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Abstract 

Extended–spectrum–beta-lactamases, cephalosporinases and 

carbapenemase-producing Escherichia coli in the human-dog interface. 

 

Extended–spectrum–beta-lactamases (ESBLs), cephalosporinases (encoded by 

the ESBLs and Ampc genes, respectively) and carbapenemase–producing Escherichia 

coli have become a major public health concern to both human and animal health. 

Urinary tract infections (UTI) are one of the most frequent bacterial infections in both 

human and companion animals. Uropathogenic E. coli (UPEC), belonging to 

extraintestinal pathogenic E. coli (ExPEC), is the most common bacterium isolated from 

companion animals. Moreover, the close contact of companion animals with humans 

creates opportunities for interspecies transmission of resistant bacteria and genes. 

E. coli from companion animals with UTI were found to harbour important 

antimicrobial resistance mechanisms and to belong to high-risk human clonal lineages, 

namely third-generation cephalosporin (3GC)-resistant E. coli O25b:H4-B2-ST131-

H30/H30Rx, CC23 and ST648. In this work E. coli O25b:H4-ST131-H30/H30Rx was 

described for the first time in Europe in companion animals. Furthermore, the blaCMY-2 

producing E. coli ST648 is the most common high-risk clonal lineage causing UTI in 

companion animals from the Lisbon area. Companion animals also seem to be reservoirs 

of bacteria and clinically important resistance genes, such β-lactams genes (classe A 

and C) which supports their role as reservoirs.  

The detection of faecal high-risk clone OXA-181-producing- E. coli ST410 strains 

that were closely related to uropathogenic clinical human strains was also an important 

finding and to our best knowledge was the first description in Portugal and Europe.  

These studies highligth the importance of companion animals as reservoirs of 

pathogenic E. coli harbouring important antimicrobial resistant genes. The emergence 

and spread of multidrug-resistant (MDR) E. coli in the natural environment by companion 

animal faecal contamination is also a concern towards animal and human health. These 

results point to need for control measures to prevent the dissemination of MDR 

ESBLs/AmpC and carbapenemases – producing bacteria from companion animals. 

 

Keyword: Escherichia coli; high-risk clones; Enterobacteriaceae; genes; 

companion animals. 
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Resumo 

Escherichia coli produtora de Beta-lactamases de Espectro Alargado e 

Carbapenemases na interface Homem-cão. 

 

A Escherichia coli produtora de beta-lactamases de espectro alargado (ESBLs / 

Ampc) e de carbapenemase tornou-se uma grande preocupação de saúde pública em 

termos de saúde humana e animal. As infeções do trato urinário (ITU) são uma das 

infeções bacterianas mais frequentes nos humanos e nos animais de companhia. A E. 

coli uropatogénica pertencente à família da E. coli patogénica extra-intestinal é a 

bactéria mais comum isolada em animais de companhia. Além disso, o contato próximo 

dos animais de companhia com os seres humanos permite oportunidades para a 

transmissão de bactérias resistentes e genes entre as espécies.  

Descobriu-se que E. coli de animais de companhia com ITU possuiem 

importantes mecanismos de resistência antimicrobiana e pertencem a linhagens clonais 

humanas de alto risco, nomeadamente, E. coli resistente as cefalosporinas de terceira 

geração (3GC) O25b: H4-B2-ST131-H30 / H30Rx, CC23 e ST648. Neste trabalho, a E. 

coli O25b: H4-ST131-H30 / H30Rx foi descrita pela primeira vez na Europa em animais 

de companhia. Além disso, a E. coli ST648 produtora de blaCMY-2 é a linhagem clonal de 

alto risco mais comum que causa ITU em animais de companhia na área de Lisboa.  

Os animais de companhia podem ser também potenciais reservatórios de 

bactérias e de genes de resistência clinicamente importantes, como os genes das β-

lactamases (classes A e C). 

A detecção de estirpes fecais de linhagens clonais de alto risco E. coli produtora 

de OXA-181 ST410, relacionadas com estirpes clínicas uropatógenicas humanas foi 

também um achado importante e para nosso conhecimento foi a primeira descrição em 

Portugal e na Europa. 

Estes estudos destacam a importância dos animais de companhia como 

reservatórios de E. coli patogénica que contém importantes genes de resistência a 

antimicrobianos. O aparecimento e disseminação de E. coli multirresistente (MDR) no 

ambiente natural por contaminação fecal de animais de companhia é também uma 

preocupação para a saúde humana e animal. Estes resultados apontam para a 

necessidade de medidas de controlo para prevenir a disseminação de bactérias 

produtoras de ESBLs / AmpC e carbapenemases por animais de companhia. 

 

Palavra-chave: Escherichia coli; linhagens clonais de alto risco; 

Enterobacteriaceae; genes; animais de companhia.  
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QRDR Quinolone resistance determining region 

RMTs 16S ribosomal RNA methyltransferases  

RTI Respiratory tract infections 

SPATEs Serine protéase AT proteins of Enterobacterales 

SSTI Skin and soft tissue infection 

TLR4 Toll-like receptor 4  

UP1a Uroplakin 1A receptor  

UPEC Uropathogenic E. coli  

usp Uropathogenic specific protein 

UTI Urinary tract infection 

Vat Vacuolating autotransporter toxin  

VFs Virulence factors  
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VIM Verona integron-encoded metallo-β-lactamase 
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Chapter 1 

Introduction 
Chapter 1 - Introduction 

1.1 The antimicrobial use in veterinary medicine 

Antimicrobial resistance represents a major risk to human health. As a result, we 

are faced with potential therapeutic failure, reduction of treatment options and severe 

disease outcome forcing physicians to use last resource antimicrobials such as 

carbapenems. It is known that the use of antimicrobials will increase the risk of 

antimicrobial resistance and the risk of colonization by non-commensal bacteria and 

infection by foodborne pathogens (Barza and Travers 2002). There is a growing concern 

related to the use of antimicrobials in food-producing and companion animals as a 

potential source for antimicrobial resistance in humans (Greko et al. 2009; Catry et al. 

2010; van Duijkeren et al. 2014; Pomba et al. 2017). For some antimicrobial’s resistance 

prevalence in animals and humans is still increasing or remains unchanged at a 

substantial level (WHO-AGISAR 2009). A unique aspect related to antimicrobial 

resistance in companion animals is their close contact with humans providing 

opportunities for interspecies transmission of resistant bacteria. Use of antimicrobials 

that are critically important for human health in companion animals is an additional risk 

factor for emergence and transmission of antimicrobial resistance. Public health risks 

associated with transfer of antimicrobial resistance from companion animals are 

reviewed in The European Medicine Agency and its Antimicrobial Working Party 

reflection paper warning of existence of antimicrobial resistance microbiological hazards 

coming from companion animals to humans (EMA 2015). Of special concern is the 

situation in which the use of antimicrobials in companion animals contributes to 

resistance against last resort antimicrobials used in human medicine. Problems of 

resistance development and of infection control in companion animal hospitals are 

mimicking those in human hospitals (Morley 2004; ECDC et al. 2009). 

Since 2010, the European Medicine Agency started reporting data on 

antimicrobial sales for companion animals. Moreover, the European Surveillance of 

Veterinary Antimicrobial Consumption (ESVAC) project collects information how 

antimicrobials are used in companion animals across the European Union by the 

implementation of the interactive ESVAC database that complements the annual ESVAC 
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report (ESVAC 2020). This type of information is important to identify possible risk factors 

that could lead to the development and spread of antimicrobial resistance (ESVAC 

2020). 

In Portugal, β-lactams, such as penicillins, are the most prescribed antimicrobials 

followed by macrolides, lincosamides, streptogramins, quinolones, tetracyclines and 

sulfonamides-trimethoprim (ECDC 2018). In Veterinary medicine, beta-lactams are also 

the most commonly prescribed antimicrobials in companion animals, especially, 

amoxicillin and amoxicillin–clavulanate. Furthermore, lincosamides, quinolones, 

macrolides, tetracyclines (doxycycline), nitroimidazoles and sulfonamides-trimethoprim 

are also used in small animal practice (EMA 2018, EMA 2019). In Figure 1 is represented 

the proportion of the total sales of the different veterinary antimicrobial’s classes, in 

mg/PCU, in the European countries for 2018, including Portugal (EMA 2020). However, 

antimicrobial sales are different between countries (Figure 1). 

 

Figure 1: Veterinary antimicrobial class sales of antimicrobial tablets, in mg/PCU, in the 
31 European countries, for 2018 (adapted from EMA 2020). 

Legend: a) *Small amounts of aminoglycosides, amphenicols, nitrofuran derivatives, pleuromutilins, 
polymyxins and other antimicrobials were sold in some countries; b) distribuition of sales (by weight of active 
ingredient) of tablets containing penicillins by subclasses, by country, in 2018. 

 

However, according to sales data (mg / PCU) from 25 countries reported to 

ESVAC for every year from 2011 to 2018 there was an reduction of 34.6% in sales (mg 

/ PCU) (Figure 2) and a decrease in sales (in mg / PCU) of more than 5% for 18 of the 

25 countries. During this same period, sales (mg / PCU) of 3rd and 4th generation 

cephalosporins decreased by 24.4%, while sales of fluoroquinolones decreased by 4.2% 

and sales of other quinolones by 74.4% (Figure 2) (EMA 2020). 
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Figure 2: Changes in aggregated overall sales in mg/PCU, as well as sales of 
fluoroquinolones, other quinolones, 3rd and 4th-generation cephalosporins and 

polymyxins, for 25 EU/EEA countries*, from 2011 to 2018 (adapted from EMA 2020). 

Legend: *Austria, Belgium, Bulgaria, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, 
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Portugal, Slovakia, 
Slovenia, Spain, Sweden and the United Kingdom. 

 

Urinary tract infections (UTI) and skin and soft tissue infections (SSTI) are the 

two most common infections in companion animals (Couto et al. 2016; Marques et al. 

2018), and they account for substantial antimicrobial use. They are also increasingly 

associated with resistant pathogens, including species and strains that cause human 

diseases. The incidence of disease and similarity of human and animal pathogens is 

compounded by similar treatment trends in humans and companion animals. Beta-

lactams (namely amoxicillin/clavulanic acid and third generation cephalosporins) and 

fluoroquinolones (namely second-generation fluoroquinolones) are the most commonly 

used antimicrobial classes in companion animals with UTI or SSTI (Hillier et al. 2014; 

Weese et al. 2019). Amoxicillin/clavulanic is classified by WHO as a critically important 

antimicrobial (CIA) and third generation cephalosporins and fluoroquinolones as highest 

priority critically important antimicrobials (HP-CIAs), respectively in human medicine 

(WHO 2019). This antimicrobial use, both non-prudent and indiscriminate, has led to the 

increasing trends of antimicrobial resistance and multidrug-resistant bacteria observed 

in companion animals with UTI and SSTI (Couto et al. 2016; Marques et al. 2018), as 

well as lead to increasing colonization of animals with multidrug resistant bacteria after 

successful clinical treatment (Beck et al. 2012). 
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It should be noted that the most sold antimicrobials in companion animals 

worldwide overlap those routinely used in human medicine and are considered as 

critically important antimicrobials to humans by the World Health Organization (WHO) 

(WHO 2017). Furthermore, in contrast to food-producing animals, the prescription of 

antimicrobials only approved for human use may occur under the cascade principles in 

companion animals (Pomba et al. 2017). This represents an additional antimicrobial 

resistance selective pressure towards last resorts antimicrobials and warrants the need 

for a One Health approach to fight the dissemination of antimicrobial resistance. 

 

1.1.1 β-lactams resistance 

β-lactams are bactericidal agents that prevent bacterial cell-wall synthesis by 

binding to an active serine site from penicillin-binding proteins (PBPs), which represents 

a class of enzymes with essencial roles in the synthesis of bacterial cell wall that leads 

to cellular death (Smet 2010; Bush and Bradford 2016; Eiamphungporn et al. 2018). 

However, β-lactams resistance can occur by multiple molecular mechanisms such as: 1) 

production of efflux pumps to expel β-lactams, 2) modification or reduced production of 

outer membrane porins to reduce the β-lactams, 3) alterations of PBPs, 4) production of 

β-lactamase for inactivating β-lactams (Jacoby et al. 1988; Jarlier et al. 1988; 

Eiamphungporn et al. 2018). Although, the major mechanism of resistance against β-

lactams in Gram-negative bacteria is production of β-lactamases, which irreversibly open 

the β-lactam ring of antimicrobials (Eiamphungporn et al. 2018). One of the strategies to 

overcome β-lactamase-mediated resistance is the development of β-lactamase 

inhibitors (BLIs). These small molecule inhibitors were discovered and have been applied 

in combination with β-lactams for efficient therapy (Eiamphungporn et al. 2018). 

Clavulanic acid acts synergistically with penicillins and cephalosporins allowing the β -

lactam to kill bacteria producing clavulanic-acid sensitive β –lactamases. Other β -

lactamase inhibitors include sulbactam and tazobactam (Fernandes et al. 2013; Bush 

and Bradford 2016). In veterinary medicine the most used combination is 

amoxicillin/clavulanate. The Figure 3 shows the discovery of β-lactams and BLIs and the 

development of resistance over the years. 

The β-lactamases enzymes are produced in the periplasmic space by Gram-

negative bacteria and the genes for β-lactamases enzymes can be present on the 

bacterial chromosome and on mobile genetic elements (plasmids and transposons) 

(Eiamphungporn et al. 2018). The β-lactamase enzymes produced by bacteria are 

diverse and over the years some classification systems have been proposed: the Ambler 

classification, which is based on amino acid sequences similarities - protein homology  
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Figure 3: Discovery of β-lactams and BLIs and the development of resistance over the years (adapted from Eiamphungporn et al. 2018).
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and the Bush classification, that is based on substrate and inhibition profile – functionality 

(Ambler 1980; Bush et al. 1995). In 1995, Bush et al. (1995) had proposed the junction 

of the Ambler and Bush classification and in 2010; this classification was update (Bush 

and Jacoby 2010). The functional classification is based on key β -lactam substrates and 

inhibitors which define three main β-lactamase classes and respective subclasses 

according to their hydrolytic and inhibitor profile (Bush and Jacoby 2010) The β-

lactamases enzymes, accordingly with the Amber classification can be divided into four 

classes (classe A to classe D) (Table 1). 

Since the discovery of penicillin (β-lactam) by Alexander Fleming in the late 

1920s, several other β-lactams (cephalosporins, carbapenems and monobactams) have 

been developed for anti-infective therapy (Bush and Bradford 2016). β-lactams are 

among the most used antimicrobials in human and veterinary medicine, constituting 60% 

of worldwide antimicrobial usage, and are among the most effective antimicrobials for 

treatment of infection diseases (ECDC 2016; EMA 2017; Eiamphungporn et al. 2018) 

and are characterised by the presence of a β-lactam ring (Smet 2010). 

In the 1970s, ampicillin and amoxicillin with improved activity against 

Enterobacterales Order were introduced (Bush and Bradford 2016). This group also 

includes anti-pseudomonal penicilins (carbenicillin, piperacillin, and ticarcillin), 

mecillinam and temocillin (Bush and Bradford 2016). Amoxicillin is excreted in urine 

predominantly in the active form (Weese et al. 2019), so aminopenicillin is the 

recommended for companion animal UTI treatment. The first cephalosporins were 

discovered in the 1950s (Asbel and Levison 2000; Fernandes et al. 2013). In veterinary 

medicine, the approved cephalosporins belong to the first to the fourth generations (Smet 

et al. 2010). 

The Bush classification can be divided in three groups: group 1- 

cephalosporinases, group 2- serine β-lactamases and group 3- MBLs. In Gram-negative 

bacteria the emergence of ESBLs has been a major concern worldwide. ESBLs are 

characterized for the capacity to hydrolize third and fourth generation cephalosporins 

and monobactams but not cephamycins and carbapenems (Jacoby et al. 1988; Jarlier 

et al. 1988; Philippon et al. 1989; Bradford 2001). 

The class A β-lactamases enzymes have broad substrate hydrolysis profiles, 

including penicillins, cephalosporins and some carbapenems. Class A β-lactamases 

enzymes included most of the ESBLs (functional group 2be group), including variants of 

TEM-1 (Temoniera), SHV-1 (sulfhydryl variable), following by CTX-M (cefotaximase) 

enzymes and KPC enzymes (Klebsiella pneumonia carbapenemase), with CTX-M being 

the most common (Philippon et al. 1989; Bradford 2001; Bonnet 2004; Jacoby 2009;  

 



 

 7 

Table 1: β-lactamase classification (adapted from Bush and Jacoby 2010). 

Functional 

group 

Molecular 

class 

(subclass) 

Distinctive substrate(s) Inhibition Defining characteristic(s) Representative enzymes 

CA/TZB EDTA 

1 C Cephalosporins No No Greater hydrolysis of cephalosporins 

than benzylpenicillin; hydrolyzes 

cephamycins 

E. coli AmpC, P99, ACT-1, 

CMY-2, FOX-1, MIR-1  

1e C Cephalosporins No No Increased hydrolysis of ceftazidime and 

often other oxyimino-lactams 

GC1, CMY-37 

2a A Penicillins Yes No Greater hydrolysis of benzylpenicillin 

than cephalosporins  

PC1  

2b A Penicillins, early 

cephalosporins 

Yes No Similar hydrolysis of benzylpenicillin and 

cephalosporins  

TEM-1, TEM-2, SHV-1  

2be A Extended-spectrum 

cephalosporins, 

monobactams 

Yes No Increased hydrolysis of oxyimino-lactams 

(cefotaxime, ceftazidime, ceftriaxone, 

cefepime, aztreonam)  

TEM-3, SHV-2, CTX-M-

15, 

PER-1, VEB-1 

2br A Penicillins No No Resistance to clavulanic acid, sulbactam, 

and tazobactam 

TEM-30, SHV-10 

2ber A Extended-spectrum 

cephalosporins, 

monobactams 

No No Increased hydrolysis of oxyimino-lactams 

combined with resistance to clavulanic 

acid, sulbactam, and tazobactam 

TEM-50 

2c A Carbenicillin Yes No Increased hydrolysis of carbenicillin PSE-1, CARB-3 

2ce A Carbenicillin, cefepime Yes No Increased hydrolysis of carbenicillin, 

cefepime, and cefpirome 

RTG-4 
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2d D Cloxacillin Variable No Increased hydrolysis of cloxacillin or 

oxacillin 

OXA-1, OXA-10 

2de D Extended-spectrum 

cephalosporins 

Variable No Hydrolyzes cloxacillin or oxacillin and 

oxyimino-lactams 

OXA-11, OXA-15 

2df D Carbapenems Variable No Hydrolyzes cloxacillin or oxacillin and 

carbapenems 

OXA-23, OXA-48 

2e A Extended-spectrum 

cephalosporins 

Yes No Hydrolyzes cephalosporins. Inhibited by 

clavulanic acid but not aztreonam 

CepA 

2f A Carbapenems 

 

Variable No Increased hydrolysis of carbapenems, 

oxyimino--lactams, cephamycins 

KPC-2, IMI-1, SME-1 

3a B (B1) Carbapenems 

 

No Yes Broad-spectrum hydrolysis including 

carbapenems but not monobactams 

IMP-1, VIM-1, CcrA, IND-1 

 B (B3)     L1, CAU-1, GOB-1, FEZ-1 

3b B (B2) Carbapenems No Yes Preferential hydrolysis of carbapenems CphA, Sfh-1 

Legend: CA, clavulanic acid; TZB, tazobactam. 
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Livermore 2009; Nordmann et al. 2011a; Zhao and Hu 2013). However, has the 

exception of OXA-type, enzymes (class D or oxacillinase). The first ESBLs were 

described in Europe in the 1980s, and since then ESBLs have been reported worldwide 

(Paterson and Bonomo 2005; Fernandes et al. 2013). CTX-M β-lactamases have high 

hydrolysis capacity against cefotaxime and are capable of higher cephalothin hydrolysis 

in comparison to penicillins, cefotaxime and ceftazidime (Tzouvelekis et al. 2000). CTX-

M enzymes are present in various types of bacteria from all continents and have been 

recognized as the most frequent ESBL in Enterobacterales causing healthcare and 

community associated infections and is now endemic worldwide (Mathers et al. 2015; 

Bajaj et al. 2016). The CTX-M enzymes include at least six lineages (CTX-M-1-group, 

CTX-M-2-group, CTX-M-8-group, CTX-M-9-group, CTX-M-25-group, and KLUC-group) 

(Canton and Coque 2006; Mathers et al. 2015a; Bajaj et al. 2016). CTX-M phenotype 

has been reported in E. coli isolates from humans, companion animals, wildlife, food 

products and livestock, indicating the importance of the reservoirs harbouring and 

disseminating these enzymes (Hilty et al. 2012; Nicolas-Chanoine et al. 2014; Mathers 

et al. 2015a; Bajaj et al. 2016). There is host and geographic variation of the CTX-M 

enzymes distribution, some enzymes, such as CTX-M-15, are worldwide disseminated 

(Cantón and Coque 2006; Nicolas-Chanoine et al. 2008; Smet et al. 2010; Ewers et al. 

2012; Belas et al. 2014; Bevan et al. 2017; Marques et al. 2018). CTX-M-15 enzyme 

appear to be more common in humans, but it is also frequently detected in companion 

animals (Coque, et al. 2008; Ewers et al. 2012). CTX-M-1 enzyme is the most frequently 

detected in bacteria from companion animals from Europe (Coque et al. 2008; Ewers et 

al. 2012; Belas et al. 2014; Marques et al. 2018). CTX-M-producing Enterobacterales, 

especially E. coli isolates are often co-resistant to other classes of antimicrobials, like 

fluoroquinolones, trimethoprim/sulfamethoxazole, and aminoglycosides leading to high 

rates of co-selection (Pitout and Laupland 2008; Bajaj et al. 2016). The CTX-M 

dissemination over the world has contributed to the rapid global increase in the rate of 

cephalosporin resistance among Enterobacterales with subsequent increased usage of 

the carbapenems for the medication of infections due to these MDR bacteria (Mathers 

et al. 2015a). 

Additionally, to ESBLs, the Class C enzymes or AmpC type β-lactamases or 

Cephalosporinases (groups 1 and 1e) are commonly isolated from extended-spectrum 

cephalosporin resistant Gram-negative bacteria and are important causes of 

cephalosporin and cephamycin resistance. AmpC β-lactamases hydrolyze diverse β-

lactam antibiotics, including cephamycins (cefoxitin), oxyimino cephalosporins 

(ceftazidime, cefotaxime, and ceftriaxone) and monobactams (aztreonam). These 

enzymes are typically encoded on the chromosome and in plasmids (Bush and Jacoby 
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2010). In most Enterobacterales family, AmpC is inducible, unlike plasmid encoded 

AmpC (pAmpC) where the enzymes are mostly expressed constitutively (Jacoby 2009; 

Bush and Jacoby 2010). These include several enzymes families such as MOX, FOC, 

DHA, ACC, MIR, CMY, which are more hydrolytic than ESBL. These enzymes are 

usually resistant to clavulanic acid and active on cephamicyns (Bush and Jacoby 2010; 

Jacoby 2012). The most common AmpC cephalosporinases among commensal and 

pathogenic bacteria of humans and companion animals are CMY-2 and DHA-1 (Smet et 

al. 2010; Ewers et al. 2012; Belas et al. 2014; Marques et al. 2018). These enzymes 

have increase over the last ten years, however, are less frequently reported compared 

to ESBLs enzymes (Mairi et al. 2018).  AmpC type β-lactamases are normally inactivated 

by boronic acid and avibactam (Drawz and Bonomo 2010). 

During the XXth Century, this increase in Extended-Spectrum β-lactamases 

(ESBLs)-producing bacteria capable of hydrolysing almost all β-lactams antibiotics, 

namely the 3rd and 4th generation cephalosporins, except for the carbapenems. The 

consequence of this emerging phenomenon has been an increased consumption of 

carbapenems in human hospitals and with-it new resistance mechanisms. 

Carbapenems (imipenem and meropenem), are CIA with resistance to most -

lactamases and have activity against Gram-positive and Gram-negative bacteria (Papp-

Wallaceet al. 2011; Fernandes et al. 2013; Bush and Bradford 2016, Weese 2019). Since 

the introduction of imipenem in the 1980s, there have been various isolations of 

carbapenemase-producing bacteria (Nordmann et al. 2012). Carbapenemases are 

enzymes with the ability to hydrolyze carbapenems. They belong to three different 

molecular classes: The Ambler class A and class D; and Ambler class B or metallo-β-

lactamases (MBL) (Queenan and Bush 2007). KPC β-lactamases can hydrolyze 

penicillins, cephalosporins, monobactams and carbapenems. Moreover, KPC-2 and 

KPC-3 are the most widespread variants of KPC β-lactamases. Class A enzymes can 

be inhibited by β-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam), 

although KPC enzymes are not efficiently inhibited by these BLIs (Queenan et al. 2007; 

Nordmann and Poirel 2014). The first isolation of a KPC (KPC-3) in Portugal was in 2009 

(Jorge da Silva and Duarte 2012). The class D oxacillin-hydrolyzing carbapenemases 

(OXA) are plasmid-mediated and have been identified mostly in multidrug-resistant 

isolates of Acinetobacter baumannii (Nordmann et al. 2012). 

) The Class B enzymes or metallo-β-lactamases (functional group 3a and 3b) 

have a broad substrate spectrum and can catalyze the hydrolysis of all β-lactams except 

for monobactams. Furthermore, they are only inactivated by metal chelators 

(ethylenediaminetetraacetic acid - EDTA) (Drawz 2010; Palzkill 2013). There are several 

types of Class B β-lactamases, including VIM (Verona integron-encoded metallo-β-
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lactamase), IMP (imipenemase) and NDM-1 (New Delhi metallo-β-lactamase). The 

spread of the IMP- and VIM-type enzymes in Gram-negative pathogens was reported in 

the 1990s (Walsh et al. 2005). 

Carbapanemen - resistant Enterobacterales are classified as an urgent clinical 

threat by the Centers for Disease Control and Prevention (CDC 2013) and as priority; 

pathogens for which new antimicrobials are urgently need by the World Health 

Organization (WHO 2019). 

The use of carbapenems is not approved for use in food-producing animals in 

veterinary medicine because they play a vital role in the treatment of human clinical 

infections caused by multidrug resistant (MDR) gram negative bacteria, particularly those 

caused by ESBL-producing Enterobacterales or Pseudomonas aeruginosa. Although, 

their use can be exceptionally possible in veterinary medicine in companion animals in 

urinary or other bacterial infections by the agreement of a veterinary specialist/ 

pharmacologist (Weese et al. 2019) and under the compassion use still present in the 

European legislation (Directive 2001/82/EC; EMA 2018). 

During last years, the prevalence of resistance to carbapenems has increase 

worldwide and has become a major public health problem. Moreover, ESBL and AmpC 

β - lactamases may also confer resistance to carbapenem when associated with other 

resistance mechanisms such porin deficiency or overexpression of efflux pumps 

(Bradford et al. 1997; Wozniak et al. 2012). In 1988, the first plasmidic carbapenemase, 

IMI-1, was reported in Japanese Pseudomonas aeruginosa isolate (Watanabe et al. 

1991). However, the first carbapenemase producer in Enterobacterales (NmcA) was 

identified in 1993 in a clinical isolate of Enterobacter cloacae (Nordmann et al. 1993). 

This class A carbapenemase was chromosomally encoded but has rarely been reported. 

Subsequently, numerous carbapenemase-producing Enterobacterales have been 

reported in cases of nosocomial, community-acquired infections, livestock, companion 

animals, wildlife and environment (Köck et al. 2018). The number of reports of 

companion animals with infections (UTIs, and Skin and soft-tissue infections (SSTIs)) 

and colonization by carbapenemase-producing Gram-negative bacteria are increasing 

over the world. NDM-1 and OXA-48 producing E. coli have been detected in pathogenic 

bacteria causing clinical infections in dogs and cats in the USA and in dogs in Europe, 

respectively (Shaheen et al. 2013; Stolle et al. 2013) (Table 2). Carbapenem-resistant 

Enterobacterales in companion animals normally harbouring blaOXA-48, blaNDM-1 and 

blaNDM-5 and the most common genes were found in E. coli and Klebsiella pneumonia 

(Shaheen et al. 2013; Stolle et al. 2013; Schmidel et al. 2014; Liu et al. 2016; Yousfi et 

al. 2016; Melo et al. 2017; Wang et al. 2017; Grönthal et al. 2018; Hong et al. 2018; Li et 
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Table 2: Occurrence carbapenem-resistant Gram-negative bacteria in companion animals. 

Year(s) of 

sample 

collection 

Country Animal 

species 

Isolation source Carbapenem-resistant species/ 

carbapenemase detected 

Reference 

2018 Switzerland Dogs and cats Rectal swabs from hospitalized 

animals 

E. coli (blaOXA-181) Nigg et al. 2019 

2017 Thailand Dog UTI Acinetobacter baumannii (blaOXA-23) Chanchaithong et al. 

2018 

2017 Korea Dogs Rectal swabs from hospitalized 

animals 

E. coli (blaNDM-5) Hong et al. 2018 

2016 Sebia Dog UTI Acinetobacter baumannii (blaOXA-72) Misic et al. 2018 

2016 Ohio Dogs UTI and infected bite wound by 

another dog 

E. cloacae (blaKPC-4) Daniels et al. 2018 

2016 Brazil Dog SSTIs Pseudomonas aeruginosa (blaVIM-2) Fernandes et al. 

2018a 

2015-2017 Algeria Pets Fresh faecal samples from non-

hospitalized animals 

Enterobacterales (blaOXA-48) Mairi et al. 2019 

2015-2016 UK Dog Faecal sample E. coli (blaNDM-5) Reynolds et al. 2019 

2015-2016 Algeria Dogs and cats Rectal swabs from healthy animals E. coli (blaOXA-48), K. pneumonia (blaOXA-48), 

E. cloacae (blaOXA-48) 

Yousfi et al. 2018 

2015 Finland Dogs SSTIs E. coli (blaNDM-5) Grönthal et al. 2018 

2015 France Dogs and cats Healthy dogs and cats E. coli (blaOXA-48) Melo et al.2017 
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2015 Germany Dogs and cats Mouth and rectal swabs from non-

hospitalized animals 

Acinetobacter baumannii (blaOXA-23) Hérivaux et al., 2016 

2015 China Dogs Rectal swabs from non-hospitalized 

animals 

E. coli (blaNDM-5) Li et al. 2018 

2014-2015 Italy Dogs and cats Rectal swabs from hospitalized 

animals 

Acinetobacter baumannii (blaOXA-23), 

Acinetobacter radioresistens (blaNDM-1) 

Gentilini et al. 2018 

2014-2015 China Dogs from 

farms 

Rectal swabs E. coli (blaNDM-1, blaNDM-5, blaNDM-9) Wang et al. 2017 

2014-2015 Algeria Dogs and cats Rectal swab from a cat with RTI and 

from heathy animals 

E. coli (blaOXA-48, blaNDM-5) Yousfi et al. 2016 

2014-2015 Germany Dogs and cats SSTIs and RTIs Acinetobacter pittii (blaOXA-58) Klotz et al. 2017 

2014-2015 Spain Dog Rectal swab from a healthy animal 

from shelter. 

K. pneumonia (blaVIM-1) González-Torralba et 

al. 2016 

NA Australia Cat Rectal swab from a cat wih 

persistent haemorrhagic diarhoea - 

following treatment of an RTI 

Salmonella entérica Typhimurium (blaIMP-4) Abraham et al. 2016 

2013 China Dog NA E. coli (blaNDM-1) Cui et al. 2018 

2012-2016 Germany Dogs and cats UTI, SSTIs and others (e.g. blood, 

RTIs; CVCs) 

E. coli (blaOXA-48), K. pneumonia (blaOXA-48) Pulss et al. 2018 

2012 Germany Dogs UTI, SSTI, RTI, faeces, CVC E. coli (blaOXA-48), K. pneumonia (blaOXA-48) Stolle et al. 2013 

2009-2013 USA Dogs and cats Clinical isolates E. coli (blaOXA-48) Liu et al. 2016 

2009-2011 Germany Dogs and cats Clinical Isolates K. pneumonia (blaOXA-48) Schmiedel et al., 

2014 

2009 Portugal Cat UTI Acinetobacter baumannii (blaOXA-23) Pomba et al. 2014a 
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2008-2009 USA Dogs and cats UTI, RTI, SSTIs E. coli (blaNDM-1) Shaheen et al. 2013 

2000-2013 Germany Dogs and cats UTI, SSTIs and others (e.g. blood) Acinetobacter baumannii (blaOXA-23 and 

blaOXA-66) 

Ewers et al. 2017 

2000 Germany Cat UTI Acinetobacter baumannii (blaOXA-23) Ewers et al. 2016 

Legend: NA- not available; CVC- central venous catheter; RTI- Respiratory tract infection; UTI-Urinary tract infection; SSTIs - Skin and soft-tissue infections. 
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al. 2018; Pulss et al. 2018; Wi et al. 2018; Yousfi et al. 2018; Mairi et al. 2019; Reynolds et al. 

2019). 

 

1.1.2 Fluoroquinolone resistance 

After β-lactams, quinolones are among the most use antimicrobial in human medicine and 

in veterinary medicine, especially in companion animals (ECDC 2016; EMA 2017b). The first 

quinolone described was nalidixic acid in the 1960s for UTI treatment (Lesher et al. 1962). 

Nalidixic acid showed a narrow spectrum of activity, being active mainly against 

Enterobacteriales. It was the initial antimicrobial from which other quinolones generations were 

developed (Vila et al. 2016). Since then, several other quinolones were discovered including for 

veterinary use. Quinolones can be classified into first to fourth generation based on their 

spectrum of activity (Cotard et al. 1995; Weese et al. 2011). All quinolones are classified into 

different groups based on their chemical structure or their biological activities. All have a 

carboxylic substituent at position 3, which together with the carbonyl group at position 4, appears 

to be essential for the activity of the quinolones. 

The second generation represented by ciprofloxacin and norfloxacin presented two main 

changes with respect to nalidixic acid, the first was a positively charged group at position 7 

(piperazine group in ciprofloxacin) and a fluoride at position 6, therefore, since then the new 

quinolones have been called fluoroquinolones. This generation of quinolones was active against 

all aerobe gram-negative bacteria (Vila et al. 2016). The first fluoroquinolone approved for use in 

animals was enrofloxacin, which was approved for use in the United States in companion animals 

in 1988. Since the approval of enrofloxacin, other fluoroquinolones have been approved for use 

in companion and food animals (Giguère and Dowling 2013). 

Quinolones inhibit the activity of the DNA gyrase and topoisomerase IV bacterial enzymes 

that are essential to regulate the topology of the bacterial chromosome and adequate DNA 

replication (Hooper and Jacoby 2015; Vila et al. 2016). The main function of the DNA gyrase is 

to catalyse negative supercoiling of the DNA, thereby playing an important role in DNA replication 

and transcription (Vila et al. 2016). Both enzymes are heterotetrameric proteins composed of two 

subunits consisting in two A subunits and two B subunits.  The A subunit of the DNA gyrase is 

encoded by the gyrA gene and the B subunit by the gyrB gene. Topoisomerase IV also has a 

structure constituted by two A subunits and two B subunits. The A subunit is encoded in the parC 

gene and the B subunit in the parE gene (Hooper and Jacoby 2015; Vila et al. 2016). 

Resistance to quinolones has steadily risen over the last decades. In Gram-negative 

bacteria, DNA gyrase is usually the main target (Vila et al. 2016). 

Nowadays, two important mechanisms of resistance to quinolones can be found in E. coli: 

associated with mutations in the chromosome and related to plasmids (Table 3). However, in E. 

coli mutations in the gyrA and parC genes are one of the most important mechanisms of 
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resistance to quinolones. Mutations associated with resistance have been mapped in a region 

called the quinolone resistance determining region (QRDR) (Vila et al. 2016). Another 

mechanism of resistance to quinolones linked to mutations in the chromosome is the reduction 

in the intracellular accumulation of quinolones, which are related to a decrease in the permeability 

of the outer membrane or to an increased efflux of the antimicrobial out of the cell. The most 

important efflux pump is that encoded in the acrAB operon, in which the acrB gene encodes an 

inner membrane protein (AcrB), which is an efflux transporter across the inner membrane, and 

the acrA gene, which encodes a membrane fusion protein (AcrA). The third protein in this tripartite 

efflux pump is TolC which is an outer membrane protein. It has been shown that the 

overexpression of this efflux pump leads to a multidrug resistant phenotype in different bacteria, 

including E. coli (Vila et al. 2016). A chromosomal locus, called mar (multiple antibiotic 

resistance), encodes a transcriptional factor which increases micF expression, a regulatory 

antisense RNA, which causes a post-transcriptional decrease of OmpF RNA and reduces the 

amount of OmpF. MarA can regulate the expression of AcrAB-TolC which is increased when 

MarA is overexpressed (Vila et al. 2016). This relationship between the decreased expression of 

OmpF and the increased expression of ArcAB-TolC generates a multidrug-resistant phenotype 

in E. coli with increased resistance to quinolones, chloramphenicol and tetracyclines (Vila et al. 

2016). 

 

Table 3: Mechanisms of quinolone resistance in Escherichia coli (adapted from Vila et al. 2016). 

1. Chromosomal-mediated 

Changes in protein 

targets 

• Mutations in the gryA gene (amino acid codon Ser-83 

and Asp-87) 

• Mutations in the parC gene (amino acid codon Ser-80 

and Glu-84 

Reduction in the 

accumulation of 

quinolone 

• Decrease in permeability – Decreased expression of 

OmpF  

• Increase in active efflux systems: AcrAB, AcrEF, MdfA, 

YdhE 

2. Plasmid-mediated 

DNA gyrase and topoisomerase IV protection from quinolone inhibition - Qnr 

Aminoglycoside-acetyltransferase – AAC (6′) -Ib-cr  

Efflux pumps: QepA and OqxAB 
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Until now, three plasmid-mediated mechanisms of resistance to quinolones have been 

described (Table 3): 

1) Plasmid-encoded Qnr proteins (small pentapeptide-repeat proteins) bind to the 

topoisomerase targets, protecting them from quinolones. The qnr gene family, which encode a 

peptide able to protect the DNA gyrase or DNA-topoisomerase IV complexes to be bound by the 

quinolones (Tran and Jacoby 2002; Vila et al. 2016). Several plasmid-encoded qnr alleles (QnrA, 

QnrB, QnrC, QnrD, QnrS and QnrVC) and multiple variants have been described in Gram-

negative bacteria (Vila et al. 2016). 

2) The expression of an aminoglycoside-modifying enzyme (AAC (6′) Ib-cr) which has the 

capacity to acetylate an amino group located in the piperazine ring of the quinolone structure, 

such as ciprofloxacin (Robicsek et al. 2006; Vila et al. 2016).  

This resistance mechanism is worldwide disseminated in two gram negative bacteria, E. 

coli and K. pneumoniae and it seems to be the most common plasmid mediated quinolone 

resistance (PMQR) determinant (Park et al. 2006; Robicsek et al. 2006; Pitout et al. 2008; Vieira 

et al. 2020). These PMQRs determinants may be encoded in plasmids harbouring ESBL and 

other resistance genes, so, the use of quinolones may contribute to the co-selection of ESBLs 

and other resistance determinants and vice versa (Jacoby et al. 2014). PMQRs are found over 

the world in Enterobacterales isolated from humans and companion animals (Jacoby et al.  

2014). 

3) Efflux pumps (OqxAB and QepA). These pumps affect small increases in the Minimal 

Inhibitory concentrations (MICs) of quinolones but are enough to occur the selection of mutants 

with higher levels of resistance, especially in the gyrA gene (Vila et al. 2016). These increase the 

resistance to fluoroquinolones such as: norfloxacin, ciprofloxacin, and enrofloxacin, and also to 

other antimicrobial classes (Vila et al 2016). 

Fluoroquinolones are highest priority critical important antimicrobials (HP-CIA) for 

humans (WHO 2019) and have been shown to increase the risk for selection of resistant bacteria. 

The use of fluoroquinolones in companion animals should be reserved to resistant infections but 

can be first line choice for pyelonephritis and for infections that involve the prostate (Weese et 

al. 2019). 

 

1.1.3 Aminoglycosides resistance 

Aminoglycosides were identified in the 1940s and are natural or semisynthetic 

antimicrobials derived from actinomycetes. The first aminoglycoside streptomycin was 

discovered from Streptomyces griseus (Doi et al. 2016; Krause et al. 2016). They were among 

the first antibiotics to be introduced for routine clinical use and several examples have been 

approved for use in humans, such as neomycin (1949), kanamycin (1957), gentamicin (1963), 

netilmicin (1967), tobramycin (1967) and amikacin (1972) (Krause et al. 2016). They found 
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widespread use as first-line agents in the early days of antimicrobial therapy, but were replaced 

in the 1980s with cephalosporins, carbapenems, and fluoroquinolones (Doi et al. 2016; Krause 

et al. 2016). However, increasing resistance to these antimicrobials, combined with the 

knowledge of the basis of aminoglycoside resistance, has led to renewed interest in the legacy 

and development of aminoglycosides (Krause et al. 2016). Moreover, they are particularly 

clinically important, especially gentamicin, tobramycin and amikacin, for the treatment of MDR- 

Enterobacterales infection and in critical care of humans (Krause et al. 2016). Furthermore, 

aminoglycosides are CIAs of high priority to humans (WHO 2019). Regarding companion animal, 

amikacin is not recommended for routine use, but can be used for the treatment of MDR bacteria 

yet must be avoid in animals with reduced kidney function, because this antimicrobial is a 

potentially nephrotoxic (Weese et al. 2019).  

Aminoglycosides are potent, broad-spectrum antimicrobials that act through inhibition of 

protein synthesis by binding, with high affinity, to the aminoacyl-tRNA recognition site (A-site) on 

the 16S ribosomal RNA (16S rRNA) of the 30S ribosomal subunit ribosome, leading to inhibition 

of polypeptide synthesis and subsequent cell death (Doi et al. 2016; Krause et al. 2016). Although 

aminoglycoside class members, have a different specificity for different regions on the A-site. 

The mechanism of binding and the subsequent downstream effects varies by chemical structure. 

Therefore, some aminoglycosides promote mistranslation by inducing codon misreading on 

delivery of the aminoacyl transfer RNA, which can lead to inhibition of protein synthesis and 

aminoglycosides antimicrobials access to the cytoplasm, which leads to cell membrane damage 

and death (Krause et al. 2016). Other aminoglycosides can also affect protein synthesis by 

directly inhibiting initiation or blocking elongation (Krause et al. 2016). 

A typical aminoglycoside possesses an amino-containing or non-amino-containing sugar 

linked to six-membered rings with amino group substituents, are characterized by a core structure 

of amino sugars connected via glycosidic linkages to a dibasic aminocyclitol, which is most 

commonly 2-deoxystreptamine (Doi et al. 2016; Krause et al. 2016).  Aminoglycosides are 

broadly classified into four subclasses based on the identity of the aminocyclitol porcion: no 

deoxystreptamine ring (streptomycin); a mono-substituted deoxystreptamine ring (apramycin); 

4,5-di-substituted deoxystreptamine ring (neomycin, ribostamycin) and 4,6-di-substituted 

deoxystreptamine ring (gentamicin, amikacin and tobramycin) (Krause et al. 2016). The variety 

of amino and hydroxyl substitutions have a direct influence on the mechanisms of action and 

susceptibility to various aminoglycoside-modifying enzymes (AMEs) associated with each of the 

aminoglycosides (Krause et al. 2016). 

Aminoglycosides resistance can occur by the following mechanisms including enzymatic 

modification and inactivation of the aminoglycosides mediated by aminoglycoside 

acetyltransferases, nucleotidyltransferases, and phosphotransferases; target site modification 

via an enzyme (16S rRNA methylases) or chromosomal mutation; increased efflux; decreased 
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permeability; and by modifications of the 30S ribosomal subunit that interferes with binding of the 

aminoglycosides (Doi et al. 2016; Krause et al. 2016). However, the most common 

aminoglycoside resistance mechanism is the production of Aminoglycoside-modifying enzymes 

(AMEs) (Garneau-Tsodikova and Labby 2016). 

A diversity of AMEs were identified and are categorized into three groups based on the 

capacity to acetylate, phosphorylate and adenylate amino or hydroxyl groups. These three 

groups include aminoglycoside N-acetyltransferases (AACs), aminoglycoside O-

nucleotidyltransferases (ANTs), and aminoglycoside O-phosphotransferases (APHs) (Krause et 

al. 2016). AMEs group includes several enzymes with different spectrums of activity. Among the 

high number of AMEs described until now, the AAC (6’)-Ib, is the most prevalent and clinically 

relevant AME in Enterobacteriales family (Ramirez et al. 2013). Several AAC (6’)-Ib enzyme 

variations have been described including the widely disseminated ciprofloxacin modifying variant 

AAC (6’)-Ib-cr (Krause et al. 2016). 

AMEs are often found in mobile elements such as plasmids and may containing other 

additional resistance elements, including β-lactamases, such as ESBLs and carbapenemases 

(Krause et al. 2016). 

The ribosomal binding site may also be modified enzymatically by 16S ribosomal RNA 

methyltransferases (RMTs) (Krause et al. 2016). The 16S rRNA methylases modify specific rRNA 

nucleotide residues in a way that blocks aminoglycosides to binding to their target. RMTs can be 

characterized into two classes, according to the nucleotide position where methylation occur 

(Garneau-Tsodikova and Labby, 2016; Krause et al. 2016). These enzymes can be plasmid 

mediated in Enterobacterales and its dissemination is a concern (Krause et al. 2016). These 

enzymes have been described worldwide in Enterobacterales isolates from human, livestock 

sources and companion animals, with ArmA and RtmB as the most frequent (Deng et al. 2011; 

Wachino and Arakawa 2012; Hidalgo et al. 2013; Krause et al. 2016, Xia et al. 2017). Moreover, 

the association between RMTs and ESBLs and carbapenemases has also been described in 

Enterobacterales isolates from human (Berçot et al. 2011; Livermore et al. 2011; Poirel et al. 

2014). 

 

1.1.4 Trimethoprim/sulfamethoxazole resistance  

In the early 1970s, trimethoprim/sulfamethoxazole demonstrated a wide spectrum of 

activity against aerobic bacteria (Masters et al. 2003). Trimethoprim-sulfamethoxazole is active 

against many Enterobacterales and is considered useful for UTI treatment in humans since 1968 

(Eliopoulos and Huovinen 2001). However, increasing rates of resistance among clinically 

important pathogens have been reported worldwide during the past few decades (Masters et al. 

2003). The trimethoprim/sulfamethoxazole combination is considered highly important 

antimicrobial (HIA) (WHO 2019), however is an appropriate initial or empirical option for UTI 



 

 20 

treatment in companion animals and can be considered a treatment choice for prostate infections 

(Weese et al. 2019). Trimethoprim/sulfamethoxazole in combination is thought to have a 

synergistic effect and both affect bacterial folic acid synthesis, the physiologically active form of 

folic acid and a necessary cofactor in the synthesis of thymidine, purines, the fundamental bases 

of bacterial DNA and RNA (Eliopoulos and Huovinen, 2001; Masters et al. 2003; Wüthrich et al. 

2019). These antimicrobials act at different steps of the bacteria tetrahydrofolic acid biosynthesis, 

which is essential for bacteria amino acid and nucleotide synthesis (Eliopoulos and Huovinen, 

2001). Sulphonamide is a structural analogue of para-aminobenzoic acid (PABA) and inhibit 

dihydropteroate synthetase (DHPS), which catalyses the formation of dihydrofolate from para-

aminobenzoic acid. Trimethoprim is a structural analogue of the pteridine portion of dihydrofolic 

acid that competitively inhibits dihydrofolate reductase (DHFR), which catalyses the formation of 

tetrahydrofolate from dihydrofolate. This sequential blockade of two enzymes in one pathway 

results in an effective bactericidal action (Eliopoulos and Huovinen 2001; Masters et al. 2003; 

Wüthrich et al. 2019). Bacteria may become resistant to trimethoprim/sulfamethoxazole by 

different mechanisms: 1) development of permeability barriers and/or efflux pumps, 2) a naturally 

insensitive intrinsic (DHFR), 3) spontaneous chromosomal mutations in the intrinsic (DHPS) 

(folP) and DHFR (folA) genes involved in the folic acid pathways, 4) increased production of the 

sensitive target enzyme by upregulation of gene expression or gene duplication and 5) the 

acquisition of alternative DHPS (sul) and DHFR (dfr) genes with integrons, plasmids, and 

transposons (Eliopoulos and Huovinen 2001; Masters et al. 2003; Wüthrich et al. 2019). 

Resistance to sulphonamides in Enterobacterales, such E. coli can result from chromosomal 

mutations in the DHPS gene (folP) (Swedberg et al. 1993; Vedantam et al. 1998) or caused by 

plasmid borne mechanisms, the acquisition of an alternative DHPS gene (sul) (Rådström and 

Swedberg 1988; Sundström et al. 1988; Sköld, 2000), with low sulphonamide affinity encoded in 

mobile elements (Swedberg and Sköld. 1980). The first transferable sulphonamide resistance 

genes in Enterobacterales family, sul1 and sul2, were described in the 1980s (Rådström and 

Swedberg 1988; Sundström et al. 1988) and only in 2003 sul3 gene has been discovered 

(Perreten and Boerlin 2003). The sul1 gene is usually found in class 1 integron, while sul2 is 

usually located on small plasmids belonging to the IncQ family or another type represented by 

pBP1 or in large transmissible multiresistance plasmids (van Treeck et al. 1981; Huovinen et al. 

1995; Sköld 2000; Enne et al. 2001). The sul3 gene linked to class 1 integrons lacking their 3´ 

CS region (Bean et al. 2009). Integrons are composed of two conserved DNA regions, located 

at their ends, which are known as 5´ CS and 3´ CS (5´ and 3´ conserved segments). The 

acquisition and dissemination of these genes located within the integron structure results in an 

increase in antimicrobial resistance. Three classes of integron structure have been described 

(Cambray et al. 2010; Deng et al. 2015). However, the class 1 integrons are the most worrying 

in clinical isolates. The 5´-CS of class 1 integrons includes an intI1 gene, which encodes a site-
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specific tyrosine recombinase, which performs integration and excision of genetic elements, 

known as gene cassettes, at the att1 recombination site. Usually, Int1 gene was associated with 

sul genes. The 3´CS region contains several open reading frames (ORFs) (Carattoli 2001; 

Partridge et al. 2009). These include qacEΔ1, which confers resistance to quaternary ammonium 

compounds, often associated with antiseptics, along with a sul1 gene expressing resistance to 

sulfonamides (Paulsen et al. 1993; Partridge et al. 2009). 

The integrons are usually located on mobile genetic elements like plasmids and 

transposons, providing the ability of dissemination of sul genes between commensal bacteria into 

more virulent bacteria, and species (Carattoli 2001, Mazel 2006). 

Both sul1 and sul2 are highly prevalent among uropathogenic E. coli isolates from 

humans, whilst the third type sul3 is less common (Blahna et al. 2006). In 2017, the fourth mobile 

sulphonamide resistance gene (sul4) was discovered by next generation sequencing (NGS) 

(Razavi et al. 2017). However, until now little is known about sul4. 

Resistance to trimethoprim is mainly mediated by a dihydrofolate reductase enzyme 

encoded by the dfr genes, which are usually associated with class 1 and class 2 integrons or 

plasmids, which has led to the rapid emergence of trimethoprim resistance among bacterial 

populations (Yu et al. 2004; Ho et al. 2009). Different types of trimethoprim-resistant dfr genes 

and dfr gene cassettes have been detected in class 1 integrons (Yu et al. 2004; Ho et al. 2009; 

Wüthrich et al. 2019). 

This association of sul and dfr genes with mobile genetic elements such as plasmids and 

integrons, is highly relevant for the increase in the emergence, evolution, and dissemination of 

sulphonamide resistance in environments (Yu et al. 2004). E. coli isolates from clinical specimens 

are mostly MDR and a high frequency of E. coli isolates from the urinary tract are resistant to 

trimethoprim (Huovinen 1995; Lee et al. 2001; Yu et al. 2004). 

 

1.1.5 Tetracycline resistance 

Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of 

microorganisms including gram-positive and gram-negative bacteria. They are inexpensive 

antimicrobials, which have been used extensively in veterinary medicine, especially in food 

animals, but also in the prophylaxis and therapy of human and animal infections (Chopra and 

Roberts 2001, Grossman 2016). 

Among tetracyclines, doxycycline is categorized by WHO (WHO 2019) as a HIA in human 

medicine, however, can be used for the treatment of UTIs in companion animals, but not as a 

first line option (Weese et al. 2019). Tetracyclines are bacteriostatic broad-spectrum 

antimicrobials that bind to bacterial ribosomes and interact with a highly conserved 16S ribosomal 

RNA (rRNA) target in the 30S ribosomal subunit (A-site) and inhibit bacterial protein synthesis 
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(Chopra and Roberts 2001; Grossman 2016). With the widespread use of tetracyclines after their 

discovery in the 1940s, resistance started to increase (Chopra and Roberts 2001). Tetracyclines 

resistance is normally attributed to three general class-specific mechanisms: efflux systems, 

ribosomal target protection, and enzymatic inactivation of tetracycline drugs (Grossman 2016). 

The acquisition of mobile genetic elements carrying tetracycline-specific resistance genes, 

mutations within the ribosomal binding site, and/or chromosomal mutations leading to increased 

expression of intrinsic resistance mechanisms (Grossman 2016). 

Active efflux of tetracycline from the bacterial cell is mediated by membrane-bound efflux 

proteins encoded by several tet gene groups. Efflux proteins of group 1, including tet(A) and 

tet(B), are widely distributed in Gram-negative bacteria (Chopra and Roberts 2001; Roberts 

2005). The gram-negative efflux genes are normally associated with plasmids and most of them 

are conjugative and often carry other antimicrobial resistance genes (Chopra and Roberts 2001). 

In Gram-negative bacteria such as E. coli, tetracycline passively diffuses through the outer 

membrane porins OmpF and OmpC, most likely as a Mg2+ chelate, and this is consistent with the 

finding that outer membrane porin mutants show resistance increase to tetracyclines (Chopra 

and Roberts 2001; Grossman 2016). Futhermore, Tetracyclines can also be inhibited by the 

production of cytoplasmic proteins that protect the ribosomes, most ribosomal protection proteins 

are encoded by tet genes, with the exception of tet(B) (Chopra and Roberts 2001). 

 

1.1.6 Nitrofurantoin resistance 

Nitrofurantoin was discovery in the 1940s and has been approved and available since 

1953 for the treatment of lower urinary tract infection (UTI) (Huttner et al. 2015; Gardiner et al. 

2019). However, this use decreases in the 1970s with the appearance of the β-lactam and 

trimethoprim/sulfamethoxazole antimicrobials (Huttner et al. 2015). Yet, in the last years with the 

increase of trimethoprim/sulfamethoxazole, fluoroquinolones and β-lactams resistance and also 

the emergence in the late 2000s of ESBL-producing and carbapenem-resistant bacteria, several 

guidelines were revised to put back on the market again the  nitrofurantoin as first-line therapy 

for uncomplicated lower UTI (Huttner et al. 2015).Nitrofurantoin is a synthetic antimicrobial 

created from furan and an added nitro group and a side change containing hydantoin and it is 

effective against most gram-positive and gram-negative bacteria (Huttner et al. 2015; Gardiner 

et al. 2019). Some guidelines (Bekford-Ball 2006; AFSSAPS 2008) have declared nitrofurantoin 

as the first-line therapy for treatment of uncomplicated lower urinary tract infections in human 

medicine (Huttner et al. 2015; Gardiner et al. 2019; Squadrito and Portal 2019). Recently, 

accordingly with the World Health Organization it was been are categorized as an important 

antimicrobial (IA) for human medicine (WHO, 2019). Nitrofurantoin uses several mechanisms to 

achieve an antimicrobial effect. Nitrofurantoin is taken up by bacterial intracellular nitroreductases 

to produce the active form of the drug via reduction of the nitro group (Squadrito and Portal 2019). 
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Nitrofurantoin requires reduction by bacterial enzymes producing ‘highly reactive electrophilic’ 

metabolites, which inhibit protein synthesis by interfering with bacterial ribosomal proteins 

(Gardiner et al. 2019). Intermediate metabolites that result from this reduction then bind to 

bacterial ribosomes and inhibit bacterial enzymes involved in the synthesis of DNA, RNA, cell 

wall protein synthesis, and other metabolic enzymes. However, Nitrofurantoin mechanism action 

remains poorly understood (Gardiner et al. 2019; Squadrito and Portal 2019). 

Nitrofurantoin resistance is uncommon and mostly of the MDR bacteria are susceptibility 

(Sanchez et al. 2016). However, nitrofurantoin resistance seems to be associated with 

chromosomal mutations, the OqxAB plasmid mediated efflux pump in E. coli (Ho et al. 2016). 

Nitrofurantoin in veterinary medicine only can be used as an option (off-label use), is 

recommended by Weese et al. (2019) guidelines for the treatment of sporadic bacterial cystitis 

(uncomplicated UTIs), especially when MDR bacteria are involved (Weese et al. 2019).  

 

1.1.7 Fosfomycin resistance 

Fosfomycin was introduced in Europe throughout the 1970s and is a phosphonic acid 

derivative with broad-spectrum of antimicrobial activity, which inhibits cell wall and early 

murein/peptidoglycan synthesis (Gardiner et al. 2019). Fosfomycin is a safe and effective 

antimicrobial for urinary tract infections in humans with good tolerance, good tissue penetration 

and may provide an alternative option for the treatment of uncomplicated cystitis caused by 

ESBL-producing and carbapenemase-producing Enterobactereals, but its use should be limited 

to delay the development of resistance (Gardiner et al. 2019; Múñez Rubio et al. 2019). 

Fosfomycin even has activity against some types with no other available effective antibiotics and 

can act synergistically with other antibiotics (Rubio et al. 2019). Fosfomycin acts by inhibiting 

UDP-N-acetylglucosamine enolpyruvyl transferase (murA), which prevents the formation of N-

acetylmuramic acid, an essential component of peptidoglycan (Doesschate et al. 2019). 

Fosfomycin resistance mechanisms have been described involving decreased antimicrobial 

uptake, modification of the target site and antimicrobial inactivation (Karageorgopoulos et al. 

2012). Several of these resistance mechanisms result from chromosomal mutations, some 

inactivation enzymes may be plasmid mediated, such as fosA, fosA3, fosC2 and fosK (Yao 

2016). Some studies indicated that mostly the plasmid encoded fosA3 gene mediates fosfomycin 

resistance. Moreover, this gene has been described in Enterobacterales isolates from humans, 

companion animals and livestock (Yao et al. 2016; Gardiner et al. 2019). FosA is a glutathione 

transferase that inactivates fosfomycin through catalysing the addition of glutathione. fosA genes 

are often present in the chromosome of Klebsiella pneumoniae, but not in the chromosome of E. 

coli (Doesschate et al. 2019). However, resistance to fosfomycin is still low in E. coli; the 

acquisition of fosA may reduce future activity of fosfomycin to treat infections caused by E. coli 

(Doesschate et al. 2019). However, horizontal spread of fosA has been demonstrated, resulting 
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in development of fosfomycin resistance, the long-term use of oral fosfomycin can promote 

horizontal gene transfer from commensal gut flora to potential pathogenic bacteria, such as E. 

coli (Doesschate et al. 2019).  

Fosfomycin is a CIA for humans (WHO 2019) and the use in human medicine is increasing 

due to the emergence of MDR bacteria (Doesschate et al. 2019). Yet, in veterinary medicine only 

can be used as an option (off-label use) and is recommended by Weese et al. (2019) guidelines 

for the treatment of multidrug resistant infections only in dogs with pyelonephritis and prostatitis, 

especially when MDR bacteria are involved.  

 

1.1.8 Chloramphenicol and florfenicol resistance 

Chloramphenicol and florfenicol are bacteriostatic, broad-spectrum antimicrobials that 

inhibit protein synthesis by binding to the 50S ribosomal subunit of the bacterial ribosome, 

inhibiting peptidyl transferase and preventing the amino acid transfer to growing peptide chains 

and subsequently inhibiting protein formation (Schwartz et al. 2004). Both antimicrobials have 

great activity against Gram-positive and Gram-negative, aerobic and anaerobic bacteria 

(Schwarz et al. 2004). Chloramphenicol is a broad-spectrum antimicrobial that has been used for 

several years in human and veterinary medicine (Schwarz et al. 2004). Florfenicol, on the other 

hand, is licensed exclusively for veterinary use in farm animals (Schwarz et al. 2004). 

Chloramphenicol causes a number of adverse effects, including dose-unrelated irreversible 

aplastic anaemia in humans and dose-related reversible bone-marrow suppression, and for this 

reason it is reserved for MDR life-threatening infections (Schwarz et al., 2004). (Schwarz et al. 

2004). In small animals, chloramphenicol is used for ocular infections, otitis (Guiguère et al. 2013) 

and is reserved for the treatment of UTI caused by MDR bacteria in companion animals (Weese 

et al. 2019). Regarding florfenicol, this antimicrobial does not cause adverse side effects like 

chloramphenicol and so it is licensed for the control of bacterial respiratory tract infections in 

cattle and pigs (Schwarz et al. 2004).  

The most frequently mechanism of bacterial resistance to chloramphenicol is enzymatic 

inactivation by acetylation of the drug by different chloramphenicol acetyltransferases (CATs). 

However, CAT enzymes do not inactivate Florfenicol (Schwartz et al. 2004; van Duijkeren et al. 

2018). Acetylation of the hydroxyl groups on chloramphenicol prevents drug binding to the 

ribosomal subunit. Resistance may also be caused by other mechanisms such as efflux systems, 

inactivation by phosphotransferases and mutations of the target site and permeability barriers 

(Schwartz et al. 2004; van Duijkeren et al. 2018). The CAT genes are commonly detected on 

plasmids in Enterobacterales and most of these plasmids carry one or more additional resistance 

genes (Schwartz et al. 2004). Yet, the efflux of chloramphenicol and florfenicol from bacteria can 

be mediated by specific exporters, such as CmlA and floR or by multidrug exporters (Schwartz 

et al. 2004; van Duijkeren et al. 2018). The gene cmlA is a Tn1696-associated cassette-borne, 
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which is inducible expressed via translational attenuation (van Duijkeren et al. 2018). Genes 

related to cmlA and floR are mainly found in Enterobacterales, such as E. coli and klebsiella spp. 

(van Duijkeren et al. 2018). 

Multidrug exporters systems that export chloramphenicol have been described in 

Enterobacterals, including AcrAB/TolC efflux system in E. coli (Duijkeren et al. 2018). Moreover, 

the permeability barriers have also been described to confer resistance to chloramphenicol. The 

mar locus is found in Enterobacterals and can contribute to resistance by: 1) it can activate the 

AcrAB/TolC, leading to increase chloramphenicol efflux system; 2) MarA can activate the micF 

gene, which results in a decrease of chloramphenicol influx (van Duijkeren et al. 2018). 

 

1.2 Antimicrobial resistance surveillance in companion animals in Portugal and 

Europe 

There is growing concern globally about the misuse of antimicrobials. International 

meetings on this topic have supported a “One Health” approach that is defined as “a collaborative, 

multi-sectoral and trans-disciplinary approach, working locally, regionally, nationally and globally, 

to achieve optimum health and well-being of animals, people, plants and the environment shared 

by all, recognizing their inextricable interrelationships (One Health Commission 2018). This 

approach places the responsibility for the protection of antimicrobials in both human and 

veterinary medicine, by preserving the effectiveness of existing antimicrobials through their 

rational use (McEwen and Collignon 2017). 

In recent years there has been growing concern about the role of companion animals as 

reservoirs of antimicrobial resistance (Guardabassi et al. 2004; Damborg et al. 2016; Pomba et 

al. 2017). The increase of antimicrobial resistance in companion animals represents a challenge 

in veterinary medicine as it limits therapeutic options, but also a potential vehicle for the spread 

of antimicrobial resistance genes (Bogaerts et al. 2015). We have been confronted with the 

emergence of methicillin-resistant staphylococcus spp. and Gram-negative MDR bacteria and 

several studies have shown the possibility of transmitting some strains of bacteria from man to 

dog and cat and vice versa (Guardabassi et al. 2004; Johnson et al. 2000; Johnson et al. 2008). 

Regarding antimicrobial resistance, some studies have been carried out on the topic and 

antimicrobial resistance may vary according to the geographic location (Marques et al. 2016; 

Moyaerts, 2017), moreover, their comparison is not simple, due to differences in study design, 

such as variations in host species, inclusion criteria and/or time period (Marques et al. 2016). 

The European Antimicrobial Resistance Surveillance Network (EARS-Net) actively 

gathers and reports annual data on antimicrobial resistance in human invasive bacteria from 

several European countries (ECDC 2017). These EARS-Net reports show remarkable 

geographical differences in antimicrobial resistance frequencies among European countries as 

well as increasing trends in resistance to CIAs (ECDC 2017). Such important surveillance 



 

 26 

programs are lacking in small animal veterinary medicine. There have been only few national 

antimicrobial resistance surveillance networks in place for companion animals in Germany, 

Sweden and France (Swedres-Svarm 2016; Moyaert et al. 2017). In 2008, the European Animal 

Health Study Centre started an initiative (Compath) gathering bacterial isolates from companion 

animals in Europe and just recently published data regarding UTI isolates from 2008-2010 

(Moyaert et al. 2017). Moyaert et al. (2017) reported overall high susceptibility to all tested 

antimicrobials (e.g. >90% for most antimicrobials in E. coli). However, since the antimicrobial 

resistance frequencies were presented for all countries as a group and temporal trends were not 

analysed (Moyaert et al. 2017), it was not possible to perceive any geographical differences. 

Overall high antimicrobial susceptibility frequencies were also detected in previously published 

data from Sweden (2009, 2014) (Windahl et al. 2014; Swedres-Svarm 2016), Norway (2003-

2009) (Lund et al. 2014) and Switzerland (E. coli, 1999-2001) (Lanz et al. 2003). 

Under the umbrella of the European Society of Veterinary Nephrology and Urology, a 

multicenter retrospective study was launched in November 2013 with the goal of getting 

antimicrobial resistance data on bacteria isolated from companion animal with UTI across Europe 

(Marques et al. 2016). In this study participated the following countries: Germany, Austria, 

Belgium, Denmark, Spain, France, Greece, Holland, Italy, Portugal, United Kingdom, Serbia, 

Sweden and Switzerland, the most common etiology of UTI in companion animals (dogs and 

cats) was E. coli (Marques et al. 2016). One of the conclusions to be highlighted was that, for all 

bacteria, the countries of the South (Italy, Greece, Portugal and Spain) had higher levels of 

resistance for the studied antimicrobials (amoxicillin - clavulanic acid, 3GC, fluoroquinolones, 

gentamicin and trimethoprim - sulfamethoxazole) when compared to the countries of the North 

(Denmark, Sweden). Furthermore, MDR - E. coli was more frequent, also in the countries of the 

South (Marques et al. 2016) (Figure 4). 

E. coli is the most frequent isolated bacteria causing UTI in companion animals (dogs and 

cats) and some studies show frequencies greater than 30 % (Marques et al. 2016). However, 

other commonly isolated bacteria genera include Staphylococcus spp., Enterococcus spp., 

Proteus spp. and Klebsiella spp. (Marques et al. 2016). Furthermore, to better understand the 

antimicrobial resistance temporal trends in uropathogenic bacteria from companion animals in 

Portugal (Lisbon), was performed a study by Marques et al. (2018) and notably, a significant 

increase in Enterobacterales antimicrobial resistance to the main antimicrobials used for UTI 

treatment in small animal veterinary medicine was observed in companion animals from Portugal 

(Lisbon), also for E. coli there was a significant increase in antimicrobial resistance to all 

antimicrobials, except trimethoprim/sulfamethoxazole (Figure 5) (Marques et al. 2018). 
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Figure 4: Escherichia coli antimicrobial resistance by antimicrobial in Europe in the years 2012–
2013 (from Marques et al. 2016 with permission from the author).  

Legend: Percentage (%) of E. coli antimicrobial resistance by antimicrobial and country in the years 2012–2013. 
Countries: AT- Austria; BE- Belgium; DK- Denmark; FR- France; DE- Germany; EL- Greece; IT- Italy; NL- the 
Netherlands; PT- Portugal; RS- Serbia; ES- Spain; SE- Sweden; CH- Switzerland; UK- United Kingdom.  
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Figure 5: Enterobacteriacea and Escherichia coli resistance trends over the 16 years of the study 
(1999-2014) (adapted from Marques et al. 2018, with permission from the author).  

Legend: (a) Enterobacteriaceae. There was a significant increase in antimicrobial resistance to all antimicrobials. (b) 
E. coli. There was a significant increase in antimicrobial resistance to all antimicrobials, except 
trimethoprim/sulfamethoxazole. AMC, amoxicillin/clavulanate; SXT, trimethoprim/sulfamethoxazole; FQs, 
fluoroquinolones; GEN, gentamicin; TET, tetracycline (Marques et al. 2018). 

 

1.3 Risk of transfer of antimicrobial-resistant bacteria between companion animals 

and humans 

During the last fifty years, the number of companion animals has substantially increased 

to the point that in many regions, most people have regular and intensive contact with companion 

animals, which are nowadays considered as “family members” enjoying close contact with their 

owners (Guardabassi et al. 2004; Dotson and Hyatt 2008; Pomba et al. 2017). The 

anthropomorphization of companion animals has led to changes in the behaviour of owners 

towards them, with increasing conducts like kissing, licking, sharing food, and sharing beds 

(Dotson and Hyatt 2008). Considering the shared environment of humans and companion 
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animals, their close relationship, and the increased frequency of the presence of antimicrobial-

resistant bacteria in humans and companion animals, new opportunities are created for 

interspecies transfer of resistance genes, resistant bacteria or mobile resistance determinants. 

The closer contact between owners and companion animals creates opportunities for 

pathogen interchange through direct and indirect contact (Guardabassi et al. 2004; Damborg et 

al. 2016; Pomba et al. 2017). Furthermore, during infection, companion animals have and excrete 

high loads of pathogenic bacteria, which may further favour this transmission (Pomba et al. 

2017). 

The public health risks associated with the transfer of antimicrobial-resistant bacteria from 

companion animals have been reviewed in the European Medicine Agency and its Antimicrobial 

Working Party reflection paper (Pomba et al. 2017). Pomba et al. (2017) alerted for existence of 

several antimicrobial resistance microbiological hazards coming from companion animals to 

humans (Table 4). 

 

Table 4: Microbiological hazards from companion animals to humans identified by EMA (adapted 
from Pomba et al. 2017). 

Antimicrobial-resistant bacteria Type of Hazard Source 

MRSA direct hazard1 dogs, cats and horses 

MRSP direct hazard dogs, cats and horses 

VRE indirect hazard2 dogs and horses 

ESBL-producing Enterobacteriaceae indirect hazard dogs, cats and horses 

Carbapenem-resistant Gram-negative 

bacteria 

indirect hazard2 Dogs and cats 

Colistin-resistant E. coli indirect hazard Dogs and cats 

Legend: 1Low number of cases of human infections originating from companion animals. 2No human infections 
originating from companion animals have been reported (Pomba et al. 2017). 

 

The concerns surrounding the role of companion animals in the dissemination of resistant 

bacteria to humans are strengthened by numerous studies reporting the colonization and/or 

infection of companion animals with bacteria harboring clinically relevant antimicrobial resistance 

mechanisms or bacteria belonging to high-risk clonal lineages to humans (Guardabassi et al. 

2004; Nicolas-Chanoine et al. 2014; Damborg et al. 2016; Pomba et al. 2017; Grönthal et al. 

2018). 

Transmission of antimicrobial-resistant bacteria or resistance genes between humans 

and companion animals (colonized and/or infected) has been reported in different studies over 

the last years, which implies a potential risk of the transmission of resistance genes by humans 

via direct contact with their companion animals and vice-versa (Johnson and Clabots 2006; 
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Johnson et al. 2008; Pomba et al. 2017). Moreover, the detection of MDR bacteria in companion 

animals is being increasingly reported, posing a difficult veterinary therapeutic challenge and 

often requiring the use of antimicrobials critically important to humans. With the growing contact 

between companion animals and humans, the risk of animal-to-human transfer of such bacteria 

is of concern. These bacteria, isolated from companion animals, may harbour clinically and 

epidemiologically important resistance mechanisms of human and veterinary relevance such as 

ESBL, cephalosporinases (AmpC), PBP2a and high-level gentamicin resistance (HLGR) 

bifunctional enzyme (Marques et al. 2016). 

Coagulase-positive staphylococci, such as methicillin-resistant Staphylococcus aureus 

(MRSA), Staphylococcus pseudintermedius (MRSP), Staphylococcus intermedius (MRSI), 

methicillin-resistant coagulase-negative staphylococci (MR-CoNS) and ESBL/AmpC- or 

carbapenemase producing-Enterobacterales has been documented to colonize companion 

animals and humans causing infections in both species (Guardabassi et al. 2004; Vincze et al. 

2014; Schmiedel  et al. 2014; Misic et al. 2015; Damborg et al. 2016; Ljungquist et al. 2016; 

Pomba et al. 2017; Walther et al. 2017;Marques et al. 2019a, 2019b, 2019c). These studies also 

have reporting that companion animals may share antimicrobial-resistant bacteria or resistance 

genes with household members and show that colonized and/or infected companion animals with 

bacteria belonging to high important clonal lineages described in humans. Such as, MRSA 

sequence type (ST) 5 and ST22 (Weese 2010; Couto et al. 2016), Enterococcus faecium clonal 

complex (CC) 17 (Damborg et al. 2009), E. coli ST131, ST648 and ST405 (Johnson et al. 2008a, 

2008b; Johnson et al. 2009; Johnson et al. 2016a; Marques et al.  2018), Klebsiella pneumonia 

ST11 and ST15 (Marques et al. 2019b) and carbapenemase-producing A. baumannii ST2 

(Pomba et al. 2014a). 

 Regarding transmission of carbapenemases-producing bacteria between humans with 

contact with companion animals, few studies were found. Wang et al. (2017) tested fecal samples 

from farmers and dogs from the local and E. coli strains with the carbapenemase NDM-5 enzyme 

were shared between humans and dogs. Furthermore, Grönthal et al. (2018) demonstrated that 

two dogs with SSTI (otitis) shared NDM-5-producing E. coli strains with one human living in the 

same household.  

The conclusions achieved indicate that it is necessary to reflect on how antimicrobials are 

being used and that measures are needed to implement and promote their use in a rational 

manner. Antimicrobials are frequently administered empirically based on the presence of 

compatible clinical signs; however, antimicrobial therapy should ideally rely on susceptibility 

testing of the isolated bacteria. Besides the pharmacokinetic-pharmacodynamic properties, the 

empiric antimicrobial selection should consider the most likely causative agent as well as its 

regional susceptibility patterns. Furthermore, according to the World Organisation for Animal 
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Health veterinarians should adopt strategies aimed at the reduction of antimicrobial resistance 

(Marques et al. 2016).  

 

1.4 Escherichia coli 

E. coli was first discovered, as “Bacterium coli commune”, in the gut in 1885 by the 

German bacteriologist Theodore von Escherich (Escherich 1988). E. coli is a member of the 

genus Escherichia which is one of the key genera of the Enterobacteriaceae family. Over the 

past decades E. coli is one of the most-studied bacteria and become one of the best-

characterised Enterobacterales.  

E. coli is part of the common commensal inhabitant of the gastrointestinal tract of humans 

and animals. It colonizes the gastrointestinal tract within hours after birth and there is a mutual 

relationship (symbiotic) between host and bacteria. (Sarowska et al. 2019). This relationship 

between the bacterium and its host is symbiotic, providing both with several advantages. The E. 

coli strains can be classified according to genetic and clinical criteria into three main groups: 

commensal E. coli, intestinal pathogenic E. coli and extraintestinal pathogenic E. coli (ExPEC) 

(Figure 6) (Nicolas-Chanoine et al. 2014; Paulshus et al. 2019; Sarowska et al. 2019). 

Commensal E. coli are in general benign; they coexist with the human host with mutual benefits 

and do not cause disease. However, it may cause illness if the host is compromised 

immunologically or if the normal gastrointestinal barriers are breached (Russo and Johnson 

2000). Intestinal E. coli pathogenic strains cause enteric/diarrhoeal diseases and six different 

categories have been described: enteropathogenic, enterohaemorrhagic, enterotoxigenic, 

enteroaggregative, enteroinvasive and diffusely adherent (Nataro and Kaper 1998). ExPEC have 

maintained the ability to exist in the gut without consequence but have the capacity to 

disseminate and colonize other host niches causing extra-intestinal diseases including soft-tissue 

infections, wound infections, neonatal meningitis, sepsis, hospital-acquired pneumonia, 

osteomyelitis, surgical site infection haemolytic-uremic syndrome and UTIs (Nataro and Kaper 

1998; Russo and Johnson 2000; Johnson and Russo 2005; Bélanger et al. 2011; Sarowska et 

al.  2019).  

E. coli causing UTI has been denoted uropathogenic E. coli (UPEC) (Russo and Johnson, 

2000). E. coli  strains has an extensive genetic substructure (Chaudhuri and Henderson 2012) 

and that the substructure of E. coli populations differs among distinct geographical regions 

(Freitag et al. 2005; Walk et al. 2009) and bacterial hosts (Vadnov et al. 2017). Urinary tract 

infection by E. coli is a problem that affects both humans and companion animals over the world 

(Foxman 2014; Flores-Mireles 2015; Sarowska et al. 2019).  

 

https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B2
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B6
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B21
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B19
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Figure 6: Pathogenic diversity of Escherichia coli strains (adapted from Sarowska et al. 2019). 

The worldwide burden of these extraintestinal infections is staggering, with hundreds of 

millions of people affected annually and considerable morbidity and mortality in cases of 

complication with bacteremia or sepsis syndrome (Nicolas-Chanoine et al. 2014). Different 

studies around the world have identified several potential reservoirs for the E. coli strains that 

cause most human ExPEC infections, including the human gastrointestinal tract, companion 

animals, wild animals, food-producing animals, retail meat products, sewage, environmental 

sources and infections obtained abroad during travelling (Johnson et al. 2001; Ewers et al. 2009; 

Johnson et al. 2009, Jakobsen et al. 2010a; Bélanger et al. 2011; Manges and Johnson 2015). 

One of major concern is a possible transmission of virulent and/or resistant E. coli between 

animals and humans. E. coli also represents one of a major reservoir of resistance genes that 

may be responsible for treatment failures in both human and veterinary medicine (Nicolas-

Chanoine et al. 2014; Poirel et al. 2018). The prevalence of resistance to first-line oral 

antimicrobials, such as amoxicillin and amoxicillin-clavulanic acid, fluoroquinolones and 

trimethoprim-sulfamethoxazole, which are widely used to treat community-acquired E. coli 

infections, has increased over the last 20 years (Guardabassi et al. 2004; Nicolas-Chanoine et 

al. 2014; Sarowska el al. 2019).  

 

1.5 Plasmids carring ESBLs/AmpC and carbapenemases in Escherichia coli 

A common vector for the transmission of antimicrobial resistance genes is extra-

chromosomal DNA, a circular molecule denominated plasmid. Plasmids are small DNA 

molecules that naturally exist within bacterial cells and replicate independently from the 

chromosome (Lee et al. 2018; Partridge et al. 2018; Stohr et al 2019). Furthermore, plasmids 

have systems which guarantee their autonomous replication and also have mechanisms 

controlling their copy number and ensuring stable inheritance during cell division (Carattoli 2009). 
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Plasmids can harbour genes involved in antimicrobial resistance and virulence and are important 

vectors for horizontal gene transfer (Carattoli 2013; Stohr et al 2019). They contribute to the 

spread of relevant resistance determinants, promoting horizontal gene transfer among different 

bacteria and strains, favouring their dissemination among the bacterial population and from 

region to region (Carattoli et al. 2013; Lee et al. 2018). These plasmids belong to families that 

are prevalent in naturally occurring bacteria, usually carry multiple physically linked genetic 

determinants, conferring resistance to different classes of antimicrobials simultaneously 

(Carattoli 2013). Moreover, the knowledge of the epidemiology of plasmids is important for 

understanding the evolution and spread of antimicrobial resistance (Stohr et al 2019). 

Hedges and Datta (1971) proposed a plasmid classification scheme based on the stability 

of plasmids during conjugation, this phenomenon have the name of plasmid incompatibility (Datta 

and Hedges1971; Hedges and Datta 1971; Carattoli 2009). Incompatibility was defined as the 

inability of two related plasmids to be propagated stably in the same cell line; thus, only 

compatible plasmids can be rescued in transconjugants (Carattoli 2009). Moreover, plasmids can 

acquire mobile genetic elements such as transposons and Insertion sequences (IS), which can 

lead to mobilization of antimicrobial resistance (Alekshun and Levy 2007). Plasmids may carry 

genes that are responsible for conferring resistance to the major classes of antimicrobials 

including β-lactams, quinolones, aminoglycosides, tetracyclines, sulphonamides, trimethoprim 

and chloramphenicol (Caratolli et al. 2009). 

The global dissemination of the CTX-M enzymes has been attributed to the association 

of plasmids carrying blaCTX-M that belong mostly to incompatibility groups IncF, IncN, and IncK 

with certain insertion sequences (ISs), such as ISEcp1 or ISCR1, is able to capture and mobilize 

blaCTX-M genes effectively among the Order Enterobacterales. Insertion sequences elements can 

also act as strong promoters for the high-level expression of blaCTX-M (D'Andrea et al. 2013; 

Mathers et al. 2015a; Poirel et al. 2018). Furthermore, analysis of genetic environments of CTX-

M enzymes has revealed that the promoter sequence present in the upstream region significantly 

affects gene expression and dissemination (Sabaté et al. 2002, Munday et al. 2004; Garcia et al. 

2005; Oliver et al., 2005; Cantón and Coque 2006; Poirel et al. 2018). Furthermore, the genes 

encoding ESBL enzymes are usually located in plasmids but can also be found in the 

chromosomal DNA. The blaCTX-M-15 gene has been located mainly on plasmids belonging to the 

IncF group (Carattoli 2009; Kondratyeva et al. 2020). IncF plasmids are low-copy-number 

plasmids, often carrying more than one replicon. Moreover, IncF plasmids group carrying the 

blaCTX-M-15 gene are not a homogeneous, because they vary in size (50 to 200 kb), carry the repFII 

replicon alone or in combination with repFIA or/and repFIB, and can have different antisense 

RNA sequence variants in the repFII replicon (Hopkins et al. 2006; Carattoli et al. 2008; Carattoli 

2009). Furthermore, the IncF plasmids has great versatility of intracellular adaptation by the rapid 

evolution of the regulatory sequences of the replicons. (Villa et al. 2010). IncF plasmid group are 
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higher diffused in clinically relevant E. coli strains and is the group most frequent in clinical 

isolates (Villa et al. 2010). IncF plasmids encoding blaCTX-M-15 have been isolated from both 

human (Boyd et al. 2004, Hopkins et al. 2006; Karisik et al. 2006; Coque et al. 2008; Kondratyeva 

et al. 2020) and companion animal (Shaheen et al. 2011; Hou et al. 2012; So et al. 2012; Dahmen 

et al. 2013; Yang et al. 2015; Kawamura et al. 2017) E. coli isolates. Moreover, IncF-like plasmid 

is also, involved in the dissemination of blaCTX-M-14 (Woodford et al. 2009; Ho et al. 2012). 

IncI1 plasmids were associated with the spread of several other ESBL genes, such, as 

blaCTX-M-1 in human and animals E. coli isolates (especially food-producing) (Roer et al. 2019; 

Valcek et al. 2019; Irrang et al. 2018). Yet, for the IncI1 plasmids different sequence types have 

been described, indicating great variability among the members of the IncI1 family (Caratolli 

2009). Besides the IncI1 plasmids, the blaCTX-M-1 genes was also identified on plasmids belonging 

to the IncN group (Dolejska et al. 2011; Dolejska et al. 2013; Rodrigues et al. 2013). 

Most of the blaCMY-2 plasmids identified in E. coli were associated with the IncA/C group. 

Such plasmids have been isolated from both from humans and animals, (Carattoli et al. 2012). 

The second most common replicon type associated with blaCMY-2 is I1, whereas other replicon 

types have been reported sporadically (Carattoli 2009). Compared to other pAmpC variants the 

success of CMY-2 is probably associated with its relationship with insertion sequence ISEcp1 

(Naseer et al. 2010) which provides the promotor regions that drives high-level expression of 

blaCMY (Nakan et al. 2007), like what has been observed for blaCTX-M-15. Regarding the emergence 

and rapid spread of carbapenemases-producing E. coli (blaOXA-48, blaNDM-1, blaKPC-2 and blaVIM-2) 

is, in part, the consequence of conjugative plasmids (pOXA-48 of IncL/M-type) and also, of 

mobile genetic elements (Tn4401 for KPC-2, Tn1999 for OXA-48, Tn125 for NDM-1 and Tn21 

associated with integrons for VIM/IMP) (Aubert et al. 2006; Naas et al 2008; Poirel and Nordmann 

2014; Zhao and Hu 2015; Peirano and Pitout 2015; Vila et al 2016). Multi locus sequence typing 

(MLST) analysis of a worldwide human collection of OXA-48 producing E. coli isolates has 

revealed some diversity among the isolates, suggesting the spread of plasmid pOXA-48 in 

different clones (Potron et al. 2013; Vila et al 2016). Furthermore, pOXA-48 and IncX3 

(associated with blaOXA-181) plasmids were also, detected in companion animals (Pulss et al. 2018; 

Nigg et al. 2019). 

 

1.6 Escherichia coli phylogenetic groups 

E. coli can be considered as having mainly a clonal genetic structure and phylogenetic 

analyses based upon multi locus enzyme electrophoresis (MLEE) and ribotyping have shown the 

existence of distinct phylogenetic groups within E. coli (Ochman and Selander 1984; Herzer et 

al. 1990; Desjardins et al. 1995). There are four well known phylogenetic groups and these have 

been nominated A, B1, B2 and D. E. coli strains of the four phylogenetic groups differ in their 

phenotypic and genotypic characteristics and appear to have different ecological niches and 
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propensity to cause disease. Extra-intestinal pathogenic and commensal E. coli typically differ 

with respect to E. coli reference (ECOR) collection phylogenetic group (Sabaté et al. 2006). 

Commensal E. coli are mainly associated with phylogenetic groups A or B1 (with lower number 

of virulence genes) and intestinal pathogenic E. coli with phylogenetic groups A, B1 or D (Picard 

et al. 1999; Russo and Johnson 2000; Johnson et al. 2001; Johnson and Russo 2002; Escobar-

Páramo et al. 2004; Sabaté et al. 2006). Yet, ExPEC including UPEC have shown to belong 

mainly to phylogenetic group B2 and to group D (harbouring a high number of virulence genes) 

(Picard et al. 1999; Johnson et al. 2005; Escobar-Páramo et al. 2004; Moreno et al. 2008). 

However, MLEE or ribotyping are complex and time-consuming techniques. So, Clermont et al. 

(2000) implemented a rapid phylogenetic grouping technique based on triplex PCR to type and 

subtype commensal and pathogenic E. coli, based the combination of the following genetic 

markers: chuA, yjaA (encoding hypothetical proteins) and the DNA fragment TspE4.C2 (encoding 

a putative lipase esterase) and regarding the presence/absence of these three amplicons, an E. 

coli strain could be classified into one of the main phylogenetic groups (Clermont et al. 2000; 

Doumith et al. 2012). However, Escobar-Páramo et al. (2006) in order to increase the 

discrimination power of E. coli population analyses, it has been proposed the use of subgroups 

A0, A1, B1, B22, B23, D1 and D2, that are determined by the combination of the genetic markers 

(Clermont et al. 2000; Escobar-Páramo et al. 2006). However, subsequently, on the basis of 

MLST and complete genome data, additional E. coli phylogenetic groups were recognized (Walk 

et al. 2009; Luo et al. 2011). So, the number of defined phylogenetic groups went up to 8 (A, B1, 

B2, C, D, E, F that belong to E. coli sensu stricto, and the eighth-the Escherichia cryptic clade I) 

(Walk et al. 2009; Luo et al. 2011). In 2012 Doumith et al. implemented a new multiplex PCR for 

rapid assignment of the four major E. coli phylogenetic groups (Doumith et al. 2012) and in 2013 

Clermont et al added an additional gene target, arpA, to those three candidate markers and made 

a quadruplex PCR to classify an E. coli strain into one of the phylogenetic groups A, B1, B2, C, 

D, E, F, and clade I (Clermont et al. 2013). Furthermore, phylogenetic group E and group F are 

related to phylogenetic group D and group B2, respectively and clones of E. coli strains, which 

are genetically diverse but phenotypically indistinguishable, have been assigned to cryptic clade 

I (Walk et al 2009; Köhler and Dobrindt 2011; Luo et al. 2011; Sarowska et al. 2019). 

 

1.7 Escherichia coli pathogenicity-associated islands markers  

Pathogenicity islands (PAIs) are large blocks of chromosomal DNA (>30 kb), unstable 

regions of chromosomally located DNA, that can be inserted or deleted from the genome; can be 

characterized by the different G+C content from the rest of the genome and in different codon 

usage; are often associated with transfer RNA (tRNA) genes like pheU, pheV, selC and leuX5; 

often carry cryptic or functional genes containing mobile genetic elements such as transposons, 

integrases and insertion sequences (IS) elements or parts of these elements (Hacker et al. 1997; 

https://www.sciencedirect.com/topics/medicine-and-dentistry/escherichia-coli
https://www.sciencedirect.com/topics/immunology-and-microbiology/phylogeny
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B21
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B21
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B11
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B21
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01904/full#B11
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Hacker and Kaper 2000; Sabaté et al. 2006). PAIs normally represent unstable DNA regions. 

Deletions of PAIs may occur via the direct repeats (DRs) at their ends or via IS elements or other 

homologous sequences located on PAIs (Hacker and Kaper 2000). PAIs contain bacterial 

virulence genes (such as: genes for P fimbriae, S fimbriae, cytotoxic necrotizing factor 1, 

yersiniabactin) mostly located on bacterial chromosome but also in plasmids or bacteriophages 

(Hacker et al. 1997; Hacker and Kaper 2000; Oelschlaeger et al. 2002; Gal-Mor and Finlay. 

2006). PAIs and their associated virulence genes spread among bacterial populations by 

horizontal transfer and supply a virulence benefit regarding the adaptation to niches incapable to 

be colonize by commensal bacteria (Hacker et al 1997; Oelschlaeger et al. 2002; Lloyd et al. 

2009; Sarowska et al. 2019). 

Several PAIs have previously been identified in UPEC strains such as E. coli 536, E. coli 

J96, E. coli CFT073. PAIs I to IV from strain 536 encode a range of virulence factors, including 

P fimbriae, P-related fimbriae, α-hemolysin, S-fimbriae and yersiniabactin siderophore system. 

PAIs IJ96 and IIJ96 encode P fimbriae, P-related fimbriae and α-hemolysin. PAIs ICFT073 and IICFT073 

encode P fimbriae, α-hemolysin and aerobactin (Sabaté et al. 2006). These UPEC PAIs have 

been also detected in commensal isolates from fecal origin (Johnson and Russo 2002; Sabaté 

et al. 2006). In 2000 Kurazono described a putative pathogenicity island (PAI) containing the 

gene encoding uropathogenic specific protein (usp) in UPEC strain Z42 and three small open 

reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins located 

downstream of the usp gene (Kurazono 2000) It has been demonstrated that the plasmid 

containing the usp gene enhances the infectivity of host E. coli strains in a mouse pyelonephritis 

model suggesting that the usp gene contributes to the pathogenesis of urinary tract infection 

(UTI) (Yamamoto 2001). 

Moreover, ExPEC strains often contain multiple PAIs and can have a different 

combination of virulence factors (VFs) (Johnson and Russo 2005). Furthermore, the same VF 

can be encoded by different PAIs. In commensal isolates these DNA segments can act as fitness 

islands or ecological islands rather than as PAIs (Hacker and Kaper 2000). Moreover, PAIs may 

also carry genes encoding factors that confer antimicrobial resistance substances (Hacker and 

Carniel 2001). The characteristics of the pathogenicity islands and the function encoded are 

presented in Table 5. 

 

1.8 Virulence factors of Extraintestinal Pathogenic Escherichia coli and/or 

Uropathogenic Escherichia coli 

Virulence refers to the ability of a pathogen to cause disease. Virulence factors (VFs) are 

specific properties that enable organisms to overcome host defenses and cause disease 

(Johnson 1991). The virulence potential of ExPEC depends on the various extraintestinal  
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Table 5: The pathogenicity islands and the functions encoded (adapted from Sarowska 2019). 

Pathogenicity islands Products 

ICFT073 P fimbriae, α-hemolysin and aerobactin 

IICFT073 P fimbriae, α-hemolysin and aerobactin 

I536 α-Hemolysin, F-17-like fimbriae, CS12-like fimbriae 

II536 Hek adhesin, P- related fimbriae, α-Hemolysin, 

hemagglutinin-like adhesion 

III536 S fimbriae, salmochelin, HmuR-like heme receptor, Sat 

toxin, Tsh-like hemoglobin protease, antigen 43 

IV536 Yersiniabactin siderophore system 

IJ96 α-Hemolysin, Prs fimbriae, cytotoxic, necrotizing factor 

IIJ96 α-Hemolysin, Prs fimbriae, cytotoxic, necrotizing factor 

 

virulence-associated factors in bacteria–host interactions, rather than a simple mechanism 

(Picard et al 1999). Commensal and pathogenic bacteria typically differ with respect to 

phylogenetic background and VFs profiles (Johnson and Stell 2000). These VFs can be grouped 

by functional category (Table 6). Characteristic ExPEC virulence factors include various adhesins 

(P, S and type 1 fimbriae among others), iron acquisition and utilization systems (aerobactin,  

salmochelin and yersinianbactin siderophores), protectins (structural components of the bacterial 

outer membrane), toxins (hemolysin, cytotoxic necrosis factor, autotransporter toxins), and 

biofilm formation factor (curli fimbriae, antigen 43 and UpaG), extracellular lipopolysaccharides, 

polysaccharide capsules, and serum resistance (Sarowska et al. 2019). These virulence factors 

facilitate colonization and invasion of the host, as well as avoidance or disruption of host defense 

mechanisms (Sarowska et al 2019). ExPEC strains were defined by Johnson et al. (2003) as E. 

coli isolates containing two or more of the following virulence markers: papA/papC, sfa/foc, 

afa/dra, kpsMTII, and iutA. Virulence genes (VGs) responsible for pathogenicity are usually 

encoded on pathogenicity islands (PAIs), plasmids, and other mobile genetic elements, and can 

thus be transmitted via horizontal gene transfer between various E. coli strains (Köhler and 

Dobrint 2011). Horizontal transfer can occur with PAIs (Hacker et al 1997; Hacker and Kaper 

2000; Oelschaeger et al. 2002; Gal-Mor and Finlay 2006). Futhermore, virulence genes may be 

exclusively chromosomal, such as pap and hly (encoding P fimbriae and hemolysin, respectively) 

or occurring in either location, such as afa/dra (coding for Dr antigen-specific adhesion) (Johnson 

2003).  
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Table 6 - Virulence factors of Extraintestinal Pathogenic Escherichia coli/or Uropthogenic Escherichia coli (adapted from Sarowska et al. 2019). 

Functional category Name Gene Function Reference 

Adhesin Dr binding adhesin Afa/draBC Adhesin, association with cystitis and pylenonephritis, invasion of 

urothelium 

Johnson 1991; Mulvey 2002; 

Sarowska et al. 2019 

 Blood group M fimbria bmaE Adhesin Johnson 1991 

 Type 1 fimbria fimH Adhesin, factor of colonization in extraintestinal infections, 

mediates binding to urothelium and invasion, role in IBC formation 

and biofilm formation 

Johnson 1991; Mulvey et al; 

1998; Wright et al. 2007; 

Sarowska et al. 2019 

 F1C fimbria focG Adhesion to renal epithelial cells and endothelial cells of the 

bladder and kidneys 

Mulvey et al. 2002 

 Iron-regulated gene A 

homologue adhesion 

iha Adhesin, siderophore function   Johnson et al 2000; Sarowska 

et al. 2019 

 Intimin-like factor 

adherence E. coli (FdeC) 

eaeH Adhesin, adhesion to mammalian cells and extracellular matrix Nesta et al. 2012 

 G fimbria gafD Adhesin Johnson 1991; Johnson and 

Stell 2000 

 P fimbria papAH Adhesin, mediate binding to urothelium, association with 

pylenonephritis  

Mulvey 2002; Sarowska et al. 

2019 

 S fimbria/F1C fimbria sfa/focDE Adhesin, association with cystitis and pylenonephritis  Mulvey 2002; Sarowska et al. 

2019 

Biofilm related Antigen 43 agn43 (flu) Adhesin, autotransporter, aggregation and biofilm related Ulett et al. 2007; van der 

Woude and Henderson 2008; 

Sarowska et al. 2019 

 Antigen 43, allele a 

CFT073 

agn43aCFT073 Adhesin, autotransporter, aggregation and biofilm related Ulett et al. 2007; van der 

Woude and Henderson 2008 

 Antigen 43, allele b 

CFT073 

agn43bCFT073 Adhesin, autotransporter, aggregation and biofilm related Ulett et al. 2007; van der 

Woude and Henderson 2008 

 Antigen 43, allele K12 agn43aK12 Adhesin, autotransporter, aggregation and biofilm related Ulett et al. 2007; van der 

Woude and Henderson 2008 
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 Curli fibers  cgsBAC/ 

cgsDEFG 

Adhesin, enable biofilm formation  Vidal et al. 1998; Chapman et 

al. 2002; Sarowska et al. 2019 

 Trimeric autotransporter 

adhesin (UpaG) 

upaG Adhesin, aggregation and biofilm formation Valle et al. 2008 

Iron uptake Heme transport protein chuA Enable using of Fe from hemoglobin in the host system Clermont et al. 2000; Sarowska 

et al. 2019 

 SitABCD operon sitABCD Iron acquisitin, periplasm iron binding protein Sarowska et al. 2019 

 Yersinian siderophore 

receptor 

fyuA Phenolate siderophore,uptake of ferric iron Henderson et al. 2009; 

Sarowska et al. 2019  

 Aerobactin iucABCD A mixed-type siderophore, acquisition of Fe2 + / 3 + in the host 

system 

Sarowska et al. 2019 

 Salmochelin siderophore 

receptor 

iroN Catecholate siderophore receptor, use of Fe ions obtained from 

the body host 

Johnson et al. 2000b; 

Henderson et al. 2009 

Sarowska et al. 2019 

 Iron-regulated element ireA Siderophore, uptake of ferric iron Russo et al. 2001; Henderson 

et al. 2009 

 Aerobactin siderophore 

receptor 

iutA Siderophore, uptake of ferric iron Henderson et al. 2009; 

Sarowska et al. 2019 

 CjrABC cjrABC Iron acquision, may contribute to urovirulence Mao et al. 2012 

Protectins/serum 

resistance 

Increased serum survival iss Outer membrane protein, resistance to serum bactericidal activity Johnson 1991; Johnson and 

Stell 2000 

 Group II capsule KpsM II Protect against phagocytosis, opsonisation and lysis Johnson 1991; Rama et al. 

2005 

 Group II capsule K2 KpsM II K2 Protect against phagocytosis, opsonisation and lysis Johnson 1991; Rama et al. 

2005  

 Group III capsule KpsM III Protect against phagocytosis, opsonisation and lysis Johnson 1991  

 Outer membrane protein omp Enable intracellular survival, evasion from the body’s defense Sarowska et al. 2019 

 Serum resistant traT Outer membrane protein, resistance to serum bactericidal activity Johnson 1991; Johnson and 

Stell 2000 
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Toxins Alpha hemolisin  hlyA Cell lysis, modulation of host signal pathways, tissue injury, 

exfoliation of urothelium.  

Johnson 1991; Michaud et al. 

2017; Sarowska et al. 2019 

 Cytolethal distending toxin cdtB Create abnormalities in host cell function or morphology, cell cycle 

arrest or lysis 

Johnson and Stell 2000 Fox et 

al. 2004; Ge et al. 2007; 

McAuley et al. 2007. 

 Cytotoxic necrotizing 

factor 1 

cnf1 Engaging in cell necrosis   Michaud et al. 2017; Sarowska 

et al. 2019 

 Serin protease 

autotransporter 

pic Protease involved in colonization, degrades mucins, facilitates 

colonization epithelium, damages of the cell membrane;  

Abreu et al. 2015; Abreu et 

al.2016; Sarowska et al. 2019 

 Vacuolating 

autotransporter toxin 

vat Proteolytic toxin, induces host cell vacuolization Parham et al. 2005; Nichols et 

al. 2016; Sarowska et al. 2019 

 Secreted autotransporter 

toxin 

sat Proteolytic toxin, create abnormalities in host cell function or 

morphology, cell cycle arrest or lysis 

Guyer et al 2000; Guyer et al 

2002; Sarowska et al. 2019 

 Plasmid encoded 

enterotoxin 

senB Its role is not yet clear Cusumano et al. 2010; Mao et 

al. 2012 

Miscellaneous Invasion of brain 

endothelium 

ibeA Invasion of endothelium  Johnson and Stell 2000 

 Arginine deiminase 

operon 

arcACBDR Increase fitness Billard-Pomares et al. 2019 

 Pathogenicity-associated 

island marker of CT073 

malX Maltose- and glucose-specific component IIa of a 

phosphoenolpuryvate-dependent phosphotransferase system. 

Encoding different VF, marker of PAIs  

Johnson and Stell 2000; 

Sarowska et al. 2019 

 Uropathogenic specific 

protein 

usp Putative bacteriocin Parret and De Mot 2002; Zaw et 

al 2013  
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1.8.1 Adhesins 

Bacterial adhesion ensures attachment to host cell surfaces and is the crucial step for the 

establishment of infection (Rangel et al. 2013). Bacterial adhesion by fimbrial adhesins contribute 

to virulence by directly triggering host and bacterial cell signalling pathways, which promove the 

delivery of bacterial products to host tissues and promotes bacterial invasion (Bien et al. 2012).  

The primary bacterial adherence factors are filamentous adhesive organelles known as 

fimbriae (pili), which are presented on bacterial surface or as afimbrial anchored within the 

bacterial outer membrane (Bower et al. 2005; Rangel et al. 2013). Fimbriae include type I fimbriae 

and P fimbriae which are present in about 90% and in 40-60% of the E. coli strains, respectively 

(Blanco et al. 1997; Miyazaki et al. 2002). Type 1 fimbriae is encoded by fim gene cluster and is 

highly conserved and commonly expressed by commensal and pathogenic E. coli strains and 

have affinity for structures containing mannose residues (classified as type 1) (Johnson et al. 

1991; Rangel et al. 2013; Sarowska et al. 2019). Furthermore, mannose resistant fimbriae are 

classified as type 2 (P, S and Dr fimbriae) (Table 6) (Källenius et al. 1981; Domingue et al. 1985; 

Connell et al.1996; Rangel et al. 2013; Sarowska et al. 2019).  

Type 1 fimbriae mediate the adhesion and also the invasion and internalization of 

uroepithelial cells and trigger Toll-like receptor 4 (TLR4) signalling pathway (Pizarro-Cerdá and 

Cossart 2006; Ragnarsdóttir et al. 2011). 

FimB and fimE are responsible for controlling the expression of type 1 fimbriae. Moreover, 

three other genes, such, fimF, fimG and fimH, are involved in the adhesive property and 

longitudinal regulation (Eto et al. 2007; Rangel et al. 2013; Sarowska et al. 2019). FimH adhesin, 

which is formed from FimA protein subunits, binds to uroplakin 1A receptor (UP1a) of bladder 

epithelial cells, allowing invasion and formation of biofilm-like intracellular structures (Eto et al. 

2007; Rangel et al. 2013; Sarowska et al. 2019).  

Regarding mannose-resistant fimbriae, P fimbriae genes are commonly found in UPEC 

strains and are encoded by pyelonephritis-associated pili genes cluster (pap gene cluster), which 

are encoded by eleven genes in the pap genes cluster (Bien et al. 2012; Sarowska et al. 2019). 

Moreover, P fimbriae mediates attachement through PapG adhesin and occurs in different 

molecular variants: PapGI, PapGII, PapGIII, with PapG III allele associated with bladder 

inflammation in women and children (Johnson et al 2000; Wiles et al 2008; Sarowska et al. 2019), 

and PapGII related to human bacteremia and pyelonephritis (Johnson et al. 2000; Lane and 

Mobley 2007; Bien et al. 2012; Sarowska et al. 2019).  

P fimbriae and type 1 fimbriae help bacteria bind and invade uroepithelial cells in the 

adverse conditions of the urinary tract (Bien et al. 2012; Sarowska et al. 2019).  

Regarding F1C fimbriae (foc), this fimbriae can bind β-GalNac-1, 4b-Gal residues on 

glycolipids expressed by epithelial cells of distal tubules and cells of the collecting ducts of the 

kidney, as well as by endothelial cells of the bladder and kidneys (Mulvey et al. 2002; Sarowska 
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et al. 2019). F1C fimbriae are genetically associated with S-type fimbriae (sfa) (Johnson 1991; 

Bien et al 2012; Sarowska et al. 2019). These two adhesins show a high degree of homology, 

but they differ in receptor specificity (Bien et al. 2012; Sarowska et al. 2019). S fimbriae adhesins 

recognize receptors containing sialic acid sugar moieties and have the capacity to agglutinate 

human erythrocytes (Johnson 1991). The sfa gene cluster consists of six subunits (sfaA, B, C, 

D, G, H and S) and the sfaA gene have information about the major subunit, and the sfaS gene 

have information about specific adhesion, which binds to the α-sialyl-(2,3)-β-Gal receptor in the 

renal tubular epithelial cells, renal glomeruli, or vascular epithelium (Bien et al. 2012; Sarowska 

et al. 2019). SfaS adhesin produced by the S fimbrial adhesion (sfa) mediates interactions with 

sialic acid receptors on renal epithelial and endothelial cells. Futhermore, S fimbriae allow 

invasion of pathogens to host tissues, and are often detected in strains responsible for ascending 

UTIs, including pyelonephritis (Bien et al. 2012; Sarowska et al. 2019) (Table 6). 

Other important group of superficial virulence factors, which are more prevalent among 

pyelonephritis and cystitis E. coli strains is the Afa/Dr family of adhesins, which contains both 

fimbrial adhesins (Frömmel et al. 2013) (Table 6). The afa-1 operon was the first determinant to 

be identified that encodes for afimbrial adhesins (AFA-I) (Labigne-Roussel et al. 1984; Servin 

2005). However, since then more genes of afa operon have been described, afa-2, afa-3 and 

afa-4 which encode for AFA-II, AFA-III and AFA-IV afimbrial adhesins, respectively (Servin 2005). 

The Dr adhesin family is composed of fimbiral and afimbrial structures on the surface of E. coli 

that bind to the Dr blood group antigen (Nowicki et al. 1990), a portion of the decay-acceleration 

factor (DAF), which is a membrane protein that prevents cell lysis by complement and are 

expressed on the surface of erythrocytes and cells of other tissues, such as the epithelium of the 

urinary tract (Nowicki et al. 1988; Nowicki et al. 1993; Servin 2005). Moreover, Adhesin Dr family 

has two other receptors (Westerlund et al. 1989; Nowicki et al. 1990; Servin 2005). One of them 

is the type IV collagen on basement membranes of kidneys (Westerlund et al. 1989; Nowicki et 

al. 1990; Servin 2005), Bowman´s capsule and bladder epithelium (Nowicki et al. 1990; Goluszko 

et al. 1997; Van Loy et al. 2002) and the other important receptor is the carcinoembryonic antigen 

related to cell adhesion molecules, which serves as a signal receptor regulating physiological 

changes and is related to the cell adhesion (Servin 2005). Adhesin Dr family encoding dra operon 

(draA, B, C, D and E) is required for expression of the mannose resistant haemagglutinin 

phenotype (Goluszko et al 1997; Servin 2005). Furthermore, afa and dra operons have very 

similiar genetic organization and are similar at DNA level. draA, B, C, D (afaA, B, C, D) genes 

encode helper proteins and draE/afaE determine the expression of genetic information and the 

production of adhesins (Servin 2005).  

E. coli assemble adhesive amyloid fibers termed curli at the bacterial cell surface that are 

involved in biofilm formation (Vidal et al. 1998; Chapman et al. 2002; Sarowska et al. 2019) and 

mediate binding to a variety of host proteins (Sjöbring et al. 1994; Ben Nasr et al. 1996). Biofilms 
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within the host are implicated in serious and persistent infectious diseases, including UTI chronic 

otitis media and cystic fibrosis (Donlan and Costerton 2002; Parsek and Singh 2003).  

Curli are thin coiled fibers, expressed on the surface of E. coli that bind some matrix and 

plasma proteins such as, fibronectin, laminin, plasminogen, tissue plasminogen activator, and H-

kininogen and proteins of the fibrinolytic and contact-phase systems (Sjöbring et al. 1994; Olsén 

et al. 1998). This capacity maybe facilitates the adaptation of curli-expressing bacteria to different 

niches in the infected host (Olsén et al. 1998). It has been shown that E. coli curli fibres in human 

plasma absorbs plasminogen and tissue plasminogen activator, leading to the formation of 

proteolytically active plasmin which may promote bacterial spreading through tissue degradation 

(Olsén et al. 1998; Antão et al. 2009). Moreover, curli fimbriae in E. coli consist of polymers of a 

single 15-kDa protein and are encoded on the csg (curlin subunit gene) gene cluster (Olsén et 

al. 1993; Gophna et al. 2001). The curli fibres requires expression of two differently transcribed 

operons (Olsén et al. 1993; Olsén et al. 1998), one which encodes the csgB, csgA and csgC 

genes, and a second which encodes csgD, csgE and csgG genes and are expressed by 

pathogenic and non-pathogenic E. coli strains (Hammar et al. 1995; Gophna et al. 2001; Antão 

et al. 2009). Curli fibres involves extracellular self-assembly of the subunit csgA, dependent on 

a specific nucleator protein csgB. CsgD is a transcriptional activator essential for expression of 

the two curli fibre operons, while csgG is an outer membrane lipoprotein involved in extracellular 

stabilization of csgA and csgB (Gophna et al. 2001; Antão et al. 2009). The expression of genes 

coding for curli is complex and involves some elements, such as H-NS, RpoS and OmpR and 

MlrA, which are involved in a reduction in the expression of curli fibres and in production and 

extracellular matrix formation (Gophna et al. 2001; Antão et al. 2009).  

Another group of adhesins associated with urovirulence is represented by the 

autotransporter (AT) subgroups of proteins, which represent the largest group of outer-

membrane and secreted proteins in Gram-negative bacteria, such as antigen 43 (Ag43) (Table 

6) (Heras et al. 2014). AT proteins are defined by a specific domain architecture that comprises 

an N-terminal signal sequence that directs secretion of the protein across the inner membrane 

via the general secretory pathway, a passenger (α43) domain that is either anchored to the cell 

surface or released into the external milieu and determines the functional characteristics of the 

protein, and a a C-terminal β-barrel domain that forms an integral outer membrane protein (β43) 

(Ullet et al. 2007; van der Woude and Henderson 2008; Heras et al. 2014).  

Ag43 protein is produced as a 1,039-amino acid preprotein incorporating an N-terminal 

signal peptide that directs translocation across the cytoplasmic membrane into the periplasm 

(Heras et al. 2014). The Ag43 is associated with cell aggregation and with biofilm formation 

(Danese et al. 2000; Klemm et al. 2004; Ullet et al. 2007; De Luna et al. 2008; Sarowska et al. 

2019). Ag43 (encoded by the flu gene) is a self-recognizing AT adhesin that confers characteristic 

surface properties on host cells, such as autoaggregation and a frizzy colony morphology (Ulett 
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et al. 2007). Furthermore, Ag43 is found in most E. coli pathotypes, including uropathogenic 

UPEC strains (Roche et al. 2001; Ulett et al. 2007; Heras et al. 2014). This protein is expressed 

on the surface of UPEC cells located within intracellular biofilm-like bacterial pods in the bladder 

epithelium, indicating that it may contribute to survival and persistence during prolonged infection 

(Ullet et al. 2007). Moreover, Ulett et al. (2007) addressed the role of the two agn43 alleles in 

UPEC isolate CFT073 and both are located on pathogenicity islands. The reference UPEC strain 

CFT073 contains two Ag43 variants (Ag43a and Ag43b) that share 85% sequence identity in the 

functional α-domain (Ulett et al. 2007; van der Woude and Henderson 2008). Futhermore, the 

predicted alpha-domain of their protein products (Ag43a and Ag43b) shares 81.7 and 78.4% 

amino acid identity, respectively, with the E. coli K12 Ag43 alpha-domain (Ag43c) (Ulett et al. 

2007; van der Woude and Henderson 2008). However, only Ag43a mediates strong aggregation 

and biofilm formation and long-term colonization of the mouse urinary tract (Ulett et al. 2007).  

A group of nonfimbrial adhesins that have the capacity to form stable trimeric structures 

(Trimeric AT proteins) on the bacterial cell surface has been described in E. coli and in another 

gram-negative bacteria (Roggenkamp et al. 2003; Surana et al. 2004; Valle et al. 2008). 

However, in E. coli few trimeric AT proteins have been characterized, including UpaG from 

CFT073, which promotes cell-to-cell aggregation, biofilm formation and adhesion to fibronectin, 

laminin and bladder epithelial cells (Valle et al. 2008). UpaG adhesin is characterized by a 

membrane-anchored C-terminal domain that forms a trimeric β-barrel pore and facilitates the 

translocation of a passenger domain (consisting of an extended stalk and an N-terminal head) to 

the bacterial cell surface via the type V secretion pathway (Valle et al. 2008).  

The virulence factors, such as curli fimbers, Ag43 and UpaG, which promote cell 

aggregation and especially the production of biofilms, are importante to increased resistance to 

antimicrobial agentes (Costerton et al. 1999; Ito et al. 2009; Mittal et al. 2015; Sharma et al. 

2016). 

 

1.8.2 Extracellular polysaccharides 

Extracellular polysaccharides, such as lipopolysaccharide (LPS) and capsule (K antigen), 

contribute to the virulence of many bacterial pathogens by providing resistance to phagocytosis 

and protecting against complement-mediated killing, which is often measured as serum 

resistance (Burns and Hull 1998; Burns and Hull 1999). LPS consists of the highly conserved 

lipid A-core and repeating O antigen subunits that differ greatly between strains based on the 

sugar residues and their linkage patterns within the repeating subunits (Sarkar et al. 2014). The 

lipid A-core and the O antigen subunits are assembled in separate pathways that come together 

for ligation at the inner membrane (Sarkar et al. 2014). For E. coli, at least 80 distinct 

polysaccharide capsules have been identified, and they have been divided into four major groups 

based on biochemical and genetic criteria (Whitfield 1999; Sarkar et al. 2014). Group 2 and 3 
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capsules are associated with ExPEC and protect against phagocytosis, opsonisation and lysis, 

thereby contributing to extraintestinal virulence (Johnson 1991; Johnson and O'Bryan 2004; 

Rama 2005). Furthermore, the group 2 (kpsMTII) capsular polysaccharides have been 

associated with UPEC strains (Johnson 1991; Roberts 1996; Rama 2005). The kpsMTII gene 

encodes proteins required for polymer translocation from its site of synthesis to the cell surface 

(Sarowska et al. 2019). 

 

1.8.3 Siderophores  

Iron is essential for microorganisms growth, such as bacteria and is involved in a variety 

of biological processes (Krewulak and Vogel 2008; Garénaux et al. 2011). Iron, as an electron 

carrier, plays a key role in basic cellular processes such as reduction of oxygen for synthesis of 

adenosine triphosphate (ATP), DNA replication, oxygen transport, gene regulation and peroxide 

reduction (Krewulak and Vogel 2008; Garénaux et al. 2011). Moreover, iron is built into the 

protein structure as a prosthetic group (Ratledge et al. 2000; Caza et al. 2011). To properly 

promote metabolic processes, share and display pathogenic properties, bacteria need access to 

Fe (Skaar 2010). However, in the mammalian host, free iron concentrations are very low and 

therefore bacteria have developed some strategies for stealing iron from the host (Braun 2001; 

Wiles et al. 2008). Bacteria developed mechanisms that enable them to acquire iron in the host 

body, thus survive and cause infection (Cherayil 2011). Some acquired iron mechanisms are 

from lactoferrin of lymph and mucosal infections, ferritin present in cells and heme of hemoglobin 

and myoglobin present in erythrocytes and serous transferrin (Braun 2001; Doherty 2007; 

Garénaux et al. 2011). Moreover, it has been demonstrated by Lau et al. (2016) that ExPEC 

strains have membrane pumps that transfer Fe to the cell interior, such as the FeoAB pump 

detected in commensal and pathogenic E. coli (Lau et al. 2016), SitABCD transporter (ABC type 

transporter, ATP-binding cassette) (Sabri et al. 2008), and Hma and ChuA transporters that 

enable Fe uptake directly from extracellular heme (Garénaux et al. 2011).  

The iron uptake systems can be divided into three main categories: heme acquisition 

systems, siderophore-based systems and receptor-mediated iron acquisition from host proteins, 

such as transferrin/lactoferrin receptors (Krewulak and Vogel 2008). These iron uptake pathways 

involve an outer membrane receptor, a periplasmic binding protein (PBP) and an inner 

membrane ATP-binding cassete transporter (Krewulak and Vogel 2008). In the heme acquisition 

systems, iron can be directly scavenged from ferritin and hemoglobin through outer membrane 

transport heme acquisition systems, such as, Hma and Chu (Garcia et al. 2011; Garénaux et al. 

2011; Gao et al. 2012). Regarding siderophore-based systems, siderophores (iron carriers) are 

secondary metabolites, with their primary function being to assist in capturing iron to maintain 

bacterial growth and development (Su et al. 2016) and are low molecular weight molecules with 
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high affinity and specific for ferric iron (Andrews et al. 2003), capture iron from environment and 

solubilize iron (Fe3+) prior to transport (Andrews et al. 2003; Wiles et al. 2008).  

Siderophores can be divided into different classes accordingly with their functional groups 

as catecholate (enterobactin (Ent)); phenolates, hydroxamic acids (aerobactin (IutA)), α-

hydroxycarboxylates, ferrienterobactin receptor (FepA), dihidroxy-benzylserine (Cir and Fiu), 

ferrichrome (FhuA), coprogen (FhuE), ferrioxamine B (FhuF) and citrate (FecA) (Guerinot et al. 

1994; Sarowska et al. 2019). Moreover, some siderophores can increase ExPEC virulence, such 

as, enterobactin and salmochelin (catecholate siderophores), yersiniabactin (phenolate 

siderophore), and aerobactin (a mixed type siderophore) (Sarowska et al. 2019).  

Salmochelin is encoded by the iroBCDEN gene cluster located on ColV or ColBM 

virulence plasmids or identified on PAIs (Bister et al. 2004; Johnson et al. 2006; Sarowska et al. 

2019). Furthermore, IroB is the gene with glycosyltransferase activity for salmochelin production, 

which leads to glycosylation of enterobactin that changes its properties from strongly hydrophobic 

to hydrophilic and this change may contribute to the virulence of ExPEC (Dobrindt et al. 2001; 

Hantke et al. 2003). The iroN gene is an ExPEC salmochelin marker and an important virulence 

gene in pathogenic ExPEC strains (Olesen et al. 2013).  

ExPEC may include another type of siderophore, such as yersiniabactin, this siderophore 

contributes to the pathogenicity of UPEC, especially during colonization of the urinary tract and 

may protect bacterial cells against host immune response (Fetherston et al. 2010; Caza et al. 

2011; Garénaux et al. 2011). Yersiniabactin (Ybt) is a mixed-type siderophore -dependent iron 

transport system that is encoded in a chromosomal high-pathogenicity Island (HPI), that 

containing genes for its biosynthesis, transport, and regulation (Chaturvedi et al. 2012). It may 

have additional functions such as a chelator of additional metals, including copper and zinc 

(Chaturvedi et al. 2012). Moreover, UPEC strains appear to use yersiniabactin’s copper-binding 

properties as a mechanism to resist copper toxicity (Bobrov et al. 2014; Holden and Bachman 

2015). Some epidemiological studies have suggested that strains of E. coli that progress from 

bladder infection to the kidney are more carriers of the fyu gene (Snyder et al. 2004; Mabbet et 

al. 2009). 

Aerobactin is another siderophore characteristic for ExPEC and this siderophore is also 

encoded by ColV and ColBM virulence plasmids of ExPEC (Johnson et al. 2006; Garénaux et al 

2011). Furthermore, E. coli have different combinations of iron acquisition systems and the major 

advantages of this in UPEC are likely to reflect the ability to successfully compete for iron against 

the host and other bacteria (Watts et al. 2012). 

 

1.8.4 Toxins  

Toxins play an important role during an infection as they contribute to the spreading of 

the bacteria in tissues, induce an inflammatory response and increase cytotoxicity (Vila et al. 
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2016; Swaroska et al. 2019). These virulence factors were often used to classify ExPEC isolates 

(Mars et al. 2005). The most frequently detected genes encoding toxins in ExPEC, include: hlyA 

(alfa-hemolysin), cnf1 (cytotoxic necrotizing factor 1), sat (secreted autotransporter toxin), pic 

(protease involved in colonization), vat (vacuolating autotransporter protein), cdtB (cytolethal 

distending factor), and senB (Enterotoxin Tie protein) (Table 6) (Johnson 1991; Mao et al. 2012; 

Vila et al 2016; Sawroska et al. 2019). 

The alfa-hemolysin (HlyA), is cytotoxic to a wide range of cells and causes serious tissue 

damage during UTIs (Sawroska et al. 2019). The hlyA gene is located in the operon hlyCABD 

and this can be located in plasmids or on the chromosome (Johnson 1991). HlyA intoxication 

also stimulated caspase activation, which occurred independently of effects on host serine 

proteases. HlyA-induced proteolysis of host proteins likely allows UPEC to not only modulate 

epithelial cell functions, but also disable macrophages and suppress inflammatory responses. 

(Sawaroska et al. 2019). Moreover, HlyA alters the cytoskeleton of urothelial cells resulting in 

shedding of bladder urothelium and disruption of urothelial barrier function, induce kidney 

inflammation and injury and is an important virulence factor in pyelonephritis (Michaud et al. 

2017; Sawaroska et al. 2019). HlyA is expressed in 40% of cystitis and about 49% of 

pylelonephritis human clinical isolates (Yamamoto et al. 1995; Michaud et al. 2017). This 

virulence factor is produced in the inactive form of pro-HlyA and undergoes a maturation process 

through HlyC (acetyltransferase) (Johnson 1991). Furthermore, in the gut, HlyA mediates the 

formation of focal leaks within colonic epithelial cells and can thereby promote the paracellular 

translocation of bacteria (Sawaroska et al. 2019). 

The protein toxin Cytotoxic Necrotizing Factor 1 (CNF1) is an important virulence factor 

of pathogenic E. coli isolates and is expressed in 31–44% of cystitis and 36–48% of 

pyelonephritis human clinical UPEC isolates (Mitsumori et al. 1999; Yamamoto et al.1995; 

Andreu et al. 1997; Michaud et al. 2017). CNF1 it belongs to a family of single chain AB-toxins, 

which enter mammalian cells by receptor-mediated endocytosis (Reppin et al. 2017; Sawaroska 

et al. 2019). CNF1 has been shown to activate Rho GTPases, contribute to urothelial cell 

invasion, induces stress fiber formation in endothelial cells to promote bacterial invasion and 

have cytotoxic effects on urothelium (Doye et al. 2002; Michaud et al. 2017; Saworoska et al. 

2019). The toxicity of CNF1 is due to its ability to activate the Rho family GTPases, which promote 

activation of host cells membrane, and DNA replication in absence of cell division (Michaud et 

al. 2017). Rho family GTPases are molecular switches, which are tightly controlled by three 

groups of proteins: guanine nucleotide exchange factors (GEFs), which activate Rho proteins by 

GDP/GTP-exchange; GTPase-activating proteins (GAPs), which stimulate GTP hydrolysis and 

thereby control the inactivation of Rho GTPases; and guanine nucleotide dissociation inhibitors 

(GDIs), which predominantly bind the inactive form of Rho GTPases and block the nucleotide 

exchange (DerMardirossian et al. 2005; Reppin et al. 2017). Futhermore, CNF1 and HlyA are 
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normally detected in UPEC isolates and are co-expressed as closely linked genes (Falbo et al. 

1992; Bigen-Bidois et al. 2002; Michaud et al. 2017). However, regarding hemolytic isolates from 

ExPEC infection, such UTI, a large proporcion of isolates encode also the cnf1 gene, but is rarely 

detected in non-hemolytic UPEC isolates (Michaud et al. 2017). HlyA and CNF1 are also 

virulence factors frequently detected in E. coli isolates from companion animals with UTI (Féria 

et al. 2001; Siqueira et al. 2009; Mateus et al. 2013).  

Regarding the cytolethal distending toxins (CDTs), these toxins were initially identified in 

E. coli from children with diarrhoea (Johnson and Lior 1987), however in the last years have been 

isolated also from humans with sepsis and urinary tract infection (Hinenoya et al. 2017). CDTs 

are encoded by cdt genes and have DNase activity leading to cellular and nuclear distension, 

resulting in irreversible cell cycle arrest and apoptosis of target cells (Meza-Segura et al. 2017). 

CDT of E. coli is divided into five types (CDT-I to CDT-V) based on differences in nucleotide 

sequences and its genomic location (Hinenoya et al. 2017; Meza-Segura et al. 2017). 

CDTs are heterotrimeric holotoxins, consisting of CdtA, CdtB and CdtC subunits, and 

induce distention and death of certain cultured eukaryotic cell lines by arresting the cell cycle 

irreversibly at the G1 or G2 phase (Jinadasa et al. 2006; Yamasaki et al. 2006; Hinenoya et al. 

2017). CdtB is the active subunit which can cause damage to the DNA through its DNase activity, 

while CdtA and CdtC subunits are responsible for binding to target cells and intracellular delivery 

of the CdtB subunit (Lara-Tejero and Galan 2001; Fedor et al. 2013; Hinenoya et al. 2017). CDT 

intoxication of epithelial cells leads to nuclear and cytoplasmic distension, formation of actin 

stress fibres and nuclear fragmentation, resulting in irreversible cell cycle arrest and death of 

target cells (Fedor et al. 2013; Grasso et al. 2015; Taieb et al. 2016; Meza-Segura et al. 2017). 

It has been considered that CDT is associated with colonization and invasion of the bacteria 

(Johnson and Stell 2000; Fox et al. 2004; Ge et al. 2007; McAuley et al. 2007). 

The secreted enterotoxin TieB, encoded by the virulence gene senB, plays a role in the 

development of severe diarrhoea in patients infected by enteroinvasive E. coli (EIEC) strains 

(Nataro et al. 1995). The senB gene has been found on a large conjugative plasmid which may 

facilitate its dissemination among bacteria (Nataro et al. 1995) and located downstream to the 

cjrABC operon (for colicin Js receptor) (Smajs and Weinstock 2001). The cjrABC operon 

encodes for proteins that have been described to be involved in colicin Js uptake (Smajs and 

Weinstock 2001). Colicin Js is a polypeptide toxin and bind to bacterial receptors whose primary 

function is often to facilitate the uptake of nutrients, such as, vitamin B12 and may be be involved 

in iron acquisition (Smajs and Weinstock 2001), which may contribute to urovirulence (Mao et al. 

2012). SenB gene has been found in UPEC isolates from humans and it has been associated 

with the phylogenetic group D (Cusumano et al. 2010; Mao et al. 2012). However, its role in UTIs 

is not clear until now. 
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Regarding the AT proteins, these proteins are a large family of proteins from the Order 

Enterobacterales that are translocated by a dedicated type V secretion system, also known as 

the autotransporter pathway (Dautin et al. 2010; Ruiz-Perez and Natarro 2014; Abreu et al. 2015; 

Abreu et al. 2016) and are normally associated with virulence functions (adhesion, aggregation, 

invasion, biofilm formation and toxicity) (Dautin et al.2010; Ruiz-Perez et al. 2014; Abreu et al. 

2015; Abreu et al. 2016). AT translocation requires proteins, such the β-barrel assembly module 

and the translocation and assembly module (leva and Bernstein 2009; Sauri et al. 2009; Selkring 

et al. 2012). These proteins display the typical features of autotransporters: an N-terminal signal 

sequence, a passenger domain secreted into the extracellular medium and a C-terminal β-barrel 

domain involved in protein translocation through the outer membrane (Toloza et al. 2015). 

Furthermore, AT proteins consist of three main groups according to their structure, activity, and 

phylogenetic criteria: (1) a signal peptide that targets the protein to the secretory apparatus for 

inner membrane translocation; (2) a passenger domain that comprises the functional domain of 

the protein, and (3) a translocator domain that inserts into the outer membrane (Nichols et al. 

2016). One major subgroup of AT proteins is the serine protease AT proteins of Enterobacterales 

(SPATEs) (Abreu et al 2015; Abreu et al. 2016; Nichols et al.2016). SPATEs are characterized 

by the presence of an immunoglobulin A1-like protease domain (PF02395) within the passenger 

domain that contains the conserved serine protease motif GDSGS (Yen et al. 2008; Dautin 2010; 

Nichols et al. 2016). Moreover, SPATEs can be phylogenetically grouped into two classes: class 

1, which represent the major group of AT proteins and have cytotoxic activity (Henderson et al. 

1999; Guyer et al. 2000; Dutta et al. 2002) and class 2, that comprises non-cytotoxic proteins 

with roles in colonization and immunomodulation (Toloza et al. 2015). This class recognize a 

more diverse range of substrates, such mucins (Yen et al. 2008; Ruiz-Peres and Natarro 2014; 

Nichols et al.2016) and immunomodulatory proteins (Ruiz-Perez et al. 2011; Nichols et al. 2016).  

The serine protease autotransporters of the Enterobacterales represent a large family of 

virulence factors, which members resemble those belonging to the trypsin-like superfamily of 

serine proteases (Henderson et al. 2004; Abreu et al. 2015; Abreu et al. 2016). The serine 

protease autotransporters can be divided into two classes: classe 1-cytotoxins group and class 

2- lectin-like immunomodulators group (Dautin 2010; Ruiz-Perez and Natarro 2014; Abreu et al. 

2016). One important member of the class 2 is the protein involved in intestinal colonization (Pic), 

which was originally identified in cultures of EAEC isolates (Henderson et al. 1999; Abreu et al. 

2015; Abreu et al. 2016), Shigella flexneri (Rajakumar et al. 1997; Abreu et al. 2016), UPEC 

isolates (Parham et al. 2004) and the hybrid EAEC/Shiga toxin-producing E. coli (serotype 

O104:H4) (Rasko et al. 2011; Munera et al. 2014; Abreu et al. 2016). Pic presents proteolytic 

activity on mucin and induces mucus hypersecretion (Henderson et al. 1999; Dutta et al. 2002; 

Gutiérrez-Jiménez et al. 2008; Navarro-Garcia et al. 2010; Abreu et al. 2015; Abreu et al. 2016) 

contributing to the mucosal colonization by enteroaggregative E. coli (EAEC) strains. Several 
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biological roles for Pic were described, including, serum resistance, hemagglutination, 

degradation of coagulation factor V, mucinolytic activity and cleavage of surface glycoproteins 

involved in leukocyte trafficking, migration, and inflammation (Henderson e al. 1999; Dutta et al. 

2002; Parham et al. 2004; Gutiérrez-Jiménez et al. 2008; Ruiz-Perez et al. 2011; Abreu et al.205; 

Abreu et al. 2016; Sarowska et al. 2019). Furthermore, Pic-producing Enterobacteriales can 

disrupt the epithelial barrier, causing bacterial persistence, invasion, migration into the urinary 

tract, and the ability to cause bacteremia and sepsis (Abreu et al. 2015). Furthermore, Pic also 

promotes intestinal colonization of mice and rabbits, causing mucus hypersecretion and an 

increase in the number of mucus-producing goblet cells (Harrington et al. 2009; Navarro-Garcia 

et al. 2010; Munera et al. 2014).  

The vacuolating autotransporter toxin (Vat) is a cytotoxin of class 2, which contributes to 

UPEC fitness during systemic infection (Nichols et al. 2016). This toxin has been shown to be 

most prevalent in ExPEC isolates from the B2 phylogenetic group of the ECOR collection 

(Parham et al. 2005). Furthermore, a high prevalence of this toxin has been observed in B2 

isolates, with similar prevalences among cystitis, pyelonephritis, prostatitis, and bloodstream 

isolates (Parham et al. 2005; Nichols et al. 2016; Sarowska et al. 2019). Moreover, also has been 

associated with avian pathogenic E. coli (APEC) strains (Spurbeck et al. 2012; Zhao et al. 2015; 

Paixão et al. 2016). 

 In addition to the Pic and Vat proteins, other serine protease autotransporter is 

associated with urinary tract infection isolates of E. coli, the secreted autotransporter toxin (Sat). 

Sat is a vacuolating cytotoxin, causes cytopathic effects on various cell types and damage to 

kidney epithelium during upper urinary tract infection (Guyer et al. 2002). Sat protein is expressed 

significantly more often by E. coli isolates associated with the clinical symptoms of acute 

pyelonephritis than by fecal isolates from humans (Guyer et al. 2000). The native Sat protein 

(142 kDa) includes the three characteristic domains of SPATE proteins. The mature Sat protein 

(107 kDa) was shown to have a cytopathic effect on various cell lines (Guyer et al. 2000; Guyer 

et al. 2002) and to elicit glomerular damage and a vigorous antibody response in mice 

transurethrally infected with E. coli CFT073. Furthermore, the sat gene was detected in PAIICFT073 

(Guyer et al. 2000, Maroncle et al. 2006). 

Maroncle et al (2006) demonstrate that the serine protease active site of Sat is necessary 

for protease and cytotoxic activities, contraction of the cytoskeleton, and loss of actin in cultured 

human bladder and kidney cells but not for the processing or the release of the toxin from the 

bacterial surface (Maroncle et al. 2006). Futhermore, wild-type Sat is able to degrade specific 

membrane/cytoskeletal and nucleus-associated proteins (Maroncle et al. 2006). Moreover, the 

cytoskeletal effects mediated by Sat on urinary epithelial cells are associated with the 

degradation of fodrin (nonerythrocyte spectrin). Fodrin/spectrin is involved in stabilizing 

membrane structures, maintaining cell shape, and linking actin filaments with the plasma 
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membrane (Coleman et al., 1989, Beck and Nelson 1996; Maroncle et al. 2006). Alteration of the 

cytoskeleton may be the major mechanism for the host cell cytopathic effects caused by Sat toxin 

(Maroncle et al. 2006). Some in vitro studies demonstrate that Sat from UPEC strains displays 

proteolytic activity on casein, spectrin, fodrin and coagulation factor V, but Mucin, and IgA were 

not degraded (Guyer et al. 2000; Dutta et al.2002; Maroncle et al. 2006). Furthermore, in some 

cellular models of kidney, bladder and undifferentiated epithelial cells, Sat toxin promotes 

vacuolization, autophagy and cell detachment (Guyer et al. 2002; Liévin-Le Mola et al. 2011; 

Toloza et al. 2015). 

 

1.8.5 Other virulence factors  

Other important virulence factors that have been associated with ExPEC and/or UPEC 

are the arginine deiminase operon (arcACBDR operon); the invasion of brain endothelium; the 

Pathogenicity-asociated island marker of CFT073; the uropathogenic specific protein (usp) and 

the E. coli commom pilus (ecp) (Table 6).  

The arginine deiminase operon (arcACBDR operon), which encodes proteins involved in 

an arginine deiminase pathway. This pathway comprises three reactions catalyzed by arginine 

deiminase, ornithine transcarbamoylase, and carbamate kinase (encoded by arcA, arcB, and 

arcC, respectively), resulting in the conversion of arginine into ornithine, NH3, CO2, and the 

production of ATP (Abdelal 1979; Billard-Pomares et al. 2019). The arcACBDR operon also 

contains genes encoding the ArgR and ArcD proteins, involved in the regulation of the operon 

and transport of arginine, respectively (Cunin et al. 1986).  

Epidemiological studies showed that the arcACBDR operon is associated with the 

production of ESBLs, such CTX-M-producing E. coli isolates and increased over time (Billard-

Pomares et al. 2019). This operon is highly mobile and can be found in a region framed by diverse 

ISs and carried by various genetic supports, such IncFII plasmids and various regions of the 

chromosome (Billard-Pomares et al. 2019). Furthermore, Billard-Pomares et al. (2019) 

demonstrate in a mouse UTI model, that an E. coli strain with the arcACBDR operon can use 

arginine as a carbon source. Moreover, this study shows complex gene-by-environment 

interactions in which the presence of the arcACBDR operon can be advantageous or not, 

depending on the organ and physiology (Billard-Pomares et al. 2019).  

  The E. coli common pilus (ecp), encoded by the ecpRABCDE operon, is an extracellular 

adhesive fiber first documented in association with E. coli isolates causing newborn meningitis 

and septicaemia (NMEC), where it was originally named the Mat (meningitis-associated and 

temperature-regulated) fimbriae (Pouttu et al. 2001). However, further studies have revealed that 

the ecp operon is ubiquitous across E. coli, making it the most common fimbrial structure in both 

commensal and pathogenic isolates (Pouttu et al. 2001; Rendón et al. 2007; Blackburn et al. 

2009; Saldaña et al. 2009; Avelino et al. 2010;) and that ecp plays a dual role in early-stage 
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biofilm development and host cell recognition (Lehti et al. 2010). The majority of ecp is composed 

of a unique ∼18-kDa protein called ecpA (Pouttu et al. 2001). This pilus playing a role in the 

adhesion of E. coli to the intestinal epithelium and the colon functions are act as a reservoir that 

can be responsible for the recurrent UTIs and allows some mechanisms to evade the immune 

system from their hosts (Rendón et al. 2007; Narciso et al. 2012). Furthermore, the ecpA gene 

is kept in intestine and can confer protection to antimicrobials, which can reduce the therapeutic 

options and the dissemination of ESBLs (Rendón et al. 2007; Narciso et al. 2012). 

The uropathogenic specific protein (usp) and three OrfU proteins (OrfU1, OrfU2 and 

OrfU3) are encoded in the putative small pathogenicity island which is closely associated with 

UPEC (Parret and De Mot 2002; Zaw et al. 2013). Although homology analysis revealed that Usp 

and OrfUs have a homology with nuclease-type bacteriocins, which possess H-N-H nuclease 

motif, and immunity proteins respectively (Parret and De Mot 2002; Zaw et al. 2013). The H-N-H 

motif is known as a divalent metal ion binding, nucleic acid cleavage-module consisting of 30 to 

40 amino acid residues. This motif could be observed in various types of nucleases represented 

by nuclease-type bacteriocins (Cheng et al. 2002; Walker et al. 2002) and intron-encoded homing 

endonucleases (Chevalier and Stoddard 2001). The C-terminal region of usp shows the 

homology to H-N-H motif (Parret and De Mot 2002). However, the H-N-H motif conserved in the 

C-terminal region of the Usp was indispensable for its nuclease activity, indicating usp is the new 

family member of H-N-H nuclease superfamily. Although, the usp gene was reported to be more 

frequently associated with UPEC strains than fecal E. coli isolates and enhance the infectious 

potential of E. coli strains in mouse pyelonephritis model, suggesting that may play a role in 

UPEC pathogenesis (Yamamoto et al. 2001). This gene is a genotoxin active against mammalian 

cells associated with isolates from pyelonephritis, prostatitis, bacteremia of urinary tract origin 

(Kurazono et al. 2000; Bauer et al. 2002; Ostblom et al. 2011; Črnigoj et al. 2014) and can 

induces a response characteristic of apoptosis (Nipič et al. 2013; Črnigoj et al. 2014). However, 

there is a possibility that usp also participates in infections outside of urinary tract 

because usp gene can be detected in some non-UPEC isolates (Zaw et al. 2013). However, the 

usp protein role and mechanisms of action, are not clear until now. 

 

1.9 International high risk-clones of multidrug-resistant Escherichia coli 

International multidrug-resistant (MDR) high-risk clones have a global distribution and can 

remain viable for prolonged time periods in diverse areas (Mathers et al. 2015b) and have been 

a leading cause of human community acquired infection and animal infections worldwide, 

including UTIs (Ewers et al. 2014; Marques et al. 2016; Marques et al. 2018).  

Classification as an international multidrug-resistant high-risk clone, clones requires some 

criteria: (i) have a global distribution, (ii) an association with multiple antimicrobial resistance 

determinants, (iii) have the ability to colonize and persist in hosts for over 6 months, (iv) be 
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capable of effective transmission among hosts, (v) have enhanced pathogenicity and fitness and 

(vi) have the ability to cause severe and/or recurrent infections (Mathers et al. 2015b). 

International clones of MDR E. coli strains belonging to sequence types (STs) E. coli 

ST38, ST69, ST131, ST155, ST393, ST405, and ST648. These clones have been emerging as 

a versatile prototype of MDR pathogens for human and animal hosts (Mathers et al. 2015b). 

 

1.9.1 Escherichia coli clonal group, sequence type 131  

MDR ESBL-producing E. coli ST131 is a high-risk ExPEC lineage that has spread 

explosively throughout the world (Rogers et al. 2011; Colpan et al. 2013; Banergee and Johnson 

2014; Nicolas-Chanoine et al. 2014; Mathers et al. 2015; Pitout and Devinney 2017; Kondratyeva 

et al. 2020) mostly by patient-to-patient and food spread (Platell et al. 2011). This lineage 

colonizes healthy humans and animals (Nicolas-Chanoine et al. 2014) and is the causative 

pathogen of urinary tract and blood stream infections (Manges et al. 2009; Roger et al. 2011; 

Kudinha et al. 2013; Banergee and Johnson 2014; Nicolas-Chanoine et al. 2014; Mathers et al. 

2015; Johnson et al. 2017; Kanamori et al. 2017 Pitout and Devinney 2017; Kondratyeva et al. 

2020). 

It was first identified in 2008 on different continents, such as in Norh America, Europe, 

Asia, Africa and Oceania (Coque et al. 2008; Lau et al. 2008; Nicolas-Chanoine et al. 2008; 

Nicolas-Chanoine et al.  2014), belongs to phylogroup B2 and are serotype O16:H5 or O25b:H4 

(Nicolas-Chanoine et al.  2014) (Figure 7). 

 

 

Figure 7: Global dissemination of Escherichia coli ST131 clone until 2013 (adapted from Nicolas-
Chanoine et al.  2014). 

Legend: Red color indicate isolates producing ESBL enzymes, and blue color indicate fluoroquinolone-resistant, non-
ESBL-producing isolates. 
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E. coli ST131 is recognized as the major E. coli lineage responsible for the spread of 

MDR and in specific CTX-M ESBL genes (Mathers et al. 2015b; Doi et al. 2017; Manges et al. 

2019; Kondratyeva et al. 2020). The global expansion of this lineage is driven by spread of two 

major fluoroquinolone-resistance (FQ-resistant) clades which possess fimH30 allele - H30R/C1 

(clade C1) and H30Rx/C2 (clade C2), where the later harbours blaCTX-M-15 ESBL gene (Price et 

al. 2013; Nicolas-Chanoine et al. 2014; Johnson et al 2016b; Stoesser et al. 2016; Pitout and 

DeVinney et al. 2017). The major CTX-M genes described in clade С1 were CTX-M-14 and −27 

alleles of the CTX-M-9 group (Matsumura et al. 2016), with this later allele- C1-M27 (Matsumura 

et al. 2016), recognized as a new subclade with global occurrence (Ghosh et al. 2017; Merino et 

al. 2018). Moreover, there are other two ST131 subclones less frequently expanded: H22 

(clonotype CH40-22, clade B) and H41 (clonotype CH40-41, clade A). Isolates of subclone H41 

usually belong to serotype O16:H5 (Price et al. 2013; Olesen et al. 2014; Peirano et al. 2014; 

Matsumura et al. 2017). Furthermore, plasmid associations in ST131 clades connected CTX-M-

15-encoding IncF [F2:A1:B-] (FAB formula) plasmids to clade C2 (Price et al. 2013; Johnson et 

al. 2016; Stoesser et al. 2016; San Millan et al. 2018; Kondratyeva et al. 2020) and non-CTX-M-

15-encoding IncF [F1:A2:B20] plasmids to clade C1 (Johnson et al. 2016b; Pitout and DeVinney 

2017). Generally, clades A and B are fluoroquinolone (FQ) susceptibility and rarely carry ESBL 

plasmids, while most isolates of clade C are FQ-resistant. Clade B evolved into clade C by 

acquisition of several prophages, genomic islands, the fimH30 allele and mutations within gyrA 

and parC genes, mainly during the late 1980s (Stoesser et al. 2016; Pitout and DeVinney 2017; 

Kondratyeva et al. 2020). The population structure of the E. coli ST131 fimH30 lineage, H30 

sublineages, and other ST131-associated lineages is illustrated in Figure 8. 

 

 

 

Figure 8: Population structure of the Escherichia coli ST131 fimH30 lineage, H30 sublineages, 
and other ST131-associated lineages (adapted from Mathers et al. 2015a).  

Legend: FQ-R, fluoroquinolone resistant; FQ-S, fluoroquinolone susceptible. 

https://www.nature.com/articles/s41598-019-56763-7#ref-CR3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646471/#B44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646471/#B40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646471/#B41
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646471/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646471/#B49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646471/#B43
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In addition, considering the content of virulence genes, ST131 isolates can be classified 

into different virotypes (Table 7) (Blanco 2013; Nicolas-Chanoine et al. 2014). 

 

Table 7: Virulence-gene scheme for defining ST131 Escherichia coli virotypes (adapted from 
Nicolas-Chanoine et al. 2014). 

Virotype Virulence factor-encoding gene 

 afa/draBC afa 

operon 

iroN sat ibeA papGII cnf1 hlyA papGIII cdtB 

A + + − +/− − − − − − − 

B − − + +/− − − − − − − 

C − − − + − − − − − − 

D +/− +/− +/− +/− + − +/− +/− +/− +/− 

E − − − + − + + + − − 

Legend: +, positive PCR result; −, negative PCR result. afa/draBC, Afa/Dr adhesins; afa operon,; iroN, catecholate 
siderophore receptor; sat, secreted autotransporter toxin; ibeA, invasion of brain endothelium; papGII, allele II of papG 
gene; cnf1, cytotoxic necrotizing factor type 1; hlyA, alpha-hemolysin; papGIII, allele III of papG gene; cdtB, cytolethal 
distending toxin; neuC-K1, K1 variant of group II capsule. 

 

ST131 isolates have also been detected in nonhuman sources such as companion 

animals, wildlife, avian, primate, food sources, and in environment sources (Platell et al. 2011; 

Vignaroli et al. 2013; Pomba et al. 2014b; Jamborova et al. 2018; Finn et al. 2019). The first 

report of an animal source of E. coli ST131 was published by Pomba et al. (2009) and concerned 

a dog suffering from a UTI in Portugal. The isolate obtained from the dog was resistant to FQ 

and harbored the blaCTX-M-15, qnrB2, and aac (6′)-Ib-cr genes on an IncFII plasmid (Pomba et al. 

2009). This finding was interpreted as indicating the possible entry of the emerging, virulent 

human ST131 clone into the animal population, due to the proximity between companion animals 

and their owners, facilitating human-to-animal transfer and vice-versa (Nicolas-Chanoine et al. 

2014). Furthermore, until now there have been very few reports on E. coli ST131 from companion 

animals (Table 8). 
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Table 8: Escherichia coli ST131 in companion animals (adapted from Nicolas-Chanoine et al. 
2014). 

Country Study 

period 

Study design ST131 

isolates/

total 

FQR ESBL/AmpC 

genes in 

ST131 

Sublineage Reference 

Portugal 2004-

2006 

61 UTI E. coli 

isolates among 41 

clinical dogs and 20 

cats.  

1/61 Yes CTX-M-15 NA Pomba et al., 

2009; Pomba et 

al. 2014, 

United 

States 

NA Dogs and cats in 

the same household 

(index case plus 

colonization) 

3/6 Yes No NA Johnson and 

Clabots 2006 

France 2006-

2010 

19 ESBL-producing 

E. coli isolates 

among 518 clinical 

dogs and cats 

1/19 Yes CTX-M-14 NA Dahmen et al. 

2013 

Europe (8 

countries, 

mainly 

Germany) 

2008-

2009 

177 ESBL-

producing E. coli 

isolates (mostly 

cats, dogs, horses) 

10/177 Mostl

y yes 

Mostly CTX-M-

15 

NA Ewers et al. 

2010 

Japan 2011 33 cefazolin 

resistant ExPEC 

isolates, dogs and 

cats 

4/33 ND CTX-M-27 NA Harada et al. 

2012 

Switzerland 2010-

2011 

107 UTI E. coli 

isolates, 59 dogs 

and 40 cats, 4 with 

ESBL/AmpC-

producing E. coli 

isolates 

0/107 NA NA NA Huber et al. 

2013 

Korea 2006-

2007 

628 E. coli, 422 

stray and 206 

hospitalized dogs, 

34 carrying 

ESBL/AmpC-

producing E. coli 

isolates. 

0/34 NA NA NA Tamang et al. 

2012 

Netherlands 2007-

2009 

2700 clinical 

Enterobacteriales 

isolates from mostly 

dogs, cats, and 

horses, 65 carrying 

ESBL/AmpC-

1/65 Yes CTX-M-15 NA Dierikx et al. 

2012 



 

 57 

producing E. coli 

isolates 

Kenya 2009 49 ESBL-producing 

E. coli isolates, dog 

and cat carriers 

3/49 Yes CTX-M-15 NA Albrechtova et 

al. 2012 

Japan 2015 178 E. coli isolates 

from dogs and cats 

from urine, pus and 

others 

15/178 Yes CTX-M-15 

CTX-M-27 

H30R 

H30Rx 

H30 

Kawamura et al. 

2017 

Legend: UTI, urinary tract infection; ESBL, extended-spectrum β-lactamase; FQr, fluoroquinolone resistant; AmpC, 
cephalosporinase; ExPEC., extraintestinal pathogenic E. coli; NA, not available; ND, not determined. 

 

1.9.2 Escherichia coli clonal group, sequence type 648 (ST648) 

E. coli isolates belonged to the international high-risk clone sequence type ST648, has 

been described in human infections harbouring several β-lactamases, which has contributed to 

the spread of CTX-M-, CMY-2-, NDM-, OXA-48-, and MCR-1-type encoding genes (Poirel et al., 

2018; Marques et al. 2018). Furthermore, fluoroquinolone resistant strains of ST648 also 

acquired resistance to the tetracycline derivative tigecycline via expression of efflux pump AcrAB-

TolC (Sato et al. 2016).  

This E. coli lineage has emerged as a pandemic clone, being globally reported in humans 

and companion animals (healthy and diseases) in Asian, European, American and Oceania 

countries (Tamang et al. 2012; Huber et al. 2013; Ewers et al. 2014; Toleman et al. 2015; 

Gonçalves et al. 2016; Li et al. 2017; Liu et al. 2016; Solgi et al. 2017; Marques et al. 2018; 

Sellera et al. 2018; Fernandes et al. 2018b). The distribution of ESBL/AmpC-producing ST648 

strains among companion animals, are an important source of human infections and vice-versa. 

Yet, have been very few reports on E. coli ST648 from companion animals (Table 9). 
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Table 9: Escherichia coli ST648 in companion animals. 

Country Study 

period 

Study design ST648 

isolates 

/total 

ESBL/AmpC 

genes in ST648 

Reference 

South 

Korea 

2006-2007 628 E. coli 

isolates recovered 

from intestinal 

samples from 

dogs. 23 AmpC β-

lactamase-

producing E. coli 

isolates 

9/23 CMY-2 

 

Tamang et al. 

2012 

Europe 

(11 

countries, 

mainly 

Germany) 

2008-2011 1152 ESBL-

producing E. coli 

isolates from dogs 

companion 

animals and 

horses. 

30/1152  CTX-M-15, CTX-M61, 

CTX-M-14, CTX-M-1 

 

Ewers et al. 

2014 

United 

States 

2009-2013 2443 E. coli 

isolated 

from urine, wound, 

ear, genital tract, 

nasal structure, 

and soft tissue 

samples of dogs 

and cats. 68 

ESBL-producing 

E. coli. 

9/68 CMY-2, SHV-12, CTX-

M-9, CTX-M-1+CTX-M-

15, CTX-M-9+CTX-M-14, 

OXA-48 

Liu et al. 2016 

China 2011-2013 118 UTI E. coli 

isolates, from 

dogs. 3 carrying 

ESBL -producing 

E. coli isolates 

1/3 CTX-M-15 Li et al. 2017 

Portugal 1999-2014 412 UTI E. coli 

isolates, from dogs 

and cats. 27 

ESBL/AmpC -

producing E. coli 

isolates 

10/27 CMY-2 and CMY+CTX-

M-9 

Marques et al. 

2018 

South 

America 

2017 20 free-roaming 

cats 

2/20 CTX-M-2 and CTX-M-15 

 

 

Fernandes et al. 

2018b 
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1.9.3 Escherichia coli clonal group, sequence type 410 (ST410) 

Some studies indicate that E. coli ST410 is another successful pandemic extraintestinal 

pathogenic E. coli (ExPEC) lineage similar to ST131 (Falgenhauer et al. 2016a; Schaufler et al. 

2016). E. coli ST410 was first identified in 2016 in China (Qin et al. 2016) and since them and 

has been reported worldwide (Roer et al. 2018). Accordingly with Roer (2018) there are two main 

clades, clade A (fimH53) and clade B (fimH24), with B clades subdivided based on different 

antimicrobial resistance characteristics: the B2/H24R sublineage with acquired fluoroquinolone 

resistance by mutations in gyrA and parC and the B3/H24Rx sublineage with acquired blaCTX-M-

15 gene from the IncFII plasmid harboring FIA/FIB replicons; B4/H24RxC sublineage with 

acquired blaOXA-181 gene from the IncX3 plasmid and acquired blaNDM-5 gene from the IncF replicon 

(Roer et al. 2018). Nowadays, two sublineages are currently circulating in Europe and North 

America, the B3/H24Rx the B4/H24RxC) (Roer et al. 2018; Patiño-Navarrete et al. 2020). 

Furthermore, some ST410 strains from Germany and Brazil have been reported to have the 

mobile colistin resistance gene mcr-1 (Falgenhaueur at al. 2016b; Rocha et al. 2017).  

E. coli ST410 strains are transmissible between humans, companion animals, wildlife and 

the environment (Schaufer et al. 2016; Falgenhaueur at al. 2016b; Nigg et al. 2019) and is already 

globally distributed, reported in different countries. However, regarding companion animals few 

reports about this clone have been published. 

 



 

 60 

Chapter 2 

Study goals 
Chapter 2 – Study goals 

The major goal of this thesis was to assess the prevalence and to determine 

characteristics of ESBLs/ carbapenemase-producing Extraintestinal pathogenic Escherichia coli 

(ExPEC) in companion animals and humans without direct contact and in direct contact and its 

public health relevance. The experimental work was divided in two main parts: 

• In the first part of this thesis, the aim was to characterize ESBLs/ carbapenemase E. coli 

strains from companion animals and humans with UTI and the ESBLs/ carbapenemase-

producing E. coli faecal colonization in healthy companion animals. By studying the 

antimicrobial resistance, virulence genotype and population structure of strains of 

companion animals and humans without living in direct contact. This part of the study 

aimed to get insights on the role of companion animals as reservoirs and in the 

dissemination of clinical strains of E. coli. 

• The second part of this work aimed to characterize the gut colonization by E. coli and the 

resistance genes transmitted between companion animals and humans living in close 

contact. This part of the thesis aimed at providing new data about clinically important 

antimicrobial resistance genes and ESBL/Carbapenemase-producing-pathogenic E. coli 

from companion animal-human sharing and assess the role of companion animals as 

reservoirs to humans and vice-versa. 
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Chapter 3 

ESBLs/ carbapenemase - producing 
Extraintestinal pathogenic Escherichia coli 
in companion animals and humans without 
direct contact 

Chapter 3 – ESBLs/ carbapenemase - producing ExPEC in companion animals and humans without direct contact 

3.1. ESBLs/ carbapenemase Escherichia coli strains from companion animals and 

humans with UTI. 

 

3.1.1- Emergence of Escherichia coli ST131 H30/H30-Rx subclones in 

companion animals. 

 

Research letter published at The Journal of Antimicrobial Chemotherapy 

Belas A, Marques C, Aboim C, Pomba C. (2019). Emergence of Escherichia coli ST131 

H30/H30-Rx subclones in companion animal. The Journal of Antimicrobial Chemotherapy, 74(1), 

266-269. doi: 10.1093/jac/dky381. 

 

Partial results were presented as, 

Two Oral communications at the International congress at the 1st International Conference of 

the European College of Veterinary Microbiology, 2019, Athens Greece and at 27th European 

Congress of Veterinary Internal Medicine – Companion Animals (ECVIM-CA), 2017, St. Julians, 

Malta.  

Three Poster communications at the International congress International Society of Feline 

Medicine World Feline Congress 2017, 2017, Brighton, United Kingdom; International congress 

26th ECCMID, 2016, Amsterdam, the Netherlands; and at the International congress ASM 

Microbe 2016, 2016, Boston USA. 
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Emergence of Escherichia coli ST131 H30/H30-Rx subclones in 

companion animals. 

Adriana Belas, Cátia Marques, Catarina Aboim, Constança Pomba. 

Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University 

of Lisbon, Portugal, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal. 

The Escherichia coli O25b-ST131, with its fluoroquinolone-resistant H30 subclone and its 

nested ESBL CTX-M-15-associated H30-Rx subclone, is the most disseminated MDR and 

virulent E. coli clonal group worldwide.1 In previous work, we have reported the first detection of 

this O25b-ST131 clone causing urinary tract infection (UTI) in a dog.2 Additionally, later on, we 

found within-lineage variability of ST131 E. coli UTI isolates from humans and companion 

animals by PFGE analysis.3 The detection of human high-risk pandemic E. coli clones causing 

UTI in companion animals is a great public health concern.4 

Between 1999 and 2015, 342 uropathogenic E. coli were isolated at the Laboratory of 

Antimicrobial Resistance, Faculty of Veterinary Medicine, University of Lisbon from companion 

animals (dogs and cats) with UTI. Significant bacteriuria was determined based on a quantitative 

urine culture according to the urine collection method used (puncture, catheter or free catch). 

Urine samples were collected from companion animals at the teaching hospital of the Faculty of 

Veterinary Medicine and at private veterinary hospitals in Lisbon, Portugal. 

All B2 phylogroup isolates were studied by PCR for the ST131-associated SNP in the 

mdh and gyrB genes; 5 14.5% (n = 25/172) were the pandemic O25b:H4-B2-ST131 clone. The 

E. coli O25b:H4-B2-ST131 H30 and H30-Rx subclones were screened by PCR as previously 

described.6 Seven (n = 7/25; 28%) of the O25b:H4-B2-ST131 clone companion animal isolates 

were the H30 subclone and three out of these seven were the H30-Rx subclone (Table 1). To 

the best of our knowledge this is the first report of E. coli ST131 H30/H30-Rx subclones causing 

UTI in companion animals in Europe.  

The presence of uropathogenic E. coli (UPEC) virotype markers was assessed, i.e. Pap 

fimbriae (papEF operon segment), Sfa fimbriae and Afa afimbrial adhesin (sfa and afa genes, 

respectively), the hlyA gene from the α-haemolysin operon, cytotoxic necrotizing factor 1 (cnf1 

gene), aerobactin siderophore (iucD gene), E. coli common pilus (ecpA gene) and the 

uropathogenic specific protein (usp gene).7,8 The distribution of alleles I, II and III of the P adhesin 

gene papG was studied.9 

Additionally, pathogenicity-associated islands (PAIs) (PAIIV536, PAII536, PAIII536, PAIIII536, 

PAIIJ96, PAIIIJ96, PAIICFT073, PAIIICFT073) were identified.10 The E. coli O25b:H4-B2-ST131-H30/H30-

Rx most common pathogenicity and virulence-associated gene profiles were PAIICFT073-PAIIV536-
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PAIIICFT073 (42.9%, n = 3/7) and ecpA-hlyA-papEF-iucD (28.6%, n = 2/7), respectively. The full 

pathogenicity and virulence genotype of E. coli O25b:H4-B2-ST131-H30/H30-Rx is shown in 

Table 1. All H30/H30-Rx subclones causing UTI in companion animals belonged to virotype D, 

which confirms their virulent characteristics.1 

Resistance to third-generation cephalosporins was detected only in the three isolates of 

the H30-Rx subclone. β-Lactamase genes were screened as reported elsewhere.2 As expected 

from other studies, O25b:H4-B2-ST131 H30 and H30-Rx isolates were fluoroquinolone 

resistant,1 yet one O25b:H4-B2-ST131-H30-Rx E. coli did not carry the ESBL blaCTX-M-15, but 

instead carried the frequent blaCTX-M-1 gene, which is associated with E. coli isolates of farm 

animal origin and recently described in humans in Turkey with UTI.1,11 The mechanism of 

resistance to other antimicrobial classes was characterized by PCR and nucleotide sequencing 

for sul1, sul2, sul3, dfrA1, dfraA12 and the plasmid-mediated quinolone resistance (PMQR) 

genes [qnrA, qnrB, qnrS, qnrC, qnrD, qepA, aac(6′)-Ib and the MDR oqxAB genes of the efflux 

pump].12 The aac(6′)-Ib-cr gene was the most common PMQR gene detected (57.1%, n = 4/7) 

and was more frequently found in ST131 H30-Rx E. coli isolates than in ST131 H30 isolates. The 

qnrB2 and aac(6′)-Ib-cr genes were detected in the FMV5825/04 dog isolate as expected from 

previous data (Table 1).2 

In Europe, carbadox and olaquindox, which are quinoxaline derivatives with antibacterial 

properties, were used for the prevention of dysentery and as growth promotors in pigs since 1974 

and 1976, respectively. Fortunately, their use has been banned in farm animals in Europe for 

decades, but not in China.13 The efflux pump OqxAB also extrudes antibiotics such as 

chloramphenicol and fluoroquinolones. Isolate FMV5695/09 O25b:H4-B2-ST131-H30 harboured 

both oqxA and oqxB efflux pump genes, which could potentially be related to the reduced 

fluoroquinolone susceptibility. To the best of our knowledge, this is the first description of an 

ST131 E. coli harbouring the oqxAB efflux pump. Further studies will be necessary to elucidate 

the importance of this resistance mechanism in the ST131 pandemic E. coli clone. 

This study reports the detection and frequency of the E. coli O25b:H4-B2-ST131 

H30/H30-Rx subclones in companion animals with UTI in Portugal and, to the best of our 

knowledge, in Europe. In conclusion, the findings presented in this study are relevant and, to the 

best of our knowledge, represent the first detection of ST131 H30/H30-Rx E. coli isolates 

associated with UTI in companion animals in Europe. To the best of our knowledge, this is the 

first report in Europe of the disseminated E. coli O25b:H4-B2-ST131-H30/H30-Rx, MDR, 

fluoroquinolone-resistant human high-risk clone and its CTX-M-15-H30-Rx and CTX-M-1-H30-

Rx subsets in companion animals with UTI. Studies of ST131 H30/H30-Rx in humans in Portugal 

are scarce, yet H30/H30-Rx subclones have been described in faecal samples in healthy 

humans.14 These results raise public health concerns since these subclones may have an impact 

on human health through the close and direct contact between companion animals and owners. 
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Moreover, the close contact between companion animals and humans creates opportunities for 

interspecies transmission of resistant bacteria. 
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Table 1. Characterization of Escherichia coli  O25b:H4-B2-ST131-H30 and H30-Rx subclones isolated from companion animals. 

Isolate Year Companion 

Animal 

origin 

Clonal 

group 

ST131 

Subclone 

H30 

Subclone 

H30Rx 

Antimicrobial 

resistancea 

 

ESBL 

and/or 

pAmpC 

genes 

Other 

resistance 

genes 

PAIs Virotypeb Virulence 

 genes 

FMV2358/03 2003 Dog YES YES NO AMP-TE-CIP-

ENR 

NO - PAIII536- PAIII J96-

PAIIV536-

PAIIICFT073 

D ecpA-hlyA-cnf1-

sfaDE-papEF- 

papG III-iucD 

FMV5825/04 2004 Dog YES YES YES AMP-AMC-KF-

CTX-CAZ-FOX-

SXT-TE- CIP-

ENR-CN-AK-

TOB 

blaCTX-M-15 blaTEM blaOXA-1-

sul1- 

aac(6´)-Ib-cr-

qnrB2 

PAIII536- PAIII J96- 

PAIICFT073-PAI 

IV536- PAIIICFT073 

D ecpA-hlyA-cnf1-

sfaDE-papEF-

iucD 

FMV2777/08 2008 Cat YES YES YES AMP-AMC-KF-

CTX-CAZ-TE- 

CIP-ENR-CN-

TOB 

blaCTX-M-15 aac(6´)-Ib-cr PAIICFT073-

PAIIV536-

PAIIICFT073 

D ecpA-hlyA- 

papEF- -iucD 

FMV6710/08 2008 Dog YES YES NO AMP-SXT-CIP-

ENR 

NO sul2 PAIICFT073-

PAIIV536-

PAIIICFT073 

D ecpA-hlyA -

papEF-iucD 

FMV5695/09 2009 Dog YES YES NO AMP-TE-CIP-

ENR 

NO blaTEM-oqxAB PAIIV536-

PAIIICFT073 

D ecpA-papEF-

iucD 

FMV58/13 2013 Cat YES YES YES AMP-KF-CTX-

SXT-CIP-ENR 

blaCTX-M-1 blaTEM - dfrAI- 

aac(6´)-Ib-cr 

PAIICFT073-

PAIIV536-

PAIIICFT073 

D ecpA-hlyA-

sfaDE-papEF-

iucD 

FMV146/14 2014 Dog YES YES NO AMP-TE- CIP-

ENR 

NO aac(6´)-Ib-cr PAIII536-

PAIICFT073-

PAIIV536 

D ecpA-hlyA-

papEF-afaBC-

iucD 
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AMC- Amoxicilin/clavulanate, AMP-Ampicillin, AK- Amikacin, CAZ-Ceftazidime, CIP-ciprofloxacin, CN- gentamycin, CTX-Cefotaxime, ENR-Enrofloxacin, FOX-Cefoxitin, SXT- 
trimethoprim/sulphamethoxazole, TE- tetracycline, TOB-Tobramycin; asusceptibility was accessed according to Clinical and Laboratory Standards Institute (CLSI) guidelines 
M100-S27. bClassification of the virotype according to Nicolas-Chanoine et al.1 
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3.1.2 - Public health impact of ESBLs/pAmpC- producing Escherichia coli 

causing urinary tract infections in non-related companion animals and humans. 

Paper to be submitted at Frontiers in Microbiology. 

Belas A, Menezes J, da Gama L.T, Carriço JA, Pomba C. Public health impact of ESBLs/pAmpC-

producing Escherichia coli causing urinary tract infections in non-related companion animals and 

humans. Frontiers in Microbiology (paper to be submitted)  

 

Partial results were presented as,  

Two Oral communications at the International congress at the 1st International Conference of the 

European College of Veterinary Microbiology, 2019, Athens Greece and at 27th European 

Congress of Veterinary Internal Medicine – Companion Animals (ECVIM-CA), 2017, St. Julians, 

Malta.  

Five Poster communications at the International congress 30th ECCMID, 2020, Paris, France; 

International congresso Microbiotec 2019; International Society of Feline Medicine World Feline 

Congress 2017, 2017, Brighton, United Kingdom; International congress 26th ECCMID, 2016, 

Amsterdam, the Netherlands; and at the International congress ASM Microbe 2016, 2016, Boston 

USA. 

Two Poster communications at the National congress XII Congresso Hospital Veterinário 

Montenegro, Santa - Maria da Feira, Portugal. 
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Abstract 

Objectives: This study aimed to characterize and compare ESBL/AmpC ß-lactamases 

producing - E. coli strains causing urinary tract infections (UTI) in companion animals (CA) and 

non-related humans from the community with UTI (H-CA).  

Methods: Third generation cephalosporins (3GC) - resistant E. coli (companion animals 

n=35; humans n=85) isolated from patients with UTI were tested against 14 antimicrobials. PCR-

based assays were used to detect the major E. coli phylogenetic groups, Pathogenicity 

associated-islands (PAIs), virulence genes and ESBLs/pAmpC resistance genes. ESBL/pAmpC-

producing E. coli isolates were typed by multi locus sequence type (MLST). The ST131 clonal 

group and subclades C2 (H30-Rx) and C1 (H30-R1) were identified by PCR. Genetic 

relationships among E. coli isolates were visualized by the goeBURST algorithm based on the 

PHYLOViZ software (v.2). Molecular epidemiology was investigated using repetitive element 

sequence-based PCR (rep-PCR) typing method. 

Results: The frequency of resistance against fluoroquinolones (CA=74.3%, H-

CA=88.2%), trimethoprim/sulphamethoxazole (CA=71.4%, H-CA=74.1%) and gentamicin 

(CA=40%, H-CA=37.6%) were higher in 3CG-resistant E. coli from both groups. All isolates were 

susceptible to carbapenems. Considering phylogenetic group 3GC-resistant E. coli strains from 

companion animals and humans mainly belonged to group-D and B2 (48.6%, 67.1%, 

respectively). The most frequent PAIs and virulence genes from CA and H-CA were: PAI IV536 

PAI ICFT073 (p=0.017, p=0.013 respectively), ecpA and iucD (p=0.0002). 

MLST typing of the ESBL/pAmpC producing E. coli strains revealed a heterogeneous 

population of E. coli clonal groups in companion animals and in humans with UTI. Companion 

animals and humans E. coli strains shared two MDR high-risk clonal lineages: ST131, and 

ST648, an emergent virulent lineage. The blaCMY-2 and blaCTX-M-15 were the most frequently 

ESBL/pAmpC detected genes in companion animals and human strains. ST131 strains from 

companion animals and humans mostly belonged to subclade C2 (H30-Rx). rep-PCR analysis 

confirmed that ESBL/AmpC –producing E. coli strains from companion animals and humans with 

UTI that have the same MLST and combination of PAIs had identical fingerprints. 

Conclusion: Considering that companion animals with UTI are generally treated at home 

by the owners, measures should be implemented to avoid the spread of multidrug-resistant high-

risk clones to the house-hold environment. 

 

Keywords: Escherichia coli, ESBL/AmpC, Pathogenicity, Clones, Companion animals, 

Humans, Urinary tract infection. 
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Introduction 

Urinary tract infections (UTIs) are mostly caused by the uropathogenic Escherichia coli 

(UPEC), one of the extraintestinal pathogenic E. coli pathotypes (ExPEC) (Kaper et al., 2004). 

UTI is responsible for significant morbility and mortality and is one of the most common etiologic 

agents of UTI worldwide in humans and in companion animals (Foxman, 2010; Jakobsen et al., 

2010; Marques et al., 2017). 

The increase of antimicrobial resistance caused by multidrug-resistant (MDR) strains, 

such extended-spectrum beta-lactamases (ESBLs), cephalosporinases (AmpC), including 

cephalosporins, and carbapenems are increasing worldwide and also of problem to public health, 

because of their ability to cause treatment failure due to third- and fourth-generation 

cephalosporins, which have been considered highest priority critically important antimicrobials to 

human and veterinary medicine (WHO, 2018). Moreover, in the last years, some studies have 

alerted on the emergence of MDR high-risk clonal lineages of clinically significant bacteria in 

companion animals, raising public health concerns, since infected and colonized companion 

animals may contribute to the spread of such bacteria among humans, domestic animals, wildlife, 

environment and in food-chain production (Ewers et al., 2009; Ewers et al., 2010, Narciso et al., 

2012; Marques et al., 2017). Important causes of high-risk clones dissemination is the production 

of β-lactamase (ESBLs/AmpC β-lactamases or cephalosporinases and carbapenemases) 

enzymes. The most prevalent of these are CTX-M-like enzymes as well as other types, such as: 

TEM and SHV enzymes and the plasmid-mediated AmpC. Moreover, association with various 

antimicrobial resistance determinants, pathogenicity, global distribution, the ability to colonize 

and persist in hosts for more of 6 months, capacity of transmission among hosts and the ability 

to cause recurrent infections, also are important factors to qualify as an international multidrug-

resistant high-risk clone (Mathers et al., 2015). 

The population structure of ESBL/pAmpC-producing E. coli is dominated globally by high-

risk clones namely ST131, ST648, ST69, ST393, ST405, ST410 and other important clones. E. 

coli ST131 has been grouped into different clades, which are usually associated with specific 

fimH alleles: clade A (fimH41 ST131-O16), clade B (fimH22 ST131-O25b) and clade C (fimH30 

including ST131-O25b fimH30-R/fimH30-Rx). Clade C1-M27 is associated with blaCTX-M-27, and 

C2 with blaCTX-M-15. (Mathers et al., 2015; Peirano and Pitout, 2019). 

With the growing contact between companion animals and humans, the risk of animal-to-

human transfer of such bacteria is of concern (Pomba et al., 2017). Additionally, previous studies 

have demonstrated that companion animals may share UPEC with the remaining household 

members, indicating zoonotic transmission and humans may be a reservoir of UPEC for their 

companion animals as seen with E. coli ST131. (Johnson et al., 2009a; Johnson et al., 2009b; 

Pomba et al, 2014; Barroso et al., 2018; Belas et al., 2019). 
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Furthermore, there seems to be a match in the geographic distribution of the human and 

animal CTX-M enzymes, with CTX-M-1 predominating in Africa and Europe, CTX-M-14 in Asia 

and North America and CTX-M-15 β-lactamase in North America, Europe, and Africa (Bortolami 

et al., 2019). UPEC isolates usually have the largest number of pathogenicity-associated islands 

(PAIs) encoding a variety of virulence determinants encoding adhesins, toxins, invasins, other 

proteins and iron uptake systems that enable them to invade, colonize, and survive in the urinary 

tract, and prevent them from removal during urination from the host and consequently influencing 

the pathogenicity of symptomatic or complicated UTIs (Kaper et al., 2004). PAIs have been 

spread among bacteria by horizontal transfer and provide a virulence advantage allowing their 

adaptation to niches incapable to be colonized by commensal E. coli strains (Kaper et al., 2004; 

Sabaté et al., 2006; Lloyd et al. 2009).  

With the growing contact between companion animals and humans, the risk of animal-to-

human transfer of such bacteria is of concern (Pomba et al., 2017). Additionally, previous studies 

have demonstrated that companion animals may share UPEC with the remaining household 

members, indicating zoonotic transmission and humans may be a reservoir of UPEC for their 

companion animals as seen with E. coli O25b:H4-B2-ST131, this clonal group has dramatically 

spread during the last decades, also some lineages of this clone, such as H30Rx clade C2 

(C2/H30Rx), have been linked to the dissemination of the extended-spectrum β-lactamases 

(ESBL), especially CTX-M-15 (Johnson et al., 2009a; Pomba et al, 2014; Barroso et al., 2018; 

Belas et al., 2019). However, research has been predominantly focused on ST131 and fewer 

studies in companion animals and humans have been done for the emerging high-risk clones 

ST648 and ST410 (Zong and Yu., 2010; Peirano et al., 2012; Ewers et al., 2014; Mathers et al., 

2015; Marques et al., 2017; Schaufler et al., 2019). 

Therefore, the characterization of E. coli isolated from companion animals with UTI, 

especially those harbouring important antimicrobial resistance mechanisms, is crucial to evaluate 

the extent to which companion animals with UTI may act as reservoirs for UPEC or vice- versa.  

Antimicrobial resistance and ESBL/AmpC-producing E. coli is a complex subject and their 

emergence, ecology, and the association between virulence is poorly understood. 

Thus, this study aimed to characterize and compare: ESBL/AmpC ß-lactamases 

producing E. coli strains causing urinary tract infections in companion animals and non-related 

humans in the community; Pathogenicity background, virulence profile and clonal groups 

determination of these strains. 

 

Materials and Methods 

Bacterial isolates 

From 1999 to 2015, 330 non-duplicate uropathogenic E. coli (UPEC) were isolated at the 

Laboratory of Antibiotic Resistance from Faculty of Veterinary Medicine, University of Lisbon from 



 

 74 

companion animals (dogs and cats) with UTI. The significant bacteriuria was determined based 

on a quantitative urine culture according to urine collection method used (puncture, catheter or 

free catch). Urine samples were collected from companion animals at teaching hospital of the 

Faculty of Veterinary Medicine and at private veterinary hospitals in Lisbon, Portugal.  

Also, were selected 85 non-duplicate 3GC resistant - E. coli isolates from community-

acquired urinary tract infections (CA-UTI), obtained from a Diagnostic Laboratory of the Lisbon 

area in 2013. Regarding the type of UTI information about epidemiological data were not 

available. 

Isolated bacteria were stored in 20% glycerol (Sigma–Aldrich, St Louis, MO, USA) brain 

heart infusion broth (Biokar Diagnostics) at −80 °C for future studies. For this study, stored 

isolates were recovered by streaking them onto 5% sheep blood agar (bioMérieux, Marcy-l’Étoile, 

France) and MacConkey (Biokar Diagnostics, Allonne, France) agar plates. The plates were 

incubated at 37 °C for 18–20 h. 

Identification and confirmation of the E. coli isolates was performed by PCR detection of 

the gadA gene (McDaniels et al., 1996). 

 

Antimicrobial Susceptibility testing  

Antimicrobial susceptibility testing was carried by the disk diffusion method on Mueller-

Hinton agar as the culture medium, according to Clinical Laboratory Standards Institute (CLSI) 

guidelines. Veterinary CLSI breakpoints (CLSI, 2018) were used. Human CLSI breakpoints 

(CLSI, 2019) were used for the remaining antimicrobials. The antimicrobial agents (Oxoid, 

Hampshire, United Kingdom) tested were: amoxicillin 25 μg or ampicillin 10 μg, amoxicillin-

clavulanate acid 30 μg, cefotaxime 30 μg, ceftazidime 30 μg, cefoxitin 30 μg, imipenem 10 μg, 

meropenem 10 μg, gentamicin (10 μg), tobramycin 10 μg, amikacin 30 μg, ciprofloxacin 5 μg, 

enrofloxacin 5 μg, norfloxacin 10 μg, nitrofurantoin 300 μg and trimethoprim/sulfamethoxazole 

25 μg. ESBL production was studied in all third-generation cephalosporin-resistant isolates by 

the double-disk synergy test and the results were interpreted according to the to CLSI guidelines. 

E. coli ATCC 25922 from the American type Culture Collection was used as a reference strain. 

Antimicrobial categories were used to characterize multidrug resistance (MDR) as 

previously proposed by Magiorakos et al., 2012. E. coli was considered as MDR when fully 

resistant to three or more antimicrobial categories (Magiorakos et al., 2012). 

 

DNA extraction, sample purification and sequencing 

DNA extraction was conducted using a boiling method (Féria et al., 2002). Briefly the 

isolates were cultured on blood agar plates for 24h. The cells were lysed by heating at 100 o C 

for 10 min, following centrifugation of the lysate. The supernatant was used as the source of the 

template DNA. For PCR amplicon sequencing, DNA purification was conducted using a NZYTech 
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Gel Pure Kit (NZYTech—Genes and Enzymes, Lisbon, Portugal) and sequencing was performed 

by Stabvida (Caparica, Portugal). Sequences were analysed using Ugene Unipro software 

(Unipro, Novosibirsk, Russia) and the nucleotide basic local alignment search tool 

(http://blast.ncbi.nlm.nih.gov/). 

 

Molecular detection of antimicrobial resistance genes 

Antimicrobial resistance genes were investigated in resistant and intermediate resistant 

strains. 

3GC-resistant E. coli were screened for blaCTX-M genes by PCR (Edelstein et al., 2003). 

Isolates with blaCTX-M were tested for blaCTX-M group 1, blaCTX-M group 2 and blaCTX-M group 9 genes with 

specific primers (Woodford et al., 2006) and positive amplicons were submitted to nucleotide 

sequencing. Cefoxitin-resistant E. coli were subjected to multiplex-PCR for plasmid-borne genes 

encoding AmpC β-lactamase (blaCIT, blaLAT, blaACT, blaMIR, blaFOX, blaMOX, blaDHA) using specific 

primers as previously described (Pérez and Hanson 2002). Positive samples for the group CIT 

were submitted to nucleotide sequencing after a specific PCR targeting the entire CMY-2 (Belas 

et al., 2014). 3GC-resistant E. coli negative for blaCTX-M-type or AmpC genes were tested for the 

presence of blaTEM-type and blaSHV-type ESBL genes (Féria et al., 2002). 

Strains were screened by PCR for the presence of common carbapenemase genes 

(blaIMP, blaOXA, blaVIM, blaNDM and blaKPC) as previously described (Poirel et al., 2011). 

 

Uropathogenic Escherichia coli Phylogenetic typing, Pathogenicity Islands 

markers and Virulence genotyping determination 

Phylogenetic typing was performed in all 3CG-resistant E. coli strains to determine the 

main phylogenetic groups (A, B1, B2 and D) according to the amplification of chuA and yjaA 

genes, and TspE4C2 fragment (Doumith et al., 2012). 

Eight UPEC pathogenicity islands markers were screened by multiplex PCR assays as 

previously described (Sabaté et al., 2006; Bronowski et al., 2008). PCR reactions were split in 

three separate multiplex assays: multiplex A for PAIs III536, IV536 and IICFT073; multiplex B1 for PAIs 

IIJ96 and I536; and multiplex B2 for PAIs II536, IJ96 and ICFT073. Negative and positive controls (E. coli 

CFT073, E. coli 536, E. coli J96) were used for all PCRs (Sabaté et al., 2006; Bronowski et al., 

2008). 

3CG - resistant E. coli strains were screened by PCR for the presence of the following 

virulence genes: mediate adhesion (p-fimbrial adhesion genes papEF operon segment), Sfa 

fimbriae and Afa afimbrial adhesin (sfa and afa genes, respectively), toxins (α-haemolysin hlyA 

gene from the alpha-hemolysin operon, cytotoxic necrotizing factor 1 (cnf-1 gene), aerobactin 

siderophore (iucD gene) (Féria et al., 2002), the major pilin subunit of E. coli common pilus (ecpA 



 

 76 

gene) and the bacteriocin-like genotoxin uropathogenic specific protein (usp gene) (Narciso et 

al., 2012). Negative and positive controls (E. coli CFT073, E. coli 536, E. coli J96 and E. coli 

KS52) were used for all PCRs. Futhermore, the hemolytic activity, associated with the expression 

of E. coli alpha-hemolysin, was evaluated on Columbia 5% sheep blood agar (bioMerieux, Marcy 

L’Etoile, France). 

 

ESBL/ AmpC-producing Escherichia coli strains molecular typing 

E. coli strains not belonging to the ST131 clonal lineage were typed by Multilocus 

sequence typing (MLST). Internal fragments of the seven housekeeping genes (adk, fumC, gyrB, 

icd, mdh, purA, and recA) were amplified by PCR using the primers and conditions described 

previously in https://enterobase.warwick.ac.uk/ (Wirth et al., 2006). PCR products were 

sequenced.  

The types of sequences (ST) were submitted to the MLST database to retrieve an allelic 

profile and sequence type for each isolate. The ST131 clonal group, O16/O25b types and the 

ST131-H30Rx clade were identified as previously described by PCR (Banerjee et al., 2013; 

Colpan et al., 2013; Johnson et al., 2014).  

Rapid fingerprinting using repetitive sequence-based PCR repetitive element sequence-

based PCR (rep-PCR) typing method with 2 opposing primers, REP1R-I (5′-

IIIICGICGICATCIGGC-3′) and REP2-I (5′-ICGICTTATCIGGCCTAC-3′) (Silva et al., 2009) was 

performed in the ESBL/ AmpC ß-lactamases producing E. coli strains that have the same MLST 

and the same PAI or the combination of the same PAIs. PAIs have conserved and stable ‘core 

genome’ that contains the genetic information that is required for essential cellular functions, so 

identification of a certain PAI or the combination of several PAIs can be characteristic for a 

pathogenic E. coli strain (Hacker and Kaper, 2000). E. coli strain ATCC 25922 was used for the 

standardisation of the rep-PCR reactions and as a positive control.  

To analyze the REP DNA fingerprints obtained for E. coli strains was used the 

Bionumerics (version 6.6 Applied Maths, Sint-Martens-Latem, Belgium) software using the 

unweighted pair group method with arithmetic mean (UPGMA) clustering method with a tolerance 

of 1.0%. 

 

Statistical Analysis 

The SAS statistical software package for Windows v. 9.4 (SAS Institute Inc., Cary, NC, 

USA) was used for statistical analysis. The Fisher’s exact test was used for comparisons between 

groups with a p value of 0.05. 
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Results 

3GC-resistant Escherichia coli antimicrobial resistance and phylogenetic 

group 

From a total of 330 E. coli strains non-duplicate recovered from companion animals with 

UTI, 10.6 % (n=35/330) were 3GC- resistant. A high proportion was resistant to ciprofloxacin 

(74.3%, n=26/35), norfloxacin (71.4%, (n=25/35), trimethoprim-sulfamethoxazole (71.4 %, 

n=25/35), gentamicin (40.0% n=14/35) and tobramycin (31.4%, n=11/35). Overall, 71.4 % 

(n=25/35) of the strains were MDR. Yet, no resistance to carbapenems was detected. Regarding, 

3CG-resistant E. coli from humans-CA with UTI, these showed higher resistance frequencies 

against to fluoroquinolones (88.2%, n=75/85), trimethoprim-sulfamethoxazole (74.1 %, n=63/85), 

gentamicin (37.6% n=32/85) and tobramycin (49.4 %, n=42/85). Overall, 84.7 % (n=72/85) of the 

strains were MDR (Table1). Antimicrobial resistance frequencies of the 3GC-resistant E. coli 

strains from companion animals and non- related human (H-CA) with UTI are shown in Table 1. 

Regarding phylogenetic group from companion animals 3GC - resistant E. coli strains 

belonged mainly to group-D (48.6%, n=17/35) followed by group-A (22.9%, n=8/35), group- B2 

(17.1%, n=6/35) and group-B1 (11.4%, n=4/35) (Table 2). Considering phylogenetic groups 3GC 

resistant E. coli strains from human-CA with UTI belonged mainly to group-B2 (67.1%, n=57/85) 

followed by group-B1 (14.1%, n=12/85), group- A (12.9 %, n=11/85) and group-D (5.9 %, n=5/85) 

(Table 2).   

Interestingly, resistance to aminoglycosides in companion animals were higher in group-

D (52.9% - gentamicin) and in group-B2 (50.0 %). However, in both phylogenetic groups and in 

both species were detected higher frequencies of resistance to fluoroquinolones and 

trimethoprim-sulfamethoxazole. In companion animal strains MDR was higher in group-A and 

group-B1 (87.5% and 75.0%, respectively). However, in human strains MDR was higher in group-

B2, group-A and group-D (91.2%, 81.8 % and 80.0%, respectively) (Supplementary S1).  

The majority of 3GC resistant - E. coli strains belonged to the phylogenetic group-B2 in 

both groups (83.3% for companion animals and 94.7% for human – CA), followed by group-B1 

(75.0% for companion animals and 100% for human – CA), group- A (62.5 % for companion 

animals and 100% for human – CA) and group-D (11.7 % for companion animals and 60.0 % for 

human – CA). Furthermore, statistical significance was detected in group - D between human- 

CA and companion animal (p =0.024). However, ESBLs - producing E. coli from human-CA was 

higher than in companion animal strains (p <0.0001) (Table 2). Regarding AmpC - producing E. 

coli strains from both groups belonged mostly to group - D (94.1% for companion animals and 

40.0 % for human – CA, p <0.0001. However, AmpC - producing E. coli strains in companion 

animals was higher than in human-CA (p <0.0001) (Table 3). 
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In this study, different types of ESBLs were detected, especially CTX-M, indicating a high 

diversity of these ESBLs in UPEC strains (Table 4). However, in four 3GC - resistant E. coli 

strains the phenotype of resistance to cefoxitin was not possible be explained by all the tested 

AmpC β-lactamase genes, so other mechanism of resistance may be involved. Moreover, 

carbapenemases genes were not detected in both 3CG-resistant E. coli collections. 

 

3GC Escherichia coli pathogenicity islands markers and virulence genotyping 

Eight UPEC pathogenicity islands were screened in all 3GC E. coli strains and the most 

prevalent PAIs among strains from human CA - UTI and companion animals with UTI were PAI 

IV536 (91.8 %, n=78/85 and 72.3 % n=26/35, respectively), followed by PAICFT073 (78.8 %, n=67/85 

and 54.3 % n=19/35, respectively), PAI IICFT073 (69.4 %, n=59/85 and 20.0 % n=7/35, 

respectively) (Table 5). As expected, group-A and B1 has less pathogenicity island markers and 

virulent genes than phylogenetic group - B2 and group - D (Supplementary S2 and 

Supplementary S3).  

All E. coli strains were positive for ecpA gene the major pilin subunit of E. coli common 

pilus for both groups (p>0.05). Furthermore, papEF operon segment, iucD, hlyA and cnf1 were 

also frequent in both groups (Table 6). Although, Cytotoxic necrotizing factor-1 (cnf1 gene) and 

aerobactin siderophore (iucD gene) frequencies were higher in E. coli from humans - CA (p 

=0.012 and p = 0.0002, respectively) (Table 6). 

 

ESBL/ AmpC ß-lactamases producing Escherichia coli - Clonal relationship  

The companion animal strains were classified into 15 STs, where as human strains were 

classified in 19 distinct STs (Table 7). The most common sequence types (STs) among ESBL/ 

AmpC ß - lactamases producing E. coli strains from companion animals with UTI were ST648 

(n=11), ST131 (n=5), ST539 (n=2) and ST1775 (n=2).  

Regarding ST648 clonal group mostly were E. coli CMY-2-producing (n=11) and one 

harbouring blaCMY-2 and blaCTX-M-9 and includes resistance to fluoroquinolones, 

trimethoprim/sulfamethoxazole and other antimicrobials, such as aminoglycosides. Moreover, 

PAI IV536- PAI ICFT073 (n=5) were the combinations most detected. However, different profiles of 

virulence genes were found, but the most prevalent was ecpA-papEF (n=7) (Supplementary S4). 

In companion animals 3 E. coli ST131 C2/H30Rx clade with the blaCTX-M-15 gene and two 

ST131C1/H30R1 (C1-non27) sub-clade with the blaCTX-M-1 gene and one strain harbouring blaCMY-

2 gene were detected. E. coli ST131 C1/H30R1 (C1-M27) clade with the blaCTX-M-27 gene was not 

detected in companion animals with UTI and the remaining ST131 remained unclassified by this 

assay. For ST131 E. coli strains were observed that PAII536-PAIIIJ96-PAIICFT073-PAIIV536- PAIIICFT073 

(n=2) and PAIICFT073-PAIIV536-PAIIICFT073 (n=2), were the combinations most detected. However, 

different profiles of virulence genes were found (Supplementary S4). 
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Among phylogroup-B1 isolates belonged to ST539 (n=2), one harbouring blaCMY-2 and 

one harbouring blaCTX-M-1type, followed by ST533 (n=1, harbouring blaCTX-M-15) and ST224 (n=1, 

harbouring blaCTX-M-32). Regarding phylogroup –A, the strains belonged to unassigned ST (n=1, 

harbouring blaCTX-M-15), ST609 (n=1, harbouring blaCTX-M-32), and ST88 (n=1, harbouring blaCTX-

M-1). 

The most common genotypes among ESBL/ AmpC ß-lactamases producing - E. coli 

strains from humans CA- UTI were ST131 (n=56), ST453 (n=5), ST90 (n=2), ST10 (n=2), and 

ST88 (n=2). Such as, in companion animals, human CA - UTI strains also harbored diverse 

ESBLs /pAmpC genes from different phylogenetic groups: group - A (blaCTX-M-32 n=4, blaCTX-M-1 n= 

3, blaCTX-M-14 n=1, blaCTX-M-27 n=1, blaCTX-M-15 n=1 and blaCTX-M-9like n=1), group - B1 (blaSHV-12 n=1, 

blaCTX-M-14 n= 4, blaCTX-M-1 n=4, blaCTX-M-15 n= 2 and blaCTX-M-2 n=1), group - D (blaCTX-M-15 n=2, 

blaCTX-M-14 n=1 and blaCMY-2 n=2). Among group - B2 E. coli strains belonged mainly to the ST131-

C2/H30Rx clade with the blaCTX-M-15 gene (47.1 %, n=40/85). Also, E. coli ST131-C1-M27 sub-

clade with the blaCTX-M-27 gene was detected in 9.1% (n=5/55).  

About 18.8 % (n=16/55) of the ESBL/ AmpC ß-lactamases producing - E. coli strains were 

ST131- C1/H30R1-non-M27 clade and 2 harbouring blaCTX-M-1 gene, 1 harbouring blaCTX-M-15like 

gene, 1 harbouring blaCTX-M-32 gene, 8 harbouring blaCTX-M-9 group gene, 2 harbouring blaCTX-M-9like 

gene and 1 harbouring blaCTX-M-14 gene. Furthermore, in this study also, the clone O16-H5-ST131 

(clade A) with the blaCTX-9like was detected. Furthermore, three strains from the pandemic clone 

O25b:H4-B2-ST131 were AmpC-producers with blaCMY-2 gene (Supplementary S5). 

Regardless, ST131 E. coli strains from human CA-UTI the most frequent combinations 

found were PAII536-PAIIIJ96-PAIII536-PAIICFT073-PAIIV536-PAIIICFT073 (n=27) and PAIICFT073-PAIIV536-

PAIIICFT073 (n=23).  

The distribution of the different virulence genes showed that the most prevalent profiles 

in strains from humans-CA belonged to group-B2 were ecpA-iucD (n=17), ecpA-papEF-sfaDE-

hlyA-cnf1-iucD (n= 15) and ecpA-papEF-hlyA-cnf1-iucD (n=13) (Supplementary S5). 

Among group - D and group - B1, PAIICFT073-PAIIV536 (n=2 and n=8, respectively) was the 

combination most frequent. For group-D and group-B1 was the profile ecpA-iucD (n=2 and n=5, 

respectively). Group - B1 and group - D had the identical pathogenic islands marker and virulence 

genes profiles. The presence of ExPEC - associated virulence genes is shown in Supplementary 

S5. 

The ESBL/AmpC ß-lactamases producing E. coli STs were compared phylogenetically 

based on a tree using goeburst, based on phyloviz software. Putative founder STs in both human 

and companion animals E. coli belonged to clonal complex (CC) 131, CC 648 and CC23. 

ESBL/AmpC ß-lactamases producing E. coli from companion animals and humans (CA) with UTI 

shared two MDR high-risk clonal lineages: the ST131 and ST648. Moreover, two other clonal 

lineages were shared by companion animals and human, ST88 and ST354 (Table 7, Figure1, 
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Supplementary Tables S4 and S5). Regarding rep-PCR confirmed that ESBL/AmpC ß-

lactamases producing E. coli from companion animals and humans (CA) with UTI with the same 

STs, identified by MLST and with the same combination of PAIs demonstrated identical rep-PCR 

fingerprints (Figure 2). 

 

Discussion 

The high frequency of resistance to antimicrobials that are categorised as critically 

important in human medicine, amoxicillin–clavulanic acid, 3GCs, fluoroquinolones and 

aminoglycosides that are normally used in veterinary medicine and human medicine is worrisome 

for public health. 

MDR was displayed by a high percentage of 3GC-resistant E. coli strains from companion 

animals and non-related humans from the community (CA) with UTI. 

In this study a large diversity of ESBL/AmpC ß-lactamases producing E. coli from 

companion animals and non-related humans (H-CA) with UTI were identified. However, in 

companion animals was frequently associated with the presence of blaCTX-M-15 and blaCMY-2 genes, 

and in humans (CA) with blaCTX-M-15 and blaCTX-M-1. Furthermore, CMY-2-producing E. coli strains 

in companion animals was higher than in human-CA. In a study performed in UK, the authors 

also found a high prevalence of CMY-2- producing E. coli strains from dogs with UTI (Wagner et 

al., 2014). Furthermore, the majority of CMY-2-producing E. coli strains belonged to phylogenetic 

group D, which is consistent with previous study performed in United States (Liu et al., 2016). 

The majority of 3GC-resistant E. coli strains belonging to the phylogenetic group B2 had 

the majority of the PAI markers. The association of group B2 and several PAI markers has 

previously been reported among UPEC strains (Sabaté et al., 2006). However, A, B1, and D 

phylogenetic groups of UPEC strains have less PAIs markers than other groups as described 

before by other authors (Sabaté et al., 2006; Mateus et al., 2013) The presence of virulence 

factors is linked to PAI markers. Furthermore, the most frequent PAI combination pattern was 

related to those strains containing PAIIV536 and PAIICFT073 markers These PAI markers contain iron 

uptake system encoding genes (such as, iucD gene) and seem to be important for effective 

colonization and the fitness of UPEC strains throughout the urinary tract, but also, fimbrial 

adhesins, high prevalence of fimbrial adhesin-encoding genes (such as, papEF operon segment) 

from E. coli isolates in patients diagnosed with UTI confirms that these structures are necessary 

to cause an UTI (Sarowska et al., 2019). Futhermore, PAIICFT073 marker also, carries the toxin 

hemolysin A (hlyA gene), that is responsible for the creation of pores in membranes and cell lysis 

(Sarowska et al., 2019). These results were consistent with other studies, which compared E. 

coli pathogenicity background (Féria et al., 2002; Sabaté et al., 2006; Tramuta et al., 2011; 

Mateus et al., 2013; Toval et al.2014).  
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E. coli common pilus (ecpA gene) was detected in all isolates from both groups. This pilus 

playing a role in the adhesion of E. coli to the intestinal epithelium and the colon functions are 

act as a reservoir that can be responsible for the recurrent UTIs and allows some mechanisms 

to evade the immune system from their hosts. Also, is associated to both pathogenic and 

commensal E. coli strains. The ecpA gene is kept in intestine and can confer protection to 

antimicrobials, which can reduce the therapeutic options and the dissemination of ESBLs. 

(Rendón et al., 2007; Narciso et al. 2012). Moreover, in this study only in one E. coli ST131 (from 

a dog obtained in 2015) was detected the uropathogenic-specific protein gene (usp). This protein 

gene is a genotoxin active against mammalian cells associated with isolates from pyelonephritis, 

prostatitis, bacteremia of urinary tract origin and can induces characteristic of apoptosis. It has 

been proposed that usp provide immunity to the producer and that it also enhances infectivity in 

the urinary tract (Nipič et al., 2013; Crnigoj et al, 2014). More studies are needed to understand 

the importance of this specific protein gene in urinary tract infections. 

In this study two MDR high-risk clonal lineages, the ST131 and ST648, and also ST88 

were shared between companion animals and humans with UTI and also had identical rep-PCR 

fingerprints.  

MLST has the advantage of being comparable worldwide, unambiguous and highly 

reproducible (Sabat et al., 2013). In this study rep-PCR was also performed as an alternative to 

Pulsed-Field Gel Electrophoresis (PFGE). The rep-PCR has also a good discriminatory power, 

is less time consuming, less costly than PFGE and it presents a good correlation with the PFGE 

results (Jonas et al., 2003). Given all these factors, MLST and rep-PCR were the selected 

techniques for analysing the data of this study. Moreover, the E. coli strains from humans and 

companion animals were collected in different years, so the relationship among these strains 

should be further investigated by Whole-genome sequencing. 

Interestedly, E. coli ST88 clone are associate with poultry and broiler meat origins, which 

suggested that animals from farms are reservoirs for this type of E. coli that causes extraintestinal 

disease in humans and companion animals (Day et al., 2016; van Hoek et al., 2018; Borges et 

al., 2019). 

The ST131 is the predominant clone driving the spread of cephalosporin and 

fluoroquinolone resistance and have disseminated to various animal species, including humans, 

poultry, pigs, and companion animals. (Nicolas-Chanoine et al., 2014). Furthermore, is the mostly 

responsible for the global dissemination of extended-spectrum beta-lactamase-producing E. coli 

worldwide and the most frequent in E. coli urinary tract infection in humans (Nicolas-Chanoine et 

al., 2014). 

The blaCTX-M-15 and blaCTX-M-14 genes are the most common types of ESBLs among human 

strains with UTI, though blaCTX-M-14 gene has mainly been reported in Japan, Asian countries, 

Canada and Spain (Peirano et al., 2010; Zong and Hu, 2013). The ST131 clone harbouring 
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blaCTX-M-15 or blaCTX-M-14 has also been detected among companion animals in many countries 

(Ewers et al., 2010; Pomba et al., 2014; Belas et al., 2019). In Japan, Matsumura et al. (2016) 

between 2005 and 2010 found the blaCTX-M-14 gene to be the most common, followed by blaCTX-M-

15 and blaCTX-M-2. They recently reported on the global emergence and increased prevalence of 

the E. coli ST131 sub- clade (C1/H30R1, named the C1-M27) (Matsumura et al., 2016). The 

blaCTX-M-27, a single-nucleotide variant of blaCTX-M-14 has been increasingly identified among the E. 

coli strains from human and companion animals with UTI in United States, Asian and European 

countries. (Harada et al., 2012; Matsumura et al., 2016; Bevan et al., 2017) and in clinical E. coli 

strains from companion animals in France (Melo et al., 2019). Moreover, transmission of the E. 

coli ST131 clone among family members and companion animals has been documented, 

increasing the risk in human of causing severe infections difficult to be treated (Johnson et al., 

2009a).  

The results of this study suggest that the C2/H30Rx subclade is a prevalent clone in the 

Lisbon area in Portugal in human -CA with UTI and that the majority of these isolates lack different 

types of ESBL genes. Nevertheless, the clone has previously been demonstrated as being highly 

virulent and, when MDR, it may have a direct impact in the management of community associated 

UTI in both humans and animals. This clone is normally associated with complicated UTIs 

(Campos et al., 2018). However, to the best of our knowledge, in this study we have the first 

description of E. coli O25b:H4-ST131 harbouring blaCMY-2 gene and also, the first description of 

the subclade C1-M27 in human in the community with UTI in Portugal. Yet, C1-M27 subclade 

has been detected in faecal samples of healthy humans in the north of Portugal (Rodrigues et 

al., 2016). Moreover, E. coli O25b:H4-ST131 harbouring blaCMY-2 gene has been rarely described 

(Day et al., 2016; Hansen et al., 2016).  

In previous studies clinical E. coli showed that the O16-H5-ST131 clone (clade A) is 

globally distributed (Johnson et al., 2014). Yet, in this study to best of our knowledge we have 

the first description of the O16:H5-ST131 clone harbouring blaCTX-9like in a human-CA with UTI in 

Portugal. In this study it is noteworthy that ST648 strains were strongly associated with blaCMY-2 

gene and also combines MDR and virulence. Furthermore, further studies for ST648 strains are 

important to be performed in companion animals, because the transmission of these clones to 

the humans can occur by direct contact or by environmental contamination. 

 

Conclusion 

Our findings are of critical relevance, as they show companion animals and humans as 

reservoirs of pandemic clones, especially E. coli ST131-C2/H30Rx (blaCTXM-15) and ST648 

harbouring CMY-2. Furthermore, E. coli ST10 and ST410 other important pandemic lineages 

were among the STs detected in humans CA-UTI (Mathers et al., 2015; Campos et al., 2018). 

Yet, we did not find these ST types in companion animals with UTI.  
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The inappropriate use of antimicrobials in Human and Veterinary medicine also plays an 

important role in this complex problem. As such, antimicrobial use should be reduced to a 

minimum and alternative approaches should be used to limit the spread of antimicrobial 

resistance in animals and humans (Bélanger et al., 2011). This study allows to understand some 

aspects of the dissemination of ESBLs/AmpC- producing E. coli in Lisbon area, which is 

important step for developing strategies to prevent the propagation of high-risk clones. In a One-

Health perspective, the collaboration between Veterinary medicine and Human medicine is 

needed to characterize the occurrence and routes of dissemination of these high-risk clones. 

Considering that companion animals with UTI are generally treated at home by the 

owners, measures should be implemented to avoid the spread of these bacteria to the 

environment. 
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Table 1: Antimicrobial resistance of third-generation cephalosporins - resistant Escherichia coli 
strains resistant from companion animals and human -CA with UTI. 

Antimicrobials Companion animal 

(N =35 )a 

% (n) 

Human- CA 

(N =85)a 

% (n) 

P value 

Ampicillin/ Amoxicillin 100% (n = 35) 100% (n =85) N.s. 

Amoxicillin/clavulanate 77.1% (n = 27) 27.1% (n =23) <0.0001 

Cefoxitin 62.9% (n = 22) 8.2% (n =7) <0.0001 

Cefotaxime 91.4% (n =32 ) 100% (n =85) 0.023 

Ceftazidime 62.8% (n =22 ) 42.4% (n =36) 0.047 

Imipenem 0.0 % (n = 0) 0.0% (n =0) N.s. 

Meropenem 0.0 % (n = 0) 0.0% (n =0) N.s. 

Ciprofloxacin 74.3% (n =26) 88.2% (n =75) 0.096 

Norfloxacin 71.4% (n =25) 88.2% (n =75) 0.033 

Nitrofurantoin 5.7% (n =2) 2.4% (n =2) N.s 

Gentamicin 40.0% (n =14) 37.6% (n =32) 0.838 

Amikacin 5.7% (n =2) 10.6% (n =9) 0.506 

Tobramycin 31.4% (n =11) 49.4% (n =42) 0.105 

Trimethoprim/sulfamethoxazole 71.4% (n =25) 74.1% (n =63) 0.822 

Multidrug resistant 71.4 % (n =25) 84.7% (n =72) 0.125 

Legend: %R, percentage of resistant strains; Human-CA, human community-acquired UTI. aThe number shown is the 
total number of strains tested. * p value < 0.05 statistically significant. N.s. not significant to calculate. 

 

 

Table 2: Third generation cephalosporins resistant – Escherichia coli strains phylogenetic group 
from companion animals and human - CA with UTI. 

Phylogenetic group Companion animal 

(N =35)a 

% (n) 

Human - CA 

(N =85)a 

% (n) 

P value 

Group A 22.9 % (n=8) 12.9 % (n=11) 0.187 

Group B1 11.4 % (n=4) 34.3 % (n=12) 0.777 

Group B2 17.1% (n=6) 67.0 % (n=57) <0.0001 

Group D 48.6 % (n=17) 5.9 % (n=5) <0.0001 

Legend: Human-CA, human community-acquired UTI. aThe number shown is the total number of strains tested. * p 
value < 0.05 statistically significant. 
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Table 3: ESBLs/AmpC -producing Escherichia coli strains by phylogenetic group from companion animals and human-CA with UTI. 

Phylogenetic 
group 

Companion animal 

(N = 35)a 

 

Phylogenetic 
group 

Human - CA 

(N = 85)a 

P value  

ESBLs genes 

 

P value  

AmpC genes 

ESBLs genes  

% (n) 

AmpC genes 

% (n) 

ESBLs genes 

% (n) 

AmpC 
genes  

% (n) 

A (n=8) 62.5 % (n=5) 0.0 % (n=0) A (n=11) 100 % (n=11) 0.0 % (n=0) 0.057 N.s 

B1 (n=4) 75.0 % (n=3) 50.0 % (n=2) B1 (n=12) 100 % (n=12) 0.0 % (n=0) 0.250 0.050 

B2 (n=6) 83.3 % (n=5) 33.3 % (n=2) B2 (n=57) 94.7 % (n=54) 5.3 % (n=3) 0.337 0.067 

D (n=17) 11.7 % (n=1) 94.1% (n=16) D (n=5) 60.0 % (n=3) 40.0 % (n=2) 0.024 <0.0001 

Overall 38.9 % (n=14) 57.1 % (n=20) Overall 94.1 % (n=80) 5.9 % (n=5) <0.0001 <0.0001 

Legend: % percentage of strains; human community-acquired UTI; aThe number shown is the total number of strains tested; ESBLs- extended-spectrum β-lactamases; AmpC- 
AmpC β-lactamases; * p value < 0.05 statistically significant. N.s. not significant to calculate. 
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Table 4: ESBLs/AmpC - producing Escherichia coli strains from companion animals and human-
CA with UTI. 

ESBL/AmpC 

genes 

Companion animal 

 (N = 35)a 

% (n) 

Human - CA 

(N = 85)a 

%(n) 

blaSHV-12 0.0 % (n=0) 1.2 % (n=1) 

blaCTX-M-1 5.7 % (n=2) 10.6 % (n=9) 

blaCTX-M-1-type 5.7 % (n=2) 0.0 % (n=0) 

blaCTX-M-15 20.0 % (n=7) 54.2 % (n=46) 

blaCTX-M-15- type 0.0 % (n=0) 1.2 % (n=1) 

blaCTX-M-32 8.6 % (n=3) 5.9 % (n=5) 

blaCTX-M-9 2.9 % (n=1) 0.0 % (n=0) 

blaCTX-M-9-type 0.0 % (n=0) 4.7 % (n=4) 

blaCTX-M-14 0.0 % (n=0) 8.2 % (n=7) 

blaCTX-M-27 0.0 % (n=0) 7.1 % (n=6) 

blaCTX-M-2group 0.0 % (n=0) 1.2% (n=1) 

blaCMY-2 57.1% (n=20) 5.9 % (n=5) 

Legend: % percentage of strains; human community-acquired UTI; aThe number shown is the total number of strains 
tested; ESBLs- Extended-spectrum β-lactamases; AmpC- AmpC β-lactamases * p value < 0.05 statistically significant.  

 

Table 5 - Frequency of pathogenicity islands markers (PAIs) among third-generation 
cephalosporins resistant Escherichia coli strains from companion animals and human-CA with 

UTI. 

PAIs 

Companion animal 

(Total N=35)a 

% (n) 

Human - CA 

(Total N =85)a 

% (n) 

P value 

PAIIJ96 0.0 % (n=0) 0.0% (n=0) N.s. 

PAIIIJ96 11.4 % (n=4) 41.2 % (n=35) 0.004 

PAII536 8.6 % (n=3) 40.0 % (n=34) 0.0005 

PAIII536 22.9 % (n=8) 35.3 % (n=30) 0.203 

PAIIII536 0.0 % (n=0) 0.0% (n=0) N.s. 

PAIIV536 72.3 % (n=26) 91.8 % (n=78) 0.017 

PAIICFT073 54.3 % (n=19) 78.8 % (n=67) 0.013 

PAIIICFT073 20.0 % (n=7) 69.4 % (n=59) <0.0001 

Legend: Total N, total sample number; n, number of strains; Human-CA, human community-acquired UTI. aThe 
number shown is the total number of strains tested * p value < 0.05 statistically significant. N.s. not significant to 
calculate.  
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Table 6 - Frequency of virulence genes among third-generation cephalosporins resistant 
Escherichia coli strains to from companion animals and humans-CA with UTI. 

Legend: Total N, total sample number; n, number of strains; aThe number shown is the total number of strains tested; 
Human-CA, human community-acquired UTI.* p value < 0.05 statistically significant. N.s. not significant to calculate. 

 
  

Target gene product/function Target gene 

Companion 

animal 

(Total N=35 a) 

Human - CA 

(Total N =85 a) 
P value 

Pap fimbriae papEF operon segment 45.7 % (n=16) 49.4 % (n=42) 0.841 

Sfa fimbriae sfa 20.0 % (n=7) 20.0 % (n=17) N. s 

Afa afimbrial adhesin afa 2.9 % (n=1) 9.4 % (n=8) 0.281 

alpha-hemolysin operon hlyA 40.0 % (n=14) 42.4 % (n=36) 0.841 

Cytotoxic necrotizing factor-1 cnf1 17.1 % (n=6) 41.2 % (n=35) 0.012 

aerobactin siderophore iucD 48.6 % (n=17) 83.5 % (n=71) 0.0002 

E. coli common pilus ecpA 100 % (n=35) 100 % (n=85) N.s. 

uropathogenic specific protein usp 2.9 % (n=1) 0.0 % (n=0) 0.292 
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Table 7 : Distribuition of multiloccous sequence types (ST) of ESBLs/AmpC –producing 
Escherichia coli strains obtained in Portugal from companion animals and humans from 

community-acquired with urinary tract infections. 

phylogroup Sequence Type 

 

Clonal Complex β-lactamase type 

(ESBLs/pAMPc) 

Specie 

(n) 

A ST10 10 blaCTX-M-1 Human (2) 

A ST23 23 blaCTX-M-32 Cat (1) 

A ST88 23 blaCTX-M-1  Dog (1) 

   blaCTX-M-15  Human (1) 

   blaCTX-M-32 Human (1) 

A ST90 23 blaCTX-M-9like 

blaCTX-M-27 

Human 1) 

Human (1) 

A ST167 10 blaCTX-M-32 Human (1) 

A ST540 – blaCTX-M-32 Human (1) 

A ST609 46 blaCTX-M-32 Dog (1) 

A ST617 10 blaCTX-M-1 Human (1) 

A ST5257 – blaCTX-M-32 Human (1) 

A ST6023 – blaCTX-M-14 Human (1) 

A Unassigned ST* – blaCTX-M-15 Dog (1) 

B1 ST58 155 blaCTX-M-1 Homem (2) 

B1 ST224 – blaCTX-M-32 Cat (1) 

B1 ST453 86 blaSHV-12 

blaCTX-M-1 

blaCTX-M-15 

blaCTX-M-14 

Human (1) 

Human (1) 

Human (1) 

Human (3) 

B1 ST533 – blaCTX-M-15+ blaCMY-2 Dog (1) 

B1 ST539 – blaCTX-M-1like 

blaCMY-2 

Dog (1) 

Cat (1) 

B1 ST847 – blaCTX-M-14 Human (1) 

B1 ST1196 – blaCTX-M-1 Human (1) 

B1 ST1725 – blaCTX-M-15 Human (1) 

B1 ND – blaCTX-M-2group Human (1) 

B2 ST131 131 blaCTX-M-1 

blaCTX-M-15 

blaCTX-M-32 

blaCTX-M-9like 

blaCTX-M-14 

blaCTX-M-27 

blaCMY-2 

Cat (1), Human (2) 

Dog (2), Cat (2), Human (42) 

Human (1) 

Human (3) 

Human (1) 

Human (5) 

Dog (1), Human (2) 

B2 ST372 – blaCTX-M-15 Dog (1) 

D ST57 350 blaCMY-2 Dog (1) 

D ST117 – blaCTX-M-15 Human (1) 

D ST354 354 blaCTX-M-14 

blaCMY-2 

Human (1) 

Dog (1) 
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D ST405 405 blaCMY-2 Dog (1) 

D ST410 – blaCTX-M-15 Human (1) 

D ST648 648 blaCTX-M-9 + blaCMY-2 

blaCMY-2 

Cat (1) 

Dog (4), Cat (7), Human (1) 

D ST778 38 blaCMY-2 (1) Human 

D ST1775 – blaCMY-2 (2) Dog 

D ST3258 – blaCMY-2 (1) Dog 

Legend: ND- not done; - : not applicable; * New ST allelic profile - Marques et al., 2017. 

 

Figure 1: Distribuition of multiloccous sequence types (ST) of ESBLs/AmpC –producing 
Escherichia coli strains obtained in Portugal from companion animals and humans from 

community-acquired with urinary tract infections, using goeburst, based on phyloviz software. 

Legend: Each ST is represented by a bar and the size is proportional to the number of strains detected. 

 - Human; - Dog;  Cat ; - dogs and cats. 
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Figure 2: Dendrogram showing the relatedness by rep-PCR of E. coli strains from companion 
animals with UTI and humans-CA with UTI 
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Supplementary Table 1: Antimicrobial resistance of third-generation cephalosporinases - resistant Escherichia coli strains by phylogenetic group 
from companion animals and human - CA with UTI. 

Antimicrobials Companion animal 

(N =35 )a 

Human - CA 

(N =85 )a 

Overall 

(n=35) 

A  

(n=8) 

B1  

(n=4) 

B2  

(n=6) 

D  

(n=17) 

Overall 

(n=85) 

A  

(n=11) 

B1  

(n=12) 

B2  

(n=57) 

D  

(n=5) 

 %R %R %R %R %R %R %R %R %R %R 

Ampicillin/ Amoxicillin 100% 

(n = 35) 

100% 

(n = 8) 

100% 

 (n = 4) 

100% 

(n = 6) 

100%  

(n = 17) 

100% 

(n =85) 

100%  

(n =11) 

100%  

(n =12) 

100%  

(n =57) 

100%  

(n =5) 

Amoxicillin/clavulanate 77.1% 

(n = 27) 

62.5%  

(n = 5) 

75.0%  

(n = 3) 

50.0% 

(n = 3) 

94.1%  

(n = 16) 

27.1% 

(n =23) 

9.1% 

(n =1) 

16.7% 

 (n =2) 

31.6%  

(n =18) 

40.0% 

(n =2) 

Cefoxitin 62.9% 

(n = 22) 

37.5% 

(n = 3) 

50.0%  

(n = 2) 

33.3% 

(n = 2) 

88.2%  

(n = 15) 

8.2% 

(n =7) 

0.0% 

(n =0) 

0.0% 

(n =0) 

8.8% 

(n =5) 

40.0% 

(n =2) 

Cefotaxime 91.4% 

(n =32) 

87.5%  

(n = 7) 

100% 

 (n =4) 

83.3%  

(n =5) 

94.1%  

(n =16) 

100% 

(n =85) 

100%  

(n =11) 

100%  

(n =12) 

100%  

(n =57) 

100%  

(n =5) 

Ceftazidime 62.8% 

(n =22) 

37.5% 

(n = 3) 

75.0% 

 (n = 3) 

50.0% 

(n =3) 

76.5% 

 (n =13) 

42.4% 

(n =36) 

36.4%  

(n =4) 

16.7%  

(n =2) 

47.4%  

(n =27) 

60% 

(n =3) 

Imipenem 0.0% 

(n = 0) 

0.0% 

(n = 0) 

0.0%  

(n = 0) 

0.0%  

(n = 0) 

0.0%  

(n = 0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

 



 

 99 

Meropenem 0.0% 

(n = 0) 

0.0% 

(n = 0) 

0.0% 

(n = 0) 

0.0% 

(n = 0) 

0.0% 

 (n = 0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

0.0% 

(n =0) 

Ciprofloxacin 74.3 % 

(n =26) 

75.0% 

(n =6) 

100%  

(n =4) 

66.7% 

(n =4) 

70.6%  

(n =12) 

88.2% 

(n =75) 

72.7%  

(n =8) 

66.7%  

(n =8) 

96.5%  

(n =55) 

80.0%  

(n =4) 

Norfloxacin 71.4% 

(n =25) 

62.5% 

(n =5) 

75.0% 

(n =3) 

66.7% 

(n =4) 

76.5%  

(n =13) 

88.2% 

(n =75) 

72.7%  

(n =8) 

66.7%  

(n =8) 

96.5% 

 (n =55) 

80.0%  

(n =4) 

Nitrofurantoin 5.7% 

(n =2) 

12.5%  

(n =1) 

0.0% 

 (n =0) 

0.0% 

(n =0) 

5.9%  

(n =1) 

2.4% 

(n =2) 

0.0% 

(n =0) 

0.0% 

(n =0) 

3.5% 

(n =2) 

0.0% 

(n =0) 

Gentamicin 40.0% 

(n =14) 

12.5% 

(n = 1) 

25.0%  

(n =1) 

50.0% 

(n =3) 

52.9% 

 (n =9) 

37.6% 

(n =32) 

27.3%  

(n =3) 

8.3% 

(n =1) 

47.4%  

(n =27) 

20.0%  

(n =1) 

Amikacin 5.7%  

(n =2) 

0.0%  

(n =0) 

0.0%  

(n =0) 

16.7%  

(n =1) 

5.9% 

 (n =1) 

10.6% 

(n =9) 

0.0% 

(n =0) 

0.0% 

(n =0) 

15.8%  

(n =9) 

0.0% 

(n =0) 

Tobramycin 31.4% 

(n =11) 

12.5% 

(n =1) 

25.0% 

 (n =1) 

50.0% 

(n =3) 

35.3% 

 (n =6) 

49.4% 

(n =42) 

36.4%  

(n =4) 

0.0% 

(n =0) 

64.9% 

 (n =37) 

20.0%  

(n =1) 

Trimethoprim/sulfamethoxa

zole 

71.4% 

(n =25) 

100% 

(n =8) 

50.0% 

 (n =2) 

33.3% 

(n =2) 

76.5% 

 (n =13) 

74.1% 

(n =63) 

81.8%  

(n =9) 

75.0%  

(n =9) 

71.9%  

(n =41) 

80.0%  

(n =4) 

Multidrug resistant 71.4 % 

(n =25) 

87.5 %  

(n =7) 

75.0 % 

(n =3) 

66.7 % 

(n =4) 

64.7 % 

(n =11) 

84.7% 

(n =72) 

81.8 % 

(n =9) 

58.3 % 

(n =7) 

91.2% 

(n =52) 

80.0 % 

(n =4) 

Legend: %R, percentage of resistant isolates; Human-CA, human community-acquired UTI. aThe number shown is the total number of isolates tested. 
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Supplementary Table 2: Frequency of pathogenicity islands markers (PAIs) by phylogenetic group, among third-generation cephalosporins –
resistant Escherichia coli strains to from companion animals and humans - CA with UTI. 

Pathogenicity Islands markers (PAIs) 

phylogroup PAIs 

% (n) 

PAI IJ96 

% (n) 

PAI II J96 

% (n) 

PAI I 536 

% (n) 

PAI II 536 

% (n) 

PAI III 536 

% (n) 

PAI IV 536 

% (n) 

PAI I CFT073 

% (n) 

PAI II CFT073 

% (n) 

Group A          

Human-CA (n=11)a 63.6 % (n=7) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 63.6 % (n=7) 18.2 % (n=2) 0.0 % (n=0) 

Companion animal (n = 8)a 50.0 % (n=4) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 50.0 % (n=4) 0.0 % (n=0) 0.0 % (n=0) 

P value 0.657 N.s N.s N.s N.s N.s 0.058 0.164 N.s 

Group B1          

Human-CA (n=12)a 75.0 % (n=9) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 75.0 % (n=9) 66.7 % (n=8) 0.0 % (n=0) 

Companion animal (n=4)a 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 

P value 0.019 N.s N.s N.s N.s N.s 0.019 0.077 N.s 

Group B2          

Human-CA (n=57)a 100 % (n=57) 0.0 % (n=0) 57.9 % (n=33) 57.9 % (n=33) 50.9 % (n=29) 0.0 % (n=0) 100 % (n=57) 94.7 % (n=54) 94.7 % (n=54) 

Companion animal (n=6)a 100 % (n=6) 0.0 % (n=0) 66.6 % (n=4) 33.3 % (n=2) 16.7 % (n=1) 0.0 % (n=0) 100 % (n=6) 100 % (n=6) 100 % (n=6) 

P value N.s N.s N.s 0.393 0.199 N.s N.s N.s N.s 

Group D          

Human-CA (n=5)a 100 % (n=5) 0.0 % (n=0) 40.0 % (n=2) 20.0 % (n=1) 20.0 % (n=1) 0.0 % (n=0) 100 % (n=5) 60.0 % (n=3) 20.0 % (n=1) 

Companion animal (n=17)a 100 % (n=17) 0.0 % n=0) 0.0 % (n=0) 5.9 % (n=1) 41.2 % (n=7) 0.0 % (n=0) 94.2 % (n=16) 76.5 % (n=13) 5.9 % (n=1) 

P value N.s N.s 0.043 0.411 0.369 N.s N.s 0.585 0.411 

Legend: % percentage of strains; human community-acquired UTI; aThe number shown is the total number of strains tested; * p value < 0.05 statistically significant. N.s. not 
significant to calculate.  



 

 101 

Supplementary Table 3: Frequency of virulence genes by phylogenetic group, among third-generation cephalosporins-resistant Escherichia coli 
strains from companion animals and humans-CA with UTI. 

Virulence target genes (VFs) 

phylogroup Strains 

with VFs % 

(n) 

papEF  

% (n) 

sfaDE 

% (n) 

afaBC 

 % (n) 

hlyA  

% (n) 

cnf1 

% (n) 

iucD  

% (n) 

ecpA  

% (n) 

usp 

 % (n) 

Group A          

Human-CA (n=11)a 100 % 

(n=11) 

27.3 % (n=3) 0.0 % (n=0) 9.1 % (n=1) 0.0 % (n=0) 0.0 % (n=0) 18.2 % (n=2) 100 % 

(n=11) 

0.0 % (n=0) 

Companion animal (n = 8)a 100 % (n=8) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 100 % (n=8) 0.0% (n=0) 

P value N.s 0.215 N.s N.s N.s N.s 0.485 N.s N.s 

Group B1          

Human-CA (n=12)a 100 % 

(n=12) 

33.3 % (n=4) 0.0 % (n=0) 8.3 % (n=1) 0.0 % (n=0) 0.0 % (n=0) 66.7 % (n=8) 100 % 

(n=12) 

0.0 % (n=0) 

Companion animal (n=4)a 100 % (n=4) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 0.0 % (n=0) 100 % (n=4) 0.0 % (n=0) 

P value N.s 0.516 N.s N.s N.s N.s 0.077 N.s N.s 

Group B2          

Human-CA (n=57)a 100 % 

(n=57) 

56.1 % (n=32) 28.1 % 

(n=16) 

8.8 % (n=5) 59.6 % 

(n=34) 

57.9 % 

(n=33) 

98.2 % (n=56) 100 % 

(n=57) 

0.0 % (n=0) 

Companion animal (n=6)a 100 % (n=6) 83.3 % (n=5) 66.7 % (n=4) 16.7 % (n=1) 100 % (n=6) 66.7 % (n=4) 83.3 % (n=5) 100 % (n=6) 16.6 % (n=1) 

P value N.s  0.387 0.075 0.275 0.078 N.s 0.183 N.s 0.095 

Group D          

Human-CA (n=5)a 100 % (n=5) 60.0 % (n=3) 20.0 % (n=1) 20.0 % (n=1) 40.0 % (n=2) 40.0 % (n=2) 100 % (n=5) 100 % (n=5) 0.0 % (n=0) 

Companion animal (n=17)a 100 % 

(n=17) 

64.7 % (n=11) 17.6 % (n=3) 0.0 % (n=0) 47.1 % (n=8) 11.8 % (n=2) 70.6 % (n=12) 100 % 

(n=17) 

0.0 % (n=0) 

P value N.s N.s N.s 0.227 N.s 0.209 0.289 N.s N.s 
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Legend: % percentage of strains; human community-acquired UTI; aThe number shown is the total number of strains tested; Pap fimbriae - papEF operon segment; Sfa fimbriae 
– sfa; Afa afimbrial adhesion – afa; alpha-hemolysin operon – hlyA; Cytotoxic necrotizing factor-1- cnf-1; aerobactin siderophore – iucD; E. coli common pilus – ecpA; 
uropathogenic specific protein- usp; * p value < 0.05 statistically significant; N.s. not significant to calculate. 
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Supplementary Table 4: Genotypic characteristics of ESBLs/AmpC -producing Escherichia coli strains from companion animals with UTI (N=31) 
from 1999-2015. 

Strain Year Companion 

animal 

Phylogenetic 

group 

Clonal 

group 

CC Antimicrobial 

resistancea 

ESBL 

and/or 

AmpC 

genes 

Pathogenicity 

island markers 

(PAIs) 

Virulence genes 

FMV434/00 2000 Dog D ST1775 - AMP-AMC-CTX-CAZ-FOX-

SXT 

blaCMY-2 PAIICFT073-PAIIV536 ecpA-iucD 

FMV457/00 2000 Dog D ST1775 - AMP-AMC-CTX-CAZ-FOX-

SXT 

blaCMY-2 PAIICFT073-PAIIV536 ecpA-iucD 

FMV1953/01 2001 Dog D ST57 CC350 AMP-AMC-CTX-CAZ-FOX-

SXT-TOB-AK 

blaCMY-2 PAIICFT073-PAIIV536 ecpA-iucD 

FMV203/03 2003 Dog D ST405 CC405 AML-AMC-CTX-CIP-NOR-

ENR 

blaCMY-2 PAIII536-PAIIV536 ecpA – hlyA-cnf1 

FMV5825/04 2004 Dog B2 O25b:H4-

ST131-

H30Rx 

CC131 AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-CN-AK-

TOB 

blaCTX-M-15 PAIII536-PAIIIJ96-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-hlyA-cnf1-sfaDE-

papEF-iucD 

FMV6346/05 2005 Cat B1 ST539 - AMP-AMC-CTX-CAZ-FOX-

CIP-NOR-ENR-CN 

blaCMY-2 none ecpA 

FMV3389/06 2006 Dog D ST354 CC354 AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-CN-

TOB 

blaCMY-2 PAIII536-PAIICFT073-

PAIIV536 

ecpA- hlyA-iucD 

FMV521/07 2007 Cat B1 ST224 - AMP-CTX-CAZ-CIP-NOR-

ENR 

blaCTX-M-32 none ecpA 

FMV1630/07 2007 Dog A unassigne

d STb 

CC23 AMP-CTX-CAZ-SXT-CIP-

NOR-ENR 

blaCTX-M-15 PAIIV536 ecpA 

FMV7261/07 2007 Dog A ST609 CC46 AMP-CTX-SXT-CIP-NOR-

ENR 

blaCTX-M-32 PAIIV536 ecpA 

FMV635/08 2008 Cat A ST23 CC23 AMP-AMC-CTX-CAZ-SXT-

CIP-NOR-ENR 

blaCTX-M-32 none ecpA 
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FMV2777/08 2008 Cat B2 O25b:H4-

ST131-

H30Rx 

CC131 AMP-AMC-CTX-CAZ-CIP-

NOR-ENR-CN-TOB 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-hlyA-papEF-iucD 

FMV1952/10 2010 Cat D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-CN-

TOB 

blaCTX-M-9-

blaCMY-2 

PAIII536-PAIIV536 ecpA-papEF 

FMV25/11 2011 Cat D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-CN 

blaCMY-2 PAIICFT073-PAIIV536 ecpA-papEF 

FMV29/11 2011 Dog D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

CIP-NOR-ENR-CN-AK 

blaCMY-2 PAIICFT073-PAIIV536 ecpA-papEF 

FMV469/13 2013 Dog D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-CN-

TOB 

blaCMY-2 PAIII536-PAIIV536 ecpA-papEF 

FMV1389/13 2013 Cat D ST648 CC648 AML-AMC-CTX-FOX-SXT-

CIP-NOR-ENR-CN 

blaCMY-2 PAIII536-PAIICFT073-

PAIIV536 

ecpA-papEF 

FMV55/13 2013 Cat D ST648 CC648 AMP-AMC-CTX-FOX-SXT-

ENR-NOR-CN 

blaCMY-2 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-sfaDE-papEF-

iucD 

FMV58/13 2013 Cat B2 O25b:H4-

ST131-

H30R1 

CC131 AMP-CTX-SXT-CIP-NOR-

ENR 

blaCTX-M-1 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA- hlyA-sfaDE-

papEF-iucD 

FMV4479/13 2013 Dog B1 ST533 - AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-TOB 

blaCTX-M-15- 

blaCMY-2 

none ecpA 

FMV5338/13 2013 Dog B2 O25b:H4-

ST131-

H30Rx 

CC131 AMP-AMC-CTX-CIP-NOR-

CN-TOB 

blaCTX-M-15 PAII536-PAIIIJ96-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-hlyA,cnf1-afaBC-

iucD 

FMV121/14 2014 Dog B1 ST539 - AMP-AMC-CTX-SXT-CIP-

NOR 

blaCTX-M-1type none ecpA 

FMV546/14 2014 Cat D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-CN-

TOB 

blaCMY-2 PAIII536-PAIICFT073-

PAIIV536 

ecpA-papEF 

FMV966/14 2014 Dog D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

F-SXT-CIP-NOR-ENR 

blaCMY-2 II536,ICFT073,IV53

6 

ecpA-papEF-iucD 
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FMV1549/14 2014 Cat D ST648 CC648 AMP-AMC-CAZ-FOX-CIP-

NOR-ENR 

blaCMY-2 PAIICFT073-PAIIV536 ecpA-papEF 

FMV43/14 2014 Cat D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

CIP-NOR-ENR 

blaCMY-2 PAIICFT073-PAIIV536 ecpA-cnf1-sfaDE-papEF 

FMV78/15 2015 Dog A ST88 CC23 AMP-CTX-CAZ-SXT-CN-

TOB 

blaCTX-M-1 PAIIV536 ecpA 

FMV97/15 2015 Dog B2 O25b:H4-

ST131 

CC131 AMP-AMC-FOX blaCMY-2 PAII536-PAIIIJ96-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-usp-hlyA-cnf1-

sfaDE-papEF-iucD 

FMV4995/15 2015 Dog B2 ST372 - AMP-CTX-CAZ blaCTX-M-15 PAIIIJ96-PAIICFT073-

PAIIV536-PAIIICFT073 

ecpA-hlyA-cnf1-sfaDE-

papEF 

FMVCP39/1

5 

2015 Cat D ST3258 - AMP-CTX-SXT blaCMY-2 PAIICFT073-PAIIV536 ecpA-iucD 

FMV151/15 2015 Cat D ST648 CC648 AMP-AMC-CTX-CAZ-FOX-

SXT-CIP-NOR-ENR-CN 

blaCMY-2 PAIII536-PAIICFT073-

PAIIV536 

ecpA-hlyA-cnf1-sfaDE-

papEF-iucD 

Legend: ESBLs- extended-spectrum β-lactamases; AmpC- AmpC β-lactamases; AMC- Amoxicilin/clavulanate, AMP-Ampicillin, AK- Amikacin, CAZ-Ceftazidime, CIP-
Ciprofloxacin, CN- Gentamycin, CTX-Cefotaxime, ENR-Enrofloxacin, FOX-Cefoxitin, F- Nitrofurantoin, NOR- Norfloxacin, SXT- Trimethoprim/sulphamethoxazole, TOB-
Tobramycin.;  
asusceptibility was accessed according to Clinical and Laboratory Standards Institute (CLSI) guidelines M100-S29;  
Pap fimbriae - papEF operon segment; Sfa fimbriae – sfa; Afa afimbrial adhesion – afa; alpha-hemolysin operon – hlyA; Cytotoxic necrotizing factor-1- cnf-1; aerobactin 
siderophore – iucD; E. coli common pilus – ecpA; uropathogenic specific protein- usp 
b New ST allelic profile - Marques et al., 2017. 
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Supplementary Table 5: Genotypic characteristics of ESBLs/AmpC - producing Escherichia coli istrains from Humans-CA with UTI (N=85) from 
2013. 

strain Phylogenetic 

group 

Clonal 

group 

CC Antimicrobial resistancea ESBL and/or 

AmpC genes 

Pathogenicity 

island markers 

(PAIs) 

Virulence genes 

FMVPPL402 A ST10 CC10 AML-CTX-SXT-CIP-NOR blaCTX-M-1 PAIIV536 ecpA-papEF 

FMVML22190 A ST10 CC10 AML-CTX-SXT-CIP-NOR blaCTX-M-1 PAIIV536 ecpA 

FMVPCA14 A ST88 CC23 AML-CTX-CAZ-SXT-TOB blaCTX-M-32 PAIIV536 ecpA 

FMVANZ1442 A ST88 CC23 AML-AMC-CTX-SXT-CIP-NOR-CN- 

TOB 

blaCTX-M-15 PAIICFT073-PAIIV536 ecpA-papEF-iucD 

FMVPLO664 A ST90 CC23 AML-CTX-SXT-CIP-NOR blaCTX-M-27 PAIIV536 ecpA 

FMVANZ1364 A ST90 CC23 AML-CTX-SXT-CIP-NOR blaCTX-M-9like none ecpA 

FMV2222 A ST167 CC10 AML-CTX-CAZ-SXT-CIP-NOR-CN-

TOB 

blaCTX-M-32 PAIIV536 ecpA 

FMV1927 A ST540 - AML-CTX-CAZ-SXT blaCTX-M-32 none ecpA 

FMVPCA2118 A ST617 CC10 AML-CTX-CAZ-SXT-CIP-NOR-CN-

TOB 

blaCTX-M-1 PAIICFT073-PAIIV536 ecpA-iucD 

FMVPRV598 A ST5257 - AML-CTX blaCTX-M-32 none ecpA 

FMVCde788 A ST6023 - AML-CTX-SXT-CIP-NOR blaCTX-M-14 none ecpA 

FMVML17567 B1 ND - AML-CTX-SXT blaCTX-M-2 none ecpA 

FMVMLD457 B1 ST58 CC155 AML-CTX-SXT blaCTX-M-1 PAIICFT073-PAIIV536 ecpA-papEF-iucD 

FMVPOOK18 B1 ST58 CC155 AML-CTX-SXT blaCTX-M-1 PAIIV536 ecpA-papEF-afaBC, 

FMVBa417 B1 ST453 CC86 AML-CTX-SXT-CIP-NOR blaCTX-M-14 none ecpA 

FMVMQ8509 B1 ST453 CC86 AML-CTX-CAZ-CIP-NOR blaSHV-12 PAIICFT073-PAIIV536 ecpA-iucD 

FMVJP842 B1 ST453 CC86 AML-CTX-SXT-CIP-NOR blaCTX-M-14 PAIICFT073-PAIIV536 ecpA-papEF-iucD 

FMVPRV129e B1 ST453 CC86 AML-AMC-CTX-SXT-CIP-NOR-CN blaCTX-M-14 PAIICFT073-PAIIV536 ecpA-iucD 
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FMVML24561 B1 ST453 CC86 AML-CTX-CIP-NOR blaCTX-M-1 PAIICFT073-PAIIV536 ecpA-iucD 

FMVML35760 B1 ST453 CC86 AML-AMC-CTX-CIP-NOR-CN blaCTX-M-15 PAIICFT073-PAIIV536 ecpA-iucD 

FMV2660 B1 ST847 - AML-CTX-SXT blaCTX-M-14 PAIICFT073-PAIIV536 ecpA-iucD 

FMVMQ11227 B1 ST1725 - AML-CTX-SXT-CIP-NOR blaCTX-M-15 PAIICFT073-PAIIV536 ecpA-papEF-iucD 

FMVANG80 B1 ST1196 - AML-CTX-CAZ-SXT-CIP-NOR blaCTX-M-1 none ecpA 

FMVMR1960 B2 O25b:H4-

ST131-H30R1 

CC131 AML-CTX-CAZ-SXT-CIP-NOR blaCTX-M-1 PAII536-PAIIIJ96-IPAII536-

PAIICFT073- PAIIV536- 

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVPFB 399 B2 O25b:H4-

ST131-H30R1 

CC131 AML-AMC-CTX-CAZ-SXT-CIP-NOR blaCTX-M-1 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVOM1969 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-CN-

TOB 

blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVO5N38 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVANG 39 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-TOB blaCTX-M-15 PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-afaBC-hlyA-cnf1-iucD 

FMVMLD 252 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-FOX-SXT-CIP-NOR blaCTX-M-15 PAII536-PAIIIJ96-PAIIV536 ecpA-hlyA-cnf1 

FMVOMR+80 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-CAZ-SXT-CIP-NOR-

CN-TOB-AK 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVNan19 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-CN-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVPCV394 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-CIP-NOR-CN-TOB blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 
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FMVPAV806 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-CIP-NOR-CN-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536- 

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVNA255 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-SXT-CIP-NOR-CN-

TOB 

blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073PAI-IV536-

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVVIM 1771 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-CAZ-F-SXT-CIP-

NOR-CN-TOB 

blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVAH6430 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-SXT-CIP-NOR-TOB blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF- afaBC- iucD 

FMVPME 508 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-CN-

TOB 

blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAI IV536-PAI 

IICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVPSF1626 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536- 

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVPSF1301 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-TOB blaCTX-M-15 PAIICFT073-IPAIV536-

PAIIICFT073 

ecpA-iucD 

FMVPD26e5 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CIP-NOR blaCTX-M-15 PAII536-PAIIV536-

PAIIICFT073 

ecpA-papEF-hlyA-iucD 

FMVML 27331 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-CN-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVOMV 168 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-CIP-NOR-CN-AK blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

PFMVD5379 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-CN-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536, 

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVML25380 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CIP-NOR-CN-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 
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FMVL5449 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVPD6085 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CIP-NOR-CN-TOB-AK blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVANG82 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-CAZ-CIP-NOR-CN-

TOB 

blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVJA861 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-CIP-NOR-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAI IV536- 

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVMR1533 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-SXT-CIP-NOR-CN-

TOB 

blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVMQ11181 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVPCV690 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-CIP-NOR-CN-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVLum380 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVCT313 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-CN-

TOB 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVML28567 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-CAZ-SXT-CIP-NOR-

TOB-AK 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-afaBC-iucD 

FMVMQeeo5 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-CN-TOB blaCTX-M-15like PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVML34063 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-CN-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536- 

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 
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FMVAM1035 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-SXT-CIP-NOR-TOB-

AK 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-sfaDE-iucD 

FMVOSF729 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-CAZ-CIP-NOR-CN-

TOB-AK 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVMQX1101 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-AMC-CTX-CAZ-CIP-NOR-CN blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIIV536-PAIIICFT073 

ecpA-hlyA-cnf1-iucD 

FMVRR3043 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-SXT-CIP-NOR-CN-

TOB-AK 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVPcue031 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-CIP-NOR-CN-TOB-

AK 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-iucD 

FMVML36906 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-CAZ-CIP-NOR-TOB-AK blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVPME856 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CXT-SXT-CIP-NOR-CN-AK blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVCS4641 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-TOB blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIICFT073-PAI IV536- 

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVCS4642 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-TOB blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-afaBC-iucD 

FMVLi8696 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CTX-SXT-CIP-NOR-TOB blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-afaBC-iucD 

FMVAFE 711 B2 O25b:H4-

ST131 

CC131 AML-AMC-CTX-CAZ-CIP-NOR-CN-

TOB 

blaCTX-M-15 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVPCA456 B2 O25b:H4-

ST131-H30R1 

CC131 AML-CTX-CAZ-CIP-NOR blaCTX-M-32 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536- 

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVLF4809 B2 O16:H5-ST131  AML-CTX-SXT-CIP-NOR-CN-TOB blaCTX-M-9like PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 
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FMVUF822 B2 O25b:H4-

ST131-H30Rx 

CC131 AML-CXT-SXT-CIP-NOR-CN blaCTX-M-9like PAII536-PAIIIJ96-IPAII536-

PAIICFT073- PAIIV536- 

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVML36741 B2 025b:H4-

ST131 

CC131 AML-AMC-CTX blaCTX-M-9like PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVNAL 47 B2 O25b:H4-

ST131-H30R1 

CC131 AML-AMC-CTX-FOX-SXT-CIP-NOR blaCTX-M-14 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVPF8675 B2 O25b:H4-

ST131-H30R1 

CC131 AML-CTX-SXT-CIP-NOR blaCTX-M-27 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVOSJ589 B2 O25b:H4-

ST131-H30R1 

CC131 AML-CTX-SXT-CIP-NOR blaCTX-M-27 PAII536-PAIIIJ96-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-papEF-sfaDE-hlyA-

cnf1-iucD 

FMVCD3e67 B2 O25b:H4-

ST131-H30R1 

CC131 AML-CTX-SXT-CIP-NOR blaCTX-M-27 PAII536-PAIIIJ96-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-hlyA-cnf1-iucD 

FMVANZ1648 B2 O25b:H4-

ST131-H30R1 

CC131 AML-CTX-SXT-CIP-NOR blaCTX-M-27 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVOSJ600 B2 O25b:H4-

ST131-H30R1 

CC131 AML-CTX-SXT-CIP-NOR blaCTX-M-27 PAII536-PAIIIJ96-

PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-hlyA-cnf1-iucD 

FMVRO757 B2 O25b:H4-

ST131 

CC131 AML-AMC-CTX-CAZ-FOX-SXT blaCMY-2 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- PAIIV536- 

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVPSF1269 B2 O25b:H4-

ST131 

CC131 AML-AMC-CTX-FOX-F-SXT-CIP-

NOR 

blaCMY-2 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 

FMVRR2968 B2 O25b:H4-

ST131 

CC131 AML-AMC-CTX-CAZ-FOX-CIP-NOR blaCMY-2 PAII536-PAIIIJ96-PAIII536-

PAIICFT073- IV536- IICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVMQ13896 D ST117 - AML-CTX-CAZ-CIP-NOR blaCTX-M-15 PAIIIJ96-PAIIV536-

PAIIICFT073 

ecpA-papEF-hlyA-cnf1-iucD 

FMVUF628 D ST354 CC354 AML-CTX-SXT_CIP-NOR-CN blaCTX-M-14 PAIICFT073-PAIIV536-

PAIIICFT073 

ecpA-iucD 
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FMVMC2815 D ST410 CC23 AML-CTX-SXT-CIP-NOR blaCTX-M-15 PAII536-PAIIIJ96-PAIII536-

PAIIV536 

ecpA-papEF-sfaDE-afaBC-

hlyA-cnf1-iucD 

FMVLi3864 D ST648 CC648 AML-AMC-CTX-CAZ-FOX-SXT-CIP-

NOR 

blaCMY-2 PAIICFT073-PAIIV536 ecpA- iucD 

FMVPD4783 D ST778 CC38 AML-AMC-CTX-CAZ-FOX-SXT blaCMY-2 PAIICFT073-PAIIV536 ecpA-papEF-iucD 

Legend: ESBLs- extended-spectrum β-lactamases; AmpC- AmpC β-lactamases; AMC- Amoxicilin/clavulanate, AML- Amoxicilin, AK- Amikacin, CAZ-Ceftazidime, CIP-
Ciprofloxacin, CN- Gentamycin, CTX-Cefotaxime, ENR-Enrofloxacin, FOX-Cefoxitin, F- Nitrofurantoin, NOR- Norfloxacin, SXT- Trimethoprim/sulphamethoxazole, TOB-
Tobramycin.; asusceptibility was accessed according to Clinical and Laboratory Standards Institute (CLSI) guidelines M100-S29;  
Pap fimbriae - papEF operon segment; Sfa fimbriae – sfa; Afa afimbrial adhesion – afa; alpha-hemolysin operon – hlyA; Cytotoxic necrotizing factor-1- cnf-1; aerobactin 
siderophore – iucD; E. coli common pilus – ecpA; uropathogenic specific protein- usp. 
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 12 

Abstract 13 

The purpose of this study was to evaluate the presence and load of ESBL/AmpC-14 

producing Enterobacteriaceae faecal carriage in healthy dogs and to identify potential risks 15 

factors associated with faecal colonization. Faecal samples were collected from dogs submitted 16 

to surgical procedures (n=25). Faecal samples from the surgery group were collected before 17 

surgery (BS) and after surgery (AS). β-lactamases were detected by PCR. Statistical analyses 18 

were performed with SAS software (v.9.4), a p value ≤ 0.05 was considered statistically 19 

significant. ESBL/AmpC-producing Enterobacteriaceae bacteria implicated in this study were E. 20 

coli, K. pneumoniae and E. cloacae. TEM and CTX-M-1 group genes were the most frequent β-21 

lactamases detected. The number of dogs colonized with 3GC-resistant Enterobacteriaceae 22 

bacteria was significantly higher in AS (63.6%, n=14/22) comparing to BS (20.0%, n=5/25, p= 23 

0.0033). The ESBL/AmpC-producing bacteria load was significantly higher in the AS group when 24 

compared with BS (p=0.025). This study shows that 3GC-resistant Enterobacteriaceae and 25 

ESBLs/AmpC producers in veterinary clinical practice is a concern and highlights the need to 26 

implement preventive measures to minimize its spread. 27 

 28 

Keywords: Veterinary Hospitals; Antimicrobial prophylactic use; ESBLs; pAmpC; Third 29 

generation cephalosporin resistance; Gut colonization. 30 

  31 
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Introduction 1 

The European Medicine Agency has reviewed the public health risks associated with the 2 

transfer of antimicrobial resistance from companion animals and has identified the major 3 

microbiological hazards coming from companion animals to humans, including third-generation 4 

cephalosporin resistant bacteria [1]. The presence of antimicrobial resistant bacteria in 5 

companion animals and their close contact with humans provides opportunities for interspecies 6 

transmission [2]. In veterinary hospitals, infections acquired during hospitalization caused by 7 

resistant bacteria are an increasing problem [3–5]. Antimicrobials are regularly used for the 8 

prevention and control of infections in companion animals, and many of the antimicrobials used 9 

are the same or closely related to those used in the treatment of bacterial infections in humans 10 

[6,7]. 11 

β-lactams are among the most important antimicrobials used in veterinary medicine. β-12 

lactam resistance can be attained through intrinsic and/or acquired antimicrobial resistance. 13 

Intrinsic resistance mechanisms are those specified by naturally occurring genes found on the 14 

hosts’ chromosome, such as, AmpC β-lactamase [8]. Acquired resistance genes, such as most 15 

β-lactamases, may enable bacteria to destroy the antimicrobial agent, leading to clinical 16 

resistance. These mechanisms cause increased antimicrobial resistance through different 17 

pathways: modification of the antimicrobial target site; expression of efflux systems that prevent 18 

the antimicrobial from reaching its intracellular target; and acquisition of mutations that limit the 19 

access of the antimicrobial agents to the intracellular target site via downregulation of porin genes 20 

[9]. Extended-spectrum β-lactamases (ESBLs) were first reported by Knothe et al. [10] as 21 

transmissible resistance determinants to newer types of cephalosporins which, thereafter, have 22 

emerged as a major source of antimicrobial resistance in gram-negative pathogens [10]. 23 

ESBLs and plasmid-mediated cephamycinases (pAmpC), involve mutations in genes 24 

targeted by the antimicrobial and the transfer of resistance determinants borne on plasmids, and 25 

other mobile genetic elements carrying resistance genes, such as plasmid-encoding β-26 

lactamases and transposons can easily be transmitted by conjugation to other bacteria, even 27 

across species. ESBL producers are mostly Escherichia coli and Klebsiella pneumoniae and are 28 

the main source of community- and hospital-acquired infections in human and veterinary 29 

medicine [8,11–13]. 30 

Prophylactic antimicrobial use involves the administration of the antimicrobial in the 31 

absence of infection, with the aim of preventing it, for example in the perioperative period [7]. 32 

Ideally, the antimicrobial prophylaxis scheme should be selected and prescribed in order to 33 

minimize the possible impact on the normal bacterial flora of the patient and on the microbiologic 34 

ecology of the hospital [14]. Inappropriate prophylaxis may promote the selection of antimicrobial-35 

resistant isolates [7]. 36 
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The gastrointestinal tract is one of the main reservoirs for the emergence and 1 

dissemination of antimicrobial-resistant bacteria. Dog faeces are a recognized source of relevant 2 

resistant bacteria that can be transmitted to humans through direct contact or through shared 3 

(domestic and public) environments [2,15–21]. Antimicrobial resistance to third generation 4 

cephalosporins (3GC) has been already detected in bacteria from canine faecal samples in the 5 

last years [19,20,22,23]. However, to the best of our knowledge this is the first study to 6 

understand the dynamics of ESBLs/AmpC producing- Enterobacteriaceae in intestinal tract of 7 

healthy dogs that went to the Veterinary Teaching Hospital from the Faculty of Veterinary 8 

Medicine - University of Lisbon to perform elective surgical procedures. The purpose of this study 9 

was to evaluate the presence and load of ESBLs/AmpC-producing Enterobacteriaceae faecal 10 

carriage in healthy dogs undergoing surgery and to identify potential risks factors associated with 11 

faecal colonization. 12 

 13 

Results and Discussion 14 

Of the faecal samples obtained from healthy dogs 36.0 % (n=9/25) were females and 15 

64.0 % (n=16/25) were males, with a median age of 7 years (ranging from 0.2 - 13 years). All the 16 

animals were from a private owner. Previous hospitalization in last year was observed in 60.0 % 17 

(n=15/25) of the dogs and 50.0 % (n=12/24) had been treated with an antimicrobial agent within 18 

the last year. All the animals had street access, 68.0 % (n=17/25) and 12.0 % (n=3/25) of the 19 

dogs had cohabitation with other animals and shelter/hotel access, respectively. 20 

About 76.0 % (n=19/25) of the animals were submitted to soft tissues surgery and 24.0 21 

% (n=6/25) to orthopaedic surgery. Regarding prophylactic antimicrobial treatment 92.0 % 22 

(n=23/25) of the dogs received prophylactic antimicrobial through oral administration by different 23 

antimicrobials before and after surgery. About 52.0 % (n=12/23) of the dogs and 73.9 % 24 

(n=17/23) were administered AMC, before surgery and after surgery, respectively. One dog 25 

received AMC and a second-generation cephalosporin (2GC) after surgery; three dogs received 26 

other antimicrobials (2GC, n=1; AMC and metronidazole (MET), n=1; and MET and macrolides 27 

n=1) in both time points. 28 

In this study, 20.0 % (n=5/25) of the dogs on admission to the hospital (BS) were 29 

colonized with ESBL-producing Enterobacteriaceae. Most of the colonized dogs harboured ESBL 30 

producing- Enterobacteriaceae E. coli (n=4) belonging to the commensal phylogenetic group-B1 31 

(n=3) (Table 1). The most common antimicrobial resistance phenotype of BS E. coli isolates was 32 

AMPR–AMCR-KFR-CTXR-FOXR-CAZR (60.0 %, n=3/4). Two E. coli harboured the blaTEM gene, 33 

one harboured blaSHV gene and one blaCTX-M-1group (Table 1). 34 

Regarding samples collected after surgery (AS), about 64.0 % (n=14/22) of dogs were 35 

colonized with 3GC-resistant Enterobacteriaceae. Around 45.0 % (n=10/22) of the faecal 36 
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samples were E. coli positive, followed by K. pneumoniae (18.2%, n=4/22) and E. cloacae 1 

(13.6%, n=3/22) (Table 2). 2 

Among E. coli isolates, the most common antimicrobial resistance phenotype was AMPR-3 

AMCR-KFR-CTXR-FOXR-CAZR (n=8/10), while among K. pneumonia and E. cloacae the most 4 

common was AMPR-AMCR-KFR-CTXR-CAZR (n=2/4) and AMPR- KFR- CTXR- FOXR- CAZR 5 

(n=3/3), respectively. Furthermore, 70.0 % of the E. coli isolates (n=7/10) harboured the blaTEM 6 

gene, and the remaining isolates harboured blaCTX-M-1group gene (n=1/10), blaSHV gene (n=1/10) 7 

and one carried the combination of blaOXA-1+blaTEM genes (Table 2). Regarding K. pneumoniae, 8 

all isolates were positive for blaOXA-1+blaTEM+blaCTX-M-1group genes (Table 1). Besides the increase 9 

in 3GC-resistant Enterobacteriaceae in faecal samples after surgery (AS), most E. coli isolates 10 

belonged to commensal phylogenetic groups (group-A, n=4/10; group-B1, n=3/10). Pathogenic 11 

phylogenetic groups were also detected (group-B2, n=2/10; group-D, n=1/10) (Table 1). 12 

However, there has no statistical significant difference between BS and AS regarding pathogenic 13 

E. coli phylogenetic groups.  14 

In this study the number of dogs colonized with ESBL/AmpC-producing 15 

Enterobacteriaceae was significantly higher in AS (63.6%, n=14/22) comparing to BS (20.0%, 16 

n=5/25, p= 0.0033) (Table 1). Moreover, the ESBL/AmpC-producing Enterobacteriaceae load 17 

mean in AS group was 1.74x106 ± 5.33x106 CFU/g, and in BS group it was 1.10x102 ± 4.51x102 18 

CFU/g. The CTX-resistant bacteria faecal load was statistically significantly higher in the AS 19 

group when compared with BS (p=0.025) (Table 2). 20 

Statistical analysis was performed to determine possible risk factors associated with the 21 

faecal carriage of ESBL/AmpC-producing Enterobacteriaceae in healthy dogs. After applying the 22 

backwards elimination procedure in logistic regression none of the variables were statistically 23 

significant. 24 

In this study, about 20.0% of dogs before surgery and before entering in the hospital were 25 

already colonized with ESBL/AmpC-producing Enterobacteriaceae. The results obtained here 26 

were similar to those previously published using samples from 2010-2011 from healthy dogs [19]. 27 

Likely, this similarity is related with the fact that both studies were conducted in the same 28 

geographical area (metropolitan region of Lisbon). A significant increase in antimicrobial 29 

resistance was detected among bacteria causing UTI in companion animals from the Lisbon area 30 

between 1999 and 2014 [25]. Therefore, the apparent stable frequency of the CTX-resistant 31 

bacteria faecal carriage among heathy dogs is considered a positive outcome from this study. 32 

Nevertheless, the frequency of colonization by CTX-resistant bacteria here reported (20%) before 33 

surgery should not be neglected since faecal carriage of ESBLs/AmpC-producing may be a risk 34 

factor for secondary infections by MDR bacteria in hospitalized patients, as it occurs in humans. 35 

The ESBL/AmpC-producing Enterobacteriaceae detected in this study were E. coli, K. 36 

pneumoniae and E. cloacae. Enterobacter cloacae is ubiquitous in the environment [26] and it is 37 
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commensal in the intestinal tract of humans and animals. This species is also prone to 1 

contaminate various medical, intravenous, and other hospital devices contributing to skin/soft 2 

tissue infections, urinary tract and intra-abdominal infections and others [26]. In E. cloacae 3 

isolates from this study, the phenotype of resistance to cefotaxime and ceftazidime could not be 4 

explained by the presence of ESBL- and/or AmpC β-lactamase genes, indicating that other 5 

mechanisms of resistance could be present, such as, blaGES and blaVEB genes or other AmpC β-6 

lactamases [27]. Furthermore, E. cloacae has an intrinsic resistance to ampicillin, amoxicillin, 7 

first-generation cephalosporins, and cefoxitin owing to the production of constitutive AmpC β-8 

lactamase. Resistance of Enterobacter spp. to 3GC is in most of the cases caused by 9 

overproduction of AmpC β-lactamases [26,28]. 10 

In this study, the blaTEM and blaCTX-M-1group genes were the most frequent β-lactam-11 

resistance genes, which is in agreement with previous studies [19,29]. 12 

Hordijk et al. [22] analysed healthy dogs and cats without contact with the hospital 13 

environment in the Netherlands and detected a high percentage (45%) of dogs colonized with 14 

Enterobacteriaceae producing β-lactamases (ESBL/AmpCs). Procter et al. [30] reported that 15 

12.7% of E. coli strains isolated from dogs, who attended parks in three cities in Canada, were 16 

resistant to β-lactam antimicrobials. Aslantas et al. [31] detected 22 % of dogs were colonized by 17 

CTX-resistant E. coli in Turkey. The different frequencies of β-lactam resistant bacteria detected 18 

in these studies may be related to differences among geographical regions or to differences 19 

between study designs. Nevertheless, it highlights the importance of reporting data from different 20 

geographical regions. 21 

In this study, ESBL-producing Enterobacteriaceae significantly increased during 22 

antimicrobial administration and changes in fecal microbiota occurred, which could be in part 23 

explained by the prophylatic use of amoxicillin-clavulanate. The use of β-lactams has been 24 

previously associated with an increased risk of carriage of antimicrobial resistant E. coli in dogs 25 

[19,32,33]. However, in this study, antimicrobial treatment within the last year was not identified 26 

as a potential risk factor, unlike what has been previously described [19,32]. The small sample 27 

size used in this study is considered a limitation that could have hampered the detection of 28 

additional risk factors. Nevertheless, the findings here presented regarding dog colonization by 29 

CTX-resistant bacteria are of public-health and veterinary interest. 30 

In one recent study conducted in the Netherlands using whole genome sequencing [34], 31 

around 43% of owned dogs were found to be persistently colonized by ESBL-producing 32 

Enterobacteriaceae (6 months). It is important to notice that van den Bunt et al. used pre-33 

enrichment media unlike the study here presented. Therefore, the high frequency of colonized 34 

dogs by CTX-resistant bacteria detected after surgery (64.0 %) could be even higher. 35 

An important finding from this study is not only that the number of colonized dogs by CTX-36 

resistant bacteria increased significantly during antimicrobial treatment, but also that there was 37 
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an significant increase in the detected faecal load (UFC/g), achieving a mean value of 1.74×106 1 

UFC/g. These two findings together further highlight the importance of dogs in the dissemination 2 

of resistant bacteria and emphasize the need for appropriate faecal disposal during antimicrobial 3 

prophylaxis or treatment. Future longitudinal studies should be conducted to access the evolution 4 

of the faecal CTX-resistant bacteria load over time once the antimicrobial treatment in interrupted. 5 

It was also interesting to notice, that a higher diversity of CTX-resistant bacteria was found 6 

after surgery, including bacterial species frequently associated with nosocomial infections, 7 

namely K. pneumoniae and E. cloacae. This finding is of great importance not only because of 8 

the direct impact on patients, but also because resistant bacteria can be transmitted from 9 

companion animals to humans and disseminated into the environment [2,15,17,18]. 10 

ESBL/AmpC-producing Enterobacteriaceae may also spread from patient-to-patient due 11 

to inadequate attention to infection control measures, especially hand washing. Infections caused 12 

by Enterobacteriaceae have features that are of particular concern. These organisms are highly 13 

efficient at up-regulating or acquiring genes that code for mechanisms of antimicrobial drug 14 

resistance, especially in the presence of antimicrobial selection pressure [35]. 15 

Nowadays, there is evidence that the composition of the gut microbiota may change in 16 

response to external factors such as antimicrobials and environment [36]. Antimicrobials 17 

administration creates alterations in the faecal microbiome and can affect the immune system 18 

and the health of the host [37,38]. 19 

Antimicrobials must be used responsibly and restrictively to minimize resistance, retain 20 

the efficacy of the currently available antimicrobial agents, and to maintain a healthy gut 21 

microbiome [36]. However, more studies are needed to understand what happens on the gut 22 

flora after cessation of the antimicrobial treatment and in the following months. 23 

 24 

Materials and methods 25 

Sampling procedure and collection of data 26 

From February to July 2014, faecal samples were obtained from 25 healthy dogs (without 27 

signs of gastrointestinal disease in the previous week) that went to the Veterinary Teaching 28 

Hospital from the Faculty of Veterinary Medicine - University of Lisbon to undergo a surgical 29 

treatment. The surgery study group was divided in: i) before surgery (BS) - upon admission to 30 

the Veterinary Hospital and ii) after the surgical procedure (AS). Animals were excluded if they 31 

had been treated with an antimicrobial agent in the previous month. The surgical procedures 32 

considered for this study were soft tissue (e.g orchiectomy, ovariohysterectomy) and orthopaedic 33 

surgery (e.g., ball joint dislocation and hemilaminectomy). Faecal samples were collected at two 34 

different time points, namely before (BS) and after surgery (AS). A total of 25 animals were 35 

included in the BS group. The follow up samples included in the AS group were collected one 36 
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week after surgery. However, in three animals the follow- up was not possible and, therefore, 22 1 

samples were studied. 2 

Data about potential risk factors for ESBL/AmpC-producing Enterobacteriaceae faecal 3 

carriage was obtained through a questionnaire to the owner regarding: age, gender, 4 

hospitalisation and antimicrobial treatment within the last year, cohabitation with other animals, 5 

street access, shelter/hotel access, and surgery type (soft tissue, orthopaedic) and surgery 6 

reason (elective surgery or non-elective). To avoid categories with very unbalanced numbers, 7 

samples/information obtained from surgery type were combined by soft tissues and orthopaedic 8 

surgery. 9 

The dog owners were questioned verbally, and all replied to the questions listed above. 10 

The faecal sample collection was conducted by the owners using non-invasive methods. Owners 11 

were given specific instructions about the collection method to avoid sample contamination 12 

through contact with the ground. These also included the faecal collection into sterile containers 13 

and the use of gloves. 14 

 15 

Bacteria isolation, identification and DNA extraction 16 

Faecal samples were directly transported to the Laboratory of Antibiotic Resistance, FMV-17 

UL, Lisbon, Portugal. In total, 1 g of faeces was diluted in sterile saline solution (NaCl, 0.85%- 18 

Merck - Germany). Once homogenized, 10 μL were directly cultured on MacConkey agar plates 19 

(Scharlau, Spain) supplemented with 2.0 μg/ml of cefotaxime (CTX) (Sigma-Aldrich, USA) and 20 

incubated overnight at 37 °C. CTX-resistant Enterobacteriaceae bacteria were then quantified by 21 

counting the colony-forming units (CFU) per gram of faeces. Positive samples were screened for 22 

the presence of different colony morphologies of CTX-resistant Enterobacteriaceae. One isolate 23 

of each unique morphology was selected and further studied from all positive faecal samples. 24 

The bacterial species were determined using API 20E kit, the software APIWEB 25 

(Biomérieux, France) and by species-specific PCR [40,41]. DNA extraction was conducted using 26 

a boiling method [42]. 27 

 28 

Escherichia coli Phylogenetic typing 29 

Phylogenetic typing was performed in all E. coli isolates to determine the main 30 

phylogenetic groups (A, B1, B2 and D) according to the amplification of chuA and yjaA genes, 31 

and TspE4C2 fragment) by multiplex PCR [43]. 32 

 33 

Antimicrobial Susceptibility testing  34 

Antimicrobial susceptibility testing and interpretation were performed using the disk 35 

diffusion method according to Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI 36 

2018). The following antimicrobial disks (Oxoid, Hampshire, UK) were used: 10 μg ampicillin 37 
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(AMP), 30 μg amoxicillin-clavulanate (AMC), 30 μg cefalotin (KF), 30 μg cefotaxime (CTX), 30 1 

μg ceftazidime (CAZ) and 30 μg cefoxitin (FOX). The reference strain E. coli ATCC 25922 was 2 

used for quality control testing. ESBL-production was confirmed by the double-disk synergy test 3 

according to CLSI standards and isolates were classified as susceptible or resistant according to 4 

CLSI criteria [44]. 5 

 6 

ß-lactamases resistance genes  7 

3GC-resistant Enterobacteriacea isolates were screened by PCR for the presence of 8 

blaSHV,  blaOXA-1, blaTEM β-lactamase genes; blaCTX-M, blaCTX-M-1group and blaCTX-M-9group ESBLs [42–9 

44]; and blaMOX-1 , blaMOX-2, blaCMY-1, blaCMY-8 to blaCMY-11 , blaLAT-1 to blaLAT-4 , blaCMY-2 to blaCMY-7, 10 

blaBIL-1 , blaDHA-1, blaDHA-2, blaACC, blaMIR-1T, blaACT-1 and blaFOX-1 to FOX-5b pAmpC encoding genes 11 

[48]. Negative and positive controls were used for all PCRs. 12 

 13 

Statistical Analysis 14 

Statistical analysis was performed using SAS statistical software package for Windows, 15 

version 9.4 (SAS Institute, Cary, NC). For the categorical variables, proportions were compared 16 

using Fisher’s exact test and General linear model (GLM) procedures were used to performed 17 

descriptive statistics of ESBL/AmpC-producing Enterobacteriaceae load. The results were 18 

considered statistically significant when p < 0.05. 19 

Independent (risk factor) variables were derived from information from the owner 20 

questionnaire. Six potential independent variables were categorical. The outcome for each 21 

sample was the presence or absence of ESBL/AmpC-producing Enterobacteriaceae. Each 22 

response variable was analysed independently by Logistic regression with a final model 23 

constructed by backwards elimination. The final model for each response variable retained only 24 

the factors where the Wald χ2 test had P<0.10 [49]. 25 

 26 

Conclusions 27 

The findings of the current research showed that about 20% of dogs before surgery and 28 

before entering in the hospital were already colonized with ESBL/AmpC-producing 29 

Enterobacteriaceae, mainly harbouring the blaTEM and blaCTX-M-1group genes. After elective 30 

surgery the number of dogs colonized with ESBL/AmpC-producing Enterobacteriacea and the 31 

mean load of ESBL/AmpC-producing Enterobacteriaceae was significantly higher than before 32 

surgery. In this study, antimicrobial treatment within the last year was not identified as a potential 33 

risk factor. Yet, ESBL-producing Enterobacteriaceae significantly increased during antimicrobial 34 

prophylatic use and changes in fecal microbiota occurred. European and National appropriate 35 

antimicrobial surgical prophylaxis guidelines are urgently needed for the compliance of 36 

antimicrobial stewardship principles in veterinary hospitals. 37 
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Table 1: Genotypic and phenotypic traits of ESBL/AmpC-producing Enterobacteriaceae from healthy dogs in the surgery group, on admission to 
veterinary hospital-before surgery (BS) and after surgery (AS). 

Animal group ESBLs 

(%) 

p value Isolates ID Bacteria Antimicrobial resistance 

phenotype 

β-lactamases E. coli 

phylogroup 

 

 

Surgery group on 

admission to Hospital 

(BS) (n=25) 

 

20.0 

 

 

 

 

 

 

 

 

 

 

 

0.0033 

FMVS1 E. coli AMP KF CTX blaCTX-M-1group B1 

FMVS2 E. coli AMP AMC KF CTX FOX CAZ blaTEM D 

FMVS14 E. coli AMP AMC KF CTX FOX CAZ blaSHV B1 

FMVS18 E. coli AMP AMC KF CTX FOX CAZ blaTEM B1 

FMVS20 K. pneumoniae* AMP AMC KF CTX FOX blaSHV - 

 

 

 

 

 

 

 

 

 

Surgery group after 

surgery (AS) (n=22) 

63.6 

FMVS1 K. pneumoniae* AMP AMC KF CTX CAZ blaOXA-1, blaTEM, blaCTX-M-1group, - 

FMVS2 E. coli AMP AMC KF CTX FOX CAZ blaTEM D 

FMVS3a E. coli AMP AMC KF CTX FOX CAZ blaTEM B2 

FMVS3b K. pneumoniae* AMP AMC KF CTX CAZ blaOXA-1, blaTEM, blaCTX-M-1group - 

FMVS3c K. pneumoniae* AMP AMC KF CTX FOX CAZ blaTEM, blaCTX-M-1group - 

FMVS3d K. pneumoniae* AMP AMC KF CTX blaOXA-1, blaCTX-M-1group - 

FMVS4 E. cloacae ** AMP KF CTX FOX CAZ nd - 

FMVS6 E. cloacae ** AMP KF CTX FOX CAZ nd - 

FMVS7 E. coli AMP AMC KF CTX FOX CAZ blaTEM B1 

FMVS9 E. coli AMP KF CTX blaCTX-M-1group B2 

FMVS11 E. coli AMP AMC KF CTX FOX CAZ blaOXA-1, blaTEM A 

FMVS12 E. cloacae ** AMP KF CTX FOX CAZ nd - 

FMVS13 E. coli AMP KF CTX CAZ blaSHV B1 

FMVS16 E. coli AMP AMC KF CTX FOX CAZ blaTEM A 

FMVS17 E. coli AMP AMC KF CTX FOX CAZ blaTEM A 

FMVS21 E. coli AMP AMC KF CTX FOX CAZ blaTEM B1 

FMVS25 E. coli AMP AMC KF CTX FOX CAZ blaTEM A 

Legend: AMP-Ampicillin; AMC-Amoxicillin/clavulanic acid; CTX-Cefotaxime; CAZ-Ceftazidime; FOX-Cefoxitin; KF-Cephalotin; nd-not detected. *K. pneumoniae is intrinsic 
resistant to AMP; ** E. cloacae is intrinsic resistant to AMP, AMC, first-generation cephalosporins, and FOX [24]. 
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Table 2: Descriptive statistics of ESBL/AmpC-producing Enterobacteriaceae load (CFU/g of faeces) per dog in the before surgery group (n=25) and 
after surgery group (n=22) by the General linear model procedure. 

Animal group Mean  

(CFU/g) 

SD SE Min 

(UFC/g) 

Max  

(UFC/g) 

p value 

Before surgery group (n=25) 1.10x102 a 4.51x102 5.24x105 0.0 2.25x103 

0.025 

After surgery group (n=22) 1.74x106 b 5.33x106 4.00x105 0.0 1.84x107 

Legend: SD-Standard deviation; SE- Standard error mean; Min-minimum; Max-maximum.  Mean values with a character with different letters are statistically significant (p value 
= 0.025) 
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Chapter 4 

ESBLs/ carbapenemase - producing 
Extraintestinal pathogenic Escherichia coli 
in companion animals and humans with 
direct contact 

Chapter 4 – ESBLs/ carbapenemase - producing ExPEC in companion animals and humans with direct contact 

4.1. Characterization of the gut colonization by Escherichia coli and the resistance 

genes and virulence between companion animals and humans living in close 

contact. 

 

4.1.1- Sharing of clinically important antimicrobial resistance genes by 

companion animals and their human household members. 

 

Full paper published at Microbial drug resistance. 

 

Belas, A., Menezes, J., Gama, L.T., Pomba, C. 2020. Sharing of clinically important antimicrobial 

resistance genes by companion animals and their human household members. Microbial drug 

resistance. doi: 10.1089/mdr.2019.0380. 

 

 

Partial results were presented as,  

One Oral communication at the International congresso 27th European Congress of Clinical 

Microbiology and Infectious Diseases (ECCMID), 2017, Viena, Austria. 

Three Poster communications at the International congress 30th ECCMID, 2020, Paris,France; 

the International congress Microbiotec´19, 2019, Coimbra, Portugal and at 1st International 

Conference of the European College of Veterinary Microbiology, 2019, Athens Greece. 
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Sharing of clinically important antimicrobial resistance genes by 

companion animals and their human household members. 

 

Adriana Belas1, Juliana Menezes1, Luís T. Gama1, Constança Pomba1*, and the PET-Risk 

Consortium 

 

1CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina 

Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa. 

 

Running title: Sharing of antimicrobial resistance genes  

 

Abstract 

The aims of this study were to implemented a rapid easy methodology, to characterize 

the antimicrobial resistant gene gut content associated with Enterobacteriales and staphylococci; 

and to evaluate statistical association between antimicrobial resistance genes present in fecal 

samples from healthy companion animals and their human household members.  

Fecal samples were collected from 27 humans and 29 companion animals living in close 

contact in 20 households. Nineteen healthy humans without daily contact with companion 

animals were the control group. After DNA extraction, β-lactamases families and 10 genes of 

other antimicrobials classes were screened by PCR. Furthermore, third-generation 

cephalosporin (3GC)-resistant, carbapenem-resistant and colistin -resistant Enterobacteriales 

and methicillin resistant staphylococci (MRS) were screened by bacteriological methods. 

The blaTEM-1B gene with a P3 promotor was the most frequent β-lactam-resistant gene 

detected in humans and companion animals from households (33.3%, and 17.2 %, respectively). 

sul2 was the most frequently shared gene by humans and animals from the same household. In 

fifty percent of households at least one antimicrobial resistance gene was detected 

simultaneously in companion animal/owner pairs. Healthy humans and companion animals 

carried several antimicrobial resistance genes of clinical importance. To the best our knowledge, 

this study reports the first detection of the blaSHV-27 gene in fecal samples from healthy humans 

in Portugal and in Europe. 

 

Keywords: Enzymes Genes, Enterobacteriales, staphylococci, Public health, Antibiotics. 
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Introduction 

The spread of antimicrobial resistance is one of the greatest challenges faced nowadays 

in human and veterinary medicine. Antimicrobial-resistant bacterial pathogens are widespread in 

humans, animals and the environment, and antimicrobial-resistant infections in humans account 

for substantial morbidity and mortality, alongside with staggering economic costs.1 During the 

last fifty years, the number of companion animals has substantially increased to the point that in 

many regions, the majority of people have regular and intensive contact with pets.2 

β-lactams and potentiated sulphonamides are in many cases the first-line empirical 

antimicrobial therapeutic of choice either in human or veterinary medicine and therefore 

resistance leads to important therapeutic failures.1 It is known that the use of antimicrobials in 

therapeutics and agriculture increases the selection of antimicrobial resistance and the risk of 

the gut colonization by antimicrobial-resistant bacteria.3,4 The close contact of companion animals 

with humans provides excellent opportunities for interspecies transmission of resistant bacteria 

and their resistance genes, in either direction.  

The public health risks associated with the transfer of antimicrobial-resistant bacteria from 

companion animals were reviewed in the European Medicine Agency and in its Antimicrobial 

Working Party reflection paper, warning on the existence of antimicrobial resistance 

microbiological hazards coming from companion animals to humans.1,5 There is a gap of 

knowledge on the dynamics of transmission and selection of antimicrobial resistance genes at 

the companion animal-human interface. Animals may exchange antimicrobial-resistant bacteria 

and resistance genes with humans, but the extent to which this happens is unknown. Yet, this 

information is critical to establish the measures to be implement in order to decrease the spread 

of antimicrobial resistance genes.  

The objectives of this study were implemented a rapid easy methodology, to characterize 

the antimicrobial resistant gene gut content associated with Enterobacteriales and staphylococci 

in healthy companion animals and their human household members and identify which 

antimicrobial resistance genes were shared by both; and to evaluate statistical association 

between antimicrobial resistance genes present in fecal samples. The antimicrobial resistance 

genes studied were responsible for phenotypic resistance to six antimicrobial classes: β-lactams, 

aminoglycosides, colistin, trimethoprim/sulfamethoxazole, tetracycline and chloramphenicol in 

Enterobacteriales and in Staphylococcus spp.  

 

Material and Methods 

Sampling and collection of data 

During April 2016 to November 2016, fecal samples were obtained from households 

(n=20) constituted of healthy humans (n=27) living with healthy companion animals (n=29, 9 cats 

and 20 dogs). A control group composed of 19 healthy humans without daily contact with 
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companion animals were also enrolled. Humans and companion animals were not eligible for 

this study if they had been under antimicrobial treatment or were hospitalized in the previous 

month; and if they suffered from vomiting or diarrheal disease in the last 3 months prior to the 

study. Ethical approval for this study was obtained from the Comissão de Ética e Bem-Estar 

Animal (CEBEA) from the Faculty of Veterinary Medicine of the University of Lisbon. Informed 

consent was obtained from all human participants. The pet owners were informed of the 

procedures and conducted the fecal sample collection from their companion animals with sterile 

containers, gloves, plastic bags or for humans themselves with the option of using Faeces 

collection paper Fe-Col® (Alpha Laboratories Ltd, United Kingdom) that was then transferred to 

a sterile plastic bag. Humans and companion animals were sampled using non-invasive 

methods.  

A brief epidemiological questionnaire about each animal was filled by the owner 

containing information about age, gender, origin, contact with hospital environment, antimicrobial 

use in the last year, hospitalization in the last year, kennel/hotel access and lifestyle (indoor or 

outdoor). Also, a brief epidemiological questionnaire about each human was filled with age, 

gender, if employee or student in human or veterinary healthcare, prior antimicrobial treatment 

or hospitalization within the last year. In order to maintain the anonymity, a code number was 

given to the questionnaires and to samples. To ensure that inclusion was anonymous, humans 

control group, households, humans and animals were coded with numbered letters HC, S, H and 

A, respectively. 

Immediately after collection, fecal samples were stored at 4°C until processing and were 

aliquoted and preserved at −80°C until genomic DNA extraction. 

 

Genomic DNA extraction and purification 

Fecal samples were homogenized with appropriate aseptic techniques and avoiding 

aerosolizing. Undigested food fragments were removed. Genomic DNA extraction was 

conducted using an NZY Tissue gDNA isolation commercial Kit (NZYtech-Genes & Enzymes, 

Portugal) with some modifications to the manufacturer's instructions. Briefly, approximately 250 

mg of feces were added to 1 ml of TE buffer (10 mM tris/HCl; 1mM EDTA, pH=8). Samples were 

mixed by vortex and centrifuged during 15 minutes at 4000g. The supernatant was removed, and 

the pellet was suspended in 0.5 ml of buffer NT1. To 200 µl of the suspended sample 180 µl of 

buffer NT1 and 25 µl of Proteinase K solution were added. The samples were then incubated 

overnight at 65ºC followed by 10 minutes at 95ºC. The remaining steps were done according to 

the manufacturer´s recommendations. 
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PCR amplification for genomic DNA from fecal samples 

All PCR reaction mix was prepared to a final volume of 50 μl containing nuclease-free 

water, DreamTaq 10X Buffer (according to the manufacturer's instructions),  0.0 to 1 μM of 25 

mM MgCl2, 0,2 mM of 25 mM deoxyribonucleotide triphosphates (dNTPs), 1 to 2 μM of each 

forward and reverse primer, 10 μg per reaction of bovine serum albumin (BSA) (Sigma-Aldrich,St. 

Louis, USA), 2U DreamTaq (5U/µL) (Fermentas ThermoScientific, Chicago, USA) and 5 μl of 

genomic DNA.  

Negative and previously sequenced positive controls were included in all PCR reactions 

for quality control. PCR amplification of the 16S ribosomal DNA gene was conducted in all 

samples as a quality control for genomic DNA quality.6 Oligonucleotides used in this study can 

be found in supplementary Table S1. 

 

Detection of antimicrobial resistance genes (AMR) 

Regarding Enterobacteriales five serine-β-lactamases molecular class A families of 

genes were screened by PCR: blaSHV and blaTEM genes and the blaCTX-M genes belonging to the 

blaCTX-M-1, blaCTX-M-2 and blaCTX-M-9 groups and positive amplicons were purified and submitted to 

nucleotide sequencing.7-11  

The genes encoding the serine-β-lactamases molecular class C family of AmpC β-

lactamases blaMOX-1, MOX-2, CMY-1, CMY-8 to CMY-11, blaLAT-1 to LAT-4, CMY-2 to CMY-7 and BIL-1, blaDHA-1, DHA-

2, blaACC, blaMIR-1T, ACT-1, blaFOX-1 to FOX-5b were screened by multiplex PCR.12 Positive samples for 

the group  blaLAT-1 to LAT-4, CMY-2 to CMY-7 and BIL-1 and blaDHA were submitted to amplification of the 

blaCMY-2 and blaDHA-1 genes and submitted to nucleotide sequencing.4 Furthermore, the genes 

encoding the serine-β-lactamases molecular class D family of carbapenemases blaOXA, blaBIC, 

blaNDM, blaKPC, blaIMP, blaVIM and blaSPM also were screened by multiplex PCR. 13  

Sulfonamide (sul1, sul2 and sul3), trimethoprim (dfrIa [targeting dfrA1, dfrA5, dfrA15, 

dfrA15b, dfrA16, dfrA16b]), tetracycline (tet(A)),  chloramphenicol (cmlA) and aminoglycoside 

(aac(6')-Ib) resistance genes were also screened by PCR.14-16-Positive amplicons of aac(6')-Ib 

gene were purified and submitted to nucleotide sequencing. 

Moreover, the presence of five colistin plasmid-mediated resistance genes (mcr-1 to mcr-

5) were screened by multiplex PCR.17,18  

Regarding staphylococcal were screened by PCR the following resistance genes: to beta-

lactams (blaZ and mecA ) 6, to trimethoprim [dfr(G) and dfr(K)],  to tetracyclines [tet(M) and tet(K)] 

and to chloramphenicol (catpC221). 19,20 
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DNA purification and sequencing 

The PCR products were purified using the NZYTech Gel Pure Kit (NZYtech-Genes & 

Enzymes, Portugal), according to the manufacturer's protocol, and sequencing was performed 

by a commercial laboratory (Stabvida, Portugal). Sequences were analyzed using the Mega (v.7) 

software (http://www.megasoftware.net) and Nucleotide database and Basic Local Alignment 

Search Tool (BLAST) from the National Center for Biotechnology Information 

(https://www.ncbi.nlm.nih.gov). 

 

Bacteriological methods 

One gram of homogenized fecal sample was added to 10 ml of sterile 0.85% NaCl (Merck, 

Germany) solution and mixed thoroughly. Ten microliters of fecal suspension were plated onto 

MacConkey (MCK) agar plates (Scharlau, Spain), with 1.5 μg/ml of cefotaxime (CTX) (Sigma-

Aldrich, USA) or meropenem (MEM) (Sigma-Aldrich, USA) supplementation for detection of 

ESBLs or AmpC and carbapenemases – producing Enterobacteriales. Moreover, 

SuperPolymyxin medium plates was used to screening colistin plasmid-resistant 

Enterobacteriales. 21  

Furthermore, Brilliance™ MRSA plates (Oxoid, Spain) were used to detect methicillin-

resistant Staphylococcus spp. To improve detection of low numbers of Enterobacteriales and 

methicillin-resistant Staphylococcus spp, 1 g of feces was added to 5 ml of sterile buffered 

peptone water (Biokar Diagnostics, France), vortexed, and incubated at 36 ± 1°C for 18 h. A 

negative quality control consisting of buffered peptone water alone was also incubated. Following 

incubation, 1 μl of buffered peptone water fecal suspension was plated onto the MacConkey agar, 

SuperPolymyxin medium and Brilliance™ MRSA plates described above. Plates were incubated 

at 36 ± 1°C for 18 h. Furthermore, suspected colonies obtained were quantified and to have 

presumptive identification, were streaked onto UriSelect agar plates (Bio-Rad, USA). All fecal 

samples had a high number of CFU (colony-forming unit) after direct plating onto Columbia+ 5 

% blood sheep (Biomériux, France) and MacConkey agar plates, thus confirming fecal sample 

viability. 

 

Statistical analysis 

Statistical analysis was performed on SAS statistical software package for Windows, 

version 9.4, (SAS Institute Inc, Cary, North Carolina, USA). Fisher’s exact test was used with a 

significant p value of ≤ 0.05. 
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Results 

Enrollment and questionnaire analyses 

Among the 20 households included, the household composition varied in the number of 

humans and companion animals, twelve households had one companion animal and one human, 

two households had more than one human and only one companion animal, three households 

had one human and more than one animal and three households had multiple humans and 

companion animals. Companion animal owners (n=27) presented ages from 8 to 66 years-old, 

20 were females and 7 were males. Fifty-two percent (n=14/27) were employees or students in 

human or veterinary healthcare institutions, 33.3 % (n=9/27) had antimicrobial treatment during 

the last year and 11.1 % (n=3/27) were hospitalized in the previous year. Regarding the human 

control group (n=19), the ages ranged between 22 to 65 years-old, 18 were females and 2 were 

males. About 74 % (n=14/19) were employees or students in human or veterinary healthcare 

institutions, 31.6 % (n=6/19) underwent antimicrobial treatment in the last year and 5.3 % 

(n=1/19) were hospitalized in the previous year.  

Among companion animals (n=29), 18 were males (12 dogs and 6 cats) and 11 were 

females (8 dogs and 3 cats) with ages ranging from 2 months to 17 years old. 

All companion animals lived with their owners for at least 6 months prior to the sample 

collection, except one animal that had been adopted 1 month before (S16-cat). About 72 % 

(n=21/29, 20 dogs and 1 cat) of companion animals had access to outdoors. Hospitalization in 

the previous year was reported in 20.7 % (n=6/29, 2 dogs and 4 cats) of the companion animals. 

Only one dog (3.4%, n=1/29) had stayed in kennel/pet hotel in the last year. Contact with hospital 

environment was observed only in dogs (10.3 % of total sample, n=3/29). Around 17 % (n=5/29, 

3 dogs and 2 cats) from companion animals from 4 households (S3, S4, S14 and S17) had been 

under antimicrobial treatment within the last year and amoxicillin-clavulanate was the 

antimicrobial prescribed. Moreover, the 2 cats were from the same household (S3) 

(Supplementary Table S2). 

 

Antimicrobial resistance genes in fecal samples and bacteriological methods 

Ten percent (n=2/20) and 70% (n=14/20) of the households concerning Enterobacteriales 

and staphylococci, respectively, lacked any of the tested antimicrobial resistance genes (AMRs) 

(Tables 1 and 2). Regarding humans from the control group (HC) in 15.8% (n=3/19) and in 47.4% 

(n= 9/19) no AMRs were detected in Enterobacteriales and staphylococci, respectively (Tables 

3 and 4).  

Regarding Enterobacteriales  and staphylococci genes, companion animals were positive 

for blaTEM-1 (17.2%, n=5/29), blaDHA-1 (3.4%, n=1/29), sul1 (3.4%, n=1), sul2 (27.6 %, n=8), sul3 

(3.4%, n=1),  cmlA (3.4%, n=1), tet(A) (10.3%, n=3), aac(6´)Ib-cr (10.3 %, n=3), blaZ (13.8 %, 
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n=4), catpC221 (6.9%, n=2), tet(M) (10.3%, n=3), dfr(G) and dfr(K)  (6.9 %, n=2, both) genes (Table 

5).  

The presence of the blaTEM-1 gene, was detected in 33.3% (n=9/27) of fecal samples from 

companion animal owners and in 42.1% (n=8/19) of humans from the control group. Interestingly, 

two households (S3 and S6) had positive blaTEM-1B companion animals and humans 

simultaneously (Table 1). All blaTEM-1 genes sequences were identical to the blaTEM-1B gene 

framework in the coding and promoter (P3) regions.  

The blaSHV family of genes was only detected in human participants (Table 5). Companion 

animal owners were positive for blaSHV-1 (n=3) and blaSHV-33 (n=2), while humans from the control 

group we positive for blaSHV-1 (n=1), blaSHV-186 (n=1) and blaSHV-27 (n=1). Of note, blaSHV-33 and 

blaSHV-1 were shared between humans of the same household (S7 and S19, respectively) (Table 

1). The AmpC β-lactamases family of genes, blaCMY-2 and blaDHA-1, were detected in humans from 

both groups (Table 5). There was no statistical difference between beta-lactamase carriage in 

companion animal owners and humans from the control group (p>0.05).  

The dfraI gene responsible for trimethoprim resistance was only detected in human 

samples while the aminoglycoside aac(6')-Ib-cr resistance gene was mostly detected in 

companion animals (Table 5). However, aac(6')-Ib-cr and dfraI resistance genes detection had 

no statistical significant between groups (companion animals vs owners and all humans vs 

companion animals) (p>0.05). Companion animals and humans of both groups had similar 

(p>0.05) carriage of tetracycline tet(A) and chloramphenicol cmlA resistance genes (Table 5).  

Detection of sulfonamide resistance genes (sul1, sul2 and sul3) were higher in humans 

from both groups. Detection of sul1 gene was higher (p=0.048) in owners than in companion 

animals (Table 5). The sul2 gene was the gene that more humans and companion animals 

shared within the same household (30%, n=6/20) (Table 1). Moreover, blaZ, catpCC221, tet(M), 

dfr(K) and dfr(G) genes was shared between companion animals and humans from the same 

household. The blaZ and tet(M) were the genes that more humans and companion animals 

shared within the same household (10.0%, n=2/20; both) (Table 2 and Table 5).  Yet, no statistical 

significance for the resistance genes from Staphylococcus spp were detected between fecal 

samples from humans without daily contact with humans vs  owners  and  companion animals 

and humans from the same household.  

Humans and companion animals from ten out of the twenty households (50%) shared at 

least one antimicrobial resistance gene (Tables 1 and 2). Yet, fecal samples from owners showed 

higher antimicrobial resistance gene frequency and diversity than companion animals (Table 5). 

About seventeen percent (n=5/29) of fecal samples from companion animals were 

positive for antimicrobial resistance genes associated with Enterobacteriales and staphylococci 

against at least to three different classes of antimicrobials (Tables 1 and 2).  
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The most common antimicrobial resistance genes combination in pets regarding 

Enterobacteriales was blaTEM-1B-sul2 (n=2, one dog, one cat) from different households. These 

pets were one dog that had been under antimicrobial treatment in the last year and also both dog 

and cat that were hospitalized in the previous year. Regarding companion animal owners, 14.8% 

(n=4/27) had the presence of antimicrobial resistance genes to at least three different 

antimicrobial classes regarding Enterobacteriales and Staphylococcous spp (Tables 1 and 2).  

The remaining antimicrobial resistance genes studied, namely, carbapenemases and 

colistin plasmid-resistant, mecA and tet(K) genes were not detected in any fecal sample from 

humans or companion animals. 

Furthermore, third-generation cephalosporin (3GC)-resistant, carbapenem-resistant and 

colistin -resistant Enterobacteriales and methicillin resistant staphylococci (MRS) were screened 

by bacteriological methods and no positive growth occur for Carbapenem-resistant and colistin -

resistant Enterobacteriales and MRS (Tables 1- 4). Moreover, fecal samples that were positive 

for (3GC)-resistant Enterobacteriales, extended-spectrum β-lactamases (ESBLs)/ or 

cefalosporinases AmpC β-lactamases were detected by the direct Genomic DNA extraction and 

amplification from fecal samples (Tables 1-4). 

Regarding the epidemiological survey, no statistical associations were found with the 

antimicrobial resistance genes present on the fecal samples from humans and companion 

animals. 

 

Discussion 

In the present study, we report the detection of 3GC-resistant, Carbapenem-resistant and 

colistin-resistant Enterobacteriales and methicillin resistant staphylococci (MRS) and the 

presence of antimicrobial resistance genes in the fecal samples of healthy companion animals 

and their human household members as well as of humans without daily contact with companion 

animals. 

The relationship between humans and companion animals has changed over the years. 

Nowadays, companion animals live in a “relationship of mutualism” with their owners.2 The 

anthropomorphizing of companion animals has led to changes in the behavior of owners towards 

them, with increasing conducts like kissing, licking, sharing food and sharing beds. Considering 

the shared environment of humans and companion animals, their close relationship, and the 

increased frequency of antimicrobial-resistant bacteria detected in humans and companion 

animals, new opportunities are created for interspecies transfer of antimicrobial resistance 

genes.1, 2 

Antimicrobials are used extensively in human medicine, veterinary medicine, food-

producing animals and agriculture.22 In Portugal, β-lactams, such as penicillins, are the most 

prescribed antimicrobials in humans followed by macrolides, lincosamides, streptogramins, 
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quinolones, tetracyclines and sulfonamides-trimethoprim.23 In Veterinary medicine, penicillins are 

also the most commonly prescribed antimicrobials in companion animals (dogs and cats), 

namely, amoxicillin and amoxicillin–clavulanate.24 Yet, lincosamides, quinolones, macrolides, 

tetracyclines (doxycycline), nitroimidazoles and sulfonamides-trimethoprim are also used in small 

animals practice.5,24 Several antimicrobials classes are used in humans and companion animals 

are the same, leading to an overlap of the detected antimicrobial resistance genes.1,25 

Enterobacteriales resistance to β-lactams is increasing in humans and in companion animals and 

there are no specific β-lactamases that are restricted only to animals or humans.19 This seems to 

be in line with the results from this study. The β-lactamases that are disseminated in the 

Enterobacteriales family, especially the ESBLs and cephalosporinases of AmpC type are of 

particular clinical relevance. 

In this study, the blaTEM gene was the most frequent β-lactam-resistance gene in humans 

and companion animals, which is in agreement with previous studies.26-28 In Portugal, the TEM-

β-lactamase has also been detected in Enterobacteriales from food-producing animals and from 

commensal and clinical isolates.7,27 The blaTEM genes detected in this study (from companion 

animals and humans) had a similar promotor and coding region polymorphisms as the blaTEM-1B 

(according to the Sutcliffe numbering system).29 Furthermore, in two households, the blaTEM-1B 

was present in co-living humans and companion animals. This finding may have resulted from a 

zoonotic transfer of blaTEM-1B genes harbored in Enterobacteriales. Nevertheless, a common 

source of colonization could also be hypothesized since this resistance mechanism has been 

extensively detected in Portugal.7, 27 

CTX-M β-lactamases are the current dominant type of ESBLs worldwide, having 

overpassed the TEM and SHV β-lactamases in Europe, both in humans and animals.4,30 

Furthermore, Portugal is among the European countries with the highest frequency of ESBL 

detection, mainly TEM and CTX-M.31-32 However, in this study, only the ESBL SHV-27 gene was 

detected in a healthy human from the control group. The blaSHV-27 gene has been previously detect 

in clinical K. pneumoniae, E. coli and Enterobacter cloacae from humans and in clinical K. 

pneumoniae from dogs of different countries.33-36 To the best of our knowledge, this is the first 

detection of blaSHV-27 gene in fecal samples from healthy humans in Portugal and in Europe. 

Moreover, in this human fecal sample we detected a 3GC-resistant Klebsiella spp.   

Only the CMY-2 and DHA-1 beta-lactamases encoding genes were detected among all 

the AmpC cephalosporinases genes tested in this study, and these occurred mainly in humans. 

The blaCMY-2 gene and the blaDHA-1 gene were each detected in one healthy human without daily 

contact with companion animals. The blaCMY-2 gene was detected in two humans from the same 

household. The detection of these AmpC genes was already described in Portugal in clinical 

strains of Enterobacteriales from humans in the community and hospital, but as far as we are 

aware not in healthy individuals in the community.37 
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The frequency of sulphonamide resistance sul genes (sul1, sul2 and sul3) here reported 

is in agreement with previous studies. 25,32-35 In Portugal, sul1 and sul2 resistance genes have 

been detected in commensal Enterobacteriales from fecal samples of healthy humans, food-

producing animals and from clinical isolates.32,40,41 Likely due to its dissemination, the sul2 gene 

was most the frequent among humans and companion animals and was frequently detected in 

members of the same household. 

The effect of the low antimicrobial consumption, the household controlled environment, 

and the possible food-borne dissemination of antimicrobial resistance genes should also be 

considered in this study as an explanation for the shared antimicrobial resistance genes.36-39 The 

presence of ESBLs/AmpC in this study was lower than previously reported in healthy dogs in 

Portugal (Lisbon area).4 In a previous study from our group, dogs from shelters/breeders were 

approximately three times more likely to have an ESBL/AmpC-producing E. coli than dogs from 

private owners.4 The results in the present study may be explained by the fact that companion 

animals included in this study had little contact with kennels and where healthy. 

This study showed that humans and companion animals carried and shared several 

antimicrobial resistance genes of clinical importance. Most of these genes are usually associated 

with mobile genetics elements (plasmids, integrons and transposons), which are important for 

antimicrobial resistance transfer between different microbiomes.42-47 

The small sample size of this study is a limitation that may have limited the detection of 

ESBL/AmpC, carbapenemases, colistin plasmid-resistant genes and methicillin –resistant 

Staphylococcus spp.  and the detection of statistical associations between the presence of 

antimicrobial resistance genes and specific risk factors. Moreover, in this study were detected 

different dfr genes (conferring resistance to trimethoprim), regarding Staphylococus spp. and 

usually the dfr genes found in coagulase-positive (CoPS) and coagulase-negative (CoNS) 

staphylococci are different. 49 In CoPS, the gene dfr(G) is the most common in Staphylococcus 

pseudintermedius isolates; while the dfr(K) gene is the most common in Staphylococcus aureus. 

19, 48 

Nevertheless, the role of companion animals in the dissemination of clinically relevant 

antimicrobial resistance genes to humans through fecal contamination should not be neglected. 

Additionally, commensal Enterobacteriales and Staphylococcus spp. of healthy humans may 

also be a reservoir for antibiotic-resistance determinants.1, 49 

Further studies are needed to determine the causality and directionality of resistance 

genes transfer between human and companion animals, in order to identify the critical control 

points at which interventions could substantially prevent the spread of antimicrobial resistance 

genes within households and establish the prevention and intervening measures for controlling 

resistance.  
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In this study, were implemented a rapid easy methodology, which easily detected 

antimicrobial resistant genes that are of particular interest to epidemiological studies. Highly 

discriminatory universal methods, such whole- genome -sequencing, are expensive to the most 

of the laboratories. We also validated its usefulness in situations requiring rapid MRS, 

ESBLs/AmpC, carbapenemases- producing and colistin plasmid- resistant Enterobacteriales.  

The combination of molecular techniques with culture methods should be pursued in the 

future to increase the detection of antimicrobial resistance determinants leading to a better 

understanding of the overlap between the human and companion animal gut resistome. 

 

Funding 

We acknowledge the PET-Risk Consortium and all its members: Cátia Marques, Luís 

Telo Gama, and Rodolfo Leal (Portugal); Stefan Schwarz and Claudia Feudi (Germany); Scott 

Weese, Joyce Rousseau, and Rebecca Flancman (Canada); Anette Loeffler and Sîan Frosini 

(United Kingdom); and Vincent Perreten (Switzerland). This work was supported by 

JPIAMR/0002/2016 Project - PET-Risk Consortium and FEDER funds through the Programa 

Operacional Factores de Competitividade - COMPETE and by National funds through the FCT - 

Fundação para a Ciência e a Tecnologia- CIISA Project (UID/CVT/00276/2020). Adriana Belas 

holds an FCT PhD grant SFRH/BD/113142/2015. Juliana Menezes holds an FCT research grant 

supported by the JPIAMR/0002/2016 Project. 

 

Author Disclosure Statement 

No competing financial interests exist. 

 

References 

1. Pomba C., M. Rantala, C. Greko, K. E. Baptiste, B. Catry, E. van Duijkeren, A. Mateus, M. A. 
Moreno, S. Pyörälä, M. Ružauskas, P. Sanders, C. Teale, E. J. Threlfall, Z. Kunsagi, J. 
Torren-Edo, H. Jukes, and K. Törneke. 2017. Public health risk of antimicrobial resistance 
transfer from companion animals. J Antimicrob Chemother 72: 957-968.  

2. Dotson M.J., and E.M. Hyatt. 2008. Understanding dog - human companionship. J Bus Res 
61,457-466. 

3. Barza M., and K. Travers. 2002. Excess infections due to antimicrobial resistance: The 
Attributable Fraction. Clin Infect Dis 34, 126-130. 

4. Belas A., A. S. Salazar, L. T. Gama, N. Couto, and C. Pomba. 2014. Risk factors for faecal 
colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated 
AmpC β-lactamases in dogs. Vet Rec 175, 202. 

5. European Medicines Agency (EMA). 2015. Reflection paper on the risk of antimicrobials 
resistance transfer from companion animals. Committee for Medicinal Products for 



 

 141 

Veterinary Use. EMA/CVMP/AWP/401740/2013. 
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-risk-
antimicrobial-resistance-transfer-companion-animals_en.pdf 

6. Pomba C., H. Hasman, L. M. Cavaco, J. D. da Fonseca, and F. M. Aarestrup. 2009. First 
description of meticillin-resistant Staphylococcus aureus (MRSA) CC30 and CC398 from 
swine in Portugal. Int J Antimicrob Agents. 34: 193-194. 

7. Pomba-Féria C., and M. Caniça. 2003. A novel sequence framework (blaTEM-1G) encoding the 
parental TEM-1 beta-lactamase. FEMS Microbiology letters 220: 177-180. 

8. Mendonça N., E. Ferreira, D. Louro, and M. Caniça. 2006. Occurrence of a novel SHV-type 
enzyme (SHV-55) among isolates of Klebsiella pneumoniae from Portuguese origin in a 
comparison study for extended-spectrum β-lactamase-producing evaluation. Diagn 
Microbiol Infect Dis 56: 415−420. 

9. Pomba C., N. Mendonça, M. Costa, D. Louro, B. Baptista, M. Ferreira, J. D. Correia, and M. 
Caniça. 2006. Improved multiplex PCR method for the rapid detection of beta-lactamase 
genes in Escherichia coli of animal origin. Diagn Microbiol Infect Dis 56: 103–106. 

10. Woodford N., E. J. Fagan, and M. J. Ellington. 2006. Multiplex PCR for rapid detection of 
genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother. 
57: 154-155. 

11. Caniça M.M., C.Y. Lu, R. Krishnamoorthy, and Paul G.C. 1997. Molecular diversity and 
evolution of blaTEM genes encoding beta-lactamases resistant to clavulanic acid in clinical 
E. coli. J Mol Evol. 44: 57-65. 

12. Pérez F., and N. Hanson. 2002. Detection of plasmid-mediated AmpC beta-lactamase genes 
in clinical isolates by using Multiplex PCR. J Clin Microbiol 40: 2153–2162. 

13. Poirel L., Walsh TR., Cuvillier V., and Nordmann P. 2011. Multiplex PCR for detection of 
acquired carbapenemase genes. Infect. Dis 70: 119-123.    

14. Sáenz Y., L. Brinãs, E. Domíngues, J. Ruiz, M. Zarazaga, J. Vila, and C. Torres. 2004. 
Mechanisms of resistance in multiple- Antibiotic- resistant Escherichia coli strains of 
human, animal and food origins. J Antimicrob Chemother 48: 3996-4001.  

15. Robicsek A., J. Strahilevitz, G.A. Jacoby, M. Mark, A. Abbanat, C.H. Park, K. Bush, and D.C. 
Hooper. 2006. Fluoroquinolone-modifying enzyme: a new adaptation of a common 
aminoglycoside acetyltransferase. Nat. Med 12: 83-88. 

16. Perreten V., and Boerlin P. 2003. A new sulfonamide resistance gene (sul3) in Escherichia 
coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 
47:1169–1172.  

17. Rebelo A.R., Bortolaia V., Kjeldgaard J.S, Pedersen S.K, Leekitcharoenphon P., Hansen I.M, 
Guerra B., Malorny B., Borowiak M., Hammerl J.A, Battisti A., Franco A., Alba P., Perrin-
Guyomard A., Granier S.A, De Frutos Escobar C, Malhotra-Kumar S., Villa L., Carattoli 
A. and Hendriksen R.S. 2018. Multiplex PCR for detection of plasmid-mediated colistin 



 

 142 

resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. 
Euro Surveill. 6:17-00672.  

18. Borowiak M., Fischer J., Hammerl J.A, Hendriksen R.S, Szabo I. and Malorny B. 2017. 
Identification of a novel transposon-associated phosphoethanolamine transferase gene, 
mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. 
enterica serovar Paratyphi B. J Antimicrob Chemother 72:3317-3324.  

19. Schnellmann C., Gerber V., Rossano A., Jaquier V., Panchaud Y., Doherr M. G., Thomann 
A., Straub R. and Perreten V. (2006). Presence of new mecA and mph(C) variants 
conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses 
before and after clinic admission.  J Clin Microbiol 44: 4444–4454.  

20. Feβler A., Scott C. and Kadlec K. 2010. Characterization of methicillin-resistant 
Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother 
65: 619–625. 

21. Nordmann P., Jayol A. and Poirel L. 2016. A Universal Culture Medium for Screening 
Polymyxin-Resistant Gram-Negative Isolates. J Clin Microbiol 54:1395–1399.  

22. Rolain J. M. 2013. Food and human gut as reservoirs of transferable antibiotic resistance 
encoding genes. Front Microbiol 4: 173.  eCollection 2013. 

23. European Centre for Disease Prevention and Control. 2018. Surveillance of antimicrobial 
consumption in Europe, 2013‒2014. Stockholm: ECDC; 2018. 
https://www.ecdc.europa.eu/sites/default/files/documents/Surveillance-antimicrobial-
consumption-Europe-ESAC-Net-2013-14.pdf  

24. European Medicines Agency, European Surveillance of Veterinary Antimicrobial 
Consumption, 2018. Sales of veterinary antimicrobial agents in 30 European countries in 
2016. (EMA/275982/2018). https://www.ema.europa.eu/en/documents/report/sales-
veterinary-antimicrobial-agents-30-european-countries-2016-trends-2010-2016-eighth-
esvac_en.pdf 

25. Guardabassi L., S. Schwarz, and D. Lloyd. 2004. Pet animals as reservoirs of antimicrobial- 
resistant bacteria. J Antimicrob Chemother 54: 321–332. 

26. Trott D. 2012. Β - lactam resistance in gram-negative pathogens isolated from animals. Curr 
Pharm Des. 19: 239-49.  

27. Costa D., P. Poeta, Y. Saenz, A. C. Coelho, M. Matos, L. Vinue, J. Rodrigues, and C. Torres. 
2007. Prevalence of antimicrobial resistance and resistance genes in faecal isolates 
recovered from healthy pets. Vet Microbiol. 127: 97-105. 

28. Rodríguez-Baño J., J. C. Alcalá, J. M. Cisneros, F. Grill, A. Oliver, J. P. Horcajada, T. Tórtola, 
B. Mirelis, G. Navarro, M. Cuenca, M. Esteve, C. Peña, A. C. Llanos, R. Cantón, and A. 
Pascual. 2008. Community infections caused by extended-spectrum β-lactamase-
producing Escherichia coli. Arch Intern Med.168: 1897–1902. 



 

 143 

29. Sutcliffe J.G. 1978. Nucleotide sequence of the ampicillin gene of Escherichia coli plasmid 
pBR322. Proc Natl Acad Sci. 75: 3737-3741. 

30. Ewers C., M. Grobbel, A. Bethe, H. Wiler, and S. Guenther. 2011. Extended-spectrum beta-
lactamases- producing Gram – negative bacteria in companion animals: action is clearly 
warranted!. Berl Munch Tierarztl Wochenschr. 124: 94–101. 

31. Fernandes R., P. Amador, C. Oliveira, and C. Prudêncio. 2014. Molecular characterization of 
ESBL-producing Enterobacteriaceae in northern Portugal. Sci World J. doi: 
10.1155/2014/782897. eCollection 2014. 

32. Machado E., T. M. Coque, R. Cantón, J. C. Sousa, and L. Peixe. 2013. Commensal 
Enterobacteriaceae as reservoirs of extended-spectrum beta-lactamases, integrons, and 
sul genes in Portugal. Front Microbiol 4, 80. doi: 10.3389/fmicb.2013.00080. eCollection 
2013.  

33. Abbassi M. S., C. Torres, W. Achour, L. Vinué, Y. Sáenz, D. Costa, O. Bouchami, and A. Ben 
Hassen. 2008. Genetic characterisation of CTX-M-15-producing Klebsiella pneumoniae 
and Escherichia coli strains isolated from stem cell transplant patients in Tunisia. Int J 
Antimicrob Agents. 32: 308–314.  

34. Kiratisin P., A. Apisarnthanarak, C. Laesripa, and P. Saifon. 2008. Molecular characterization 
and epidemiology of extended-spectrum- β-lactamase-producing Escherichia coli and 
Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, 
where the CTX-M family is endemic. Antimicrob Agents Chemother. 52: 2818–2824. 

35. Hammami S., I. B. B. Boubaker, M. Saidani, E. Lakhal, A. B. Hassen, A. Kamoun, R. Ghozzi, 
A. Slim, and S. Ben Redjeb. 2011. Characterization and molecular epidemiology of 
extended spectrum β-lactamase producing Enterobacter cloacae isolated from a Tunisian 
hospital. Microb Drug Resist. 18: 59–65.  

36. Zhang P. L. C., X. G. Shena, Chalmersa, R. J. Reid-Smitha, D. Slavicd, H. Dicke, and P. 
Boerlina. 2018. Prevalence and mechanisms of extended-spectrum cephalosporin 
resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. 
Vet Microbiol. 213: 82-88. 

37. Ribeiro T.G., Â. Novais, C. Rodrigues, R. Nascimento, F. Freitas, E. Machado, and L. Peixe. 
2019. Dynamics of clonal and plasmid backgrounds of Enterobacteriaceae producing 
acquired AmpC in Portuguese clinical settings over time. Int J Antimicrob Agents 53: 650–
656. 

38. Pitout J. D., P. Nordmann, K. B. Laupland, and L. Poirel. 2005. Emergence of 
Enterobacteriaceae producing extended -spectrum beta-lactamases (ESBLs) in the 
community. J Antimicrob Chemother. 56: 52–59.  

39. Gong J., L. Zhuang, D. Zhang, P. Zhang, and C. Dou X Wang. 2018. Establishment of a 
Multiplex Loop-Mediated Isothermal Amplification Method for Rapid Detection of 
Sulfonamide Resistance Genes (sul1, sul2, sul3) in Clinical Enterobacteriaceae Isolates 
from Poultry. Foodborne Pathog Dis. 15: 413-419. 



 

 144 

40. Fernandes L., M. Centeno, A. Belas, T. Nunes, P. Lopes Alves, N. Couto, and C. Pomba. 
2012. Immediate after birth transmission of epidemic Salmonella enterica Typhimurium 
monophasic strains in pigs is a likely event. J Antimicrob Chemother. 67: 3012-3014. 

41. Antunes P., J. Machado, J. C. Sousa, and L. Peixe. 2005. Dissemination of sulfonamide 
resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and 
relation with integrons. Antimicrob Agents Chemother. 49: 836-839. 

42. Cormican M., S. Hopkins, Jarlier V., J. Reilly, G. S. Simonsen, R. Strauss, O. Vandenberg, 
D. Zabicka, P. Zarb, M. Catchpole, O. Heuer, E. Iosifidis, D. Monnet, D. Plachouras, K. 
Weist, A. Ricci, A. Allende, D. Bolton, M. Chemaly, R. Davies, P.S.F. Escamez, R. 
Girones , L. Herman, K. Koutsoumanis, R. Lindqvist, B. Norrung, L. Robertson, G. Ru, M. 
Sanaa, M. Simmons, P. Skandamis, E. Snary, N. Speybroeck, B. Ter Kuile, J. Threlfall, 
H. Wahlstrom, B.A. Tenhagen, C. Teale, G. Schuepbach, P.A. Beloeil, E. Liebana, P. 
Stella, D. Murphy, B. Hauser, B. Urbain, E.I. Kozhuharov, F. Bozic, A. Michaelidou-Patsia, 
J. Bures, E.M. Vestergaard, K. Baptiste, T. Tiirats, M. Nevalainen, J.C. Rouby, G. Hahn, 
W. Schlumbohm, I. Malemis, G. Kulcsar, J.M. Lenhardsson, J.G. Beechinor, R. 
Breathnach, P. Pasquali, Z. Auce, P. Maciulskis, M. Schmit, S. Spiteri, G. J. Schefferlie, 
P. Hekman, H. Bergen dahl, A.W. Swiezcicka, J. P. D. Da Silva, L. S. C. Taban, J. 
Hederova, K. Straus, C. M. Madero, E. L. Persson, H. Jukes, J. Weeks, K. Kivilahti-
Mantyla, G. Moulin, J. Wallmann, K. Grave, C. Greko, C. Munoz, D. Bouchard, B. Catry, 
M. A. Moreno, C. Pomba, M. Rantala, M. Ruzauskas, P. Sanders, C. Schwarz, C. Teale, 
E. van Duijkeren, A. L. Wester, K. Ignate, Z. Kunsagi, J. Torren- Edo. 2017. ECDC, EFSA 
and EMA Joint Scientific Opinion on a list of outcome indicators as regards surveillance 
of antimicrobial resistance and antimicrobial consumption in humans and food-producing 
animals. EFSA Journal 15 (10), e05017. 

43. Kummer K. 2004. Resistance in the environment. J Antimicrob Chemother. 54: 311–320. 

44. Karami N., F. Nowrouzian, I. Adlerberth, and A. E. Wold. 2006. Tetracycline resistance in 
Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob. Agents 
Chemother. 50: 156–161. 

45. Jernberg C., S. Lofmark, C. Edlund, and J. K. Jansson. 2013. Long-term ecological impacts 
of antibiotic administration on the human intestinal microbiota. ISME J. 1:56-66.  

46. Broaders E., C. G. Gahan, and J. R. Marchesi. 2013. Mobile genetic elements of the human 
gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes. 4: 
271-280.  

47. Gillings M. R. 2014. Integrons: past, present, and future. Microbiol Mol Biol Rev. 78: 257-277.  

48. Kadlec K. and Schwarz S. (2012). Antimicrobial resistance of Staphylococcus 
pseudintermedius. Vet Dermatol 23: 276-e55. 

49 Bailey J. K., J. L. Pinyon, S. Anantham, and R. M. Hall. 2010. Commensal Escherichia coli of 
healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol. 59: 
1331–133 

 



 

 145 

Table 1: ESBLs/ AmpC, Carbapenemases - producing and colistin plasmid-resistant Enterobacteriales screening and antimicrobial resistant genes 
in fecal samples from companion animals and humans from households 

Household Specie MCK 

+ 

CTX 

Bacteria 

(CFU/g) 

MCK 

+ 

MEM 

Bacteria 

(CFU/g) 

SuperPolymyxin 

medium 

β-lactams - 

resistant 

genes 

Sulfonamides - 

resistant genes 

Trimethoprim- 

resistant genes 

Aminoglycoside-  

resistant genes 

Tetracyclines- 

resistant genes 

Chloramphenicol 

- resistant genes 

Colistin 

plasmid- 

resistant 

genes 

S1 Human1 no  growth no growth no growth - - - - - - - 

Human2 no growth no growth no growth blaTEM-1B sul3 - - - cmlA - 

Human3 no growth no growth no growth blaTEM-1B sul2 - - - cmlA - 

Dog1 no growth no growth no growth - - - aac(6')-Ib-cr - - - 

Dog2 no growth no growth no growth - - - - - - - 

S2 Human1 no growth no growth a intrinsic bacterial 

species 

- - dfrIa - - - - 

Cat1 no growth no growth no growth - - - - - - - 

S3 Human1 no growth no growth no growth blaTEM-1B - - - tet(A) - - 

Cat1 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B sul2 dfrIa - - - - 

Cat2 no growth no growth a intrinsic bacterial 

species 

- sul2 - - - - - 

S4 Human1 no growth no growth a intrinsic bacterial 

species 

- sul2 - - - - - 

Dog1 no growth no growth no growth blaTEM-1B sul2 - - tet(A) - - 

S5 Human1 no growth no growth no growth blaSHV-1 sul2 - - - - - 

Cat1 no growth no growth no growth - - - - - - - 

S6 Human1 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B sul2, sul3 - - tet(A) cmlA - 
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Cat1 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B sul2 - - tet(A) - - 

S7 Human1 E. coli (5X103) no growth a intrinsic bacterial 

species 

blaSHV-33, 

blaCMY-2 

sul1 - - tet(A) - - 

Human2 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B, 

blaSHV-33 

sul1 - - tet(A) - - 

Human3 E. coli (6X103) no growth a intrinsic bacterial 

species 

blaTEM-1B, 

blaCMY-2 

sul1, sul2 - - tet(A) - - 

Cat1 no growth no growth no growth - sul2 - - - - - 

S8 Human1 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B sul1, sul2 dfrIa aac(6')-Ib-cr - -  

Dog1 no growth no growth no growth - sul2 - - - - - 

S9 Human1 no growth no growth a intrinsic bacterial 

species 

- sul2 - - - - - 

Cat1 no growth no growth no growth - sul2 - - - cmlA - 

S10 Human1 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

Dog1 Klebsiella 

spp.* 

no growth a intrinsic bacterial 

species 

blaTEM-1B, 

blaDHA-1 

sul3 - - tet(A) - - 

S11 Human1 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

Dog1 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

S12 Human1 no growth no growth a intrinsic bacterial 

species 

- sul2 - - tet(A) - - 

Dog1 no growth no growth a intrinsic bacterial 

species 

- sul2 - - - - - 
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S13 Human1 no growth no growth a intrinsic bacterial 

species 

- sul1 - - - - - 

Dog1 no growth no growth a intrinsic bacterial 

species 

- sul1 - - - - - 

Dog2 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

S14 Human1 no growth no growth no growth - - - - - - - 

Human2 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

Dog1 no growth no growth no growth - - - - - - - 

Dog2 no growth no growth no growth blaTEM-1B - - - - - - 

Dog3 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

S15 Human1 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

Dog1 no growth no growth no growth - - - - - - - 

Dog2 no growth no growth no growth - - - - - - - 

Cat1 no growth no growth no growth - - - - - - - 

S16 Human1 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B - - - - - - 

Human2 no growth no growth a intrinsic bacterial 

species 

- sul2 - - tet(A) - - 

Dog1 no growth no growth a intrinsic bacterial 

species 

- - - aac(6')-Ib-cr - -  

Cat1 no growth no growth no growth - - - - - -  

S17 Human1 no growth no growth a intrinsic bacterial 

species 

- sul2 - - - - - 
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Dog1 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

S18 Human1 no growth no growth a intrinsic bacterial 

species 

- sul1 - - - - - 

Dog1 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

S19 Human1 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B, 

blaSHV-1 

- dfrIa - - - - 

Human2 no growth no growth a intrinsic bacterial 

species 

blaSHV-1 - - - - - - 

Dog1 no growth no growth no growth - - - - - - - 

S20 Human1 no growth no growth no growth blaSHV-1 - - - - - - 

Dog1 no growth no growth no growth - - - - - - - 

Dog1 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

Legend: CFU- colony-forming unit; MCK+CTX - MacConkey agar plates with 1.5 μg/ml of cefotaxime; MCK+MEM: MacConkey agar plates with 1.5 μg/ml of meropenem; a : 
Proteus spp. and/or Serratia spp . (polymyxin resistance intrinsic bacterial species) 21 ; *obtained from the enrichment medium; -: not detected. 
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Table 2: Methicillin-resistant Staphylococcus spp screening and antimicrobial resistance genes detected from Staphylococcus spp in fecal 
samples from companion animals and humans from households 

Household Specie Brilliance™ 

MRSA plates 

β-lactams - 

resistant 

genes 

Chloramphenicol 

- resistant 

genes 

Tetracyclines - 

 resistant 

genes 

Trimethoprim -

resistant 

genes 

S1 Human1 no growth - - tet(M) - 

Human2 no growth blaZ catpC221 - dfr(K) 

Human3 no growth - - tet(M) - 

Dog1 no growth - - - - 

Dog2 no growth blaZ catpC221 tet(M) dfr(K) 

S2 Human1 no growth - - - - 

Cat1 no growth - - - - 

S3 Human1 no growth - - - - 

Cat1 no growth - - - - 

Cat2 no growth - - - - 

S4 Human1 no growth - - - - 

Dog1 no growth - - - - 

S5 Human1 no growth - - - - 

Cat1 no growth blaZ catpC221 - dfr(K) 

S6 Human1 no growth - - - - 

Cat1 no growth - - - - 

Human1 no growth - - - - 
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S7 Human2 no growth - - - - 

Human3 no growth - - - - 

Cat1 no growth - - - - 

S8 Human1 no growth - - - - 

Dog1 no growth - - - - 

S9 Human1 no growth - - - - 

Cat1 no growth - - - - 

S10 Human1 no growth - - - - 

Dog1 no growth - - - - 

S11 Human1 no growth - - - - 

Dog1 no growth - - - - 

S12 Human1 no growth - - - - 

Dog1 no growth - - - - 

S13 Human1 no growth blaZ - tet(M) dfr(G) 

Dog1 no growth blaZ - tet(M) dfr(G) 

Dog2 no growth blaZ - tet(M) dfr(G) 

S14 Human1 no growth - - - - 

Human2 no growth - - - - 

Dog1 no growth - - - - 

Dog2 no growth - - - - 

Dog3 no growth - - - - 
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S15 Human1 no growth - - - - 

Dog1 no growth - - - - 

Dog2 no growth - - - - 

Cat1 no growth - - - - 

S16 Human1 no growth - - - - 

Human2 no growth blaZ catpC221 tet(M) dfr(G) 

Dog1 no growth - - - - 

Cat1 no growth - - - - 

S17 Human1 no growth - - tet(M) - 

Dog1 no growth - - - - 

S18 Human1 no growth - - - - 

Dog1 no growth - - - - 

S19 Human1 no growth - - tet(M) - 

Human2 no growth blaZ - tet(M) dfr(G), dfr(K) 

Dog1 no growth - - - - 

S20 Human1 no growth - - - - 

Dog1 no growth - - - - 

Dog1 no growth - - - - 

Legend: -: not detected 
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Table 3: ESBLs/ AmpC, Carbapenemases - producing and colistin plasmid-resistant Enterobacteriales screening and antimicrobial resistant genes 
from fecal human samples without daily contact with companion animals. 

Human MCK 

+  

CTX 

Bacteria 

(CFU/g)  

MCK 

+ 

MEM 

Bacteria 

(CFU/g) 

SuperPolymyxin 

medium  

 

β-lactams- 

resistant  

genes 

Sulfonamides- 

resistant  

genes 

Trimethoprim- 

resistant  

genes 

Aminoglycoside 

-  resistant  

genes 

Tetracyclines-

resistant 

genes 

Chloramphenicol   

- resistant  

genes 

Colistin 

plasmid- 

resistant 

genes 

H1 no growth no growth a intrinsic bacterial 

species  

- sul2 dfrIa - - - - 

H2 E. coli* no growth a intrinsic bacterial 

species 

blaCMY-2 sul2, sul3 - - - - - 

H3 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B sul2 - - - cmlA - 

H4 no growth no growth no growth blaTEM-1B - - - - - - 

H5 no growth no growth no growth - sul1 - - - - - 

H6 no growth no growth no growth blaTEM-1B sul2 - - - - - 

H7 Klebsiella 

spp (3X103) 

no growth a intrinsic bacterial 

species 

blaTEM-1B, 

blaSHV-1, 

blaDHA-1 

sul1, sul3 dfrIa - tet(A) - - 

H8 no growth no growth a intrinsic bacterial 

species 

- sul1, sul2, sul3 - - tet(A) cmlA - 

H9 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B sul2 - - tet(A) - - 

H10 no growth no growth a intrinsic bacterial 

species 

- sul1 - - - - - 

H11 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B,  

blaSHV-186 

- - - - - - 

H12 Klebsiella 

spp. (1X103) 

no growth a intrinsic bacterial 

species 

blaTEM-1B,  

blaSHV-27 

sul3 - - - - - 
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H13 no growth no growth a intrinsic bacterial 

species 

blaTEM-1B - - - - - - 

H14 no growth no growth a intrinsic bacterial 

species 

- - - aac(6')-Ib-cr - - - 

H15 no growth no growth a intrinsic bacterial 

species 

- - - - - cmlA - 

H16 no growth no growth a intrinsic bacterial 

species 

- sul1 - - - - - 

H17 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

H18 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

H19 no growth no growth a intrinsic bacterial 

species 

- - - - - - - 

Legend: CFU- colony-forming unit; MCK+CTX - MacConkey agar plates with 1.5 μg/ml of cefotaxime; MCK+MEM: MacConkey agar plates with 1.5 μg/ml of meropenem; * 
obtained from the enrichment medium; a - Proteus spp. and/or Serratia spp. (polymyxin resistance intrinsic bacterial species) 21; -: not detected. 
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Table 4: Methicillin-resistant Staphylococcus spp. screening and antimicrobial resistance genes 
detected from Staphylococcus spp.  in fecal human samples without daily contact with 

companion animals. 

Human 

Brilliance

™ MRSA 

plates 

β-lactams - 

resistant 

genes 

Chloramphenicol 

resistant 

genes 

Tetracyclines 

resistant 

genes 

Trimethoprim 

resistant  

genes 

H1 no growth  blaZ catpC221 tet(M) dfr(K) 

H2 no growth  blaZ catpC221 tet(M) dfr(K) 

H3 no growth  - - tet(M) - 

H4 no growth  - - - - 

H5 no growth  - - - - 

H6 no growth  - - - - 

H7 no growth  - - tet(M) - 

H8 no growth  - - tet(M) - 

H9 no growth  - - - - 

H10 no growth  - - - - 

H11 no growth  - - tet(M) - 

H12 no growth  - - - - 

H13 no growth  - - - dfr(K) 

H14 no growth  - - tet(M) - 

H15 no growth  - - tet(M) - 

H16 no growth  - - tet(M) - 

H17 no growth  - - - - 

H18 no growth  - - - - 

H19 no growth  - - - - 

Legend: -: not detected 
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Table 5: Antimicrobial resistance genes frequency in fecal samples from companion animals and humans. 

Genes Human   

(control, n=19) 

Human  

(Owners, n=27) 

Companion 

animals (n=29) 

Householda 

Human-Animal 

sharing 

Household Human-

Human sharing 

Household Animal-

Animal sharing 

 n, (%) n, (%) n, (%) n, (%) n, (%) n, (%) 

blaSHVgroup 3, (15.8) 6, (22.2) 0, (0.0) 0, (0.0) 2, (10.0) 0, (0.0) 

blaTEMgroup 7, (36.8) 9, (33.3) 5, (17.2) 2, (10.0) 2, (10.0) 0, (0.0) 

blaDHA-1 1, (5.3) 0, (0.0) 1, (3.4) 0, (0.0) 0, (0.0) 0, (0.0) 

blaCMY-2 1, (5.3) 2, (7.4) 0, (0.0) 0, (0.0) 1, (5.0) 0, (0.0) 

sul1 6, (31.6) 6, (22.2) 1, (3.4) 1, (5.0) 1, (5.0) 0, (0.0) 

sul2 7, (36.8) 12, (44.4) 8, (27.6) 6, (30.0) 1, (5.0) 1, (5.0) 

sul3 4, (21.1) 2, (7.4) 1, (3.4) 0, (0.0) 0, (0.0) 0, (0.0) 

dfrIa 2, (10.5) 4, (14.8) 0, (0.0) 0, (0.0) 0, (0.0) 0, (0.0) 

cmlA 4, (21.1) 3, (11.1) 1, (3.4) 0, (0.0) 1, (5.0) 0, (0.0) 

tetA 4, (21.1) 7, (25.9) 3, (10.3) 1, (5.0) 1, (5.0) 0, (0.0) 

aac(6´)Ib-cr 2, (10.5) 0, (0.0) 3, (10.3) 0, (0.0) 0, (0.0) 0, (0.0) 

blaZ 2, (10.5) 4, (14.8) 4, (13.8) 2, (10.0) 1, (5.0) 1, (5.0) 

cat pC221 2, (10.5) 2, (7.4) 2, (6.9) 1, (5.0) 0, (0.0) 0, (0.0) 

tet(M) 9, (47.4) 7, (25.9) 3, (10.3) 2, (10.0) 2, (10.0) 1, (5.0) 

dfr(G) 0, (0.0) 3, (11.1) 2, (6.9) 1, (5.0) 0, (0.0) 1, (5.0) 

dfr(K) 3, (15.8) 2, (7.4) 2, (6.9) 1, (5.0) 0, (0.0) 0, (0.0) 

a Total number of households is 20. 
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Supplementary Table 1: Oligonucleotides used in this study. 

Target gene Primer name Sequence (5’–3’) PCR 

product 

size (bp) 

Reference 

16S rRNA 16S-F GTGCCAGCAGCCGCGGTAA 886 6 

16S-R AGACCCGGGAACGTATTCAC 

blaTEM FIN ATTCTTGAAGACGAAAGGGC 1092 11 

DEB ATGAGTAAACTTGGTCTGAC 

blaSHV SHV-F CGCTTCTTTACTCGCCTTTA 910 11 

SHV-R TTACGCTTGCCAGTGCTC 

blaCTX-M-1 

group 

CTX-M-Group 1-F AAAAATCACTGCGCCAGTTC 415 10 

CTX-M-Group 1-R AGCTTATTCATCGCCACGTT 

blaCTX-M-2 

group 

CTX-M-Group 2-F CGACGCTACCCCTGCTATT 552 10 

CTX-M-Group 2-R CCAGCGTCAGATTTTTCAGG 

blaCTX-M-9 

group 

CTX-M-Group 9-F CAAAGAGAGTGCAACGGATG 205 10 

CTX-M-Group 9-R ATTGGAAAGCGTTCATCACC 

blaMOX-1, 

MOX-2, CMY-1, 

CMY-8 to CMY-

11 

MOXMF GCTGCTCAAGGAGCACAGGAT 520 12 

MOXMR CACATTGACATAGGTGTGGTGC 

blaLAT-1 to 

LAT-4, CMY-2 

to CMY-7, BIL-1 

CITMF TGGCCAGAACTGACAGGCAAA 462 12 

CITMR TTTCTCCTGAACGTGGCTGGC 

blaDHA-1, 

DHA-2 

DHAMF AACTTTCACAGGTGTGCTGGGT 405 12 

DHAMR CCGTACGCATACTGGCTTTGC 

blaACC ACCMF AACAGCCTCAGCAGCCGGTTA 346 12 

ACCMR TTCGCCGCAATCATCCCTAGC 

blaMIR-1T, 

ACT-1 

EBCMF TCGGTAAAGCCGATGTTGCGG 302 12 

EBCMR CTTCCACTGCGGCTGCCAGTT 

blaFOX-1 to 

FOX-5b 

FOXMF AACATGGGGTATCAGGGAGATG 190 12 

FOXMR CAAAGCGCGTAACCGGATTGG 

blaCMY-2 CMY- F ATGATGAAAAAATCGTTATGC 1146 4 

CMY- R TTATTGYAGCTTTTCAAGAATGC 

blaDHA-1 DHA-1-F TTATTCCAGTGCACTCAAAA 1140 4 

DHA-1-R ATGAAAAAATCGTTATCTGCAACACTG 

blaIMP IMP-F GGAATAGAGTGGCTTAAYTCTC 232 13 

IMP-R GGTTTAAYAAAACAACCACC 

blaSPM SPM-F AAAATCTGGGTACGCAAACG 271 13 

SPM-R ACATTATCCGCTGGAACAGG 

blaVIM VIM-F GATGGTGTTTGGTCGCATA 390 13 

VIM-R CGAATGCGCAGCACCAG 

blaOXA OXA-F GCGTGGTTAAGGATGAACAC 438 13 

OXA-R CATCAAGTTCAACCCAACCG 

blaBIC BIC-F TATGCAGCTCCTTTAAGGGC 537 13 
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F, sense primer; R, antisense primer. 

 

BIC-R TCATTGGCGGTGCCGTACAC 

blaNDM NDM-F GGTTTGGCGATCTGGTTTTC 621 13 

NDM-R CGGAATGGCTCATCACGATC 

blaKPC KPC-F CGTCTAGTTCTGCTGTCTTG 798 13 

KPC-R CTTGTCATCCTTGTTAGGCG 

sul1 Sul1-F TGGTGACGGTGTTCGGCATTC 789 14 

Sul1-R GCGAGGGTTTCCGAGAAGGTG 

sul2 Sul2-F CGGCATCGTCAACATAAC 722 14 

Sul2-R GTGTGCGGATGAAGTCAG 

sul3 sul3-F GAGCAAGATTTTTGGAATCG 900 16 

Sul3-R CATCTGCAGCTAACCTAGGGCTTTGGA 

dfrIa DfrIa-F GTGAAACTATCACTAATGG 474 14 

DfrIa-R TTAACCCTTTTGCCAGATTT 

aac(6')-Ib AAC6Ib-F TTGCGATGCTCTATGAGTGG 482 

 

15 

AAC6Ib-R CTCGAATGCCTGGCGTGTTT 

tet(A) TetA - F GTAATTCTGAGCACTGTCGC 937 14 

TetA - R CTGCCTGGACAACATTGCTT 

cmlA cmlA - F TGTCATTTACGGCATACTCG 456 14 

cmlA - R ATCAGCCATCCCATTCCCAT 

mcr-1 mcr1_320bp - F AGTCCGTTTGTTCTTGTGGC 320 17,18 

mcr1_320bp - R AGATCCTTGGTCTCGGCTTG 

mcr-2 mcr2_700bp - F CAAGTGTGTTGGTCGCAGTT 715 17,18 

mcr2_700bp - R TCTAGCCCGACAAGCATACC 

mcr-3 mcr3_900bp - F AAATAAAAATTGTTCCGCTTATG 929 17,18 

mcr3_900bp - R AATGGAGATCCCCGTTTTT 

mcr-4 mcr4_1100bp - F TCACTTTCATCACTGCGTTG 1116 17,18 

mcr4_1100bp - R TTGGTCCATGACTACCAATG 

mcr-5 MCR5 - F ATGCGGTTGTCTGCATTTATC 1644 17,18 

MCR5 - R TCATTGTGGTTGTCCTTTTCTG 

mecA mecA - F GGGATCATAGCGTCATTATTC 527 6 

mecA - R AACGATTGTGACACGATAGCC 

blaZ blaZ - F CAGTTCACATGCCAAAGAG  772 19 

blaZ - R TACACTCTTGGCGGTTTC  

cat pC221 catpC221 - F ATTTATGCAATTATGGAAGTTG 435 19 

catpC221 - R TGAAGCATGGTAACCATCAC 

tet(M) tetM - F GTTAAATAGTGTTCTTGGAG 656 19 

tetM  - R CTAAGATATGGCTCTAACAA 

tet(K) tetK - F TTAGGTGAAGGGTTAGGTCC 718 19 

tetK - R GCAAACTCATTCCAGAAGCA 

dfr(G) dfrG - F TTTCTTTGATTGCTGCGATG 3 501 19 

dfrG - R AACGCACCCGTTAACTCAAT 

dfr(K) dfrK - F GCTGCGATGGATAAGAACAG 314 20 

dfrK - R GGACGATTTCACAACCATTAAAGC 
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Supplementary Table 2: Enrollment and questionnaire analyses 

Legend: a  12 dogs and 6 cats; b 8 dogs and 3 cats;  c only dogs ; d 3 dogs and 2 cats; e 20 dogs and 1 cat; f 2 dogs and 4 cats; na- not applicable. 

 

Epidemiological questionnaire Human 

(control, n=19) 

n, (%) 

Human 

(Owners, n=27) 

n, (%) 

Companion animals 

(n=29) 

n, (%) 

Age (Years) 22-65 8-66 0.17-17 

Gender 

Males 

Females 

   

1, (5.3) 7 (25.9) 18, (62.1)a 

18, (94.7) 20 (74.1) 11 (37.9)b 

Contact with hospital environment na na 3 (10.3)c 

Antimicrobial use in last year 6, (31.6) 9, (33) 5, (17%.0)d 

Hospitalization in the last year 1, (5.3) 3, (11.1) 6, (20.7)e 

kennel/hotel access na na 1 (3.4) 

Lifestyle -Outdoor na na 21, (72.0)f 

Employee or student in human or 

veterinary healthcare institutions 

14, (19.0) 14, (52.0) na 
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4.1.2- OXA-181-Producing Extraintestinal Pathogenic Escherichia coli 

Sequence Type 410 Isolated from a Dog in Portugal 

 

Short-form paper published at Antimicrobial Agents and Chemotherapy Journal. 

 

Brilhante, M., Menezes, J., Belas A., Pomba C., Vincent Perreten. 2020. OXA-181-producing 

extra-intestinal pathogenic Escherichia coli ST410 isolated from a dog in Portugal. Antimicrobial 

Agents and Chemotherapy Journal. pii: AAC.02298-19. doi: 10.1128/AAC.02298-19. 

 

 

 

Partial results were presented as,  

One Poster communication at the International congress 29th ECCMID, 2019, Amsterdam, 

Netherlands. 
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OXA-181-producing Extra-intestinal Pathogenic Escherichia coli 

ST410 isolated from a dog in Portugal. 

 

Michael Brilhante a,b, Juliana Menezes c, Adriana Belas c , Constança Pomba c and 

Vincent Perretena 

 

a Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, 

Switzerland; b Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 

Switzerland; c Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of 

Veterinary Medicine, University of Lisbon, Lisbon, Portugal 

 

Running title: blaOXA-181-producing ExPEC belonging to ST410 isolated from a pet 

 

Abstract 

Two multidrug-resistant and carbapenemase-producing Escherichia coli clones of ST410 

were isolated from fecal samples of a dog with skin infection at admission to an animal hospital 

in Portugal, and one month after discharge. Whole-genome sequencing revealed a 126,409-bp 

Col156/IncFIA/IncFII multidrug-resistance plasmid and a 51,479-bp IncX3 blaOXA-181-containing 

plasmid. The chromosome and plasmids carried virulence genes characteristic for uropathogenic 

E. coli indicating that dogs may carry multidrug-resistant E. coli related to those causing UTI in 

humans. 

 

Keywords: Pets, carbapenemase, veterinary, ExPEC, companion animals. 
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Carbapenemase-producing Enterobacteriaceae (CPE) represent a major public health 

issue and the frequency of their detection in pets has been increasing worlwide (1). A 

predominant carbapenemase- producing Escherichi coli associated so far with infections in 

humans belonged to specific clonal lineages (2). Among them, the high-risk multidrug-resistant 

(MDR) sequence type (ST) 410 shows strong potential for transmission between different hosts 

including companion animals (CAs) and humans (1, 3). CPEc ST410 has been identified in 2016 

in United Kingdom (4), in 2017 in Korea (5) and 2018 in Switzerland (6), and mostly associated 

with nosocomial carriage (6). Because of this CPE emergence in CAs and their potential 

transmission to humans (3, 7), CPE gut carriage was assessed in: (i) healthy CAs from the 

community, (ii) CAs with urinary tract infections (UTIs), and (iii) CAs suffering from skin/soft tissue 

infections (SSTIs) attending the University Veterinary Teaching Hospital (UVTH) in Lisbon, 

Portugal.  

Fecal samples of 71 healthy CAs (47 dogs and 24 cats) were collected at home, whilst 

those of CAs with UTIs (13 dogs and 2 cats) and 12 CAs with SSTIs (11 dogs and 1 cat) were 

taken at admission to UVTH for CPE screening between January 2016 and August 2019. Signed 

informed consent from the owners and ethical approval were obtained (CEBEA 027/2018). 

Samples were plated, with and without pre-enrichment in peptone water, onto MacConkey agar 

plates supplemented with antibiotic discs containing meropenem (10μg), temocillin (30μg) and 

CAT-ID™ (mastdiscs™ ID for CPE screening).  Isolates were identified using MALDI-TOF 

(Brucker). Carbapenemase production was assessed using Blue-carba (8). One dog from the 

SSTI group was positive in 2017 for CPEc (strain PT113) at admission and was still positive after 

1 month (strain PT109). PT109 and PT113 were non-susceptible to ampicillin (64 µg/mL), 

ceftazidime (>128 µg/mL), cefotaxime (>64 µg/mL), cefepime (>32 µg/mL), ciprofloxacin (>8 

µg/mL), chloramphenicol (16 µg/mL), ertapenem (1 µg/mL), sulfamethoxazole (>1024 µg/mL), 

trimethoprim (>32 µg/mL), and tetracycline (>64 µg/mL) as determined by broth microdilution 

(EUVSEC/EUVSEC2, Thermo Fisher Scientific) according to CLSI recommendations (9). 

The genomic sequence of PT109 was obtained using both MinION R.9.4.1 flow cell 

(Oxford Nanopore Technology, ONT) and Novaseq6000 (Illumina), and assembled with 

Unicycler (v.0.4.4), whilst PT113 was sequenced with Novaseq6000, readmapped to contigs of 

PT109 (Geneious v10.1.3) and assembled using SPAdes (v3.12.0). The full assembly of PT109 

resulted in the 4,815,030-bp chromosome (GenBank accession number CP041031), the 

126,409-bp Col156/IncFIA/IncFII plasmid pLB_CTX-M-15 (CP041032), and the 51,479-bp IncX3 

plasmid pLB_OXA-181 (CP041033), and the the 126,409-bp Col156/IncFIA/IncFII plasmid 

pLB_CTX-M-15 (CP041032), and the 51,479-bp IncX3 plasmid pLB_OXA-181 (CP041033). 

PlasmidFinder 2.1, Resfinder 3.2, MLST, SerotyFinder 2.0, Virulence Finder 2.0, 

(http://wwwgenomicepidemiology.org/), virulence factor database 
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(http://wwwmgc.ac.cn/VFs/main.htm), ISFinder (https://isfinder.biotoul.fr/) and INTEGRALL 

(http://integral.bio.ua.pt/) were used for in silico analyses. 

PT109 and PT113 belonged to ST410 and their serotype to the recently described 

genotype OgN5 (10). The colanic acid operon was upstream of the O-locus, which is crucial for 

biofilm production, withstanding desiccation (11) and for protection against complement-

mediated killing in serum (12). They contained amino acid substitution associated with 

fluoroquinolone resistance in GyrA (S83L and D87N) and ParC (S80I) as well as multiple 

antimicrobial resistance genes (ARGs) on plasmids pLB_CTX-M-15 and pLB_OXA-181 (Figure 

1). Plasmid pLB_OXA-181 was virtually identical to other OXA-181-containing IncX3 plasmids in 

the NCBI database (one SNP difference) (5) (Figure 1). The two plasmids sharing the closest 

similarity to pLB_CTX-M-15 lack either the resistance integron In54 or the iron transport systems 

(Figure 1). 

The genome of PT109 and PT113 exhibited a repertoire of virulence factors (n=25) (Table 

1) that classifies them as extraintestinal pathogenic E. coli (ExPEC) (13). Specifically, twelve of 

them are characteristic for uropathogenic E. coli (UPEC) (Table 1). UPEC virulence factors like 

the iron-related systems SitABCD, aerobactin (iucABCD, iutA) and CjrABC-SenB, and the 

arginine deiminase operon (ADO, arcACBDR) were all located on pLB_CTX-M-15 (Figure 1). 

The cjrABC-senB gene cluster is involved in the virulence of UPEC in humans (14) and ADO 

enhanced the capacity of a wild-type strain of E. coli to infect kidneys in a mouse model (15), 

indicating that PT109 and PT113 have strong potential for developing UTIs in humans (13-15). 

Comparative analysis of virulence and ARGs found in PT109 and PT113 with those of 

other ST410 strains from the NCBI showed that they all contained different ARGs but shared 

equally twelve of the virulence factors (Supplementary Tables S1 and S2). However, presence 

of the Sit operon (40% of strains) and aerobactin was less common (35%), whilst the colanic acid 

operon (25%), yersiniabactin (21%), and CjrABC-SenB (4%) were rarely detected 

(Supplementary Table S2). In fact, none of these other strains possessed the same virulence 

and resistance traits as PT109 and PT113, emphasizing the genetic plasticity and the variable 

pathogenic potential of the ST410 lineage. These different factors might have contributed to the 

colonization success and persistence capacity of PT109 and PT113, which cannot be explained 

by antibiotic selective pressure alone.  

The genetic relationship among PT109, PT113 and other ST410 strains from the 

GenBank database (n=26) was also determined using an ad-hoc core genome MLST analysis 

comparing 3375 genes, common to  all  strains  (cgMLST  Target  Definer,  Seqsphere+  v6.0.2).  

The resulting phylogenetic analysis dissociated PT109 and PT113 from the other CPEc of animal 

origin, but connected them to human strains isolated from urine, which supports the assumption 

that both strains have potential for developing UTIs in humans (Figure 2). PT109 and PT113 

were highly genetically related, differing by only one allele, whereas they differed from the other 
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ST410 strains by at least 23 and up to 262 different alleles. Strains from the same clade of PT109 

and PT113 (CP018965, CP035325, CP032426 and CP035123) shared most virulence factors 

(n=24/26) and contained the same genotype OgN5, suggesting that specific ST410 lineages are 

more likely to be successful in colonization and/or infection. 

This study provided an in-depth characterization of the first OXA-181-producing ExPEC 

obtained in a veterinary environment and its comparison with other ST410 strains. 

Detection of the same clone within a 1-month period indicates that such a MDR and 

carbapenemase-producing pathogenic E. coli can temporarily persist in dogs and disseminate 

into the environment, other animals and humans, therefore posing a major One Health concern 

(16, 17). 
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Table 1. Virulence factors of Escherichia coli PT109 and PT113. 

Virulence factor Function (ref) Pathotype b Virulence gene(s) Genetic location in PT109, 

coordinates (Accession 

number) 

F9 fimbriae Adherence (18) AIEC, 

EAEC, 

EPEC, 

EHEC 

UPEC 

z2200-z2206 Chromosome 2’432’071- 

2’438’432 (CP041031) 

Hemorrhagic E. 

coli pilus 

Adherence (19) EHEC, 

ETEC, 

EPEC 

hcpABC Chromosome 3’881’323- 

3’884’350 (CP041031) 

CFA/I fimbriae Adherence (20) ETEC cfaABCD Chromosome 691’527-

696’541(CP041031) 

Curli fibers Adherence (13) UPEC, 

SEPEC, 

APEC 

csgBAC, csgDEFG Chromosome 2’883’283-

2’887’724 (CP041031) 

Intimin-like FdeC Adherence (21 ExPEC, 

UPEC, 

ETEC, 

EHEC, 

EPEC, 

AIEC, 

EAEC, 

STEC 

eaeH Chromosome 3’690’607-

3’694’863 (CP041031) 

E. coli common 

pilus 

Adherence (22) EPEC and 

commensals 

ecpRABCDE Chromosome 3’697’931- 

3’704’724 (CP041031) 

Type 1 fimbriae Adherence (13) ExPEC, 

UPEC, 

NMEC, 

SEPEC, 

APEC 

fimBEAICDFGH Chromosome 4’135’565- 

4’144’317 (CP041031) 

Stg fimbriae Adherence (23) ExPEC, 

APEC 

stgABCD Chromosome 4’783’515- 

4’788’497 (CP041031) 

UpaG adhesin Adherence (24) ExPEC, 

UPEC 

upaG Chromosome 135’019-

130’169 

(CP041031) 

E. coli laminin- 

binding fimbriae 

Adherence (25) EPEC, 

STEC, 

EHEC and 

commensals 

elfADCG Chromosome 2’982’660- 

2’989’604 (CP041031) 

NlpI lipoprotein Adherence(26) EPEC, AIEC nlpI Chromosome 627’338-

628’222 

(CP041031) 
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Flagella Adherence and 

Motility (27) 

EPEC, 

ExPEC 

fliRQPONMLKJLHGFE, 

fliSTDC, fliAZY, flhDC, 

motAB, cheAWMRBYZ, 

flhBAE, 

flgLKLIHGFEDCBAMN 

Chromosome 1’987’639- 

1’976’661, 1’998’119- 

2’005’128, 2’025’740- 

2’041’357, 2’847’590- 

2’859’159 (CP041031) 

ETT2 locus 

(degenerate) 

Type III 

secretion 

system (28) 

EPEC, 

STEC 

eivACI, eivJ12, epaOPQR, 

epaS12, eivH, eprHIJK 

Chromosome 951’137-

968’978 

(CP041031) 

Yersiniabactin Siderophore 

(13) 

ExPEC, 

UPEC 

fyuA, irp1, ipr2, 

ybtAEPQSTUX 

Chromosome 1’904’355- 

1’933’185 (CP041031) 

Enterobactin Siderophore 

(13) 

EPEC, 

ExPEC 

and 

commensals 

entABCDEFH, entS, 

fepABCDEG, fes, ybdz 

Chromosome 3’404’020- 

3’423’654 (CP041031) 

Agn43 Autotransporter 

(13) 

ExPEC, 

UPEC 

flu Chromosome 52’072-

49’228 

(CP041031) 

Aida-like protein Autotransporter Yet 

unspecified 

Similar to ehaB Chromosome 3’615’037- 

3’617’682 (CP041031) 

Colanic acid 

operon 

Capsule 

production (12) 

ExPEC, Yet 

unspecified 

wzabc, wcaABCDEFJKLM, 

gmd, fcl, wcaI, cpsBG, 

wzxC 

Chromosome 1’789’589- 

1’812’389 (CP041031) 

Iron related 

receptora 

Iron transport Yet 

unspecified 

tonB-like pLB_CTX-M-15 6’210-

8’180 

(CP041032) 

Colicin A1 

Immunity protein 

Colicin 

tolerance 

Yet 

unspecified 

Yet unspecified pLB_CTX-M-15 28’608- 

28’943 (CP041032) 

CjrABC Iron acquisition 

(14) 

ExPEC, 

UPEC 

cjrABC pLB_CTX-M-15 31’413- 

35’502 (CP041032) 

SenB Toxin (14) ExPEC, 

UPEC 

senB pLB_CTX-M-15 35’571- 

36’746 (CP041032) 

Aerobactin Siderophore 

(13) 

UPEC, 

APEC 

iucABCD, iutA pLB_CTX-M-15 108’676- 

116’656 (CP041032) 

Sit operon Iron acquisition 

(13) 

UPEC, 

APEC 

sitABCD pLB_CTX-M-15 119’979- 

123’428 (CP041032) 

Arginine 

deiminase operon 

Increased 

fitness (UTI)  

(15) 

UPEC arcACBDR pLB_CTX-M-15 79’550- 

84’792 (CP041032) 

aThe protein derived from the gene is related to transferrin/lactoferrin family receptor 
bGroups of pathogenic E. coli, with which the virulence factors are the most commonly associated: AIEC, adherent-
invasive E. coli; APEC, avian pathogenic E. coli; EAEC, enteroaggregative E. coli; EHEC, enterohemorrhagic E. coli; 
EPEC, Enteropathogenic E. coli; ETEC, enterotoxigenic E. coli; ExPEC, extraintestinal pathogenic E. coli; NMEC, 
neonatal meningitis-causing E. coli; SEPEC, sepsis-associated E. coli; UPEC, uropathogenic E. coli. 
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Figure 1. Circular map of plasmid pLB_OXA-181 (A, CP041033) and plasmid pLB_CTX-M-15 (B, 
CP041032) found in PT109. 

The colored outer rings represent regions of homology that both plasmids share with their three closest relative 
plasmids found in the GenBank database. Genes present in pLB_OXA-181 (A) and pLB_CTX-M-15 (B) are portrayed 
as arrows in the inner ring of each circular map and are colored depending on their gene function classification. (A) 
First outer ring (light green), p_AN-OXA-181 (MK416154); second outer ring (green), pKBN10P04869C (CP026476); 
third outer ring (dark green), p266917_2_04 (CP026727). (B) First outer ring (pink), RSC105_pI  (LO017737);  second  
outer  ring  (red),  pAR_0011  (CP024856);  third  outer  ring (bordeaux), pEC517_1 (CP018964). The scale circle 
shows the coordinates in kilobase pairs of the reference plasmid. Antibiotic resistance genes and their functions: aadA, 
streptomycin/spectinomycin adenyltransferase;  aac(6')-Ib-cr,  aminoglycoside  and  quinolone  acetyltransferase;  
blaOXA-1,  β-lactamase; blaCTX-M-15, extended-spectrum β-lactamase; blaOXA-181, carbapenemase; dfrA17, 
trimethoprim-insensitive  dehydrofolate  reductase;  mph(A),  macrolide  phosphotransferase; sul1, sulfonamide-
insensitive dihydropteroate synthase; tet(A), tetracycline efflux pump; qnrS1, DNA gyrase protection gene conferring 
low level resistance to fluoroquinolones. Genes are presented by colored arrows: red, antibiotic resistance genes; 
lime, genes associated with higher fitness; purple, genes associated with resistance to disinfectants and heavy metals; 
orange, transposase gene; green, integrase genes; light turquoise, conjugation associated genes; blue, genes 
associated with partition,modification and stability systems; dark blue, replication genes; black, virulence genes; pink, 
toxin genes; grey, other genes. 
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Figure 2. Phylogenetic neighbor-joining tree of all complete and/or circular genomes of 
Escherichia coli ST410 strains available in the GenBank database (n=26; accessed August 5th, 

2019) together with PT109 (GenBank acc. no. CP041031) and PT113.  

The phylogenetic neighbor-joining tree was based on the parameters “pairwise ignoring missing values” and “% 
columns difference”. The accession numbers of the sequences included in the tree are shown in the rounded 
rectangles, which are colored depending on their isolation source, and when provided, detail of the isolation source 
and carbapenemase production are shown by colored circles and rectangles, respectively (displayed by the legend). 
Accession number used were LS998785 (strain EC-TO75), CP013112 (YD786), CP018965 (Ecol_517), CP035325 
(BR12-DEC), CP032426 (SCEC020001), CP041031 (PT109), CP035123 (EC25), LR595691 (EcMAD1), CP040397 
(BA22372), CP027205 (WCHEC025943), CP024801 (AMA1167), CP034958 (SCEC020026), CP033401 
(WCHEC020031), CP026473 (KBN10P04869), CP040886 (K71-77), LT594504 (RL465), CP029122 (AR434), 
CP029630 (ST410), CP035944 (AR24.2b), CP040067 (A1_181), CP040381 (A1_180), CP031653 
(UK_Dog_Liverpool), CP031231 (Es_ST410_NW1_NDM_09_2017), CP029108 (AR437), CP023899 
(FDAARGOS_433), CP034966 (WCHEC020032) and CP029369 (WCHEC035148). 
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Supplementary Table S1. Distribution of antibiotic resistance genes (ARGs) from E. coli PT109 
and PT113 and the complete and circular genomes of ST410 E. coli from GenBank (n=26, 

accessed August 5th, 2019) 
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Supplementary Table S2. Distribution of virulence factors from OXA-181-producing E. coli PT109 
and PT113 shared with other circular and complete genomes of ST410 strains from GenBank 

(n=26, accessed August 5th, 2019) 

Virulence factor combinations 
(number of strains) 

Strains (accession numbers) sharing virulence factors of PT109/PT113 

 
 
 
 

Common twelve virulence factors shared among 

all ST410 strains from NCBI (n=26) included in 

this study: 

 
Hemorrhagic E. coli pilus  

CFA/I fimbriae 

Intimin-like FdeC 

E. coli common pilus  

Type 1 fimbriae 

Stg fimbriae 

UpaG adhesin 

E. coli laminin-binding fimbriae 

NlpI lipoprotein 

Flagella 

Aida-like protein 

Enterobactin 

A1_180 (CP040381-P040389) 

A1_181 (CP040067- P040076) 

AMA1167 (CP024801-CP024806) 

AR24.2b (CP035944; MK416154-MK416155) 

AR434 (CP029122- CP029123) 

AR437 (CP029103-CP029108) 

BA22372 (CP040397-CP040399) 

BR12-DEC (CP035325-CP035329) 

EC25 (CP035123-CP035123) 

EcMAD1 (LR595691-LR595694) 

Ecol_517 (CP018963-CP018965) 

EC-TO75 (LS998785-LS998788) 

Es_ST410_NW1_NDM_09_2017 (CP031231-CP031235)  

FDAARGOS_433 (CP023895-CP023905) 

K71-77 (CP040884-CP040886) 

KBN10P04869 (CP026473-CP026476) 

RL465 (LT906556-LT906558; LT594504) 

SCEC020001 (CP032420-CP032426) 

SCEC020026 (CP034954-CP034958) 

ST410 (CP029630-CP029631) 

UK_Dog_Liverpool (CP031653-CP031658) 

WCHEC020031 (CP033397-CP033401) 

WCHEC020032 (CP034959-CP034966) 

WCHEC025943 (CP027199-CP027205) 

WCHEC035148 (CP029365-CP029369) 

YD786 (CP013112, KU254578-KU254581) 

Common+Curli fibers (n=25) All 26 strains included in the study except AR24.2b. 

Common+F9 fimbriae (n=24) All 26 strains included in the study except AR24.2b and K71-77. 

Common+ETT2 degenerate locus ( n=24) All 26 strains included in the study except RL465, BR12-DEC. 

Common+Agn43 (n=19) 
All 26 strains included in the study except AR24.2b, AR434, ST410, 

WCHEC020032, AR437, FDAARGOS_433, WCHEC035148. 

 
Common+Sit operon (n=11) 

RL465, AR437, FDAARGOS_433, WCHEC035148, K71-77, 

UK_Dog_Liverpool, Es_ST410_NW1_NDM_09_2017, BR12-DEC, Ec-TO75, 

EC25, SCEC020001. 

 
Common+Iron related receptora (n=10) 

AR437, FDAARGOS_433, WCHEC035148, K71-77, UK_Dog_Liverpool, BR12- 

DEC, Ec-TO75, EC25, SCEC020001 and Ecol_517. 

 
Common+Aerobactin (n=10) 

AR437, FDAARGOS_433, WCHEC035148, Es_ST410_NW1_NDM_09_2017, 

K71-77, UK_Dog_Liverpool, BR12-DEC, Ec-TO75, EC25, SCEC020001. 

 
Common+Colonic acid operon (n=7) 

KBN10P04869, YD786, BR12-DEC, Ec-TO75, EC25, SCEC020001 and 

Ecol_517. 

Common+Yersiniabactin (n=6) KBN10P04869, BR12-DEC, Ec-TO75, EC25, SCEC020001 and Ecol_517. 

Common+Colicin A1 Immunity protein (n=2) BR12-DEC and Ecol_517. 

Common+CjrABC (n=1) Ecol_517. 

Common+SenB (n=1) Ecol_517. 
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Chapter 5 

Discussion, conclusions and  
future perspectives  

 

5.1 General discussion 

E. coli are Gram-negative bacteria that are ubiquitous colonizers of the gastro-intestinal 

tract in humans and companion animals. E. coli is commonly isolated from clinical samples of 

companion animals with infections of the urinary, respiratory, skin and soft tissue and gastro-

intestinal tract (Guardabassi et al. 2004; Pomba et al. 2017; Zogg et al. 2018). Over the last 

years, ESBL and carbapenemase-producing E. coli have been isolated, with increasing 

frequency, from humans and from healthy and diseased companion animals (Coque et al. 2008; 

Ewers et al. 2012; Dolejska et al. 2013; Gandolfi-Decristophoris et al. 2013; Belas et al. 2014; 

Baede et al. 2015; Bogaerts et al. 2015; Melo et al. 2017; Grontal et al. 2018; Hong et al. 2018; 

Nigg et al. 2019; Reynolds et al. 2019; Sheu et al. 2019). Carbapenemase-resistant and ESBL-

producing Enterobacterales, such E. coli, are at the top of the WHO priority list (WHO 2019). 

ESBL/carbapenemase genes are carried on plasmids, often by bacteria belonging to clones with 

properties that facilitate its transmission. However, the clinical significance of these isolates and 

their involvement in animal disease, occurring as either opportunistic pathogens or simple 

colonizers, has been very rarely investigated. Futhermore, there is an important gap of 

knowledge concerning the link between cephalosporin usage, emergence of antimicrobial 

resistance and the potential transmission of ESBLs/carbapenemase-producing E. coli by direct 

human-companion animal contact. 

 

5.1.1 ESBLs/ carbapenemase - producing Extraintestinal Pathogenic 

Escherichia coli in companion animals and humans without direct contact 

Chapter 3.1 describes the first report of the disseminated E. coli O25b:H4-B2-ST131-

H30/H30-Rx, MDR, fluoroquinolone-resistant human high-risk clone and its CTX-M-15-H30-Rx 

and CTX-M-1-H30-Rx subsets in companion animals with UTI from Europe. Between 1999 and 

2015, 342 uropathogenic E. coli were isolated at the Laboratory of Antibiotic Resistance, Faculty 

of Veterinary Medicine, University of Lisbon from companion animals with UTI. Seven of the 

O25b:H4-B2-ST131 clone companion animal isolates were the H30 subclone and three out these 

seven were the H30-Rx subclone. Furthermore, all H30/H30-Rx subclones causing UTI in 
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companion animals belonged to virotype D, which confirms their virulent characteristics (Nicolas-

Chanoine et al. 2014). Moreover, one isolate carried the ESBL blaCTX-M-1 gene, which is 

associated with E. coli isolates of farm animal origin and described in humans in Turkey with UTI 

(Nicolas-Chanoine et al. 2014; Can et al. 2016). Furthermore, one O25b:H4-B2-ST131-H30 

isolate harboured both oqxA and oqxB efflux pump genes, which could be potentially related to 

its reduced fluoquinolone susceptibility. These results raise public health concerns (Banerjee et 

al. 2013) since these subclones may have an impact on human health through the close and 

direct contact of companion animals with their owners. Moreover, the close contact between 

companion animals and humans creates opportunities for interspecies transmission of resistant 

bacteria. Studies of ST131 H30/H30-Rx in humans in Portugal are scarce (Rodrigues et al. 2016; 

Belas et al. 2019). However, H30/H30-Rx subclones have been previously described in faecal 

samples from healthy humans (Rodrigues et al. 2016). 

Chapter 3.2 aimed to characterize ESBL/AmpC ß-lactamase producing - E. coli strains 

causing UTI in companion animals and non-related humans from the community. Thirty-five non-

duplicate third – generation cephalosporins resistant - E. coli isolates causing UTI in companion 

animals were studied and compared to 85 non-duplicate third – generation cephalosporins 

resistant - E. coli isolated from non-related humans with community-acquired UTI. 

In this chapter a large diversity of ESBL/AmpC ß-lactamase producing E. coli from 

companion animals and non-related humans with community-acquired UTI were identified. 

However, in companion animals, cephalosporin resistance was frequently associated with the 

presence of blaCTX-M-15 and blaCMY-2 genes, while in humans with community-acquired UTI it was 

associated with blaCTX-M-15 and blaCTX-M-1. Furthermore, the frequency of CMY-2-producing E. coli 

strains in companion animals was higher than in humans with community-acquired UTI. In a 

study performed in UK, the authors also found a high prevalence of CMY-2- producing E. coli 

strains from dogs with UTI (Wagner et al. 2014). Most CMY-2-producing E. coli strains belonged 

to the phylogenetic group D, which is consistent with a previous study performed in the United 

States (Liu et al. 2016). The majority of third-generation cephalosporins-resistant E. coli strains 

belonging to the phylogenetic group B2 and had a high number of the pathogenicity island 

markers. The association of group B2 and several pathogenicity island markers has previously 

been reported among uropathogenic E. coli strains (Sabaté et al. 2006). Furthermore, the A, B1, 

and D phylogenetic groups of uropathogenic E. coli strains from the present study also have less 

pathogenicity island markers as described before by other authors (Sabaté et al. 2006; Mateus 

et al. 2013).  

In this chapter, two multidrug-resistant high-risk clonal lineages, the ST131 and ST648, 

and also the ST88 were shared between companion animals and humans with UTI. E. coli ST88 

clone has been associated with poultry and broiler meat, which may suggest that animals from 
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farms are reservoirs for this type of E. coli that is able to cause extraintestinal disease in humans 

and companion animals (Day et al. 2016; van Hoek et al. 2018; Borges et al. 2019). 

blaCTX-M-15 and blaCTX-M-14 genes are the most common types of ESBLs among strains 

isolated from human with UTI, though blaCTX-M-14 gene has mainly been reported in Japan, Asian 

countries, Canada and Spain (Peirano et al. 2010; Zong and Hu 2013). 

The ST131 clone harbouring blaCTX-M-15 or blaCTX-M-14 has also been detected among 

companion animals in many countries (Ewers et al. 2010; Pomba et al. 2014; Belas et al. 2019). 

In Japan, between 2005 and 2010, Matsumura et al. (2016) found the blaCTX-M-14 gene to be the 

most common, followed by blaCTX-M-15 and blaCTX-M-2. They also recently reported the global 

emergence and increased prevalence of the E. coli ST131 sub-clade (C1/H30R1, named the C1-

M27). The blaCTX-M-27, a single-nucleotide variant of blaCTX-M-14, has been increasingly identified 

among the E. coli strains from humans and companion animals with UTI in the United States and 

in Asian and European countries (Harada et al. 2012; Matsumura et al. 2016; Bevan et al. 2017). 

It has also been reported in clinical E. coli strains from companion animals from France (Melo et 

al. 2019). Moreover, the transmission of the E. coli ST131 clone among family members and 

companion animals has been documented (Johnson et al. 2009a). 

The results of this chapter suggest that the C2/H30Rx subclade is a prevalent clone in 

humans with community-acquired UTI from the Lisbon area, and that the majority of these 

isolates harbour a small number of ESBL-gene types. This clone has previously been 

demonstrated as being highly virulent and, when multidrug-resistant, it may have a direct impact 

in the management of community-associated UTI in both humans and companion animals. This 

clone is normally associated with complicated UTIs (Campos et al. 2018). To the best of our 

knowledge, in this study we have the first description of E. coli O25b:H4-ST131 harbouring 

blaCMY-2 gene and also, the first description of the subclade C1-M27 in humans with community-

acquired UTI in Portugal. However, C1-M27 subclade has been detected in faecal samples of 

healthy humans in the north of Portugal (Rodrigues et al. 2016). Moreover, E. coli O25b:H4-

ST131 harbouring blaCMY-2 gene has been rarely described (Day et al. 2016; Hansen et al. 2016). 

Previous studies of clinical E. coli showed that the O16-H5-ST131 clone (clade A) is 

globally distributed (Johnson et al. 2014). In this thesis we have, to best of our knowledge, the 

first description of the O16:H5-ST131 clone harbouring blaCTX-9like in a human with community-

acquired UTI in Portugal. Moreover, it is noteworthy that ST648 strains were strongly associated 

with blaCMY-2 gene, combining both multidrug-resistant and virulent phenotypes. Further studies 

about ST648 strains in companion animals are needed, to clarify if there are possible routes of 

the transmission of this clone to humans by direct contact or by environmental contamination. 

These findings are of critical relevance, as they show the role of companion animals and 

humans as reservoirs of pandemic clones, especially E. coli ST131-C2/H30Rx (blaCTXM-15) and 

ST648 harbouring CMY-2. Furthermore, E. coli ST10 and ST410, other important pandemic 
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lineages, were among the STs detected in humans with community - acquired UTI (Mathers et 

al. 2015; Campos et al. 2018). Yet, these ST types were not detected in companion animals with 

UTI in Lisbon.  

This chapter allows to understand some aspects of the dissemination of ESBLs/AmpC- 

producing E. coli in the Lisbon area, which is an important step for developing strategies to 

prevent the propagation of high-risk clones. In a One-Health perspective, the collaboration 

between Veterinary medicine and Human medicine is needed to characterize the occurrence and 

routes of dissemination of these high-risk clones. Considering that companion animals with UTI 

are generally treated at home by the owners, measures should be implemented to avoid the 

spread of these bacteria to the environment. 

In chapter 3.3, the purpose of the study were to evaluate the presence and load of 

ESBL/AmpC-producing Enterobacteriaceae faecal carriage in healthy dogs after elective surgery 

and to identify potential risks factors associated with faecal colonization. Faecal samples were 

collected from dogs submitted to surgical procedures (n=25). Faecal samples from the surgery 

group were collected before surgery and after surgery. Interestingly, about 20% of dogs before 

surgery and before entering the hospital were already colonized with ESBL/AmpC-producing 

Enterobacterales. The results obtained in this study were quite similar to the results obtained 

previously (Belas et al. 2014). ESBL/AmpC-producing Enterobacterales implicated in this study 

were E. coli, K. pneumoniae and E. cloacae. Furthermore, the blaTEM and blaCTX-M-1 group genes 

were the most frequent β-lactam-resistance genes detected, which is in agreement with previous 

studies (Costa et al. 2007; Belas et al. 2014). Hordijk (2013), in the Netherlands, analysed healthy 

dogs and cats without contact with the hospital environment and detected a high percentage 

(45%) of dogs colonized with Enterobacterales producing β-lactamases (ESBL/AmpCs). Procter 

(2014) reported that 12.7% of E. coli strains isolated from dogs who attended parks in three cities 

from Canada, were resistant to β-lactam antimicrobials. The different frequencies of β-lactam 

resistant bacteria obtained in these studies may be linked to the different geographical regions 

or simply be due to differences in the bacteria isolation methodology used. The frequency of 

ESBL-producing Enterobacterales significantly increased during antimicrobial administration and 

changes in fecal microbiota occurred. These results could be in part explained by the use of 

amoxicillin-clavulanate in small animal practice. The use of β-lactams has been previously 

associated with an increased risk of carriage of antimicrobial resistant E. coli in dogs (Rantala et 

al. 2004; Ogeer-Gyles et al. 2006; Belas et al. 2014). These results are extremely important, 

emphasizing the need for appropriate antimicrobial prophylaxis guidelines. This issue is of great 

importance not only because of the direct impact on patients, but also because resistant bacteria 

can be transmitted from companion animals to humans (Johnson et al. 2001, Guardabassi et al. 

2004; Johnson et al. 2009; Pomba et al. 2017).  
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ESBL/AmpC-producing Enterobacterales may also spread from patient-to-patient due to 

inadequate attention to infection control measures, especially hand washing. Infections caused 

by Enterobacterales have features that are of particular concern. These organisms are highly 

efficient at up-regulating or acquiring genes that code for mechanisms of antimicrobial drug 

resistance, especially in the presence of antimicrobial selective pressure (Peleg and Hopper 

2010). Furthermore, nowadays, there is evidence that the composition of the gut microbiota may 

change in response to external factors such as antimicrobials and environment (Coyte et al. 

2015).  Antimicrobial administration creates alterations in the faecal microbiome and can affect 

the immune system and the health of the host (Ubeda et al. 2012; Panda et al. 2014). 

Antimicrobials must be used responsibly and restrictively to minimize resistance, retain 

the efficacy of the currently available antimicrobial agents, and to maintain a healthy gut 

microbiome (Grønvold et al. 2010).  

 

5.1.2 ESBLs/ carbapenemase - producing Extraintestinal pathogenic 

Escherichia coli in companion animals and humans with direct contact 

Chapter 4.1 reports the sharing of clinically important antimicrobial resistance genes by 

companion animals and their human household members. The aims of this chapter were to 

implement a rapid easy methodology, to characterize the antimicrobial resistant gene gut content 

associated with Enterobacterales and staphylococci; and to evaluate statistical associations 

between antimicrobial resistance genes present in fecal samples from healthy companion 

animals and their human household members. 

Fecal samples were collected from humans (n=27) and companion animals (n=29) living 

in close contact in 20 households. Furthermore, healthy humans without daily contact with 

companion animals (n=19) were enrolled to the control group. 

The antimicrobial resistance genes studied are responsible for phenotypic resistance to 

six antimicrobial classes: β-lactams, aminoglycosides, colistin, trimethoprim/sulfamethoxazole, 

tetracycline and chloramphenicol in Enterobacterales and in Staphylococcus spp. 

Nowadays, companion animals live in a “relationship of mutualism” with their owners 

(Dotson and Hyatt 2008). The anthropomorphizing of companion animals has led to changes in 

the behavior of owners towards them, with increasing conducts like kissing, licking, sharing food 

and sharing beds. Considering the shared environment of humans and companion animals, their 

close relationship, and the increased frequency of antimicrobial-resistant bacteria detected in 

humans and companion animals, new opportunities are created for interspecies transfer of 

antimicrobial resistance genes (Dotson and Hyatt 2008; Pomba et al. 2017). 

Antimicrobials are used extensively in human medicine, veterinary medicine, food-

producing animals and agriculture (Rolain 2013). In Portugal, β-lactams, such as penicillins, are 
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the most prescribed antimicrobials in humans followed by macrolides, lincosamides, 

streptogramins, quinolones, tetracyclines and sulfonamides-trimethoprim (ECDC 2018). In 

Veterinary medicine, penicillins are also the most commonly prescribed antimicrobials in 

companion animals (EMA 2018). Yet, lincosamides, quinolones, macrolides, tetracyclines, 

nitroimidazoles and sulfonamides-trimethoprim are also used in small animal practice (EMA 

2015; EMA 2018). Several antimicrobial classes that are used in humans and companion animals 

are the same, leading to an overlap of the detected antimicrobial resistance genes (Guardabassi 

et al. 2004; Pomba et al. 2017). Enterobacterales resistance to β-lactams is increasing in humans 

and in companion animals and there are no specific β-lactamases that are restricted only to 

animals or humans (Schnellmann et al 2006). This seems to be in line with the results from this 

study. The β-lactamases that are disseminated in the Enterobacterales family, especially the 

ESBLs and cephalosporinases of AmpC type are of particular clinical relevance. 

In this chapter, the blaTEM gene was the most frequent β-lactam-resistance gene in 

humans and companion animals, which is in agreement with previous studies (Trott 2012; Costa 

et al. 2007; Rodríguez-Baño et al. 2008). In Portugal, the TEM-β-lactamase has also been 

detected in Enterobacterales from food-producing animals and from commensal and clinical 

isolates (Pomba-Féria and Caniça 2003; Costa et al. 2007). The blaTEM genes detected in this 

study (from companion animals and humans) had a similar promotor and coding region 

polymorphisms as the blaTEM-1B (according to the Sutcliffe numbering system) (Sutcliffe 1978). 

This finding may have resulted from a zoonotic transfer of blaTEM-1B genes harboured in 

Enterobacterales. Nevertheless, a common source of colonization could also be hypothesized 

since this resistance mechanism has been extensively detected in Portugal (Pomba-Féria and 

Caniça 2003; Costa et al. 2007). 

CTX-M β-lactamases are the current dominant type of ESBLs worldwide, having 

overpassed the TEM and SHV β-lactamases in Europe, both in humans and animals (Ewers et 

al. 2011; Belas et al. 2014). Furthermore, Portugal is among the European countries with the 

highest frequency of ESBL detection, mainly TEM and CTX-M (Machado et al. 2013; Fernandes 

et al. 2014). However, in this chaper, only the ESBL SHV-27 gene was detected in a healthy 

human from the control group. The blaSHV-27 gene has been previously detected in clinical K. 

pneumoniae, E. coli and Enterobacter cloacae from humans and in clinical K. pneumoniae from 

dogs of different countries (Abbassi et al. 2008; Kiratisin et al. 2008; Hammami et al. 2011; Zhang 

et al. 2018). To the best of our knowledge, this is the first detection of blaSHV-27 gene in fecal 

samples from healthy humans in Portugal and in Europe.  

Only the CMY-2 and DHA-1 beta-lactamase encoding genes were detected among all 

the AmpC cephalosporinase genes tested in this study, and these occurred mainly in humans. 

The detection of these AmpC genes was already described in Portugal in clinical strains of 
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Enterobacterales from humans in the community and hospital, but as far as we are aware, not in 

healthy individuals in the community (Ribeiro et al. 2019). 

The effect of the low antimicrobial consumption, the household controlled environment, 

and the possible food-borne dissemination of antimicrobial resistance genes should also be 

considered in this study as an explanation for the shared antimicrobial resistance genes (Pitout 

et al. 2005; Gong et al. 2018; Zhang et al. 2018, Zhang et al. 2019). The presence of 

ESBLs/AmpC in this chapter was lower than previously reported in healthy dogs in Portugal 

(Lisbon area) (Belas et al. 2014). In a previous study, dogs from shelters/breeders were 

approximately three times more likely to have an ESBL/AmpC-producing E. coli than dogs from 

private owners (Belas et al. 2014). The results in the present study may be explained by the fact 

that the companion animals included in this study had little contact with kennels and were healthy. 

This chapter 4.1 showed that humans and companion animals carried and shared several 

antimicrobial resistance genes of clinical importance. Most of these genes are usually associated 

with mobile genetics elements, which are important for the antimicrobial resistance transfer 

between different microbiomes (Karami et al. 2006; Kumer et al. 2004; Broaders et al 2013; 

Jernberg et al. 2013; Gillings et al. 2014; Cornican et al. 2017). The role of companion animals 

in the dissemination of clinically relevant antimicrobial resistance genes to humans through fecal 

contamination should not be neglected. Further studies are needed to determine the causality 

and directionality of resistance genes transfer between human and companion animals, in order 

to identify the critical control points at which interventions could substantially prevent the spread 

of antimicrobial resistance genes within households and establish the prevention and intervening 

measures for controlling resistance.  

The chapter 4.2 reports two multidrug-resistant and carbapenemase-producing E. coli 

clones of ST410 isolated from fecal samples of a dog with skin infection at admission to an animal 

hospital in Portugal, and one month after discharge. Whole-genome sequencing revealed a 

126,409-bp Col156/IncFIA/IncFII multidrug-resistance plasmid and a 51,479-bp IncX3 blaOXA-181-

containing plasmid. The chromosome and plasmids carried virulence genes characteristic of 

uropathogenic E. coli indicating that dogs may carry multidrug-resistant E. coli related to those 

causing UTI in humans. 

Fecal samples of 71 healthy companion animals (n=47 dogs and n=24 cats) were 

collected at home, whilst those of companion animals with UTIs (n=13 dogs and n=2 cats) and 

12 companion animals with skin and soft-tissues infections (n=11 dogs and n=1 cat) were taken 

at admission to the University teaching hospital for carbapenemase-producing bacteria 

screening. This chapter provided an in-depth characterization of the first OXA-181-producing 

Extraintestinal Pathogenic E. coli obtained in a veterinary environment and its comparison with 

other ST410 strains. Detection of the same clone within a 1-month period indicates that such a 

multidrug-resistant and carbapenemase-producing pathogenic E. coli can temporarily persist in 



 

 180 

dogs and disseminate into the environment, other animals and humans, therefore posing a major 

One Health concern (Pulss et al, 2018; Pitout et al. 2019). 

 

5.2 Conclusions 

The results obtained in theses studies on the transmission of ESBLs/pAmpC and 

carbapenemases-producing Extraintestinal Pathogenic E. coli contributed with important and 

updated epidemiological information to small animal veterinary medicine and public health. 

 

5.2.1 ESBLs/ carbapenemase - producing Extraintestinal Pathogenic 

Escherichia coli in companion animals and humans without direct contact 

To our best knowledge the high-risk clonal lineages E. coli O25b:H4-ST131-H30/H30Rx 

were here described for the first time in companion animals (dogs and cats) from Portugal and 

Europe. Moreover, these subclones belonged to the virotype D, which confirms their patogenicity 

and virulent characteristics. 

The detection of high-risk clonal lineages harbouring clinically relevant antimicrobial-

resistant mechanisms, such as third – generation cephalosporins E. coli O25b:H4-B2-ST131, 

CC23 and ST648, highlights the role of companion animals with UTI in its dissemination. 

The blaCMY-2 producing E. coli ST648 is the most common high-risk clonal lineage causing 

UTI in companion animals from Lisbon area. The cross-species sharing of important multidrug-

resistant high-risk clones is a public health concern. Furthermore, these high-risk clonal lineages 

pose a therapeutic dilemma given that they often are only susceptible to antimicrobials critically 

important for humans. 

The detection and of faecal pathogenic ESBLs/ AmpC-producing E. coli in healthy dogs 

is also an important finding, because resistant bacteria can be transmitted from animal to animal 

and to humans. 

It is important to implement some measures to avoid the spread of these bacteria to the 

environment. 

 

5.2.2 ESBLs/ carbapenemase - producing Extraintestinal Pathogenic E. coli 

in companion animals and humans with direct contact  

To our best knowledge, the possibility for sharing of clinically important antimicrobial 

resistance genes by companion animals (dogs and cats) and their human household members 

was demonstrated for the first time. Companion animals also seem to be reservoirs of clinically 

important resistance genes, such β-lactams genes (classe A and C) which supports their role as 

reservoirs. 
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The detection of faecal high-risk clone OXA-181 producing- E. coli ST410 strains that was 

closely related to uropathogenic clinical human strains is also an important finding and to the our 

best knowledge was here first described in Portugal and Europe. Considering that this pandemic 

lineage is involved in the spread of ESBLs and carbapenemases in humans, the role of 

companion animals in its spread should not be neglected and raises great public-health 

concerns. 

 

5.3 Future perspectives 

The studies presented point to some research that needs to be further explored in the 

future. 

 

5.3.1 ESBLs/ carbapenemase - producing Extraintestinal Pathogenic 

Escherichia coli in companion animals and humans without direct contact 

Future studies using whole genome sequencing (WGS) are needed to link the population 

structure and molecular antimicrobial resistance epidemiology of Extraintestinal pathogenic E. 

coli of companion animal and human origins. Moreover, E. coli from skin and soft tissue infections 

need to be studied to understant which types of infection (SSTI or UTI) promote a higher risk of 

transmission. Also, studies are needed to investigate similiarities between Extraintestinal 

pathogenic E. coli from companion animals and humans and to assess possible risk factors. 

 

5.3.2 ESBLs/ carbapenemase - producing Extraintestinal Pathogenic 

Escherichia coli in companion animals and humans with direct contact 

In this thesis it was demonstrated that companion animals and humans may share 

clinically important antimicrobial resistant genes and high - risk clones. Therefore, more studies 

are needed to clarify the transfer of antimicrobial resistance genes/antimicrobial-resistant E. coli 

from companion animals to humans and vice-versa. Moreover, the use of a longitudinal design 

would benefit the clarification of the colonizaion and transmission dynamics over time. The study 

of a bigger sample size will allow the identification of possible risk factors and transmission 

routes, which in turn will allow the determination of control and preventive measures to decrease 

the dissemination of ESBL/pAmpC/carbapenemases-producing and/or virulent E. coli belonging 

to high-risk clones. 
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Annexes  
Annexes 

During the phD, two book chapers (Annex 1 and 2) were published in Advances in Animal 

Health, Medicine and Production: A Research Portrait of the Centre for Interdisciplinary research 

in Animal Health (CIISA), University of Lisbon, Portugal. Springer Nature Switzerland AG 2020.  

The chapters were about antimicrobial resistance and virulence in companion animals with UTI 

and about the public health risk of antimicrobial resistance transmission dynamics (animal- to-

human and vice-versa) during different types of companion animals infections. 
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Annex 1 - Antimicrobial resistance trends in dogs and cats with urinary tract 

infection 

 

Marques C., Belas A., Pomba C. (2020). Antimicrobial Resistance Trends in Dogs and 

Cats with Urinary Tract Infection. In: Freitas Duarte A., Lopes da Costa L. (eds) Advances in 

Animal Health, Medicine and Production. Springer, Cham. https://doi.org/10.1007/978-3-030-

61981-7_13. 

 

Antimicrobial resistance trends in dogs and cats with urinary tract 

infection 

 

Cátia Marques, Adriana Belas, Constança Pomba 

 

Antibiotic Resistance Laboratory, Centre for Interdisciplinary Research in Animal Health 

(CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal. 

 

Abstract 

Urinary tract infections (UTI) are among the most common infections diagnosed in 

companion animals and usually require antimicrobial use. The antimicrobials available nowadays 

for UTI treatment are limited and most of them are considered as critically important to humans 

by the World Health Organization (WHO). Therefore, awareness of the antimicrobial resistance 

trends and underlying resistance mechanisms in uropathogenic bacteria from dogs and cats is 

of importance in a one health perspective. 

This has long been one of the main research fields of the Antibiotic Resistance Laboratory 

Team. A recent and pivotal study from our team has given, for the first time, an European 

overview of the geographic distribution of antimicrobial resistance in uropathogenic bacteria from 

dogs and cats. The southern European countries, including Portugal, had significantly higher 

resistance frequencies than Northern countries, mirroring what happens in human invasive 

bacteria. Noteworthy, increasing antimicrobial resistance trends over 16 years were also 

detected in bacteria from companion animals with UTI. 

The detection of multidrug resistant (MDR) extended spectrum (ESBLs)/ AmpC beta- 

lactamases - producing bacteria in companion animals with UTI is worrisome due to its clinical 

implications. Furthermore, companion animals UTI may frequently be caused by high-risk clonal 

lineages to humans like Escherichia coli ST131, ST648 and Klebsiella pneumoniae ST15 which 

underlines their public-health relevance. 

Keywords: Antimicrobial resistance, animal infection, public health risk. 
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Urinary tract infections 

Urinary tract infections (UTI) are among the most frequently diagnosed infections in 

companion animals (Weese et al., 2011). Is has been estimated that close to 14% of dogs visiting 

a veterinarian will develop a UTI during their lifetime (Thompson et al., 2011). The frequency of 

urinary tract infections in cats with lower urinary tract disease is considered to be less than 2% 

(Gunn-Moore, 2003); however, some studies have found higher frequencies, varying between 

8% and 25% (Lekcharoensuk et al., 2001; Gerber et al. 2005; Eggertsdóttir et al., 2007; Sævik 

et al., 2011). Therefore, UTIs are an important reason for the need to prescribe antimicrobials in 

small animal veterinary medicine. Considering its relevance, the study of UTIs and antimicrobial 

resistance in companion animals has been one major research field of the Antibiotic Resistant 

Laboratory in the last decades (Féria et al., 2000; Féria et al., 2002; Caniça et al., 2004; Pomba 

et al., 2009; Pomba et al., 2010; Mateus et al., 2013; Oliveira et al., 2014; Pomba et al., 2014a; 

Pomba et al., 2014b; Marques et al., 2016; Marques et al., 2018a; Marques et al., 2018b; Belas 

et al., 2019; Marques et al., 2019). 

 

Pathophysiology and predisposing factors 

UTIs occur as a consequence of the failure of host defence mechanisms with subsequent 

adherence, multiplication and persistence of virulent bacteria in the urinary tract (Bartges, 2004). 

UTI are usually initiated by the adherence and colonisation of bacteria into the urethra followed 

by migration to the bladder. Successful bacteria will then multiply and colonise the bladder and 

eventually ascend to the kidney. Ultimately, bacteria will cross the tubular epithelial barrier into 

the blood stream, resulting in bacteraemia (Flores-Mireles et al., 2015).  

There are several predisposing factors associated with higher frequencies of UTI 

including: diabetes mellitus, chronic kidney disease in cats, hyperthyroidism in cats, 

hyperadrenocorticism and bladder transitional cell carcinoma in dogs, anatomical abnormalities 

or diseases promoting urine retention and abnormal micturition, corticoid treatment (Saitoh et al., 

1985; Freshman et al., 1989; Forrester et al., 1999; Hess et al., 2000; Seguin et al., 2003; Torres 

et al., 2005; Bailiff et al., 2006; Stiffler et al., 2006; Graves et al., 2007; Mayer-Roenne et al., 

2007; Bubenik and Hosgoof, 2008; Eriksson et al., 2010; Hirji et al., 2012; Martinez-Ruzafa et 

al., 2012; Budreckis et al., 2015). Furthermore, UTI is more frequent in female and older dogs 

and cats, spayed female dogs and Persian and Abyssinian cat’s breeds (Lekcharoensuk et al., 

2001; Ling et al., 2001; Cohn et al., 2003; Seguin et al., 2003; Bailiff et al., 2006; Graves et al., 

2007; Mayer-Roenne et al., 2007; Bailiff et al., 2008). 
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Classification of urinary tract infections and diagnosis 

In veterinary medicine, the Working Group of the International Society for Companion 

Animal Infectious Diseases (ISCAID) has developed a dedicated guideline for the antimicrobial 

treatment of UTI in companion animals (Weese et al., 2011). The first step in the UTI treatment 

decision making in this guideline relies on the classification of the type of UTI. 

Bacteriuria can be detected in patients without the presence of clinical signs, then called 

asymptomatic bacteriuria (Weese et al., 2011). When present, clinical signs of UTI are not 

pathognomonic and include dysuria, pollakiuria, stranguria, haematuria, urgency to urinate, 

fever, abdominal/flank pain, vocalisation, among others (Bartges et al., 2004; Gerber et al., 2005; 

Weese et al., 2011; Passmore et al., 2008).  

According to the location, UTIs are considered upper UTIs or pyelonephritis (kidney) and 

lower UTIs or cystitis (bladder). Based on the frequency of UTI episodes within the last 12 

months, UTIs are classified as simple (< 3 episodes) or recurrent (≥ 3 episodes) (Weese et al., 

2011). 

Cystitis are considered as uncomplicated when they are diagnosed in patients that are 

otherwise healthy (i.e. without comorbidities) and with normal genitourinary tract anatomy and 

function (Weese et al., 2011). These are always simple UTIs, since according to Weese et al. 

(2001) recurrence points to the presence of undiagnosed comorbidities. Complicated cystitis 

occurs in patients with comorbidities (e.g. urinary obstruction, renal failure and diabetes mellitus) 

or predisposing factors for UTI (Weese et al., 2011). 

Diagnosis and classification of UTI requires the clinical evaluation of the patient, complete 

type II urinalysis, the necessary complementary diagnostic workout to diagnose suspected 

comorbidities and a urine culture (Weese et al., 2011). The presence of bacteriuria and pyuria in 

urine sediment strongly correlates with the presence of UTI, however it is not diagnostic (Bartges 

et al., 2004; Mayer-Roenne et al., 2007).  

Urine culture should preferably be performed with urine collected by cystocentesis, 

followed by catheterisation or free-catch (midstream voiding or manual expression) in to order 

minimize sample contamination. The use of free-catch urine in companion animals is 

controversial among authors (Bartges et al., 2004; Weese et al., 2011, Soerensen et al., 2016). 

The quantitative urine culture is the gold standard for the diagnosis of significant bacteriuria 

(Bartges et al., 2004; Weese et al., 2011) because it accounts for the number of colony forming 

units per urine volume and true bacteriuria is adjusted to the urine collection method used 

(Bartges et al., 2004). Ideally, urine culture should be followed by antimicrobial susceptibility 

testing (AST) of the isolated bacteria to guide or adjust antimicrobial therapeutics and to gather 

epidemiological data on local UTI aetiology and susceptibility patterns (Weese et al., 2011). 
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Aetiology 

UTIs are usually caused by bacteria and more rarely by fungi and viruses (Forrester et 

al., 1999; Pressler et al., 2003). Escherichia coli (uropathogenic E. coli - UPEC) is the main 

bacteria isolated in all types of UTIs, although other Gram-negative and Gram-positive bacteria 

may also be implicated. The frequency of each bacteria genera varies according to the study 

likely reflecting different geographical/temporal trends as well as different inclusion criteria. 

(Bush, 1976; Wooley and Blue, 1976; Forrester et al., 1999; Hess et al., 2000; Ling et al., 2001; 

Cohn et al., 2003; Pressler et al., 2003; Torres et al., 2005; Bailiff et al., 2006; Litster et al., 2007; 

Mayer-Roenne et al., 2007; Passmore et al., 2008; Martinez-Ruzafa et al., 2012; Dorsch et al., 

2015; Moyaert et al., 2017). 

Studies conducted in the Antibiotic Resistant Laboratory showed that E. coli is indeed the 

most frequently isolated bacteria from companion animals with UTI in the Lisbon area (Marques 

et al., 2018b) and corroborated previous suspicions that the UTI aetiology varies significantly 

between cats and dogs (Marques et al., 2016; Marques et al., 2018a). 

After E. coli, cats have high frequency of UTIs caused by Enterococcus spp. and 

Staphylococcus spp. (Wooley and Blue, 1976; Bailiff et al., 2006; Litster et al., 2007; Mayer-

Roenne et al., 2007; Bailiff et al., 2008; Passmore et al., 2008; Martinez-Ruzafa et al., 2012; 

Dorsch et al., 2015; Marques et al., 2016; Moyaert et al., 2017; Marques et al., 2018a; 

Teichmann-Knorrn et al., 2018). Enterococcus spp. are significantly more common in cats than 

in dogs (Marques et al., 2016; Marques et al., 2018a). Enterococcus faecalis is the most 

prevalent, followed by Enterococcus faecium, which is rarely isolated (Litster et al., 2007, Mayer-

Roenne et al., 2007; Marques et al., 2018a). Several Staphylococcus species may cause UTI in 

cats (Litster et al., 2007; Marques et al., 2018a). Litster et al. (2007) highlighted the high 

frequency of UTIs caused by Staphylococcus felis in cats from Australia. The same was observed 

in cats with UTI from Portugal (Lisbon) (Marques et al., 2018b). Other bacteria causing UTIs in 

cats include Proteus mirabilis, Pseudomonas aeruginosa, Streptococcus spp., Pasteurela spp., 

Klebsiella pneumoniae, among others (Wooley and Blue, 1976; Lekcharoensuk et al., 2001; 

Bailiff et al., 2006; Bailiff et al., 2008; Litster et al., 2007; Marques et al., 2016; Marques et al., 

2018a). 

P. mirabilis is significantly more common in dogs with UTI, usually being the second most 

frequent isolated Enterobacteriaceae after E. coli (Wooley and Blue, 1976; Ling et al., 2001; Cohn 

et al., 2003; Marques et al., 2016; Moyaert et al., 2017; Marques et al., 2018a). Other bacterial 

causes of UTI in dogs also include Staphylococcus spp., Enterococcus spp. and more rarely 

Pseudomonas spp., Klebsiella spp., Streptococcus spp. (Forrester et al., 1999; Norris et al., 

2000; Ling et al., 2001; Prescott et al., 2002; Cohn et al., 2003; Marques et al., 2016; Marques 

et al., 2018a). Although several Staphylococcus species may cause UTI in dogs, Staphylococcus 

pseudintermedius predominates (Prescott et al., 2002; Cohn et al., 2003; Penna et al., 2010; 
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Marques et al., 2018b). Interestingly, dogs with complicated/recurrent UTIs seem to have higher 

frequencies of less common bacteria such as K. pneumoniae, Enterococcus spp. and 

Pseudomonas spp. (Forrester et al., 1999; Norris et al., 2000; Torres et al., 2005). Additionally, 

some studies have suggested that there are some differences according to the dog gender 

(Norris et al., 2000; Ling et al., 2001; Cohn et al., 2003). 

 

Antimicrobials for UTI treatment in companion animals  

The increasing antimicrobial resistance trends observed over the last decades in human 

and veterinary medicine are a worldwide concern that requires a One Health approach (World 

Health Organization [WHO], 2017b). The antimicrobial resistance selective pressure due to 

antimicrobial use is believed to be one key contributing factor (Guardabassi et al., 2005; Pomba 

et al., 2017; World Health Organization [WHO], 2017a). Since antimicrobials are the cornerstone 

for UTI treatment and are frequently required, correct diagnosis and proper antimicrobial 

selection is crucial to avoid antimicrobial misuse (Weese et al., 2011). The ISCAID guidelines for 

UTI treatment in companion animals propose a rational list of antimicrobials that should be used 

according to the type of UTI (Weese et al., 2011) (Table 1). 

The WHO (2017a) groups the antimicrobials according to their importance to human 

medicine into three categories: important, highly important and critically important antimicrobials 

(CIA). Furthermore, CIAs may also be divided into high or highest priority antimicrobials based 

on 3 additional prioritisation criteria (WHO, 2017a). It should be noted that several antimicrobials 

approved for UTI treatment in small animal veterinary medicine are also used in human medicine 

and belong to CIAs of high and highest priority (Table 1). Therefore, the rational use of 

antimicrobials in small animal veterinary medicine is of the upmost importance. 

These ISCAID guidelines are general recommendations that need to be properly adjusted 

considering the specific geographic antimicrobial resistance rates, antimicrobial availability and 

prescribing regulations (Weese et al., 2011). Given the importance of this subject, the Antibiotic 

Resistance Laboratory has conducted over the last years important antimicrobial resistance 

surveillance studies to determine the antimicrobial resistance temporal trends and underling 

resistance mechanisms of bacteria isolated from companion animals with UTI from Portugal 

(Lisbon) and Europe (Féria et al., 2000; Féria et al., 2002; Caniça et al., 2004; Pomba et al., 

2009; Oliveira et al., 2014; Pomba et al., 2014a; Marques et al., 2016; Marques et al., 2018a; 

Marques et al., 2018b; Belas et al., 2019; Marques et al., 2019). 

 

Antimicrobial resistance surveillance in companion animals 

The European Antimicrobial Resistance Surveillance Network (EARS-Net) actively 

gathers and reports annual data on antimicrobial resistance in human invasive bacteria from 

several European countries (European Centre for Disease Prevention and Control [ECDC], 
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2017). These EARS-Net reports show remarkable geographical differences in antimicrobial 

resistance frequencies among European countries as well as increasing trends in resistance to 

CIAs (ECDC, 2017). 

Such important surveillance programs are lacking in small animal veterinary medicine. 

There have been only few national antimicrobial resistance surveillance networks in place for 

companion animals in Germany, Sweden and France (Swedres-Svarm, 2016; Moyaert et al., 

2017). In 2008, the European Animal Health Study Centre started an initiative (Compath) 

gathering bacterial isolates from companion animals in Europe and just recently published data 

regarding UTI isolates from 2008-2010 (Moyaert et al., 2017). Moyaert et al., (2017) reported 

overall high susceptibility to all tested antimicrobials (e.g. >90% for most antimicrobials in E. coli). 

However, since the antimicrobial resistance frequencies were presented for all countries as a 

group and temporal trends were not analysed (Moyaert et al., 2017), it was not possible to 

perceive any geographical differences. Overall high antimicrobial susceptibility frequencies were 

also detected in previously published data from Sweden (2009, 2014) (Swedres-Svarm, 2016; 

Windahl et al., 2014), Norway (2003-2009) (Lund et al., 2014) and Switzerland (E. coli, 1999-

2001) (Lanz et al., 2003). 

In another European study, Kroemer et al. (2014) found lower antimicrobial susceptibility 

rates among E. coli and P. mirabilis from companion animals with UTI isolated in 2002-2009. 

Again, results were presented for all countries as a group (Kroemer et al. 2014). Notably, P. 

mirabilis showed trimethoprim-sulfamethoxazol resistance of about ~53% (Kroemer et al., 2014). 

Higher levels of antimicrobial resistance in bacteria from companion animals with UTI have also 

been reported in Portugal (e.g. E. coli 25% to cephalotin, 19% to amoxicillin/clavulanate) (Féria 

et al., 2002), Brazil (e.g. staphylococci 28-74% to all tested antimicrobials, 2006-2007; E. coli 

40% to aminoglycosides, 40% to sulfonamides, 16% to fluoroquinolones) (Penna et al., 2010; 

Osugui et al., 2014), Cornell USA (e.g. E. coli ~35% to ampicillin, ~70% to cephalotin, ~20% to 

enrofloxacin, ~40% to gentamicin) (Cummings et al.,  2015); Taiwan (E. coli 50% amoxicillin, 

39% trimethoprim-sulphamethoxazole, 2010-2011) (Chang et al., 2015), Australia (e.g. E. coli 

29% to amoxicillin/clavulanate, 5-9% to ceftriaxone, 2013) (Saputra et al., 2017), Switzerland (E. 

coli, 10-35% to third-generation cephalosporin [ESBL-producers], 2012-2016) (Zogg et al., 

2018b), Belgium (e.g. E. coli 12% to amoxicillin/clavulanate, 17% to enrofloxacin, 2010-2012) 

(Criel et al., 2015), Virginia USA (E. coli, 18% to amoxicillin/clavulanate, 15% to 

trimethoprim/sulphamethoxazole,1986-1996) (Forrester et al. 1999) and Italy (2013-3015) 

(Rampacci et al., 2018). Furthermore, changing antimicrobial resistance temporal trends have 

been reported in bacteria isolated from different companion animal infections (Normand et al., 

2000a; Authier et al., 2006; Thompson et al., 2011; Beever et al., 2015; Couto et al., 2016), 

including in uropathogenic bacteria from California (fluoroquinolones, 1992-2001) (Cohn et al., 

2003; Cooke et al., 2002), Canada (fluoroquinolones, 1984-1998; several antimicrobial, 2002-
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2007) (Prescott et al., 2002; Ball et al., 2008), United Kingdom (enrofloxacin, cephalexin and 

oxytetracicline, 1999-2009) (Hall et al., 2013) and in New Zealand (amoxicillin clavulanate, 

cephalotin, enrofloxacin, 2005-2012) (McMeekin et al., 2016). 

Despite the apparently significant number of studies published regarding the antimicrobial 

resistance trends in bacteria isolated from companion animals with UTI, the comparison of 

published data is frequently difficult. Most of the studies that report antimicrobial resistance 

frequencies use different inclusion criteria (e.g. diabetic animals, recurrent UTI) (Bailiff et al., 

2006), were conducted at different time periods, group results from different infection sites 

(Normand et al., 2000a; Normand et al., 2000b; Authier et al., 2006; Pedersen et al., 2007; 

Harada et al., 2012; Beever et al., 2015), combine different bacteria genera (Ball et al., 2008; 

Hall et al., 2013; Dorsch et al., 2015; Wong et al., 2015; Rampacci et al., 2018; Teichmann-

Knorrn et al., 2018) and group data from several countries (Meunier et al., 2004; Kroemer et al., 

2014; Moyaert et al., 2017). Knowledge of the geographic distribution of antimicrobial resistance, 

as obtained by surveillance networks in human medicine, is essential to identify the countries 

where efforts should be made to improve awareness and implement new strategies. 

In a collaboration with 16 veterinary microbiology laboratories from 14 European 

countries, the Antibiotic Resistance Laboratory team coordinated a multicentric study to 

determine the European distribution of resistance in bacteria isolated from companion animals 

with UTI. This study showed striking geographical differences on E. coli and P. mirabilis 

antimicrobial resistance between some Northern (Denmark and Sweden) and Southern (Italy, 

Greece, Portugal and Spain) European countries (Marques et al., 2016). Overall, Southern 

countries showed higher resistance towards the main antimicrobials used in small animal 

veterinary medicine, including third generation cephalosporins and fluoroquinolones (Marques et 

al., 2016) (Figure 1). One limitation from this study that could have biased these finding to some 

extent was the use of different antimicrobial testing methods and interpretation criteria in some 

European veterinary microbiology laboratories. However, the wide differences in antimicrobial 

resistance detected between some Northern and Southern countries (e.g. 2.88% and 48.15% 

amoxicillin/clavulanate resistance in Denmark and Portugal, respectively) are likely a result from 

true geographic differences (Marques et al., 2016). It is interesting to note that the European 

distribution of E. coli resistance from companion animals with UTI resembled that of EARS-Net 

reports about human invasive isolates (ECDC, 2017). Since the samples from most countries 

were obtained from a single veterinary microbiology laboratory these findings may not represent 

the entire country. Nevertheless, these results should prompt the Southern countries to further 

investigate this issue. 

Prior to this European study, there was little updated information about the antimicrobial 

resistance of bacteria causing UTIs in companion animals from Portugal (Féria et al., 2000; Féria 

et al., 2002; Pomba et al., 2008). To better understand the antimicrobial resistance temporal 
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trends in uropathogenic bacteria from companion animals in Portugal (Lisbon), the Antibiotic 

Resistance Laboratory team conducted a retrospective study over 16 years (Marques et al., 

2018a). Notably, a significant increase in Enterobacteriaceae antimicrobial resistance to the main 

antimicrobials used for UTI treatment in small animal veterinary medicine was observed in 

companion animals from Portugal (Lisbon) (Figure 2). Furthermore, a significant increase in the 

detection of methicillin resistant Staphylococcus pseudintermedius was also detected (Marques 

et al. 2018a). 

The selection of antimicrobial resistance is a complex and multifactorial process (Prescott, 

2017). Efforts to reduce high antimicrobial resistance frequencies and increasing trends are 

urgent. The prescription of empirical antimicrobial treatment is sometimes necessary prior to 

culture to relieve the patient discomfort and prevent systemic infection (Weese et al., 2011). As 

part of the rational use of antimicrobials, the empirical choice of antimicrobials should rely on 

first-line antimicrobials and then adjusted (escalation/de-escalation) based on antimicrobial 

susceptibility data if necessary (Weese et al., 2011). The choice of the appropriate antimicrobial 

should always be supported on culture and AST (Weese et al., 2011) to avoid the misuse of 

antimicrobials and therefore contribute to decrease the local antimicrobial selective pressure. In 

fact, Sørensen et al. (2018) has showed that a high percentage of dogs with suspected UTI were 

unnecessarily treated regardless of the diagnostic work up conducted prior to culture and that 

second line antimicrobials were frequently miss prescribed. Interestingly, an European study 

reported that veterinarians, for instance, in Sweden were 15.64 times more likely to conduct a 

AST to guide antimicrobial choice than in Spain (de Briyne et al., 2013). All these factors likely 

contribute to the increase in antimicrobial resistance and reveal the need for the implementation 

of antimicrobial stewardship programs in small animal veterinary medicine. 

Another interesting finding that points to the overuse of antimicrobials in companion 

animals with UTI is that the recommended treatment duration in companion animals is 

significantly longer than in humans (e.g. uncomplicated UTI: 3-5 days in humans, 7-14 days in 

companion animals) (Weese et al., 2011; Smelov et al., 2016). It should be noted that the 

treatment duration currently recommended in companion animals are supported by little scientific 

evidence (Weese et al., 2011). Although some studies have reported short-duration antimicrobial 

treatment protocols for UTI in companion animals (Westropp et al., 2012; Clare et al., 2014), 

studies comparing the same antimicrobial regime with differing durations are lacking (Jessen et 

al., 2015). 

 

Multidrug resistance bacteria causing UTIs from companion animals 

Companion animals with UTI have high bacteria concentration in the urine, thus 

potentially contributing to its dissemination into the living environment. Therefore, the detection 
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of multidrug resistant (MDR) bacteria in companion animals with UTI creates important 

therapeutic limitations and also raises public health concerns (Pomba et al., 2017). 

MDR bacteria are increasingly being detected in companion animals with UTI and are 

frequently associated with clinically relevant and mobile resistance mechanisms such as 

extended spectrum beta-lactamases (ESBLs) and carbapenemases in Enterobacteriaceae and 

the mecA gene in staphylococci (Prescott et al., 2002; Pomba et al., 2008; Pomba et al., 2010; 

Harada et al., 2012; Pomba et al., 2013; Osugui et al., 2014; Wagner et al., 2014; Windahl et al., 

2014; Chang et al., 2015; Thungrat et al., 2015; Wong et al., 2015; Marques et al. 2018a; Zogg 

et al., 2018b; Belas et al., 2019; Marques et al. 2019). 

In the 16-yearlong retrospective study conducted in Portugal (Lisbon) at the Antibiotic 

Resistance Laboratory, a significant increase in the detection of MDR Enterobacteriaceae from 

companion animals with UTI was detected (Marques et al. 2018a). Furthermore, in the study 

conducted in collaboration with the European veterinary microbiology laboratories, Portugal 

(Lisbon) and the Southern countries were, again, among the geographic locations with higher 

frequency of MDR E. coli and P. mirabilis (Marques et al., 2016).  

The increase in the detection of MDR E. coli and P. mirabilis in companion animals from 

Portugal (Lisbon) was strongly associated with the dissemination of ESBL and AmpC beta-

lactamases (Marques et al. 2018a). The production of beta-lactamases is the most common beta-

lactam resistance mechanism in clinically relevant Gram-negative bacteria (Bush and Jacoby, 

2010). Beta-lactamases are frequently plasmid mediated leading to its rapid worldwide 

dissemination through horizontal transfer and dissemination of high-risk clones (Cantón and 

Coque, 2006; Fernandes et al., 2013). Furthermore, plasmids frequently encode for antimicrobial 

resistance to different classes of antimicrobials, thus contributing to the dissemination of MDR 

phenotypes (Cantón and Coque, 2006). 

The Antibiotic Resistance Laboratory has contributed significantly to the knowledge of the 

epidemiology of beta-lactamase enzymes in Gram-negative bacteria isolated from companion 

animals with UTI, including ESBLs and carbapenemases (Féria et al., 2002; Caniça et al., 2004; 

Pomba et al., 2008; Pomba et al., 2013; Marques et al., 2018a; Marques et al., 2018b; Belas et 

al., 2019; Marques et al., 2019). 

The spread of third-generation cephalosporin resistant Enterobacteriaceae has recently 

been considered by the WHO as a Priority 1 concern (WHO, 2017b). The CTX-M family is 

endemic worldwide and has become the most frequent ESBL in bacteria causing health-care and 

community associated infections in humans (Cantón and Coque, 2006; Fernandes et al., 2013; 

Doi et al., 2017). There is host and geographic variation in the distribution of CTX-M enzymes; 

nevertheless, some enzymes, such as CTX-M-15, seem to be disseminated worldwide in 

humans and companion animals (Cantón and Coque, 2006; Coque et al., 2008; Nicolas-
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Chanoine et al., 2008; Pomba et al., 2008; Smet et al., 2010; Ewers et al., 2012; Bevan et al., 

2017; Marques et al., 2018a; Marques et al., 2019). 

There is a strong association between the E. coli O25b:H4-B2-ST131 clonal lineage and 

the dissemination of CTX-M-15 ESBL (Coque et al., 2008; Nicolas-Chanoine et al., 2008; Doi et 

al., 2017). This clonal lineage is also relevant because it exhibits a large virulence gene profile 

and is an important uropathogen in humans (Nicolas-Chanoine et al., 2008; Vimont et al., 2012). 

This important CTX-M-15-producing E. coli clonal lineage (O25b:H4-B2-ST131) has sporadically 

been reported in companion animals, including from Portugal (Nicolas-Chanoine et al., 2008; 

Pomba et al., 2009; Ewers et al., 2010; Pomba et al., 2013; Belas et al. 2019). Just recently, 

some E. coli isolated from companion animals with UTI in Portugal were found to belong to the 

fluoroquinolone resistant CTX-M-15-producing O25b:H4 B2-ST131-H30Rx subclone, 

representing its first description in companion animals living in Europe. Moreover, these 

subclones belonged to the virotype D, which confirms their pathogenicity and virulent 

characteristics (Belas et al., 2019). 

Although K. pneumoniae is less frequent in companion animals with UTI (Marques et al., 

2016; Marques et al., 2018), it is still a major pathogen that is increasingly associated with the 

dissemination of ESBLs and carbapenemases (Navon-Venezia et al., 2017; Ewers et al., 2014; 

Stolle et al., 2013; Schmiedel et al., 2014; González-Torralba et al., 2016). Several studies have 

shown that the ST15-CTX-M-15 clonal lineage predominates in companion animal infections by 

third-generation cephalosporin K. pneumoniae (Ewers et al., 2014; Maeyama et al., 2018; 

Marques et al., 2019). A high frequency of MDR K. pneumoniae ST15-CTX-M-15 was also 

detected in companion animals with UTI from Portugal (Lisbon) (Marques et al., 2019). 

Furthermore, other MDR high-risk clonal lineages disseminated in Portuguese Hospitals 

(Manageiro et al., 2015), such as the ST11 and ST147, were also detected (Marques et al., 

2019). 

The AmpC cefalosporinases are still regarded as less frequent than ESBLs, with CMY-2 

being the most disseminated in humans and companion animals (Smet et al., 2010; Ewers et al., 

2012). Interestingly, the studies conducted in Portugal (Lisbon) showed a significant increase in 

the detection of CMY-2 producing E. coli ST648 and P. mirabilis in companion animals with UTI 

(Marques et al., 2018a; Marques et al., 2018b). This CMY-2 increase is worrisome because these 

enzymes show stronger β-lactamase activity than ESBLS (Jacoby, 2009) and may exhibit 

resistance to carbapenems due to the presence of other resistance mechanisms (e.g. porin 

deficiency) (Chia et al., 2009). Furthermore, all E. coli and P. mirabilis from this study (Marques 

et al., 2018a; Marques et al., 2018b) were MDR which creates great therapeutic limitations and 

highlights their clinical relevance. 

The choice of an appropriate antimicrobial for the treatment of infections caused by MDR 

bacteria is a true challenge in small animal veterinary medicine. Not rarely, the lack of therapeutic 



 

 238 

options require the use of off-label of antimicrobials as demonstrated by Pomba et al. (2010). 

Unlike AmpC and carbapenemases, ESBL-producing Enterobacteriaceae may be susceptible in 

vitro to amoxicillin/clavulanic acid (Paterson and Bonomo, 2005). Due to limited research data, 

beta-lactam/beta-lactam inhibitor combinations are not considered as suitable first line options 

for the treatment of serious infections caused by ESBL-producing bacteria (Paterson and 

Bonomo, 2005). However, the successful treatment of UTIs caused by some fully 

amoxicillin/clavulanate susceptible ESBL-producing E. coli in humans has been reported. 

Presumably, the high concentration of amoxicillin/clavulanate achieved in urine are responsible 

for such success (Lagacé-Wiens et al., 2006; Beytur et al., 2015). In a Pilot study conducted in 

a cat with a MDR ST15-CTX-M-15 producing K. pneumoniae UTI infection, the use of 

amoxicillin/clavulanate was tested (Marques et al., 2017). Although a definite cure was not 

achieved, the significant decrease in bacteriuria detected was a promising finding. Additional 

studies are now being conducted in the Antibiotic Resistance Laboratory to fully evaluated this 

therapeutic approach in small animal veterinary medicine. 
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Table 1: Antimicrobials used for UTI treatment in dogs and cats. 

Antimicrobials 
WHO (2017a) 

classification1 
Companion animals2 

Beta-lactams   

      Amoxicillin CIA - HP First-line option for UTI treatment. First-line 

option for empirical treatment of 

uncomplicated and complicated UTI. 

 

      Amoxicillin/clavulanic CIA - HP Unknown advantage over amoxicillin alone. If 

amoxicillin resistance rates are high locally, 

may be a good first-line option for UTI 

treatment and empirical treatment of 

uncomplicated and complicated UTI. 

 

      Second -generation 

cefalosporins 

HIA 

 

Second-line option for UTI treatment. 

      Third-generation cefalosporins CIA – HestP 

 

Second-line option for UTI treatment. 

      Carbapenems CIA - HP Last-resort antimicrobial. Prescribed off-label. 

 

Aminoglycosides CIA - HP Not recommended for routine use due to side 

effects. Although not included in Weese et al. 

(2011) guidelines, gentamicin has been shown 

to be useful for UTI treatment (Ling and Ruby, 

1979). 

 

Chloramphenicol HIA Off-label use. Recommended for multidrug 

resistant bacteria. 

 

Doxycycline HIA Not recommended for routine use; 

nevertheless, its usefulness in UTI treatment 

has been demonstrated (Wilson et al., 2006). 

 

Fluoroquinolones CIA - HestP Second-line option for UTI treatment. 

Considered a good first-line option for empiric 

antimicrobial treatment of pyelonephritis. 

 

Nitrofurantoin IA Second-line antimicrobial. Off-label use. 

Reserved for uncomplicated UTIs caused by 

multidrug resistant bacteria. 

 

Trimethoprim/sulfamethoxazole HIA First-line option for UTI treatment. First-line 

option for empirical treatment of 

uncomplicated and complicated UTI. 

Legend: CIA, critically important antimicrobial; HP, high priority antimicrobial; IA, Important antimicrobial; HP, high 
priority; HestP, Highest priority;1 as defined by WHO (2017a); 2Major data according to Weese et al. (2011). 
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Figure 1: Escherichia coli resistance to third-generation cephalosporin (left) and fluoroquinolone 

(right) in companion animals with UTI (adapted from Marques et al., 2016). 

Legend: E. coli antimicrobial resistance by country in the years 2012–2013. Countries: AT- Austria; BE- Belgium; DK- 
Denmark; FR- France; DE- Germany; EL- Greece; IT- Italy; NL- the Netherlands; PT- Portugal; RS- Serbia; ES- Spain; 
SE- Sweden; CH- Switzerland; UK- United Kingdom. 
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Figure 2: Trends in antimicrobial resistance in Enterobacteriaceae causing UTI in companion 
animals from Portugal (Lisbon), 1999-2014 (adapted from Marques et al., 2018b). 

 
Legend: AMC, amoxicillin/clavulanate; 3GCs, third-generation cephalosporins, SXT, trimethoprim-sulfamethoxazole; 
FQs, fluoroquinolones; GEN, gentamicin; TET, tetracycline; MDR, multidrug-resistant. 
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Annex 2 - The public health risk of companion animal to human transmission of 

antimicrobial resistance during different types of animal infection. 
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Abstract 

Antimicrobial resistance represents a major threat to human health. As a result, we are 

faced with potential antimicrobial therapeutic failure, thus forcing physicians to use last resort 

antimicrobials, such as carbapenems, glycopeptides or polypeptides. During the last fifty years, 

the number of companion animals has substantially increased and there is a growing concern 

related to the use of antimicrobials in companion animals as a potential source for antimicrobial 

resistance to humans. Problems related with antimicrobial resistance and infection control in 

small animal hospitals are mimicking those in human hospitals. Transmission of pathogens or 

resistance genes such as methicillin-resistant staphylococci, extended spectrum beta-

lactamase- or carbapenemase-producing and colistin-resistant Enterobacteriaceae between 

people and their pets have been documented or suggested. The public health risks associated 

with the transfer of antimicrobial-resistant bacteria from companion animals were recently 

reviewed by the European Medicine Agency which warned to the existence of antimicrobial 

resistance microbiological hazards coming from companion animals to humans. The magnitude 

to which these occur, and the risks posed by the different animal species is still inadequately 

studied. This is the main goal of the JPI-EC-AMR JTC 2016 Pet-Risk Consortium (Portugal, 

Germany, Switzerland, UK, and Canada) JPIAMR/0002/2016 under the CIISA Antibiotic Lab 

Team Leader Coordination. 
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The increase in antimicrobial resistance represents a major threat to human and animal 

health (WHO, 2017a). As a result, we are now faced with the reduction of treatment options and 

with potential therapeutic failure leading veterinarians to use antimicrobials off-label and 

physicians to use last resort antimicrobials.  

There is a growing concern related to the use of antimicrobials in food-producing and 

companion animals as a potential source for antimicrobial resistance to humans (Greko et al., 

2009; Catry et al., 2010; van Duijkeren et al., 2014; Pomba et al., 2017). In fact, it is known that 

the use of antimicrobials increases the risk of antimicrobial resistance and the risk of colonization 

with antimicrobial-resistant bacteria (Barza and Travers, 2002; Belas et al., 2014). 

Since 2010, the European Medicine Agency started reporting data on antimicrobial sales 

for companion animals (EMA, 2017b). Beta-lactams, including potentiated penicillins, were the 

most frequently sold for companion animals in most European countries, including Portugal 

(EMA, 2017b). Furthermore, fluoroquinolones were the second most sold in Portugal. 

It should be noted that the most sold antimicrobials in companion animals worldwide 

overlap those routinely used in human medicine and are considered as critically important 

antimicrobials to humans by the World Health Organization (WHO) (WHO, 2017b). Interestingly, 

the problems of antimicrobial resistance development and infection control in small animal 

hospitals are mimicking those in human hospitals (ECDC, 2009). Furthermore, in contrast to 

food-producing animals, the prescription of antimicrobials only approved for human use may 

occur under the cascade principles in companion animals (Pomba et al., 2017). This represents 

an additional antimicrobial resistance selective pressure towards last resorts antimicrobials and 

warrants the need for a One Health approach to fighting the dissemination of antimicrobial 

resistance. 

 

Risk of transfer of antimicrobial-resistant bacteria 

The number of companion animals has significantly increased over the last 50 years 

(Guardabassi et al., 2004; Pomba et al., 2017). The closer contact between owners and 

companion animals creates opportunities for pathogen interchange through direct and indirect 

contact (Guardabassi et al., 2004; Damborg et al., 2016).  

The public health risks associated with the transfer of antimicrobial-resistant bacteria from 

companion animals have been reviewed in the European Medicine Agency and its Antimicrobial 

Working Party reflection paper (Pomba et al., 2017). Pomba et al. (2017) alerted for existence of 

several antimicrobial resistance microbiological hazards coming from companion animals to 

humans (Table 1). 

The concerns surrounding the role of companion animals in the dissemination of resistant 

bacteria to humans are strengthened by numerous studies reporting the colonization and/or 

infection of companion animals with bacteria harboring clinically relevant antimicrobial resistance 
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mechanisms or bacteria belonging to high-risk clonal lineages to humans (Guardabassi et al., 

2004; Damborg et al., 2016; Pomba et al., 2017). 

This has been one of the main focus of the research conducted in the Antibiotic 

Resistance Laboratory in Enterobacteriaceae, non-Enterobacteriaceae, Staphylococci and 

Enterococci (Féria et al., 2001; Féria et al., 2001b; Caniça et al., 2004;  Delgado et al., 2007; 

Braga et al., 2011;  Couto et al., 2011; Pinho et al., 2013; Catry et al., 2015; Couto et al., 2015; 

Razuaskas et al., 2015a; Razuaskas et al., 2015b; Couto et al., 2016a; Couto et al., 2016b; 

Razuaskas et al., 2016; Pomba et al., 2017;; Costa et al., 2018; Marconi et al., 2018; Marques 

et al., 2018a;  Rodrigues et al., 2018; Belas et al., 2019; Marques et al., 2019a; Marques et al., 

2019b). 

 

Antimicrobial resistance mechanisms and bacteria of concern 

Staphylococci 

Portugal is among the European countries with higher frequency of methicillin-resistance 

in invasive Staphylococcus aureus from humans (ECDC, 2017). Methicillin-resistant 

Staphylococcus aureus (MRSA) have been detected in a wide number of animal species (Catry 

et al., 2010; Pomba et al., 2017), including in Portugal (Coelho et al., 2011; Couto et al., 2014; 

Beça et al., 2015; Couto et al., 2015; Couto et al., 2016a; Rodrigues et al., 2018). 

In companion animals, MRSA has been isolated from skin and soft-tissue infections, post-

surgical wound infections, urinary tract infections and pneumonia (Catry et al., 2010; Pomba et 

al., 2017). In a study from Portugal, conducted in the Antibiotic Resistance Laboratory, several 

MRSA were detected in companion animals with skin and urinary tract infections (Couto et al., 

2016). Notably the MRSA strains isolated from companion animals belonged to CC5 which is a 

lineage associated with human infection in Portugal (Couto et al., 2015; Couto et al., 2016). 

In fact, the similarity of MRSA clonal lineages isolated from companion animals and 

humans has been reported worldwide (Weese and Duijkeren, 2010; Pomba et al., 2017). In 

another study about the clonal diversity, virulence patterns and antimicrobial and biocide 

susceptibility among human, animal and environmental MRSA in Portugal, S. aureus clonal 

lineages from companion animals (CC5 and CC22) were associated with specific sets of 

virulence genes and often with a lower number of resistance genes than isolates belonging to 

the livestock associated CC398 (Couto et al., 2015). Colonization of companion animals with 

MRSA has been previously reported ranging from 0% to 7% (Leornardo and Markey, 2008; Catry 

et al., 2010; Pomba et al., 2017). In one study from Portugal, 1.4% of cats and 0.7% of dogs were 

reported to be colonized by MRSA (Couto et al., 2014). 

The risk of transmission of MRSA between companion animals and humans has been 

demonstrated highlighting the role of both species in this issue (Damborg et al., 2016; Pomba et 

al., 2017). Interestingly, veterinary staff seems to be at higher risk of being colonized by MRSA 
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(Baptiste et al., 2005; Loeffler et al., 2005; Catry et al., 2010, Pomba et al., 2017). Besides MRSA, 

companion animal health care providers from Portugal also had a high frequency of colonization 

by methicillin resistant Staphylococcus epidermidis (MRSE) (Rodrigues et al., 2018). MRSAs 

colonizing humans from this study belonged to the major human healthcare clone in Portugal 

(ST22-t032-IV), the livestock-associated MRSA (ST398-t108-V) and to the New York-/Japan-

related clone (ST105-t002-II) (Rodrigues et al., 2018). Furthermore, S. epidermidis is an 

important nosocomial pathogen responsible for life-threatening infections associated with the use 

of medical devices and in immunocompromised individuals, whose management is hindered by 

frequent resistance to antimicrobials (Costa et al., 2018). 

Most infections in companion animals are caused by Staphylococcus pseudintermedius, 

especially in dogs (Couto et al., 2016a; Couto et al., 2016b). The detection of multidrug-resistant 

methicillin-resistant S. pseudintermedius (MRSP) is increasingly being reported leading to 

significant therapeutic limitation in small animal veterinary medicine (Couto et al., 2014b; Couto 

et al., 2016a; Couto et al., 2016b; Pomba et al., 2017). A significant increase in the detection of 

multidrug-resistant MRSP has been recently noted in companion animals from Portugal (Lisbon) 

(Couto et al., 2016a). Although methicillin-susceptible S. pseudintermedius isolates are 

genetically diverse, a limited number of MRSP clones have spread worldwide resembling the 

worldwide dissemination of MRSA (Van Duijkeren et al., 2011; Pomba et al., 2017). Like MRSA, 

the emergence of MRSP represents a great problem for small animal veterinary medicine since 

S. pseudintermedius is the primary staphylococcal species colonizing healthy dogs and cats. 

MRSP colonization is more common in dogs than in cats. Furthermore, MRSP can cause many 

types of infections in companion animals as skin and ear infections, surgical site infections, 

gingivitis, hepatitis, urinary tract infections, respiratory infections, arthritis, peritonitis and 

septicaemia (Van Duijkeren et al., 2011; Pomba et al., 2017). It is important to keep in mind that 

veterinary hospitals and clinics play an important role in the dissemination control of MRSP 

(Pomba et al., 2017). 

In Portugal, the Antibiotic Resistance Laboratory has conducted extensive studies about 

the S. pseudintermedius (MRSP and MSSP) colonization and infection in dogs and cats to 

characterize their clonality, antimicrobial susceptibility, biocide susceptibility and immunogenic 

properties (Couto et al., 2014; Couto et al., 2015b; Couto et al., 2016; Couto et al., 2016b). A 

worrying finding from these studies was the significant increase in staphylococci resistance, 

mainly S. pseudintermedius, to a large number of antimicrobials over the last 16 years (Couto et 

al., 2016). Importantly, this included an increase in the detection of multidrug-resistant MRSP 

and the mecA gene (Couto et al., 2016). The increase of MRSP in Portugal was linked to the 

dissemination of the S. pseudintermedius clonal lineage ST71-II-III, which is also the most 

disseminated clonal lineage in dogs and cats from Europe (Kadlec et al., 2010; Perreten et al., 

2010).  
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Colonization of humans with S. pseudintermedius seems to be uncommon and transient, 

however owners and veterinarians in contact with infected companion animals may have a higher 

risk of being MRSP positive (Pomba et al., 2017). There are some reports of colonization of 

veterinarians by MRSP that could suggest an occupational risk (Sasaki et al., 2007; Ishihara et 

al., 2010; Paul et al., 2011; Soedarmanto et al., 2011; Gómez-Sanz et al., 2013; Chanchaithong 

et al., 2014; Pomba et al., 2017). Furthermore, in 2014 a cluster of infections in a tertiary hospital 

due to MRSP clone ST71 was described in humans (Starlander et al., 2014). 

While MRSA strains isolated from companion animals are mainly related to different 

human-associated MRSA clones, the scenario for MRSP is different. Diverse SCCmec elements 

occur among the different MRSP genetic lineages, suggesting that the mecA gene has been 

acquired by different S. pseudintermedius strains on multiple occasions. (Pomba et al, 2017). 

Transfer of SCCmec elements between different staphylococcal species is possible, which is a 

concern. 

 

Enterococci 

Enterococci are opportunistic pathogens that have become an important cause of 

nosocomial and community-acquired infections, such as septicemia, endocarditis, UTI and 

diarrhea. Moreover, these bacteria are an important key indicator for several human and 

veterinary resistance surveillance systems (Torres et al., 2018). Enterococcus faecalis and 

Enterococcus faecium are the most common species isolated from human and companion 

animal infections. Enterococci are intrinsically resistant to several antimicrobials which have 

important therapeutic implications (Torres et al. 2018). Therefore, acquired resistance to 

ampicillin/penicillin and to high-level gentamicin, a classic therapeutic synergetic combination, 

strongly limits the treatment options against enterococcal infections (Chow, 2000). Such 

resistance mechanisms have been described in enterococci isolated from companion animals 

from Portugal (Delgado et al., 2007; Marques et al., 2019a). 

Some studies provide that healthy livestock, wildlife, food-producing animals and 

companion animals can harbour pathogenic Enterococci that can be transferred via food chain 

or through close contact with humans. Furthermore, some Enterococci species are able to evolve 

from being simple commensal bacteria to being pathogenic to humans and animals through the 

acquisition of virulence factors encoded in mobile genetic elements (Bortolaia and Guardabassi, 

2015; Pillay et al., 2018). 

For instance, the Enterococcus faecalis ST16 clonal lineage is considered a zoonotic 

pathogen and food and industries seem to have contributed to its dissemination (Torres et al., 

2018). Furthermore, this clonal lineage is frequent among high-level gentamicin resistant strains 

harboring the bifunctional enzyme (Ruiz-Garbajosa et al., 2006). Other important Enterococci 

high-risk clonal complexes (CC) associated with nosocomial infections in humans include the E. 
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faecalis CC6 (formerly CC2) and the ampicillin-resistant E. faecium CC17 (Leavis et al., 2006; 

Kuch et al., 2012). 

Due to its clinical relevance, the Antibiotic Resistance Laboratory has contributed with 

epidemiological studies about the antimicrobial resistance and population structure of 

enterococci isolated in Portugal (Delgado et al. 2007; Pomba et al., 2010; Braga et al., 2011; 

Braga et al., 2013; Marques et al., 2019a). In one of these studies, the first report of a biocide 

resistance mechanism in E. faecalis and its dissemination amongst the genus Enterococcus was 

reported (Braga et al., 2011). 

Ampicillin-resistance and/or high-level gentamicin resistance in enterococci from 

companion animals with UTI in Portugal (Lisbon) over 16 years was low when compared with the 

resistance frequencies detected in Enterobacteriaceae (Marques et al., 2019a). However, many 

of these isolates belonged to E. faecalis ST16, E. faecalis CC6 and to the ampicillin-resistant E. 

faecium CC17. Interestingly, a previous study has shown that healthy dogs seem to be reservoirs 

of ampicillin-resistant E. faecium CC17 (Damborg et al., 2009). 

The acquired resistance to vancomycin due to van gene carriage is another resistance 

mechanism of great importance in human medicine (Pomba et al., 2017). Ampicillin-resistance 

in E. faecium from Europe seams to often predict the increase in the rates of vancomycin-

resistant enterococci (VRE) within some years (Werner et al., 2008). Although, the level of 

ampicillin-resistant E. faecium in companion animals with UTI was low, higher frequencies have 

been reported in other parts of Europe (Damborg et al., 2009). Therefore, active surveillance is 

imperative. 

Healthy dogs and cats may become colonized by VRE. Furthermore, VRE isolated from 

companion animals may also belong to clonal lineages associated with hospital-acquired 

infections (Pomba et al., 2017). 

 

Enterobacteriaceae and non-Enterobacteriaceae  

There are a large number of studies reporting the detection of extended spectrum beta- 

lactamases (ESBLs) -producing bacteria in companion animal infections and in colonized 

animals (Ewers et al., 2012; Belas et al., 2014; Pomba et al., 2014a; Damborg et al., 2015; 

Pomba et al., 2017). 

Detection of carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae 

are still a rare event; however, reports in healthy and sick animals are increasing by the day, and 

will likely become a serious problem in the future (Pomba et al., 2014b; Chanchaithong et al., 

2018; Gentilini et al., 2018; Grönthal et al., 2018; Köck et al., 2018).  

The Antibiotic Resistance Laboratory has made the first description of an OXA-23-

producing ST2 MDR Acinetobacter baumannii in a cat with urinary tract infection (UTI) (Pomba 

et al., 2014a). Just recently, the transmission of a canine clinical NDM-5 Escherichia coli  between 
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an infected dogs and humans was confirmed for the first time (Grönthal et al., 2018) giving 

additional scientific support to the concerns surrounding the close contact of companion animals 

with humans (Pomba et al., 2017). 

Although less studied than other Gram-Negative bacteria, Pseudomonas aeruginosa is 

an important pathogen causing otitis and pyoderma in companion animals (Pomba et al., 2017). 

Notably, carbapenem-producing strains have already been detected in dogs (Hyun et al., 2018). 

Also, some infections caused by this bacteria are in association with other pathogens, such as 

MRSP (Lupo et al., 2018).  

In an ongoing study conducted in the Antibiotic Resistance laboratory, P. aeruginosa 

causing external otitis in companion animals from Portugal (Lisbon) showed high resistance 

levels towards fluoroquinolones and aminoglycosides, which are frequently used topically. 

Furthermore, resistance to imipenem and doripenem was also noted (Marconi et al., 2018).  

Companion animals have been found to be colonized by E. coli and Klebsiella. 

pneumoniae belonging to important clonal lineages to humans (Pomba et al., 2014b; Johnson et 

al., 2016; Pomba et al., 2017; Marques et al., 2018a;Belas et al., 2019; Marques et al., 2019a). 

Since many pathogenic bacteria, are thought to make part of the normal gut flora (Podschun and 

Ullmann, 1998; Drzewiecka, 2016; Johnson et al., 2016; Martin et al., 2016), gut colonization of 

companion animals may also represent an important hazard. Interestingly, pet ownership (dogs, 

cats and other companion animals) was suggested to be a risk factor for human gut colonization 

by ESBL-producing E. coli (Meyer et al., 2012).  

Regarding Enterobacteriaceae, companion animals from the same household may be 

colonized and share the uropathogenic E. coli O25B: H4: B2-ST131 clonal lineage (Johnson et 

al., 2009; Johnson et al., 2016). More importantly, humans and dogs with UTI have been shown 

to share the index uropathogenic E. coli with household members including the family dogs and 

cats (Murray et al., 2004; Johnson and Clabots, 2006). Just recently, in a study conducted by the 

Antibiotic Resistance Laboratory, companion animals and humans living in close contact were 

screened for colonization by K. pneumoniae and Proteus mirabilis (Marques et al., 2018a; 

Marques et al., 2019a). Interestingly, some dogs and humans were shown to be colonized in the 

gut by undistinguishable (by PFGE and MLST) K. pneumoniae strains, suggesting the possibility 

of transmission between dogs and humans (Marques et al., 2018a). 

Besides beta-lactams, the dissemination of colistin resistance plasmids mcr-1 to 7 has 

been recently on the spotlight (Yang et al., 2018). The dissemination of MDR carbapenemase-

producing bacteria in human medicine has led to the need to return to old antimicrobials such as 

colistin. The recent identification of the colistin resistance gene mcr-1 in food-production animals 

and companion animals in multiple countries is a concern (Liu et al., 2016; Perreten et al., 2016; 

Schwarz et al., 2016). In Portugal, mcr-producing Enterobacteriaceae have been identified in 

retail meat (Figueiredo et al., 2016); clinical strains (Campos et al., 2016; Mendes et al., 2018) 
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and food producing animals (Kieffer et al., 2017; Freitas-Silva et al., 2018). Moreover, a recent 

report of a mcr-1-containing E. coli in a person and in multiple dogs and cats heightens these 

concerns (Zhang et al., 2016). 

 

The future 

The current scientific knowledge seems to support the suspicion that companion animals 

may act in the dissemination of resistant and pathogenic bacterial clones to humans and vice 

versa.  

However, several questions still remain answered. Skin (including ear) and urinary tract 

infections are the most frequent infection in companion animals. Previously published data, 

including from the Antibiotic Resistance Laboratory (Féria et al., 2001; Féria et al., 2001b; Caniça 

et al., 2004; Delgado et al., 2007; Braga et al., 2011;  Couto et al., 2011; Pinho et al., 2013; Catry 

et al., 2015; Couto et al., 2015; Razuaskas et al., 2015a; Razuaskas et al., 2015b; Couto et al. 

2016a; Couto et al., 2016b; Razuaskas et al., 2016; Pomba et al., 2017; Costa et al., 2018; 

Marques et al., 2018a;; Rodrigues et al., 2018; Belas et al., 2019; Marques et al., 2019a; Marques 

et al., 2019b), have shown that bacteria causing skin infections and UTIs in companion animals 

are sometimes associated with major resistance mechanisms and bacterial clonal lineages. 

Furthermore, several studies support the sharing/transmission of important bacterial clonal 

lineages between companion animals and humans (Johnson and Clabots, 2006; Murray et al., 

2004; Johnson et al., 2009; Johnson et al., 2016; Marques et al., 2018a; Marques et al., 2019b). 

However, the extent to which such transfer occur is still poorly studied. The main goal of the JPI-

EC-AMR JTC 2016 Pet-Risk Consortium (Portugal, Germany, Switzerland, UK, Canada) 

JPIAMR/0002/2016 under CIISA Antibiotic Lab Team Leader Coordination is to clarify the extent 

of transmission and whether different types of infections may convey additional risk to humans 

or vice-versa. This project will stand on edge using Next Generation Sequencing technologies to 

unequivocally evaluate the transmission of clinically relevant antimicrobial mechanisms and 

pathogenic bacteria. 

As a laboratory devoted to the study of antimicrobial resistance in veterinary medicine, it 

is its mission to reach out to the society (clinicians and owners) in the pursuit of better 

antimicrobial use practices. The development of antimicrobial stewardship programs as long 

started in human medicine and are urgently needed in veterinary medicine (Loyd and Page, 

2018). Antimicrobial stewardship programs are complex and require the interaction of 

multidisciplinary teams. Such programs aim at creating strategies to promote the rational use of 

antimicrobials, improve infection control measures and consequently decrease the spread of 

pathogenic and resistant bacteria (Loyd and Page, 2018).  

Evidence based learning is the key to fight antimicrobial resistance in a One health 

approach and pursuing the 5Rs of antimicrobial stewardship: Responsibility, Reduction, 
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Refinement, Replacement and Review (Weese et al., 2013; Loyd and Page, 2018). Recently, the 

European Society of Clinical Microbiology and Infection Diseases Study Group on Veterinary 

Microbiology started regular post-graduate courses of antimicrobial stewardship in veterinary 

medicine representing a landmark towards a better future and in which the Antibiotic Resistance 

Laboratory team leader collaborates as a regular speaker. 

The future of antibiotic resistance and pathogenic bacteria is still uncertain, but the 

Antibiotic Resistance laboratory will continue to focus its efforts in obtaining useful 

epidemiological data, guide antimicrobial use through the establishment of antimicrobial 

stewardship programs, and reaching the society to increase awareness and help to improve this 

worldwide problem. 
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Table 1: Microbiological hazards from companion animals to humans identified by EMA (adapted 
from Pomba et al., 2017). 

Antimicrobial-resistant bacteria Type of Hazard Source 

MRSA direct hazard1 dogs, cats and horses 

MRSP direct hazard dogs, cats and horses 

VRE indirect hazard2 dogs and horses 

ESBL-producing Enterobacteriaceae indirect hazard dogs, cats and horses 

Carbapenem-resistant Gram-negative bacteria indirect hazard2 Dogs and cats 

Colistin-resistant E. coli indirect hazard Dogs and cats 

Legend: 1Low number of cases of human infections originating from companion animals. 
2No human infections originating from companion animals have been reported. However, regarding carbapenems, co-
colonization has been recent. 

 

 

 


