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Abstract
Aim: Understanding temporal changes in aquatic communities is essential to ad-
dress the freshwater biodiversity crisis. In particular, it is important to understand 
the patterns and drivers of spatial variation in local community dynamics, general-
izing temporal trends from discrete locations to entire landscapes that are the main 
focus of management. Here, we present a framework for producing spatially continu-
ous views of community dynamics, focusing on stream fish affected by hydropower 
development.
Location: River Sabor, NE Portugal.
Methods: We sampled stream fish at thirty sites between 2012 and 2019. Community 
trajectory analysis was used to quantify the directionality and velocity of community 
change, and the geometric resemblance of community trajectories between sites. 
Geostatistical models for stream networks were used to relate metrics describing 
community dynamics to environmental variables, while controlling for Euclidean and 
hydrologic spatial dependencies, and to map spatial variation in community dynamics 
across the watershed.
Results: Trajectories in multivariate space underlined strong temporal dynamics, with 
local communities deviating and returning to previous states, but without evidence for 
directional changes. Accordingly, directionality values were low and not consistently af-
fected by environmental variables. The velocity of community change varied markedly 
across the watershed and it was strongly affected by stream order and elevation, with 
faster changes observed in lowland streams draining into hydroelectric reservoirs and 
with a high proportion of exotic species. Pairwise distances between community trajec-
tories were strongly related to hydrologic and environmental distances between sites.
Main conclusions: Local stream fish communities were in a loose equilibrium across 
the watershed, but they fluctuated at a faster rate closer to a hydroelectric reservoir. 
Integrating community trajectory analysis and geostatistical modelling provides a rel-
atively simple framework to understand how, where and why temporal community 
dynamics vary across dendritic stream networks and to visualize spatial patterns of 
community change over time in relation to anthropogenic impacts.
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1  | INTRODUC TION

In freshwater ecosystems, biological communities are chang-
ing worldwide due to multiple anthropogenic pressures (Albert 
et al., 2020; Reid et al., 2019). These changes involve for instance 
species extinctions, defaunation and taxonomic homogenization, 
which tend to occur faster at smaller spatial scales, but then scale 
up to entire watersheds, regions and even continents (Magalhães 
et  al.,  2007; Matthews & Marsh-Matthews,  2016, 2017; Villéger 
et al., 2011; Zbinden, 2020). Therefore, much effort has been devoted 
to understanding where, how and why local freshwater biological 
communities change over time, usually through studies conducted 
for extended periods at a number of discrete locations (e.g. Baranov 
et al., 2020; Bêche et al., 2009; Erős et al., 2020; Jourdan et al., 2018; 
Matthews & Marsh-Matthews, 2016). However, relatively few stud-
ies have investigated the patterns and drivers of spatial variation in 
the temporal dynamics of local community, though this would be im-
portant to generalize patterns from particular sites to landscapes and 
regions that are the main focus of management (Erős & Lowe, 2019; 
Hugueny et al., 2010; Schlosser, 1991; Wiley et al., 1997). Therefore, 
it is essential to provide conservation and water agencies with spa-
tially continuous views of community dynamics, thereby contribut-
ing to assess anthropogenic impacts and to prioritize management 
action (Cid et al., 2020; Fausch et al., 2002).

Changes in local biological communities may result from extinc-
tions or colonizations affecting species richness and composition, 
and from variations in species abundances (Grossman et al., 1990; 
Magalhães et  al.,  2007; Matthews & Marsh-Matthews,  2017). 
Moreover, changes may follow distinct temporal patterns, 
being for instance gradual or saltatory, or reflecting variations 
around loose equilibria, shifts between alternative stable states 
or gradual directional transitions away from initial community 
structures (Collins,  2000; DeAngelis et  al.,  1985; Matthews & 
Marsh-Matthews, 2017). These changes can be quantified using rel-
atively simple metrics, such as Kendall's coefficient of concordance 
to estimate constancy in species rank abundances or the coefficient 
of variation to estimate variability in species abundances (Grossman 
et  al.,  1990). However, these measures do not reveal patterns in 
temporal change, which have often been inferred by visual exam-
ination of trajectories in a chosen space of community resemblance 
(Magalhães et al., 2007; Matthews et al., 2013). Based on this idea, 
De Cáceres et al. (2019) developed an analytical framework for de-
scribing and comparing community trajectories, with their geometric 
properties providing information on the level and type of community 
dynamics. For instance, the lengths and speed of trajectories can be 
used to quantify how much the community changes over time and 
whether changes are gradual or abrupt, while direction can quan-
tify whether changes are directional or not (De Cáceres et al., 2019). 

Moreover, the temporal convergence/divergence of trajectories 
at pairs of sites can be used to quantify whether communities are 
varying in synchrony or converging/diverging from each other (De 
Cáceres et al., 2019). All these metrics can be used to model spatial 
patterns in community dynamics.

To generalize a community dynamics metric obtained at dis-
crete locations to a spatially continuous surface, it is necessary to 
find variables that (a) are correlated with variation in that metric 
and (b) can be easily mapped at the landscape scale. This may be 
difficult when community dynamics reflect mainly idiosyncratic 
variations in local conditions (Erős & Lowe,  2019; Matthews & 
Marsh-Matthews,  2017), which are hard to extrapolate at larger 
spatial scales. However, generalization is possible when community 
dynamics are affected by large-scale gradients, such as for instance 
the upstream–downstream gradients in rivers or gradients related 
to sources of human disturbance (Gavioli et  al.,  2019; Gorman & 
Karr,  1978; Milardi et  al.,  2019; Schlosser,  1987). Moreover, local 
dynamics can be influenced by spatial connectivity associated for 
instance with the topology of stream networks, anthropogenic 
barriers and habitat fragmentation (Cañedo-Argüelles et al., 2020; 
Crabot et al., 2020; Erős & Lowe, 2019; Hugueny et al., 2010), as it 
affects meta-community mass effects mediated by dispersal (Heino 
et  al.,  2015; Tonkin et  al.,  2018), as well as the spread of invasive 
species (Filipe et al., 2017; Gavioli et al., 2019; Milardi et al., 2019; 
Mota-Ferreira & Beja, 2020). Therefore, spatial modelling of com-
munity dynamics requires establishing relations with environmental 
variables predicting variation in dynamics metrics, and accounting 
for spatial variables reflecting the effects of connectivity. In the 
case of rivers, recently developed geostatistical models provide a 
convenient framework to undertake such modelling exercise, as 
they account for the complex topology of spatial relations in den-
dritic networks (Peterson et al., 2013), integrating (Euclidean) spa-
tial dependencies that occur overland, as well as (hydrologic) spatial 
dependencies along the river network and the effects of flow con-
nection (Peterson & Ver Hoef, 2010; Ver Hoef & Peterson, 2010).

Here, we combine community trajectory analysis (De Cáceres 
et al., 2019) and geostatistical modelling (Peterson et al., 2013) to un-
derstand and map spatial patterns of community temporal dynamics 
in dendritic stream networks. We focused on stream fish commu-
nities (sensu Matthews & Marsh-Matthews,  2017) in a watershed 
where a hydroelectric development was built and started operating 
during the study (Jackson, 2011; Santos et al., 2017). We expected 
communities to be more unstable and eventually undergoing di-
rectional changes in lotic reaches close to hydroelectric reservoirs, 
mainly due to the spread of exotic species (Santos et al., 2017). To 
test this idea, we used data from stream fish monitoring carried out 
at 30 sites, encompassing from the construction phase (2012–2014), 
through the filling of the reservoir (2014–15), to the operation phase 
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(2015–19), and we (a) described community variation in terms of spe-
cies composition, richness and abundances; (b) quantified dynamics 
in terms of the velocity and directionality of community change; (c) 
modelled community trajectory metrics in relation to large-scale 
ecological gradients (e.g. stream order, elevation), interannual vari-
ation in local environmental conditions (e.g. water flow and depth) 
and the prevalence of exotic species; (d) investigated spatial patterns 
in community change in relation to environmental and spatial fac-
tors; and (e) developed predictive geostatistical models accounting 
for large-scale ecological gradients and spatial dependencies to pro-
duce spatially continuous maps of community dynamics.

2  | METHODS

2.1 | Study area

The study was conducted in NE Portugal, in the River Sabor wa-
tershed (N41°09′–42°00′, W7°15′–6°15′; Figure  1), encompass-
ing a wide range of variation in elevation (100–1,500 m above sea 
level), annual precipitation (443–1,163 mm) and mean annual tem-
perature (6.9–15.6°C). Climate is Mediterranean, with precipita-
tion largely concentrated in October–March and virtually none in 
hot summer months (June–August). Flow regime is highly seasonal, 
with most headwater streams drying out or being reduced to pools 
in summer, while the main watercourse and the largest tributaries 
are permanent. Two hydroelectric dams (Feiticeiro: 181  ha; Baixo 

Sabor: 2 820 ha) located near the mouth of the River Sabor started 
to be built in 2009, with the main reservoir filling in autumn/winter 
of 2014/2015 (Jackson, 2011; Santos et al., 2017). The Sabor wa-
tershed and its fish communities are more thoroughly described by 
Ferreira et al. (2016) and Santos et al. (2017).

2.2 | Fish sampling

As part of a preliminary fish survey (Ferreira et al., 2016), a total of 
184 sites thoroughly covering the Sabor watershed were visited 
in the summer of 2012, of which 30 were selected for long term 
monitoring (Figure  1). Sites were stream reaches 50-m long and 
10.0  ±  5.9  m [mean  ±  SD] (range: 1.5–30.0  m) wide, located at a 
nearest distance of 11,162 ± 4,430 m (6,186–26,204 m) from each 
other, and representing the main ecological gradients across the 
watershed (Ferreira et al., 2016). A relatively small sampling reach 
was chosen because (a) we were interested in investigating how 
local community dynamics varied across the watershed, (b) commu-
nities are more dynamic at finer spatial grains (Zbinden, 2020) and 
(c) previous studies demonstrated this reach length to be adequate 
for capturing responses of Mediterranean stream fish communities 
to environmental fluctuations (Magalhães et  al.,  2007). Sites were 
sampled annually from 2012 to 2019 in June–July (Table S1), when 
reduced water flows favoured sampling efficiency, but before the 
peak summer drought when harsh conditions might cause high fish 
mortality. Each reach was electrofished by the same operator (MMF) 
using procedures detailed in Ferreira et  al.  (2016), with consistent 
effort and methods at each site over the years. Reaches were elec-
trofished for 15–25  min, with longer surveys in wider and deeper 
streams to enhance detectability of all species in the local fish com-
munities (Ferreira et al., 2016). Fish were identified to species level, 
measured for total length and returned alive to the stream. Sampling 
was conducted under licence from the Instituto da Conservação da 
Natureza e Florestas, which required individuals of exotic species to 
be euthanized.

2.3 | Environmental and spatial variables

Each sampling site was characterized using five large-scale variables 
retrieved from digital maps (mean elevation [Alt], maximum slope 
[Slope], altitudinal gradient [Alt_Grad], Strahler's stream order [SO] 
and annual precipitation [Prec]), which have already been used in 
predictive species distribution modelling in the Sabor watershed 
(Ferreira et al., 2016; Filipe et al., 2017; Mota-Ferreira & Beja, 2020; 
Quaglietta et  al.,  2018). These variables were extracted using the 
CCM 2.1 database (Vogt et al., 2007), following procedures detailed 
in Table  S2. We only used precipitation extracted from worldclim 
(Hijmans et al., 2005), because climatic variables tend to be highly in-
tercorrelated and correlated with physiography (e.g. elevation). Sites 
were also characterized at the local scale, using the coefficients of 
variation (CV) of stream width [Width_cv] and depth [Depth_cv] and 

F I G U R E  1   Map of sites sampled for fish in 2012–2019 in the 
Sabor watershed (NE Portugal)
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water velocity [Vel_cv], which were estimated in the field follow-
ing procedures detailed in Table S2. We used CV rather than mean 
values, because we wanted to evaluate how community dynamics 
were affected by interannual variation in local conditions, and be-
cause mean values were correlated with landscape variables such 
as stream order. To account for the possibility of biological invasions 
increasing community variability (Erős et  al.,  2020), we computed 
the proportion of exotic fish species at each site [Exot] (Table S2).

Spatial data necessary to account for spatial autocorrelation 
(see below) were obtained in a GIS using the stream network ex-
tracted from CCM2.1 and the layer of sampling sites. Estimates 
included the Euclidean and hydrologic distances (total and down-
stream hydrologic distances) between each pair of sites (Peterson 
& Ver Hoef, 2010). To deal with confluences in tail-up models (see 
below), we also estimated catchment areas to weight the relative in-
fluence of the branching upstream segments (e.g. Peterson & Ver 
Hoef, 2010). Spatial estimates were made using the package “riverd-
ist” (Tyers, 2017) in R and the Spatial Tools for the Analysis of River 
Systems (STARS) toolbox version 2.0.0 (Peterson & Ver Hoef, 2014) 
for ArcGIS 10.2 (ESRI, 2016).

2.4 | Community trajectory analysis and modelling

Community temporal variation was quantified using the community 
trajectory analysis (CTA) framework (De Cáceres et al., 2019), imple-
mented in “vegclust” (De Cáceres et al., 2010). Preliminary analyses 
were carried out considering community variation in terms of either 
species composition (i.e., presence/absence) or abundances, consider-
ing or not size (i.e., length) structure (De Cáceres et al., 2013). Results 
were very similar across analyses, so we present only the results based 
on fish abundances, without size structure. We used counts of each 
species at each site and year instead of species densities, because the 
later can be driven by changes in fish numbers, habitat area or both 
(Magalhães et al., 2007). In all analysis, we excluded fish < 5 cm, often 
corresponding to young of the year (yoy), because they were poorly 
sampled and their recruitment to the fishing gear might be strongly 
influenced by the timing of sampling in relation to fish spawning.

CTA considers community dynamics as trajectories in a given 
space of community resemblance, using trajectories as objects to 
be analysed and compared based on their geometry (De Cáceres 
et al., 2019). Analysis started by using the Bray–Curtis dissimilarity 
index (Legendre & Legendre, 2012) to compute the distance matrix 
among the states (observations) of the community. Using this ma-
trix, we performed a principal coordinates analysis (PCoA; Legendre 
& Legendre, 2012), and we projected the trajectory of each site in 
the biplot formed by the first two axes retrieved by the PCoA. We 
then computed (a) the mean velocity of community change (i.e. the 
mean length of trajectories between consecutive years divided by 
the number of observation years minus one); (b) the directionality of 
each trajectory; and (c) the pairwise distances between community 
trajectories. The mean velocity measured how fast the community 
changed during the study period, while directionality was used to 

assess whether the community changed over time following a direc-
tional pattern or otherwise showed cyclic or random patterns. The 
pairwise dissimilarity in trajectories was used to understand whether 
spatial patterns in community temporal variation were associated 
with spatial environmental patterns and spatial autocorrelation.

To quantify the environmental factors driving temporal com-
munity change, we first used generalized linear models (GLMs) with 
Gaussian errors and identity link, to relate the mean velocity and 
directionality of trajectories to environmental variables. Pairwise 
scatterplots were visualized to check for potential outliers and in-
fluential points. We found that the single site of order 6 was a po-
tential influential point, and so, it was combined with order 5 sites 
in a single category. We then screened the pairwise relationships 
between dependent and predictor variables, considering both lin-
ear and nonlinear relations using orthogonal polynomials of second 
degree. More complex relations (i.e., higher order polynomials) were 
not considered because of relatively small sample sizes. In subse-
quent multivariate model building, we considered for each predictor 
either the linear or polynomial terms that provided the best fit to 
the data, judged considering the adjusted R-squared and the Akaike 
information criteria corrected for small sample sizes (AICc). We then 
screened all combinations of predictors for each dependent variable 
and, in each case, we retained as best model the combination of pre-
dictors minimizing AICc (Murtaugh, 2009).

We also modelled variation in pairwise distances between com-
munity trajectories as a function of environmental and spatial dis-
tances between sites. First, we computed environmental pairwise 
distances considering all standardized environmental variables, 
which were summarized using the symmetric multidimensional scal-
ing implemented in “smacof” (De Leeuw & Mair,  2009). Then, we 
computed the Mantel correlograms to assess the scale of spatial 
dependencies in community trajectories and environmental condi-
tions (Legendre et al., 2015), using “vegan” (Oksanen et al., 2012). 
Finally, we computed a multiple linear regression on distance matri-
ces (MRM; Lichstein, 2007) with “ecodist” (Goslee & Urban, 2007) 
and 100,000 permutations, using combinations of environmental 
and spatial distances between sites, and retaining the model with 
the largest R2. MRM was used, despite the pitfalls of Mantel-based 
approaches, because these are still considered adequate to analyse 
dissimilarity matrices, and interpretation was made considering po-
tential problems such as inflated type I errors (Legendre et al., 2015). 
All analyses were performed using R software (R Core Team, 2019).

2.5 | Geostatistical modelling and mapping

We used geostatistical modelling to relate variables describing com-
munity dynamics to both environmental and spatial predictors, con-
sidering the spatial structure of dendritic stream networks (Peterson 
& Ver Hoef, 2010; Peterson et al., 2013; Ver Hoef & Peterson, 2010; 
Ver Hoef et al., 2006). These geostatistical models are similar to con-
ventional linear mixed models, with specification in random errors 
of spatial dependencies as functions of either straight-line distances 



     |  5MOTA-FERREIRA et al.

(Euclidean model) between sites, hydrologic distances between sites 
connected by the water flow (tail-up model) or hydrologic distances 
irrespective of water flow connection (tail-down model). The fixed 
component corresponded to the best linear models (GLMs) devel-
oped in previous analysis for the mean velocity and directionality. 
The random component was specified considering the full autoco-
variance structure, which provides the greatest flexibility for repre-
senting multiple types of autocorrelation simultaneously (Ver Hoef & 
Peterson, 2010). To select the best autocovariance function for each 
spatial component, we tested all combinations of functions for the 
models including the three spatial components and selected the one 
minimizing AICc.

To map spatial variation in community dynamics, we projected 
the mean velocity and directionality of community change predicted 
from the geostatistical models on the stream network of the entire 
Sabor watershed. First, we divided the stream network into seg-
ments of a maximum length of 1,000 metres using ArcGIS desktop 
(ESRI, 2016), and we extracted the value of environmental variables 
from the centroid of each segment. We then predicted the values of 

the metrics in each segment using universal kriging within the “SSN” 
package (Hoef et al., 2014).

3  | RESULTS

3.1 | Overall assemblage patterns

From 2012 to 2019, we sampled 16,733 fishes with total length 
>5 cm from 14 species, of which six were native and eight were ex-
otic (Table 1). Nearly 90% of the fish caught belonged to just four 
native (Luciubarbus bocagei, Squalius carolitertii, Pseudochondrostoma 
duriense and Squalius alburnoides) and two exotic (Lepomis gibbosus 
and Gobio lozanoi) species with individual catches  >  5%. Another 
four species accounted for  >  1% of catches each (Achondrostoma 
sp., Salmo truta, Cobitis paludica and Alburnus alburnus), while the 
remaining four species (Gambusia holbrooki, Micropterus salmoides, 
Rutilus rutilus and Carassius auratus) were scarce. There was wide 
variation across sites in total species richness (3.9 ± 1.7 [mean ± SD], 

TA B L E  1   Fish species recorded through electrofishing in the River Sabor watershed (NE Portugal) between 2012 and 2019

Family/species Status

Counts
% Sites 
(n = 30)

%Years 
(n = 8)Total Mean ± SD (range) CV

Cobitidae

Cobitis paludica Ea  412 51.5 ± 29.9 (14–112) 0.58 33.3% 100.0%

Cyprinidae

Achondrostoma sp.b  N 738 92.2 ± 102.5 (32–328) 1.11 33.3% 100.0%

Alburnus alburnus E 176 22 ± 28.2 (2–86) 1.28 26.7% 100.0%

Carassius auratus E 1 0.1 ± 0.3 (0–1) 2.83 3.3% 12.5%

Gobio lozanoi E 1,401 175.1 ± 147.4 (25–454) 0.84 43.3% 100.0%

Luciobarbus bocagei N 3,717 464.6 ± 131.7 (274–657) 0.28 80.0% 100.0%

Pseudochondrostoma 
duriense

N 2,841 355.1 ± 157.4 (178–608) 0.44 80.8% 100.0%

Rutilus rutilus E 2 0.2 ± 0.7 (0–2) 2.83 3.3% 12.5%

Squalius alburnoides N 1,977 247.1 ± 60 (171–351) 0.24 73.3% 100.0%

Squalius carolitertii N 3,218 402.2 ± 162.7 (205–624) 0.40 90.0% 100.0%

Salmonidae

Salmo truta N 447 55.8 ± 27.4 (17–99) 0.49 33.3% 100.0%

Centrarchidae

Lepomis gibbosus E 1,748 218.5 ± 178.9 (68–515) 0.82 56.6% 100.0%

Micropterus salmoides E 5 0.6 ± 1.7 (0–5) 2.83 6.7% 12.5%

Poeciliidae

Gambusia holbrooki E 50 6.2 ± 8 (0–21) 1.29 16.7% 75.0%

Total catches 16,733 2,091.6 ± 744.3 (1,259–3,206) 0.36

Species richness 14 11.1 ± 0.6 (10–12) 0.06

Note: For each species, we indicate its status in the region (native [N] vs. exotic [E] status, the total, mean (± SD), range and coefficient of variation 
(CV) of number of individuals > 5 cm collected per year, the percentage of sites where it was detected (% Sites) and the percentage of years (% Years) 
when it was detected.
aThe species is native to the Iberian Peninsula, but it was considered exotic in our study area based on Doadrio et al. (2011), but see Sánchez-
Hernández et al. (2018). 
bThe species was listed as Achondrostoma arcasii by Ferreira et al. (2016) but probably belongs to an undescribed species (Robalo et al., 2006). 
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range: 2–9) and in mean catches per year (7.0 ± 6.3 to 183.5 ± 123.4) 
(Table S1).

3.2 | Changes in species richness and fish catches

The annual number of species recorded in the Sabor watershed re-
mained essentially constant at 10–12 species, but the number of in-
dividuals captured (i.e., fish catches) varied widely (Table 1, Figure 2). 
Variability over time, as measured by the coefficient of variation, 
was highest (CV > 1) for rare species (mean catch per year < 100 
individuals) such as C. auratus, R. rutilus, G. holbrooki, A. alburnus and 
Achondrostoma sp. Pearson's correlations with sampling year indi-
cated no consistent temporal trends in species richness (r  =  .05, 
p = .915), overall catches (r = −0.10, p = .822) and catches of native 
(r = −.36, p = .389) and exotic species (r = .35, p = .400). Temporal 
trends in catches of individual species were negative for S. trutta 
(r = −.80, p =  .016), positive for A. alburnus (r =  .69, p =  .054) and 
non-significant for all the other (−.577 < r < .579, p > .10).

3.3 | Community trajectories

The fish community trajectories represented in the PCoA biplot in-
dicated major variations across sites, albeit without obvious tempo-
ral patterns (Figure 3). There was no visual evidence for directional 
changes, with communities deviating and later returning to previ-
ous states. This was supported by the small directionality values 
(0.33 ± 0.04, which varied little (0.25–0.43) across the watershed. In 
univariate analysis for directionality, the best relations were mostly 
linear, but there were quadratic relations for elevation, stream order 
and the CV of water depth (Table  S3). However, all relations were 
weak and statistically non-significant. The best multivariate model 
(Table S4), included a weak U-shaped effect of elevation, suggesting 
slightly higher directionality at the lowest and highest elevations, and 

showed a slightly increase in directionality along with slope (Table 2, 
Figure 4a).

The velocity of community change at each site varied between 
0.29 and 0.89 (0.54 ± 0.15). In univariate analysis, the best relations 
were always linear, except for the quadratic relation with stream order 
(Table S3). Some univariate effects were statistically significant, with 
mean velocity declining linearly with elevation, and showing quadratic 
relations with stream order, with faster changes in 3rd orders and 
smaller in 2nd-order, 4th-order and particularly 5th/6th-order streams, 
and with the proportion of exotics, with increases up to about 0.8 
and levelling off or slightly declining thereafter. The best multivariate 
model accounted for 61% of variation, showing faster changes at lower 
elevation irrespective of stream order, while at any given elevation the 
velocity of change increased from 5th to 3rd orders, while declining 
again slightly in 2nd-order streams (Table 2, Figure 4b; Table S5).

The Mantel correlograms showed that pairwise distances be-
tween community trajectories were significantly related to Euclidean 
distances up to about 15 km and to hydrologic distances up to about 
30 km (Figure S1). Environmental and spatial distances were also re-
lated to each other, albeit weakly (Figure S2). The best MRM model 
(F = 137.018, p < .001) accounted for ~39% of variation in commu-
nity trajectories between sites, underlining significant effects of 
environmental (coefficient  =  1.6  ×  10−6; p  <  .001) and hydrologic 
distances (coefficient = 0.051, p < .001).

3.4 | Spatial variation in community dynamics

The geostatistical model explained about 40% of variation in commu-
nity directionality (Table  3). Most explained variation was accounted 
for by the environmental model (0.41), Euclidean effects (0.54) and, to 
a much lesser extent, the tail-up effects (0.06). The long range of the 
Euclidean structure (367.4 km) suggested a large-scale gradient across 
the watershed, while the range of the tail-up model (28.3 km) pointed 
out spatial dependencies between flow-connected sites over relatively 

F I G U R E  2   Temporal variation in 
annual fish catches (2012–2019) in the 
Sabor watershed (NE Portugal). From the 
14 species recorded, four were captured 
in very small numbers (N < 50 individuals 
each) and are not represented (see 
Table 1)
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small distances. The spatial projection of model predictions produced a 
map showing that directionality was always low, with minor spatial vari-
ation across the watershed (Figure 5a).

Regarding the mean velocity of community change, the geostatis-
tical model explained close to 30% of its variation across the water-
shed (Table 3), most of which was accounted for by the environmental 
model (0.27), tail-down effects (0.65) and, to a much lesser extent, 
tail-up effects (0.08). The long tail-down range (490.7 km) suggested 
large-scale spatial dependencies along the hydrologic network irre-
spective of flow connection, while the short range of the tail-up model 
(16.5  km) pointed out spatial dependencies over short distances 
between flow-connected sites. The spatial projection of model pre-
dictions showed wide variation in the velocity of community change 
across the watershed, with highest values in small streams at lower 
elevation and draining directly into the hydroelectric infrastructure. In 
the main course of the Sabor, mean velocity was higher immediately 
upstream of the main reservoir and declined further upstream. The two 
main tributaries of the Sabor (Maçãs and Angueira), showed a much 
higher velocity of community change than the main river (Figure 5b).

4  | DISCUSSION

Our study shows that combining robust descriptors of community 
change with state-of-the-art geostatistical modelling contributes 
to understanding and predicting where, how and why the dynam-
ics of local communities vary across stream networks. We found 
that local fish communities varied widely over the years, but there 
was no evidence for directional changes, pointing out a state of 
loose equilibrium (sensu Matthews et al., 2013) across the water-
shed. However, there was much spatial variation in the velocity 
of community changes, which were strongly influenced by envi-
ronmental gradients associated with elevation and stream order. 
The spatial patterns of local community dynamics appeared to be 
affected also by stream network topology, given the strong influ-
ence of hydrologic spatial dependencies. Mapping of community 
dynamics highlighted faster changes in lowland streams affected 
by hydroelectric development and exotic species. Overall, our 
framework helps to generalize community dynamics from discrete 
locations to entire watersheds, providing spatial information 

F I G U R E  3   Temporal fish community trajectories at 30 sites sampled in the Sabor watershed (NE Portugal) in the period 2012–2019, 
represented in the first two axes of a principal coordinates analysis. PCoA was performed on a distance matrix computed with Bray–Curtis 
index on the matrix of fish catches per species, site and year. Trajectories are indicated using arrows and, for clarity, sites sampled at second 
(2); third (3); fourth (4); and fifth and sixth (5) stream orders are represented separately. Different colours in each panel represent trajectories 
observed at different sampling sites
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needed for freshwater ecosystem assessment and management 
(Cid et al., 2020; Fausch et al., 2002).

4.1 | Temporal drivers of local community change

As in other Mediterranean-type streams (Bêche et  al.,  2009; 
Magalhães et al., 2007), fish communities in the Sabor watershed were 
highly dynamic, with temporal changes involving mainly fluctuations 
in species abundances, while much less variation was found in species 
composition and richness. The high dynamism observed was probably 
affected by the scale at which the study was conducted, as communi-
ties tend to show far more marked changes at the local than at the 
watershed or regional scales (Magalhães et al., 2007; Zbinden, 2020). 
However, community dynamics were probably also driven by strong 
environmental fluctuations during the study period, particularly the 
occurrence of extreme droughts that strongly affect stream fish sur-
vival and recruitment (Lennox et  al.,  2019; Magalhães et  al.,  2003, 
2007; Matthews & Marsh-Matthews, 2017). High fish mortality prob-
ably occurred during severe droughts in the summers of 2012, 2015 
and 2017 (Parente et al., 2019), eventually causing the major declines 
in fish abundances in 2013, 2016 and 2018, respectively. Moreover, 
fish communities take time to recover after environmental extremes 
(Bêche et al., 2009; Matthews et al., 2013; Resh et al., 2013), which 
may have contributed further to the variability observed. The spread 
of exotic species may also have affected community dynamics, due to 
temporal changes in their own prevalence and abundance, but also 
due to eventual negative effects on native species (Erős et al., 2020; 
Gavioli et al., 2019; Milardi et al., 2019; Zanden et al., 2015). This is 
supported by faster changes in sites with higher proportion of exotic 
species, and by the high coefficients of variation in the abundance of 
exotic species when compared to most native species. Finally, random 
sampling variation may have contributed to the fluctuations observed, 
though this was minimized through preliminary testing and optimiza-
tion of sampling methodologies (Ferreira et al., 2016), and by having 
the same operator applying a constant sampling effort at every site 
in every year. Therefore, we are confident that the temporal patterns 
observed are unlikely to result from methodological artefacts. Overall, 
the local community dynamics recorded in our study seem to be com-
parable to that reported elsewhere for Mediterranean-type stream 
fish (Bêche et al., 2009; Magalhães et al., 2007), but also other aquatic 
organisms (Bêche et al., 2009; Crabot et al., 2020), suggesting that the 
patterns observed may apply to other study systems.

4.2 | Patterns and environmental drivers of spatial 
variation in community dynamics

Despite the temporal changes observed, there was no evidence for 
directional community dynamics at any sampling site, suggesting 
that local fish communities were in a loose equilibrium (Matthews 
& Marsh-Matthews,  2016; Matthews et  al.,  2013). This view was 
supported by consistently small directionality values estimated 

TA B L E  2   Summary results of the best AICc models explaining 
variation in mean velocity of community change, directionality and 
pairwise distances between community trajectories

Estimates Std. error t p

Directionality (R2 = 0.37, F3,26 = 5.064, p < .001)

Intercept 0.364 0.050 7.254 <.001

Elevation −4.8x10−4 1.8x10−4 −2.605 .015

Elevation2 4.8x10−7 1.7x10−7 2.814 .009

Slope 1.3x10−3 4.4x10−4 2.942 .007

Mean velocity (R2 = 0.61, F3,26 = 13.584, p < .001)

(Intercept) 0.364 0.248 1.467 .154

Elevation −5.1x10−4 1.2x10−4 −4.313 <.001

Stream order 0.367 0.139 2.646 .014

Stream order 2 −0.062 0.019 −3.242 .003

Note: For the intercept and each variable in each model, we provide the 
regression coefficient, the standard error of the coefficient estimate 
and the corresponding t- and p-values.

F I G U R E  4   Trend lines (± standard errors) describing the 
relations inferred from models (Table 2) relating the directionality 
of community change to elevation for three levels of maximum 
slope (percentiles 10%, 50% and 90%) (a) and the mean velocity of 
community change to elevation for each stream order (b)

(a)

(b)
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at sampling sites across the watershed, as well as by the commu-
nity trajectories in multivariate space, which deviated and returned 
to previous states, following either gradual or abrupt steps (De 
Cáceres et  al.,  2019). Moreover, the significant relations between 

directionality and environmental variables were weak and diffi-
cult to interpret ecologically, possibly reflecting spurious correla-
tions. Comparable patterns have already been described in stream 
fish communities (Matthews & Marsh-Matthews, 2016; Matthews 

TA B L E  3   Partitioning of the proportion of explained variation by geostatistical linear mixed models relating community directionality and 
mean velocity of change to environmental variables while accounting for spatial random effects

Community Dynamics 
metrics

Spatial

Environmental NuggetTU TD EUCL

Directionality Residual standard error: 0.119; generalized R2: 0.41

Proportion 0.06 ≈0 0.54 0.41 ≈0

Function Linear with Sill Mariah Gaussian

Range (km) 28.3 71.6 367.4

Sill 1.4 × 10−3 6.8 × 10−8 1.3 × 10−2

Mean velocity Residual standard error: 0.256; generalized R2: 0.27

Proportion 0.08 0.65 ≈0 0.27 ≈0

Function Spherical Epanech Exponential

Range (km) 16.5 490.7 201.2

Sill 7.1 × 10−3 5.8 × 10−2 4.9 × 10−7

Note: Spatial components: TU, tail-up; TD, tail-down; Eucl, Euclidean.

F I G U R E  5   Maps showing variation across the Sabor watershed of the directionality (a) and mean velocity (b) of fish community 
change, based on geostatistical models with fixed and random components described in Tables 2 and 3

(a) (b)
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et  al.,  2013), including in Mediterranean streams facing extreme 
droughts and floods (Magalhães et al., 2007), and are in line with the 
view that communities often exist in a dynamic temporal equilibrium 
(Collins, 2000; DeAngelis et al., 1985). However, the patterns may be 
considered unexpected given the major anthropogenic changes af-
fecting the Sabor watershed, including the building of a large hydro-
electric infrastructure and the increasing spread of exotic species, 
including fish (Santos et al., 2017) and crayfish (Filipe et al., 2017). 
This may be because the study period was too short to capture com-
munity trends, as most exotic species were already present in the 
watershed at the start of our study (Ferreira et al., 2016), and prob-
ably not enough time elapsed for the new dams causing major shifts 
in species composition in nearby lotic areas. This is supported by 
observations regarding three exotic species potentially spreading 
from reservoirs (Ribeiro & Veríssimo,  2014; Vinyoles et  al.,  2007), 
one of which has been steadily increasing in abundance since 2015 
(A. alburnus), while two others only started to be detected towards 
the end of the study period (M. salmoides and R. rutilus). Directional 
changes may thus happen in the future, most likely associated with 
increasing prevalence and abundance of exotic species (Gavioli 
et al., 2019; Milardi et al., 2019).

The velocity of local community changes varied widely across 
the watershed. This spatial variation was strongly related to struc-
tural landscape features such as stream order and elevation, while 
factors associated with interannual variability in local environmen-
tal conditions did not show measurable influences. The effect of 
stream order might be expected, as it reflects strong longitudinal 
gradients along rivers in for instance water discharge, and habitat 
size and heterogeneity (Hughes et al., 2011), which are strong driv-
ers of ecological processes (Vannote et al., 1980) and the distribu-
tion of organisms (Harrel et al., 1967; Paller, 1994; Platts, 1979), 
including in the study area (Ferreira et al., 2016; Filipe et al., 2017; 
Mota-Ferreira & Beja,  2020; Quaglietta et  al.,  2018). We found 
that changes were fast in 2nd-order streams, still a little faster 
in 3rd-order streams, and then velocity declined in larger order 
streams. This is in line with studies suggesting higher temporal 
changes in fish communities in headwaters than further down-
stream (Schlosser,  1987), though other studies suggest that lon-
gitudinal gradients in stream fish community dynamics may vary 
across watersheds depending on local environmental conditions 
(Matthews & Marsh-Matthews,  2017). The later was supported 
by our study, because the observed joint effect of stream order 
and elevation implied that there were communities in lower order 
streams at high elevation that varied slower than those in higher 
order streams at low elevation. Reasons for these patterns are 
not completely clear, but it is noteworthy that lower orders at 
high elevation correspond to cold-water mountain streams with 
species-poor communities dominated by S. trutta, which may be 
relatively stable over time. In contrast, lower orders at low ele-
vation generally correspond to warm water streams with richer 
communities dominated by cyprinids and exotics, which during the 
dry summer months are often reduced to a series of disconnected 
pools, and thus where fish communities may vary widely from year 

to year in association with droughts and floods (Bêche et al., 2009; 
Magalhães et al., 2007). Other possibility is that elevation acted 
as a surrogate for increasing human disturbance in the lowlands 
driving higher variability in fish communities, which may be me-
diated by the increasing prevalence and abundance of exotic spe-
cies (Erős et al., 2020; Gavioli et al., 2019; Gorman & Karr, 1978; 
Milardi et al., 2019). This idea is supported by the positive relation 
observed between the proportion of exotic fish and community 
variability, and by the inverse relation between the prevalence of 
exotic crayfish and elevation also found in the watershed (Filipe 
et al., 2017). However, in multivariate models the effect of eleva-
tion was retained but not that of exotic species, possibly because 
the former may capture the effect of the later, and account in ad-
dition for unmeasured ecological processes driving community 
dynamics. Overall, the velocity of community change appeared to 
be mainly associated with large-scale proxies, possibly reflecting 
spatial gradients in more local ecological processes such as biolog-
ical invasions, which would require further clarification.

4.3 | Spatial dependencies in community 
temporal dynamics

The patterns of community temporal change were also related to 
spatial dependencies, with more similar community trajectories in 
sites closer to each other, either overland (Euclidean) or along the 
waterlines (hydrologic). The effects of Euclidean distances were 
significant up to about 15 km and possibly reflected similarity be-
tween sites in environmental conditions influencing community 
trajectories. For instance, sites close to each other are likely to 
be more similar than those farther apart in environmental condi-
tions driven for instance by elevation, which was related to the 
velocity and, to a lesser degree, the directionality of community 
change. Hydrologic spatial dependencies were significant up to 
about 30  km and may be a consequence of similarities between 
sites associated for instance to stream order and elevation, and to 
unmeasured spatially structured environmental factors (Legendre 
& Legendre,  2012). In addition, however, hydrologic spatial de-
pendencies were probably also influenced by mass effects (Heino 
et  al.,  2015), with fish dispersal among neighbouring locations 
homogenizing species composition and synchronizing population 
fluctuations (Erős & Lowe,  2019; Hugueny et  al.,  2010; Tonkin 
et  al.,  2018). For instance, fish dispersal from larger streams to 
headwaters may contribute to reduce community fluctuations in 
the later (Matthews & Marsh-Matthews, 2017). Also, dispersal of 
exotic fish species across the watershed may contribute to biotic 
homogenization and to similarities in community fluctuations in 
sites nearby (Gavioli et al., 2019; Milardi et al., 2019).

The geostatistical models further supported the importance of 
spatial effects and allowed a finer examination of their contribution 
to community dynamics. In the case of directionality, there were 
only marked Euclidean effects, with a long range, suggesting influ-
ences driven by large-scale spatial gradients overland. This effect 
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should be interpreted with care, given the low values of direction-
ality and its low variability across the watershed. Regarding the ve-
locity of community change, spatial dependencies also explained a 
large share of variability, with a strong contribution of the tail-down 
model and a minor contribution of the tail-up model. This is in line 
with the idea that the tail-down model captures spatial dependen-
cies associated with organisms that can move actively both up and 
downstream, while the tail-up model mainly reflects spatial depen-
dencies resulting from the passive drift of materials or organisms 
downstream (Peterson et al., 2013). This, together with the obser-
vation that tail-down effects were strong even after accounting for 
the variable reflecting spatially structured variation in environmen-
tal conditions along the stream network (i.e. stream order), further 
suggest that spatial variation in the velocity of community change 
was affected by movement of individuals along the waterlines. 
Overall, our results support the idea that fish community dynamics 
is strongly affected by spatial dependencies and the topology of the 
stream network (Erős & Lowe, 2019; Hugueny et al., 2010; Tonkin 
et al., 2018).

4.4 | Mapping community temporal dynamics to 
guide management

Mapping of community dynamics highlighted areas across the water-
shed where larger changes seem to be occurring, some of which may 
be associated to anthropogenic pressures. In the case of directional-
ity, mapping showed little variation across the watershed, suggesting 
that at least until now the construction and operation of the Baixo 
Sabor Hydroelectric Infrastructure did not disrupt the loose equilib-
rium of fish communities, as there was no evidence for streams closer 
to the reservoirs showing more directional changes than streams else-
where in the watershed. It should be noted, however, that our study 
only encompassed four years after the filling of the larger reservoir, 
and so, it cannot be ruled out that directional changes will become 
apparent in the long term. The velocity of community change varied 
across the watershed, with some evidence for faster changes occur-
ring in streams draining into the reservoirs, and in the Sabor River im-
mediately upstream of the reservoir. This suggests that the presence 
of large reservoirs may be increasing fish community instability in sur-
rounding lotic environments, through for instance the spread of exotic 
species (Santos et al., 2017). Notwithstanding, the highest velocity of 
community change was found in a small watershed (Vilariça) that does 
not drain into the Baixo Sabor reservoirs. This watershed is affected 
by a number of anthropogenic pressures, draining into another large 
dam downstream of Baixo Sabor, flowing through an area of intensive 
agriculture and being subject to habitat management interventions 
(Boavida et al., 2018), all of which may have contributed to fast com-
munity changes. Overall, the spatially continuous mapping of temporal 
community dynamics provided a visual representation of the type and 
spatial extent of anthropogenic impacts on stream fish communities, 
which would have been more difficult to perceive otherwise.

5  | CONCLUSIONS

Freshwater biological communities are rapidly changing worldwide 
due to direct and indirect anthropogenic pressures, making it criti-
cal to understand how, where and why such changes are occurring 
(Albert et al., 2020; Reid et al., 2019). Our study combining commu-
nity trajectory analysis (De Cáceres et al., 2019) and geostatistical 
modelling (Peterson et  al.,  2013) contributes to address these is-
sues, by offering a relatively simple and flexible framework to spa-
tially generalize data on community dynamics collected at discrete 
sampling locations. Using this framework, we were able to show 
that local dynamics were affected by larger scale processes operat-
ing within the stream network, including both environmental gradi-
ents and spatial processes mediated by network topology (Erős & 
Lowe, 2019). Moreover, we produced maps that helped visualizing 
community changes across the stream network and that highlighted 
the effects of a new hydroelectric development in nearby lotic 
systems. We suggest that our framework may be widely useful to 
freshwater ecologists aiming to understand spatial variation in local 
community dynamics under anthropogenic change, while providing a 
tool for managers to make spatially continuous predictions of com-
munity temporal dynamics that can be used in bioassessment and 
mitigation of anthropogenic impacts on freshwater ecosystems (Cid 
et al., 2020; Fausch et al., 2002).
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