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Abstract: In the Mediterranean region, climate change is likely to generate an increase in water
demand and the deterioration of its quality. The adoption of precision viticulture and the best
available techniques aiming at sustainable production, minimizing the impact on natural resources
and reducing production costs, has therefore been a goal of winegrowers. In this work, the water
footprint (WFP) in the wine sector was evaluated, from the vineyard to the bottle, through the
implementation of a methodology based on field experiments and life cycle assessment (LCA) on
two Portuguese case studies. Regarding direct water footprint, it ranged from 366 to 899 L/FU
(0.75 L bottle), with green water being the most significant component, representing more than 50% of
the overall water footprint. The approach used in the current study revealed that although more than
97.5% of the water footprint is associated with vineyard, the winery stage is responsible for more than
75% of the global warming potential indicator. A linear correlation between the carbon footprint and

Atmosphere 2020, 11, 934; d0i:10.3390/atmos11090934 www.mdpi.com/journal/atmosphere


http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0001-5039-5686
https://orcid.org/0000-0001-8134-9594
https://orcid.org/0000-0001-9054-5108
https://orcid.org/0000-0002-3147-4511
https://orcid.org/0000-0002-4825-6692
https://orcid.org/0000-0002-8280-9027
https://orcid.org/0000-0002-9075-9568
https://orcid.org/0000-0003-2491-0669
http://dx.doi.org/10.3390/atmos11090934
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/9/934?type=check_update&version=2

Atmosphere 2020, 11, 934 2 of 30

the indirect blue water footprint was also observed for both case studies. Climate change is expected
to cause an earlier and prolonged water stress period, resulting in an increase of about 40% to 82% of
blue WEP.

Keywords: life cycle assessment; sustainable wine production; water use efficiency; wine chain;
winery wastewater

1. Introduction

The increasing demand for water and the pollution of freshwater resources, driven by urbanization,
agriculture intensification and climate change, are the major concerns in the Mediterranean region.
Climate change has a negative effect on this region and is expected to continue to have an adverse
influence on the future environmental conditions [1]. The climate suitability for wine grapes’ cultivation
is at greater risk than that of other crops due to both short-term climate variability and long-term
climate changes [2]. In Portugal, significant trends for mean seasonal precipitation have decreased
substantially in all seasons, excluding winter [3], and annual temperature has increased [4], which may
intensify water demands. The increase in temperature combined with the decline in rainfall will raise
irrigation water requirements, while water availability for irrigation will be lower [5]. In the South of
Portugal, the thermal conditions and the water stress are causing the expansion of irrigated vineyards,
now representing more than 50% of the cultivated area [6].

Considering that water is a limited resource, the concept of a water footprint (WFP) has gained
interest in the scientific community. The WFP concept was developed by Hoekstra’s research group as an
indicator that represents the freshwater resources needed to produce a unit of a product, corresponding
to the volumetric measure of freshwater consumption and pollution impact [7,8]. Its calculation
has been frequently done through the approach developed by the Water Footprint Network (WFN)
through the water footprint assessment manual [8], where WEP is often represented as an aggregate
number given by the sum of three water components: blue, green and grey water. Blue WEP refers
to surface and groundwater resources that evaporate within the process, are incorporated into the
product, returned to a different water body or water that does not return to the same water body in the
same period. Green WFP corresponds to precipitation that is stored temporarily in the soil or remains
on top of the soil or vegetation and, eventually, evaporates or transpires through plants. Grey WFP
indicates the degree of freshwater pollution associated with each stage of the production process and
is evaluated by the amount of fresh water needed to dilute one or more pollutants present in the
return flow, so that, based on natural concentrations, a given water quality standard is achieved [8].
More recently, a new approach has emerged based on the life cycle assessment (LCA) methodology,
which has framed the main concepts in the international standard on water footprint [9], in which water
footprint is defined as “metric(s) that quantifies the potential environmental impacts related to water”.
Both methodologies may include direct and indirect water use along supply chains and account for the
consumption and degradation of freshwater, however they diverge in the way they deal with different
water resources and water components, and in the approach of product sustainability [10]. The LCA
methodology uses a large array of water footprint indicators, including those related to water scarcity,
stress and quality, such as eutrophication, acidification and global warming or climate change [11].

The assessment of wine WEP from viticulture to the winemaking industry has been addressed by
several authors (Table 1), in several regions and at different levels of temporal resolution, revealing the
academy’s interest in this emerging topic. Although the water footprint concept was introduced as
virtual water in 1997 by Allan [12], in the wine sector, most articles have been published in the last
four years.



Atmosphere 2020, 11, 934 3 of 30

Table 1. Reported studies on wine water footprint (WFP) determination.

WEP Production Global Green Blue Grey
Country A ment 10° L/Year Variety WFP WFP WFP WFP Boundaries Authors
ssessme e (L/0.75 L) (%) (%) (%)
WEFP Vineyard and Winery
GLOBAL Framework B B 607 70 16 14 Direct and Indirect WFP (sl
New 667 90 10 n.d. Vineyard and Winery )
Zealand 150 14046 ) ) 742 82 18 nd. Direct WFP (141
New 787 83 12 5.0 Vineyard and Winery
Zealand 150 14046 B 860 75 3.0 22 Direct and Indirect WFP 0ol
111 42 - 17 83
Chil. WEP 207 Red wine 1.9-2.9 - 28 72 Winery 16l
e Framework 664 White wine 032 - 63 37 Direct WFP ’
153 0.95 - 59 41
. WEFP Red wine Vineyard
Argentina Framework White wine 582 : : - Direct WFP 071
WEFP - Red 365 - - - . .
Italy Framework B white 410 B B B Vineyard and Winery [18]
058 Cab(ﬁ.rnet
047 Sauvignon
WEP ; Nero d’avola . % " . Vineyard and Winery 9
Traly Framework 01 ':2 Chardonnay 523-872 7599 07 0-22 Direct WEP 0l
' White Pinot
0.80 .
Grecanico
Sér;%le(;:e:te Vineyard and Winery
Italy 1SO 14046 1.9 N 632 98 0.5 1.2 Direct and Indirect WFP [20]
Sauvignon No irrigation
Merlot &
. Vineyard and Winery
Italy 1SO 14046 Red wine 451 78 12 21 Direct and Indirect WEP [21]
Red wine 504 89 2.0 8.6 Vineyard and Winery
ftaly 150 14046 19 White wine 551 90 18 81  Directand Indirect WEP 2]
Grechetto 877 71 29 Vineyard and Winery
Ttaly 150 14046 Sagrantino 667 67 33 Direct and Indirect WFP [23]
WEFP Red wine . .
Italy Framework And White wine 601 76 7.0 17 Vineyard and Winery [24]
. . Vineyard and Winery
Italy 1SO 14046 9.5 White wine 1193 83 15 2.0 Direct and Indirect WFP [25]
Vineyard
Spain ISO 14046 - 651-1923 99.9 0.1 - Direct and Indirect WFP [26]
No irrigation
Portugal 1SO 14046 - 402 99 1.1 - Vineyard and Winery [10]
No irrigation
Red wine
WEP Winery
Portugal Framework 7.5 4and ] 9.6-12.7 - 2 98 Direct WEP [27]
White wine
Sauvignon
Chardonnay . .
. WEFP 3 Vineyard and Winery ,
Romania Framework 8.0 Fet'easca 1262-2480 82 3.0 15 Direct and Indirect WEP [28]
Aligote
Riesling
Chardonnay
Pinot Grigio Vineyard and Winery
WEFP Gruner Veltliner Direct WFP
- ¢ g ! 0
Hungary Framework Cabernet 368-800 97-98 2-3 No [29]
Sauvignon irrigation
Merlot

Considering the countries of the New World, the first studies were observed in New Zealand,
with WFP values between 667 and 860 L/FU (0.75 L bottle). In these case studies, the green water
footprint represented 75-90% of the global WFP. In one of these studies, the authors analyzed only
the direct, blue and green, water footprint, and found that about 91-92% of the WFP is related to
the vineyard [14]. On the other hand, when they integrated direct and indirect water use, as well
as the grey water footprint, they found that direct water use represented about 92-93% of the total
WEFP. Major variations were observed in the grey WFP, where authors reported values between 44 and
192 L/FU [15]. In California, a study carried out to evaluate the life cycle on wine grape production
outlined important recommendations, such as the large effect that the productivity of the vineyards
has on the observed variation between case studies [30]. The analysis of the wastewater from wineries
throughout the production cycle was studied in Canada with the aim to determine the grey WFP
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in co-treatment at municipal wastewater treatment plants (WWTP). This study highlights that the
vintage period was considered a hotspot as the wastewater quality levels could exceed regulatory
requirements for WWTP discharges, even after treatment [31]. In Chile, the WFP was determined at
four wineries, revealing WFP between 0.31 and 4.2 L/FU, with a variable distribution between the blue
and grey WFP [16]. Civit et al. [17] provided information about the green and blue water footprint in
five case studies in Argentina and found that the largest contribution was the blue water. This research
highlighted pressurized irrigation systems in order to increase water use efficiency by 14%.

As far as the Old World wine countries are concerned, Italy has provided 40% of the reported
studies on the water footprint in the wine sector. Two factors may contribute to this evidence: on
the one hand, Italy is the country with the highest world wine production and, on the other hand,
it is the only country in the world whose wine sustainability label is based on this indicator [32].
In Italy, wine WEP varied between 451 and 1193 L/FU, considering the winery and vineyard system
as boundaries [21,25]. Most of the studies reported green WFEP as the largest fraction of the global
water footprint. Conversely, the ISO 14046 framework was followed in Spain, revealing that, in most
vineyards, the blue water was the most important contributor to the overall water footprint, while the
grey footprint was not evaluated [26].

In Portugal, the first study considering freshwater use in the wine chain was reported in 2014,
but the results were inconclusive as they differed according to the method used and the impact
category [10]. Other studies conducted in Portuguese wineries only considered the water consumption,
characterizations of wastewater flows [33] or performed a sustainability evaluation of Portuguese
wines based on the LCA methodology [34]. The impact of the wastewater treatment efficiency in the
grey water footprint was recently assessed [27] but no holistic approach was given. The water footprint
assessment was not evaluated at a wine farm level, regarding its temporal variability or its dependence
on local factors.

In this study, an integrated methodology for water footprint sustainability analysis was developed
to address the winery WFP of two Portuguese case studies located in Alentejo Region (NUTII), South of
Portugal. The assessment of impacts and the identification of the most impactful processes in this
sector are highlighted as hotspots, allowing to define adaptation strategies and thus overcoming the
challenges of climate change related to water scarcity in the Mediterranean region. This study also
aims at providing a useful tool for farmers, managers and decision-makers to support their decision on
which management strategies should be adopted in order to improve wine chain sustainability.

2. Experiments

2.1. Case Studies

In the WineWATERFootprint Project, two case studies located in the South of Portugal were
monitored with the purpose of assessing the WEFP along the wine chain, at the level C of spatio-temporal
resolution, which implies a monthly determination of water footprint components with primary data
from the case studies, according to Hoekstra et al. [8], during 2017 and 2018. This study covered
two wine growing regions (Leziria do Tejo and Alentejo) under distinct climate conditions, which are
exposed to extreme water scarcity and heat stress, and monitored the grapevine cultivar Tempranillo
under surface drip irrigation. According to Képpen's climate classification, the climate in both wine
growing regions is temperate with dry and hot summer and wet winter—Csa [35]. For both locations,
Figure 1 shows the monthly values for total precipitation, minimum temperature, mean minimum
temperature, mean temperature, mean maximum temperature and maximum temperature, regarding
the average of 1971-2000 years. In Figure 1, it is possible to observe that both places are characterized
by hot and dry summers, with the precipitation occurring out of this season. When comparing both
locations, case study II has higher maximum and mean temperatures, lower minimum temperatures
and lower precipitation. Another relevant difference is the fact that case study I has a lower thermal
amplitude due to a strong Atlantic influence. Case study I, located in Leziria do Tejo wine region, has a
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production area of around 100 ha and a density of 3300 plants/ha in sandy soils, resulting in an annual
average wine production of 612,000 L. The case study II (Alentejo Region), located in Alentejo wine
region, has a production area of 210 ha and a density of 3000 plants/ha in clay soils, resulting in an
annual average wine production of 1,100,000 L.
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Figure 1. Thirty-year (1971-2000) average temperature and precipitation for (a) case study I—Leziria
do Tejo and (b) case study II—Alentejo.

2.2. Methodology

In this study, two different approaches were adopted, regarding the methodology for WFP
calculation: the methodology proposed by the Water Footprint Network for the quantification of
the direct contribution for green, blue and grey water, based on direct data from the monitored case
studies [8], and a cradle to gate LCA methodology for assessing in a broad way the wine sector
sustainability and the various environmental impacts caused by wine production. The defined
boundary conditions for both case studies were the vineyard and winery system, in a farm-winery
model, with direct water assessment for vineyard and winery stage, following the WEN methodology.
Regarding the sustainability assessment stage, direct and indirect water footprint were evaluated in
order to achieve a more comprehensive analysis in the identification of hotspots.

With the use of both methodologies, it is expected to present a more complete discussion of
the results, considering both direct and indirect water uses of the wine production and their overall
impacts. In both approaches, the selected functional unit (FU) was a common wine bottle of 0.75 L.

2.2.1. Field Experiments in the Vineyard

According to Hoekstra et al. [8], the total WEP of a crop, namely at the vineyard (WFPyt;—Equation (1))
is the sum of the components green (WFPgreen—Equation (2)), blue (WFPy,.—Equation (3)) and grey
(WFPgrey—Equation (4)), usually in the case of agricultural products, expressed in m®ton™! or L'kg™!,
with ETgreen (green water used on evapotranspiration), ETp,e (blue water used on evapotranspiration)
and PTyater (Phytosanitary Treatment water) in m3-ha=! and the crop production (Yield) in ton-ha=1.
PTwater refers to all the water used in phytosanitary treatments, comprising the washing of equipment.

WFPiotal = WFPgreen + WFPpue + WFPgrey (1)
ET
green
WFPgreen = m (2)
ETblue + PTwater
WEP = 3

The grey component of the WEP of a crop (WFPgrey—Equation (4)) was calculated from the total
amount of the chemicals applied to the crop (Q), the leached fraction («), the maximum permissible
concentration (Cmax), the natural concentration of the product (Cpat) in the environment and crop
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production (Yield), through Equation (4), with Q in kg-ha_l, Cmax and Cpat in kg-m_3 and Yield in
ton-ha~!. The pollutant selected for grey WFP calculation was nitrogen, in accordance with previous
reported works [8,36]. Due to the impossibility of determining the leached fraction, it was assumed
to correspond to 10% of the total nitrogen applied to the vineyard [36], the natural concentration of
nitrogen was considered 0 kg'm~ [8] and the maximum was 0.011 kg:-m~> according to Portuguese

regulations [37].
(<Q)
(Cmax _Cnat)

Yield @)

Once the vineyard was submitted to a moderate water stress, for quality purposes, daily crop
water use was estimated along all vegetative cycles according to the methodology proposed by
Allen et al. [38], for the case of crop growth under non-optimal conditions. The FAO Irrigation and
Drainage Paper No. 56 [38] method estimated the effect of climate on crop water requirements,

WFPgey =

considering the reference evapotranspiration (ET,) and the effect of the crop, by the crop coefficient (Kc).
However, with this approach, the extrapolation of crop coefficients was not easy, mainly due to their
dependence on management practices (distance between rows, soil cover, irrigation practices, etc.) [39].
According to Mekonnen and Hoekstra [13], the water stress coefficient K is calculated daily as a
function of the maximum and actual available soil moisture in the root zone. However, the application
of this methodology to perennial crops, such as vineyards, was especially critical due to their deep
root systems which can reach several meters deep [40], making it difficult to monitor the available soil
moisture as well as drainage and capillary flows. To overcome these limitations, we tried to improve
the crop and stress coefficients” estimates to optimize the crop water use calculations. A validation
procedure was applied to the obtained results at different time scales (daily and whole season). The ET,,
was calculated according to the methodology of Allen et al. [38] using hourly meteorological data
collected at the meteorological station located at both case studies.

Vineyard water use and daily evapotranspiration was estimated using the SIMDualKc [41],
a software application for water balance computation and irrigation scheduling using the dual crop
coefficient approach that was recently tested for sparse woody canopies [42]. This strategy seeks to
more accurately estimate the impacts of factors such as the frequency of irrigation and precipitation.
On the other hand, independent calculation of the two components of ET.. (crop transpiration (T) and
soil evaporation (Es)) allows aspects related only to T to be more correctly accounted for, such as
the impact of water stress caused by low values of the matrix and osmotic potentials of soil water,
important for grapevines, where deficit irrigation is mandatory. The SIMDualKc was fed with local
meteorological data, observed dates of main developmental stages and total available soil water in
the root zone (TWA, mm), estimated from the difference between the water content at field capacity
(OFC m3-m~3) and at wilting point (OWP m3-m~3), multiplied by the rooting depth [m]. 6FC and OWP
were estimated from soil texture and bulk density. Crop height and width were measured in situ and
basal crop coefficients (K, ), namely the K ini, Keb mid and Ko end, were estimated from functions of
Vegetation Indexes (VI). Two VI were used in the (Equation (5)) Soil-Adjusted Vegetation Index (SAVI)
and (Equation (6)) Normalized Difference Vegetation Index (NDVI) [43].

The NDVI (Equations (7) and (8)) and SAVI data were calculated at the vineyard scale from the
spectral data of Sentinel-2 (European Space Agency) imagery obtained during the grapevine growing
cycle, from red and near infra-red (NIR) bands using a correction factor (L) depending on vegetation
densities. An L value of 0.5 was assumed, as is commonly used for vineyards [44]:

Kg = 1.79 X SAVI — 0.08 (5)
K = 1.44 x NDVI - 0.1 (6)
NDVI = (NIR - red)/(NIR + red) @)

SAVI = [(NIR - red)/(NIR + red) + L] x (1 + L)] 8)
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The SIMDualKc performance was evaluated comparing K estimated by the model with K
derived from predawn leaf water potential measurements (Ypd), according to the stress function
(Equation (9)), obtained for the same grape variety and under similar conditions [45].

Ks = 1.0011 exp (1.829 Ypd), r? = 0.73 )

Finally, the adjusted crop evapotranspiration under non-standard conditions (ET.qj) was
calculated from Equation (10), multiplying the basal crop coefficient by the water stress coefficient.

ET. adj = (Ks Kep + Ke) ETo (10)

Using a randomized design, 5 plants were selected in both case studies for crop parameters’
evaluation. The leaf area was measured during the growing cycle, according the methods and models
proposed by Lopes and Pinto [46]. The field observations also include the fortnightly measurement of
the pre-dawn leaf water potential (Ypd) from the beginning of June to the end of August, in two mature
leaves per plant, using a pressure chamber. The yields of the vines were determined, and the pruning
wood was weighted. A water meter, installed in selected vineyard rows, measured the irrigation water
volumes, and the soil water content was continuously monitored using capacitance-based technology
(EnviroSCAN, Sentek Sensor Technologies) from a 0.20 to 1 m depth.

In order to predict the effect of climate change on the water footprint of the vineyard, a simulation
was made with the SimDualKc model [41] considering the A1B scenario defined by Jacob et al. [47].
The A1B scenario foresees, for the 2071-2100 period, an increase of 3.6 °C in the average temperature [47]
and a statistically significant reduction of the mean seasonal precipitation of 40% in spring and autumn
and 50% in summer [3]. Basal crop coefficients were assumed to be similar to those verified during
this study.

The direct blue and grey water footprint components were determined monthly at the winery,
following the methodology defined by Hoekstra et al. [8]. Beyond the determination of the wineries
blue and grey water footprint, a diagnosis was performed on the implemented water use efficiency
practices with the objective of correlating the impacts identified in the water footprint sustainability
assessment with winery practices. This diagnosis was performed through observation (gemba walks)
and a questionnaire. The questionnaire was developed from the literature [48,49] and adapted to the
context of the target wineries. The questions comprised: (i) facility water use practices in process,
cleaning, rinsing and sanitation, cooling and heating, restrooms and kitchens, landscaping and outdoor,
(ii) leak-detection and repair, (iii) water reuse and (iv) capture and reuse of rainwater. The quality of
the water used in the winery was also evaluated, according to Standard Methods [50].

The direct blue WFP of the product was determined by the sum of the blue WFP of each wine
production process divided by the total amount of wine produced, according to Equation (11):

Zlgzl WEproc |[s]
P [p]

For each wine production process, the blue WFP components: water evaporation, water
incorporation and return flow, were calculated according to Equation (12):

WF prod [p] = [volume/mass] (11)

WPFproc,blue = BlueWaterEvaporation + BlueWaterIncorporation + Lostreturnflow [volume/time] (12)

Since there is no incorporation of water in the product, this component is therefore considered to be
nonexistent. Lost return flow accounts for the water that does not return to the natural water body in the
same period of its usage and was therefore considered. This allows the simplification of Equation (12)
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once the blue water footprint component is only related with the evaporation occurring along winery
activities and water that does not return to the natural water body, resulting in Equation (13):

WFproc,blue = BlueWaterEvaporation + Lostreturnflow [Volume/time] (13)

Regarding the determination of BluewaterEvaporation, the evaporation from the wastewater treatment
plants was determined according to Penman [51], while evaporation inside the winery was considered
negligible. The Lostgreturnflow Was determined considering that it corresponds to the amount of water
used for winery activities minus the amount of discharged and evaporated water, therefore representing
the water that was collected but that did not evaporate or returned to the natural water body in the
same period that it was used.

Regarding direct grey WFD, the produced wastewater and the efficiency of the treatment system
were determined along the two years of monitoring. The physical-chemical analysis of the wastewater
allowed the evaluation of the treatment efficiency and the determination of the limiting parameter
used for grey WFP calculation. The pH, electrical conductivity, total suspended solids, chemical
oxygen demand, biochemical oxygen demand, total nitrogen, polyphenols and total phosphorous
were monitored, according to Standard Methods [50]. For accurate characterization of the wastewater
and treatment efficiency, samples were collected at the reception pit (before treatment process) and
treatment plant (treated effluent) twice a week during vintage and fortnightly or monthly in the rest of
the year.

The grey WFP was determined by the total amount of water that is necessary to assimilate
the load of pollutants based on natural background concentrations on the environment and water
quality standards, according to Equation (14), with pollutant load (L) in grams, maximum allowed
concentration (Cpay) in g-L_1 and the natural concentration (Cpgyt) in g-L_l.

L

—— [vol i 14
Cmax —Coat [volume/time] (14)

WF proc.grey —
The pollutant selected for grey WFP calculation corresponds to the pollutant that required
the highest dilution volumes, according to its concentration on the discharged wastewater and the
maximum allowed concentrations, according to Portuguese regulations. The assimilation capacity of
the receiving water body has influence on grey WFP and was evaluated by the difference between the
maximum allowable discharge concentration and the natural concentration of the concerned substance.
Wine production comprises different stages, which are grouped into harvest, post-harvest and
bottling. Since in many wineries they take place in parallel, it becomes difficult to segregate flows
across different production processes. To overcome this obstacle, the water consumption in the wineries
was monitored in real time by a water meter, developed by the EddyHome Company. This solution
not only collects water consumption data in real time, but also integrates features that enable data
analysis and remote water cut, in case of leaks.

2.2.2. Sector Sustainability Assessment and Life Cycle Assessment Approach

Regarding the sustainability assessment of the wine production WFP, it was decided to follow the
methodological framework defined by the ISO 14046 standard that reflects the conceptual structure of
the LCA: goal and scope, inventory analysis, impacts assessment and interpretation. The system under
study was limited to the vineyard and winery (winemaking + bottling + packing) stages, but also
included many other indirect (upstream and downstream) processes such as energy production, fertilizer
production and transport between packaging production (bottles, boxes and corks), wine production
and distribution to the consumer, as shown in Figure 2.

Regarding the life cycle inventory for the WFP of wine production, a survey using questionnaires
was conducted to collect primary data from both the production of grapes in the vineyard and the
production of wine in the wineries. These primary data were the initial source of information for
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the WEP inventory. When needed, other scientific research was considered as a source for inventory
data [22,52].
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Figure 2. Main processes in wine production and its most relevant inputs and outputs.

Data collection is a significant and sensitive part of the assessment, mainly due to the difficulty in
obtaining primary data in situ. Companies may often omit or change some important information
in fear of legal actions or of losing proprietary information. Therefore, care should prevail in the
interaction with the organizations and in the analysis of the data at this stage of the LCA.

The vineyard questionnaire was divided into: (i) general information about the vineyard, (ii) soil
management practices, (iii) green management practices, (iv) irrigation system, (v) fertilization and
correction, (vi) production control and pest management (phytosanitary products), (vii) pruning,
(viii) grape harvest, (ix) energy consumed, (x) water consumption, (xi) maintenance of vehicles
and other equipment, (xii) transport, (xiii) information on wastewater and (xiv) climate information.
Regarding wine production in the winery, the questionnaire was separated into: (i) general characteristics
of the winery, (ii) energy consumption, (iii) water consumption, (iv) use of cleaning agents and
disinfectants, (v) oenological products, (vi) filling, labeling, packaging, palletizing and storage,
(vii) information on wastewater, (viii) waste produced and (ix) maintenance of equipment used.

The main difficulty was to obtain accurate answers, including disaggregated data for each stage
of the process. Once collected, data were validated against literature data, technical studies or by
professionals in the area. Additionally, further validation has been carried out including mass balances,
energy balances and/or comparative analysis of emission factors. Thus, values that do not fulfil the
validation criteria were rejected, assuming null values or replacing with values from the literature [53].

For this WFP study, GaBi Professional Software (Thinkstep) was used to estimate the direct and
indirect consumption of the WEP.

Finally, from an impact assessment perspective, the WFP profile was compiled for water
consumption in each process and some environmental impact categories were addressed, calculating
indicators concerning water consumption. For this same step, indicators were used to address both
midpoint (single factors) and endpoint (multiple integrated factors).

Life cycle impact assessment (LCIA) builds on data from the product life cycle inventory,
to address the impacts through specific environmental categories and indicators. There are several
environmental impact categories that can be associated to wine production’s water footprint. In this
study, we highlighted the following indicators: blue water, water scarcity index (WSI), acidification,
eutrophication and global warming potential. Water scarcity index is calculated based on the local
freshwater withdrawal/availability rate, and is often used as a characterization factor to assess water
consumption in LCA and water footprint studies (Table 2). Characterization factors were based on the
methodology proposed by the CML 2001 model [53] and updated to the 2016 data [54]. CML 2001 [53] is
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an impact assessment method that restricts quantitative modeling to early stages (midpoint categories)
in the cause—effect chain to limit uncertainties.

Table 2. Impact categories for quantitative and qualitative assessment of water consumption for
wine production.

Impact Category Unity Equation Reference
Acidification potential (AP) g S0, eq AP =Y, APixmi
Eutrophication potential (EP) g PO eq EP =}, EPixmi [54]
Global warming potential (GWP) kg CO, eq GWP = ), GWPa,iX mi
e 1k . _ 1
Water scarcity indicator (WSI) m3 equiv. WSI = e PWIAK gy 1) [55]

i

Note: APi—Acidification potential for a substance “i” emitted to the atmosphere in kg SOy-eq kg™! of emission;
EPi—Potential eutrophication for a substance “i” emitted in kg POy 3-eq kg™! of emission; GWPa, i—Global

i

warming potential for substance “i” integrated after one year, a, kg CO,-eq kg~! of emission; mi—emission of
substance “i” to the mass environment; WTA—Water stress is commonly defined by the ratio of total annual
freshwater withdrawals to hydrological availability.

3. Results

3.1. Water Footprint in the Vineyard

Accumulated vineyard evapotranspiration and its components, estimated by the SIMDualKc
model, are presented in Figure 3 for two very different years (2017 and 2018) at case study I (Leziria do
Tejo Region) and at case study II (Alentejo Region), the hottest and driest Portuguese wine region.
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Figure 3. Accumulated reference (ET,), actual evapotranspiration (ET. ,4j), transpiration (T) and soil
evaporation (Es) at case study I (a,b), and at case study II (c,d), estimated by the SIMDualKc model for
the vegetative cycles of 2017 and 2018.
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When comparing the vegetative cycle in different years, for case study I, a reduction in ET, of about
200 mm was observed in 2018 due to cooler conditions and increased rainfall (98 and 231 mm during
the vegetative cycle in 2017 and 2018, respectively), as observed in Figure 4. However, ET ,4; was
slightly higher in 2018 and, despite a slight decrease of T (17% higher in 2017), a significantly higher
Es was verified (2.3 times greater in 2018). The same tendency was observed in case study II for ET,,
with a reduction of 224 mm in 2018, due to the same reasons (117 and 332 mm during the vegetative
cycle in 2017 and 2018, respectively), as observed in Figure 5. Nevertheless, in case study II, ET. o4;
presented significant differences in both years, with a T about 35% lower in 2017 than in 2018. This can
be explained by the higher irrigation frequency in 2017, with lower amounts of water added each time,
once, in 2018, the irrigation strategy was changed (lower frequency and higher irrigation amounts).
Therefore, 56% and 25% of irrigation water was lost by evaporation from the soil surface during 2017
and 2018, respectively. When comparing the two different locations, it could be observed that the
amount of rainfall during the vegetative cycle was higher in the driest region in both years (48% and
140% of normal values for 2017 and 2018, respectively). In case study I, rainfall during the vegetative
cycle was 34% and 80% of 30 years average values for 2017 and 2018, respectively. Despite differences
in absolute values, there was only a 7% reduction in ET, among case studies in both years.
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Figure 4. Meteorological conditions at case study I—Leziria do Tejo region for (a) 2017 and (b) 2018.
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Figure 5. Meteorological conditions at case study II—Alentejo region for (a) 2017 and (b) 2018.

Since deficit irrigation strategies are generally adopted for grape quality reasons [56,57], it is
important to evaluate the water stress intensity. An important output of the SIMDualKc model is
the stress coefficient (Ks), estimated at the daily scale. Therefore, this model could be a useful tool to
evaluate the irrigation management, particularly in situations of deficit irrigation. Due to differences
in rainfall and irrigation amounts, both the intensity of stress and the beginning of the stress period
differed (Figure 6), being more severe and occurring earlier in 2017, as expected. In particular, at
case study II, the stress intensity was excessive, reaching an average Ks of 0.2 during the maturation
period, with minimum K of 0.13 before harvest. When comparing different locations, an earlier and
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faster decrease in K; at case study II was observed, despite the fact that greater rainfall occurred at
this location. This may be due to the smaller readily and total soil available water of this site, 58 and
115 mm respectively, and an inefficient irrigation management.
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Figure 6. Seasonal evolution of stress coefficients, estimated by the SIMDualKc model, at case study I
and II, during the vegetative cycles of 2017 and 2018.

The suitability of the irrigation strategy followed can also be assessed by soil evaporation, in
particular, that associated with irrigation, since a strategy with a higher number of irrigations (with a
correspondent lower volume) would contribute to a higher water volume content at soil’s top layers,
resulting in a higher soil evaporation. At case study I (sandy soil with a high hydraulic conductivity),
the irrigation frequency was weekly and irrigation water lost by evaporation was about 8% in both
years. At case study II (clay soil), the irrigation was carried out every two days with lower water
amounts and around 56% and 25% of irrigation water was lost by soil evaporation in 2017 and 2018
respectively, contributing to a less efficient use of irrigation water. One can conclude that the model is
capable of evaluating the irrigation scheduling, providing useful information to the farmer, supporting
their decision based on predicted crop water stress.

For evaluation of SIMDualKc performance, in particular during the irrigation period, Ks were
estimated by the model and then compared with K estimated by stress functions based in the predawn
leaf water potential (data from case study I and both years) and a good correlation (r? = 0.82) was found
between the two estimates (Figure 7), which confirms the model suitability to estimate the induced
stress by irrigation management and, at the same time, predict yield losses based on ETc,q4; assessment.

The monthly determination of grey WFP was performed for both years of monitoring and case
studies (Figures 8 and 9). For the determination of grey WFP, it was assumed that irrigation did not
contribute to the leaching of nitrogen once the applied irrigation corresponded to a deficit irrigation
that makes water percolation below root zone unlikely. The leached nitrogen was therefore considered
to be proportional to the amount of rain throughout the year.
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Figure 7. Relationship between K derived from stress function obtained for Tempranillo variety and
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Figure 8. Grey water footprint regarding case study I—Leziria do Tejo region, for both monitoring years.
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Figure 9. Grey water footprint regarding case study II—Alentejo region, for both monitoring years.

Regarding case study I (Figure 8), in 2017, the grey WFP was not considered because no fertilizers
were applied to the vineyard in the previous four years (including 2017) and, therefore, no residual
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nitrogen available to leach and cause grey WFP was assumed. In 2018, the grey WFP calculation was
performed for every month and ranged from 0 L/FU, in months with no precipitation, to 5.65 L/FU in
November, which corresponds to the month with the highest observed precipitation.

Regarding case study II (Figure 9), grey WFP calculation was performed for every month and
ranged from 0 L/FU, in months with no precipitation, to 18.59 L/FU on March 2018, which corresponds
to the month with the highest observed precipitation and, therefore, nitrogen leaching. In 2017,
the determined grey WFP was 77.64 L/FU and in 2018, it was 54.96 L/FU. This corresponds to a decrease
of about 29%, when comparing both years, and is mainly due to the higher production of 2018 since
the nitrogen applied and leached fractions were the same.

Overall grey WFP accounts for about 4.6% of vineyard WFDP, in case study I, and 8.7% and 7.1% of
vineyard WEFP in case study II, regarding 2017 and 2018, respectively.

Similar WFP were found in both years at case study I but, at case study 1II, a higher WF was found
in 2017 due to two main reasons: very low yield and very high irrigation water applied (Table 3). In both
case studies, the most relevant component of vineyard WFP was the green, representing on average
84% and 60% of the vineyard WFP respectively, for case study I and II. The blue WFP component is
the second most relevant with an average of 13% and 32% of the vineyard WEFP respectively, for case
study I and II.

Table 3. Vineyard direct water footprint components for case study I and case study II, in 2017 and 2018.

Accumulated  Productivity Vineyard WFP (L/FU)

Ye
ear ET Act (mm) (L/ha) Green Blue Grey Total
Case studv I 2017 433 9024 302 57 0 359
y 2018 460 9233 332 42 18 392
Case study II 2017 368 4215 594 224 78 896
y 2018 569 5955 417 299 55 771

Regarding the effect of climate change on the water footprint, the simulation performed for the
A1B scenario resulted in a strong increase in stress coefficients as well as in the vineyard blue WFP.
This translates into an increase of blue WEP of about 40% in case study I and 82% in case study 1I,
on average, resulting in a predicted increase of 5% and 22% of wine WEP respectively, for case study I
and II. As the main consequences of this scenario, the following can be highlighted:

1.  Anincrease in accumulated ET, (during the vegetative cycle) of around 160 mm for case study I
and 230 mm for case study II

2. Anearlier (28 days for both cases) and prolonged water stress period.

3. Anincrease in the intensity of stress coefficients: Ks will be 0.10 and 0.16 smaller at case study I
and II, respectively.

4. An increase of blue WFP of about 40% in case study I and 82% in case study II, on average,
resulting in a predicted increase of 5% and 22% of wine WEP, for case study I and II, respectively.

3.2. Water Footprint in the Winery Stage

Direct blue water footprint was determined monthly through the estimation of the water
evaporation and lost return flow. In Figures 10 and 11, blue water footprint values throughout the
year are shown, for case study I and II, respectively. For case study I, the comparison between the
two years demonstrates that the cooler conditions and higher rainfall occurred in 2018, which led to a
small decrease in evaporation and had no effect in blue WEP reduction. In fact, an increase of around
37% in blue WFP due to an august heatwave was verified, that induced an abnormal evaporation,
and resulted in a decrease in production of around 30% (Figure 10).
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Figure 10. Blue water footprint regarding case study I—Leziria do Tejo region, for both years
of monitoring.
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Figure 11. Blue water footprint regarding case study II—Alentejo region, for both years of monitoring.

Regarding case study 1I, the results were different from case study I once, beyond the reduction
of evaporation, an increase of around 35% in wine production resulted in a reduction of 42% of blue
water footprint. This is easily observed in Figure 11, where a significant reduction of blue WFP is
noticeable, when comparing 2018 with 2017. The only month which this pattern did not occur was
August, as the same heatwave reported for the case study I caused an abnormal increase in evaporation
and consequently, in blue WFP. The observed reduction in blue WFP was accomplished due to both the
increase of 35% in wine production and the higher water use efficiency observed at the winery in 2018.

Overall, direct blue WFP ranged from 0.11 to 0.15 L of water per FU in case study I and 3.26 to
1.90 L of water per FU in case study II, regarding 2017 and 2018, respectively.

Regarding direct grey WFEP, each case study presented a different situation. Case study I has a
treatment system that allows the reutilization of the treated water, during vineyard irrigation periods,
and the discharge at the natural water body, in the rest of the year. Case study Il has a treatment system
composed by evaporation lagoons that results in a zero discharge system. Grey WFP calculation was
performed considering the chemical oxygen demand (COD) as the limiting pollutant once it was
found as the pollutant that required the highest dilution volumes, according to its concentration at the
treated effluent and maximum allowed discharged concentration. According to Portuguese legislation
(DL 236/98) [58], the maximum allowed discharge concentration for the COD is 0.15 g'L_l, while the
natural concentration was assumed to correspond to 0.00 g-L 1.

For case study I, the monthly value of grey WFP was determined considering the amount of
effluent discharged and its characteristics (Figure 12). From May to October, there was no grey WFP
once during this period, the effluent was used in vine irrigation (diluted with fresh water, with a final
concentration of less than 2%), and was therefore considered as vineyard blue WEP.
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Figure 12. Grey water footprint regarding case study I—Leziria do Tejo region, for both years
of monitoring.

Overall, direct grey WFP was 7.10 and 9.40 L of water per FU, regarding 2017 and 2018, respectively.
When comparing winery grey WFP with the overall grey WFP, it is possible to verify that winery grey
WEP corresponds to around 34% of the total grey WFP of wine production, for case study I and 2018.
This means that winery grey WFP cannot be disregarded and that reduction measurements should be
implemented whenever possible.

Regarding case study II, there was no determined grey WEP since there is no discharge of wastewater
to the natural environment. The treatment system of case study II is composed by evaporation lagoons
with an operative capacity that allows no discharge of effluent across the year. The water used in winery
operations is therefore accounted in blue WFP once it will evaporate. This type of treatment system
will produce an environment impact when, in the future, the retained solid particles are removed and
disposed, but this process is outside the scope of this study and is therefore not accounted for.

When comparing vineyard and winery blue WFD, it is possible to verify that winery blue WFP
corresponds to less than 1% of vineyard blue WEFP, for case study I, and less than 1.5% of vineyard
blue WEP for case study II (Table 4). This means that blue WFP reduction measures will have a
greater impact on wine WFP if they are implemented on the vineyard, which does not take away the
importance of the efforts that should be performed also at the winery. Overall, from the analysis of
Table 4, it is possible to observe that vineyard stage of wine production has the highest impact on wine
WEP, with higher values in all WFP components, and accounting for more than 97.5% of wine WFP.

Table 4. Direct water footprint components for case study I and case study II, in 2017 and 2018.

.. Vineyard Winery Global
Accumulated  Productivity
Year  prAct (mm) (L/ha) WEP (L/FU) WEP (L/FU) WEP
Green Blue Grey Blue Grey (L/FU)
Case studv I 2017 433 9024 302 57 0 0.11 7.1 366
¥ 2018 460 9233 332 42 18 0.15 9.4 402
Case study II 2017 368 4215 594 224 78 33 0 899
2018 569 5955 417 299 55 1.9 0 773

3.3. LCA Indicators and Water Footprint Sustainability

In order to address the unsustainable use of global freshwater resources, many indicators are
needed to better understand the impacts of production systems, their consumption patterns and
to present a more transparent analysis. In the next sections, the main results related to the water
availability LCA indicators are shown.
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3.3.1. Indicators for Water Scarcity Assessment

Table 5 shows blue water footprint and Water Scarcity Index for both case studies calculated by
the LCA methodology, considering direct and indirect WFP. Despite the differences between both
indicators, Water Scarcity Index, based on withdrawal-to-availability ratio, followed a similar pattern
to that found for blue water footprint. This indicator incorporates regional water stress characterization
factors, taking into account water availability, use and seasonal/annual variation in precipitation.
As expected, the results on blue WFP, obtained with the LCA approach (considering both direct and
indirect blue water), were higher than those obtained with the WFN methodology (considering only
direct blue water). The identification of the vineyard stage as the most impactful regarding the blue
WEP component is consistent in both methodologies.

Table 5. Wine water footprint components for both case studies and 2018.

Case Study I Case Study II
Vineyard  Winery TOTAL  Vineyard Winery TOTAL

Blue water footprint—BWF

) 102.0 3.1 105.1 324.0 40 328.0
Water Scarcity Indicator—WSL -, 559 0.002 0.061 0.186 0.003 0.189
(m® equiv.)

In the vineyard stage, irrigation was the process that most influenced both indicators. In the
winery stage, cleaning processes are those that contributed the most to the blue water footprint and
WS, representing 77.9% and 75.8% for case study I and case study II, respectively.

To complement the previous results, the relative contribution of different processes linked to the
winery stage chain is also displayed (Figure 13). As we can see, cleaning process is the most relevant,
but indirect processes have a weight of 43.6% for case study I and 32.5% for case study II.

3.3.2. Indicators for Water Footprint Profile Assessment

Concerning the environmental impacts categories, Figure 14 shows the main results for acidification
and eutrophication potential, including the contribution of the different processes of the wine production
chain for both impact categories.
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Figure 13. Total blue water footprint (BWF) (m), water scarcity index (WSI) (m) and contribution of the
different processes linked to the winery stage for (a) case study I and (b) case study II.
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Figure 14. Total results for the potential for (a) acidification and (b) eutrophication for the vineyard
and winery stages in case study I (filled bars) and case study II (unfilled bars).

The total impact estimated for acidification was 1.28 g SO, eq for case study I and 2.11 g SO, eq
for case study II. The impact on eutrophication was 0.38 and 0.55 g PO,3~ eq, for case study I and case
study II, respectively.

Both case studies showed similar behaviors regarding the contribution of the processes to the
acidification and eutrophication categories, highlighting the high contribution of indirect processes
belonging to the winery stage. Production of glass bottles, a process indirectly linked to wine
production, was identified as an important source of both impacts. The wastewater was the most
relevant for eutrophication but had little effect on acidification.

With regard to vineyard, the consumption of fuels by agricultural machinery and the production
of chemicals (pesticides and fungicides) were the main contributors for both impact categories.
The relative contributions of both processes for acidification were 45.1% and 41.5% respectively, for
case study I, and 50.8% and 39.2% respectively, for case study II. NOx emissions from fuel combustion
were responsible for approximately 47% and 62% of the impacts of the acidification potential for the
vineyard. In relation to eutrophication, interventions by tractors and the production of fungicides
accounted for approximately 70% and 12% of the total impact, respectively.

The total magnitude of Greenhouse Gases (GHG) emissions was about 0.29 and 0.43 kg CO; eq
for case study I and II, respectively. In both cases, wineries have higher contributions than vineyards,
about a factor of two for case study I and a factor of four for case study II. CO, was the pollutant that
most contributed to the global warming potential for production in both systems. The emissions of this
pollutant were mainly due to the use of tractors in the vineyard, production of electricity, production
of raw materials (e.g., pesticides, glass bottles, packaging) and the transport involved.

The results for this indicator can also be separated by processes that are directly and indirectly
linked to the wine production chain. In this sense, in the present study, the impact due to upstream
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or downstream production processes was estimated at 93.1% (case study I) and 95.8% (case study
II). The indirect processes included within the system boundary were the production of electricity,
the production of pesticides and the production of raw materials, among others.

On average, the vineyard caused a total emission of 0.07 kg CO; eq, to the global warming
potential (0.08 kg CO, eq corresponding to case study I and 0.06 kg CO; eq to case study II), as shown
in Figure 15. The processes that produced the greatest impacts on the vineyard were production of
pesticides interventions with tractors and power generation. The vineyard of case study Il is a more
significant source of GHG.
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Figure 15. Total results for carbon footprint in the vineyard and winery and the main pollutants for
(a) case study I and (b) case study II for the year 2017.

The contribution of the winery stage (see Figure 16) for the total global warming potential was
about 75% and 85% for case study I and case study II, respectively. In this stage, wine bottling and
packaging processes represent about 50% for case study I and 75% for case study II of the total impact.
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Figure 16. Global warming potential values for the winery. Note: case study I (closed bars) and case
study II (open bars) for the year 2017.
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The correlation between carbon and water footprint was also investigated. Figure 17 shows a
comparison between indirect blue water footprint (vineyard + winery) and global warming potential
for the different processes involved in the wine production chain.
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Figure 17. Global warming potential (bars) versus blue water footprint (lines) for wine production in
case study I (closed bars and solid line) and case study II (open bars and dashed line).

For the two case studies, there was a trend and a correlation between both indicators, demonstrating
that when a process has a higher blue water footprint, it also has a higher contribution to global warming.
A linear correlation between the global warming potential (carbon footprint) and the indirect
blue water footprint can be observed for both case studies in Figure 18. The results showed a good
correlation for both case studies, with 97.2% and 99.3% for case study I and case study II, respectively.

The values indicate a direct proportionality between the indicators for the processes involved.
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Figure 18. Correlation between global warming potential and indirect blue water footprint for (a) case

study I and (b) case study II

4. Discussion

This study is an important improvement on previous work as it brings WEP calculation to the
farm level, with case studies, giving more reliable data instead of assumption data from a regional
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point of view. This type of level C assessment allows the identification of constraints or hotspots that
would not be noticeable at regional or national levels.

4.1. Direct Water Footprint in the Vineyard

The evaluation of WFP at the Mediterranean Basin, where the effects of climate change will be
most pronounced [59], require accurate estimations of evapotranspiration (ET) and its components
(T and Eg). The validation of tools that allow the assessment of the sustainability of wine grapes’
production are therefore crucial for improving water management practices [60].

The FAO 56 methodology is recommended for evapotranspiration estimation [39]. Two calculation
approaches can be used: the single and the dual crop coefficient approach. For row crops such as
vineyards, soil surface has a determinant impact on energy balance and water status. Therefore, E; and
T must be considered separately when predicting vineyard water requirements [61]. In this work,
we followed the second approach using the SIMDualKc model [42]. This model has been used for
annual crops [41,62] and wine grapes [63] and was able to estimate both Es and T based on a soil
water balance simulation. By segregating ET. into both components, it is possible to better assess the
irrigation management in terms of beneficial water use (T) and water losses (E;). Basal crop coefficients
(Kep) used in the SimDualKc Model, namely the K, ini, Keb mig and K, end, were estimated from
functions of Vegetation Indexes (VI). In fact, a correlation was found between the crop coefficient curve
and the satellite-derived vegetation index, indicating the potential for modeling a crop coefficient
as a function of the vegetation index [64]. This approach is particularly useful when applied at the
irrigation sector level. Therefore, this information is greatly appreciated by the end users and can be
provided in an easy-to-use manner and in near-real-time by using the improvements achieved with
Geographic information Systems (GIS) [65]. The VI applied in this work (NDVI and SAVI) are the most
commonly used VI to estimate actual K. and K, [66], with SAVI being more adequate to evaluate
the increase of high LAI (NDVI saturation problems) and NDVI more sensitive to soil background
reflectance changes due to the moisture of the soil surface.

Another issue is the quantification of water stress intensity due to the deficit irrigation applied,
once, in this situation, grapevine stomatal control assumes an important role on crop transpiration
and accurate stress coefficients (Ks) are needed to quantify the impact of stomatal closure on actual
ET. The SIMDualKc model features this capability to estimate crop stress induced by water shortage
and, for vineyards, this proves to be a useful tool to assess the impacts of deficit irrigation strategies,
aiming at quality improvement.

As referred to in the results, the most relevant component of vineyard WFP was the green followed
by the blue. The distribution of ET water by the green and blue components is directly linked with
the climate of the region. In this study, case study Il presented a higher proportion of blue water use,
in comparison with green, since it is located in the hottest and driest region of Portugal.

In the vineyard, it is common to determine grey WFP based on nitrate, which is widely considered
as the major pollutant, but the use of this indicator as a regulatory police decision is not straight forward
as it could lead to a conservative estimate of grey WEP in case there is a more problematic nutrient or
pesticide. The most critical pollutant should therefore be identified in each case [19]. On grey WFP
calculation, it was decided to follow the methodology of Hoekstra et al. [8], and therefore, considering
that the natural concentration of nitrogen was 0 kg'm~2, this may result in an underestimation of
vineyard grey WFP. Regarding vineyard activities, climate change is expected to strongly impact the
wine production. The observed warming over the last fifty years in wine regions worldwide has
benefited some regions by creating more suitable conditions while others have been challenged by
increased heat and water stress [2]. That is the case of the two wine regions under study and assuming
the A1B scenario, defined by Jacob et al. [47]. In fact, if the goal of the winegrower is to produce quality
grapes, we can expect an increase of around 40 mm in irrigation water for both cases, with 83 and
300 mm being the total irrigation water to apply during the vegetative cycle, to case study I and
II, respectively.
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However, it is important to highlight that heat stress can also have important detrimental impacts
in berry composition, in particular at the primary and secondary metabolites level, such as total acidity,
aroma precursor profiles and phenolic composition [67,68], severely challenging the ability to produce
quality wine. The number of expected days with maximum daily temperatures above 40 °C, for the
period 2070-2100 used in the A1B scenario, will be about 15 for study I and 30 for case study 1I,
with the absolute maximum temperatures approaching 50 °C. This increase in maximum temperatures
will have a negative impact on photosynthesis and sunburn risks. Also, the cool night index (CI),
an index developed as an indicator of night temperature conditions during maturation and strongly
related with vintage quality (sugar, color, aroma) [69], will shift to the class of warm nights (>18 °C),
reaching 18.6 and 20.2 °C, at case studies I and II, respectively.

4.2. Direct Water Footprint in the Winery

At the winery, WFP is related to the equipment and practices used, as well as the treatment
efficiency of the wastewater treatment plant. Regarding grey WFP, usually the main component of
WEP at the winery stage [27,70], it was noticeable that it has a high dependence on the wastewater
treatment system, as well as its proper maintenance and management.

In case study I, there is an aerobic wastewater treatment system that allows its reuse in vineyard
irrigation from May to November. During this period, the treated wastewater is incorporated into the
irrigation system and used for vineyard irrigation, being accounted as vineyard blue WFP, while in
the rest of the year, it is discharged into the water body. If the water quality standards are not met,
this discharge will lead to a pollutant load and consequent grey WFP. Some authors considered that
winery grey WFP was nonexistent or almost nonexistent [14,20,28], while other authors consider that
winery grey WEFP exists [16] and may be the most important component, if compared with the overall
value of winery WFP [27,31,70]. For both monitored years, the grey WFP component was responsible
for more than 98% of winery WFP, as was also observed by Pina et al. [70]. Regarding the blue WFP,
and since there is no incorporation of water, the accounting is only for the evaporation of water in the
wastewater treatment plant, which is almost insignificant given the low superficial area of the treatment
system [10,21,27]. Overall, and when considering both monitored years, blue WFP corresponded to
about 1.6% of winery WFP. An increase of 32% of winery WFP was also observed from 2017 to 2018
and was mostly related to the observed decrease in production (around 30%) that was caused by the
atypical meteorological conditions of 2018.

In case study II, there is no grey WEP, in light of the typology of the treatment system. The existing
treatment system consists of evaporation lagoons that allow the wastewater produced to be stored
throughout the year without being discharged into the natural water body. In this case study, the
water is evaporated in the lagoon (blue WFP), being dependent on the area of the lagoon and the
atmospheric conditions. This means that blue WFP accounts for all the water used in winery activities,
either considering evaporated water or the lost returned flow (when water is not evaporated but remains
stored in the evaporation lagoons). Overall, winery WFP ranged from 3.3 L/FU in 2017 to 1.9 L/FU in 2018,
corresponding only to blue WFP since there is no grey WFP component in case study II, as previously
mentioned. The reduction of 42% in winery WFP was caused by the implementation of measures
regarding water use efficiency combined with the higher wine production observed. In fact, the increase
in wine production allowed a more efficient use of winery equipment that resulted in a decrease of
around 28% of the annual water consumption while still increasing the wine production by 35%.

Regarding winery activities, climate change is not likely to produce significant changes in winery
WEP due to its low dependence on meteorological conditions. Although it is expected to contribute to
higher blue WFP, due to higher evaporation, blue WFP only represents less than 1% of wine WFP and
its contribution will therefore be negligible.

Nevertheless, the assumptions used in the calculation of the water footprint present some
weaknesses, since this methodology does not consider water consumption, but rather the transformation
of fresh water into grey water. As the grey water calculation is done through the pollutant load
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(kg/day), this means that a winery that uses the best available practices regarding water use efficiency
may have the same grey WFP value as other wineries that do not care about water use efficiency,
as long as they produce the same pollutant load and work a similar amount of grapes. The authors
consider that the introduction of a correction factor that considers the water consumption indexes of
each winery would be an improvement for WFP calculation according to the WEN methodology.

4.3. Water Footprint Sustainability Assessment

As mentioned earlier, the water footprint sustainability assessment was based on water scarcity
footprint and some of the most used LCA environmental impact categories. In general, based on two
case studies of the Portuguese wine sector, it was possible to identify the most impactful processes for
the environment (hotspots).

The blue water footprints obtained in our study were slightly lower than those obtained in other
research, however, according to other studies, we can infer that there is still a margin to reduce the
consumption and/or improve the efficiency of water use [14,19].

With regard to the contribution of viticulture to the environmental impacts, fuel consumption by
agricultural machinery and the production of chemicals (fungicides and pesticides) were the most
relevant processes, as found by Villanueva-Rey et al. [26]. This fact is a consequence of intensive
mechanized agriculture that will need more environmentally friendly technological advances to make
the sector environmentally sustainable or to increase the level of sustainability.

The contribution of wineries to acidification and global warming environmental impacts are
mainly due to upstream or downstream processes, whose contribution was respectively estimated
at around 92% and 81%, while for eutrophication, the direct processes presented a slightly greater
contribution compared to indirect processes.

The indirect processes included within the system border were the production of electricity,
the production of raw materials, the production of glass bottles and cardboard packaging. The results
related to the acidification impact category were similar to those reported by Villanueva-Rey et al. [70]
who reported values in the range of 0.60 to 5.04 g SO, eq. In another study carried out in the region
of Galicia (Spain), for a period from 2000 to 2009, Villanueva-Rey et al. [26] estimated values for
acidification between 1.14 g SO; eq (in 2004) and 3.25 g SO, eq (in 2008). In relation to eutrophication,
Villanueva-Rey et al. [71] obtained values ranging from 0.17 to 2.29 g PO,>~ eq for three different
viticulture techniques implemented in Ribeiro (Spain).

In what concerns the global warming impact category, the results were within the lower range
reported in the literature estimated by cradle to the gate LCA methodologies, in which the interval
varies between 0.26 and 1.92 kg of CO, eq [72]. Borsato et al. [25] estimated a contribution of 96.5% for
upstream and downstream processes. The contribution of the winery stage for the global warming
potential is similar to that reported by Fusi et al. [73] with a 56% contribution form bottling and wine
packaging. For Iannone et al. [74], the winery was also the stage that most contributed to global
warming potential.

The linear relationship between the indirect blue water footprint and carbon footprint show some
complementarity between both concepts. Linearity was also found in other studies for carbon footprint
and water footprint indicators. Bonamente et al. [21] reported correlation coefficient values of 90%
and 92%, also indicating a good correlation between the two indicators. Rinaldi et al. [22] showed
lower values, with a correlation coefficient between 70% and 73%. Although there are also differences
between both concepts, since a carbon emission in one place can be offset by carbon emission reduction
or sequestration in another place, one cannot reduce the local impact of water use in one place by
saving water in another place. Reducing water footprint of a product, process or service can be part of
any business environmental strategy aiming at reducing the carbon footprint. In general, the results
showed that reducing water consumption and improving water use efficiency will introduce benefits
in water availability and the environment.
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4.4. Strategies to Mitigate Water Footprint

Efforts towards sustainability can be achieved throughout the different phases of the production
process. With regard to viticulture stage, although the environmental impacts are a consequence of the
mechanization of an increasingly intensive agriculture, it is possible to introduce more eco-efficient
practices, such as establishing targets for the reduction of phytosanitary and fossil fuels. Results obtained
from scenario analysis involving 10% reduction in the use of phytosanitary products and 20% of
fossil fuels used in agricultural machinery showed environmental gains in all categories, especially
in acidification and eutrophication potential, with a reduction of up to 30%. Other strategies
leading to environmental gains at the vineyard stage can involve the use of biodiesel in agricultural
machinery during operations [75], as well as technological changes in all agricultural machinery. Also,
the predicted strong impacts of climate change will force other adaptation measures, in particular
for case study II. Among them, we can highlight modifications in plant material (grapevine varieties,
clones and rootstocks), vineyard management techniques (grapevine architecture, canopy management,
rows orientation, shade nets, harvest dates, vineyard floor management, timing of harvest and irrigation)
or site selection (altitude, aspect and soil water-holding capacity) [76]. As verified in this study, irrigation
management techniques may have a significant impact on water loss and correspondent WFP. In case
study II, the changes introduced in irrigation scheduling and duration (2018 year) allowed a 55%
reduction on the amount of irrigation water loss by evaporation.

In relation to the winery, the aim of implementing best production practices is also to ensure
a high level of environmental protection as a whole [77]. Although the wineries under study have
implemented best production practices regarding efficient use of water, there are still opportunities
for improvement, which have been identified as hotspots. Industries that focus on continuous
improvement become more competitive over time by keeping advantages in their industry, but only
if improvement efforts are made correctly. One of the weaknesses found was the lack of continuous
training and awareness among operators. On the other hand, awareness signs for the efficient use of
water, written procedures with the stages of the cleaning process, mention of the appropriate products
and contact times are essential and are already in place. Some strategies that can be implemented
regarding water use efficiency are: the adoption of dry cleaning before washing with water, the use
of clean in place systems that allow the recovery of the cleaning solution, the use of pressure washer
systems, reducing both water consumption and making the cleaning process more effective, the use
of hot water that can reduce the amount of caustic soda needed and the separation and removal of
solids larger than 0.5-1.0 mm, allowing the reduction of the organic load of the wastewater directly at
the cleaning activities. The shorter the contact time between the solids and the wastewater, the lower
the amount of organic load. Other relevant strategic measures can involve the use of renewable
energy sources, the use of lighter glass bottles, reverse bottle logistics and other pollution prevention
methods, for promoting more eco-efficient production systems. Scenario analysis performed in this
study showed that the reduction in the weight of glass bottles by 30% results in a 5-7% reduction in
the impact categories. Specifically, in the Global Warming category, to which glass production makes a
high contribution, the reduction was 6% or 0.027 kg CO,-eq per bottle, which is equivalent to 27 tons
of CO,-eq that will not be released into the atmosphere. Higher reductions were reported in other
studies [78,79], where the adoption of 30% lighter glass bottles resulted in reductions of up to 11% for
all impacts associated with the life cycle of a wine bottle. These advantages result from the lower use
of energy and raw material for the production of the glass bottle, as well as reduced impacts in terms
of transport.

Good baseline measures and continuous action will help to identify the effectiveness of ongoing
efforts, allowing stakeholders to adapt to the challenges foreseen in climate change scenarios,
where water scarcity is a reality.
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5. Conclusions

Future impacts of climate change on the Mediterranean water resources are not favorable for the
wine sector. In this study, an integrated methodology for WFP was applied to Portuguese case studies
highlighting the most impactful processes and strategies to overcome the challenges of climate change
along this value chain.

When comparing both case studies, it was possible to observe that edaphoclimatic conditions
play a key role on global value of wine WEFDP, as well as in the distribution among its components.
Green water was the most representative component of the overall WFP. When segregated values
were analyzed, it was found that the vineyard comprises most of the WFP (98-99%) and the irrigation
was the process that most influenced both blue WFP and WSI. Concerning the winery stage, cleaning
process was the most relevant contributor to both WFP and WSI, followed by the indirect impact
of electricity production. Nevertheless, the winery stage was responsible for more than 75% of the
global warming potential indicator, where wine bottling and packaging processes represented the most
impactful stage. This indicator reveals the importance of a more comprehensive impact assessment.

The predicted impact of climate change (A1B scenario) in the water footprint indicator evaluated
by simulations revealed an increase of about 40% and 82% in blue WFP, resulting in an increase of
wine WFP of 5% and 22%, regarding case study I and II, respectively. Since considerable reductions in
rainfall and significant increase in air temperature are expected, the wine sector must take firm steps
in the search and implementation of winning strategies in terms of consumption and efficient use
of water.

The approach used in this study proved to be a useful tool for stakeholders as it uses a decision
support methodology to evaluate water use performance and improve the sustainability of the wine
chain. Also, this can be helpful to policy-makers to conceive funding mechanisms that benefit
sustainable farmers towards improving wine sector performance.
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