of tree height
estimations from DAP-ALS data in terms of RMSE and bias, instead of using tree height extracted
directly from the CHM to calculate the RMSEs and bias [74], as also occurred with modelling volume
in the present study.

There are three possible reasons for the differences in performance for diameter models using
SfM- and ALS-variables relative to other species: (i) First, broadleaved trees trees in particular are more
challenging for both local maxima detection and delineation compared to conifer trees. (ii) Second,
crown delineation remains difficult because the crowns of neighboring trees often overlap due to
the high density of trees per unit area. (iii) Third, the low density of leaves in the crowns and the
small size of the crowns of mature trees prevent a considerable number of laser pulses from hitting
the crown (thus hampering crown delineation). As expected, the ALS cloud contributed to yielding
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slightly better results for diameter and volume estimation, but we did not observe differences in
terms of volume estimations. As with previous studies using DAP, ITC delineation is more affected
than ALS crown delineation as UAV-based DAP has several limitations: (i) ALS is insensitive to
shadows made by clouds [15], (ii) the images are strongly influenced by atmospheric conditions (e.g.,
wind swaying can cause problems building point clouds), solar illumination and view angles (sun,
surface and sensor geometry), occlusions caused by shadows are particular problematic for generation
of image-based point clouds in dense forest canopies [45,96–98]. In addition, seasonality (timing)
influences underestimation of tree heights but can improve detection accuracy [99]. The allometric
relationship between volume and ALS or SfM crown-derived variables could be also refined through
improvements in UAV imagery acquisition and processing.

Finally, a more comprehensive examination of the effects of varying the conditions of UAV-based
DAP acquisition and their implications for estimating forest inventory variables in different types of
forest should be carried out using these techniques [100–102]. Many facets have not been explored
with current state-of-the-art techniques. Several effects related to flight configuration (i.e., flight speed,
wind effect, illumination effect), post-processing pipelines (i.e., comparing different SfM algorithms),
field data collection (i.e., number of field plots) and environmental variables (i.e., effect of aspect or
slope when using different DEM approaches or the DEM-independent approach) must be analyzed.
Future research must also explore how the type of platform (fixed-wing versus multirotor), sensors or
the type of forest (e.g., temperate, deciduous, evergreen needleleaf, and tropical forest) influence the
ability of UAV-based DAP methods to accurately characterize biometric tree variables at the tree level.

5. Conclusions

The study findings showed that UAV-based DAP methods are useful and comparable to ALS
for forest inventory and sustainable forest management in planted forests, by providing accurate
estimations of forest structural attributes at the tree level. The results suggested that object-based
image analysis (OBIA) provides more accurate predictive models for individual volumes of Eucalyptus
trees based on ALS-derived and SfM-derived variables from the 3D point clouds than those obtained
using indirect approaches to estimate diameter.
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6 General conclusions 

 

The general objective of this thesis was to advance knowledge in the application of aerial 3D-

data in the forest characterization context. To meet this goal, it focused four cutting-edge research 

topics related to the forestry applications of 3D data collected by aerial platforms, namely, airborne 

laser scanning (ALS) and digital aerial photogrammetry (DAP). Each work approached different 

aspects of the 3D data workflow and expanded the understanding of its application.  

Four common algorithms were deeply investigated for filtering ALS ground points and had 

their parameters calibrated for irregular terrain. The results showed that performing an exhaustive 

filter calibration is not a mandatory process to derive accurate digital terrain models (DTM), whereas 

applications of algorithms default allowed deriving DTM with comparable quality. Likewise, the DTM 

derived through calibrated filters has a significant but low improvement on the forest application when 

compared to the DTM derived by default parameters.  

The application of the high-flexible Johnson’s SB probability density function (PDF) was 

adapted to the ALS data to estimate diameter distributions in two species, eucalyptus and pine. 

Fitting this PDF was demonstrated to be not straightforward and required many equations to predict 

the PDF inputs. Johnson’s SB distribution was therefore overly sensitive to errors of the predicted 

inputs, reasons why this function was just slightly better than Weibull distribution to estimate diameter 

distributions.  

The ALS data from five different forest sites worldwide were used to compare three common 

modeling approaches used to estimate growing stock volume, ordinary least squares (OLS), random 

forest (RF), and k-nearest neighbor (kNN). The predictions was more accurate using OLS and RF. 

kNN-based models had the lest accurate prediction and may result in overfitting. Contrary to the 

other approaches, RF models had the advantage of performing well when trained with all available 

predictors so the training does not need to be associated with prior variable selection. 

The point clouds derived from ALS and DAP presented comparable results when it comes to 

detect and estimate individual tree volumes in eucalyptus plantations, suggesting that both 

technologies can provide comparable results for growing stock estimation. This result benefits the 

DAP since it is an inexpensive approach to collect 3D forest data, especially when associated with 

unmanned aerial vehicles.  

 

6.1 Final considerations  

After fifteen years of studies, airborne laser scanning (ALS) is a mature technology for which 

there is comprehensive literature to support practitioners worldwide. Despite being younger, the 

digital aerial photogrammetry (DAP) can take advantage of the ALS approaches since they share 

similarities in the point cloud processing workflow. However, there are still factors limiting the 

implementation of these technologies by public and private organizations, which are associated with 

costs of the surveys (especially for the ALS) and, most importantly, the lack of practitioners trained 

to deal with this data. In this case, even with an increasing number of adepts, there are still great 

opportunities to develop more user-friendly devices and software to call attention of beginner forest 
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practitioners. Moreover, many doubts regarding the application of ALS and DAP wait to be answered, 

especially the ones regarding the cost of the inventories  

This thesis focused on the aerial surveyed 3D data, especially with ALS, given its relevance 

in the forestry scenario. However, it is important to highlight that terrestrial scanning is also an 

alternative approach to collect 3D forest data from below canopies (see Liang et al. 2016, 2018), but 

its application is less common so far. However, there have been evolutions in the ALS approaches 

with multispectral LiDAR devices (e.g., Kukkonen et al., 2019) and spaceborne laser scanning (e.g., 

Margolis et al., 2015). Despite these techniques are still incipient, they can put the LiDAR-based 

inventories in a new level of sophistication in the future.  

Finally, improving forest measurement technologies is imperative since it is crucial to diagnose 

forest stands and to make well-based decisions. Far from being an end-in-itself, the forest inventory 

has the main goal to provide quality information for forest management and planning, so each 

scientific contribution in this matter is a step toward forest sustainability. 
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