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Resumo 

 

O Cofactor B da Tubulina de Toxoplasma gondii tem um papel central na invasão da 

célula hospedeira e na replicação 

 

Os parasitas protozoários pertencentes ao Filo Apicomplexa são agentes patogénicos 

responsáveis por um vasto leque de doenças. Apesar da grande biodiversidade deste filo, os 

mecanismos moleculares adjacentes ao processo de invasão das células hospedeiras parecem 

ser conservados entre as diferentes espécies. 

O processo de invasão das células hospedeiras tem gerado grande interesse em vários 

grupos, incluindo o nosso, visto ser um importante alvo para o delineamento de estratégias 

médicas profilácticas e terapêuticas. Assim, nos últimos anos o nosso grupo tem vindo a 

interessar-se pelo estudo e compreensão do envolvimento do citoesqueleto de microtúbulos, 

tanto do parasita como da célula hospedeira, no processo de invasão. 

Os nossos resultados anteriores em Besnoitia besnoiti mostraram que este parasita, 

aquando da interação com a célula hospedeira, sofre alterações dramáticas na sua forma e 

superfície, acompanhadas pela remodelação de estruturas específicas de microtúbulos (MTs), 

nomeadamente os MTs subpeliculares. Estas alterações foram evidenciadas através de uma 

marcação distinta da tubulina na zona posterior do parasita. Para além disso, o citoesqueleto de 

MTs da célula hospedeira também responde à entrada do parasita, resultados que, 

posteriormente, foram também obtidos em Toxoplasma gondii. 

Estudos anteriores em T. gondii demonstraram que os MTs subpeliculares são muito 

estáveis. Esta estabilidade está possivelmente relacionada com modificações pós-traducionais 

(MPT) da tubulina, uma vez que, ao contrário dos vertebrados, estes organismos possuem uma 

família multigénica de α- e β-tubulinas composta por um número reduzido de membros. As 

MPTs referidas parecem modelar a interação dos MTs com as proteínas que lhes estão 

associadas. Mais ainda, em T. gondii, foram descritas proteínas que cobrem os MTs, num 

padrão complexo e definido, e que são importantes para a estabilidade dos mesmos. Deste 

modo, as proteínas que interagem com os MTs podem desempenhar um papel crucial na 

regulação do citoesqueleto do parasita aquando da invasão da célula hospedeira. 

Outras proteínas importantes para a regulação da dinâmica do citoesqueleto de MTs são os 

cofactores da tubulina, os quais participam nas vias de “folding”, dimerização e dissociação do 

dímero de tubulina. Estes cofatores controlam a proteostase da tubulina, através do controlo da 

“pool” de tubulina solúvel, participando na regulação da dinâmica dos MTs in vivo. 

Consequentemente, estas proteínas são candidatas a desempenhar um papel crucial nas 
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modificações observadas no citoesqueleto de MTs do parasita aquando da invasão da célula 

hospedeira. 

Neste contexto o nosso objetivo principal foi avaliar e caracterizar o papel do Cofator B da 

Tubulina (TBCB de “Tubulin-binding cofactor B”) em T. gondii. Esta é uma proteína 

relativamente pequena que possui um domínio CAP-Gly na sua extremidade C-terminal e um 

domínio semelhante à ubiquitina (UBL de “ubiquitin-like”) na extremidade N-terminal. Em 

conjugação com o Cofactor E da tubulina (TBCE de “Tubulin binding cofactor E”), o TBCB 

dissocia o dímero de tubulina, controlando desta forma a “pool” de tubulina solúvel disponível 

na célula e consequentemente a dinâmica do citoesqueleto de MTs. 

A escolha do parasita protozoário T. gondii como modelo biológico deve-se ao facto de o 

mesmo possuir um genoma totalmente sequenciado e bem anotado, juntamente com o vasto 

conjunto de ferramentas disponíveis para a sua manipulação genética.  

Neste trabalho identificámos o gene do Tbcb em T. gondii, analisámos os níveis de 

expressão por RT-PCR durante o processo de invasão da célula hospedeira e de replicação, 

estudámos a localização intracelular do TgTBCB usando um anticorpo produzido no nosso 

laboratório e recorrendo a microscopia confocal e de super resolução, examinámos o fenótipo 

de TBCB em excesso (sobre-expressão por integração ao acaso) e de ausência do TBCB 

(deleção do gene utilizando o sistema CRISPR/Cas9). Nestes dois últimos casos foram criadas 

e selecionadas linhas transgénicas de parasitas, as quais foram analisadas em ensaios de 

crescimento (formação de pacas, invasão, replicação e egresso) bem como por western blot e 

por microscopia de fluorescência.  

Da análise dos níveis da expressão do Tbcb de T. gondii durante o processo de invasão e 

de replicação do parasita na célula hospedeira, notámos uma diminuição significativa dos níveis 

de expressão às 4 horas após a invasão da célula hospedeira, à qual se seguiu uma fase de 

recuperação desses níveis.  

Quanto à localização sub-celular do TgTBCB, observámos que em T. gondii esta proteína 

tem uma localização polarizada, estando localizada essencialmente no polo anterior, junto do 

conoide, podendo, por vezes, ser também observada uma marcação menos abundante no polo 

posterior. Constatámos ainda que o TgTBCB co-localiza parcialmente com as proteínas 2 e 3 

das micronemas e com a tubulina glutamilada. Foi ainda possível constatar que na região apical 

o TBCB em T. gondii parece co-alinhar com os MTs subpeliculares, MTs que afunilam para 

estarem ancorados ao anel polar. Desta forma, o TBCB também parece estar junto ou 

imediatamente abaixo ao anel polar apical. 
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Observámos que o excesso de TgTBCB causa uma queda acentuada na capacidade de 

formar placas de lise em tapetes celulares, a qual foi acompanhada de forma proporcional por 

uma diminuição notória dos níveis de invasão de células pelos parasitas. Curiosamente, não 

verificámos qualquer alteração na replicação ou no egresso dos mesmos. 

Em relação à deleção do gene Tbcb do parasita, 72 horas após a indução da CRISPR/Cas9 

comprovámos a completa ausência de TgTBCB por western blot. Observámos também que a 

viabilidade dos parasitas sem TgTBCB não supera uma semana e que após a indução da deleção 

do gene, os parasitas demonstraram uma enorme redução na capacidade de invasão e também 

de replicação. Isto é, os poucos parasitas que conseguiam invadir as células hospedeiras 

apresentavam enormes problemas na replicação. Por western blot, nos extratos proteicos 

insolúveis, notámos uma diminuição nos níveis de a-tubulina, tubulina acetilada e 

poliglutamilada. Estes resultados também foram confirmados por imunofluorescência. 

Constatámos ainda que os parasitas sem TgTBCB apresentavam vários problemas de divisão, 

entre eles a alteração do eixo de divisão, a perda do controlo da divisão e a formação de células 

com morfologia arredondada, compatível com a perda de polaridade. Por microscopia 

eletrónica observámos também a perda de polaridade dos parasitas bem como a presença de 

núcleos de dimensões muito superiores ao normal ou dois núcleos dentro da célula, sem que a 

divisão celular tivesse sido concluída.  

Concluindo, o TgTBCB é uma proteína com uma localização polar, sendo observada no 

polo anterior abaixo do conoide e junto ao anel apical polar, acompanhado os MTs 

subpeliculares na região apical. A sua co-localização parcial com as proteínas das micronemas 

e com os MTs subpeliculares, bem como os seus parceiros já descritos em células de mamífero 

(proteínas de ligação aos MTs), juntamente com o fenótipo de invasão, sugerem que esta 

proteína em T. gondii poderá estar envolvida no tráfego vesicular ao longo dos MTs 

subpeliculares.  

A sobre-expressão do TgTBCB demonstrou a importância desta proteína no processo de 

invasão e a sua deleção provou que é essencial quer para a invasão quer para a replicação do 

parasita, visto que na ausência de TgTBCB há um comprometimento irreversível do 

citoesqueleto de MTs do parasita, levando à morte em menos de uma semana. Este fenótipo, 

aparentemente, está associado à diminuição dos MTs subpeliculares bem como à 

impossibilidade de formar novos MTs nas células filhas.  

Em suma, o TgTBCB é uma proteína essencial em T. gondii, podendo constituir um novo 

potencial alvo para novas estratégias de controlo e tratamento do parasita.  
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Abstract 

 

Tubulin cofactors participate in the folding, dimerization, and dissociation pathways of the 

tubulin dimer, being implicated in the control of tubulin proteostasis and consequently in the 

control of microtubule (MT) dynamics in vivo. We hypothesise that these proteins have a role 

in the regulation of MT cytoskeleton dynamics during Toxoplasma gondii host cell invasion. 

In this context, we characterized the Tubulin cofactor B (TBCB) in T. gondii. TBCB is a CAP-

Gly domain-containing protein that together with TBCE, interact with and dissociate the tubulin 

dimer.  

The TBCB sub-cellular localization in T. gondii was studied using an in-house anti-TBCB 

serum. T. gondii lines overexpressing TBCB were obtained by random integration as well as 

TBCB conditional knockout lines by CRISPR/Cas9 system. TBCB transgenic clones were 

characterized by growing assays (plaque, invasion, replication and egress assays), western blot 

analysis and fluorescence microscopy (standard, confocal and super-resolution). 

TBCB showed a polarized localization, at the anterior region of the parasite, under the 

conoid and in close association with polar ring and subpellicular MTs. It did not present a clear 

co-localization with the apical complex secretory vesicles, although the interaction with 

rhoptries and micronemes cannot be excluded. TBCB overexpression lines showed a significant 

decrease in the capacity to form plaques, attributable to a proportional reduction in the capacity 

to invade. No differences were observed in replication and egress assays. The TgTBCB 

knockout line, showed a complete depletion of the protein and a viability no longer than a week. 

These lines showed a strong reduction in their capacity to invade the host cell and in their 

replication rate. In the absence of TBCB, cells have an altered axis of division resulting in 

abnormal division. Some parasites show the loss of the correct division axis and some parasites 

have four daughter cells forming inside instead of two.  

TBCB is a polarity marker in T. gondii and is involved in the invasion and replication 

processes. Its apical localization, together with TBCB mammalian partners already described 

(MT associated proteins) and the invasion phenotypes, suggest that TBCB can be involved in 

the intracellular traffic of secretory vesicles depending on MTs. Importantly, TBCB is an 

essential protein, constituting a good target for new control strategies. 

 

Keywords: Toxoplasma gondii, host cell invasion, tubulin, tubulin-binding cofactors 

(TBCs), Tubulin-Binding Cofactor B (TBCB) 
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Chapter I: Introduction  

 

1. Toxoplasma gondii 

 

Toxoplasma gondii is arguably the most successful parasite worldwide. This organism is 

thought to be capable of infecting all warm-blooded animals including humans and can be 

found in most regions of the world (Innes, 2010). It is one of the most well-studied parasites 

due to its medical and veterinary importance (Dubey, 2008).  

T. gondii belongs to the Phylum Apicomplexa (Levine, 1970), Class Sporozoasida 

(Leukart, 1879), Subclass Coccidiasina (Leukart, 1879), Order Eimeriorina (Leger, 1911), and 

Family Toxoplasmatidae (Biocca, 1956) and it is the single species in the genus Toxoplasma 

(Barta, 1989; Hill & Chirukandoth, 2005). It is a coccidian parasite with felids as the definitive 

hosts, and warm-blooded animals as intermediate hosts (Frenkel, Dubey, & Miller, 1970).  

Members of the phylum Apicomplexa are known for their apical complex, an essential 

structure for host cell invasion, consisting of a specialized microtubule (MT) structures and 

secretory organelles (C. A. Hunter & Sibley, 2012). 

 

1.1. History 

 

T. gondii was discovered by accident, in 1908 by scientists working with Leishmania 

(Dubey, 2009; Innes, 2010). Charles Nicolle and Louis Manceaux, who were working in 

Tunisia, searching for a reservoir of Leishmania in a native rodent, Ctenodactylus gundi, found 

a new protozoan in tissues. This hamster-like rodent, the gundi, which lives in the foothills and 

mountains of Southern Tunisia, it was commonly used to study Leishmania at the Pasteur 

Institute in Tunis (Dubey, 2008; Innes, 2010). In the same year (1908), Alfonso Splendore, also 

studying Leishmania, discovered the same parasite in a rabbit in Brazil (Dubey, 2008). 

Nicolle initially believed the parasite to be a piroplasm rather than Leishmania, but soon 

realized that he had discovered a new organism and named it T. gondii based on the morphology 

and the host. The name Toxoplasma means ‘arc form’ in Greek and was named according to 

the crescent-shaped morphology of the tachyzoite and bradyzoite stages of the organism 

observed by the scientists (Dubey, 2008; Innes, 2010). Interestingly, the correct name for the 

parasite should have been T. gundii, but Nicolle and Manceaux had incorrectly identified the 

host as the rodent Ctenodactylus gondi gundi (Dubey, 2008). 
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Following the next years, several other reports appeared and species of Toxoplasma were 

named with reference to the host species in which they were detected (Dubey, 2008; Innes, 

2010). By 1935 Sabin and Olitsky accidentally obtain the first isolation of T. gondii early in 

this year, in the course of experimental work with viruses (Sabin & Olitsky, 1937). 

Nevertheless, the biological and immunological characteristics of the different Toxoplasma 

isolates obtained from animals and humans showed them to be identical to T. gondii (Sabin, 

1939). In fact, although T. gondii has a worldwide distribution and perhaps the widest host 

range of any parasite, there is only one species in the genus Toxoplasma (Dubey, 2008). In the 

following years, the research on this parasite increased considerably and important discoveries 

were made about its biology. The ease with which the parasite can be cultured in the laboratory 

and the wide range of animal models available have made T. gondii a very accessible model 

organism for scientists (Innes, 2010).  

 

1.2. Epidemiology 

 

T. gondii is one of the world’s most common parasites, infecting most genera of warm-

blooded animals (virtually all warm-blooded animals, including mammals and birds) (Elmore 

et al., 2010; Flegr, Prandota, Sovičková, & Israili, 2014; Robert-Gangneux & Dardé, 2012; 

Wilking, Thamm, Stark, & Aebischer, 2016). It is the most prevalent infection in humans 

(estimated to be 25–50% of the world population), more than latent tuberculosis which infects 

about one-third of the human population (Flegr et al., 2014; Robert-Gangneux & Dardé, 2012; 

World Health Organization, 2016). 

The importance of toxoplasmosis in humans remained unknown until the first reports of 

cases of congenital toxoplasmosis in 1948 (Smitt & Winblad, 1948). Nowadays, toxoplasmosis 

is considered a very important disease not only for human medicine but also for veterinary 

medicine. In Humans, severe disease is usually observed in congenitally infected children and 

in immunosuppressed individuals, including patients with acquired immune deficiency 

syndrome (HIV/AIDS) (Y. Zhou, Zhang, Cao, Gong, & Zhou, 2016). Moreover, the congenital 

toxoplasmosis (transmission to the fetus when a pregnant woman acquires T. gondii infection 

for the first time during pregnancy) can result in abortion or lead to severe malformation of the 

fetus or to visual or neurological injuries in the newborn, such as hydrocephalus, cerebral 

calcification and/or chorioretinitis (Gargaté et al., 2016). For the veterinary medicine, 

toxoplasmosis is one of the major causes of neonatal infections and abortion in sheep and goats. 
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Cats, dogs, and many other pets can die of pneumonia, hepatitis, and encephalitis due to 

toxoplasmosis (Y. Zhou et al., 2016).  

T. gondii has a wide spectrum of prevalence across the globe. Seroprevalence of infection 

measured by specific anti-Toxoplasma IgG antibodies varies between 1 % and 100 % 

depending on the geographical area, the environmental and socioeconomic conditions, 

including eating habits and health-related practices (Flegr et al., 2014; V. Klaren & Kijlstra, 

2002). The lowest seroprevalence (~1 %) was found in some countries in the Far East and the 

highest (>90 %) in some parts of European and South American countries (Flegr et al., 2014). 

In European countries, the prevalence ranges between 10 % to 60 %, and in some regions, as 

high as 90 %(Flegr et al., 2014). The global status of T. gondii seroprevalence in pregnant 

women or in reproductive ages ranges from above 60 % in countries such as Brazil, Gabon, 

Indonesia, Germany and Iran, to <10 % in the UK and Korea (Pappas, Roussos, & Falagas, 

2009).  

In Portugal, there is a lack of knowledge of the current epidemiological situation in 

humans, as the unique toxoplasmosis National Serological Survey was performed in 1979/ 

1980, the rate of congenital infection is unknown and almost nothing is known about the 

sequelae of congenital toxoplasmosis (Gargaté et al., 2016; Lopes, Dubey, Darde, & Cardoso, 

2014). Recently Maria João Gargaté and colleagues describe the toxoplasmosis seroprevalence 

trends in the Portuguese general population (with special focus on women of childbearing age) 

over the past three decades (1979/1980, 2001/2002 and 2013), by age group, region and gender. 

The T. gondii overall seroprevalence decreased from 47% in 1979/1980 to 22% in 2013. 

Generally, the prevalence of T. gondii specific IgG increased significantly with age and it 

decreased over time, both in the general population and in the childbearing women (18% 

prevalence in 2013) (Gargaté et al., 2016). 

In animals, there are a few studies about the serological and parasitological prevalence of 

toxoplasmosis. But very little is known of clinical toxoplasmosis in animals in Portugal (Lopes 

et al., 2014). Serological surveys in cats performed in Portugal include three studies in Lisbon 

and one, in Trás-os-Montes e Alto Douro (Northeastern Portugal). Serological prevalence 

varied from 20 to 44 %, the highest being from stray cats from Lisbon (Duarte et al., 2010; 

Esteves et al., 2014; Lopes, Cardoso, & Rodrigues, 2008; Waap et al., 2012). A study in a 

wildlife conservation area in southern Portugal reports 83% in wildcats (Felis silvestris) and 

39% in cats (Felis catus) (Waap, Nunes, Vaz, & Leitão, 2016). There is no information 

concerning congenital transmission (Lopes et al., 2014). The prevalence of T. gondii in food 

animals (Poultry, pork, beef and mutton) was also poorly studied. For cattle, the T. gondii 
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serological prevalence varied from 7.5 % (Lopes et al., 2013) to 29.2 % (Lopes et al., 2014), 

both studies from the north of Portugal. Among three surveys in pigs, seroprevalence varied 

from 7.1 to 15.6 % (Esteves et al., 2014; Lopes et al., 2013; Sousa et al., 2006). The 

seroprevalence in intensively raised chickens is unknown, but in free range chickens (more 

indicative of soil contamination) was 20.8 % in 225 free range chickens from 18 farms in the 

north and center of the country (Dubey et al., 2006). For sheep, the seroprevalence varied from 

17.1 % (Sousa et al., 2009) to 33.6 % and in goats the seroprevalence was a 18.5 %(Lopes et 

al., 2013), all studies from the north of Portugal. Finally, in domestic dogs from the northeastern 

of Portugal, the seroprevalence of T. gondii is 38.0 % (Lopes et al., 2011). 

 

1.3. Life Cycle 

 

Although T. gondii was discovered in 1908 its entire life cycle was definitively understood 

only in the late 1960s, with the discovery of the central role of the cat as a definitive host 

harboring the sexual parasite development phase and spreading oocysts through feces (Dubey 

& Frenkel, 1972; Frenkel et al., 1970; Hutchison, Dunachie, Siim, & Work, 1969). In the same 

period of time, it was classified in the coccidian sub-class (Frenkel et al., 1970), phylum 

Apicomplexa, and the infectivity of the three parasitic stages (tachyzoite, cyst and oocyst) was 

well characterized (Dubey, 2009; Robert-Gangneux & Dardé, 2012). 

T. gondii is a tissue-cyst-forming coccidium with a complex life cycle that alternates 

between definitive (sexual reproduction) and intermediate (asexual replication) hosts, 

facultatively heteroxenous. It is unique among this group because it can be transmitted not only 

between intermediate and definitive hosts (sexual cycle) but also among intermediate hosts via 

carnivorism (asexual cycle) or even among definitive hosts by oocysts. The parts of the sexual 

and asexual cycles and transmission dynamics in a given environment vary according to 

physical characteristics and according to the structures of both intermediate and definitive host 

populations (Afonso, Thulliez, & Gilot-Fromont, 2006; Dubey, Lindsay, & Speer, 1998; 

Robert-Gangneux & Dardé, 2012; Tenter, Heckeroth, & Weiss, 2000). 

The sexual cycle occurs only in felids. All members of the family Felidae are suitable 

definitive hosts for T. gondii, but domestic cats produce the greatest number of oocysts 

(Webster, Kaushik, Bristow, & McConkey, 2013). In felids T. gondii, undergoes a coccidian-

like life cycle in the epithelial cells of the small intestine (Figure 1). Briefly, after the ingestion 

of cysts present in tissues of an intermediate host, the cyst wall is destroyed by gastric enzymes 

(proteolysis) which leads to the release of the bradyzoites. The bradyzoites penetrate the 
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enterocytes, where they undergo a self-limiting number of asexual multiplications, 

characterized by the development of merozoites (merogony) (Figure 1) (Dubey, 1998; Lindsay, 

Blagburn, & Braud, 1995; Robert-Gangneux & Dardé, 2012). This first step is followed by 

sexual development, with the formation of male and female gametes (gametogony). After 

fertilization, oocysts formed within enterocytes are liberated by the disruption of the cell and 

excreted as unsporulated forms to the intestinal lumen and ultimately to the environment 

through the feces (Figure 1) (Ferguson, 2002; Lindsay et al., 1995; Montoya & Liesenfeld, 

2004; Robert-Gangneux & Dardé, 2012). The process of sporogony occurs in the external 

environment within 2 to several days, depending on environment conditions. Sporulated oocyst 

contain two sporocysts, each containing four haploid sporozoites (Figure 1). The sporulated 

oocyst can infect virtually any warm-blooded animal including cats, although less efficiently 

(Lindsay et al., 1995; Robert-Gangneux & Dardé, 2012). 

In the intermediate hosts, the parasite undergoes only asexual development. When the 

sporulated oocysts are ingested, the oocyst wall is degraded by the proteolytic enzymes of the 

digestive track and sporozoites are liberated. They penetrate the intestinal epithelium, where 

they differentiate into tachyzoites. Tachyzoites rapidly replicate by endodyogeny inside of any 

kind of cell and disseminate throughout the organism by lymphatic and vascular system. After 

the acute period of infection, the pressure of the host immune system and likely some intrinsic 

mechanism of the parasite, lead to the establishment of a chronic stage of the disease, because 

of the conversion from tachyzoite to bradyzoite, that are much less active and that form cysts 

in the host (Figure 1).  Tissue cysts arise as early as 7 to 10 days post-infection and may remain 

throughout life in most hosts, predominantly in the brain or musculature. But an active phase 

of the disease may arise whenever the host immune system is depressed (Hill & Chirukandoth, 

2005; Lindsay et al., 1995; Robert-Gangneux & Dardé, 2012). 

Alternatively, upon the ingestion of these tissue cysts by an intermediate host through raw 

or undercooked meat, cysts are ruptured as they pass through the digestive tract, causing the 

release of bradyzoites. The bradyzoites will penetrate the intestinal epithelium of the new host 

and begin asexual multiplication within cells. After a few days, bradyzoites differentiate back 

into the rapidly dividing tachyzoite stage for dissemination throughout the body (Lindsay et al., 

1995; Robert-Gangneux & Dardé, 2012). 
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Figure 1. The complex lifecycle of T. gondii. Cats are the definitive host in which sexual replication of T. gondii takes place. 

Following replication of merozoites within enterocytes of the cat gut (a process known as merogony), male and female T. 

gondii gametes are formed within the host cell (Dubey & Frenkel, 1972). The fusion of gametes leads to the formation of 

diploid oocysts that are shed in cat feces and undergo sporogony in the external environment (sporulation). Oocysts can survive 

in the environment for long periods of time, and sporulated oocysts (which are infectious) can contaminate food and water, 

providing a route of infection for intermediate hosts. In the intermediate host (rodents, pigs, sheep, humans, etc.), occurs asexual 

replication. Acute infection is characterized by tachyzoites (rapidly replicating forms) that disseminate throughout the body. 

Differentiation to slow-growing bradyzoites within tissue cysts leads to long-term chronic infection. Ingestion of tissue cysts 

via omnivorous or carnivorous feeding can lead to transmission to either other intermediate hosts or to cats, re-initiating the 

sexual phase of the life cycle. Many animals serve as intermediate hosts, including farm animals. Humans become infected by 

eating undercooked meat containing tissue cysts or by ingesting sporulated oocysts in contaminated water (From (C. A. Hunter 

& Sibley, 2012) with permission). 

 

1.4. Diversity of T. gondii strains 

 

Historically, T. gondii isolates have been classified into 3 closely related clonal lineages or 

strains (referred to as types I, II, III) that dominate North America and Europe (Howe & Sibley, 

1995), however recent genetic analysis identifying a fourth lineage in North America (Khan et 
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al., 2011). The clonal propagation of this lineages is likely favored by the ability of T. gondii 

to be transmitted among intermediate hosts via ingestion of tissue cysts, a trait that distinguishes 

it from related parasites (C. Su et al., 2003). Although this clonality in T. gondii is strongly 

evident in North America and Europe, much greater genetic diversity, likely reflecting more 

frequent recombination, is evident in South America (Khan et al., 2011).  

Genetically, the clonal lineages are all relatively similar, differing only by approximately 

1–2 % at the nucleotide level (Sibley, Khan, Ajioka, & Rosenthal, 2009). Nevertheless, despite 

their genetic similarity these clonal lineages differ in a wide range of phenotypes, including 

virulence, persistence, migratory capacity, and how they interface with the immune response, 

thus, the information of genetic diversity of T. gondii is useful for better understanding 

epidemiological patterns and pathogenicity, as well as exploring of new polymorphic virulence 

effectors (Ning, Huang, Wang, Xu, & Zhu, 2015). In fact, the virulence in mice of T. gondii 

depends on the parasite strain (Szabo & Finney, 2016). Briefly, type I (e.g. RH, GT1) strains 

are highly virulent, whereas type II (e.g. ME49) are intermediate virulence and type III (e.g. 

VEG) are relatively nonvirulent (Sibley & Boothroyd, 1992). 

The Type II is the most prevalent T. gondii strain in Europe and North America (Lopes et 

al., 2014). In Portugal there is little information on genetic typing of T. gondii isolates 

circulating. Genotyping 12 isolates obtained from free-ranging chickens, 4 were found to be 

type III, and 8 were type II (Dubey et al., 2006). Earlier in 2008 Waap and colleagues 

characterized the genotypes of T. gondii in 12 pigeons revealing that 9 strains belonged to type 

II, 2 were type III and one was type I. They did not find recombinant or atypical genotypes 

(Waap, Vilares, Rebelo, Gomes, & Ângelo, 2008). In pigs, Sousa and colleagues genotyped 15 

isolates showing that 11 were Type II and 4 were Type III (Sousa et al., 2006). Lopes and 

colleagues characterized the genotypes of T. gondii in 20 cattle, 40 sheep, 15 goats and 16 pigs 

from the North of Portugal and the type II has been confirmed as the most predominant strain 

between them (Lopes et al., 2015).  

 

1.5. Morphology and Organelles 

 

In contrast to the highly reduced organization of Plasmodium and Theileria, Toxoplasma, 

exhibits a classic eukaryotic morphology, with readily recognizable organelles (Hager, 

Striepen, Tilney, & Roos, 1999). The T. gondii tachyzoite morphology, which is responsible 

for the acute phase of the infection caused by this parasite, is often crescent shaped, with 

approximately 2 X 8 µm. The cell is a permanently polarized, presenting the apical complex at 
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the pointed anterior end (anterior pole) and the basal complex at the rounded posterior end 

(posterior pole). Ultrastructurally, it has various organelles and inclusion bodies including a 

pellicle (outer covering), mitochondria, smooth and rough endoplasmic reticulum, a Golgi 

apparatus, ribosomes, a micropore, apical rings, polar ring, conoid, rhoptries, micronemes, 

subpellicular MTs, dense granules, amylopectin granules (which may be absent), a multiple-

membrane-bound plastid-like organelle, which has also been called a Golgi adjunct or 

apicoplast, and a well-defined nucleus. The nucleus is usually situated toward the central area 

of the cell (Figure 2) (De Souza, Martins-Duarte, Lemgruber, Attias, & Vommaro, 2010; 

Dubey, 1998; Hill & Chirukandoth, 2005).  

 

 
Figure 2. Schematic drawings of a T. gondii tachyzoite (From (J. Baum, Papenfuss, Baum, Speed, & Cowman, 2006) 

with permission) 

 

1.5.1. Apical Complex 

 

Apicomplexan parasites share a set of cytoskeletal structures essential for parasite survival 

and pathogenesis. Nevertheless, the defining feature of this Phylum is a complex assemblage 

of structural and secretory elements at the apical end of the cell, forming the namesake of the 

group - the apical complex (Hu et al., 2006; Katris et al., 2014; Morrissette & Sibley, 2002a). 
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This complex is very important in the host cell invasion processes and it provides both a semi-

rigid framework to these apically pointed cells, and a focal point for secretory organelles that 

release various invasion factors that mediate interaction with the host cell and then the invasion 

(Gubbels & Duraisingh, 2012; Katris et al., 2014). The elements of the apical complex are 

highly conserved throughout Apicomplexa and usually  include one or more polar rings, 

rhoptries, micronemes, conoid, and sub-pellicular MTs (Figure 3)(de Souza et al., 2010; 

Morrissette & Sibley, 2002a). These structures are in close association with the secretory 

organelles (rhoptries and micronemes). 

The conoid is a small cone-shaped structure that it is thought to play a mechanical role in 

invasion of host cells and is present only in some apicomplexans. The apical polar ring is a 

hallmark organelle of all members of the Apicomplexa Phylum and it serves as one of the three 

microtubule-organizing centers (MTOCs). The rhoptries and micronemes are unique secretory 

organelles that contain products required for motility, adhesion to host cells, invasion of host 

cells and establishment of the parasitophorous vacuole (PV) (Morrissette & Sibley, 2002a). 

 

 
Figure 3. Schematic drawings of a T. gondii representing the structural elements of the apical complex, the cell pellicle, 

and the secretory organelles (adapted from (Katris et al., 2014) with permission) 

 

1.5.1.1. Conoid 

 

The conoid is a truncated cone shaped structure present at the extreme apical end of the 

parasite. This is a retractable structure that seems to act like a probe during invasion and egress 
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although its precise functions are not known (Skariah, Bednarczyk, McIntyre, Taylor, & 

Mordue, 2012). It has approximately 380 nm in diameter, 280 nm in length and it is a quite 

remarkable structure (Figure 4 A) (Hu et al., 2006; Hu, Roos, & Murray, 2002b). The conoid 

itself is exclusively built around a core of tubulin arranged into a unique ribbon-like polymer 

that is quite different from conventional MTs (Hu, Roos, & Murray, 2002b; Swedlow, Hu, 

Andrews, Roos, & Murray, 2002). In fact, the conoidal fibers has only nine protofilaments 

arranged in an open conformation that resembles a comma, a very unusual and unique form of 

tubulin assembly, completely different from the usual set of 13 protofilaments. Therefore, the 

specialized arrangement of tubulin in the conoid fibers is probably determined by association 

with other nontubulin proteins (de Souza & Attias, 2010; Hu et al., 2006). Moreover, the 

isolation of the T. gondii conoid/apical complex led to the identification of approximately 200 

proteins that represent 70 % of its cytoskeleton proteins (Hu et al., 2006). Whereas parasites 

are inside a host cell, the conoid remains enclosed within the shell formed by the subpellicular 

MTs. However, when the parasites are swimming extracellularly, the conoid intermittently 

protrudes beyond the apical end of the MTs (Fig 4 B)(Hu, Roos, & Murray, 2002b). 

The other apical complex structures closely associated with the conoid are the preconoidal 

rings, at the distal tip of the conoid, from which the conoid fibers originate; the polar ring, from 

which the parasite’s 22 subpellicular MTs are attached and two short intraconoid MTs, which 

may be used as tracks for transport of secretory vesicles essential for invasion (Carruthers & 

Sibley, 1997; Nichols & Chiappino, 1987). 

 



 

Chapter I: Introduction  

 

11 

 
Figure 4. Drawing of T. gondii conoid and apical complex. A - Enlarged view of the apical complex cytoskeleton, showing 

the conoid (green), preconoidal, and polar rings (yelow), and two intra-conoid MTs (green). The conoid is formed of 14 fibers 

of tubulin (not MTs), 430 nm long, arranged in a left-handed spiral. Cytoskeletal elements, including the subpellicular MTs 

(green), are closely associated with the cytoplasmic face of the inner membrane complex (IMC). B - Cartoon of conoid 

movement. In extracellular parasites, the conoid alternates between the retracted and extended states (adapted from (Hu et al., 

2006; Hu, Roos, & Murray, 2002b) with permission).  

 

1.5.1.2. Micronemes 

 

Micronemes are small ellipsoidal organelles located at the apical tip of the parasite (Figure 

3). They represent the smallest secretory organelles in Apicomplexans with an internal 

dimension of 75 nm to 150 nm (Carruthers & Tomley, 2008; Gubbels & Duraisingh, 2012). 

They are circumscribed by typical membrane unit and have a homogeneous and electron-dense 

matrix due to the high protein content which are synthetize in endoplasmic reticulum (de Souza 

et al., 2010). The number of micronemes within one organism varies between species and 

developmental stages and is correlated with the parasite’s motility, migration and invasion. 

Their contents are secreted in a regulated manner upon external or internal stimuli (Carruthers 

& Tomley, 2008). 
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The microneme proteins (MICs) secreted by the microneme play a basic role in the 

recognition, adhesion, and invasion of parasites into host cells during the invasion process. At 

the early stage of contact between parasites and host cells, MICs are first secreted from the apex 

of tachyzoites and facilitate adhesion through the recognition of receptors on the cell membrane 

of hosts, thus, they play an important role in the early stage of the invasion of host cells by 

parasites. Currently, there are at least 19 types of known MICs (Y. Wang & Yin, 2015). 

 

1.5.1.3. Rhoptries 

 

The rhoptries are the second key secretory organelle in T. gondii. They are larger than 

micronemes and unlike most secretory and lysosomal granules in mammalian cells, which are 

of a semi spheroidal shape, the mature rhoptries are pear or club-shaped with a bulbous base 

and an extended duct (neck), with one end attached to the very apical end of the parasite (Figure 

3). In fact, the rhoptry necks are positioned at the extreme apex of the cell, providing a conduit 

for release of the organellar contents. Nevertheless, nothing is known about the determinants 

responsible for maintaining this shape (Beck et al., 2013; Dlugonska, 2008; Dubremetz, 2007; 

Gubbels & Duraisingh, 2012; Lamarque et al., 2012). 

T. gondii tachyzoites possess a bundle of 8–12 rhoptries per cell (each of which is 

approximately 2 to 3 µm in length), occupy 10 to 30% of the total cell volume, and they are the 

only known acidified organelles in the parasite (Dlugonska, 2008; Dubremetz, 2007). These 

club-shaped secretory organelles are composed of two sub organellar domains, the bulbous 

rhoptry bodies and the duct-like rhoptry necks (Gilbert, Ravindran, Turetzky, Boothroyd, & 

Bradley, 2007). In fact, the rhoptry contents are not a random mixture but are sorted into 

discrete sub compartments, which are differentially released. Consequently, this segregation of 

rhoptry proteins into two domains has led to the use of two different denominations for them. 

ROPs proteins for those located in the bulgy posterior part and RONs proteins for those located 

in the neck of the organelle (Boothroyd & Dubremetz, 2008; Dubremetz, 2007; Gubbels & 

Duraisingh, 2012). Interestingly, most RON and ROP proteins are Apicomplexa specific and 

bear little homologies to higher eukaryotes proteins (Dubremetz, 2007). 

These domains appear to carry out very different roles in host cell invasion and 

establishment of the intracellular niche for survival (Gilbert et al., 2007). The only circumstance 

in which rhoptries are known to secrete their contents is during the process of invasion into a 

host cell. The trigger for release is unknown, but it evidently depends on a direct recognition 

between the apical surface of the parasite and the receptor molecule (or molecules) on the host 
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cell (Boothroyd & Dubremetz, 2008). Proteins secreted from the rhoptry necks have been 

shown to be involved in the formation of the moving junction (MJ), a tight-junction structure, 

through which the parasite passes to invade the host. In contrast, proteins contained within the 

rhoptry body play a number of roles, such as helping to form the PV and parasitophorous 

vacuole membrane (PVM), acting as virulence factors, and manipulating host responses by 

altering host actin disassembly and invasion kinetics (Beck et al., 2013; Boothroyd & 

Dubremetz, 2008; Delorme-Walker et al., 2012; Gilbert et al., 2007; Gubbels & Duraisingh, 

2012; Lei, Wang, Liu, Nan, & Liu, 2014).  

 

1.5.2. Dense granules 

 

Dense granules are electron-dense bodies found in all coccidian parasites. They acquired 

their name from their apparent density, when observed by transmission electron microscopy. 

These organelles resemble the secretory vesicles of mammalian cells, have a spherical shape 

and are distributed throughout the parasite cytosol. Their number varies amongst Apicomplexan 

parasites, in T. gondii there are approximately 20 dense granules, which are microspheres of 

approximately 200 nm in diameter (Cesbron-Delauw, 1994; de Souza et al., 2010; Gubbels & 

Duraisingh, 2012; Mercier, Adjogble, Däubener, & Delauw, 2005). 

Unlike micronemes and rhoptry, they are not located at the apical end but are instead found 

throughout the cell, and their content is not secreted in the apical region of the parasite, instead 

it is typically secreted in the lateral and posterior regions of the parasite (de Souza et al., 2010). 

Moreover, their content is released immediately and constitutively after invasion and 

throughout intracellular replication, their proteins have been shown to have functions in the 

biogenesis and modification of the PV, in the regulatory functions on host cell signaling 

pathways and also play important roles in host cell manipulation (Braun, Brenier-Pinchart, & 

Yogavel, 2013; Fox, Sanders, Rommereim, Guevara, & Bzik, 2016; Gubbels & Duraisingh, 

2012). 

 

1.5.3. The inner membrane complex (IMC) 

 

Apicomplexans are grouped with dinoflagellates and ciliates in the Alveolata 

infrakingdom. The unifying morphological characteristic of this group is the presence of 

alveoli: a highly specialized endomembrane system found beneath the plasma membrane. In 
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the apicomplexan parasites, this structure is referred to as the inner membrane complex (IMC) 

(Beck et al., 2010; Gould, Tham, Cowman, McFadden, & Waller, 2008; Keeling et al., 2005). 

The IMC is itself composed of a flattened double membrane system termed alveoli (Figure 

5), supported on the highly organized cytoplasmic network of intermediate filament-like 

proteins termed the subpellicular network (SPN) that lines the cytoplasmic side of the IMC 

membranes and by a final cytoskeletal layer composed of MTs emanating from the apical end 

of the parasite (Anderson-White et al., 2012; Harding & Meissner, 2014; Mann & Beckers, 

2001; Morrissette, Murray, & Roos, 1997). Specialized cytoskeletal structures are present at 

the extreme anterior and posterior ends of the parasite which are known as the apical and basal 

complex, respectively (Anderson-White et al., 2012). 

In T. gondii tachyzoites and bradyzoites, the alveolar sacs of the IMC are arranged as three 

rows of fused rectangular membrane plates, sutured together like a quilt, and capped by a single 

large alveolar plate at the apical end of the parasite (Figure 5) (A. L. Chen, Kim, Toh, Vashisht, 

& Rashoff, 2015a; Harding & Meissner, 2014) 

In fact, the IMC can be divided in sub compartments defined by the composition of proteins 

within the alveoli as can be seen by IMC sub compartment proteins (ISPs). Inner Membrane 

Complex Sub-compartment 1 (ISP1) can be visualized at the apical cap of the IMC, while ISP2 

and ISP4 localizes to the middle part of the IMC and ISP3 can be found at the central and basal part 

of the IMC membranes (Beck et al., 2010). 

The understanding of the structure and components of the IMC has significantly increased 

with the recognition of various subdomains within the IMC (Figure 5) and its dynamic 

composition throughout cell division and maturation (Anderson-White et al., 2011; Beck et al., 

2010). 

In apicomplexan organisms, the IMC has important functions in motility, host cell invasion 

and intracellular replication. The outer leaflet of the IMC membrane acts as the anchor for the 

actin-myosin motor that powers parasite gliding and invasion. In addition, the IMC serves as 

the structural scaffold for the formation of daughter cells within the mother during asexual 

reproduction and for the organelle genesis and organelle partitioning (Anderson-White et al., 

2011; A. L. Chen et al., 2015a; Harding & Meissner, 2014).  
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Figure 5. Schematic representation of IMC alveolar vesicles structures in the T. gondii. Directly under the plasma 

membrane lie the alveolar vesicles, shown in yellow. The most unique alveolar vesicle called the apical cap forms a cone 

around the parasite apex and three bands of rectangular, elongated vesicles fill in the remainder of the IMC below this cap. As 

marked, different proteins localize to different sections of the alveolar vesicles. (adapted from (Anderson-White et al., 2012) 

with permission). 

 

1.6. Biological model 

 

The phylum Apicomplexa consists of more than 5000 species, most of which are obligate 

intracellular parasites and include important human and veterinary pathogens, such as 

Plasmodium species, Eimeria species, Toxoplasma, Neospora, Babesia, Besnoitia, Theileria 

and Cryptosporidium. The defining feature common to all apicomplexans is the presence of the 

apical complex, from which secretory organelles release their contents during cell invasion 

(Jiménez-Ruiz, Wong, Pall, & Meissner, 2014; K. Kim & Weiss, 2004). 

However, not all apicomplexan parasites are amenable to genetic manipulation due to 

difficulties in continuous in vitro cultivation, transfection or isolation of intracellular 

developmental stages in sufficient numbers for downstream molecular applications (Jiménez-

Ruiz et al., 2014). 

Among apicomplexans, T. gondii has emerged as the experimentally most tractable 

organism and is now used by many investigators as a genetic model to understand 

Apicomplexan biology (K. Kim & Weiss, 2004; Vinayak, Brooks, Naumov, & Suvorova, 
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2014). The ease with which T. gondii can be cultured, along with the ability to genetically 

manipulate the genome of the parasite and high transfection rates are strong arguments for using 

this parasite as a model (Sidik et al., 2016; J.-L. Wang et al., 2016). Moreover, methodology 

for classic and reverse genetics is well established, pathogenic stages are easily propagated and 

easily quantitated in the laboratory, the mouse animal model is well established and reagents 

for study of the host response as well as basic biology of the parasite are widely available (K. 

Kim & Weiss, 2004). Additionally, the development of several reverse genetic tools and several 

techniques based on the homologous recombination of exogenous DNA, has reinforced the role 

of T. gondii as a major model system for studying other apicomplexan parasites and also for 

conserved biological processes in less related organisms (Jiménez-Ruiz et al., 2014; Meissner, 

Breinich, Gilson, & Crabb, 2007). In this context, T. gondii has emerged as a major model for 

the study of apicomplexan biology (K. Kim & Weiss, 2004).  

 

1.7.  The lytic cycle of T. gondii 

 

T. gondii has a complex life cycle involving different hosts and is dependent on fast 

responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease 

by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists 

of host cell invasion, replication inside a PV and egress (causing host cell lysis) to find another 

host cell to invade (Figure 6) (Black & Boothroyd, 2000; Blader, Coleman, Chen, & Gubbels, 

2015; Hortua Triana, Márquez-Nogueras, Vella, & Moreno, 2018). Each step during the lytic 

cycle has to be precise, fast and effective and the parasite possesses specific molecules that 

become activated at the right moment. A strong body of evidence supports that intracellular 

calcium oscillations in the parasite precede the activation or stimulation of the specific steps of 

the lytic cycle. Both extracellular and intracellular Ca2+ pools contribute to cytosolic Ca2+ 

increases resulting in downstream signaling pathways that are decoded into critical biological 

functions of the parasite lytic cycle (Lourido & Moreno, 2015). 
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Figure 6. Schematic representation of T. gondii lytic cycle. Toxoplasma tachyzoites attach and invade host cells and form a 

parasitophorous vacuole (PV) where they reside and replicate by endodyogeny. The PV is surrounded by a PVM that allows 

small molecules to sieve through. After several rounds of replication, they rupture the PVM and the host cell membrane and 

egress followed by a short extracellular phase and invasion of another host cell (adapted from (Hortua Triana et al., 2018) with 

permission). 

 

1.7.1. Host cell invasion 

 

T. gondii invasion of host cells is an active, complex process composed of multiple steps 

that are well regulated and orchestrated. After initially attaching to the host cells, the parasite 

re-orientates itself to form a tight junction before actively penetrating its host (Carruthers & 

Boothroyd, 2007). In fact, simultaneous to the intimate apical attachment, the parasite re-

orientates itself so the extruded conoid is facing the target cell and them forces the entry into a 

host cell by forming an electron-dense region, visible as a ring of contact between the parasite 

and host plasma membrane (Tyler, Treeck, & Boothroyd, 2011). Referred to as the moving 

junction, this is a central structure formed during invasion that starts at the apical pole and 

moves progressively to the posterior end of the parasite as it enters the cell. It serves as a support 

to propel the parasite into the PV, but is also thought to be involved in the formation and in 
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defining the biochemical composition of the PV membrane (Besteiro, Dubremetz, & Lebrun, 

2011). After complete entry of the parasite, the moving junction disappears, the newly formed 

PV separates from the host cell plasma membrane and the parasite replicates and divides within 

it (Tyler et al., 2011). This whole invasion process is very rapid and completed within 15-30 

seconds (Figure 7) (Morisaki, Heuser, & Sibley, 1995). 

The surface of T. gondii is covered by a family of glycosylphosphatidylinositol-anchored 

surface antigens (SAGs) and SAG-related sequence proteins (SRS). Six of these proteins are 

expressed in tachyzoites (SAG1-3 and SRS1-3) and distributed evenly over the surface (Jung, 

Lee, & Grigg, 2004; Lekutis, Ferguson, Grigg, Camps, & Boothroyd, 2001). Both protein 

groups are implicated to participate in the initial attachment process through lectin-

carbohydrate interactions. The frequency and overall distribution of SAG proteins all over the 

surface of the parasite positions those proteins ideally for low-affinity lateral interaction with 

the host cell surface. This circumstance would allow the parasites to glide along the surface of 

the host cell to scan for optimal invasion sites (Carruthers & Boothroyd, 2007). The invasion 

process is highly polarised since T. gondii solely uses its apical tip to initiate invasion. Due to 

the fact that SAG proteins are distributed regularly over the surface, another protein group, 

located at the apical surface and named micronemal proteins (MICs), was attributed with the 

firm apical attachment. Several MICs possess adhesive domains mediating protein-protein or 

protein-carbohydrate interactions. After the invasion process has been initiated, micronemes 

are secreted in a calcium-dependant manner through the apical tip, which strengthens the 

attachment. This strong apical attachment is also referred to as intimate attachment since the 

parasite and the host cell are only 6 nm apart (Carruthers & Boothroyd, 2007). Several MIC 

proteins such as MIC2 and AMA1 were implicated to play a role for intimate attachment 

(Brossier & David Sibley, 2005; Huynh & Carruthers, 2006; Mital, Meissner, Soldati, & Ward, 

2005). At some point, proteins from rhoptries are exocytosed. Among these rhoptry proteins, 

several (RON2, RON4, RON5, and RON8) are part of a preformed complex that binds the 

previously secreted AMA1 microneme protein. Together, these proteins form the moving 

junction complex, which defines the parasite entry site on the host cell plasma membrane. As 

the invasion process progresses the moving junction migrates from the anterior to the posterior 

pole of the parasite. That penetration occurs by the parasite propelling itself forward, via actin-

myosin-dependent motility, into the host plasma membrane. This causes an invagination of the 

plasma membrane resulting in the formation of the PV, which is the compartment that the 

parasite resides in throughout its time in the host cell (Carruthers & Boothroyd, 2007; Sweeney, 

Morrissette, LaChapelle, & Blader, 2010).  



 

Chapter I: Introduction  

 

19 

 

 

 
Figure 7. An integrated working model of Toxoplasma invasion. Toxoplasma invasion is depicted in seven steps. Initial 

attachment might be reversible and involves recognition of surface receptors by SAGs. This initial interaction precedes apical 

attachment, which involves the calcium-dependent deployment of MICs (red, T-shaped) and their accumulation on the apical 

surface. Although it is not specifically depicted in the model, conoid extrusion occurs at some point within (2–4). The moving 

junction (green and red ring) is formed by the release of RON proteins (green), which associate with microneme-derived AMA1 

(red circles) during or following discharge. These proteins create an intimate binding interface of <6 nm, in the form of a small 

ring-like structure. Simultaneously or immediately thereafter, ROPs (gold coloured) are injected into the host cytoplasm at the 

invasion site. Some ROPs remain associated with small vesicles that fuse with the developing PVM during penetration, whereas 

other ROPs appear to remain soluble and might target to other sites within the host cell. The parasite actively penetrates by 

‘pulling’ (lateral arrows) transmembrane MICs and/or the AMA1–RON ring posteriorly, thereby invaginating the host plasma 

membrane to create the PV. A rhomboid protease(s) (ROM; purple) appears to be responsible for shedding of the MICs from 

the posterior end. During invasion (5), the invaginating PV somehow traverses the host cytoskeleton (orange), perhaps 

involving some sort of anchoring to the cytoskeletal molecules (see text). Whereas the parasite accomplishes steps 2–5 in 15–

20 sec, the final steps, closure and separation, are rate limiting and require 1–2 min to complete. Closure involves fission of 

the PVM and host plasma membrane and this step might be facilitated by the residual moving junction complex or other parasite 

and host proteins (adapted from (Carruthers & Boothroyd, 2007) with permission). 

 

1.7.2. Cellular Division 

 

Apicomplexan parasites replicate by the formation of daughter parasites within a mother 

cell. Three distinct replication mechanisms have been described on that parasites based on the 
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extent and timing of nuclear division before cytokinesis: these mechanisms are known as 

endodyogeny (Figure 8A), schizogony (Figure 8B) and endopolygeny (Figure 8D) (Francia & 

Striepen, 2014). T. gondii tachyzoites divide by endodyogeny, also known as internal daughter 

budding (Hu, Mann, Striepen, Beckers, et al., 2002a; Morrissette & Sibley, 2002b). During this 

mechanism, a single round of DNA replication and nuclear mitosis is followed by the assembly 

of two daughter cells and cytokinesis. In T. gondii endodyogeny there is the formation of two 

daughter cells within the mother parasite. These daughter cells are delimited by an inner 

membrane complex and associated subpellicular MTs, and each contains a complete set of 

apical organelles (conoid, rhoptries and micronemes), nucleus, mitochondrion, Golgi apparatus 

and apicoplast. Once daughter cells are mature, the maternal apical complex is disassembled 

and the daughter parasites emerge from the maternal plasma membrane (Morrissette & Sibley, 

2002b).  

The earliest events of cell division in T. gondii started with the enlargement and duplication 

of the Golgi apparatus duplicated late in G1 phase (Pelletier et al., 2002). Second, the centrioles 

migrate around the nucleus prior their division early in S1-phase, ensuring the polarity of the 

daughter parasites (Hartmann et al., 2006; Nishi, Hu, Murray, & Roos, 2008). Following this, DNA 

is replicated and the centrioles migrate back to the apical pole of the parasite. Synchronously with 

the nucleus, the apicoplast divides (Striepen et al., 2000). Late in S1 phase, the earliest components 

of the cytoskeleton are build and the internal daughter budding begins (Agop-Nersesian et al., 2010; 

Hu, 2008; Radke et al., 2001; L. G. Tilney & Tilney, 1996; White et al., 2004). The development 

of the conoid marks the formation of the cytoskeleton of the daughter cell (Hu et al., 2006). 

Concurrently, spindle poles and intranuclear MTs are formed. Afterwards, the assembly of the Inner 

Membrane Complex (IMC) of the daughter parasites is initialised (Mann & Beckers, 2001) and 

followed by distribution of organelles to the forming daughter buds. These organelles are the 

nucleus, apicoplast and endoplasmic reticulum (Hager et al., 1999; Hu, Mann, Striepen, Beckers, 

et al., 2002a; Striepen et al., 2000). Similar to the apicoplast, the mitochondrion is not autonomously 

replicated. During early replication the mitochondrion forms branches but its integration into the 

growing daughter parasites occurs late during replication (Nishi et al., 2008). The last step of 

cytokinesis involves separation of all organelles between the two daughter parasites and completion 

of IMC formation. Following, the apical organelles of the mother cell are degraded, and the plasma 

membrane of the mother cell is adopted by the daughter parasites. A residual body is left, which 

contains material such as maternal micronemes, rhoptries and parts of the mitochondrion (Nishi et 

al., 2008). The synthesis of the micronemes and rhoptries occurs de novo in the forming daughter 

parasites (Nishi et al., 2008). The generation time of T. gondii tachyzoites depends on the culture 
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conditions and varies between six and seven hours (Gubbels, White, & Szatanek, 2008; Radke et 

al., 2001). 

 

 

 
Figure 8. Replication cycles of different Apicomplexan species. A - Endodyogeny. Each DNA replication cycleis followed 

by mitosis and budding. B - Schizogony. Initially, nuclei multiply by asynchronous rounds of mitosis. The last round is 

synchronous for all nuclei and coincides with budding at the parasite surface. C - Theileria spp. sporozoites infect leukocytes 

after the bite of an infected tick. The parasite transforms the leukocytes and divides by exploiting the mitotic and cytokinetic 

machinery of the host. D - Endopolygeny. DNA replicates without nuclear division, using multiple synchronous mitotic 

spindles. The final mitotic cycle coincides with budding and the emergence of a new generation of merozoites. Some 

Apicomplexan parasites, such as Toxoplasma spp. and Plasmodium spp., replicate in a parasitophorous vacuole, whereas 

Theileria spp. and Sarcocystis spp. are free in the host cell cytoplasm (adapted from (Francia & Striepen, 2014) with 

permission).	 

 

1.7.3. Egress 

 

After tachyzoites multiplication, once the host cell cytoplasm space has been filled with a 

large PV, and the host cell nutrients become limiting, it is possible that the parasites sense extrinsic 

signals, including host K+, to promote egress and invade neighbouring cells to ensure their 

survival. Egress occurs very quickly, relies on calcium signalling and gliding motility, and it is 

necessary that the PVM and the host cell plasma membrane to be lysed (Frénal & Soldati-Favre, 

2009; Roiko & Carruthers, 2009). Additionally, the intracellular Ca2+ level increases through 
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release from intracellular compartments (Lovett & Sibley, 2003). This leads to activation of the 

parasites motility machinery and secretion of egress effector proteins including the pore forming 

proteins such as perforin-like protein (TgPLP1) (Kafsack et al., 2009) or protein proteases like 

subtilisin1 (TgSUB1) (X. W. Zhou et al., 2005). Disruption of the PVM is followed (Roiko & 

Carruthers, 2009) by the release of free parasites into the cytoplasm. Parasite and host proteins 

such as the calcium-dependent protease Calpain1 and TgPLP-1 act to disrupt host cytoskeleton 

and host plasma membrane (HPM) (Chandramohanadas et al., 2009; Kafsack et al., 2009; 

Kafsack & Carruthers, 2010). Interestingly, and although to a lesser extent, egress from the host 

cell can also occur through a non-active mechanism, in which rupture of the host cell membrane 

would be a consequence of mechanical forces applied on the host cell membrane as the volume 

of the PV increases upon parasite division (Lavine & Arrizabalaga, 2008). Once the HPM is 

destroyed, parasites use their motility system to escape the lysed host cell. 

 

2. Cellular Cytoskeleton 

 

The cytoskeleton underlies many aspects of cell physiology, including mitosis, cell 

division, volume control, cell stiffness, cell polarity and extracellular matrix patterning.  

(Bezanilla, Gladfelter, Kovar, & Lee, 2015). In eukaryotes cell cytoskeleton is composed of 

three different types of fibers: actin filaments, MTs and intermediate filaments (IFs) (Figure 9) 

(Mostowy & Cossart, 2012).  

The actin filaments determine the shape of the cell’s surface and are involved in cell 

locomotion. The major component of the actin cytoskeleton is actin, an ATP-binding protein 

that exists in two forms in the cell: monomers (globular-actin or G-actin) and filaments 

(filamentous-actin or F-actin). Actin filaments are assembled by the reversible endwise 

polymerization of monomers, and polymerization stimulates ATP hydrolysis and release of 

inorganic phosphate (Pi). In microfilaments, long polymerized chains of actin are intertwined 

in a helix, generating filaments with a diameter of ~7 nm. Actin filaments are polar, with a plus 

end, where monomers preferentially assemble (see the figure 9), and a minus end, where 

monomers preferentially disassemble (Mostowy & Cossart, 2012; Welch & Mullins, 2002). 

IFs provide mechanical strength to the cell with many subcellular organelles and 

macromolecules attached to the network. They are individual proteins assembled to form a 

tetrameric subunit composed of two antiparallel half-staggered coiled-coil dimers. Next, eight 

tetrameric subunits associate laterally to form a unit length filament (ULF). Individual ULFs 

join end-to-end to form short filaments, and these grow into longer filaments by longitudinally 

annealing to other ULFs and existing filaments (see the figure 9). IFs have a diameter of ~11 



 

Chapter I: Introduction  

 

23 

nm, and they are non-polar because of the antiparallel orientation of tetramers (Mostowy & 

Cossart, 2012). 

MTs, integrating the MT cytoskeleton, are structures that display enormous plasticity that 

allows them to intervene in many crucial cellular functions such as cell division, motility, 

intracellular transport, and various cell signaling pathways. MTs are cylindrical structures that 

are built from 13 parallel protofilaments made of α-tubulin and β-tubulin heterodimers. Each 

tubulin monomer of ~50 kDa binds one GTP molecule, and the α-tubulin GTP is locked in the 

interface between the α-tubulin and β-tubulin; only the β-tubulin GTP undergoes hydrolysis. 

The tubulin dimers assemble in a head-to-tail manner, producing MT polymers with a diameter 

of ~25 nm. Similarly to actin, MTs are polar, with one end (the plus end) growing faster than 

the other end (the minus end). MTs can assemble and disassemble at the plus end (see the figure 

9), through a process known as dynamic instability; disassembly is known as catastrophe and 

rapid growth is known as rescue (Desai & Mitchison, 1997; Mostowy & Cossart, 2012). 

 

 
Figure 9. The cytoskeletal components, actin filaments, MTs, and intermediate filaments. Actin filaments are assembled 

by the reversible polymerization of actin monomers. MTs are cylindrical structures that are built from 13 parallel 

protofilaments made of α-tubulin and β-tubulin heterodimers. Intermediate filaments are individual proteins assembled to 

form a tetrameric subunit composed of two antiparallel half-staggered coiled-coil dimers (adapted from (Mostowy & Cossart, 

2012) with permission). 
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2.1. Microtubule Cytoskeleton 

 

MTs are non-covalent cytoskeletal polymers found in all eukaryotic cells, playing a major 

role in cell migration, intracellular trafficking (serving as tracks for transport of vesicles, 

organelles, other cytoskeletal elements, protein assemblies and mRNA), control of cell shape, 

spindle assembly and chromosome motion during mitosis. They are tubular structures 

constituted of heterodimers of α-tubulin and β-tubulin, nucleated in organized structures, 

MTOCs, through interaction with γ-tubulin; with a minus-end capped and anchored at the 

MTOC, and a plus-end generally localized at the periphery of the cell, forming polarized 

structures (Amos & Schlieper, 2005; Fletcher & Mullins, 2010; R. Li & Gundersen, 2008). 

 

2.1.1. Microtubule structure   

 

MTs are the most rigid of the cytoskeletal filaments and have the most complex structure. 

Their outer diameter is ~25 nm, whereas length can vary from tens of nanometers to tens or 

even hundreds of micrometers, frequently spanning the whole cell (Schaap, Carrasco, de Pablo, 

MacKintosh, & Schmidt, 2006).  

They are polymers consisting of α-tubulin and β-tubulin heterodimers, which have the 

molecular mass of ∼100 kDa and are 8 nm long. The MTs assemble by addition of the αβ-

tubulin heterodimers at either end or disassemble by loss of them. The tubulin dimers stick to 

each other in a head-to-tail manner, forming a protofilament. In vivo MTs are composed of 10–

15 protofilaments (usually 13 in mammalian cells) that associate laterally to form a 24 nm wide 

hollow cylinder (Figure 10). In the MT wall, longitudinal contacts are established between 

tubulins arranged head to tail along the protofilament axis, whereas adjacent protofilaments 

interact laterally. The number of protofilaments of MTs polymerized in vitro has been found to 

vary between 11 and 17, depending on buffer conditions. The head-to-tail association of the αβ 

heterodimers makes MTs polar structures, and they have different polymerization rates at the 

two ends. In each protofilament, the αβ heterodimers are oriented with their β-tubulin monomer 

pointing towards the faster-growing end (plus end) and their α-tubulin monomer exposed at the 

slower-growing end (minus end). In the animal cell, the MT minus ends are embedded into MT 

organizing center (MTOC) called centrosome and the plus ends are exposed to the cytosol 

(Desai & Mitchison, 1997; Pierson, Burton, & Himes, 1978; Schaap et al., 2006). 
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A third tubulin isoform, γ-tubulin, functions as a template for the correct assembly of MTs. 

On addition of a new dimer at the plus end, the catalytic domain of α-tubulin contacts the 

nucleotide exchangeable site (E site) of the previous β-subunit and becomes ready for 

hydrolysis; the plus end generally has a minimum GTP cap of one tubulin layer that stabilizes 

the MT structure. When this GTP cap is stochastically lost, the protofilaments splay apart and 

the MT rapidly depolymerizes. During or soon after polymerization, the tubulin subunits 

hydrolyse their bound GTP and become non-exchangeable. Thus, the MT lattice is 

predominantly composed of GDP–tubulin, with depolymerization being characterized by the 

rapid loss of GDP–tubulin subunits and oligomers from the MT plus end. At the minus end, 

contact is made between the E site of the new dimer and the catalytic region of the last subunit 

at the end; therefore, no GTP cap should be present (Conde & Cáceres, 2009). 

 

 

 
Figure 10. MT structure. Mts are polarized structures composed of α- and β-tubulin heterodimer subunits assembled 

into linear protofilaments. A single MT is comprised of 10–15 protofilaments (usually 13 in mammalian cells) that associate 

laterally to form a 24 nm wide hollow cylinder. The head-to-tail association of the αβ heterodimers makes MTs polar structures, 

and they have different polymerization rates at the two ends. In each protofilament, the αβ heterodimers are oriented with their 

β-tubulin monomer pointing towards the faster-growing end (plus end) and their α-tubulin monomer exposed at the slower-

growing end (minus end). The lateral interaction between subunits of adjacent protofilaments has been described as a B-type 
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lattice with a seam (long arrow). A third tubulin isoform, γ-tubulin, functions as a template for the correct assembly of MTs 

(adapted from (Conde & Cáceres, 2009) with permission). 

 

2.1.2. Tubulin heterodimer structure 

 

The protomer unit of the MT system, the αβ-tubulin heterodimer, is a stable ~110 kDa 

protein complex, composed of two subunits with ~40% polypeptide sequence identity and a 

high degree of conservation between species (Nogales, Wolf, & Downing, 1998a). In fact, α- 

and β-tubulin are so similar in structure that the two kinds of monomer subunits cannot be 

distinguished except at very high resolution (Amos & Schlieper, 2005). The roughly spherical 

subunits are assembled in tandem with the front of α-tubulin facing the back of β-tubulin, 

resulting in a polar peanut-like arrangement (Figure 11) (Nogales, Wolf, & Downing, 1998a). 

Each tubulin has a nucleotide-binding site (GTP-binding): an inactive non-exchangeable site 

(N-site, intradimer) on α-tubulin, which is suggested to stabilize αβ-tubulin dimers during their 

biogenesis, and an active exchangeable site (E-site) on β-tubulin, which is stimulated to 

hydrolyse GTP upon αβ-tubulin incorporation into MT lattices at the plus ends (Georgiev, 

2003). The overall heterodimer structure revealed that α- and β-tubulins adopt rather globular 

conformations and form a dimer in which the two proteins exhibit a curvature of ~12 ̊ relative 

to each other. The degree of curvature is very similar between tubulin in which GTP or GDP is 

bound to β-tubulin (Nawrotek, Knossow, & Gigant, 2011). 

Both αβ-tubulin show a compact structure formed by a core of two interacting β sheets 

surrounded by twelve α helixes and with three functional domains. The N-terminal domain 

responsible for the interaction with the GTP nucleotide; the intermediate domain, where 

antimitotic agents such as taxol are bound; and the C-terminal domain, involved in the 

interaction with MT-binding proteins and motor proteins (Nogales, Wolf, & Downing, 1998a). 
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Figure 11.  Ribbon diagram of the tubulin dimer showing a stereo front view from the putative outside of the MT. α-

tubulin with bound GTP (top), and β-tubulin containing GDP and taxotere (bottom). Labels for strands (in the α-subunit) and 

helices (in the β-subunit) are included. The arrow indicates the direction of the protofilament and MT axis. (adapted from 

(Nogales, Wolf, & Downing, 1998a) with permission). 

 

2.1.3.   Microtubule dynamics 

 

MTs have a complex behaviour with some MTs being in a growing phase, others being 

stationary and some being in a state of disassembly. This characteristic dynamic behaviour, 

named dynamic instability, was detected by Mitchison and Kirschner in 1984 (Mitchison & 

Kirschner, 1984). Membrane-bound organelles and trafficking routes use this dynamic 

instability network to organize and connect intracellular compartments: the nucleus, the ER, 

the Golgi apparatus and the endosomes/lysosomes. Dynamic instability is also very important 

to establish and maintain cell polarity during cell migration: inhibition of MT dynamics with 

nocodazole reduces cell migration into a wound in monolayer cultures (Liao, Nagasaki, & 

Gundersen, 1995). 

The stochastic switch between growth to shortening (catastrophe) and shortening to growth 

(rescue) (Figure 11), and its mechanic basis has been explained by the “GTP-cap model”. The 

model proposes that GTP-tubulin is mainly present at the growing end of the MTs and is 

thought to stabilize the structure and to maintain the association between protofilaments (Heald 

& Nogales, 2002). Over time, GTP at the E-site become hydrolysed to GDP due to the GTPase 

activity of β-tubulin. As result, the MT body contains mainly GDP-tubulin, which is unstable 
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as GDP-tubulin dissociates more readily than GTP-tubulin and as it induced a strain in the 

curvature of individual protofilaments. This explains why MTs quickly disassemble since their 

GDP-tubulin becomes exposed. Furthermore, it also defines why the MT end undergoes 

catastrophe when GTP hydrolyses faster than the addition of GTP tubulin heterodimers (Heald 

& Nogales, 2002; Mitchison & Kirschner, 1984).  

Moreover, the GTP-tubulin was found also in older parts of the polymer, along the MT 

(GTP-tubulin remnants). In this case, when depolymerization occurs, they behave as a GTP cap 

to promote rescue events. Besides this intrinsic regulation (the presence of the GTP-cap and 

GTP islands), the regulation of MT dynamics depends also of an extrinsic regulation through 

MT associated proteins (MAPs) that bind to MTs, and through MT post-translational 

modifications (PTMs) (Dimitrov et al., 2008). 

Being so, the end of a MT that terminates with β-tubulin is more dynamic than the other 

end, which has an α-tubulin monomer as its final subunit. In cells, MTs usually grow out from 

MTOC from which the more dynamic end, known as the plus end, is able to grow and shrink, 

whereas the minus end may not be able to change. If both ends are free, as in vitro, assembly 

and disassembly can occur from either end, although at different rates. MTs can continue to 

grow as long as the free tubulin concentration is above a critical level. The critical concentration 

at a minus end is somewhat higher than at a plus end and thus minus ends tend to stop growing 

first (Amos & Schlieper, 2005). 

In addition to the dynamic instability, the MTs also have another dynamic behaviour, both 

in vitro and in vivo, the treadmilling. This behaviour is characterized by the flow of subunits 

from the plus end to the minus of the free MTs without a significant change in the length of the 

MTs; resulting from the different critical concentrations of the tubulin subunits at both polymer 

ends (Margolis & Wilson, 1998). 

In summary, the intracellular MT dynamics (dynamic instability and treadmilling) 

critically relies on a tightly controlled pool of soluble αβ-tubulin dimers in the cytoplasm (Tian 

et al., 2010a). 

 

2.1.4.   Microtubule nucleation 

 

MT nucleation is the process in which several tubulin molecules interact to form a MT 

seed. The de novo formation of MT polymers occurs at specific structures called MTOCs. 

MTOCs prevent the random formation of MTs throughout the cell by restricting nucleation to 

specific locations. The MT minus ends are embedded within the MTOC, while the plus ends 
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extend into either the cytoplasm or the nucleus. The structure of the MTOCs varies considerably 

between species and cell types. Despite the variation in MTOC morphology, all MTOCs rely 

on γ-tubulin, a homologue of α-tubulin and β-tubulin, for nucleating MTs. γ-tubulin was first 

discovered in Aspergillus nidulans genetic screens as a suppressor of a β-tubulin mutation, and 

it was subsequently found localized at all MTOCs. Purification of γ-tubulin from animal and 

yeast cells showed it to be part of larger complexes, which can directly nucleate MT growth in 

vitro. γ-tubulin is essential for normal MT organization in every organism in which it has been 

studied, and it is nearly ubiquitous throughout the eukaryotes. Moreover, it is also involved in 

nucleation from non-MTOC sites within cells, such as nucleation that occurs through the 

chromosome-mediated nucleation pathway, and in plants, which lack centrosome-like 

structures, suggesting that it is critical for the initiation of all new MTs in vivo. It exists in a 

large complex that did not include α-tubulin or β-tubulin and that as at least six other proteins: 

γ-tubulin complex protein 2 (GCP2), GCP3, GCP4, GCP5, GCP6 and NEDD1. This complex 

had approximately 2.2 MDa and a striking ring shape in electron micrographs, leading to the 

name γTuRC.  

The γTuRC functions as a minus end capping factor for MT nucleation. Nevertheless, the 

complex is also present in the cytosol but must be recruited to the MTOC to become active. 

This is despite the fact that it can nucleate MTs in vitro (Figure 12). These would then serve as 

adaptors for tubulin binding to form the 13 protofilaments of a MT. This way, the γ-tubulin 

complex not only nucleates MTs but also stabilizes their minus ends by capping them (Job, 

Valiron, & Oakley, 2003; Kollman, Merdes, Mourey, & Agard, 2011; Roostalu & Surrey, 2017; 

Teixidó-Travesa, Roig, & Lüders, 2012) (Kollman et al., 2011). 
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Figure 12. Templated MT nucleation. A - γ-tubulin molecules (yellow) within the γ-TuRC are positioned in a single-turn 

helix via their binding to GCP proteins (blue). B - γ-tubulin molecules bind to incoming α/β-tubulin dimers from the cytosol 

and this is thought to promote the lateral interaction between the α/β-tubulin dimers as they grow into protofilaments (a 

protofilament is a single end-to-end chain of tubulin dimers). C - MTs assembly progresses slowly through an unstable stage 

where disassembly is more likely than continued assembly (as indicated by the thickness of the two-way arrows). D - Assembly 

is thought to reach a stable stage, where a MT seed containing sufficient tubulin dimers has formed (although the size of this 

stable seed remains unclear). E - Once the stable seed has formed, MT polymerisation is favored and can progress rapidly 

(From (Tovey & Conduit, 2018) with permission).  

 

2.1.4.1. Centrosome 

 

As their name implies, centrosomes have long been thought to have a central role in many 

aspects of cell organization. More than a hundred years ago, it was recognized that centrosomes 

form the two poles of the bipolar mitotic spindle, which separates chromosomes to daughter 

cells during animal cell division. If embryos from certain species were induced to assemble too 

many centrosomes, multipolar spindles could form, leading to the mis-segregation of 

chromosomes and usually embryo death. However, some embryos survived for long enough to 

develop into abnormal ‘monsters’, prompting Boveri to famously speculate that the disturbance 

to homeostasis resulting from such chromosome imbalance might predispose cells to malignant 

transformation (Azimzadeh & Bornens, 2007; Bornens, 2012; Doxsey, 2001; Conduit, 

Wainman, & Raff, 2015). 
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We now know that centrosomes contain a pair of centrioles at their core, each having a 

ninefold symmetric structure (Figure 13). In animal cells, the centrioles exhibit a complex 

behaviour during the cell cycle, often forming a cilium in quiescent cells and a centrosome in 

proliferating cells. Cilia have many important functions in cells, and their dysfunction has been 

linked to many human pathologies. Centrosomes are formed when centrioles assemble and 

organize a matrix of pericentriolar material around themselves. The pericentriolar material 

contains hundreds of proteins, including important cell cycle regulators and signalling 

molecules, and many proteins that help to organize and nucleate microtubules, explaining why 

centrosomes function as the dominant MTOCs in many cell types. Through the microtubules 

that they organize and the proteins that they recruit, centrosomes seem to play an important part 

in many cell processes (Azimzadeh & Bornens, 2007; Bornens, 2012; Doxsey, 2001; Conduit, 

Wainman, & Raff, 2015). 

 

 
Figure 13. A schematic illustration of centriole structure. In most vertebrate cells (see the figure, part a), new centrioles 

(called ‘daughter centrioles’) are assembled around a central cartwheel structure (shown in dark green), which sets the ninefold 

symmetrical arrangement of the microtubules (light green). The older centriole of the pair (the ‘mother’) usually loses its central 

cartwheel and is often decorated with distal (grey) and sub-distal (blue) appendages. In vertebrate centrioles, the microtubules 

are usually arranged as triplets, which often become doublets towards the distal end. The new daughter centriole is formed at 

right angles to the mother during the S phase of the cell cycle, and the centrioles remain in this tightly apposed ‘engaged’ 

configuration until the late stages of mitosis, when they disengage, allowing the daughter centriole to mature into a mother that 

is now competent to form its own daughter and to organize its own pericentriolar material. In some species, such as worms and 

flies, centrioles are simpler in structure. A typical Drosophila melanogaster centriole pair is illustrated here (see the figure, part 

b): the centrioles are usually shorter than vertebrate centrioles and are usually composed of microtubule doublets rather than 

triplets; the mother centriole lacks appendages; and the cartwheel is present in both mother and daughter centrioles. (From 

(Conduit, Wainman, & Raff, 2015) with permission). 
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2.2. Microtubule associated proteins (MAPs) 

 

The stability and dynamic behaviour of the cytoskeleton are regulated by structural MT 

associated proteins (MAPs). The MAPs that regulate assembly of the MTs can be categorized 

functionally as stabilizers, destabilizers (including severing proteins), capping proteins, and 

bundlers/cross-linkers. Other MT binding proteins include motors that use MTs as tracks for 

intracellular transport and cytoplasmic linker proteins (CLIPs), which anchor organelles to MTs 

to promote cell organization. Some MAPs are cytoskeletal integrators (i.e., proteins that 

connect to other components of the cytoskeleton). In addition, some proteins involved in signal 

transduction, translation, and metabolism also bind MTs or other components of the 

cytoskeleton. (Goodson & Jonasson, 2018).  

 

2.2.1. Stabilizers 

 

Stabilizers are proteins that promote polymerization and/or slow depolymerization. 

Although these two activities are similar, they are not identical: A protein could potentially 

stabilize MTs by inducing a pause (inhibiting shortening but also inhibiting growth) without 

promoting polymerization. In practice, it can be difficult to distinguish between these two 

activities. Examples of these proteins are the MAP1, MAP2, tau and MAP4 (Amos & Schlieper, 

2005; Desai & Mitchison, 1997; Goodson & Jonasson, 2018). 

 

2.2.2. Destabilizers 

 

The destabilizers are proteins that shift a pool of dynamic MTs toward free subunits by one 

or more mechanisms. They are divided in: sequestering proteins which depolymerize MTs 

indirectly by binding free tubulin subunits and preventing them from polymerizing (as the 

stathmin); Tip destabilizers, that act by directly attacking the sensitive MTs tip (as the kinesins); 

and MTs severing proteins which use the energy of ATP to cut MTs into pieces (as the Katanin, 

spastin, fidgetin) (Cassimeris, 2002; Sharp & Ross, 2012). 
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2.2.3. Microtubule plus end trafficking proteins 

 

They are proteins that adhere to the MTs plus end; having the potential to regulate the MTs 

dynamic. They can stop both dimer association or dissociation, control the growing orientation 

and also the MTs interaction with the components of the cellular cortex. There are several MT 

plus end tracking proteins (+TIPs), among them are the CLIPs, which promote MT growth and 

regulate dynein-dynactin localization, and cytoplasmic linker protein-associated proteins 

(CLASPs), which stabilize specific subsets of MTs on reception of signalling cues. CLIPs and 

CLASPs interact and cooperate to direct the MT network, thereby regulating cellular 

asymmetry (Galjart, 2005). 

Another group of +TIPs are the End binding as the End binding 1 (EB1), a canonical +TIP, 

specific not to plus ends but to growing ends, as it will track growing minus ends if presented 

with the opportunity, at least in vitro. That protein modulates the MTs dynamics and 

interactions with intracellular organelles. The EB1 regulates the dynamics and structure of MTs 

assembly, stimulating spontaneous nucleation and growth of MTs, and promoting both 

catastrophes (transitions from growth to shrinkage) and rescues (reverse events) (Goodson & 

Jonasson, 2018; Vitre et al., 2008). 

The EB1 family of MT-associated proteins is conserved in eukaryotes. Members of the 

EB1 family have a conserved domain structure, with a single N-terminal calponin homology 

domain (CH domain), followed by a less conserved, unstructured region, a short coiled-coil 

region and the EB1-like domain. CH domains are found in many cytoskeletal and signalling 

proteins. Proteins with more than one CH domain were shown to be able to bind actin. However, 

the CH domain of EB1 binds to MTs in vitro; probably through electrostatic interactions. Also, 

full-length EB1 was shown to bind directly to polymerized tubulin. The C-terminus of EB1, 

with the coiled-coil and EB1-like domain regions, forms a four-helix bundle, and requires 

dimerization of the protein for its proper structure. This structure is responsible for the binding 

of several interacting proteins, for example adenomatous polyposis coli or p150glued, a 

component of the dynactin complex (Berrueta et al., 1998; Bu & Su, 2003; Juwana et al., 1999). 

 

2.2.4. Microtubule motors proteins 

 

The MT motor proteins are a class of molecular motors that can move along the MTs, that 

power a wide variety of motile processes within eukaryotic cells, including the beating of cilia 
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and flagella and intracellular trafficking along MTs. Among them are the kinesin, dynein and 

their accessories such as dynactin complex (Goodson & Jonasson, 2018). 

 

2.3. Tubulin superfamily 

 

Tubulin heterogeneity is the result of two mechanisms. Primary, tubulins are encoded by 

multigene families in most organisms, including the angiosperms, and the differences between 

the tubulin isotypes are sufficient to account for some if not all of the electrophoretic 

heterogeneity. Second, both α-tubulin and β-tubulin may be modified by one or more 

posttranslational mechanisms that can produce charge heterogeneity; producing different 

tubulin isoforms. 

 

2.3.1. Tubulin Isotypes  

 

In a large number of organisms, including animals, plants, fungi and protist, both α-tubulin 

and β-tubulin are encoded by multigenic families. So, the expression of the diverse isotypes 

lead to the increase of it diversity (Ludueña, 1993). 

The tubulin isotypes are quite similar, in terms of its amino acid sequence, in fact the main 

differences between them are found in the C-terminal region of the proteins. This region is rich 

in acidic amino acid residues being a primary target of the post-translational modifications and 

also responsible for the interaction with several MAPs (Ludueña, 1993).  

Since the different isotypes of α-tubulin and β-tubulin can copolymerize, the cells might 

determine the dynamic properties and functions of its MTs network in part by altering the 

relative amounts of the different tubulin isotypes (Panda, Miller, Banerjee, Ludueña, & Wilson, 

1994). Additionally, there are evidence that different isotypes may undergo distinctive post-

translational modifications and that the different isotypes also have a differential ligand binding 

properties with MAPS (Ludueña, 1993). 

 

2.3.2. Tubulin post-translational modifications 

 

Tubulin post-translational modifications (PTMs) are directly linked to the regulation of 

MT dynamics. They participate in this regulation by recruiting MAPs or by affecting the 

behaviour of motor proteins, being mostly linked to MT stability (de Forges, Bouissou, & Perez, 

2012). In fact, recent work has shown that PTMs of the tubulin building blocks mark 
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subpopulations of MTs and selectively affect downstream MT-based functions. In this way, the 

tubulin modifications generate a “code” that can be read by MT-associated proteins in a manner 

analogous to how the histone code directs diverse chromatin functions (Verhey & Gaertig, 

2007).  

MTs can acquire a variety of evolutionarily conserved PTMs including poly- 

glutamylation, polyglycylation, detyrosination (and related D2 modification), acetylation, 

phosphorylation and palmitoylation. In most cases, the modification enzymes act preferentially 

on tubulin subunits already incorporated into MTs. Most PTMs are enriched on MTs that are 

“stable” as defined by their slow subunit turnover and resistance to drugs that depolymerize 

MTs such as nocodazole. Nevertheless, at least some PTMs do not affect polymer dynamics by 

changing the intrinsic properties of MTs. Rather, an emerging hypothesis is that tubulin 

modifications specify a code that dictates biological outcomes through changes in higher-order 

MT structure and/or by recruiting and interacting with effector proteins (Verhey & Gaertig, 

2007). 

 

2.3.2.2. Acetylation 

 

While most known tubulin PTMs occur on the outer surface of polymerized MTs, 

acetylation has been identified on lysine 40 (K40) of a-tubulin, a residue exposed at the inner 

MT surface, i.e. in the MT lumen (L'Hernault & Rosenbaum, 1985; LeDizet & Piperno, 1987). 

So, the enzyme catalysing K40 acetylation needs to penetrate the narrow MT lumen to find its 

substrate (Janke & Montagnac, 2017).  

Acetylated MTs have been considered to be stable, long-lived MTs. However, until 

recently there was little information about whether the longevity, of these MTs, is the cause or 

the consequence of the acetylation. Current advances suggest that this PTM helps the MT lattice 

to cope with mechanical stress, thus facilitating MT self-repair. These observations now shed 

new light on the structural integrity of MTs, as well as on the mechanisms and biological 

functions of tubulin acetylation (Janke & Montagnac, 2017).  

 

2.3.2.2. Polyglutamylation 

 

Tubulin polyglutamylation can act as a direct regulator of MT functions, for example it 

regulates MT-dynein interactions and long glutamate side chains on tubulin provide a signal 

for MT severing by spastin (Kubo, Yanagisawa, Yagi, Hirono, & Kamiya, 2010; Lacroix et al., 
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2010; Suryavanshi et al., 2010). Tubulin polyglutamylation is a completely reversible PTM. In 

mammalian cells, the length controlling of the polyglutamate side chains on tubulin is critical 

for neural survival. Polyglutamylase enzymes have recently been identified as belonging to the 

tubulin tyrosine ligase-like (TTLL) protein family. Deglutamylase enzymes are members of 

cytosolic carboxipeptidases (CCP) family. The maintenance of the correct levels of tubulin 

polyglutamylation, by the coordinated action of polyglutamylases and deglutamylating 

enzymes, is crucial for the cell (Kimura et al., 2010; Rogowski et al., 2010; van Dijk et al., 

2007).  

 

2.4. Tubulin folding pathway 

 

The maturation of tubulin heterodimers is a complex multistep process involving the 

interaction of tubulins with molecular chaperones and tubulin cofactors (Figure 13) (Gonçalves, 

Tavares, Carvalhal, & Soares, 2010). 

In the begin of the tubulin folding pathway, the cytosolic chaperonin-containing TCP1 

(CCT) captures the tubulin folding intermediates, with significant native-like domain 

structures, either directly from ribosomes or from the hetero-hexameric chaperone prefoldin. It 

is now well established that the CCT complex mediates the folding, driven by ATP binding and 

hydrolysis, of a wide range of newly synthesized proteins and that tubulins (α, β and γ) and 

actin are its quantitatively major substrates (Gonçalves et al., 2010; Lewis, Tian, biology, 1997, 

1997; Vainberg et al., 1998). 

After interacting with CCT, tubulins follow two different folding pathways: α-tubulin is 

captured by the tubulin cofactor B (TBCB) and β-tubulin by the tubulin cofactor A (TBCA). 

Then, tubulin cofactors E (TBCE) and D (TBCD) capture α-tubulin and β-tubulin, respectively. 

The two pathways converge and α-tubulin, β-tubulin, TBCE and TBCD form a supercomplex. 

Tubulin cofactor C (TBCC) interacts with this complex and promotes GTP hydrolysis by b-

tubulin and the consequent release of α/β- tubulin-GDP heterodimers. Upon exchange of GDP 

by GTP these heterodimers become competent to polymerize into MTs (Fontalba, Paciucci, 

Avila, & Zabala, 1993; Gonçalves et al., 2010). 

In summary, the biogenesis and degradation of the αβ-tubulin heterodimer are non-

spontaneous processes that rely on five highly conserved tubulin cofactors (TBCs) proteins: 

TBCA, TBCB, TBCC, TBCD, and TBCE (Lewis et al., 1997; Lundin, Leroux, & Stirling, 

2010). 
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Figure 14. Schematic illustration of the tubulin folding pathway. CCT - denotes cytosolic chaperonin, a ring-like protein 

complex involved in folding of tubulin subunits. Tubulin cofactors B and E (TBCB and TBCE) are involved in the folding and 

dimerization pathway of α-tubulin monomers (light blue circle), while cofactors A and D (TBCA and TBCD) fulfil this function 

for β-tubulin monomers (dark blue circle). Note that TBCE (in addition to TBCD) can also dissociate tubulin dimers into α- 

and β-tubulin monomers (shown by backward directed arrows), leading to a reduction of the tubulin dimers pool available for 

MTs polymerization (adapted from (Szolajska & Chroboczek, 2011) with permission). 

 

2.4.1 Tubulin folding cofactors 

 

Tubulin cofactors, originally discovered as proteins required for proper tubulin folding and 

heterodimer formation (Tian et al., 1997), have also been shown to participate in tubulin 

dissociation (Bhamidipati, Lewis, & Cowan, 2000; H. Martín, Rodríguez-Pachón, Ruiz, 

Nombela, & Molina, 2000a; Tian, Bhamidipati, Cowan, & Lewis, 1999), transitory tubulin 

storage (Keller & Lauring, 2005), and tubulin degradation processes (Bartolini et al., 2005; 

Kortazar et al., 2007), all of which suggest that these proteins, in addition to their original role 

as tubulin folding machines, might be the clue to understanding the  MT dynamic. 

In mammals, five proteins have been identified in the folding and association of α- and β- 

tubulin polypeptides (Lewis et al., 1997): TBCA, TBCB, TBCC, TBCD, and TBCE. These 

cofactors have been implicated in tubulin dimer formation, as well as in MT dynamics, through 

the in vivo and in vitro regulation of tubulin heterodimer assembly and disassembly (Gao, 

Vainberg, Chow, & Cowan, 1993; Tian et al., 1997).  
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2.4.1.1. Tubulin cofactor A (TBCA) 

 

The mammalian TBCA protein was initially identified as a protein that integrate the tubulin 

folding pathway in vitro (Gao et al., 1993). It was shown that TBCA binds to β-tubulin 

intermediates derived from CCT, and that, in a next step β-tubulin is transferred to TBCD 

(Melki, Rommelaere, Leguy, Vandekerckhove, & Ampe, 1996)(Melki et al., 1996; Tian et al., 

1996). TBCA seems to function as a β-tubulin chaperone, capturing and storing β-tubulin 

monomers after dissociation reactions, serving as a reservoir of still functional β-tubulin 

polypeptides and thereby as a buffer protecting the cell from an unbalanced α/β-tubulin ratio 

(Fanarraga et al., 1999; Kortazar et al., 2006; Melki et al., 1996). In in vitro folding assays, the 

TBCA isn’t essential to the α/β-tubulin heterodimer assemble (Tian et al., 1996), but its addition 

to the reaction, led to a significantly increase of the β-tubulin, tubulin heterodimer and β-tubulin 

bound to TBCA (Fanarraga et al., 1999).  

Although TBCA is not essential in vitro to the folding of the α/β-tubulin heterodimer, the 

TBCA knockdown in human cell lines (HeLa and MCF-7), by RNAi gene silencing, has a lethal 

effect, with cells presenting a slightly disturbed MT cytoskeleton. This may reflect the decrease 

of β-tubulin steady-state levels detected in this cell lines upon transfection, that are 

accompanied also by a decrease of the steady-state levels of α-tubulin. Although it is still not 

clear how TBCA knockdown affects the MT cytoskeleton, it is probably a consequence of a 

decrease in the pool of α/β-tubulin heterodimers competent to polymerize (Nolasco, Bellido, 

Gonçalves, Zabala, & Soares, 2005). The overexpression experiments of TBCA and Rbl2p 

(Saccharomyces cerevisiae TBCA orthologue) have failed to demonstrate a clear phenotype. In 

contrast, overproduction of Alp31 (Schizosaccharomyces pombe TBCA orthologue) is toxic to 

the cell, resulting in the disappearance of intact MT structures associated with cell polarity 

defects, but no effects were founded at the cellular tubulin levels (Lopez-Fanarraga, Avila, 

Guasch, Coll, & Zabala, 2001). Meanwhile, the knockout of the TBCA gene is not lethal to 

budding yeast and in fission yeast under normal growth conditions(Radcliffe & Toda, 2000). 

 

2.4.1.2. Tubulin cofactor B (TBCB) 

 

The TBCB is a conserved α-tubulin interacting protein involved in the ‘‘postchaperonin’’ 

tubulin folding pathway, that also collaborate in the regulation of MT dynamics (Kortazar et 

al., 2007; Lewis et al., 1997; Lopez-Fanarraga et al., 2001). The protein was initially purified 
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from a crude extract of bovine testis tissue and migrated with an apparent mass of 130 kDa 

upon gel filtration, and consisted of a single polypeptide of 38 kDa upon analysis by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 27,561 kDa by mass 

spectrometry (Tian et al., 1997). Although it is not essential to the α/β-tubulin heterodimers 

assembly, the TBCB greatly enhances the efficiency of α-tubulin folding in vitro (Tian et al., 

1997). In humans, TBCB has been implicated in cancer (Vadlamudi et al., 2005), 

neurodevelopment malformations (Tian et al., 2010a), schizophrenia (Martins-de-Souza et al., 

2009) and neurodegenerative processes (W. Wang et al., 2005).  

This protein is composed of two functional structural domains connected by a coiled-coil 

segment, composed of leucine-rich repeats (LRR) (Figure 15). At the N-terminus, TBCB 

contains a ubiquitin-like (UbL) domain. This domain is spherical, behaves as a monomer of 

about 14 kDa and is a ubiquitous protein interaction domain present in many unrelated proteins. 

The C-terminal domain is a cytoskeleton associated protein glycine-rich (CAP-Gly) 

characteristic of +TIP proteins that are implicated in essential cellular processes such as 

chromosome segregation, establishment and maintenance of cell polarity, intracellular 

organelle and vesicle transport, cell migration, intracellular signalling and oncogenesis (S. Li 

et al., 2002; Weisbrich et al., 2007). This domain is also globular, three antiparallel β-sheets 

and one α-helix, as represented by the Caenorhabditis elegans F53f4.3 protein CAP-Gly 

domain (Carranza et al., 2013; S. Li et al., 2002). The unique α-helix is preceded by a disordered 

stretch of 17 residues, and the last six or seven amino acid residues protrude from the globular 

domain. CAP-Gly domains serve as recognition domains for EEY/F-COO- peptides (Carranza 

et al., 2013; Weisbrich et al., 2007). Furthermore, the structural prediction for the last nine 

amino acid residues of human TBCB is that of a disordered peptide (EEDYGLDEI) protruding 

from the globular domain which apparently are similar to the EEY/F-COO- element 

characteristic of EB proteins, CLIP-170, α-tubulin and are also able to interact with its own 

CAP-Gly domain groove, controlling its autoinhibition (Carranza et al., 2013). Finally, the 

TBCB CAP-Gly domain has a conserved motif (DEI/M-COO-), which is required for TBCE–

TBCB heterodimer formation and thus for tubulin dimer dissociation (Carranza et al., 2013). 

TBCB is a soluble cytoplasmic protein in interphase cells and localizes at the centrosome 

and at the basal body of the primary cilium. As mitosis progresses towards metaphase, TBCB 

is often localized to spindle MTs. In anaphase most of this cofactor has progressively 

disappeared from the centrosome and is concentrated on the midbody MTs. By the end of 

telophase, TBCB is apparently absent from the centrosome, concentrating at the midbody. 

These localizations show that TBCB can bind to MTs. However, this binding is indirect, 
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occurring through the interaction of TBCB with a MT binding protein like EB1. Since EB1 is 

known to stabilize the plus ends of MTs, its interaction with TBCB explains how TBCB is able 

to promote a MT catastrophe when overexpressed, by sequestering EB1 from MT plus ends 

(Carranza et al., 2013).  

Interestingly, the TBCB interacts with the protein p21-activated kinase 1 (Pak1), a 

serine/threonine kinases, enriched in MTOCs, that play an important role in mitosis and MT 

dynamic (Vadlamudi et al., 2005). Pak1 directly phosphorylates the TBCB in vitro and in vivo 

on serines 65 and 128 and colocalizes with TBCB on newly polymerized MTs and on 

centrosomes. By other side, the TBCB interacts with the GTPase-binding domain of Pak1 and 

activates Pak1 in vitro and in vivo. Therefore, the Pak1 phosphorylation is necessary for normal 

TBCB function, since it plays an essential role in MT regrowth after depolymerization 

(Vadlamudi et al., 2005). Curiously, the TBCB was overexpressed and phosphorylated in breast 

tumours, indicating that may be there is a coordinately deregulated of Pak1 and TBCB in human 

cancers (Vadlamudi et al., 2005).  

Moreover, the TBCB is efficiently nitrated, mainly on tyrosine 64 and 98, and that nitration 

attenuates the synthesis of new MTs. Furthermore, the nitration also antagonizes signalling-

dependent phosphorylation of TBCB, whereas optimal nitration requires the presence of 

functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate 

phosphorylation-dependent MT regrowth. Thus, the phosphorylation and nitration of TBCB 

may play a role in maintaining a constant balance between growth and regrowth of MTs (Rayala 

et al., 2007). 

TBCB was additionally identified as an interacting factor of gigaxonin. This protein is 

mutated in human giant axonal neuropathy (GAN), an autosomal recessive neurodegenerative 

disorder, characterized by the presence of generalized cytoskeletal abnormalities, including few 

MTs and accumulated IFs. Gigaxonin binds to TBCB and controls its degradation via the 

Ubiquitin-Proteasome Pathway, a critical function to the maintenance of the MT network. 

Interestingly, the TBCB overexpressing could recapitulate the MT pathology in GAN cells, 

moreover in COS7 cells the TBCB overexpressing lead to the MT network disappearing, what 

can be restored by the gigaxonin coexpression. These results suggest that gigaxonin can play 

an essential role in cytoskeletal organization and dynamics (W. Wang et al., 2005) and TBCB 

is an important protein in the development of the nervous system (Lopez-Fanarraga et al., 2001; 

2007). Curiously, TBCB is predominantly expressed during neurogenesis, its knockdown 

enhances axonal growth and, in contrast, excess of TBCB, a feature of GAN, leads to MT 

depolymerization, growth cone retraction and axonal damage followed by neuronal 
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degeneration. These results suggest that TBCB regulates the axonal growth, probably by the 

regulation of the MT dynamics, acting in combination with the TBCE, to regulate the pool of 

tubulin dimers available for polymerization (Lopez-Fanarraga et al., 2007). This author also 

suggests that TBCB might participate in the biology of cilia, for instance, contributing to the 

growth or renewal of the MT in these structures, based on an abundance of TBCB in the basal 

bodies of cilia in the respiratory tract (Lopez-Fanarraga et al., 2007).  

Recently, TBCB was found to associate with the CCT, probably recognizing α-tubulin still 

bound to CCT (Carranza et al., 2013). The proposed mechanism predicts that α-tubulin is 

released from CCT and bound to TBCB ensuring that the α-tubulin monomer would never 

aggregate. Later, the monomeric tubulin subunit would be transferred to TBCE for dimer 

assembly and incorporation into growing MTs or would be transferred to the degradative 

pathway involving the proteasome, if not properly folded (Voloshin et al., 2010).  

Later, it was described that TBCB interacts with the PIWIL2, aka HILI, a member of PIWI 

subfamily containing PIWI and PAZ domains, that played crucial roles in self-renew of stem 

and germ cells, RNA silencing and translational regulation in different organisms during 

evolution and is ectopically expressed in different cancer cells. HILI regulates MT dynamics 

through two pathways. First, HILI interacts with TBCB and promotes the interaction between 

HSP90 and TBCB, inhibiting its interaction with gigaxonin, and suppressing the gigaxonin 

mediated ubiquitination and degradation of TBCB. Second, HILI inhibits TBCB 

phosphorylation induced by PAK1. The up-regulation of TBCB expression and down-

regulation of TBCB phosphorylation level induced by HILI overexpression suppress MT 

polymerization. Thus, HILI can promote tumour cells proliferation, migration and invasion via 

TBCB (Figure 16) (Tan et al., 2017).  

In S. cerevisiae the TBCB homologues, Alf1p, is able to associate with both nuclear and 

cytoplasmic MTs in vivo, this localization being dependent on the CLIP170 domain. While 

overexpression of Alf1p has no effect in wild-type strains, a null mutation of yeast TBCB is 

lethal, only in combination with an α-tubulin mutation (Tian et al., 1997). In S. Pombe the 

TBCB homologues is the Alp11, a gene essential for cell viability and its overproduction results 

in cell lethality, plus the disappearance of cell MT (Radcliffe, Hirata, Vardy, & Toda, 1999).  

In Drosophila, the studies confirm that TBCB is required for tubulin dimerization and for 

tubulin heterodimer dissociation, affecting the levels of both α- and β-tubulins and dramatically 

destabilizing the MT network in different fly tissues. Surprisingly, TBCB is dispensable for the 

early MT-dependent steps of oogenesis in Drosophila, including cell division, not being 

required for mitosis in several tissues. In contrast, the absence of TBCB during later stages of 
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oogenesis causes major defects in cell polarity. This establishes a developmental function for 

TBCB in Drosophila: essential for viability, for MT network integrity and for cell polarity; but 

not for cell proliferation (Baffet et al., 2012).   

 

 
Figure 15. Schematic representation of the human TBCB functional structural domains. UbL - ubiquitin-like domain at 

the N-terminus. CC - coiled-coil domain composed of leucine-rich repeats (LRR). CAP-GLY - cytoskeleton associated protein 

glycine-rich domain at the C-terminus (Adapted from (Carranza et al., 2013) with permission).   

 

 
Figure 16. Model of how HILI regulates MT dynamics via TBCB (From (Tan et al., 2017) with permission). 

 

2.4.1.3. Tubulin cofactor C (TBCC) 

 

The Human TBCC is a post-chaperonin involved in the folding and assembly of α- and β-

tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize 

into MTs. In this process it collaborates with other cofactors (TBC’s A, B, D, and E) and forms 

a supercomplex with TBCD, b-tubulin, TBCE and a-tubulin (Garcia-Mayoral et al., 2011). The 

TBCC is capable of inducing the TBCD/β-tubulin/TBCE/α-tubulin complex to release the 

native α-/β-heterodimer, since complexes formed between α-tubulin, β-tubulin, TBCD, and 

TBCE are not sufficient to release tubulin heterodimers (Zabala & Cowan, 1992). This way, 

the hydrolysis of GTP by tubulin, stimulated by TBCC and TBCD, is part of the heterodimer 

assembly reaction: hydrolysis of GTP by β-tubulin acts as a switch for the release from the 
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supercomplex of native, newly made tubulin heterodimers. In fact, TBCC and TBCD in 

combination have been shown to be GTPase activators (GAP) for native tubulin; with TBCE 

enhancing this tubulin-GAP activity (Tian et al., 1999).  

The tubulin chaperone protein TBCC has a profound influence on tubulin pools and MT 

dynamics: cells with reduced TBCC content displayed increased MT dynamics; cells with 

increased TBCC content contain less polymerizable tubulin and display reduced MT dynamics 

(Hage-Sleiman, Herveau, Matera, Laurier, & Dumontet, 2010; 2011). TBCC is a protein found 

at the centrosome and is implicated in bipolar spindle formation (Garcia-Mayoral et al., 2011). 

Cells depleted of TBCC proliferate faster and show an altered cell cycle distribution, with a 

higher percentage in the S-phase of the cell cycle. This demonstrates that TBCC is a crucial 

protein in the control of the eukaryotic cell cycle, and supports the hypothesis that this tubulin 

binding cofactor could be implicated in genomic instability and cancer (silencing of TBCC is 

associated with enhanced tumour growth in vivo) (Hage-Sleiman et al., 2011). 

 

2.4.1.4. Tubulin cofactor D (TBCD) 

 

TBCD was originally discovered via its purification as a 120 kDa protein from bovine testis 

tissue that was responsible for forming a characteristic co-complex with β-tubulin in in vitro 

folding assays done with CCT in the presence of ATP and GTP (Tian et al., 1996; 1997). This 

protein preferentially binds in vivo and in vitro to GTP-bound β-tubulin released from TBCA, 

being part of the formed supercomplex TBCE/α-tubulin/TBCD/β-tubulin (Bhamidipati et al., 

2000; Tian et al., 1999). Additionally, the TBCD is also associated to the α-/β-tubulin 

heterodimer dissociation, since its overexpression in mammalian cells let to the MT network 

depolymerization, to the heterodimer dissociation and to the β-tubulin sequestering 

(Bhamidipati et al., 2000; L. Martín, Fanarraga, Aloria, & Zabala, 2000b). As result of the 

TBCD overexpression was also found a decrease in the β-tubulin levels due to its degradation 

in the proteasome (H. Martín et al., 2000a). However, the efficiency with which TBCD effects 

tubulin disruption in vivo depends on its origin: bovine (but not human) TBCD efficiently 

destroys tubulin and MTs upon overexpression in cultured cells (Cunningham & Kahn, 2008; 

Fanarraga, Bellido, Jaén, Villegas, & Zabala, 2010). Actually, both proteins led to MTs 

depolymerization, but the bovine protein is more efficient than the human TBCD. In fact, the 

human TBCD need more time to completely depolymerize the MT network (Fanarraga et al., 

2010). That inability of human TBCD to disrupt MT integrity upon overexpression in vivo can 

be overcome by siRNA-mediated suppression of expression of the TBCD regulator ADP 
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Ribosylation Factor-like Protein 2 (Arl2) as the MTs of HeLa cells are protected from human 

TBCD-mediated disruption via interaction of this protein with Arl2 (Tian, Thomas, & Cowan, 

2010b). The evidence that the TBCD does not interact with the MTs shows that the MT 

depolymerization is due to a TBCD action on the native heterodimers and not directly on the 

MTs  (Fanarraga et al., 2010; H. Martín et al., 2000a), what is also supported by the evidences 

of its high affinity towards the GTP β-tubulin than the GDP form (H. Martín et al., 2000a; Tian 

et al., 1999).  

TBCD also contributes to tubulin GAP (GTPase Activating Protein) activity, in which 

TBCD, TBCC and TBCE induce GTPase activity via hydrolysis of E-site GTP in the native 

tubulin heterodimer at a concentration far below that required for polymerization into MTs 

(Tian et al., 1999). That GAP activity of TBCD, TBCE and TBCC is downregulate by the Arl2, 

which inhibits the binding of TBCD to native tubulin in vitro and in vivo. The GDP-bound Arl2 

interacts with cofactor TBCD, thereby averting tubulin and MT destruction (Bhamidipati et al., 

2000). In addition to its participation in de novo tubulin heterodimer assembly and tubulin GAP 

activity, recent evidence implicates TBCD in recruitment of the γ-tubulin ring complex at 

centrosomes and organization of the mitotic spindle (Cunningham & Kahn, 2008; Fanarraga et 

al., 2010). The accumulation of TBCD in procentrioles is gradually lost during the maturation 

process, coinciding with MT glutamylation. This might indicate that TBCD participates in the 

supply of tubulin to procentrioles, while binding and protecting the developing centriolar blades 

until MT assembly is complete (Fanarraga et al., 2010). The gene encoding TBCD is essential 

for life in eukaryotes, as shown by genetic experiments in the model organisms S. pombe and 

Arabidopsis thaliana (Hirata, Masuda, Eddison, & Toda, 1998; Radcliffe et al., 1999; Steinborn 

et al., 2002). 

The depletion of TBCD results in mitotic spindle defects (Cunningham & Kahn, 2008) and 

incomplete MT retraction at the midbody during cytokinesis (Fanarraga et al., 2010). On the 

other hand, overexpression of TBCD leads to the loss of anchoring of the γTuRC and of 

nucleation of MT growth at centrosomes (Cunningham & Kahn, 2008) and G1 arrest (Fanarraga 

et al., 2010). Neither overexpression, nor knockdown, nor expression of mutants of TBCD, 

leads to any detectable changes in the levels of α-, β-, or γ-tubulins, indicating that the 

phenotypes observed are not due to changes in tubulin protein levels. These activities each 

appear to be distinct from the previously described role for TBCD in tubulin heterodimer 

assembly/disassembly (Cunningham & Kahn, 2008). 
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2.4.1.5. Tubulin cofactor E (TBCE) 

 

The TBCE was originally discovered via its purification from bovine testis tissue. This 

protein was responsible for forming a characteristic co-complex with α-tubulin in in vitro 

folding assays done with CCT in the presence of ATP and GTP (Tian et al., 1996; 1997). 

Subsequently, was reported that this polypeptide, has about 60 kDa in denaturing gels, binds to 

α-tubulin after it has been released from the CCT and then associates with the C300 complexes, 

resulting in a larger complex that migrates more slowly in nondenaturing gel electrophoresis 

(Tian et al., 1996).  

In mammalian the TBCE has two terminal domains, same as in TBCB, but in a reversed 

order. The CAP-Gly domain is on the N-terminus (in TBCB it was on the C-terminus), and the 

ubiquitin domain is in the C-terminal part (region 453–526). Additionally, the protein has also 

ten leucine rich repeats (LRRs) which are usually involved in protein-protein interactions, in 

its central region (Grynberg, Jaroszewski, & Godzik, 2003). It is mostly a cytoplasmic protein, 

like all TBCs (in accordance with their tubulin-chaperoning function), but it also accumulates 

at the Golgi apparatus of motor neurons, where it is essential for axonal tubulin routing 

(Schaefer et al., 2007). As was previously said the TBCE is a protein that associates with α-

tubulin after it is released from TBCB, being necessary for the α/β-tubulin heterodimer 

assembly. It has also been described that it increases the ability of TBCC and TBCD to promote 

the GTPase activity of α-tubulin (Tian et al., 1999). 

Moreover, the TBCE, as the TBCD, also participate in MT dynamics, dissociating the 

tubulin heterodimer by the sequestering of the α-tubulin (Kortazar et al., 2006; 2007; Tian et 

al., 1997). Interestingly, its overexpression disrupts the cellular MT network, due to the 

dissociation of the α/β-tubulin heterodimer and the capture the b-tubulin released from the 

heterodimer (Bhamidipati et al., 2000; Kortazar et al., 2007; Tian, Huang, Parvari, Diaz, & 

Cowan, 2006). Since the TBCE/ α-tubulin complex is intrinsically unstable (Lewis et al., 1997), 

the overexpression of TBCE leads to the loss of α-tubulin and the accumulation of a small 

amount of β-tubulin complexed with endogenous cofactors (Bhamidipati et al., 2000). 

Interestingly, TBCE interacts with TBCB, originating the TBCE–TBCB complex, which 

displays a more efficient stoichiometric tubulin dissociation activity than TBCE alone. Upon 

dissociation, TBCB, TBCE, and α-tubulin form a stable ternary complex. The disassembly of 

this ternary complex results in either TBCB/α-tubulin, free TBCE, TBCE/α-tubulin and free 
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TBCB. Free b-tubulin subunits might be recyclable in the presence of TBCA or TBCD 

(Kortazar et al., 2007). 

Homologues of TBCE have been identified in several eukaryotic species, such as S. 

cerevisiae (Pac2p (Hoyt, Macke, Roberts, & Geiser, 1997)), S. pombe (Alp21 (Radcliffe et al., 

1999)) and A. thaliana (PFI (Steinborn et al., 2002)). Pac2p, which has 26% identity to human 

TBCE, is required for normal MT stability and, when overexpressed in S. cerevisiae, is detected 

in a complex with α-tubulin (Hoyt et al., 1997). Alp21 is an essential protein in S. pombe 

involved in the generation of normal MTs (Radcliffe et al., 1999). Although the exact 

mechanism involved in the binding of TBCE to α-tubulin is still unknown, several TBCE 

homologs contain a N-terminal CAP–Gly domain, an UbL domain and LRR (frequently 

involved in protein–protein interactions) (Grynberg et al., 2003).  

Consistent with TBCE predicted multifunctional role in the biogenesis and regulation of 

the tubulin heterodimer, are the following findings: mutations in the A. thaliana TBCE gene 

(PFI) result in microtubular defects (Steinborn et al., 2002); an amino acid deletion in murine 

TBCE results in a progressive motor neuropathy in mice that causes premature death in 

homozygotes (Martín et al., 2002); human mutations of the TBCE gene lead to both Kenny–

Caffey and Sanjad–Sakati syndromes - microtubular defects consistent with alterations in the 

tubulin folding and dimerization pathways (Parvari et al., 2002). There is a recruitment of this 

cofactor into round structures that surround a γ-tubulin central spot, which are called «centriolar 

rosettes» (Fanarraga et al., 2010a; Fanarraga et al., 2010b), and is detectable at the base of the 

mammalian spermatozoa flagellum, where highly sophisticated MTs are also assembled and 

maintained (Fanarraga et al., 2010b).  

 

3. Cytoskeleton in T. gondii 

 

Apicomplexan protozoa share a number of cytoskeletal elements (MTs, actin, myosin, and 

intermediate filament-like proteins) with other “typical” eukaryotic systems used to study the 

cytoskeleton. Nonetheless, studies of the cytoskeletons of apicomplexans have revealed 

startling differences from model organisms that are worth mentioning at the outset. The singlet 

subpellicular MTs of Apicomplexans are one example of that, since they are unusually stable 

and withstand the high pressure, cold, and detergents typically used to isolate them, conditions 

incompatible with the maintenance of most MTs. In contrast, the microfilaments of 

Apicomplexans are thought to be exceedingly transient. Microfilaments are observed only after 
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treatment with jasplakinolide (a drug that drives actin polymerization), and the bulk of actin 

(>98%) is sequestered in globular form (Morrissette & Sibley, 2002a).  

 

3.1. Microtubule cytoskeleton in T. gondii 

 

The T. gondii cytoskeleton is composed of several tubulin-based structures: the conoid (a 

truncated cone–shaped structure) made up of 14 novel tubulin polymers in spiral, a pair of 

intraconoid MTs, subpellicular (cortical) MTs that extend in spiral down two-thirds the length 

of the parasite and centrioles, as well as a spindle in replicating parasites (Hu, Roos, & Murray, 

2002b; Morrissette et al., 1997; Morrissette & Sibley, 2002a; Nichols & Chiappino, 1987; 

Swedlow et al., 2002). 

Subpellicular MTs are essential for host cell invasion, since they are important for shape 

and apical polarity of the parasite, for secretion and play an important role in segregation of 

organelles to daughter buds. Conversely, spindle MTs are necessary for chromosome 

segregation and nuclear scission (Morrissette & Sibley, 2002a; Russell & Burns, 1984). 

In T. gondii, and in close related apicomplexan organisms, subpellicular MTs are rooted at 

one end in the apical polar ring, which is supposed to serve as a MTOC. In Eimeria parasites, 

the “hook decoration” (Heidemann & McIntosh, 1980) suggested that the apical polar ring 

might be attached to the minus end of the MTs (Russell & Burns, 1984), as in mammalian cells 

MTOCs. Consistently with this observation, subpellicular MT growth only occurs at the distal 

end to the apical polar ring (Hu, Roos, & Murray, 2002b). However, it is still unknown how the 

apical polar ring determines the exact MT number, the precise spacing among them, the precise 

orientation and also the polarity of these MTs.  

Subpellicular MTs run through the cytosolic face of the pellicle, and ending in the region 

below the nucleus (Morrissette & Sibley, 2002a; Nichols & Chiappino, 1987), these spirally 

arranged MTs closely follow the serpentine body shape of the parasites, conferring an elongated 

shape and apical polarity, and also contributing to motility by providing tracks that direct the 

actin-myosin-based activity. The subpellicular MTs are closely associated with the cytosolic 

face of the IMC, demonstrating a periodicity which suggests that they directly associate with 

unidentified proteins of the IMC lattice (Morrissette et al., 1997; Tran, Li, Chyan, Chung, & 

Morrissette, 2012), probably MAPs. To support this association, and since MAPs are stabilizing 

agents, is the fact that subpellicular MTs are highly resistant to conditions that lead to MTs 

depolymerization, like MT-depolymerizing compounds, detergent extraction, and low-

temperature conditions (Jun Liu et al., 2016; Morrissette et al., 1997; Nichols & Chiappino, 
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1987). This extraordinary stability is conferred by coating proteins that heavily decorate these 

MTs (Hu, Roos, & Murray, 2002b; Jun Liu et al., 2016; 2013; Morrissette et al., 1997; Tran et 

al., 2012). The first characterized MT-coating proteins characterized in T. gondii were SPM1 

and SPM2 (Tran et al., 2012). T. gondii SPM1 is localized along the entire length of the 

subpellicular MTs but does not localize to the conoid, the intraconoid MTs, or the spindle. 

SPM2 has a more restricted localization pattern than SPM1, being associated with the middle 

third of the subpellicular MTs. Neither of these proteins seems essential for tachyzoite viability, 

but loss of SPM1 decreases overall parasite fitness and eliminates the stability of subpellicular 

MTs to detergent extraction (Tran et al., 2012). In fact, the importance of SPM1 might be related 

with the recent discovery of a new MAP: TrxL1 (Thioredoxin-Like protein 1), as TrxL1 does 

not seem to bind to MTs directly, instead it associates with a protein complex containing SPM1. 

Besides SPM1, several other proteins are found in the TrxL1-containing complex, including 

TrxL2, a close homolog of TrxL1 (Jun Liu et al., 2013). TrxL1 is localized to both the 

intraconoid and the subpellicular MT, being dependent on SPM1 in the latter (Jun Liu et al., 

2013; 2016). Recently, two more proteins were identified, TLAP2 and TLAP3, as protect the 

stability of the subpellicular MTs in a region-dependent manner (“An ensemble of specifically 

targeted proteins stabilizes cortical microtubules in the human parasite,” 2016). 

Another form of subpellicular MTs stabilization in the Apicomplexan T. gondii is through 

post-translational modifications (PTM) of tubulin, which is also a mechanism to generate 

tubulin diversity since the tubulin gene family is quite small (only two α-and three β-tubulin 

genes). PTM are more abundant in less dynamic MTs, suggesting that they may contribute to 

MT stability and modulate their interaction with MAPs. In T. gondii the PTMs identified on α-

tubulin include acetylation of Lys40, removal of the last C-terminal amino acid residue Tyr453 

(detyrosinated tubulin), and the truncation of the last five amino acid residues. 

Polyglutamylation is detected on both α- and β-tubulins. Finally, methylation is detected on 

both tubulins and may be a modification characteristic of the phylum Apicomplexa 

(Morrissette, 2015; Xiao et al., 2010). 

During mitosis, parasites employ spindle MTs. Spindle MTs are nucleated from electron 

dense, amorphous plaques associated with nuclear invaginations and embedded in the nuclear 

membrane, adjacent to cytoplasmic centrioles/centrosome. This spindle-organizing structure 

can be referred to as the centrocone, the centriolar plaque, the spindle pole body or spindle pole 

plaques (Morrissette & Sibley, 2002a). 

Besides being associated with the spindle pole plaques, responsible for nucleating the 

assembly of intra-nuclear spindle MTs, the centrosome has also been described as playing a 
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role in the division of membrane-bounded organelles, including the apicoplast (Hartmann et 

al., 2006; Striepen et al., 2000); and implicated in the biogenesis of the Golgi apparatus 

(Hartmann et al., 2006; Stedman, Sussmann, & Joiner, 2003). Another function for the presence 

of the centrosome in T. gondii might be that the centrioles are maintained throughout the 

asexual life cycle in order to serve as a template for the construction of basal bodies that 

nucleate flagellar axonemes in the male gametes (Morrissette & Sibley, 2002a). 

 

3.2. Assembly of T. gondii cytoskeleton 

 

The assembly of the cytoskeleton is a well-orchestrated process that can be divided into 

four different periods: Initiation of budding, early budding, mid budding and late budding 

(Anderson-White et al., 2012).  

Initiation of budding begins after centrosome duplication where the DNA content is 1.2N. 

The centrosome plays an important role for the coordination of the mitotic and the cytokinetic 

cycle (Gubbels et al., 2008). The centrosomes themselves are very dynamic and co-localise 

early during the initiation phase with IMC15 and the small GTPase Rab11B. These 

observations make IMC15 and Rab11B the earliest markers for daughter cell budding 

(Anderson-White et al., 2012). The termination of the bud initiation step can be monitored by the 

accumulation of MORN1 on the daughter buds (Gubbels et al., 2008). Additionally, the 

subpellicular MTs and the conoid are formed during this phase. Those early structures of the IMC 

and MTs serve as a scaffold for the next steps of daughter cell budding (Agop-Nersesian et al., 

2010; Hu et al., 2006). 

The early budding stage is identified as beginning by the appearance of the IMC 

subcompartment proteins ISP1-3 (Beck et al., 2010). During this phase, at a DNA content of 

1.8N, additional elements are identified within the daughter cells. These include IMC proteins, 

IMC1 and IMC3, and components of the MyoA motor complex, the gliding associated proteins 

GAP40 and GAP50 (Frénal et al., 2010; Gaskins et al., 2004). 

After these early components are assembled the middle budding phase begins. It is typified 

by the elongation of the daughter parasite cytoskeleton towards the basal end. The basal end of 

the growing daughter cells is marked by MORN1 protein. It is suspected that first the apical 

end of the parasite is formed then the cytoskeleton scaffold grows in direction of the basal end. 

This is because ISP1 remains apical while the cytoskeleton grows in the direction of the 

midpoint of budding (Beck et al., 2010). At this stage the IMC proteins, IMC5, 8, 9 and 13, are 

relocated from the periphery of the growing daughter parasites to the basal ends where MORN1 

can be visualised (Anderson-White et al., 2011).  
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Maturation of the daughter cell occurs during the late budding phase while the cytoskeleton of 

the mother parasites is disassembled. A marker of this period is RNG1 that localizes to the apical 

polar ring and can be detected just before the mother cell’s cytoskeleton breaks down (Tran et al., 

2010). The plasma membrane of the mother cell is integrated into the pellicle of the newly formed 

daughter cells in a Rab11A dependant manner. The MyoA motor complex is then incorporated 

between the plasma membrane and the IMC of the nascent daughter parasites (Agop-Nersesian et 

al., 2009). 

 

3.3. Microtubule cytoskeleton dynamic during the T. gondii host cell invasion 

 

In 2006 our group studied the Besnoitia besnoiti host cell invasion process and MT 

cytoskeleton behaviour during its initial steps. In this work, we observed that upon interaction 

with the host cell, B. besnoiti undergoes dramatic modifications of shape and surface, which 

correlates with rearrangements of the parasite MT cytoskeleton. In the host cell, the MT 

cytoskeleton shows a re-arrangement around the invading parasite suggesting a filamentous 

interaction with the parasite cytoskeleton during invasion (Reis et al., 2006). Therefore, we 

proposed that host cell invasion by B. besnoiti requires a crosstalk between both MT 

cytoskeletons. Walker and colleagues and Sweeney and colleagues proposed a similar model 

for T. gondii. Walker and colleagues suggested an intimate interaction between T. gondii and 

host MTs resulting in the suppression of cell division and/or cause a mitotic defect, thus 

providing a larger space for parasite duplication (Walker et al., 2008). Sweeney and colleagues 

on their work reported that T. gondii host cell invasion is temporally regulated by the host MT 

cytoskeleton, by other words, the host MT cytoskeleton is a structure used by Toxoplasma to 

rapidly infect its host cell (Sweeney et al., 2010).  

Considering all these data, we have been interested in the identification of crucial players 

involved in MT arrays rearrangements and dynamics that can be essential for invasion. In T. 

gondii, MT dynamics is probably regulated by tubulin PTM, by MAPs and also by TBCs that 

control tubulin pool by folding/dissociating tubulin heterodimers and by recycling/degradation 

of tubulin. 
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4. Objectives 

 

The main goal of this work was to contribute for a better understanding of the MTs 

cytoskeleton role and function during host cell invasion in T. gondii as an apicomplexan model. 

Proteins involved in the MT cytoskeleton remodelling and dynamics are excellent targets for 

this study, since they are strong candidates to take part in the apicomplexan process of host cell 

invasion.  

Tubulin proteostasis is regulated by a group of molecular chaperones termed tubulin-

binding cofactors (TBCs). TBCs participate in the folding, dimerization and dissociation 

pathways of the tubulin dimer; being implicated in MT dynamics in vivo. Our major working 

hypothesis is that TBCs play a crucial role in MT arrays rearrangement and dynamics, and thus 

be essential for infection. In this context, our aim was to characterize the T. gondii Tubulin 

Cofactor B (TBCB) in the MT dynamics regulation during host cell invasion. More specifically, 

we aim to: 

• Determine the T. gondii TBCB predicted gene and protein 

• Studied the T. gondii TBCB predicted gene and protein 

• Characterize T. gondii TBCB sub-cellular localization 

• Analyse the T. gondii TBCB function by overexpression 

• Analyse the T. gondii TBCB function by knockout 

 

 

 

 

 

  



 

Chapter I: Introduction  

 

52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intentionally blank page 



 

53 
Chapter II: Material and Methods 

 

Chapter II: Material and Methods 

 

1. Molecular cloning 

 

1.1. Cells and culture conditions 

 

1.1.1. Bacterial strains 

 

In this work we used two different Escherichia coli strains for general cloning and sub-

cloning applications (DH5α and JM109) and one E. coli strain for protein expression (BL21): 

- DH5α – It is a well-known versatile strain used for general cloning and sub-cloning 

applications. Genotype: fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 

relA1 endA1 thi-1 hsdR17; 

- JM109 – It is a K strain that is recA– and endA– to minimize recombination and improve 

the quality of plasmid DNA. Genotype: endA1, recA1, gyrA96, thi, hsdR17 (rk–, mk+),  

relA1, supE44, Δ(lac-proAB), [F´ traD36, proAB, laqIqZΔM15]; 

- BL21 – It is a widely used non-T7 expression E. coli strain and is suitable for 

transformation and protein expression. This strain does not express the T7 RNA Polymerase. 

Genotype: F– ompT gal dcm lon hsdSB(rB–mB–) [malB+]K-12(λS). 

 

1.1.2. Growth media and culture conditions 

 

E. coli cells were cultured at 37º C in liquid medium, with vigorous shaking (~180 rpm), 

or in solid medium.  

The liquid culture medium used was Luria Broth (LB, Nzytech) and the solid medium used 

was LB agar (Nzytech). For plasmid selection, according to the plasmid resistance, these media 

were supplemented with ampicillin (100 μg/ml, Sigma) or Kanamycin (50 μg/ml, Sigma). 

These cells can be stored in solid medium for a few days, but their preservation for long periods 

was done in liquid medium containing 15% (v/v) of glycerol at -80 °C. 

 

1.2. Preparation of chemically competent cells 

 

E. coli subculture was prepared by the inoculation of 50 ml of LB medium, without 

antibiotic(s), followed by overnight incubation at 37 °C, with shaking. Next day, the saturated 
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culture was used to inoculate a new culture with 300 ml of fresh medium at an optical density 

(OD) 600 of 0,075 (~1:100 dilution). Then, cells were grown at 37 °C in a shaking incubator 

until the OD600 is 0.3. At that time, all the material and reagents were precooled on ice and all 

the procedures, except the centrifugation, were taken in a cold room. The bacterial culture was 

immediately transferred into a centrifuge tube and centrifuged at 7500 g for 2 minutes at 4 °C. 

The supernatant was discarded, and the cells were gently resuspended in 150 ml of ice-cold 

0.1M MgCl2. Then, the bacterial cells were again centrifuged (in the same tube) at 7500 g for 

2 minutes at 4 °C. The supernatant was discarded, and the cells were gently resuspended in 150 

ml of ice-cold 0.1M CaCl2. The bacterial cells were incubated on ice for 20 minutes and then 

were centrifuged at 7500 g for 2 minutes at 4 °C. The supernatant was discarded, and the cells 

were gently resuspended in 6 ml of 0.1M CaCl2/15% Glicerol (v/v). Finally, 100 µl of 

chemically competent cells were aliquoted into 1.5 ml microtubes and snap-frozen on dry ice. 

After that, cells were stored at -80 °C. 

 

1.3. Transformation of chemically competent cells by heat shock 

 

One aliquot (100 μl) of chemically competent cells was thawed on ice. Then, 40 ng of a 

ligation reaction or 10-15 ng of a plasmid DNA were added to the bacteria suspension and 

incubated on ice for 20 minutes. After that, the cells were subjected to heat shock by placing 

the bottom of the tube into a 42 °C water bath for 90 seconds and putting the tubes back on ice 

for 2 minutes. Then, 600 μl of sterile LB medium was added and the cells were incubated for 

30-60 minutes at 37 °C, in a shaking incubator (~180 rpm), to express the gene that confers 

resistance to the antibiotic. Finally, the cells were plated on LB agar supplemented with the 

specify antibiotic. 

 

1.4. Extraction of plasmid DNA from E. coli 

 

The plasmid purification from E. coli was done using the commercial kits available, 

accordingly to the manufacturer’s instructions (QIAGEN). The protocols are based on a 

modified alkaline lysis procedure, followed by binding of plasmid DNA to a resin under 

appropriate low-salt and pH conditions. RNA, proteins, dyes, and low-molecular–weight 

impurities are removed by a medium-salt wash. Plasmid DNA is eluted in a high-salt buffer 

and then concentrated and desalted by isopropanol precipitation. 
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Bacteria cultures in 10 ml, 100 ml or 500 ml of LB medium, containing the specific 

antibiotic for the plasmid selection, were grown overnight, at 37 °C with constant shaking at 

180 rpm, and plasmid DNA was isolated using QIAprep Spin Miniprep Kit, Plasmid Plus Midi 

Kit or Plasmid Plus Maxi Kit, according to the culture volume. 

 

1.5. Cloning vectors 

 

All the vectors (plasmids) used in this work are summarized in the table 1. 

 
Table 1. Vectors used in this work. 

Vectors used in E. coli 

Vector Name Resistance Source 
pET3a Ampicillin Novagen 

pGEM®-T Easy Ampicillin Promega 

Vectors used in Mammalian Cells 

Vector Name Resistances (bacteria/mammalian cells) Source 
pIC113 Kanamycin/Neomycin I. M. Cheeseman Lab 
pIC111 Ampicillin /Neomycin I. M. Cheeseman Lab 

Vector used in T. gondii 

Vector Name Resistances (bacteria/T. gondii) Source 
TUB8-myc-GFP-Ty-HXGPRT Ampicillin/HXGPRT Markus Meissner Lab 
TUB8-myc-GFP-Ty- HXGPRT Ampicillin/HXGPRT Markus Meissner Lab 

TUB8-ddFKBP-myc-GFP-Ty-HXGPRT Ampicillin/HXGPRT Markus Meissner Lab 
TUB8-LoxP-myc-GOI-Ty-LoxP-YFP-HXGPRT Ampicillin/HXGPRT Markus Meissner Lab 

pU6-sgRNA-DHFR Ampicillin/DHFR-TY Markus Meissner Lab 
hxgprt - hypoxanthine-xanthine-guanine phosphoribosyltransferase. dhfr-ts - dihydrofolate reductase-thymidylate synthase. 

 

1.6. Restriction endonucleases 

 

The restriction enzymes used in this work were purchased from New England Biolabs 

(NEB) and used with adequate NEB buffer and bovine serum albumin (BSA) when required, 

according to manufacturer’s instructions.  

 

1.7. Plasmid dephosphorylation at the 5’end 

 

After plasmid hydrolysis, with restriction enzymes, the 5’end was dephosphorylated to 

prevent plasmid self-ligation. This was done using the Antarctic Phosphatase (NEB), following 

manufacturer’s instructions. This enzyme removes the phosphate from the DNA 5’ end. The 

ligation between plasmid and a DNA fragment is still possible due the 5’ phosphate from the 

insert. 
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1.8. Annealing oligonucleotides 

 

This protocol was used to add a new multiple cloning site (MCS) to the vector TUB8-

LoxP-myc-GOI-Ty-LoxP-YFP-HXGPRT. This alteration was performed with the 

oligonucleotides presented in the table 2, increasing the number of cloning sites available in the 

vector. This vector gained the following restriction sites: EcoRI/Myc-

Tag/AflII/AseI/BstZ17I/PacI.  

Briefly, the lyophilized primers were resuspended in molecular grade water to a final 

concentration of 900 pmol/µl. Then 1µl of each primer (900 pmol) was added to 48µl of 

annealing buffer (100 mM potassium acetate, 30 mM Hepes KOH pH 7.4, 2 mM magnesium 

acetate). The final concentration of each primer is 18 pmol/µl. First the primers were incubated 

for 4 minutes at 95º C, following an incubation for 10 minutes at 70º C, then the solution was 

left at room temperature (RT) for at least for 4 h and subsequently it was transferred to 4º C. 

Before ligation, if the plasmid was previously dephosphorylated, the annealed oligonucleotides 

were phosphorylated. The ligation reaction was done with 40 ng of the hydrolyzed vector and 

8 pmol of the annealed oligonucleotides. 

 
Table 2. Oligonucleotides sequences used to improve the MCS of the vector TUB8-LoxP-myc-GOI-Ty-LoxP-YFP-

HXGPRT. 

TUB8-LoxP-myc-GOI-Ty-LoxP-YFP-HXGPRT – MCS Modification 

Oligonucleotide Name Oligonucleotide Sequence 

F_polylinker_KO 
5’AATTCCGACAAAATGCAGGAGCAGAAGCTCATCTCCGAGGAGGACCTGGCCATGGC

CCTTAAGATTAATGTATACTTAAT3’ 

R_polylinker_KO 
5’TAAGTATACATTAATCTTAAGGGCCATGGCCAGGTCCTCCTCGGAGATGAGCTTCTG

CTCCTGCATTTTGTCGG3’ 

 

1.9. DNA ligation  

 

The ligation of DNA fragments into plasmids was done using the T4 DNA ligase from 

Thermo Fisher Scientific, according to the manufacturer’s instructions. The vector:insert molar 

ratios used were between 1:2 and 1:8. In all ligations were used 40 ng of plasmid DNA. The 

ligations were always incubated overnight at 4 °C. 

For ligations of PCR products, into a cloning vector via TA (Thymine, Adenine), we used 

the pGEM-T Easy Vector System (Promega) according to the manufacturer’s instructions.  
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1.10. DNA sequencing 

 

DNA sequencing was performed by the Genomics Unit of Instituto Gulbenkian da Ciência 

and by Eurofins GATC Biotech. 

 

2. Extraction of nucleic acids and amplification by polymerase chain reaction (PCR) 

 

2.1. Extraction of genomic DNA (gDNA) from extracellular Toxoplasma gondii 

tachyzoites 

 

The gDNA, used as a DNA template to amplify genomic sequences by PCR, was isolated 

and purified from T. gondii tachyzoites. Freshly egressed parasites were separated from host 

cell debris by centrifugation at 30 g, for 10 min at 4 °C, and the obtained pellet was washed 

twice with phosphate-buffered saline (PBS). Then, the gDNA isolation was performed using 

the DNeasy Blood & Tissue Kit from QIAGEN, according to the manufacturer’s manual for 

cultured cells. The gDNA was eluted in 100 μl of molecular grade water. The gDNA was stored 

at -20 °C. 

 

2.2. Extraction of total RNA  

 

The complementary DNA (cDNA), used as a template to amplify coding regions for 

cloning, was produced from total RNA that was extracted from T. gondii tachyzoites. Freshly 

egressed parasites were separated from host cell debris by centrifugation at 30 g, for 10 min at 

4 °C. The obtained pellet was washed twice with PBS. Then, the total RNA isolation was 

performed using the RNeasy Mini Kit from QIAGEN, according to the manufacturer’s manual. 

The RNA was eluted in 50 μl of RNase free water. 

For the analysis of T. gondii tubulin binding cofactor B (TgTBCB) transcription levels 

during invasion, total RNA was extracted at different time points after the invasion of Human 

Foreskin Fibroblasts (HFF) cells (confluent T25 flask) with 2.5 x 105 T. gondii parasites. RNA 

extracted from extracellular parasites was used as a control. Total RNA was extracted using the 

E.Z.N.A.® Total RNA Kit I (Omega Bio-Tek), according to the manufacturer’s instructions. 

The RNA was stored at -20 °C. 
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2.2.1. cDNA synthesis 

 

The cDNA synthesis was done with 1 µg of total RNA, using the SuperScript™ III Reverse 

Transcriptase (Invitrogen) and oligo (dT)/random primers (Invitrogen), following the 

manufacturer’s protocol. Before the cDNA synthesis, to remove the gDNA contamination, the 

RNA was incubated with the DNase I Amplification Grade (Invitrogen), according to the 

manufacturer’s instructions.  

The cDNA was stored at -20 °C. 

 

2.3. Polymerase Chain Reaction (PCR) 

 

PCR allows the in vitro specific amplification of DNA sequences, using two 

oligonucleotides (primers) that are complementary to the 3’ ends of each of the sense and anti-

sense strand of the target DNA.  

 

2.3.1. DNA Polymerases 

 

The DreamTaq™ Green DNA Polymerase (Thermo Fisher Scientific) and the KAPA2G 

Fast PCR (KapaBiosystems) were used for regular PCRs while Phusion High-Fidelity DNA 

Polymerase (Thermo Scientific) and KAPA HiFi HotStart PCR (KapaBiosystems) were used 

when the correct DNA sequence of the PCR products was of vital importance (e.g. cloning and 

sequencing). These last two polymerases were used due their improved performance and proof-

reading activity. 

All these enzymes were used according to the manufacturer’s protocol. 

 

2.4. Colony PCR 

 

After a molecular cloning experiment, colony PCR is a method used to screen for plasmids 

containing the desired insert, directly from bacterial colonies, without the need of plasmid 

purification. In this PCR, a single bacteria colony, that have grown up on selective media 

following a transformation step, was picked to PCR tube and streaked to a replica plate. The 

PCR tubes and the replica plate were previously labelled with numbers corresponding to the 

bacteria colonies picked. 
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A PCR Master Mix with the DreamTaq™ Green DNA Polymerase (Thermo Fisher 

Scientific) or the KAPA2G Fast PCR (KapaBiosystems), with specific oligonucleotides to the 

insert, was prepared and added to the PCR tubes. 

The replica plate was kept overnight at 37 °C and then stored at 4º C.  

The PCR products were analysed by DNA electrophoresis (see Material and Methods, C-

1). Bacteria cultures, from the positive colonies, were inoculated using the replica plate and 

were grown overnight for plasmid purification (see Material and Methods, A-4). 

 

2.5. Analysis of TgTBCB Expression, by Real Time PCR 

 

Real-time PCR was performed for 40 cycles on an ABI Prism 7700 Sequence using SYBR 

Green detection system (Applied Biosystems). The transcripts from gapdh and α-tubulin genes 

were used as endogenous controls in relative quantification using the standard curve method. 

Primers were designed using the Roche Design Centre (for primer sequences see table 3). All 

samples were done in duplicate and the data showed are from three independent experiments. 

 
Table 3. Oligonucleotides sequences used in the Analysis of TgTBCB Expression, by Real Time PCR. 

Primers for Real Time PCR 

Oligonucleotide Name Oligonucleotide Sequence 

Tbcb Forward 5’ CGATGAAACATACGACAAACG 3’ 
Tbcb Reverse 5’ TCTTCTTCGATCTTCTCTTCCTTC 3’ 

a-Tubulin Forward 5’ CGCCTGCTGGGAGCTCTT 3’ 
a-Tubulin Reverse 5’ GAAGGTGTTGAAGGCGTCG 3’ 
Gapdh1 Forward 5’ CGTGGAGGTTTTGGCGATC 3’ 
Gapdh1 Reverse 5’ GACTTCGCCGGGGTAGTG 3’ 

 

3. Nucleic acid analysis and quantification 

 

3.1. Agarose gel electrophoresis 

 

Agarose gel electrophoresis is a technique used to separate DNA fragments according to 

their size and conformation.  

The DNA analysis was done using agarose gels at a concentration of 1% to 2% (w/v) in 

1X Tris-acetate-EDTA (TAE) buffer (40 mM Tris, 1 mM EDTA, pH 8.3), supplemented with 

the DNA-binding dye GreenSafe Premium (Nzytech). 6X DNA loading dye were added to the 

DNA samples and the electrophoresis was performed in TAE at a constant voltage of 80V. The 

GeneRuler 1 kb DNA Ladder (Thermo Fisher Scientific) was run with the samples to estimate 
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the size of the DNA fragments. After electrophoresis, the DNA was visualized on an ultra-

violet (UV) transilluminator. 

 

3.2. Extraction and purification of DNA fragments from agarose gel 

 

DNA fragments were extracted from agarose gel slices using the QIAquick Gel Extraction 

Kit (QIAGEN), according to the manufacturer’s instructions. The purified DNA was eluted in 

30 μl of molecular grade water, to increase the DNA concentration. 

 

3.3. Determination of nucleic acid concentrations and purity 

 

NanoDrop 2000c spectrometer (Thermo Scientific) was used to quantify and assess the 

purity of the DNA and RNA. 

 

3.4. DNA precipitation 

 

DNA precipitation can be performed to concentrate DNA and/or purify nucleic acids from 

salts or buffers. For extraction of DNA fragments from agarosel gels we performed ethanol 

precipitation. To each DNA solution was added 1/10 volume of 3 M sodium acetate pH 5.2 and 

2.5 volumes of cold ethanol (-20 °C). The mixture was incubated 1 hour at -80 °C or overnight 

at -20 ºC.  Then, the mixture was centrifuged at 17,000 g, for 30 minutes at 4 °C. The 

supernatant was removed and the DNA pellet, was washed twice with 70% ethanol to remove 

residual salts. After each wash, the mix was centrifuged at 17,000 g, for 15 min at 4 °C. The 

supernatant was removed, and the pellet was air dried. DNA for transfections was air dried 

under sterile conditions.  

 

4. Bioinformatics 

 

The programs used for plasmid mapping/editing were the pDRAW32, ApE and SnapGene 

Viewer. The chromatograms, from sequencing analysis, were analyzed by the 4Peaks software. 

Sequence alignment was done by CLC sequence Viewer. 

The sequences restriction maps were done by NEBcutter V2.0 online tool 

(http://nc2.neb.com/NEBcutter2/). 
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The DNA and protein sequences comparison were done using BLAST (Basic Local 

Alignment Search Tool) tool of databases like NCBI (http://www.ncbi.nlm.nih.gov/) and 

ToxoDB (http://ToxoDB.org). 

The calculation of the theoretical isoelectric point (pI) and molecular weight (Mw) of 

proteins was done using Compute pI/Mw tool from ExPASy 

(https://web.expasy.org/compute_pi/). 

Multiple Alignment of the protein sequences were done using ClustalW tool from ExPASy 

(https://embnet.vital-it.ch/software/ClustalW.html). 

The Search for Conserved Domains within a protein was done using the Conserved 

Domains search from NCBI (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).  

The sequences access number, used in this work, are listed in the table 4. 

 
Table 4. Sequences access number. 

Sequences and Access Numbers 

Sequence Name Sequence Access Number 

CAP-Gly domain-containing protein 
Toxoplasma gondii TGME49_305060 / TGGT1_305060 

Tubulin Cofactor B  
Homo sapiens NP_001272.2 (isoform 1)/NP_001287900.1 (isoform 2) 

CAP-Gly domain containing protein  
Hammondia hammondi HHA_305060 

Putative tubulin-specific chaperone  
Neospora caninum NCLIV_001310 

CAP-Gly domain containing protein  
Cystoisospora suis CSUI_000538 

Tubulin-specific chaperone, putative  
Babesia bovis BBOV_IV005610 

CAP-Gly domain containing protein  
Theileria equi BEWA_030750 

Tubulin-specific chaperone, putative 
Plasmodium vivax PVP01_0705400 

Tubulin-specific chaperone, putative 
Plasmodium ovale curtisi PocGH01_07014400 

Tubulin-specific chaperone, putative 
Plasmodium falciparum PF3D7_0906910 

 

5. Anti TgTBCB specific antibody production  

 

To produce TgTBCB protein in amount sufficient to immunize animals, TgTBCB cDNA 

was cloned into the bacteria expression vector pET3a under the operon Lac promoter. The 

primers used to amplify the TgTBCB cDNA are in the table 5. E. coli BL21 bacteria cells were 

then transformed and grown to an optical density of 0.4 to 0.5. At this point, the production of 

the protein was induced by the addition of 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside, 

NZYtech). To determine the best time of induction, after the addiction of IPTG, we did an 

analysis of different time points. The analysis of the total protein extracts from these time points 
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were done by 15% SDS-PAGE, (see Material and Methods 6.4), that was after stained with 

Coomassie. After these tests, we scaled up the culture production to obtain enough yield of the 

protein to purify and immunize two rabbits. Therefore, using the same protocol, we induced E. 

coli BL21 bacteria cells transformed with the pET3a-TgTBCB for 2 h. At this time, we prepared 

total protein extracts and analyzed them by 15% SDS-PAGE, followed by copper staining. 

Then, the TgTBCB band was extracted from the gel and the protein was electroeluted from the 

gel slice (Tessmer & Dernick, 1989). At Zabala lab (IFIMAV-Universidad de Cantabria, 

Santander, Spain), the purified protein was used to immunize 2 rabbits. The rabbits were 

inoculated three times, at three-week intervals, with approximately 500 µg of TgTBCB protein 

per inoculation. 

 
Table 5. Primer sequences used to amplify the TgTBCB cDNA by PCR (restriction sites are underlined)  

Primers used for the TgTBCB cDNA amplification  

Primer Name Primer Sequence 

F_Nde_TgTBCB 5’GGTGGTCATATGTCGGGCTTGTCTATCAA3’ 
R_Bam_TgTBCB 5’GGTGGTGGATCCTTAGATTTCGTCCAGCAAATC3’ 

 

6. Cell biology 

 

6.1. Organisms 

 

6.1.1. Mammalian cell lines and cell culture 

 

Human foreskin fibroblasts (HFF) cells were purchased from American Type Culture 

Collection (ATCC) (Catalog No. SCRC-1041). HFF cells can be cryopreserved in culture 

medium with 20 % Fetal Bovine Serum (FBS) heat inactivated (Invitrogen) and 10 % dimethyl 

sulfoxide (DMSO) in liquid nitrogen for many years. After thawing, HFF cells should not be 

sub-cultured for more than 30 passages. After 30 passages, new cryovials with frozen HFF cells 

should be thawed. HFF confluent monolayers were used to culture and maintain T. gondii 

tachyzoites. 

This cell lines are adherent cells and were maintained in subconfluent monolayers through 

passages with Trypsin-EDTA (0.05 %) phenol red (Invitrogen) treatment, to detach them from 

the flask surface. They were grown in Dulbecco’s Modified Eagle’s Medium (DMEM), high 

glucose, GlutaMAX™ (Invitrogen), supplemented with 10 % FBS heat inactivated 

(Invitrogen), without any antibiotics, in a 5 % CO2 humidified atmosphere at 37º C.  
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6.1.2. Toxoplasma gondii Strains and Culture 

 

In this work was used 3 different T, gondii strains: 

 

a) RHDHX, hxgprt-deficient T. gondii strain RH (Donald, Carter, Ullman, & Roos, 1996); 

 

b) RH:DiCreDku80DHX 'cleanup' strain, has a DiCre cassette randomly integrated into the 

parasite genome and the Ku80 has been deleted. The DiCre is highly expressed and gives a 

good efficiency of LoxP recombination upon the addition of rapamycin (Andenmatten et al., 

2012); 

 

c) RH:SplitCas9 has SplitCas9 cassette randomly integrated into the parasite genome. The 

SplitCas9 is highly expressed and gives a good efficiency of Cas9 activity upon the addition of 

rapamycin. 

 

All strains were provided by Markus Meissner (Wellcome Centre for Molecular 

Parasitology, University of Glasgow, Glasgow, Scotland, UK. And Department of Veterinary 

Sciences, Ludwig-Maximilians-Universität, Munich, Germany) nevertheless, the 

RH:DiCreDku80DHX 'cleanup' strain was provided with the permission of Vern B. Carruthers 

(Department of Microbiology & Immunology, University of Michigan Medical School, USA) 

 

T. gondii is an obligate intracellular parasite, for this reason T. gondii tachyzoites were 

maintained in HFF cells cultured in DMEM, high glucose, GlutaMAX™ media (Invitrogen) 

supplemented with 10% FBS heat inactivated (Invitrogen), at 37 °C and 5 % CO2 in humid 

environment.  

Before cell lysis, T. gondii undergo several rounds of replication inside the host cell. Once 

they are extracellular, they need to be transferred to new cells.  

If needed, intracellular parasites can be artificially released from the host cells. For this, 

the host cell layer is detached from the tissue culture dish/flask with a cell scraper. Then, the 

host cells are syringed twice, using a needle with 23 gauge, to destroy the host cells and release 

the parasites. 

The ratio parasite / host cell was adjusted according to the needs. For example, to obtain 

freshly lysed parasites in 2 days, we inoculated 1 X 107 tachyzoites in a T25 confluent with 
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HFF cells. To obtain the same, but in 4 days, we inoculated 1 X 105 tachyzoites. We scaled up 

the inoculum, maintaining the proportion, according to the dish/flask cells area. 

 

6.1.2.1. T. gondii cryopreservation 

 

T. gondii is an intercellular parasite and dies rapidly in the extracellular environment (~24 

h). Thus, it is preferable to freeze parasites when they are still within host cells. 

For long-term storage, intracellular parasites were frozen within HFF host cells. HFF cells 

were infected with 5-10 X 106 parasites/confluent HFF T25 flask. The day after, most cells 

contained large parasites vacuoles. Then, the host cells were treated with 0.1 ml Trypsin-EDTA 

(0.05%) phenol red (Invitrogen) to detach them from the flask surface. Detached host cells, 

carrying the parasites inside, were gently resuspended in 1 ml freezing media (20% Fetal 

Bovine Serum heat inactivated (Invitrogen), 10% DMSO and 70% DMEM, high glucose, 

GlutaMAX™ media (Invitrogen) and transferred into a 2 ml cryotube. The cryotubes were 

placed overnight at -80º C in an appropriate container (Mr. Frosty, Nalgene) to freeze slowly 

(1º C/minute). Next day, the cryotubes were transferred to liquid nitrogen containers.  

 

6.1.3. Transfection of T. gondii by electroporation 

 

The transfection of T. gondii with DNA was done by electroporation.  

The Nucleofector™ 2b Device (Lonza), was used with the Amaxa® Basic Parasite 

Nucleofector® Kit 2 (Lonza) and the program U-033. We followed the manufacturer’s protocol 

with some alterations. Briefly, the DNA was precipitated and dissolved in 100 μl 

electroporation buffer (Nucleofector). Subsequently, the freshly lysed parasites were 

centrifuged at 800 g for 10 min at 4 °C and then the pellet was washed twice with PBS. Finally, 

the sediment was resuspended in 100 μl of electroporation buffer (Nucleofector) containing the 

DNA. After the electroporation, the parasites were added to a T25 and to a 24 well plate with 

cover glasses, both with confluent HFF cells. The T25 is to maintain the parasite culture and 

the 24 well plate is to check the electroporation efficiency by immunofluorescence (IF).  

 

6.1.3.1. Transient transfection of T. gondii 

 

In the transient transfection, the DNA plasmids were introduced into T. gondii tachyzoites 

and remained extra-chromosomal, so they were lost over subsequent cell divisions. Parasites 
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were transfected with the DNA plasmids not linearized and without any selection. Normally 

were used 30 μg of DNA. We used this kind of transfection to test some electroporation 

conditions and to test its efficiency. 

 

6.1.3.2. Stable transfection of T. gondii 

 

Stable transfections involve the integration of the Plasmid DNA (or part of the plasmid) 

into the parasite’s genome and it can be done by random integration or homologous 

recombination. In the random integration, the DNA insertion occurs undirected, randomly 

distributed over the genome and the number of copies per genome is variable (Donald & Roos, 

1994). In contrast to transient transfections and to the homologous recombination, in the 

random integration 10 U of the single cutting restriction enzyme used to linearizing the Plasmid 

DNA were added to the transfection mix. In doing so, the genomic DNA is cut undirected and 

the DNA repair mechanisms are activated. This process is called Restriction Enzyme Mediated 

Insertion (REMI) and increases the insertion of DNA in T. gondii genome (Black, Seeber, 

Soldati, Kim, & Boothroyd, 1995). 

In the homologous recombination, the DNA is inserted at the specific genomic region using 

homology arms, and the single cutting restriction enzyme used to linearize the Plasmid DNA 

cannot be added to the transfection mix since it would enhance the random integration. 

For a successful stable transfection, it is necessary to select the positive parasites using a 

respective selection marker. The time of its addition to the transfected parasites depends on the 

selection marker used but normally it can be done immediately after transfection or 24h later.  

The vectors used in this work had the dhfr-ts (dihydrofolate reductase-thymidylate 

synthase) gene for pyrimethamine resistance (Donald & Roos, 1993) or the hxgprt 

(hypoxanthine-xanthine-guanine phosphoribosyltransferase) gene for mycophenolic acid 

(MPA) resistance (Donald et al., 1996). The selection was done with the following 

concentrations: 1 μM of pyrimethamine or with 40 μg/ml of xanthine plus 25 μg/ml of MPA, 

respectively. A 5 days treatment should result in a pool with stable transfected parasites. 

 

6.1.3.2.1. T. gondii cloning by limiting dilution 

 

After selection, the isolation of a clonal stable line of parasites can be done by limiting 

dilution. For this, serial dilutions of the stable transfected parasite pool were inoculated in a 96 

well plate containing confluent HFF cell cultures. Therefore, some wells received only one 
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parasite. After one week the parasites invaded the host cells, replicated within, lysed them and 

invaded the next cells and so on, forming a small lysis plaque. After this time, wells with only 

one lysis plaque indicated a parasite clone, because only one parasite was originally present in 

this well. The parasites within this well were isolated and transferred to a 24 well plate with 

new HFF cells. Subsequently, a second steep of cloning by limiting dilution was performed. 

 

6.2. Phenotypic analysis of T. gondii 

 

6.2.1. Plaque assay  

 

The lytic growth (host cell invasion, intracellular replication, host cell egress and gliding 

motility) of T. gondii tachyzoites results in plaques, within host cell monolayers, due the lysis 

of the infected cells. Plaque assays are the first approach to investigate invasion, replication and 

egress over time. The size and the number of these plaques reflect the infectivity of the 

respective parasite strain. For a plaque assay, 6 well plate with HFF monolayers were inoculated 

with 1000 parasites and incubated for 5-7 days under normal growth conditions. Afterwards, 

the cells were washed once with PBS, fixed with ice-cold methanol for 20 minutes and stained 

with Giemsa (diluted in water in the proportion of 1 /10) for 45 minutes. Finally, the plaques 

were analysed and counted using a light microscope. Their size can also be analysed and 

quantified using an image process program. At least three independent assays were done in 

different days.  

Transgenic strains with significant differences in the plaque assay, compared to the control 

strain, were further characterized by invasion, replication and egress assays.  

 

6.2.1.1. Invasion assay  

 

The invasion assay is used to analyse the ability of extracellular T. gondii tachyzoites to 

invade host cells. Confluent cultures of HFF cells, growing on glass coverslips in 24 well plates, 

were inoculated with 5 x 105 freshly egressed parasites. The parasites were allowed to invade 

host cells under normal growth conditions for 1 hour. Then, the extracellular parasites were 

removed by washing the coverslips three times with PBS and new fresh media was added to 

each well. The parasites were incubated for more 16 h (overnight), under normal growth 

conditions. In the next day, the coverslips were fixed, permeabilized and processed for IF 
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analysis, labelling the intracellular parasites. For each coverslip, the number of parasitophorous 

vacuoles was counted within 6 randomly selected fields under an amplification of 400X.  

At least three independents assays were done, in different days, and 3 different coverslips 

were counted for each condition/strain. The invasion was calculated as a percentage value of 

control parasites normalised to 100 %. 

 

6.2.1.1.1. Invasion assay in the presence of TgTBCB specific polyclonal serum 

 

The invasion assay in the presence of TgTBCB specific polyclonal serum was used to 

analyse the ability of extracellular T. gondii tachyzoites to invade host cells in the presence of 

that specific polyclonal serum. The protocol used was the standard protocol for the invasion 

assay (as described above), with some modifications. Confluent cultures of HFF cells, growing 

on glass coverslips in 24 well plate, were inoculated with 5 x 105 freshly egressed parasites in 

the presence of TgTBCB specific polyclonal serum in the following dilutions: 1:50; 1:100 and 

1:200. The same assay was done in the presence of a rabbit polyclonal serum as a control, using 

equal dilutions.  

 

6.2.1.2. Replication assay  

 

The replication assay was used to analyse the T. gondii tachyzoites ability to undergo 

normal intracellular replication within infected host cells. Confluent cultures of HFF cells, 

growing on glass coverslips in 24 well plate, were inoculated with 2 x 104 freshly egressed 

parasites for 24 h under normal growth conditions. Then, coverslips were fixed, permeabilized 

and processed for IF analysis to stain the intracellular parasites. The number of 

parasites/vacuole was determined in 200 vacuoles. For that, from each coverslip, at least 12 

images from random fields were taken under an amplification of 400X. 

Were done a minimum of three independents assays, in different days, and 3 different 

coverslips were counted for each condition/strain.  

 

6.2.1.3. Egress assay  

 

The egress assays were performed, to analyse the ability of intracellular parasites to egress 

the infected host cell. Parasites can be tested for natural egress or for calcium ionophore A23187 

artificially induced egress. Confluent HFF cells growing on coverslips in 24 well plates were 
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inoculated with 16 x 104 freshly egressed parasites and intracellular growth was allowed for 36 

h. After this time, cells were washed with PBS to remove all serum, since it inhibits the calcium 

ionophore. Then, warmed media (37 °C) without serum and supplemented with calcium 

ionophore was added to the cells. The parasites were incubated for 1 min at standard condition 

and then fixed with ice-cold methanol for 10 minutes. An IF assay was performed to stain the 

parasites. For each coverslip, the number of vacuoles with non-egressed parasites were counted 

within 6 aleatory fields under an amplification of 400X. 

At least three independents assays were done, in different days, and 3 different coverslips 

were counted for each condition/strain.  

 

6.2.2. Microneme secretion assays 

 

The microneme secretion assays were used to test if TBCB is secreted by these organelles. 

It was used the protocol previously described by Carruthers and Sibley (Carruthers & Sibley, 

1999) with modifications described by Hall et al. (Hall et al., 2011) and minor modifications 

introduced by us. The microneme secretion was induced with calcium ionophore A23187 in the 

presence of 40 mM of NH4Cl or, alternatively 1% ethanol. Briefly, to obtain freshly egressed 

tachyzoites, host cells were syringe passed through a 23-gauge needle twice, filtered through a 

8 µm pore-sized membrane, pelleted by centrifugation (800 g for 10 minutes at RT) washed 

with PBS twice and resuspended in PBS. Then the parasites were counted and, for each 

condition, 4 × 108 tachyzoites were used. The secretion assays were typically performed in 

“LoBind microcentrifuge tubes” (Eppendorf), with 100 µl of PBS per tube. The parasite 

suspension with the secretion inducer were incubated at 37 °C for 30 seconds in a water bath. 

After, the parasites were gently mixed and the treatment was continued for more 30 min at 37 

°C. Secretion was arrested by placing the tubes on ice for 5 minutes and the supernatants were 

collected after removing parasites by centrifugation (1200 g, 5 min, 4 °C). 95 µl of supernatant 

were transferred to a new LoBind microcentrifuge tube and recentrifuged (1,200 × g, 5 min, 4 

°C). 90 µl of this supernatant were transferred to a new LoBind microcentrifuge tube. Reducing 

SDS/PAGE sample buffer was added and 60 µl of this mixture were analysed by SDS/PAGE. 
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6.3. Generation of T. gondii TBCB transgenic parasite lines 

 

6.3.1. T. gondii TBCB overexpression  

 

The TgTBCB cDNA was amplified and cloned in two different types of overexpression 

plasmids, under three different constructions (Figure 17): 

i) Overexpression plasmid with TgTBCB in fusion with c-Myc and eGFP (“enhanced 

green fluorescent protein”, fluorescent tag); 

ii) Overexpression plasmid with TgTBCB in fusion with c-Myc; 

iii) Overexpression plasmid with TgTBCB in fusion with a destabilization domain 

(ddFKBP), c-Myc and eGFP. The ddFKBP domain allow the modulation of the 

fusion protein levels in a Shdl1 dependent manner. 

 

The primers and the plasmids used in that cloning process are listed in the table 6 and 1 

(see in Material and Methods 1.5.), respectively. The plasmids, that were provided by Dr. 

Markus Meissner, contain the tubulin strong promoter TUB8 and the selection marker 

HXGPRT. 

 

6.3.1.1. Plasmid construction, TBCB overexpression in fusion with c-Myc and GFP 

 

The TgTBCB cDNA was cloned in fusion with c-Myc and eGFP at its N-terminal end in 

the TUB8-Myc-GFP-Ty-HXGPRT plasmid, producing the construction: 5’ TUB8-Myc-eGFP-

TgTBCB-HXGPRT 3′.  

 

6.3.1.2. Plasmid construction, TBCB overexpression in fusion with c-Myc 

 

We cloned the TgTBCB cDNA in fusion with the c-Myc, at its N-terminal end in the 

TUB8-Myc-GFP-Ty-HXGPRT plasmid, producing the construction: 5’ TUB8-Myc-TgTBCB-

HXGPRT 3′. 
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6.3.1.3. Plasmid construction, TBCB overexpression in fusion with ddFKBP, c-Myc 

and eGFP 

 

The TgTBCB cDNA was cloned in fusion with the ddFKBP domain, c-Myc and eGFP, at 

TBCB N-terminal end in the TUB8-ddFKBP-Myc-GFP-Ty-HXGPRT plasmid, producing the 

construction: 5’ TUB8-ddFKBP-Myc-eGFP-TgTBCB-HXGPRT 3′. During the cloning 

process, the GFP from the original plasmid was swapped by the eGFP. 

 

The destabilization domain ddFKBP is an engineered mutant of the human FKBP12 

protein that is rapidly and constitutively degraded and this instability is conferred to other 

proteins fused to this domain. But, when it is added a synthetic ligand, termed morpholine-

containing ligand Shield-1 (Shield-1 - FKBP ligand that binds FKBP with F36V mutation with 

1000 selectivity over wt-FKBP) that binds to the destabilizing domains protecting them from 

degradation, fused proteins can perform their cellular functions (Figure 18) (Banaszynski, 

Chen, Maynard-Smith, Ooi, & Wandless, 2006; Herm-Götz et al., 2007; Lampson & Kapoor, 

2006). 

The overexpressed ddFKBP-c-Myc-GFP-TBCB is degraded by the proteasome. However, 

in the presence of the shield-1, the produced ddFKBP-c-Myc-GFP-TBCB protein is protected 

against degradation and accumulates inside the parasites. 

 

 
Figure 17. Schematic representation of the three different fused proteins for the TgTBCB overexpressions. 
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Table 6. Nucleotide sequences of the primers used in the TBCB cDNA amplifications by PCR for overexpression in T. 

gondii 

TgTBCB with c-Myc-eGFP 

Primer Name Primer Sequence 
F MycGFPNTBCBTgNsi 5’ CCA ATGCAT GTG AGC AAG GGC GAG GAG 3’ 
R MycGFPNTBCBTgPac 5’ CCC TTAATTAA TTA GAT TTC GTC CAG CAA ATC A 3’ 

TgTBCB with C-Myc 

Primer Name Primer Sequence 

F MycNTBCBTgNsi 5’ CCA ATGCAT TCG GGC TTG TCT ATC AAC G 3’ 
R MycGFPNTBCBTgPac 5’ CCC TTAATTAA TTA GAT TTC GTC CAG CAA ATC A 3’ 

TgTBCB with ddFKBP-c-Myc-eGFP 

Primer Name Primer Sequence 
F MycGFPNTBCBTgNsi 5’ CCA ATGCAT GTG AGC AAG GGC GAG GAG 3’ 
R MycGFPNTBCBTgPac 5’ CCC TTAATTAA TTA GAT TTC GTC CAG CAA ATC A 3’ 

 

 
Figure 18. Schematic representation of the ddFKBP destabilization domain function. The ddFKBP domain allows the 

control of protein overexpression by using a shield-1 molecule that binds to the domain, preventing protein target for 

degradation. In the absence of shield-1 the target is labelled and degraded by the proteasome. In the presence of shield-1, the 

target protein is protected against degradation and accumulates inside the organinsm (adapted from (Haugwitz, Nourzaie, 

Gandlur, & Sagawa, 2008) with permission). 

 

6.3.2. T. gondii TBCB conditional knockout 

 

To evaluate the role of TBCB in T. gondii, especially during host invasion and parasite 

replication, we produced a TgTBCB conditional knockout strain by two different 

methodologies: 

i) T. gondii DiCre system; 

ii) T. gondii CRISPR/Cas9. 

All T. gondii specific plasmids were provided by Dr Markus Meissner. 
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6.3.2.1. T. gondii TBCB conditional knockout by DiCre system 

 

 Our first approach to produce a conditional KO strain used the T. gondii DiCre system 

(Andenmatten et al., 2012), a method based on site-specific recombination using dimerizable 

Cre recombinase. For this were used a specific T. gondii strain (RH:DiCreDku80DHX 'cleanup' 

strain has DiCre cassette randomly integrated into the parasite genome and subsequently Ku80 

has been deleted) that expresses two inactive fragments, each of them fused to one of the 

rapamycin-binding proteins FRB and FKBP (Figure 19). The addition of rapamycin brings FRB 

and FKBP together, reconstituting the functional enzyme and causing the loxP-flanked gene of 

interest to be excised. The Ku80 depletion avoids random integration, increasing the 

homologous recombination efficiency. 

 

 
Figure 19. Conditional Cre recombinase system in T. gondii. In the DiCre system, N-terminal (N-ter) Cre (Cre recombinase 

amino acids 1–59) is fused to FKBP12 and C terminal (C-ter) Cre (Cre recombinase amino acids 60–343) is fused to FRB. 

Rapamycin dimerizes the subunits to reconstitute Cre recombinase activity (adapted from (Andenmatten et al., 2012) with 

permission). 

 

It was used a gene-swap strategy in which TgTBCB gene was replaced at genome locus by 

a c-Myc-TgTBCB cDNA flanked by loxP sites. Then, after the addition of rapamycin, c-

MycTgTBCB cDNA was excised by Cre recombinase and an YFP cDNA was left under the 

control of a constitutive promoter, resulting in YFP-expressing parasites. The exchange 

between wild-type TgTBCB gene and Myc-TgTBCB loxP flanked plus YFP and selection 

cassette was done by homologous recombination (using homology arms, see figure 20).  

c-Myc-TgTBCB cDNA, ~2000 bp of the TgTBCB 5’UTR and ~2000 bp 3′UTR were 

cloned into TUB8-LoxP-myc-GOI-Ty-LoxP-YFP-HXGPRT plasmid, generating the 

construction: 5’ UTR-TUB8-LoxP-c-Myc-TgTBCB-LoxP-YFP-HXGPRT-3′UTR (Figure 20). 

The cloned sequences were amplified by PCR and the specific primers are listed at table 7.  
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Table 7. Nucleotide sequences of the primers used to amplify the cloned sequences by PCR to produce the TBCB 
conditional knockout in T. gondii by DiCre system. 

1st - TgTBCB with c-Myc Tag 

Primer Name Primer Sequence 

F MYCTBCBTg _KO 5’CG GAATTC GAC AAA ATG CAG GAG CAG AAG CTC3’ 
R cDNATBCBTg_ KO 5’CC TTAATTAA TTA GAT TTC GTC CAG CAA ATC3’ 

2nd  - TgTBCB 5’ UTR 

Primer Name Primer Sequence 

F 5’UTRTBCBTg_ KO 5’GA GGTACC CAT CCG CCT GTT TCT GTC G3’ 
R 5’UTRTBCBTg_ KO 5’C GGGCCC GTT GCT TCG ATT GAG AAT GAA3’ 

3rd - TgTBCB 3’ UTR 

Primer Name Primer Sequence 

F 3’UTRTBCBTg_ KO 5’C GAGCTC AGC TTT CGG ATG GAA AGA AGC3’ 
R 3’UTRTBCBTg_ KO 5’CC GCTCTTCTTAA GCG AAA CAA GGC GAT TAT CTT3’ 

Italics - T. gondii kozak consensos sequence of translational initiation sites (Seeber, 1997). 

 

 
Figure 20. Schematic representation of the construct of TBCpB conditional KO. A. Gene-swap strategy, gene-swap 

construct inserted into the genome by homologous recombination; B. Cre mediated recombination by rapamycin addition; C. 

TBCB KO with YFP expression. 

 

After selection, a PCR strategy allowed us to test whether the mutant parasites (resistant to 

the selection marker) have undergone random integration or homologous recombination. 

Primers used are listed at table 8. 

In this strategy the PCR will produce products with different sizes: TgTBCB wild type 

locus (553 bp) and recombinant TgTBCB (1092 bp, see figure 21). Expected results: 

- Homologous recombination: one PCR product of 1092 bp 



 

74 
Chapter II: Material and Methods 

 

- Random integration: two PCR products, 553 bp from the TgTBCB intact endogenous 

locus and 1092 bp from the plasmid random integration 

 
Table 8. Nucleotide sequences of the primers used in PCR strategy to check the homologous recombination after 

transfection. 

TgTBCB KO Test 

Primer Name Primer Sequence 

F_TBCB KO Teste 5’TGCCGAGATACGTAGTTGC3’ 
R_TBCB KO Teste 5’GTCACCGTTGATAGACAAGC3’ 

 

 
Figure 21. Illustration of genomic PCR strategy to check the efficient of the transfection by homologous recombination. 

Primer F and Primer R were design to hybridize with 5’ region of TgTBCB gene and with the initial coding region of TgTBCB 

gene, respectively. A – PCR product expected length for WT genome amplification (553 bp). B – PCR product expected length 

for Recombinant genome amplification (1092 bp). In case of “random integration” we expect two PCR products (one from the 

construct and other from the wild-type locus). 

 

6.3.2.2. T. gondii TBCB conditional knockout by CRISPR/Cas9 system 

 

The second approach to produce a TgTBCB conditional KO in T. gondii was the 

CRISPR/Cas9 system. Succinctly, the CRISPR/Cas9 systems is an adaptable immune 

mechanism used by many bacteria to protect themselves from foreign nucleic acids, such as 

viruses or plasmids. Type II CRISPR systems incorporate sequences from invading DNA 

between CRISPR repeat sequences encoded as arrays within the bacterial host genome. 

Transcripts from the CRISPR repeat arrays are processed into CRISPR RNAs (crRNAs), each 

harbouring a variable sequence transcribed from the invading DNA, known as the 
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“protospacer” sequence, and part of the CRISPR repeat. Each crRNA hybridizes with a second 

RNA, known as the transactivating CRISPR RNA (tracrRNA), and these two RNAs, complex 

with the Cas9 nuclease. The protospacer-encoded portion of the crRNA directs Cas9 to cleave 

complementary target-DNA sequences (Figure 22), if they are adjacent to short sequences 

known as protospacer adjacent motifs (PAM) (Figure 23) (Sander & Joung, 2014).  

The system that we used in T. gondii is based on the Type II CRISPR from S. pyogenes 

and has been adapted for inducing sequence-specific double-stranded break. Briefly, a 

SplitCas9 nuclease has been introduced in the parasite, in order to create a T. gondii SplitCas9 

strain. This specific Cas9 is expressed in two inactive fragments, each of them fused to one of 

the rapamycin-binding proteins FRB and FKBP (similar to DiCre system described above). The 

addition of rapamycin brings FRB and FKBP together, reconstituting the functional enzyme. 

The use of this mechanism can control the exact moment when the system is triggered (Figure 

24) (Zetsche, Volz, & Zhang, 2015).  

The second component is a single guide RNA (sgRNA), consisting of a fusion of a crRNA 

and a fixed tracrRNA, which is introduced in the parasite by electroporation. Briefly, twenty 

nucleotides at the 5′ end of the sgRNA (corresponding to the protospacer portion of the crRNA) 

direct Cas9 to a specific target DNA site using standard RNA-DNA complementarity base-

pairing rules. These target sites must lie immediately 5′ of a PAM sequence that matches the 

canonical form 5′-NGG. Thus, with this system, Cas9 nuclease activity can be directed to any 

DNA sequence of the form N20-NGG simply by altering the first 20 nt of the sgRNA to 

correspond to the target DNA sequence (Figure 22 and 23) (Sander & Joung, 2014). 
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Figure 22. Naturally occurring and engineered CRISPR/Cas9 systems. A - Naturally occurring CRISPR systems 

incorporate foreign DNA sequences into CRISPR arrays, which then produce crRNAs bearing “protospacer” regions that are 

complementary to the foreign DNA site. crRNAs hybridize to tracrRNAs (also encoded by the CRISPR system) and this pair 

of RNAs can associate with the Cas9 nuclease. crRNA-tracrRNA: Cas9 complexes recognize and cleave foreign DNAs bearing 

the protospacer sequences. B - The most widely used engineered CRISPR/Cas9 system utilizes a fusion between a crRNA and 

part of the tracrRNA sequence. This sgRNA complexes with Cas9 to mediate cleavage of target DNA sites that are 

complementary to the 5′ 20 nt of the sgRNA and that lie next to a PAM sequence (adapted from (Sander & Joung, 2014) with 

permission). 

 
Figure 23. Cas9 nuclease creates double-strand breaks at DNA target sites with complementarity to the 5′ end of a 

sgRNA. Cas9 contains RuvC and HNH nuclease domains (arrowheads) (adapted from (Sander & Joung, 2014) with 

permission). 
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Figure 24. Inducible split-Cas9 fragments. A - Diagram of inducible split-Cas9 fusions. N- and C-terminal pieces of human 

codon–optimized Streptococcus pyogenes Cas9 are fused to FRB and FKBP dimerization domains, respectively. B and C - 

Strategy for the split-Cas9 system. In the absence of rapamycin (B), the Cas9(N)-FRBNES piece is sequestered in the cytoplasm 

owing to the addition of a NES. The Cas9(C)-FKBP piece contains two NLSs and is actively imported into the nucleus. In the 

presence of rapamycin (C), Cas9(N)-FRB-NES binds to Cas9(C)-FKBP. NLSs of the resulting reassembled Cas9 mediate 

nuclear importation and subsequent binding to the targeted locus. (adapted from (Zetsche et al., 2015) with permission). 

 

To produce the T. gondii TBCB conditional knockout with CRISPR/Cas9 system we 

choose three different sgRNAs, using the Eukaryotic Pathogen CRISPR sgRNA Design Tool 

and respecting all the CRISPR/Cas9 sgRNA peculiar specificities. The simulation was done 

with the T. gondii GT1 ToxoDB-26 release since the T. gondii RH ToxoDB-26 was a limited 

annotation at the time, and the T. gondii GT1 genome is the closest to the T. gondii RH genome. 

All of the sgRNAs were directed to the first TgTBCB exon and one of them was complementary 

with the antisense non-coding strand of TgTBCB (Table 9). The three sgRNAs were then 

cloned by directed mutagenesis in the vector pU6-sgRNA-DHFR using specific primers for 

each sgRNA (Table 9) and the Q5 Site-Directed Mutagenesis Kit (New England Biolabs, Inc), 

according to the manufacture protocol. The constructions were then randomly integrated in the 

genome of the SplitCas9 T. gondii strain by electroporation, allowing us to induce the TgTBCB 

KO at any time. 
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Table 9. sgRNAs and primer sequences used in the construction and analysis of the TgTBCB conditional knockout in T. 

gondii by CRISPR/Cas9 system  

TgTBCB sgRNAs 

sgRNA Number/ID sgRNA Sequence 

1 / TGGT1_305060_160 5’GACAAGCTGTACAGACACAC3’ 
2 / TGGT1_305060_121_revcom♀ 5’G* TCTCCATCCATCTGCGTCCA3’ (revcom) 

3 / TGGT1_305060_82 5’G* ATCACACACAATTTGCACCC3’ 

TGGT1_305060_160 

Primer Name Primer Sequence 

TBCBgRNA_Exon_1_F 5’ACAGACACACGTTTTAGAGCTAGAAATAGC3’ 
TBCBgRNA_Exon_1_R 5’ACAGCTTGTCaACTTGACATCCCCATTTAC3’ 

TGGT1_305060_121_revcom 

Primer Name Primer Sequence 

TBCBgRNA_Exon_2_F 5’TCTGCGTCCAGTTTTAGAGCTAGAAATAGC3’ 
TBCBgRNA_Exon_2_R 5’TGGATGGAGACaACTTGACATCCCCATTTAC3’ 

TGGT1_305060_82 

Primer Name Primer Sequence 

TBCBgRNA_Exon_3_F 5’ATTTGCACCCGTTTTAGAGCTAGAAATAGC3’ 
TBCBgRNA_Exon_3_R 5’TGTGTGTGATCaACTTGACATCCCCATTTAC3’ 

Primers used in the clonal lines amplification 

Primer Name Primer Sequence 

gRNAs_TBCB_pFext 5’ ATGATACGGTGTGTCGCTGA 3’ 
gRNAs_TBCB_pRext 5’G* TCAGCGACACACCGTATCAT 3’ 

Primers used for Sequencing 

Primer Name Primer Sequence 

gRNAs_TBCB_pFint 5’ GGCCGGTAATTTTCGACTTC 3’ 
gRNAs_TBCB_pRint 5’ CTCCCTGCGATTTTCCATCT 3’ 

♀revcom- complementary with the antisense non-coding strand of TgTBCB 
*was added a G to the start of the sgRNA sequence since it does not start with G  

 

6.4. Biochemistry 

 

6.4.1. Preparation of parasite protein extracts for sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Two different protocols were used to prepare protein extracts from parasites for SDS-

PAGE. One protocol was used to obtain total protein extracts and the other to obtain, separately, 

soluble and insoluble protein extracts. 

For each sample, total protein extracts were obtained from 5 x 106 freshly lysed parasites 

(counted in a Neubauer chamber). Parasites were spindown in 1.5 ml tubes at 2500 g, for 10 

min at RT. The pellet was washed with PBS. The obtained pellet was lysed with 8 µL of RIPA 

buffer (150 mM NaCl; 1 % Triton X-100; 0.5 % DOC; 0.1 % SDS; 50 mM Tris pH 8.0 and 1 

mM EDTA) with Protease and Phosphatase Inhibitor Cocktail, EDTA-free 1X (Halt, Thermo 

Scientific), and the protein extracts were incubated on ice for 5 minutes. After, the solution was 



 

79 
Chapter II: Material and Methods 

 

centrifuged at 16000 g, for 1 hour at 4 oC and the supernatant was transferred to a new tube. 

Finally, loading buffer 2X (table 10) was added to the protein extracts and the samples were 

boiled during 5 minutes at 95 oC. The total amount of each sample was loaded to one well. 

The soluble and insoluble protein extracts were prepared from freshly lysed parasites from 

one T25 flask. Parasites were centrifuged at 1300 g, for 10 min at 4 °C. The pellet was washed 

twice with PBS. The parasite pellet was lysed with 300 μl of lysis buffer (H Solution – see table 

10; 0.1% Triton X-100 and Protease and Phosphatase Inhibitor Cocktail, EDTA-free) and then 

centrifuged at 16000 g, for 20 minutes at 4o C. The soluble protein extract (supernatant) was 

transferred to a new tube. The pellet was first resuspended in 150 μl of urea 8M and then 150 

μl of loading buffer 2X (table 10) were added. The samples were boiled during 5 minutes at 95 
oC. The quantification of soluble protein was done by the Bradford Protein Assay and the same 

amount of protein was loaded to each well. 

 
Table 10. Solutions used for the preparation of soluble and insoluble protein extracts from T. gondii. 

Reagents for parasite cell lysates 

Solution Name Solution Composition 

Loading buffer 2X 83 mM Tris, pH 6.8; 13.3 % glycerol (w/v); 2.7 % SDS; 0.5 % bromophenol blue and 6.7 % β-
mercaptoethanol 

Loading buffer 5X 250 mM Tris, pH 6.8; 30 % glycerol (w/v); 0.4 % SDS; 0.5 % bromophenol blue and 16 % β-
mercaptoethanol 

H Solution 50 mM Hepes pH 7.6, 2 mM EDTA, 100 mM NaCl and 250 mM Sucrose 

 

6.4.2. Determination of protein concentration by Bradford Protein Assay 

 

The Bradford Protein assay was invented by Bradford in 1976 (biochemistry1976, 1976) 

and uses the dye Coomassie Brilliant Blue G-250 to measure the concentration of total protein 

in a sample. The principle of this assay is that the binding of protein molecules to Coomassie 

dye under acidic conditions results in a colour change from brown to blue. This method actually 

measures the presence of the basic amino acid residues, arginine, lysine and histidine, which 

contributes to the formation of the protein-dye complex. Unlike other assays, reducing agents 

and metal chelators at low concentration do not cause interference. However, the presence of 

SDS even at low concentrations can interfere with protein-dye binding.  

The Bradford reagent (Bio-Rad Protein Assay) was used according to the manufacturer 

instruction for the microassay procedure intended for protein concentrations between 1.2 and 

10 µg/ml. Brifley, in 1.5 ml microtube, it was added: 800 μl H2O, 200 µl of Bradford reagent 

and 1µl of the protein soluble extract. The solutions were mixed by the inversion of the tubes 
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and incubated at RT for 15 minutes. Finally, the absorbance was measure at 595 nm and the 

sample concentration was calculated using a protein standard curve.  

The protein standard curve was set using five standard solutions containing known 

concentrations of BSA between 1.2 to 10 µg/ml and following the procedure described above. 

6.4.3. SDS-PAGE 

 

Separation of proteins was achieved by SDS-PAGE, first described by Laemmli (Laemmli, 

1970). Using the SDS-PAGE proteins can be separated according to their molecular weight. 

SDS is a detergent that binds to the protein at a constant molar ratio, denaturing and conferring 

a negative charge to the protein. Polyacrylamide gels are built by co-polymerization of 

acrylamid and bis-acrylamide. This reaction is initiated by a free radical-generating system. 

The polymerisation is catalysed by ammonium persulfate (APS) and 

tetramethylethylenediamine (TEMED). According to the system from Laemmli the gel consists 

of a large pore sized stacking gel (and a small pore sized resolving gel. Upon applying an 

electrical field, the proteins wander in direction of the anode, while first being concentrated in 

the stacking gel and secondly being separated according to their molecular weight in the 

resolving gel. The protein ladder helps to estimate the size of the proteins. SDS-PAGE was 

carried out with the Mini-Protean Tetra Vertical Electrophoresis Cell (BioRad) according to 

manufacturer’s instructions and the protein ladder was the Precision Plus Protein™ Dual Color 

Standards (BioRad). The solutions of the stacking and the resolving gels are detailed in the 

table 11. The samples were loaded into the gel using a Hamilton Syringe and for each gel 10 μl 

of protein ladder were loaded. The gel migrates in running buffer (25 mM Tris base, 192 mM 

glycine, 0.1% SDS) at 25 mA/gel. After electrophoresis, gels were transferred to nitrocellulose 

membranes to perform immunoblotting. 
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Table 11. SDS-PAGE gels. 

SDS-PAGE 

Solution Name Solution Composition 

5 % Stacking gel – stock solutions 5 % Stacking gel - Final concentrations 

Acrylamide-40 % 5 % Acrylamide 
1 M Tris HCl pH 6.8 0.125 M Tris HCl pH 6.8 

20 % SDS 0.1 % SDS 
10 % APS 0.1 % APS 
TEMED 0.1 % TEMED 

10 % Resolving gel – stock solutions 10 % Resolving gel - Final concentrations 

Acrylamide-40 % 10 % Acrylamide 
1.5 M Tris HCl pH 8.8 0.372 M Tris HCl pH 8.8 

20 % SDS 0.1 % SDS 
10 % APS 0.05 % APS 
TEMED 0.05 % TEMED 

15 % Resolving gel – stock solutions 15 % Resolving gel - Final concentrations 

Acrylamide-40 % 15 % Acrylamide 
1.5 M Tris HCl pH 8.8 0.372 M Tris HCl pH 8.8 

20 % SDS 0.1 % SDS 
10 % APS 0.05 % APS 
TEMED 0.05 % TEMED 

 

6.4.4. Staining of proteins in SDS-PAGE with Coomassie Brilliant Blue (CBB) 

 

Coomassie blue dyes R and G types are commonly used for the visualization of proteins 

separated by SDS-PAGE, because of their low cost, ease of use and good compatibility with 

mass spectrometric protein identification. However, despite these advantages, CBB is regarded 

as less sensitive than fluorescence or silver staining and, therefore, is rarely used for the 

detection of proteins in analytical gel-based proteomic approaches. 

Coomassie blue R-250 dye is used to visualize proteins via a regressive staining approach 

in which gels are saturated with dye and then destained with an aqueous solution containing 

methanol and acetic acid. The proteins are visible after destaining because they have a higher 

affinity for the dye molecules than does the gel matrix. 

The gels were stained with 0.25 % CBB R250 (m/v), 10 % glacial acetic acid (v/v), 50% 

methanol (v/v) in water for 30 minutes. Then, the gel was destained by soaking, for at least 2 

h, in the strong destaining solution (10 % glacial acetic acid (v/v), 50 % methanol (v/v) in 

water), changing the solution at least two times during this period. After, the gel was destained 

with a soft destaining solution (7 % glacial acetic acid (v/v), 10 % methanol (v/v) in water), 

until the background is clear. 
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6.4.5. Transfer of proteins from SDS-PAGE to nitrocellulose membrane 

 

After the SDS-PAGE, the proteins were transferred onto a nitrocellulose membrane, 

Amersham Protran 0.45 NC nitrocellulose Western blotting membrane (GE Healthcare). For 

that it was used a Wet/Tank blotting system from Bio-Rad (Mini Trans-Blot Cell) according to 

manufacturer’s instructions. The membrane was equilibrated for 15 minutes in distilledwater. The 

gel, the membrane and the 3MM filter papers were equilibrated in transfer buffer (25 mM Tris base, 

192 mM Glycine, 10 % methanol in water) for 10 minutes. Next, the sandwich for blotting was 

assembled (One Foam pads, 3MM filter papers, blotting membrane, gel, 3MM filter papers, One 

Foam pads) and the blot was run at 350 mA for 60 minutes or at 30 V overnight. The gel should 

be the side of the cathode (-) and the nitrocellulose membrane should be to the side of the anode 

(+). 

 

6.4.6. Ponceau-S-staining 

 

To detect proteins on the nitrocellulose membranes we used the Ponceau-S staining. 

Ponceau S is a negative stain that binds reversible to the positively charged amino groups of 

the proteins. For the staining, the nitrocellulose membrane was incubated with Ponceau S 

solution (Sigma-Aldrich) a few minutes and subsequently washed with water until red stained 

protein bands were visible. 

 

6.4.7. Immunoblotting 

 

Blotted membranes were washed with PBS to remove the Ponceau-S staining and then 

were blocked in 5 % (w/v) Molico skimmed milk powder (Nestlé) in PBS, 0.2 % Tween20 

(v/v) at 4 °C for overnight. Primary antibodies were diluted to the appropriate concentration 

(table 12) in the blocking solution. After blocking, the membrane was incubated with the 

primary antibodies for 1 hour at RT in the orbital shaker. Then the membrane was rinsed once 

in PBS and washed three times for 10 minutes with PBS, 0.2 % Tween20 (v/v) in an orbital 

shaker. Horseradish peroxidase (HRP) labelled secondary antibodies were diluted to the 

appropriate concentration (table 12) in blocking solution and the membrane was incubated with 

the secondary antibodies for 1 hour at RT in the orbital shaker. Afterwards, the membranes 

were washed three times for 10 minutes in PBS, 0.2 % Tween20 (v/v) in an orbital shaker. HRP 

conjugated secondary antibodies were detected with the Amersham ECL Prime Blocking Reagent 
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(GE Healthcare) or with WesternBright Quantum HRP substrate (Advansta), according to 

manufacturer’s instructions. The visualization was done by manually exposing the membranes to 

Amersham Hyperfilm ECL (GE Healthcare) X-ray films and developing with D-19 Developer 

and Fixer Carestream Kodak Processing chemicals (Kodak) or using the ChemiDoc™ XRS+ 

System (Bio-Rad). 

 

6.5. Microscopy 

 

6.5.1. Immunofluorescence (IF) microscopy 

 

For IF assays, confluent HFF cell monolayers on glass coverslips in 24 well plates were 

infected with T. gondii tachyzoites strains to be analysed. Cells were fixed either with 4 % 

paraformaldehyde (w/v) (PFA) in PBS for 20 minutes at RT or with methanol for 10 minutes 

at -20 °C, depending on the primary antibodies that are used and, the structures to be analysed. 

After the fixation, cells were washed two times with PBS during 5 minutes in an orbital shaker. 

Cells fixed by PFA were permeabilized and blocked with a solution containing 2 % BSA and 

0.2 % Triton X-100 in PBS for 30 minutes at RT. Cells fixed by methanol were blocked with 2 

% BSA in PBS for 30 minutes at RT. The primary antibodies (table 12) were diluted in blocking 

solution and incubated for 1h at RT. The coverslips were washed two times with PBS, 0.1 % 

Tween-20, and one time with PBS, during 5 minutes at RT and on an orbital shaker. The 

secondary antibodies (table 12) were diluted in blocking solution and incubated for 1h at RT. 

Then, the coverslips were washed two times with PBS, 0.1% Tween-20, and one time with 

PBS, during 5 minutes at RT and on an orbital shaker. Finally, the coverslips were mounted 

with DAPI Fluoromount-G Mounting Medium (SouthernBiotech) on glass slides and the excess 

of mounting medium was removed with 3MM filter papers.  
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Table 12. Primary and secondary antibodies used in our work 

Primary Antibodies 

Antibody Specie IF 
Dilution 

WB 
Dilution Source 

Anti-c-Myc antibody  Rabbit 1:200 1:2000 Sigma 
Anti-GFP Mouse - 1:1000 Roche 

Monoclonal Anti-α-Tubulin antibody (DM1A) Mouse 1:200 1:2000 Sigma 
Monoclonal Anti-γ-Tubulin antibody Mouse 1:200 1:2000 Sigma 

Monoclonal Anti-Acetylated Tubulin antibody Mouse 1:200 1:2000 Sigma 
Polyglutamylation Modification, mAb (GT335) Mouse 1:200 1:4000 Adipogen 

TgTBCB specific polyclonal serum Rabbit 1:100 
1:200 

1:1000 
1:2000 In house 

ISP1 7E8 Mouse 1:500 - Peter J. Bradley 
Rop2-4 T34A7 Mouse 1:500 - Jean-François Dubremetz 

MIC2 6D10 Mouse 1:500 - Vern Carruthers 
MIC3 T82C10 Mouse 1:300 - Maryse Lebrun 

Anti-PDI Rabbit - 1:500 In house 
Anti-human Centrin Rabbit 1:200 - Iain Cheeseman 

Secondary Antibodies 

Antibody Specie Dilution 
IFA 

Dilution 
WB Source 

Alexa Fluor® 594 Goat Anti-Mouse IgG (H+L) Goat 1:500 - Invitrogen 
Alexa Fluor® 594 Donkey Anti-Rabbit IgG (H+L) Donkey 1:500 - Invitrogen 

Alexa Fluor® 488 Goat Anti-Mouse IgG (H+L) Goat 1:500 - Invitrogen 
Alexa Fluor® 488 Goat Anti-Mouse IgG1 (γ1) Goat 1:500 - Invitrogen 

Alexa Fluor® 488 Donkey Anti-Rabbit IgG (H+L) Donkey 1:500 - Invitrogen 
Alexa Fluor® 594 Chicken Anti-Rabbit IgG (H+L) Chicken 1:500 - Invitrogen 

Anti-Rabbit IgG (H+L) Secondary Antibody, HRP conjugate Goat - 
1:1000  

to  
1:2000 

Invitrogen 

Anti-Mouse HRP Goat - 1:4000 Jackson ImmunoResearch 

 

6.5.2. Microscopy equipment and settings 

 
Microscopes used on our work: 

• Leica DMRA2 DMR HC microscope, equipped with a Leica DFC340FX camera, 

using all objectives, including the 100x Oil immersion objective; 

• Leica DMRA2 upright microscope, equipped with a CoolSNAP HQ CCD camera, 

using the 100x Oil immersion objective, controlled with the MetaMorph V7.5.1 

software. 

• Olympus AppliedPrecision DeltaVision Core system, mounted on an Olympus 

inverted microscope, equipped with a Cascade II 2024 EM-CCD camera, using the 

100x Oil immersion objective. Images were deconvolved with the Huygens 

deconvolution software. 

• Olympus Deltavision Core microscope (Image Solutions - Applied Precision, GE) 

attached to a CoolSNAP HQ2 CCD camera. For image acquisition, z-stacks were 
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collected using a UPLSAPO 100x oil (1.40NA) objective. Deconvolution was 

performed using SoftWoRx Suite 2.0 (Applied Precision, GE); 

• Yokogawa CSU-X Spinning Disk confocal, mounted on a Leica DMi8 microscope, 

with a 63x 1.3NA Glycerine immersion objective. For image acquisition, z-stacks 

were collected using a Andor iXon Ultra EMCCD 1024x1024 camera. The system 

was controlled with Metamorph software. 

• Elyra S1 microscope with Superresolution Structured Illumination (SR-SIM) 

(Zeiss) was used for super resolution microscopy. 

 

6.5.3. Imaging 

 

All images were further processed with Fiji software, a distribution of ImageJ with many 

plugins useful for scientific image analysis in fields such as life sciences.  

 

6.6. Statistic 

 

The statist analyses were done with IBM SPSS Statistic software Version 21, from IBM 

and with the Prism 7 Version 7.0e from GraphPad Software, Ins. 
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Chapter III: Results 

 

1. Identification of Toxoplasma gondii TBCB gene 

 

The search for the TBCB gene in the T. gondii genome started with a simple quest in 

ToxoDB for “Tubulin Cofactor”. Since we did not find any candidate gene with that quest, we 

had to use a second approach, by means of the Blast engine from ToxoDB. For this we used the 

amino acid sequence of Human TBCB isoform 1 (Homo sapiens TBCB – HsTBCB, 

NP_001272.2) to blast against all the sequences available in the data base. Genes with an E-

value above the borderline (E-11) were excluded and we looked for the T. gondii genes with 

the best Score and E-value. The results are showed in the table 13.  

Using the Blast tool to compare amino acid sequences, we were able to find one putative 

gene for T. gondii TBCB (TgTBCB). The gene found is transversal to all T. gondii strains and 

have the same Score and E-value in all of them. It was also interesting that the gene with highest 

Score and E-value, 90.5, belongs to Neospora caninum. Moreover, when we used the HsTBCB 

isoform 2 (NP_001287900.1) instead the isoform 1 the blast results were similar to those in the 

table 13.  

 
Table 13. Blast results from ToxoDB using the amino acid sequence of the HsTBCB isoform 1 (NP_001272.2). 

Gene ID Source_id Organism Score E-Value 

NCLIV_001310 NCLIV_001310-t26_1 Nneospora caninum Liverpool 90.5 3.00E-20 

CSUI_000538 CSUI_000538-t36_1 Cystoisospora suis strain Wien I 77 1.00E-15 

HHA_305060 HHA_305060-t26_1 Hammondia hammondi strain H.H.34 76.3 2.00E-15 

TGARI_305060 TGARI_305060-t30_1 Toxoplasma gondii ARI 74.7 8.00E-15 

TGDOM2_305060 TGDOM2_305060-t30_1 Toxoplasma gondii GAB2-2007-
GAL-DOM2 74.7 8.00E-15 

TGFOU_305060 TGFOU_305060-t30_1 Toxoplasma gondii FOU 74.7 8.00E-15 

TGGT1_305060 TGGT1_305060-t26_1 Toxoplasma gondii GT1 74.7 8.00E-15 

TGMAS_305060 TGMAS_305060-t30_1 Toxoplasma gondii MAS 74.7 8.00E-15 

TGME49_305060 TGME49_305060-t26_1 Toxoplasma gondii ME49 74.7 8.00E-15 

TGP89_305060 TGP89_305060-t30_1 Toxoplasma gondii p89 74.7 8.00E-15 

TGPRC2_305060 TGPRC2_305060-t30_1 Toxoplasma gondii TgCatPRC2 74.7 8.00E-15 

TGRUB_305060 TGRUB_305060-t30_1 Toxoplasma gondii RUB 74.7 8.00E-15 

TGVAND_305060 TGVAND_305060-t30_1 Toxoplasma gondii VAND 74.7 8.00E-15 

TGVEG_305060 TGVEG_305060-t26_1 Toxoplasma gondii VEG 74.7 8.00E-15 

EfaB_MINUS_32574.g2464 EfaB_MINUS_32574.g2464.t1 Eimeria falciformis Bayer Haberkorn 
1970 73.6 8.00E-14 

EAH_00008110 EAH_00008110-t26_1 Eimeria acervulina Houghton 68.2 8.00E-13 
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1.1. T. gondii TBCB putative gene 

 

The gene identified as TBCB in T. gondii was the 305060 (Table 14). Since in our work 

we were using the ME49 T. gondii strain, all our subsequent studies were done with the 

TGME49_305060 gene. This gene encodes a CAP-Gly domain-containing protein, sharing an 

identity of 38 % (Gajria et al., 2008) with the HsTBCB isoform 1 (Figure 25), coding a protein 

with 273 amino acids, with an expected molecular mass (MM) of approximately 30 kDa and 

an isoelectric point (pI) of 5.14.  

 
Table 14. Functional domains of the HsTBCB and TgTBCB proteins. 

TBCB Human and T. gondii functional domains 

Gene IF Functional Domain Start End Source/E-Value 

HsTBCB - NP_001272.2 
Ubiquitin-like domain 10 92 

(Carranza et al., 
2013) Coiled-Coil domain 125 158 

CAP-Gly domain 159 233 

TgTBCB - TGME49_305060 
Ubiquitin-like domain 25 107 4.62E-11 

CAP-Gly domain 181 257 1.22E-15 

 

 
Figure 25. Amino acids sequences alignment, using CLC sequence viewer, of T. gondii TBCB (TgTBCB) 

(TGME49_305060) and Homo sapiens TBCB (NP_001272.2). According to ClustalW program, these proteins share an 

amino acid sequence identity of 38 %.  

 

The TgTBCB predicted protein sequence possesses the characteristic domains of this 

TBCs, the CAP-Gly and the UbL domain. Interestingly, the HsTBCB and the TgTBCB share 
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the same specific domains, in the same positions, but the TgTBCB protein is slightly bigger 

(Figure 26 and Table 14).  

 

 
Figure 26. Schematic representation of the functional domains of the HsTBCB and TgTBCB proteins (DOG, Domain 

Graph, version 1.0). UbL - ubiquitin-like domain in the region N-terminal of both genes; CC - coiled-coil domain present only 

in the HsTBCB; CAP-Gly domain present in the C-terminal Region of both genes. 

 

The 3D predicted structure of TgTBCB was done using the Protein Homology/analogY 

Recognition Engine from the Structural Bioinformatics Group, Imperial College, London 

(Figure 27). 

 

 
Figure 27. Predicted 3D structure of the T. gondii TBCB protein. Image coloured by rainbow from N to C terminus. N-

Terminal region (UbL) in red and orange, middle region in blue and C-terminal region (Cap-Gly) in green (Kelley, Mezulis, 

Yates, Wass, & Sternberg, 2015). 
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1.2. Comparative analysis of TBCB sequences in Apicomplexa 

 

To create a quick analysis of TBCB sequences in Apicomplexa, we blasted the HsTBCB 

isoform 1 (NP_001272.2) against all the Apicomplexa available at the Eukaryotic Pathogen 

Genomics Database Resource (EupathDB) (table 15). The obtained result show that all the 

found genes code for putative or hypothetical TBCB related proteins. However, from the 50 

genes found only 14 were annotated as CAP-Gly domain-containing protein. Among 

apicomplexan organisms, Babesia bovis and Neospora caninum present the highest scores for 

TBCB genes.  

Some of these genes were chosen to create a sequence alignment with the HsTBCB isoform 

1 (Figure 28). The result suggests that the apicomplexan parasites share some conserved amino 

acid sequences, some of them in the Cap-Gly region, but they do not keep the integrity of the 

highly conserved GK(N/H)DG sequence. Only the first and last two amino acids of this 

sequence are conserved among Apicomplexa. 
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Table 15. Blast results from the EupathDB using the protein sequence of the HsTBCB isoform 1 (NP_001272.2). 

Gene ID Source_id Organism Scor
e E-Value 

BBOV_IV005610 BBOV_IV005610-t26_1 Babesia bovis T2Bo 92.8 9.00E-21 
NCLIV_001310 NCLIV_001310-t26_1 Neospora caninum Liverpool 90.5 6.00E-20 

PCOAH_00018560 PCOAH_00018560-t30_1 Plasmodium coatneyi Hackeri 85.1 4.00E-18 
PRELSG_0704300 PRELSG_0704300.1 Plasmodium relictum SGS1-like 85.1 3.00E-18 
BBBOND_0209120 BBBOND_0209120-t26_1 Babesia bigemina strain BOND 84 1.00E-17 

YYE_01887 YYE_01887-t30_1 Plasmodium vinckei vinckei strain vinckei 83.6 1.00E-17 
BOVATA_011480 BOVATA_011480-t37_1 Beroe ovata strain Miyake 82.8 2.00E-17 

BEWA_030750 BEWA_030750-t26_1 Theileria equi strain WA 82 5.00E-17 
PBANKA_0808420 PBANKA_0808420.1 Plasmodium berghei ANKA 82 4.00E-17 
PRCDC_0905010 PRCDC_0905010.1 Plasmodium reichenowi CDC 82 4.00E-17 
PRG01_0914400 PRG01_0914400-t36_1 Plasmodium reichenowi G01 82 4.00E-17 

PPRFG01_0905900 PPRFG01_0905900.1 Plasmodium praefalciparum strain G01 81.6 5.00E-17 
PF3D7_0906910 PF3D7_0906910.1 Plasmodium falciparum 3D7 81.3 9.00E-17 
PFIT_0907110 PFIT_0907110.1 Plasmodium falciparum IT 81.3 9.00E-17 

PBLACG01_0906300 PBLACG01_0906300-t36_1 Plasmodium blacklocki G01 80.9 9.00E-17 
YYG_01053 YYG_01053-t30_1 Plasmodium vinckei petteri strain CR 80.9 2.00E-16 

PGAL8A_00419600 PGAL8A_00419600.1 Plasmodium gallinaceum 8A 80.5 1.00E-16 
PBILCG01_0910600 PBILCG01_0910600-t36_1 Plasmodium billcollinsi G01 80.1 2.00E-16 

PCHAS_0808720 PCHAS_0808720.1 Plasmodium chabaudi chabaudi 79.3 3.00E-16 
AK88_00884 AK88_00884-t30_1 Plasmodium fragile strain nilgiri 79 4.00E-16 

PGABG01_0904500 PGABG01_0904500-t36_1 Plasmodium gaboni strain G01 79 4.00E-16 
PKNH_0704700 PKNH_0704700.1 Plasmodium knowlesi strain H 79 4.00E-16 

PKNOH_S06406200 PKNOH_S06406200-t35_1 Plasmodium knowlesi strain Malayan 
Strain Pk1 A 79 4.00E-16 

PGSY75_0906910 PGSY75_0906910-t31_1 Plasmodium gaboni strain SY75 77.4 1.00E-15 
CSUI_000538 CSUI_000538-t36_1 Cystoisospora suis strain Wien I 77 3.00E-15 

PVP01_0705400 PVP01_0705400.1 Plasmodium vivax P01 77 2.00E-15 
PADL01_0906100 PADL01_0906100-t36_1 Plasmodium adleri G01 76.6 3.00E-15 

HHA_305060 HHA_305060-t26_1 Hammondia hammondi strain H.H.34 76.3 4.00E-15 
PCYB_071470 PCYB_071470-t26_1 Plasmodium cynomolgi strain B 75.1 1.00E-14 
PVX_098786 PVX_098786.1 Plasmodium vivax Sal-1 75.1 9.00E-15 

PcyM_0704800 PcyM_0704800-t36_1 Plasmodium cynomolgi strain M 75.1 1.00E-14 
TGARI_305060 TGARI_305060-t30_1 Toxoplasma gondii ARI 74.7 2.00E-14 

TGDOM2_305060 TGDOM2_305060-t30_1 Toxoplasma gondii GAB2-2007-GAL-
DOM2 74.7 2.00E-14 

TGFOU_305060 TGFOU_305060-t30_1 Toxoplasma gondii FOU 74.7 2.00E-14 
TGGT1_305060 TGGT1_305060-t26_1 Toxoplasma gondii GT1 74.7 2.00E-14 
TGMAS_305060 TGMAS_305060-t30_1 Toxoplasma gondii MAS 74.7 2.00E-14 
TGME49_305060 TGME49_305060-t26_1 Toxoplasma. gondii ME49 74.7 2.00E-14 
TGP89_305060 TGP89_305060-t30_1 Toxoplasma gondii p89 74.7 2.00E-14 

TGPRC2_305060 TGPRC2_305060-t30_1 Toxoplasma gondii TgCatPRC2 74.7 2.00E-14 
TGRUB_305060 TGRUB_305060-t30_1 Toxoplasma. gondii RUB 74.7 2.00E-14 

TGVAND_305060 TGVAND_305060-t30_1 Toxoplasma gondii VAND 74.7 2.00E-14 
TGVEG_305060 TGVEG_305060-t26_1 Toxoplasma. gondii VEG 74.7 2.00E-14 

EfaB_MINUS_32574.g2464 EfaB_MINUS_32574.g2464.t1 Eimeria falciformis Bayer Haberkorn 1970 73.6 2.00E-13 
PocGH01_07014400 PocGH01_07014400.1 Plasmodium ovale curtisi GH01 73.2 5.00E-14 

PY05144 PY05144-t26_1 Plasmodium yoelii yoelii 17XNL 72 1.00E-13 
PY17X_0811700 PY17X_0811700.1 Plasmodium yoelii yoelii 17X 72 1.00E-13 
PYYM_0811410 PYYM_0811410.1 Plasmodium yoelii yoelii YM 72 1.00E-13 

C922_01505 C922_01505-t30_1 Plasmodium inui San Antonio 1 69.3 1.00E-12 
EAH_00008110 EAH_00008110-t26_1 Eimeria acervulina Houghton 68.2 2.00E-12 

PmUG01_07018500 PmUG01_07018500.1 Plasmodium malariae UG01 66.6 2.00E-11 
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Figure 28. Amino acid sequence alignment of Homo sapiens (NP_001272.2) – HsTBCB – With: TgTBCB – T. gondii TBCB 

(TGME49_305060); NcTBCB - Neospora caninum (NCLIV_001310); CyTBCB - Cystoisospora suis (CSUI_000538); 
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BbTBCB - Babesia bovis (BBOV_IV005610); PfTBCB - Plasmodium falciparum (PF3D7_0906910); PvTBCB - Plasmodium 

vivax (PVP01_0705400); PoTBCB - Plasmodium ovale curtisi (PocGH01_07014400); HhTBCB - Hammondia hammondi 

(HHA_305060) and TeTBCB - Theileria equi (BEWA_030750). Highly conserved GK(N/H)DG sequence – brown square. 

GVALDEPL conserved amino acid sequence in Apicomplexa – red square. EVGDFPPIDP conserved amino acid sequence 

in Apicomplexa – blue square. DEI/M motif – black square (alignment performed by CLC sequence viewer). 

 

2. Expression analysis of T. gondii Tbcb during the host cell invasion by Real time 

PCR 

 

As a first approach to investigate the role of Tbcb gene in T. gondii we studied the 

expression profile of the gene during different phases of host cell invasion by quantitative real 

time PCR using specific primers for this gene.  

For this analysis, total RNA was extracted from freshly egressed tachyzoites (control, 0h) 

and from tachyzoites inside their host cells at 0.5, 1, 4 and 8 h after cell invasion (Figure 29). 

 

 
Figure 29. Quantitative Real-Time PCR analysis of TgTbcb expression in T. gondii after host cell invasion. Total RNA 

was extracted from freshly released tachyzoites (control) and from tachyzoites inside host cells at 0.5, 1, 4 and 8h after cell 

invasion. The gene glyceraldehyde-3-phosphate dehydrogenase 1 (Gapdh1) was used as internal control. The data obtained for 

each time point was normalized to the TgTbcb levels as a percentage of maximal value (100 %) for the free and freshly released 

tachyzoites (0 h). The graphic bars are the mean ± SEM (error bars) of three independent assays. Statistical significance was 

calculated using the student t-test (* p < 0.005) 

 

TgTbcb RNA levels from three independent experiments were evaluated and the data 

obtained for each time point was normalized to TgTbcb levels in the free and freshly released 

tachyzoites (0 h). In these experiments, we used the glyceraldehyde-3-phosphate 
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dehydrogenase 1 (Gapdh1) transcript levels as internal control. So, to access the real T. gondii 

Tbcb expression we normalized the obtained TgTbcb values to the TgGapdh values. 

The only significant difference observed in comparison to the free parasites (corresponding 

to 100 %, relative units) was the decrease in TgTbcb RNA levels 4 h after the invasion (to ~ 

42%) (Figure 29). 

 

3. Production of TgTBCB specific polyclonal serum 

 

As previously described, to start the production of the anti-TgTBCB specific polyclonal 

serum, we had to clone the TgTBCB cDNA in a bacteria expression vector (pET3a) and make 

a preliminary induction test to determine the best induction time. Two different expression time 

points were tested and the best one was chosen to start the TgTBCB protein production. The 

figure 30A shows the results of this test, documenting that the highest protein production was 

obtained 2 h after induction.  

Recombinant TgTBCB was in the insoluble fraction and it was purified by SDS-PAGE, 

followed by copper staining and electroelution of the induced protein. The purified protein was 

analyzed in a 15 % SDS-PAGE, and then the gel was Coomassie stained to check for 

contaminant proteins. Only a protein band slightly above 37 kDa was visible in the SDS-PAGE 

(Figure 30B) suggesting that no contaminant proteins with different sizes were present.  

Finally, in collaboration with Juan Carlos Zabala (Departamento de Biología Molecular, 

Facultad de Medicina, Universidad de Cantabria, Santander, Spain), the purified protein was 

used to immunize tow rabbits. The obtained polyclonal serum was tested against T. gondii 

protein extracts by western blot (WB) (Figure 30C). The obtained polyclonal serum recognized 

a protein with approximately 37 kDa (Figure 30C), presenting exactly the same size of the 

recombinant TgTBCB produced in bacteria protein extracts.  
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Figure 30. T. gondii TBCB protein antibody production. A - TgTBCB produced in Escherichia coli BL21. Total protein 

extracts were prepared from bacteria after 1 h and 2 h of TgTBCB protein induction. Total protein extracts without induction 

were also prepared as a control (NI - no induction). The arrow head indicates the TgTBCB protein. The protein extracts were 

analyzed by 15 % (w/v) SDS-PAGE. The gel was stained with Coomassie Brilliant Blue; B - After purification, TgTBCB was 

analyzed by 15 % (w/v) SDS-PAGE. The gel was stained with Coomassie Brilliant Blue; C - WB analysis of TgTBCB. Protein 

extracts from T. gondii were analyzed by 15 % (w/v) SDS–PAGE followed by WB with our specific polyclonal antibody 

directed to TgTBCB. 

 

4. TgTBCB sub-cellular localization 

 

After the successful production of TgTBCB specific polyclonal serum, we used it to study 

the TgTBCB sub-cellular localization by immunolocalization.  

In T. gondii, tubulin glutamylation occurs close to the conoid and progressively decreases 

towards the distal end of the subpellicular MTs (Plessmann, Reiter-Owona, & Lechtreck, 2004). 

As a first approach to address the TgTBCB we performed an immunolocalization assay with 

antibodies anti-TgTBCB and anti-glutamylated tubulin (MT cytoskeleton apical marker). The 

results obtained with intracellular tachyzoites showed that TgTBCB is localized at the anterior 

region of the parasite, close to the apical complex and immediately below the conoid region, 

presenting a polarised distribution (Figure 31).  
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Figure 31. TgTBCB presents an apical localization in intracellular tachyzoites. HFF cells were invaded with T. gondii for 

24 h, then cells were immunostained with antibodies against TgTBCB (green) and polyglutamylated tubulin (GT335, red). 

DNA was stained with DAPI (blue). TgTBCB is localized at the anterior region of the parasite, close to the apical complex and 

immediately below the conoid. Arrow indicates the conoid. Images were acquired using the Olympus AppliedPrecision 

DeltaVision Core system. Scale bar, 5 µm. 

 

In extracellular tachyzoites, TgTBCB seems to have the same localization as in the 

intracellular parasites (Figures 32 and 33). 

 

 
Figure 32. TgTBCB presents an apical localization in extracellular tachyzoites. Parasites were immunostained with 

antibodies against TgTBCB (green) and polyglutamylated tubulin (GT335, red). DNA was stained with DAPI (blue). TgTBCB 

is localized at the anterior region of the parasite, close to the apical complex. Images were acquired using the Olympus 

AppliedPrecision DeltaVision Core system. Scale bar, 5 µm. 

 

 
Figure 33. TgTBCB seems to localize at the apical region of the subpellicular MTs in extracellular tachyzoites.  Parasites 

were immunostained with antibodies against TgTBCB (green). DNA was stained with DAPI. The white arrow indicates the 

apical region and the yellow arrow indicates the posterior region. Images were acquired using the Olympus Deltavision Core 

microscope. Scale bar, 5 µm. 
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Afterwards, several assays were performed to better characterize the TgTBCB apical 

localization. These assays were mostly done at Dr. Markus Meissner Lab by conventional and 

super resolution microscopy (ELYRA). Some assays were performed in our lab and analyzed 

at the Unit of Imaging and Cytometry of the Instituto Gulbenkian de Ciência (IGC). 

Using the super resolution microscopy, we were able to see in more detail the TgTBCB 

sub-cellular localization. It is definitely located at the apical region, starting near the conoid 

and extended till one third of the parasite. Some staining dots at the posterior region were also 

observed (Figure 34), as suggested in previous IFs (Figures 32 and 33). 

 

 
Figure 34. TgTBCB sub-cellular localization in extracellular tachyzoites. Cells were immunostained with antibodies 

against TgTBCB (green). The white arrow indicates the apical region and the yellow arrow head indicates the posterior region. 

Images were acquired by ELYRA. Scale bar, 1 µm. 

 

The inner membrane complex sub-compartment protein 1 (ISP1) is known as a apical cap 

marker (Beck et al., 2010) so, to better characterize the TgTBCB apical localization, we 

performed a co-staining using anti-TgTBCB and anti-ISP1 antibodies. The anti-ISP1 antibody 

stains the apical cap, the apical region that is delimited by TgCentrin2 peripheral annuli (~1.5 

µm from apical end) (Beck et al., 2010). 

Our results showed that, in both extracellular and intracellular tachyzoites, TgTBCB is at 

apical cap and progressively decreases towards the distal end (Figure 35). Super resolution 

microscopy of extracellular tachyzoites, showed a TgTBCB staining that resembles the 

subpellicular MTs suggesting a possible colocalization (Figure 36). 
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Figure 35. TgTBCB is at apical cap and progressively decreases towards the distal end. A - Extracellular tachyzoites. B - 

Intracellular tachyzoites, HFF cells invaded with T. gondii for 24 h. Parasites were immunostained with antibodies against 

TgTBCB (green) and ISP1 (red). DNA was stained with DAPI (blue).  The images were acquired using the Olympus 

Deltavision Core microscope. Scale bar, 5 µm. 
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Figure 36. In extracellular tachyzoites, super resolution microscopy shows that TgTBCB seems to be in close association 

with subpellicular MTs. A - Cells were immunostained with antibodies against TgTBCB (green) and ISP1 (red). DNA was 

stained with DAPI (blue). B - Merge image with the scheme of subpellicular MTs, suggested by TgTBCB staining.  Images 

were acquired by ELYRA. Scale bar, 1 µm (adapted from (Dubey et al., 1998) with permission). 

 

The super resolution results from TgTBCB localization prompted us to investigate deeper 

the relationship between this protein and the apical MT cytoskeleton structures. For this, in an 

attempt to visualize the subpellicular MTs at the region close to the conoid, we performed 
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immunolocalization assays with antibodies against acetylated a-tubulin and glutamylated 

tubulin. The acetylated a-tubulin, as a rule, labels the subpellicular MTs and the glutamylated 

tubulin progressively decreases from the conoid towards the distal end of the subpellicular MTs 

(Plessmann et al., 2004).  

Contrary to what we were expecting, it was not possible to observe the subpellicular MTs 

with the acetylated a-tubulin staining neither in extracellular nor in intracellular tachyzoites 

(Figure 37). 

 

 
Figure 37. TgTBCB is at apical cap around a tubulin structure. A - Intracellular tachyzoites, HFF cells 24h post-invasion. 

B - Extracellular tachyzoites. The arrow points to TgTBCB around tubulin. Cells were immunostained with antibodies against 

TgTBCB (green) and acetylated a-tubulin (red). DNA was stained with DAPI (blue). Images were acquired using the Olympus 

AppliedPrecision DeltaVision Core system. Scale bar, 5 µm. 

 

After the acetylated a-tubulin staining we performed the glutamylated tubulin staining. 

This assay was more informative because glutamylated tubulin presents a staining pattern 

similar to TgTBCB. 

Unfortunately, using DeltaVision it was not possible to observe the individualized MTs 

with the glutamylated tubulin staining (Figure 38). However, TgTBCB seems to be enriched at 

the region immediately below the polar ring. This result is much clearer in the intracellular 

tachyzoites (Figure 38A) than in the extracellular tachyzoites (Figure 38B). 
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Figure 38. TgTBCB staining is enriched at the region immediately below of the polar ring. A - Intracellular tachyzoites, 

HFF cells 24 h post-infection, arrow indicates the TgTBCB ring-like shape. B - Extracellular tachyzoites. Parasites were 

immunostained with antibodies against TgTBCB (green) and polyglutamylated tubulin (GT335, red). DNA was stained with 

DAPI (blue). Images were acquired with Olympus AppliedPrecision DeltaVision Core system. Scale bar, 5 µm. 

 

Using super resolution microscopy, TgTBCB staining presents a partial co-localization 

with the glutamylated tubulin, being in a ring-like shape (Figure 39). At the apical region, 

TgTBCB can be in close association with the subpellicular MTs and, since they are attached to 

the apical polar ring, TgTBCB can be “around/below” this structure originating the ring-like 

shape. 
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Figure 39. Super resolution microscopy showed, in intracellular tachyzoites, that TgTBCB is in a ring-like shape at the 

apical region. A - White arrow indicates the TgTBCB ring-like structure. B - Yellow arrow suggest a polar ring stainedwith 

glutamylated tubulin.  HFF cells 24h post-invasion were immunostained with antibodies against TgTBCB (green) and 

polyglutamylated tubulin (red). DNA was stained with DAPI (blue). Images were acquired using Deltavision OMX system. 

Scale bar, 5 µm in “A” and 2 µm in “B”. 

 

In an attempt to better characterize the TgTBCB staining, we produced parasites expressing 

mEmeraldFP-a1-tubulin (TUBA1, green) under the control of a T. gondii tubulin promoter 

(Leung et al., 2017). 

We successfully obtained this transgenic line but, for unknown reasons, the mEmeraldFP-

a1-tubulin quickly faded during image acquisition at Olympus AppliedPrecision DeltaVision 

Core system. Therefore, we were only able to acquire images using the Leica Spinning Disk.  

The mEmeraldFP-a1-tubulin staining confirmed the TgTBCB staining, previously 

observed with glutamylated tubulin, where it appears to be in a ring-like shape around the 

tubulin at the apical end (Figure 40). Interestingly, in replicating parasites, TgTBCB is present 

in the mother cell close to the anterior pole and is also present in the early forming daughter 

cells (Figure 41). Also, the TgTBCB is not present in the mitotic spindle (Figure 42). 
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Figure 40. mEmeraldFP-a1-tubulin staining supports that TgTBCB is present in a ring-like shape around the tubulin 

at the apical end. A and B – White arrows indicate TgTBCB in a ring like shape. Intracellular tachyzoites, from HFF cells 

24h post-invasion. Cells were immunostained with antibodies against TgTBCB (red). mEmeraldFP-a1-tubulin is green. DNA 

was stained with DAPI (blue). Images were acquired using a Leica Spinning Disk. Scale bar, 5 µm 

 

 
Figure 41. mEmeraldFP-a1-tubulin staining supports that TgTBCB is present in late daughter cells (White arrows). 

Intracellular tachyzoites, from HFF cells 24h post-invasion. Cells were immunostained with antibodies against TgTBCB (red). 

mEmeraldFP-a1-tubulin is green. DNA was stained with DAPI (blue). Images were acquired using a Leica Spinning Disk. 

Scale bar, 5 µm. 
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Figure 42. mEmeraldFP-a1-tubulin staining supports that TgTBCB is not present in the mitotic spindle. White arrows 

indicate TgTBCB is absent of the mitotic spindle. Intracellular tachyzoites, from HFF cells 24h post-invasion. Cells were 

immunostained with antibodies against TgTBCB (red). mEmeraldFP-a1-tubulin is green. DNA was stained with DAPI (blue). 

Images were acquired using a Leica Spinning Disk. Scale bar, 5 µm 

 

The apical complex also contains a high density of secretory organelles, particularly 

rhoptries and micronemes and, due its localization, we admitted that TgTBCB could be in close 

association with these organelles. To address this hypothesis, we performed 

immunolocalizations with a monoclonal antibody against rhoptry proteins 2, 3 and 4 and with 

with the antibodies against microneme proteins 2 and 3 (Figures 43 to 47). 

Although we cannot exclude the interaction with other secretory proteins, our results 

demonstrate that there is no co-localization of TgTBCB with rhoptry proteins 2 - 4 (Figure 43) 

and there are only a few dots of co-localization with the microneme proteins 2 and 3 (Figures 

44 to 47). Interestingly, these observations were obtained mainly in intracellular and not in 

extracellular parasites.  
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Figure 43. TgTBCB did not colocalize with rhoptries proteins 2 – 4 in intracellular tachyzoites. HFF cells were invaded 

with T. gondii for 24 h, then cells were immunostained with antibodies against TgTBCB (green) and rhoptries proteins 2 - 4 

(red). DNA was stained with DAPI (blue). Images were acquired using the Olympus Deltavision Core microscope. Scale bar, 

5 µm. 

 

 
Figure 44. TgTBCB had some dots of co-localization with microneme protein 2. A - Intracellular tachyzoites, HFF cells 

were invaded with T. gondii for 24 h. B - Extracellular tachyzoites. Cells were immunostained with antibodies against TgTBCB 

(green) and microneme protein 2 (red). DNA was stained with DAPI (blue). Images were acquired using the Olympus 

Deltavision Core microscope. Scale bar, 5 µm. 
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Figure 45. Confirmation, by super resolution microscopy, that TgTBCB had some dots of co-localization with 

microneme protein 2, manly in intracellular parasites. A - Intracellular tachyzoites, HFF cells were invaded with T. gondii 

for 24 h. B - Extracellular tachyzoites. Cells were immunostained with antibodies against TgTBCB (green) and microneme 

protein 2 (red). DNA was stained with DAPI (blue). Images were acquired using the ELYRA microscope. Scale bars, in “A” 

5 µm and in “B” 1 µm. 
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Figure 46. TgTBCB had some dots of co-localization with microneme protein 3. A - Intracellular tachyzoites, HFF cells 

were invaded with T. gondii for 24 h. B - Extracellular tachyzoites. Cells were immunostained with antibodies against TgTBCB 

(green) and microneme protein 3 (red). DNA was stained with DAPI (blue). Images were acquired using the Olympus 

Deltavision Core microscope. Scale bar, 5 µm. 
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Figure 47. Confirmation, by super resolution microscopy, that TgTBCB had some dots of co-localization with the 

microneme protein 3, mainly in intracellular parasites. A - Intracellular tachyzoites, HFF cells were invaded with T. gondii 

for 24 h. B - Extracellular tachyzoites. Cells were immunostained with antibodies against TgTBCB (green) and microneme 

protein 3 (red). DNA was stained with DAPI (blue). Images were acquired using the ELYRA microscope. Scale bars, in “A” 

5 µm and in “B” 1 µm. 
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5. TgTBCB secretion analysis 

 

TgTBCB shows a polarized localization mainly at the anterior region of the cell, under the 

conoid, suggesting an association with the subpellicular MTs close to the apical polar ring 

and/or with the secretory organelles. Considering its localization, TgTBCB can be secreted 

and/or be involved in the secretion process. Although we did not detect a clear colocalization 

with rhoptry proteins 2 - 4 neither with microneme proteins 2 and 3, we cannot exclude this 

hypothesis. Therefore, to study the possibility of TgTBCB being secreted, we performed two 

different secretion assays in which we induced secretion by incubation with either calcium 

ionophore A23187 or ethanol. After the secretion induction, the supernatants, containing the 

secreted proteins, were collected and analyzed by WB. 

As a positive control in these assays, we used the protein disulfide isomerase (PDI), an 

essential enzyme in protein folding that is secreted in T. gondii (Meek, Back, Klaren, Speijer, 

& Peek, 2002). To detect the protein, we used a mouse serum obtained in our lab, raised against 

Besnoitia besnoiti PDI, that cross-reacts with T. gondii PDI (Marcelino et al., 2011). 

As expected, PDI is present in all supernatants, but its amount clearly increases after 

incubation of the parasites with ethanol (the white band means very high signal, the band 

bleached out) or, although less pronounced, with calcium ionophore A23187, supporting a more 

successful secretion induction in the presence of ethanol than calcium ionophore A23187. The 

amount of TgTBCB in the supernatants shows the same variation, supporting the hypothesis 

that it is present in secretory compartment (Figure 48). However, due to very low concentrations 

of secreted TBCB in the supernatants, these preliminary results need to be confirmed. 
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Figure 48. TgTBCB seems to be a secreted protein. Two secretion assays were performed by incubation with ethanol or 

with calcium ionophore A23187.   In both assays, TgTBCB amount is increased after secretion induction. Anti-PDI was used 

as a positive secretion control. 

 

6. Invasion assay in the presence of TgTBCB specific polyclonal serum 

 

Given the hypothesis that TgTBCB is secreted, we decided to test whether we could 

demonstrate a role for this protein in the invasion process. For this, we performed invasion 

assays in the presence of the anti-TgTBCB specific polyclonal serum. 

These assays did not show any significant difference in the invasion rate, in the presence 

or absence of anti-TgTBCB antibody (Figure 49), indicating that, even if it is secreted, its extra-

cellular role is not related with the invasion process.   

 

Anti - PDI

Anti - TBCB

52 kDa

37 kDa

PBS
PBS 1% ETOH
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Figure 49. Extracellular TgTBCB is not a key protein in the invasion process. Invasion assays of extracellular T. gondii 

tachyzoites in the presence of TgTBCB specific polyclonal serum. The number of parasites that invaded the host cells was 

counted in 6 fields using a 40× objective and calculated as a percentage value of the control parasites (without TgTBCB specific 

polyclonal serum) normalized to 100 %. As control, a non-immunized rabbit serum was used at similar dilutions. The graphic 

bars are the mean±SEM (error bars) of three independent assays. Statistical significance was calculated using a student t-test. 

 
7. Overexpression of T. gondii TBCB 

 

We started the functional analysis of TgTBCB by studying the parasite phenotype resulting 

from overexpression of the protein. For this, the TgTBCB cDNA was cloned in three different 

plasmid constructs that were used for parasite transfection: 1) TgTBCB in fusion with a small 

tag, the c-myc tag; 2) TgTBCB in fusion with c-myc tag plus eGFP and 3) TgTBCB in fusion 

with c-myc tag, eGFP and a destabilization domain (ddFKBP). In this last construct we can 

modulate the overexpression levels of the fusion protein in a Shield-1 dependent manner.  

 

7.1. Expression analysis of the TgTBCB recombinant proteins by WB 

 

Following the random integration, the stable transgenic parasite lines obtained for each 

construction were analyzed by WB, using specific antibodies against the tag proteins or 
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alternatively against the TgTBCB, in order to confirm the expression of the recombinant 

proteins and their expected molecular size (molecular mass, MM) (Table 16).  

The results showed that the anti-TgTBCB and anti-Myc are able to recognize the expected 

recombinant proteins in all transgenic lines: Myc-TBCB, DD-Myc-GFP-TBCB and Myc-GFP-

TBCB. Although the expected MM for Myc-TgTBCB is ~32 kDa, we detected a protein with 

~37 kDa which is consistent with our previous results when we produced the TgTBCB in 

bacteria (see figure 50). In addition, as expected, the anti-GFP only recognizes the recombinant 

proteins with GFP. Using this antibody no proteins were detected in the T. gondii expressing 

Myc-TBCB. We also observed truncated versions of the recombinant proteins (DD-Myc-GFP 

and Myc-GFP) (Figure 50). 

 
Table 16. Expected size of the recombinant TgTBCB proteins 

Expected MM for the Overexpression Constructions 

Fusion Proteins Expected MM 

Myc-TBCB 32.36 kDa 

Myc-eGFP-TBCB 64.65 kDa 

DD-Myc-eGFP-TBCB 76.71 kDa 

Truncated Fusion Proteins Expected MM 

eGFP 32.59 kDa 

Myc-eGFP 34.31 kDa 

DD-Myc-eGFP 46.36 kDa 

 

 
Figure 50. The recombinant TgTBCB proteins are expressed with the expected size. Soluble protein extracts from 3 

different clones overexpressing TgTBCB (Myc-TBCB, ~32.3kDa; DD-Myc-GFP-TBCB, ~80.7kDa; Myc-GFP-TBCB, 

~64.7kDa) were analysed by 15 % SDS-PAGE followed by WB with anti-TBCB, anti-Myc and anti-GFP antibodies.   
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7.2. Expression analysis of the DD-Myc-eGFP-TBCB recombinant protein in a 

Shield-1 dependent manner, by immunofluorescence 

 

The transgenic stable parasite line overexpressing the DD-Myc-eGFP-TBCB recombinant 

protein was also analyzed by immunofluorescence (Figure 51). The results confirmed the 

expression of the TgTBCB recombinant protein in a Shield-1 dose dependent manner; the 

amount of protein increases as the amount of Shield-1 decreases (Figure 52). Under 

overexpression, TgTBCB lost its apical localization being spread throughout the cell 

cytoplasm. 

 

 

 

   
Figure 51. Analysis of DD-Myc-eGFP-TBCB expression. HFF cells were invaded with T. gondii for 24 h, then the cells were 

immunostained with antibodies against TgTBCB (red). DNA was stained with DAPI (blue). A – Parasites were incubated with 

Shield-1. B - Parasites were incubated without Shield-1. Images were acquired using the Leica DMRA2 DMR HC microscope. 

Scale bar 5µm. 
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Figure 52. Analysis of DD-Myc-eGFP-TBCB expression under serial dilutions of the Shield-1. HFF cells, with culture 

medium containing a serial dilution of the Shield-1, were invaded with T. gondii for 24 h. Then, the cells were fixed and the 

GFP signal was detected. The GPF images were obtained with the same conditions, same exposition time, in the same channel 

and without any kind of imaging treatment. Images were acquired using the Leica DMRA2 DMR HC microscope. Scale bar 

10 µm. 

 

7.3. Phenotypic characterization of T. gondii TBCB overexpression clones 

 

After confirming that the overexpressing clones were expressing the expected TgTBCB 

recombinant proteins, we started the phenotypic characterization. 

As a first approach we performed plaque assays (growing assays) to test the capacity of the 

transgenic parasites to form plaques in monolayers of HFF cells. The plaque assay was 

performed in confluent monolayers in six-well plates that were inoculated with the same 

number of tachyzoites, overexpression transgenics (TgTBCB clones) or wild-type (control). 

After one week of incubation, at normal growth conditions, cells were fixed and stained with 

Giemsa stain and the total number of plaques originated was counted. Curiously, all the 

overexpressing clones presented a reduction in their ability to form plaques in comparison to 

the control: Myc-TBCB presents a decrease of 25 %, the DD-Myc-GFP-TBCB of 34 % and 

Myc-GFP-TBCB of 40 % (Figure 53). 

 1- [1uM]  1/2 - [ 0,5 uM]  1/4 - [0,25 uM]  1/8 - [0,125 uM]  1/16 - [62,5 nM]

 1/32 - [28,8 nM]  1/64 - [15,6 nM]  1/128 - [7,8 nM]  1/256 - [3,9 nM]  1/512 - [1,95 nM]
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Figure 53. TgTBCB overexpression decreases the ability to form plaques. Plaque assays of TgTBCB overexpression clones 

showed a decrease in the number of plaques when compared to the control (wild-type tachyzoites). The number of plaques was 

counted and calculated as a percentage value of control parasites (wild-type) normalized to 100 %. *p<0.01. The p values were 

determined in comparison to the control strain. The graphic bars are the normalized values ± SEM (error bars) of three 

independent assays. Statistical significance was calculated using a student t-test. 

 

The decreased capacity in plaque formation showed by the TgTBCB overexpressing clones 

can be due to problems in invasion and/or replication and/or egress. To discriminate among the 

different possibilities we performed invasion, replication and egress assays. Since we found 

that the three clones presented similar results in the plaque assays, we decided to pursue this 

characterization using only the Myc-TBCB and DD-Myc-GFP-TBCB clones.  

In the invasion assay, confluent monolayers of HFF cells were invaded for 1 h with the 

same number of transgenic and wild type tachyzoites. Then, extracellular parasites were 

removed, and the cells were incubated for further 18 h before fixation. After that, cells were 

processed for immunofluorescence and the number of parasitophorous vacuoles, corresponding 

to successful invasion, was scored. 

Interestingly, in comparison to wild type parasites, DD-Myc-GFP-TBCB clone shows a 

decrease of 41 % and the Myc-TBCB of 45 % in the ability to invade host cells (Figure 54). 

This decrease in invasion capacity is probably related with TgTBCB overexpression and 

explains the decrease in the capacity of plaque formation. 

* 

* 
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Figure 54. TgTBCB overexpression decreases the ability to invade host cells. In the invasion assays, the number of invaded 

parasites was counted in 6 fields using a 40× objective and calculated as a percentage value of control parasites (wild-type) 

normalized to 100%. *p<0.001. The p values were determined in comparison to the control. The graphic bars are the normalized 

values ± SEM (error bars) of three independent assays. Statistical significance was calculated using a student t-test. 

 

The replication assays were performed to analyze the ability of T. gondii tachyzoites 

overexpressing TgTBCB to undergo normal replication within the infected host cells. The 

assays were performed similarly to the invasion assays, except that extracellular tachyzoites 

were not washed out and were let to invade for 24 h before fixation. Then, cells were processed 

for immunofluorescence and the number of parasites per parasitophorous vacuole was scored. 

In this assay, no significant differences were observed between the TgTBCB overexpressing 

clones and the wild-type strain (Figure 55). 
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Figure 55. TgTBCB overexpression does not affect the replication rate in T. gondii. In replication assays, control (wild-

type), Myc-TBCB and DD-Myc-GFP-TBCB presented similar distribution of the parasite number/vacuole. Total number of 

vacuoles counted = 600. 200 vacuoles were counted in each independent experiment. The graphic bars indicate the frequency 

of each condition.  

 

Finally, the egress assays were performed to analyze the ability of T. gondii 

overexpressing TgTBCB to exit the host cell in order to infect new hosts. Confluent monolayers 

of HFF cells were invaded with the same amount of transgenic or wild type tachyzoites. Cells 

were incubated for more 36 h and, after that, the egress was induced by incubation with calcium 

ionophore. The cells were then fixed, processed for immunofluorescence and the number of 

vacuoles with non-egressed parasites was counted. We performed this assay only with the Myc-

TBCB overexpression clone. Although we detected a slight increase of intact vacuoles in the 

overexpression clone, our results did not present significant differences between the control and 

the overexpression (Figure 56). 
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Figure 56. TgTBCB overexpression does not affect the egress in T. gondii. Egress assays, control (wild-type) and Myc-

TBCB presented similar number of intact vacuoles (non-egress vacuoles). The number of non-egress vacuoles was counted in 

6 fields using a 40× objective and calculated as a percentage value of control parasites (wild-type) normalized to 100%. The 

graphic bars are the normalized values ± SEM (error bars) of three independent assays. 

 

8. T. gondii TBCB loss of function studies by knockout 

 

The study of the TBCB loss of function phenotype was expected to contribute to clarify its 

role in T. gondii. However, the establishment of these technologies in our lab was a great 

challenge and allowed us to optimize important tools for future work. 

 

8.1. T. gondii TBCB conditional knockout (KO) using DiCre system 

 

The T. gondii DiCre system (Andenmatten et al., 2012), is based on site-specific 

recombination using dimerizable Cre recombinase. The system uses a T. gondii strain 

(ku80::diCre: ku80 strain hxgprt−) that expresses two inactive fragments of the Cre 

recombinase, each of them fused to one of the rapamycin-binding proteins FRB and FKBP. The 

addition of rapamycin brings FRB and FKBP together, reconstituting the functional enzyme 

and causing the loxP-flanked gene of interest to be excised. The deletion of ku80 gene in this 

strain should avoid random integration, increasing the homology recombination efficiency. 

The first step was the use of a gene-swap strategy in which TgTBCB gene was replaced at 

genome locus by a Myc-TgTBCB cDNA flanked by loxP sites. Then, after the addition of 

rapamycin, MycTgTBCB cDNA was excised by Cre recombinase and an YFP cDNA was left 

under the control of the promoter, resulting in YFP-expressing parasites (KO parasites are 
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green). The exchange between wild-type TgTBCB gene and Myc-TgTBCB loxP flanked plus 

YFP and selection cassette was done by homologous recombination. 

Our first priority was to establish the best transfection scenarios to favor the homologous 

recombination instead of random integration. Being so, during approximately two years’ 

various transfection settings have been tested to isolate a TgTBCB KO clonal line positive for 

homologous recombination at the TgTBCB genomic locus. In fact, several attempts were made 

using two different electroporators: the Nucleofector™ 2b Device Amaxa® with the Basic 

Parasite Nucleofector® Kit, Lonza and Gene Pulser® II Electroporation System, Biorad with a 

home-made Citomix. We used the manufacture protocol but some alterations were also done in 

the DNA amount used. In the Nucleofector™ 2b Device Amaxa were used 10, 5 and 2.5 µg of 

DNA and for the Gene Pulser were used 60, 30 and 15 µg of DNA.  

After selection, isolated clones were tested by a genomic PCR strategy in which products 

with different sizes are generated from TgTBCB wild type locus (553 bp) or from TgTBCB 

recombinant locus (1092 bp). Therefore, positive homologous recombination will produce a 

PCR product of 1092 bp and random integration will produce two PCR products, one from the 

TgTBCB endogenous locus (553 pb) and the other from the plasmid (1092 pb) randomly 

integrated in the genome. 

When tested by the genomic PCR strategy, our first transfection attempts were all negative 

for homologous recombination. The tested clonal lines presented two PCR products (553 pb 

and 1092 pb), consistent with a plasmid random integration. Meantime, the positive control 

(plasmid construct) presented only the product for TgTBCB recombinant locus (1092 bp), the 

negative control (wild type strain) presented only the product for TgTBCB wild type locus (553 

bp) and the non-template control did not amplify any product (Figure 57). The transfection 

conditions used were enhancing the random integration instead of homologous recombination, 

which was not at all expected for a strain deleted for ku80.  
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Figure 57. TgTBCB KO clonal lines (1 to 3) were negative for homologous recombination. Electrophoretic analysis (1 % 

agarose gel) of the genomic PCR products to check the gene-swap of the TgTBCB KO construct at the TgTBCB endogenous 

locus. Tested clonal lines presented two PCR products (553 pb and 1092 pb), consistent with a random integration. Marker - 

GeneRuler 1 kb DNA Ladder. PC – Positive control, plasmid construction. NC – Negative control, wild-type strain. NTC – 

Non-template control.  

 

In these initial tests we found two clonal lines (4 and 8) positive for homologous 

recombination by genomic PCR, presenting only one PCR product of 1092 pb (Figure 58). 

However, when tested by IF, these clones were phenotypically negative, since the 

overexpressing of the Myc-TgTBCB construction was not visible (Figure 59).  

 

 
Figure 58. Clonal lines 4 and 8 are positive for homologous recombination. Electrophoretic analysis (1 % agarose gel) of 

the genomic PCR products to check the gene-swap of the TgTBCB KO construct at the TgTBCB endogenous locus. Clonal 
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lines 4 and 8 presented only one PCR product (1092 pb), consistent with the homologous recombination. Marker - GeneRuler 

1 kb DNA Ladder. Clonal lines 1 to 10. NTC – Non-template control.  

 

 
Figure 59. Clonal lines positive for homologous recombination by PCR did not overexpress the Myc-TBCB as expected. 

HFF cells were invaded with T. gondii for 24 h, then cells were immunostained with antibodies against TgTBCB (green) and 

acetylated tubulin (red). DNA was stained with DAPI (blue). Images were acquired using the Leica DMRA2 DMR HC 

microscope. A - Negative control (T. gondii wild type strain). B - Representative image of clonal lines 4 and 8, positive by 

PCR for homologous recombination. Phenotypic negative, no overexpression of Myc-TgTBCB was observed. Scale bar 20 

µm. 

 

Afterward, we kept trying with both electroporators using the conditions described, but all 

the clones positive by IF (Figure 60) were negative by genomic PCR analysis (Figure 61), 

presenting our construction randomly integrated in the parasite genome. Curiously, clonal lines 

21 and 25 survived to the drug selection but, by PCR, are compatible with a wild-type strain.  
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Figure 60. Clonal lines overexpressing the Myc-TBCB are negative for homologous recombination by genomic PCR. 

HFF cells were invaded with T. gondii for 24 h, then cells were immunostained with antibodies against TgTBCB (green) and 

acetylated tubulin (red). DNA was stained with DAPI (blue). Images were acquired using the Leica DMRA2 DMR HC 

microscope. A - Negative control (T. gondii wild type strain). B - Representative image of a negative PCR clonal line of 

TgTBCB KO (phenotypic positive, overexpressing the Myc-TgTBCB). Scale bar 20 µm. 

 

 
Figure 61. TgTBCB KO clonal lines negative for homologous recombination. Electrophoretic analysis (1% agarose gel) of 

the genomic PCR products to check the gene-swap of the TgTBCB KO construct at the TgTBCB endogenous locus. The 

majority of clonal lines tested presented two PCR products (553 pb and 1092 pb), consistent with a random integration. Clonal 

lines 20 and 24 presented a PCR product compatible with a wild-type strain. Marker - GeneRuler 1 kb DNA Ladder. NTC – 

Non-template control.  
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Our failure, concerning the homologous recombination, led us to use a different approach 

in the transfections. This time we planned to use only the Nucleofector™ 2b Device, Lonza 

with two different DNA concentrations and also some changes in the linearization of the 

plasmid construction and in the use of the restriction enzyme in the transfection mixture. Being 

so were stablished three different conditions:  

1. 10 µg of the linearized plasmid, with the restriction enzyme in the transfection 

mixture; 

2. 10 µg of the non-linearized plasmid, without the restriction enzyme in the 

transfection mixture; 

3. 1 µg of the linearized plasmid, with the restriction enzyme in the transfection 

mixture; 

4. 1 µg of the and non-linearized plasmid without the restriction enzyme in the 

transfection. 

  

Were performed 4 transfections, one for each condition. The isolated clones were tested by 

the genomic PCR strategy, to confirm the correct insertion of the KO construct in the T. gondii 

TgTBCB endogenous locus (homologous recombination) (Figure 62) and then, the PCR 

positive clonal lines were checked by immunofluorescence to confirm the overexpression of 

the Myc-TgTBCB (Figure 63).  

By genomic PCR, we found three clonal lines (28-30) positive for homologous 

recombination (only one PCR product with 1092 bp). However, only one of them (the clonal 

line 30) was phenotypically positive (Figure 63), overexpressing the Myc-TgTBCB, as 

observed by immunofluorescence. For this latter clone, we confirmed the above results and 

extracted total RNA to synthetize cDNA and confirm the expression of the Myc-TgTBCB 

(Figure 64). After all confirmations, we started the KO induction tests. For this, rapamycin was 

added to the cultures and, after an overnight incubation, the cells were processed for 

immunofluorescence, to verify the excision of the Myc-TgTBCB and the subsequent 

overexpression of YFP.  
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Figure 62. Clonal lines 28-30 are positive for homologous recombination. Electrophoretic analysis (1 % agarose gel) of the 

genomic PCR products to check the gene-swap of the TgTBCB KO construct at the TgTBCB endogenous locus. Clonal lines 

28-30 presented only one PCR product (1092 pb), consistent with the homologous recombination. Marker - GeneRuler 1 kb 

DNA Ladder. PC – Positive control, plasmid construction. NC – Negative control, wild-type strain. NTC – Non-template 

control. 

 

 
Figure 63. Clonal line 30 overexpressing the Myc-TBCB. HFF cells were invaded with T. gondii for 24 h, then cells were 

immunostained with antibodies against TgTBCB (green) and acetylated tubulin (red). DNA was stained with DAPI (blue). 

Images were acquired using the Leica DMRA2 DMR HC microscope. A - Negative control (T. gondii wild type strain). B – 

Clonal line of TgTBCB KO overexpressing the Myc-TgTBCB. Scale bar 20 µm (A) and 5 µm (B). 
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Figure 64. Confirmation of Myc-TgTBCB expression by reverse transcribed PCR. Total RNA was extracted from Myc-

TBCB positive clone, RNA was treated with DNase, cDNA was synthetized, and PCR was performed with specific primers to 

amplify the Myc-TgTBCB. Electrophoretic analysis (1 % agarose gel) of the PCR products confirms the Myc-TgTBCB 

expression. M - GeneRuler 1 kb DNA Ladder. 1 – PCR from the cDNA. 2 – PCR from the total RNA after DNase treatment 

(DNA genomic contamination control). PC – PCR from the plasmid construct (positive control). NTC – Non-template control. 

 

The attempts to induce the KO included different induction times, specifically 1, 2, 4, 8, 

16, 24, 48, 72 and 96 h, and rapamycin from two different brands. In all cases the results were 

negative (one example is presented in figure 65) 

 

 
Figure 65. TgTBCB KO is not induced by rapamycin. HFF cells were invaded with T. gondii for 24 h in the presence of 

rapamycin, cells were immunostained with antibodies against TgTBCB (red). DNA was stained with DAPI (blue). In the 

presence of rapamycin, Myc-TBCB should be excised from T. gondii genome, by Cre recombinase, and YFP should be 

expressed. Images were acquired using the Leica DMRA2 DMR HC microscope.  Scale bar 20 µm. 

 

Considering all these negative results, we decided to confirm the expression and integrity 

of the Cre recombinase in our strain, specifically the two inactive Cre fragments that are induced 

in the presence of rapamycin. For this propose, specific primers for each Cre recombinase 

fragment were selected. These primers were used to amplify the two Cre recombinase 

fragments from cDNA, to check their presence in the genome and the respective expression. 

Marker

1 2 PC NTC

250 pb

500 pb
750 pb
1000 pb

1500 pb
2000 pb
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The expression of cre recombinase inactive fragment 1 (PCR product of 500 pb) was only 

detected in the RNA extracted from the positive control, indicator strain. On the other hand, the 

expression of Cre recombinase inactive fragment 2 (PCR product of 1100pb) was detected in 

the clonal lines, in the original strain (RH::DiCreDku80DHX strain) and in the control strain 

(indicator). These results showed that the original strain RH::DiCreDku80DHX, and 

consequently all isolated clones, only express one of the two inactive Cre recombinase 

fragments (Figure 66 and 67). Thereby, we could not have a functional Cre recombinase 

enzyme to excise our gene of interest. 
 

 
Figure 66. Cre recombinase inactive fragment 1 is not expressed in the original strain (RH::DiCreDku80DHX). 

Electrophoretic analysis (1 % agarose gel) of the PCR to confirm the expression of Cre recombinase inactive fragment 1 (500 

pb). M - GeneRuler 1 kb DNA Ladder. 1 – cDNA synthesized from total RNA extracted from the clonal line 1. 2 – cDNA 

synthesized from total RNA extracted from the clonal line 2. 3 – cDNA synthesized from total RNA extracted from 

RH::DiCreDku80DHX strain. 4 – cDNA synthesized from total RNA extracted from positive control, indicator strain. 5 – 

Clonal line 1, total RNA treated with DNase. 6 – Clonal line 2, total RNA treated with DNase. 7 – RH::DiCreDku80DHX 

strain, total RNA treated with DNase. 8 – Indicator strain, positive control, total RNA treated with DNase.  From 5-8 DNA 

genomic contamination control. NTC – Non-template control. 
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Figure 67. Cre recombinase inactive fragment 2 is expressed in all tested strains. Electrophoretic analysis (1 % agarose 

gel) of the PCR to confirm the expression of Cre recombinase inactive fragment 2 (1100 pb). M - GeneRuler 1 kb DNA Ladder. 

1 – cDNA synthesized from total RNA extracted from the clonal line 1. 2 – cDNA synthesized from total RNA extracted from 

the clonal line 2. 3 – cDNA synthesized from total RNA extracted from RH::DiCreDku80DHX strain. 4 – cDNA synthesized 

from total RNA extracted from positive control, indicator strain. 5 – Clonal line 1, total RNA treated with DNase. 6 – Clonal 

line 2, total RNA treated with DNase. 7 – RH::DiCreDku80DHX strain, total RNA treated with DNase. 8 – Indicator strain, 

positive control, total RNA treated with DNase. From 5-8 DNA genomic contamination control. NTC – Non-template control. 

 

In summary, when the correct transfection conditions were established and the TgTBCB 

KO clonal line positive for homologous recombination was isolated, we could not induce the 

excision of Myc-TgTBCB cDNA by Cre recombinase in the presence of rapamycin. To 

overcome this problem, we established three approaches as described below.  

a) Our first approach was to do a transient transfection of our Myc-TBCB conditional 

clonal lines with the Cre recombinase inactive fragment 1, in order to induce the TBCB KO 

and proceed with the TBCB KO characterization. We successfully cloned the Cre recombinase 

inactive fragment 1 and transfected transiently the Myc-TBCB inducible KO clonal line. 

Following the addition of rapamycin, we confirmed the KO induction by the GFP presence in 

the immunofluorescence. In fact, we confirmed the excision of the Myc-TBCB cDNA and the 

YFP cDNA expression, resulting in YFP-expressing parasites (green KO parasites) (Figure 68). 

However, since our clonal line was already resistant to the HXGPRT, due to our previous 

transfection, and we did not have any other plasmid available with a different resistance marker, 

it was impossible to select for a stable transfection. We observed that in the induced pool, with 

a mix population of induced and not induced parasites, the induced ones decreased over time 

and did not survive for more than 1 week. This observation suggests that TgTBCB is important, 

if not essential, to the parasite survival.  
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b) We also tested our frozen stocks of “inducible” strains for the expression and the 

integrity of the Cre recombinase. The positive strains were selected, and we restarted the 

transfection protocol to obtain inducible KO clonal line. But, unfortunately, all the clonal lines 

were again negative for homologous recombination, by genomic PCR.  

c) Another approach could be a direct KO of TgTBCB gene instead of the gene-swap 

strategy. However, the low efficiency of homologous recombination that we were observing 

together with the indication that TgTBCB can be essential for parasite propagation, led us to 

abandon this approach.  

Taking the points above into consideration, we decided to explore a new methodology to 

obtain the TgTBCB KO, the CRISPR/Cas9 system.  

 

 
Figure 68. TgTBCB KO induction after transient transfection with Cre recombinase inactive fragment 1. TgTBCB KO 

clonal line was transfected with the Cre recombinase inactive fragment 1, and subsequently induced for 24 h with rapamycin. 

Cells were immunostained with antibodies against TgTBCB (red). DNA was stained with DAPI (blue). In the presence of 

rapamycin, the MycTBCB was excised from T. gondii genome, by Cre recombinase, and YFP was expressed. Images were 

acquired using the Leica DMRA2 DMR HC microscope. Scale bar 5 µm. 

 

8.2. T. gondii TBCB conditional knockout using the CRISPR/Cas9 system 

 

The second methodology used to evaluate the role of TBCB in T. gondii was the 

CRISPR/Cas9 system. Since 2014, this system has been widely used in T. gondii to disrupt 

protein-coding sequences based on transfection of a guide RNA into parasites constitutively 

expressing Cas9 (Shen, Brown, Lee, & Sibley, 2014; Sidik et al., 2016). Meissner lab is 

developing a CRISPR/Cas9 inducible system, based on DiCre system, where a SplitCas9 

enzyme is expressed in two inactive fragments, each of them fused to one of the rapamycin-

binding proteins FRB and FKBP. The addition of rapamycin brings FRB and FKBP together, 

reconstituting the functional enzyme. Using this mechanism, we have the capacity to control 

the exact moment when the system is triggered, a key tool for the study of essential genes.  

The initial cloning and transfection process to get a TgTBCB inducible KO strain by 

CRISPR/Cas9 system was started in Glasgow at Meissner lab. Succinctly, we explored two 

different approaches to create a knockout strain for TgTBCB with the Cas9. One with gRNAs 
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directed to the TgTBCB gene exons and, an alternative approach, with gRNAs directed to 

introns to be used in combination with the TgTBCB DiCre plasmid construct in an attempt to 

favor the homologous recombination at the TgTBCB endogenous locus.  

We transfected three different gRNAs (different sequences which targeted the first 

TgTBCB exon) and select 6 clones for the TgTBCB gene (2 clones for each gRNA). These 

clones were brought to Portugal and the studies for their characterization were done in our lab. 

Unfortunately, only one of the clones was in fact positive by PCR for gRNA random 

integration, so our studies were conducted with that positive clone. 

 

8.2.1. WB analysis showed that T. gondii TBCB amount decreases after CRISPR/Cas9 

KO induction 

 

The confirmation of the TgTBCB gene inactivation was done by WB analysis after clonal 

line KO induction with rapamycin for 72 h. This analysis confirmed the complete depletion of 

the TgTBCB protein after 72 h of induction and shows that there is no alteration in the levels 

of acetylated and α-tubulin in soluble protein extracts (Figure 69A). On the other hand, when 

analyzing the insoluble extracts (where are the MTs), we found a reduction in the acetylated, 

glutamylated and α-tubulin protein levels. Since TgTBCB is not present in the insoluble protein 

extracts, it was not possible to address its depletion under this condition (Figure 69B).   
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Figure 69. WB analysis of protein extracts, 72 h after TgTBCB KO induction. Soluble (A) and insoluble (B) protein 

extracts, from the TgTBCB inducible KO clonal line and the control (wild-type, WT - splitCas9 strain), with and without 

rapamycin (Rap), were analysed by 15 % SDS-PAGE followed by WB with TgTBCB specific polyclonal serum (A), anti-

Acetylated tubulin antibody (A and B), anti-α-Tubulin antibody (A and B) and anti-Actin antibody (loading control, A and B). 
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After confirming a decrease in the amount of TgTBCB protein upon KO induction, we 

decided to isolate a TgTBCB KO clone to characterize the KO effect. However, all the attempts 

to isolate a clone by limit dilutions were unsuccessful. Many parasites died in culture and the 

isolated clones were negative for TgTBCB KO suggesting, once again, that this gene is 

essential. Under these circumstances, the TgTBCB KO had to be induced before each 

experiment. 

 

8.2.2. Genomic DNA PCR: detection of the mutations in the first TgTBCB exon 

 

In this system, after KO induction occurs a hydrolysis (DNA double strand cut) in the 

genomic DNA followed by a non-homologous repair. Usually this repair involves a deletion or 

an insertion that inactivates the target gene. 

After 24 h of TgTBCB KO induction, genomic DNA was extracted from tachyzoites and 

the gRNA target region was amplified by PCR. The PCR product was sequenced, the 

sequencing was perfect until the predicted hydrolysis site and, after this site, we lost the 

sequencing reaction, probably due to the great diversity of sequences (each parasite undergoes 

a different DNA repair). This result suggests that the TgTBCB DNA mutation occurred at the 

expected site. 

 

8.2.3. Phenotypic characterization of T. gondii TBCB conditional KO 

 

For these studies, the parasites, control and inducible KO clonal line, were treated with 

rapamycin or left untreated for 48 h when free viable egressed parasites were collected, counted 

and used to perform the experiments. 

According to the standard protocol, we should have performed a plaque assay, as a primary 

assay, for the characterization of the TgTBCB KO. However, considering the lifespan of these 

parasites after the KO induction (no more than a week) it was not possible to perform this assay. 

Regarding the invasion assay, confluent monolayers of HFF cells were invaded for 1 h with 

the same number of transgenic or control tachyzoites. Then, extracellular parasites were 

removed, and cells were incubated for more 18 h before fixation. After that, the cells were 

processed for immunofluorescence and the number of parasitophorous vacuoles, corresponding 

to successful invasion, was scored. Interestingly, we observed a remarkably reduction of the 

TgTBCB KO ability to invade the host cells. In fact, the induced clonal line showed a decrease 

of 61% in its ability to invade the HFF cells in comparison to the control parasites (Figure 70).  
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Figure 70. TgTBCB KO decreases the ability to invade host cells.  In the invasion assays, the number of invaded parasites 

was counted in 6 fields using a 40× objective and calculated as a percentage value of control parasites (wild-type, WT - 

SplitCas9 strain not induced) normalized to 100 %. *p < 0.001. The p values were determined in comparison to the control. 

The graphic bars are the normalized values ± SEM (error bars) of three independent assays. Statistical significance was 

calculated using a student t-test. (+ Rap) means rapamycin added and (– Rap) means no rapamycin added. 

 

Concerning the replication assay, it was performed to analyze the ability of T. gondii 

tachyzoites to undergo normal intracellular replication. In this assay we also found an enormous 

decrease in the replication capability of the induced TgTBCB clonal line. In fact, the KO 

parasite line showed a huge increase in the frequency of two parasites per vacuole and a 

decrease in the other categories, mostly in eight and more than eight (+8) parasites per vacuole 

(Figure 71).  
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Figure 71. TgTBCB KO affects the replication rate in T. gondii. The replication assay shows that “TgTBCB KO + Rap” 

presents more vacuoles with 2 parasites and the other strains (WT-Rap, WT+Rap and TgTBCB-Rap) presented more vacuoles 

with 8 parasites. Total number of vacuoles counted in 3 independent experiments (200 vacuoles counted per experiment). The 

graphic bars are the number of the vacuoles with 2, 4, 8 or more parasites (+8). (WT) is the wild type control strain (SplitCas9 

strain) (+ Rap) means rapamycin added and (– Rap) means no rapamycin added. 

 

Like the plaque assay, the egress assay was not preformed since the time needed to perform 

this assay was more than the viable time of the induced KO parasites lines. 

 

8.2.4. Cellular characterization of the T. gondii TBCB KO by Immunofluorescence 

 

To further understand what was happening during the lytic cycle of the parasite we 

inoculated HFF cells and, at the same time, the KO was induced with rapamycin for 24 h, 48 h 

and 72 h. Afterwards the parasites were fixed with methanol or paraformaldehyde and 

processed for immunofluorescence, using antibodies against TgTBCB, acetylated tubulin 

(stains the subpellicular MTs), polyglutamylated tubulin (stains close to the conoid and 

progressively decreases towards the distal end of the subpellicular MTs) and centrin (stains the 

centrioles from centrosome).  

 

Interestingly, after 24 h it is still possible to detect TgTBCB, but some parasites already 

show replication problems, presenting parasites dividing with four daughter cells forming 

inside instead of two. It seems that they lose the cell polarity and replication control (Figures 
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72, 73 and 74). Curiously, in these control cells, it is possible to observe the TgTBCB in the 

daughter cells. 

The anti-centrin stains the centrioles that are part of the centrosome (MTOC). Each 

centrosome has two centrioles, but with this resolution, it is difficult to distinguish the two 

centrioles dots, being detectable only one dot per centrosome. In interphase, the parasites have 

one centrosome (one dot) and when replicating present two centrosomes (two dots). In our 

studies, it was possible to observe KO TgTBCB cells with three or four centrosomes (Figure 

74). 

 

 
Figure 72. TgTBCB KO, polyglutamylated tubulin staining 24 h after induction. A - Control - TgTBCB KO Clonal line 

not induced. B - TgTBCB KO Clonal line induced for 24 h. HFF cells were invaded and 24 h later were fixed with 

paraformaldehyde and immunostained with antibodies against TgTBCB (red) and polyglutamylated tubulin (green). DNA was 

stained with DAPI (blue). In TgTBCB KO parasites it is possible to observe parasites with four daughter cells (white arrows). 

Images were acquired with Olympus AppliedPrecision DeltaVision Core system. Scale bars, 5 µm. 
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Figure 73. TgTBCB KO, acetylated tubulin staining 24 h after induction. A - Control - TgTBCB KO Clonal line not 

induced. B - TgTBCB KO Clonal line induced for 24 h. HFF cells were invaded and 24 h later were fixed with methanol and 

immunostained with antibodies against TgTBCB (red) and acetylated tubulin (green). DNA was stained with DAPI (blue). In 

TgTBCB KO parasites it is possible to observe parasites with four daughter cells (white arrows). Images were acquired with 

Olympus AppliedPrecision DeltaVision Core system. Scale bars, 5 µm. 

 

 
Figure 74. TgTBCB KO, centrin staining 24 h after induction. A - Control - TgTBCB KO Clonal line not induced. B - 

TgTBCB KO Clonal line induced for 24 h HFF cells were invaded and 24 h later were fixed with methanol and immunostained 

with antibodies against centrin (red) and polyglutamylated tubulin (green). DNA was stained with DAPI (blue). In TgTBCB 

KO parasites it is possible to observe that all parasites already duplicate the centrioles, it is also possible to observe replicating 

cells with four and three centrosomes instead of two (white arrows). Images were acquired with Olympus AppliedPrecision 

DeltaVision Core system. Scale bars, 5 µm. 
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After 48 h of invasion the replication problems were more marked, the parasitophorous 

vacuoles only presented a few parasites that at certain point were unable to replicate showing a 

vast disorganization. At this stage, the number of parasites presenting problems in replication 

is much higher. The polyglutamylated and acetylated tubulin already showed some alterations 

in its regular staining, namely the decrease in the staining intensity.  The acetylated tubulin is 

weaker, slightly present at the anterior pole of the parasite and additionally it stained the 

parasitophorous vacuole. Apparently, the parasites did not complete the division, the 

centrosomes are able to replicate, but the parasites have very large nucleus that seem to be 

unable to divide. The TBCB signal is decreasing and diffusing along the parasite (Figures 75, 

76 and 77). 

 

 
Figure 75. TgTBCB KO, polyglutamylated tubulin staining 48 h after induction. A - Control - TgTBCB KO Clonal line 

not induced. B - TgTBCB KO Clonal line induced for 48 h. HFF cells were invaded and 48 h later were fixed with 

paraformaldehyde and immunostained with antibodies against TgTBCB (red) and polyglutamylated tubulin (green). DNA was 

stained with DAPI (blue). In TgTBCB KO parasites it is possible to observe parasites that failed several rounds of cell divisions 

(white arrows). Images were acquired with Olympus AppliedPrecision DeltaVision Core system. Scale bars, 5 µm. 
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Figure 76. TgTBCB KO, acetylated tubulin staining 48 h after induction. A - Control - TgTBCB KO Clonal line not 

induced. B - TgTBCB KO Clonal line induced for 48 h. HFF cells were invaded and 48 h later were fixed with methanol and 

immunostained with antibodies against TgTBCB (red) and acetylated tubulin (green). DNA was stained with DAPI (blue). In 

TgTBCB KO parasites it is possible to observe parasites with big nucleus (yellow arrows), probably due to the failure of cell 

divisions, the acetylated tubulin staining is weaker, presents only at the anterior pole of the parasite and additionally it stained 

the parasitophorous vacuole (white arrows). Images were acquired with Olympus AppliedPrecision DeltaVision Core system. 

Scale bars, 5 µm. 

 

 
Figure 77. TgTBCB KO, centrin staining 48 h after induction. A - Control - TgTBCB KO Clonal line not induced. B - 

TgTBCB KO Clonal line induced for 48 h. HFF cells were invaded and 48h h later were fixed with methanol and 

immunostained with antibodies against centrin (red) and polyglutamylated tubulin (green). DNA was stained with DAPI (blue). 

In TgTBCB KO parasites it is possible to observe parasites with an abnormal number of centrioles, probably due to centriole 

duplication without an effective cell division (white arrows). Images were acquired with Olympus AppliedPrecision 

DeltaVision Core system. Scale bars, 5 µm. 
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Finally, after 72 h of invasion the parasitophorous vacuoles lost their entire organization, 

the parasites seemed to be dying inside the vacuoles and showed drastic alterations in the 

polyglutamylated tubulin normal staining, namely the decrease in the staining intensity, as the 

polyglutamylated tubulin signal is much weaker, with shorter and disorganized subpellicular 

MTs. The acetylated tubulin signal is also weaker and abnormal (seems to stain only MTs at 

the anterior pole of the parasite and with an aberrant MT cytoskeleton) and the TBCB staining 

is not detectable. Their nucleus is dramatically bigger than the control and parasites accumulate 

multiple centrosomes per cell but are unable to finish the replication process (Figure 78, 79 and 

80). 

 

 
Figure 78. TgTBCB KO, polyglutamylated tubulin staining 72 h after induction. A - Control - TgTBCB KO Clonal line 

not induced. B - TgTBCB KO Clonal line induced for 72 h. HFF cells were invaded and 72 h later were fixed with 

paraformaldehyde and immunostained with antibodies against TgTBCB (red) and polyglutamylated tubulin (green). DNA was 

stained with DAPI (blue). In TgTBCB KO parasites it is possible to observe the clear decrease in the TgTBCB staining, a 

decrease in the glutamylated tubulin staining, the presence of a big nucleus (yellow arrows) and also the presence of shorter 

and disarranged subpellicular MTs (white arrows). Images were acquired with Olympus AppliedPrecision DeltaVision Core 

system. Scale bars, 5 µm. 
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Figure 79. TgTBCB KO, acetylated tubulin staining 72 h after induction. A - Control - TgTBCB KO Clonal line not 

induced. B - TgTBCB KO Clonal line induced for 72 h. HFF cells were invaded and 72 h later were fixed with methanol and 

immunostained with antibodies against TgTBCB (red) and acetylated tubulin (green). DNA was stained with DAPI (blue). In 

TgTBCB KO parasites it is possible to observe the clear decrease in the TgTBCB staining, a decrease in the acetylated tubulin 

staining that seems to dye only MTs at the anterior pole of the parasite and with an aberrant MT cytoskeleton (white arrows). 

Images were acquired with Olympus AppliedPrecision DeltaVision Core system. Scale bars, 5 µm. 

 

 
Figure 80. TgTBCB KO, centrin staining 72 h after induction. A - Control - TgTBCB KO Clonal line not induced. B - 

TgTBCB KO Clonal line induced for 72 h. HFF cells were invaded and 72 h later were fixed with methanol and immunostained 

with antibodies against centrin (red) and polyglutamylated tubulin (green). DNA was stained with DAPI (blue). In TgTBCB 

KO parasites it is possible to observe multiple centrosomes (yellow arrow), a decrease in the glutamylated tubulin staining (red 

arrow) and the presence of a big nucleus (white arrow). Images were acquired with Olympus AppliedPrecision DeltaVision 

Core system. Scale bars, 5 µm. 
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8.2.5. Nuclear size and cellular morphology comparative analysis of T. gondii TBCB 

conditional knockout 

 

At a recent meeting, Markus Meissner group presented a series of observations suggesting 

that Cas9 is toxic to T. gondii (Stortz, Gow, Meissner, & Jiménez-Ruiz, 2017). This toxicity is 

the result of a low efficiency of this parasite for repairing the Cas9 induced DNA double strand 

breaks, what can lead to Cas9 mediated gene disruption within the first lytic cycle of T. gondii 

parasites. Apparently, the DNA repair machinery in T. gondii may be unable to repair Cas9-

induced DNA double strand breaks in up to 65% of all induced parasites. Their cytotoxic effects 

manifested are predominantly aberrant nuclei combined with abnormal cellular morphology 

(Stortz et al., 2017). 

These observations raised on us a huge concern and one major doubt, since the phenotype 

found in our assays could be due to the Cas9 toxicity and not the TgTBCB KO. In order to 

confirm our previous results, new IFs were made with a pre-induction step, to overcome the 

first lytic cycle where the Cas9 toxicity was described. The objective was to make a comparison 

between our previous findings and the outcome with previously induced parasites for 24 h and 

subsequently re-inoculated for more 24 h, making a total of 48h. We studied in particular the 

replication phenotypes, cellular morphology and the nuclear size, although other findings were 

also considered.  

We started by a nuclear size assay. To access it, the nuclear size of the parasites from the 

previous IFs and the new IFs was compared using the Analyze particles tool from ImageJ. The 

same threshold was used between control and induced parasites by experiment. In the first IF 

assays we observed an increase in the nuclear size of the KO parasites in all time points (Figure 

81, 82 and 83). That increase in the nuclear size was confirmed in the new IF assays with the 

re-inoculation of TgTBCB KO egressed parasites (Figures 84 and 85). 
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Figure 81. TgTBCB KO increases the nuclear size, 24 h after induction. Nuclear size assay, representative results obtained 

by an aleatory analysis of the nuclear size. Control - TgTBCB KO Clonal line not induced. TgTBCB KO - TgTBCB KO 

Clonal line induced and inoculated in HFF cells during 24 h. Cells were fixed with methanol and immunostained with antibodies 

against TgTBCB (red) and polyglutamylated tubulin (green). DNA was stained with DAPI (blue).  Scale bars, 5 µm. Area - 

Area of selection in square pixels. Mean – Average of the mean grey value within the selection. Standard Deviation - Standard 

deviation of the grey values used to generate the mean grey value. 

 

 
Figure 82. TgTBCB KO increases the nuclear size, 48 h after induction. Nuclear size assay, representative results obtained 

by an aleatory analysis of the nuclear size. Control - TgTBCB KO Clonal line not induced. TgTBCB KO - TgTBCB KO 

Clonal line induced and inoculated in HFF cells during 48 h. Cells were fixed with methanol and immunostained with antibodies 

against TgTBCB (red) and polyglutamylated tubulin (green). DNA was stained with DAPI (blue).  Scale bars, 5 µm. Area - 

Area of selection in square pixels. Mean – Average of the mean grey value within the selection. Standard Deviation - Standard 

deviation of the grey values used to generate the mean grey value. 
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Figure 83. TgTBCB KO increases the nuclear size, 72 h after induction. Nuclear size assay, representative results obtained 

by an aleatory analysis of the nuclear size. Control - TgTBCB KO Clonal line not induced. TgTBCB KO - TgTBCB KO 

Clonal line induced and inoculated in HFF cells during 72 h. Cells were fixed with methanol and immunostained with antibodies 

against TgTBCB (red) and polyglutamylated tubulin (green). DNA was stained with DAPI (blue).  Scale bars, 5 µm. Area - 

Area of selection in square pixels. Mean – Average of the mean grey value within the selection. Standard Deviation - Standard 

deviation of the grey values used to generate the mean grey value. 

 

 
Figure 84. TgTBCB KO egressed tachyzoites increases the nuclear size, 24 h after re-inoculation. Nuclear size assay, 

representative results obtained by an aleatory analysis of the nuclear size. Control - TgTBCB KO Clonal line not induced. 

TgTBCB KO - TgTBCB KO Clonal line induced for 24 h, egressed and re-inoculated in HFF cells for 24 h. Cells were fixed 

with methanol and immunostained with antibodies against TgTBCB (red) and polyglutamylated tubulin (green). DNA was 
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stained with DAPI (blue).  Scale bars, 5 µm. Area - Area of selection in square pixels. Mean – Average of the mean grey value 

within the selection. Standard Deviation - Standard deviation of the grey values used to generate the mean grey value. 

 
Figure 85. TgTBCB KO egressed tachyzoites increases the nuclear size, 24 h after re-inoculation. Nuclear size assay, 

representative results obtained by an aleatory analysis of the nuclear size. Control - TgTBCB KO Clonal line not induced. 

TgTBCB KO - TgTBCB KO Clonal line induced for 24 h, egressed and re-inoculated in HFF cells for 24 h. Cells were fixed 

with methanol and immunostained with antibodies against TgTBCB (red) and polyglutamylated tubulin (green). DNA was 

stained with DAPI (blue).  Scale bars, 5 µm. Area - Area of selection in square pixels. Mean – Average of the mean grey value 

within the selection. Standard Deviation - Standard deviation of the grey values used to generate the mean grey value. 

 

Subsequent, the IF’s were used to study and compared the cellular morphology of the 

parasites. As in the new assays the parasites were pre-induced for 24 h and subsequently re-

inoculated for more 24 h, making a total of 48 h, that results were mainly compared with the 

48 h time point of the first IF assays. The new IFs assays corroborate the same morphology 

findings observed previously. Beyond the huge nucleus, the parasites have obviously 

replication problems, in fact they cannot complete the endodyogeny, having more than two 

daughter cells per parasite under replication (Figure 86). They also lost their cell polarity 

control, the polyglutamylated tubulin staining is weaker and abnormal and the parasitophorous 

vacuole already exposed the vast disorganization (Figure 86 and 87). Therefore, the complete 

loss of TBCB signal, which was previously observed at 72 h, was not observed in this 

experiment.  

These results indicated that this phenotype is most likely related to the TgTBCB KO and 

not the Cas 9 toxicity. In fact, the presence of a single and unusually enlarged nucleus was 

already associated with the disruption of the MT dynamics (Morrissette & Sibley, 2002b; Shaw, 

Compton, Roos, & Tilney, 2000; Striepen et al., 2000). 
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Figure 86. TgTBCB KO egressed tachyzoites, 24 h after re-incubation, also present replication alterations. A - TgTBCB 

KO Clonal line not induced. B - TgTBCB KO Clonal line induced for 24 h, egressed and re-inoculated in HFF cells for 24 h. 

Cells were fixed with methanol and immunostained with antibodies against TgTBCB (red) and polyglutamylated tubulin 

(green). DNA was stained with DAPI (blue). Similar to our previous results, some TgTBCB KO tachyzoites have four daughter 

cells instead of two (white arrows). Images were acquired with Olympus AppliedPrecision DeltaVision Core system. Scale 

bars, 5 µm. 

 

 
Figure 87. TgTBCB KO egressed tachyzoites, 24 h after re-incubation, also present a decrease in the tubulin 

glutamylated staining. A - TgTBCB KO Clonal line not induced. B - TgTBCB KO Clonal line induced for 24 h, egressed and 

re-inoculated in HFF cells for 24 h. Cells were fixed with methanol and immunostained with antibodies against TgTBCB (red) 

and polyglutamylated tubulin (green). DNA was stained with DAPI (blue). Similar to our previous results, some TgTBCB KO 

tachyzoites have with shorter and deregulated subpellicular MTs (yellow arrows), plus huge nuclei (white arrow). Images were 

acquired with Olympus AppliedPrecision DeltaVision Core system. Scale bars, 5 µm. 
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8.2.6. T. gondii TBCB conditional knockout analysis by Electron Microscopy  

 

To understand in more detail the problems found in the parasite replication, concisely the 

findings in the nuclear size and in its division, we analyzed the induced clonal line by electronic 

microscopy. For that, the clonal line was induced for 48 h and then processed with the 

appropriated protocol.   

Interestingly, the parasites without TgTBCB are able to replicate the DNA and divide the 

nucleus, but seem to be unable to finish replication, since we found several parasites with two 

nucleus and abnormal morphology, losing their shape and polarity. The parasitophorous 

vacuole showed some disorganization and parasites with two or one huge nucleus are extremely 

abundant. (Figure 88).   

 

 
Figure 88. Electron microscopy of infected HFF cells. A - Control not induced. B to D - TgTBCB KO Clonal line induced 

with rapamycin during 48 h. In TgTBCB KO parasites it is possible to observe big and round parasites with multiple nuclei, or 

a single big nucleus, without daughter (red and black arrows). Tachyzoites grew as enormous intracellular inclusions, are 

incapable of cell division and had a non-polarized nature (yellow arrow). Scale bars, 0.8 to 1.8 µm. 
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Chapter IV: Discussion 

 

The search of molecular targets that can be involved in the Toxoplasma gondii MT 

remodelling during host cell invasion led us to investigate the role of TgTBCB during this 

process. TBCB is one of the TBCs that are involved in the ‘‘postchaperonin’’ tubulin folding 

pathway. TBCs are responsible for the acquisition of the quaternary conformation of the αβ-

heterodimer after tubulin monomers have reached their tertiary structure and have also been 

implicated in the regulation of MT dynamics (Kortazar et al., 2007; Lewis et al., 1997; Lopez-

Fanarraga et al., 2001). 

The search for the TBCB gene in the T. gondii genome started with a simple quest in the 

ToxoDB to “Tubulin Cofactor”. Since we did not find any candidate for a “Tubulin Cofactor” 

gene, we had to use a second approach, the Blast engine from ToxoDB. We blasted the 

aminoacid sequence of Human TBCB (HsTBCB) isoform 1 against the T. gondii genome. The 

results obtained were encouraging, since the predicted gene for the TgTBCB was identified in 

all T. gondii strains in the database with the same high Score and E-value. Moreover, the results 

were similar when we used the HsTBCB isoform 2 instead the isoform 1. In fact, the TgTBCB 

predicted protein share an identity of 38 % with the HsTBCB isoform 1 and encodes a protein 

sequence of 273 amino acids, with an expected molecular mass (MM) of approximately 30 kDa 

and a pI of 5.14. This protein is slightly bigger than the HsTBCB isoform 1, with 244 amino 

acids, and share the characteristic domains, cytoskeleton-associated protein glycin-rich (CAP-

Gly, at the C-terminal region) and ubiquitin-like domain (UbL, at the N-terminal region). The 

localization of these domains is conserved and was taken into consideration when planning the 

subsequent cloning strategies. We decided not to add any tag to C-terminal region of TgTBCB, 

to minimize possible interferences with the CAP-Gly domain which is known to be a MT 

association module (S. Li et al., 2002). In our cloning strategies all tags were added to the N-

terminal region of TgTBCB, near the UbL domain, expecting to preserve the functionality of 

its main domain and consequently the interaction with the MTs (S. Li et al., 2002). 

When we analysed the functional domains shared between the HsTBCB and TgTBCB, we 

found similarities and differences that contribute to explain some of our findings during the 

experimental work: 

a) TgTBCB CAP-Gly domain (amino acids 181 to 257 - 76 residues). CAP-Gly 

domains are small protein modules with approximately 80 residues, conserved in 

organisms from yeast to human (Weisbrich et al., 2007). They are known to have 

several glycine residues, which are responsible for the name, that are highly 

conserved and contribute to the fold of the domain (Fleming, Morgan, Fyfe, Kelly, 
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& Hunter, 2013). These domains harbor an GK(N/H)DG sequence (highly 

conserved) that specifically recognize EE[Y/F] sequence motifs which are found at 

the C-terminus of α-tubulin and several MT tip-binding proteins (Fleming et al., 

2013; S. Li et al., 2002; Weisbrich et al., 2007). The interaction between CAP-Gly 

and EE[Y/F] protein tails regulates a wide range of important MT-based processes 

in all eukaryotic organisms and thus is fundamental for controlling MT function 

(Weisbrich et al., 2007). In addition, CAP-Gly domains are also involved in 

coordinating complex cellular functions, such as distribution of membrane 

organelles and intracellular signaling (Steinmetz & Akhmanova, 2008). When we 

analyzed the report from the Protein Homology/analogY Recognition Engine 

(Annex I), it is clear that the TgTBCB predicted CAP-Gly domain has 76 amino 

acidic residues, is composed by six ß-sheets, one a-helix and has eight glycine 

residues. But the more interesting finding is the absence of the highly conserved 

GK(N/H)DG sequence. Instead, in T. gondii, we found the sequence GCTDG, 

preserving only the first G and the last DG amino acids. In fact, it is peculiar, since 

this sequence is highly conserved inside the phylum Apicomplexa. This sequence 

is immediately preceded by another highly conserved amino acid sequence in 

Apicomplexa, the GVALDEPL, which starts in the third ß-sheets of the CAP-Gly 

domain and ends immediately before the GCTDG sequence. There is one more 

conserved sequence among apicomplexan organisms, located in the last amino 

acids of the TBCB protein, the EVGDFPPIDP. This sequence starts in the last 

predicted ß-sheet of TBCB protein and ends immediately before the last disordered 

amino acid sequence of the TgTBCB protein which ends with the motif DEI/M, as 

occurs in TBCB from other species. Moreover, in the EVGDFPPIDP motif, the 

sequence DFPPIDP is recognized by the SH3 (Src Homology 3) domains, which 

are small protein modules of about 50-60 residues found in proteins involved in 

biological processes as diverse as signal transduction pathways, cytoskeleton 

organization, membrane traffic or organelle assembly (Dinkel et al., 2016), leaving 

open the question if they play any important role in Apicomplexa TBCBs. The last 

motif found in the TgTBCB is the DEI/M, is an extremely important motif (similar 

to the EE[Y/F] motif) required for the self-inhibition of the TBCB CAP-Gly 

domain and for the formation of the TBCE-TBCB heterodimer that promotes the 

dissociation of the tubulin dimer (Carranza et al., 2013). In fact, the importance of 

a preserved GKNDG motif for binding C-terminal EE[Y/F] protein tails is 

supported by the finding that the CAP350 CAP-Gly domain, in which the lysine 
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(K) and aspartate (D) residues are replaced by asparagines (N), does not interact 

with MTs (Weisbrich et al., 2007). However, the first CAP-Gly domain of the 

tumor suppressor for human familial cylindromatosis (CYLD) also contains 

substitutions in the GKNDG motif ((the lysine (K) and asparagine (N) residues are 

replaced by phenylalanine (F) and threonine (T), respectively)) even though it 

retains the capacity to interact with MTs. How this specific residue changes affect 

EE[Y/F] binding or whether this particular CAP-Gly domain interacts with MTs 

through another binding site remains untested (Steinmetz & Akhmanova, 2008).  

b) TgTBCB UbL domain (amino acids 25 to 107). This domain is known to contain 

seven lysine (K) residues that are targets for covalent modification and also may 

provide a mean whereby protein folding and the population of complex assemblies 

can be regulated by protein degradation or recycling (Fleming et al., 2013). It is 

known that the TBCB UbL domain is processed by the ubiquitin-proteasome 

pathway and regulates its degradation (W. Wang et al., 2005). It was also suggested 

that the UbL domains could mediate the interaction of TBCB and TBCE (Kortazar 

et al., 2007; Lytle et al., 2004), but this interaction is apparently mediated by both 

CAP-Gly domains (Serna et al., 2015). The TgTBCB protein has a predicted UbL 

domain with 82 amino acid residues and is composed by five stranded ß-sheet, a 

single major a-helix (between ß-sheet 2 and 3), and a short a-helix (between ß-

sheet 4 and 5), as can be seen in the report for the Protein Homology/analogY 

Recognition Engine (Annex I). The predicted domain in TgTBCB has several 

lysine (K) residues and is identical to the UbL domain described for the TBCB in 

C. elegans and for human TBCE (Lytle et al., 2004; Serna et al., 2015). When we 

analyzed the N-region of the TgTBCB where the UbL domain is located, it is 

evident that, contrary to what is observed for the CAP-Gly domain, there are not 

conserved sequence motifs among the Apicomplexa. In fact, in terms of amino acid 

sequence, the UbL domain is more variable among TBCBs (Fleming et al., 2013). 

c) Coiled-Coil domain. The algorithms used in our work did not predict any Coiled-

Coil domain for the TgTBCB. This coiled-coil structure is located in the center of 

TBCB proteins and is composed of a short helical domain (Grynberg et al., 2003). 

Still, if we look to the report of the Protein Homology/analogY Recognition Engine 

(Annex I) it is possible to identify a disordered region with two longer putative a-

helix, which can be a predicted coiled-coil domain. Moreover, coiled-coil domains 

are often found proximal to CAP-Gly domains (Lytle et al., 2004). In fact, it is also 

admitted for the TBCBs that the disordered residues may serve as a flexible linker 
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between the N-terminal UbL domain and the C-terminal CAP-Gly domain (Lytle 

et al., 2004).  

After the identification of TgTBCB gene at ToxoDB, we decided to study its expression 

profile during different phases of host cell invasion by real time PCR. We analysed the 

TgTBCB expression in freshly egressed parasites (control, 0 h) and in parasites within host 

cells after invasion (0.5 h, 1 h, 4 h and 8 h). Interestingly, in comparison with the control, the 

only significant difference observed is a decrease in TgTbcb RNA levels 4 h after the invasion 

(to ~ 42%). These data are consistent with the Transcriptomics data from ToxoDB where the 

tachyzoite transcriptome time series from ME49, VEG and GT1 T. gondii strains of Gregory, 

by RNAseq, shows exactly the same result, a decrease of TgTbcb RNA levels 4 h post-invasion. 

A tachyzoite transcriptome study during invasion (RH strain) from extracellular tachyzoites, 

intracellular tachyzoites (immediately after invasion) and intracellular tachyzoite 2 h post-

invasion, showed that genes with high mRNA levels in extracellular tachyzoites are mainly 

genes from cytoskeleton and trafficking/transport. After invasion, the high mRNA levels in 

intracellular tachyzoites are mainly from DNA replication and metabolic genes (Gaji, Behnke, 

Lehmann, White, & Carruthers, 2011). The observed decrease in TgTBCB mRNA levels may 

be related to this general regulation, but these variations occurred 2 h post-invasion and the 

decrease of TgTbcb RNA levels only occurs later (4 h) and at 8 h is already normalized. 

Interestingly, although not related to the parasite cytoskeleton, the accumulation of host MTs 

around the vacuole is time dependent and reaches its maximum 4 h after invasion (Walker et 

al., 2008).  

Upon confirmation that the TgTBCB gene was expressed, as there are no commercial 

specific antibodies against TgTBCB and the antibodies against human and mouse TBCB that 

we tested did not recognize the TgTBCB, we decided to produce a specific anti-TgTBCB 

serum; a key tool for our study. For this, we produced the recombinant TgTBCB in bacteria 

and immunized rabbits at Dr Zabala’s lab (Departamento de Biología Molecular, Facultad de 

Medicina, Universidad de Cantabria, Santander, Spain). In SDS-PAGE, the TgTBCB produced 

in bacteria had a MM of 37 kDa and consequently the produced antibody detected a soluble 

protein with the same MM in T. gondii protein extracts. This apparent discrepancy, between 

the molecular mass predicted theoretically (~30 kDa) and observed in SDS-PAGE (~37 kDa), 

was clarified by Tian et al. in 1997 (Tian et al., 1997). The mammalian TBCB eluted from gel 

filtration with an apparent mass of ~130 kDa corresponds to a single polypeptide of ~38 kDa 

upon analysis by SDS-PAGE and 27.561 kDa by mass spectrometry (Tian et al., 1997). Later, 

it was described that mammalian TBCB eluted in gel filtration with a MM 30–40% larger than 

deduced from its amino acid sequence, coinciding with the MM from its mobility in SDS–
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PAGE, ~38 kDa. TBCB presents an apparent MM variability when analyzed by gel filtration, 

SDS-PAGE and also by dynamic light scattering (DLS, ~69 kDa), but after glutaraldehyde 

(protein crosslinker) treatment it changes to the amino acid sequence expected mobility in SDS-

PAGE (~27 kDa) suggesting a stabilization by intramolecular crosslinking (Carranza et al., 

2013). 

Taking advantage of our specific antibody we proceed to the subcellular characterization 

of TgTBCB. Surprisingly, both in intracellular and extracellular tachyzoites, TgTBCB presents 

a polarized distribution being located mainly at the anterior region of the parasite, close to the 

apical complex. Until now, the only relationship between TBCB and polarity comes from 

studies in drosophila where dTBCB is required for the polarized localization of the axis-

determining mRNAs within the oocyte and for the apico-basal polarity of the surrounding 

follicle cells (Baffet et al., 2012). 

Performing super resolution microscopy, we confirmed the apical staining, but we also 

detected some stain dots just below the apical region and at the posterior pole. Co-localization 

assays with ISP1, known as an apical cap marker (apical region that is delimited by TgCentrin2 

peripheral annuli, ~1.5 µm from apical end) (Beck et al., 2010) showed that TgTBCB is at 

apical cap and progressively decreases towards the distal end. Under super resolution 

microscopy, we observed that at the apical end the TgTBCB staining is in a ring-like shape and, 

below that, the staining resembles the beginning of the subpellicular MTs that are attached to 

the apical polar ring. Assays between TgTBCB and glutamylated tubulin, which stain 

progressively decreases in subpellicular MTs from the conoid towards the distal end 

(Plessmann et al., 2004), show a partial co-localization suggesting that TgTBCB can be 

coaligned with MTs and, since MTs are attached to the apical polar ring, it is also possible to 

observe a ring-like shape staining (see figure 89). Note that in T. gondii, the highly conserved 

GK(N/H)DG sequence of the CAP-Gly domain (Fleming et al., 2013; S. Li et al., 2002; 

Weisbrich et al., 2007) is dramatically different from the TBCB proteins in mammals and yeast, 

raising the question of whether it can still interact with tubulin and MTs. In the future, to clarify 

its precise localization, we will perform TgTBCB staining in comparison with the apical polar 

ring staining. Since to date only four proteins have been identified as part of the apical polar 

ring structure (RNG1, RNG2 (Katris et al., 2014; Tran et al., 2010), kinesinA and APR1 (Leung 

et al., 2017)) and no antibodies were produced for these proteins, this study will be done using 

transgenic strains with these proteins endogenously tagged. 
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Figure 89. Schematic representation for the TBCB subcellular localization in T. gondii. TBCB - red dots. Subpellicular 

MTs - green. Basal complex - grey. Peripheral Annuli (Tg Centrin2) - dark blue. ISP 1 - light blue.  

 

The staining of TgTBCB in replicating parasites, showed that TgTBCB seems to not be 

present at mitotic spindle and sometimes it is detected in the forming daughter cells, but not too 

early. Curiously, secretory organelles (micronemes and rhoptries), that share the same TgTBCB 

localization, are formed late in the parasite cell cycle and are ready for use in G1 phase parasites, 

the phase with the highest efficiency in egress and invasion (Nishi et al., 2008). 

In human cells, TBCB is observed throughout the cell cytoplasm, at the centrosome and at 

the basal body of the primary cilium (Carranza et al., 2013; Kortazar et al., 2007). During 

mitosis, TBCB is found in the centrosomes and is located in the MTs of the spindle (near the 

centrosomes). At the end of mitosis, TBCB becomes more visible in the thin filaments bridging 

the midzone, disappearing progressively from the centrosome and concentrate in the MTs of 

midbody. As mitosis progresses, TBCB staining gradually increases in the MTs of the spindle 

midzone where MT polymerization is active (Carranza et al., 2013).  

We had an anti-centrin antibody that works in T. gondii (kind gift from Ian Cheeseman, 

Whitehead Institute for Biomedical Research, MIT, US), but we could not use it for co-

localization assays because it was also produced in rabbits as our antibody anti-TgTBCB. 

Although our TgTBCB labeling never marked any structure that resembled the centrosome, we 
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cannot exclude the possibility of being localized at the apical polar ring, which in T. gondii 

serves as one of the two MTOC (Morrissette & Sibley, 2002a).  

The hypothesis that the polar ring is a MTOC, serving as a template for the biogenesis of 

the cortical MTs, comes from the 22 cortical MTs, regularly spaced, anchored to this structure 

(Nichols & Chiappino, 1987; Russell & Burns, 1984). However, the nucleation of cortical MTs 

is unknown, γ-tubulin (MT nucleator) is only detected at centrosome and not at the apical polar 

ring (Suvorova, Francia, Striepen, & White, 2015). The destabilization of the apical polar ring 

leads to problems of parasite motility and invasion, with retardation of the lytic cycle, but the 

parasites are still able to produce the subpellicular MTs (Leung et al., 2017). 

As already mentioned, the secretory organelles are also concentrated at the apical end of the 

parasite (Nichols, CHIAPPINO, ultrastructure, 1983, 1983) and the discharge of these 

organelles is important for parasite motility and invasion. At ToxoDB, it is mentioned that 

TgTBCB was detected in a tachyzoite secretome (X. W. Zhou et al., 2005). In this context, we 

performed secreting assays where TgTBCB appears to be secreted but at a low level. We also 

performed co-localisation assays of TgTBCB with the secretory proteins, particularly rhoptry 

proteins 2 - 4 and microneme proteins 2 and 3. No co-localization was found with the rhoptry 

proteins 2 - 4 but for the microneme proteins 2 and 3, we observed some dots of co-localization, 

predominantly in intracellular tachyzoites. In Plasmodium falciparum there is evidence for 

micronemal trafficking along subpellicular MTs, suggesting that micronemes reach their final 

apical destination by propulsion along microtubular tracks (Schrevel et al., 2008). Curiously, 

not so clear as observed in our assays, MIC2-containing vesicles appear to co-align into tracks 

with cortical MTs at the parasite apical half (Leung et al., 2017). Defects in the apical polar 

ring alters the MTs organization, affecting the micronemes distribution, and leading to a 

reduction in MIC2 secretion (Leung et al., 2017). Being so, cortical MTs can be used to 

transport the microneme vesicles and the MTs disorganization could affect the transport 

efficiency in T. gondii. Considering this, TgTBCB could play a role in microneme trafficking 

along subpellicular MTs and its low secretion level can be explained by a contamination of the 

secreted fraction due its close interaction with micronemes. Our results concerning the invasion 

assay in the presence of TgTBCB-specific polyclonal serum, where no significant differences 

were observed in the invasion rate, support the idea that secreted TgTBCB has no role in the 

invasion process. 

The first step to characterize the TBCB functions in T. gondii was the protein 

overexpression and subsequent study of its effect on the parasite. Taking in account the 

localization of the CAP-Gly domain in the protein amino acid sequence, all tags were cloned at 

the N-terminal region, near the UbL domain, to minimise possible interactions with the main 
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functional domain. To over-express the TgTBCB, we cloned it in three different overexpression 

constructs:  

1) The c-myc tag is a small tag with 1.5 kDa, that was chosen to minimize the possible 

alterations in the TgTBCB protein function; 

2) The eGFP tag (~30 kDa) is much bigger than the c-myc tag, but it is a fluorescent 

tag; 

3) The ddFKBP, in the case of toxicity, allows us to modulate the overexpression 

levels in a Shield-1 dependent manner.  

Subsequently, the stable transgenic parasite lines obtained for each construction were 

analysed by WB and by IF, in order to confirm the correct expression of the respective TgTBCB 

fusion protein. Using specific antibodies against the tag proteins or, alternatively, against the 

TgTBCB we were able to confirm by WB the expression of each recombinant protein and its 

expected MM. It was also possible to see that the endogenous TgTBCB is recognized with the 

anti-TgTBCB specific polyclonal serum in the clones with the eGFP and the ddFKBP domain 

and that some constructs presented truncated versions of the fusion proteins (DD-Myc-eGFP – 

46.36 kDa and Myc-eGFP – 34.31 kDa) detected by the anti-Myc and anti-GFP antibodies.  

The IF results support the WB outcomes, demonstrating that the three strains were 

overexpressing the recombinant proteins according to what was expected. The fusion proteins 

were localized throughout the cytoplasm of the parasite, but more concentrated at the apical 

end. Additionally, by IF we were able to demonstrate the responsiveness of the clonal line with 

the ddFKBP domain to the Shield-1 concentration.  

The TgTBCB overexpression parasites showed a defect in the plating efficiency and we 

proceeded to the characterization of the lytic cycle steps. We observed a reduction in the 

invasion rate and no differences were found in the replication and egress assays, this is curious 

since invasion and egress have several mechanisms in common (Blader et al., 2015). 

TBCB overexpression on mammalian cells leads to MT depolymerization, although less 

efficiently than the TBCD or TBCE overexpression. However, TBCB forms a binary complex 

with TBCE that greatly enhances the efficiency of this cofactor to dissociate tubulin in vivo and 

in vitro (Carranza et al., 2013). In drosophila cells and in fission yeast, TBCB overexpression 

also led to MT depolymerization (Baffet et al., 2012; Radcliffe et al., 1999). Mutants of human 

TBCB lacking the last three amino acids of the protein are derepressed and induce massive MTs 

depolymerization by sequestering the EB1 (MT plus-end binding protein) from MTs tips 

(Carranza et al., 2013). In T. gondii the TBCE protein is not characterized but, by sequence 

analysis, like we did for TgTBCB, we found the putative gene at ToxoDB (TgME49_285220). 

According to the available data at ToxoDB, this gene is expressed and it is included in 
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proteomic data from a “tachyzoite phosphoproteome from purified parasite or infected host cell 

(RH)”. In this way, everything indicates that TgTBCE, the TgTBCB main partner, exists in T. 

gondii. In addition, TgEB1 has been expressed and characterized. In T. gondii this protein 

presents a nearly exclusive association with the MTs from mitotic spindle, being present at 

subpellicular MTs only at the growing end of daughter buds (C.-T. Chen et al., 2015b). 

Surprisingly, this location is not at all compatible with the location of TgTBCB suggesting that 

they may not be partners in T. gondii. 

Unlike the dynamic MT cytoskeleton in mammalian cells, T. gondii cortical MTs are 

exceptionally stable. They do not display dynamic instability and are not depolymerized when 

the free tubulin concentration is drastically reduced by detergent extraction (Morrissette et al., 

1997; Nichols & Chiappino, 1987), which leads to rapid disassembly of vertebrate MTs. The 

tubulin C-terminal ends, the most divergent amino acid region among tubulins, are exposed to 

the outer surface of the MTs (Nogales, Wolf, & Downing, 1998b), providing binding sites for 

several MAPs and molecular motors (Lakämper & Meyhöfer, 2005; Z. Wang & Sheetz, 2000). 

Also, tubulin C-terminal ends are subjected to various PTMs, most of them occurring on tubulin 

subunits after their polymerization into MTs: a-tubulin acetylation, detyrosinated a-tubulin, 

Δ5a-tubulin, Δ2a-tubulin, α- and β-tubulin polyglutamylation and a- and b-tubulin 

methylation (Plessmann et al., 2004; Xiao et al., 2010). These tubulin modifications alter MTs 

stability/dynamics by conferring them different biochemical/biophysical proprieties according 

to spatial and temporal cell requirements. Being so, tubulin PTMs are a powerful mechanism 

to generate functional tubulin diversity, forming a biochemical ‘tubulin code’ that can be ‘read’ 

by MTs interacting factors (Verhey & Gaertig, 2007). Cortical MTs are predominantly 

composed of α1- and β1-tubulin subunits, largely conserved relative to human tubulin 

homologues (>85 % identity and 90 % similarity), which can be modulated by PTM and 

consequently by parasite-specific MT-binding or -modifying proteins. Despite the fact that no 

relationship has yet been established with tubulin PTM, studies revealed that cortical MTs are 

differentially decorated with proteins along their length in a complex but defined pattern (Hu, 

Roos, & Murray, 2002b; Jun Liu et al., 2016; Morrissette et al., 1997), the coating proteins. 

TgTBCB can be partner of these MT interacting proteins and its overexpression may cause an 

imbalance in these interactions affecting the MT organization and consequently the host cell 

invasion. As we already mentioned, MT disorganization affects MIC2 vesicles distribution (the 

vesicles are spread throughout the cell instead of being concentrated at the apical region) 

compromising motility and invasion (Leung et al., 2017).  

 



 

Chapter IV: Discussion 156 

Our first approach to stablish a conditional KO of the TgTBCB was done with the DiCre 

system (Andenmatten et al., 2012). The main advantage of this system is the possibility to 

induce the KO in a specific time set, which can be very useful in case of the gene of interest 

(GOI) is essential for the parasite. The disadvantage of this system is the cloning process, it is 

often not easy to amplify the big homology arms and the cloning strategy is complex. In 

addition, the homologous recombination itself is not easy to achieve in T. gondii. For this 

reason, we used the ∆Ku80 ∆HXGPRT strain expressing the DiCre to increase the hypothesis 

of a successful homologous recombination (Andenmatten et al., 2012). Such as many 

eukaryotes, T. gondii preferentially uses the nonhomologous-end-joining (NHEJ) pathway to 

repair a double-strand break (DSB) in DNA, the exogenous targeting DNA can be integrated 

anywhere into the genome independent of DNA sequence homology. The KU80 is found to be 

an essential component of a functional NHEJ pathway, which does not rely on DNA sequence 

homology, instead, NHEJ involves direct ligation of the broken DNA ends. Being so, the 

∆Ku80 strain exhibit a markedly higher gene replacement efficiency compared to wild-type 

strains, allowing the efficient targeting of gene replacements, gene KO and gene “knock-ins” 

in T. gondii (Fox, Ristuccia, Gigley, & Bzik, 2009). In our case, even using this strain, the gene 

replacement efficiency was very low. Only one clone from more than one hundred isolated 

were in fact positive for homologous recombination. In the beginning, we thought it was due 

to the transfection conditions but, after several adjustment and variations in the transfection 

settings, the replacement efficiency was still null. Another critical factor that could influence 

this problem is the length of the genomic targeting flanks, that should be at least 620 bp and is 

also important that genomic targeting flanks are generated from the same strain of T. gondii 

(Rommereim et al., 2013). In our particular case, our genomic targeting flanks were designed 

with 2000 bp each, but they were not generated from the same strain used for the transfection. 

This could explain the low success rate observed. In fact, we used as template the RHDHX 

strain and not the RH:SlipCas9Dku80 and this could explain the problem. Additionally, we also 

admit that TgTBCB has an extremely low gene targeting frequency at the locus (Rommereim 

et al., 2013), which could turn difficult the homologous recombination events and consequently 

our gene replacement efficiency was very low. Another possible explanation is related with the 

Restriction Enzyme Mediated Insertion (REMI) which increases the insertion of DNA in T. 

gondii genome (Black et al., 1995). In almost all our transfection attempts, we handed the single 

cutting restriction enzyme used to linearizing the Plasmid DNA to the transfection mix and this 

could have enhanced the random integration instead of the homologous recombination. By 

doing this the genomic DNA is cut undirected and the DNA repair mechanisms are activated 

(Black & Boothroyd, 2000). 
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Finally, when we isolated clonal lines positive for homologous recombination by PCR test, 

only one of them was in fact phenotypically positive, but inopportunely that clone was not 

responding to KO induction. Intriguingly, we found that the strain had lost one of two inactive 

Cre fragments, which is difficult to explain. We tested our first RH::DiCreDku80DHX strain 

and it was expressing correctly both inactive Cre fragments. To overcome this problem, the 

inactive Cre fragment that was lost was cloned in an overexpression vector and transiently 

transfected in our homologous recombination positive clone. Although we were able to induce 

the KO and confirm it by immunofluorescence, it was not possible to isolate one KO clone by 

limiting dilutions. In fact, our induced KO parasites were lost in one week giving us the 

preliminary indication that TgTBCB is an essential gene for this parasite. It was also impossible 

to transfect the lost inactive Cre fragment in a stable way in our clone, since the HXGPRT 

selection was already used and we did not have any plasmid with a different selection marker. 

Under these circumstances, in order to obtain the TgTBCB KO, we decided to explore a new 

methodology.   

Finally, a possible justification for the loss of the inactive Cre fragment is related to the 

strain itself, as it is deleted for the KU80 gene, an essential protein that tightly binds the DNA 

ends at the DSB, an early and essential step of NHEJ. Since T. gondii preferentially uses the 

NHEJ pathway to repair a DSB, this strain has the predisposition to accumulate mutations in 

its genome. Without its main mechanism to repair the DSB, DNA lesions may lead to the loss 

of chromosome segments, threatening cell survival (Fox et al., 2009; Smolarz, Wilczyński, & 

Nowakowska, 2014). The loss of these segments could have explained the loss of the inactive 

Cre fragment in our strain.  

Concerning our background problems with the Di Cre system, the CRISPR/Cas9 worked 

as our backup option to accomplish the TBCB KO. At that time, there was only one paper about 

the CRISPR/Cas9 in T. gondii, using the standard Cas9 enzyme. The system under development 

in Meissner’s lab, like the DiCre, uses a SplitCas9 enzyme that is expressed in two inactive 

fragments, each of them fused to one of the rapamycin-binding proteins FRB and FKBP. The 

addition of rapamycin brings FRB and FKBP together, reconstituting the functional enzyme. 

Using this mechanism, we have the ability to control the exact moment when the system is 

triggered, which in our case was a priority, since we suspected that TgTBCB KO was lethal to 

the parasite.  

From the six conditions and the several clonal lines obtained, only one was in fact positive, 

so our studies were conducted with this positive clone. Once the gRNAs targeted the first exon, 

after induction, a protein could still be produced but with a different amino acid sequence and/or 

a premature stop codon.  



 

Chapter IV: Discussion 158 

After Cas9 disrupts the target gene, the protein concentration starts to decrease, in a period 

of time that depends on the stability of both mRNA and protein. Therefore, before the KO 

characterization, it was crucial to know when the concentration of endogenous TBCB is 

decreased. As soon as the induction tests started, the TBCB KO in T. gondii proved to be lethal 

to the parasite, confirming our previous hypothesis and explaining, at least in part, our 

unsuccessfulness with the DiCre system. In fact, after the KO induction the parasites survived 

for about one week in culture, so it was almost impossible to isolate one KO clone with the 

DiCre system. This result is in agreement with the ToxoDB data from “Genome-wide loss of 

function screen (CRISPR) that measures each gene's contribution to T. gondii fitness during 

infection of human fibroblasts” (Gajria et al., 2008).  

The clonal line was induced with rapamycin for 72 h and analysed by WB, with antibodies 

against the acetylated tubulin, glutamylated tubulin, α-tubulin and the specific polyclonal serum 

against TgTBCB. An anti-actin antibody was used in these studies as a control.  

At 72 h after induction, there was no detectable TBCB protein by WB. Therefore, the 

complete depletion of the TgTBCB protein occurs between 48 (data not shown) to 72 h. It is 

also important to say that the TgTBCB was never found in insoluble protein extracts, 

confirming its cytoplasmic localization, and that there was no alteration in the levels of 

acetylated-tubulin and α-tubulin in the soluble protein extracts. On the other hand, in the 

insoluble extracts an interesting reduction in the acetylated, glutamylated and α-tubulin protein 

levels was detected. In fact, we were not able to detect the α-tubulin.  

Comparing our results with others, we note that in Schizosaccharomyces pombe, the 

Alp11B (TBCB homologue) is essential for cell viability, and its KO results in a specific 

decrease of α-tubulin levels in whole cell extracts, that correlates with an affected MT network 

and defects in cell division (Radcliffe et al., 1999; Radcliffe & Toda, 2000). In Drosophila, 

dTBCB proved to be essential for MT network integrity and for the maintenance of tubulin 

levels (α-and β-tubulin) in various cell types and at various stages of development. These results 

could be explained by a reduced tubulin dimerization in dTBCB mutant cells (Baffet et al., 

2012). However, in several mammalian cell types, the TBCB knockdown did not affect the cell 

viability and the tubulin levels nor does it destabilize the MT network (Lopez-Fanarraga et al., 

2007; Vadlamudi et al., 2005). Nevertheless, it severely reduces the formation of new MTs 

(Vadlamudi et al., 2005) and results in longer axons and abnormal growth cones, suggesting 

that this cofactor is involved in the regulation of MT dynamics in these structures (Lopez-

Fanarraga et al., 2007). The different phenotypes mentioned may be due to species specificities 

or to the efficiency of the technical approaches, with the mutational approach (KO) probably 

being more efficient than siRNA (knockdown). In the latter method the amount of the protein 
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is decreased and if the TBCB protein is as stable as in toxoplasma, the transient knockdown 

will only decrease, and not abolish, its level. Another interesting fact was the reduction in the 

amount of the a-tubulin, acetylated tubulin and glutamylated tubulin in the insoluble fractions.  

Since the acetylated tubulin is a marker of stable MTs (L. Li & Yang, 2015), the reduction 

of its levels can be associated with the MT depolymerization. However, MT depolymerization 

should increase the pool of the soluble tubulin. The non-increase of the soluble tubulin levels 

may be due to the degradation / non-recycling of the tubulin heterodimer. Although we could 

not rule out a technical problem where there was depolymerization of all MTs (including from 

controls) and it was not possible to detect the variation of soluble tubulin, this hypothesis does 

not seem valid given the super stable nature of these MTs. The absence of TBCB may be 

affecting the recycling of the tubulin heterodimer; strengthening the hypothesis of tubulin 

degradation. 

Since α-tubulin monomers could be unstable in the absence of TBCB, these results suggest 

a role for TgTBCB not only in the new α/β-tubulin heterodimer formation (by tubulin folding 

pathway) but mainly in the control of α/β-tubulin heterodimer pool through the recycling of 

native tubulin heterodimers. This may contribute to explain why this protein is essential to the 

parasite viability.  

Taking into consideration the previous results, it was essential to understand the phenotype 

for the TBCB KO in toxoplasma, particularly the effects during the lytic cycle of the parasite, 

since previously we saw an invasion inhibition as consequence of TBCB overexpression. 

Concerning the time of the TBCB protein turnover and the viability of the KO clonal lines after 

induction, we decided to perform all the following assays with egressed tachyzoites 48 h after 

rapamycin induction. This induction ensures that all parasites used in these assays had very low 

levels of TBCB, or did not have it at all, and eliminates parasites that have suffered from the 

toxic effect of Cas9. The complete analysis of the different steps of the lytic cycle was not 

possible due the limitation of the TgTBCB KO life time. So, we only performed invasion and 

replication assays. 

The invasion assays showed a remarkable reduction of the clonal line ability to invade the 

host cells in the absence of TgTBCB. This reduction was around 61 %, when compared to the 

control, and corroborates the overexpression findings. Therefore, we can say that the drastic 

variations in the levels of TgTBCB affects the parasite invasion rate. Taking into consideration 

this expressive reduction in the invasion rate, the decreased of α-tubulin, glutamylated tubulin 

and acetylated tubulin levels in the KO clonal line, which is probably correlated with an affected 

MT network and the absence of viability in the TgTBCB KO parasites, the MT cytoskeleton 

appears to play a very important role during the parasite invasion. So, if the parasite MT 
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cytoskeleton integrity is compromised, as it seems to be in the TgTBCB KO, the invasion 

process is drastically compromised.  

Concerning the replication assay, we also found a massive decrease in the replication 

capability in the absence of TgTBCB. The parasites showed an enormous increase in the 

number of vacuoles with two parasites and a decrease in the number of vacuoles with eight or 

more than eight parasites, in comparison to the control. These results clearly show a problem 

during the parasite replication, as a consequence of the TgTBCB absence, attesting the 

importance of the TgTBCB for the parasite replication and suggesting a relationship with the 

MT cytoskeleton integrity.  

The above findings gave us an overview of the TgTBCB role in the parasite, and why it is 

fundamental for its viability. However, further analyses were necessary to understand better 

what was happening in the parasite lytic cycle.  

In agreement with the WB analysis, we observed by IF a decrease in the labeling of 

TgTBCB, glutamylated tubulin and acetylated tubulin throughout the KO induction time. The 

staining of glutamylated and acetylated tubulin showed that subpellicular MTs are greatly 

shortened, absent or disorganised. Although at 24 h of induction the decrease in protein levels 

is not obvious, it is already possible to observe cells that appear to have lost polarity and that, 

instead of having two, have four daughter cells. These cells also present four centrosomes 

instead of two. Over time, the parasites are unable to complete the endodyogeny, having 

multiple daughters, huge nucleus and several centrosomes per cell, indicating some problem in 

the replication and nuclear segregation. In fact, the parasitophorous vacuoles lose their entire 

organization.  

The EM was used to further understand and explore the IFs findings in the parasite 

replication. In this specific assay, Cas9 was induced for 48 h and then the parasites were 

processed for EM. Interestingly, as we already saw in the IF assays, the KO parasites were able 

to replicate the DNA but in some cases, they were unable to divide the nucleus, showing a huge 

nucleus inside the parasite. In other cases they were able to divide the nucleus but seem unable 

to finish replication, since several parasites with apparently two nuclei were found. We also 

observed the total disorganization of the parasitophorous vacuoles, containing abnormal 

parasite masses that lost the polarity and the normal shape of the parasite, presenting a spherical 

shape, as reported in longer treatment with oryzalin (Striepen et al., 2000), a phenotype directly 

related with the loss of subpellicular MTs (Morrissette & Roos, 1998; Stokkermans et al., 

1996). 
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The observations in the IF and EM assays show a clear effect of the TgTBCB KO in the 

MT network. The reduction in the polyglutamylated and acetylated tubulin levels observed in 

the IFs are in agreement with the decrease levels observed in the WB, and clearly corroborate 

that the integrity of the parasite MT cytoskeleton is affected in the TgTBCB KO. Moreover, 

the reduction of the polyglutamylated tubulin, which is specific of the subpellicular MTs, points 

to a mal function of the MT cytoskeleton of the parasite and may contribute to explain the 

phenotypical analysis, since the parasites lacking intact subpellicular MTs are incapable of 

invading host cells and parasites without spindle MTs are unable to complete the endodyogeny 

(Morrissette & Sibley, 2002b).  

The specific problems found during the replication of the parasite, namely multiple 

centrosomes per cell, enlarged nucleus, loss of cell polarity and replication control, culminating 

in the entire disorganization of the parasitophorous vacuoles, are related with the loss of the 

MT cytoskeleton integrity. In fact, the disruption of the spindle and subpellicular MTs during 

the parasite division allow the parasites to grow in size and replicate their genome but arrests 

the nuclear division (Shaw et al., 2000; Morrissette & Sibley, 2002; Striepen et al., 2000). 

Additionally, parasites treated with oryzalin, dinitroanilines (MT depolymerizing drugs) and 

taxol (MT stabilization drugs) resulted in the development of large abnormal parasite masses 

that contained multiple centrin labelled structures, indicating that centrosome replication 

proceeded despite the failure of the parasite to successfully complete cell division (Shaw et al., 

2000; Striepen et al., 2000). Nevertheless, some parasites are still able to divide successfully 

over the initial 24 h of that treatment but in the great majority the daughter cell budding was 

markedly reduced, the parasite nucleus increased substantially in size and became highly lobed 

(Shaw et al., 2000). That description substantiates our findings in IF and EM, as we saw exactly 

the same phenotypical problems in the KO parasites.  

Furthermore, the loss of polarity in a TBCB KO background also occurs in T. gondii, as 

previously reported in Drosophila, a multicellular organism (Baffet et al., 2012). Since in T. 

gondii the cell polarity and the shape are controlled by the subpellicular MTs (Morrissette & 

Roos, 1998; Stokkermans et al., 1996), which in TgTBCB KO parasites are obviously 

compromised, the problems observed in the cell polarity and shape are most probably related 

with the KO.  

Consequently, as in Drosophila (Baffet et al., 2012), our hypothesis is that the TgTBCB is 

essential to maintain a functional MT network that can sustain the invasion, replication and cell 

polarity. 
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In summary, since the loss of TgTBCB after the KO induction is gradual, the parasite MT 

cytoskeleton network is gradually affected, presumably due to the impossibility to form and 

mainly to recycle the α/β-tubulin heterodimer. Consequently, and since the intracellular 

parasites committed to division approximately 6-8 h post-invasion (Shaw et al., 2000), some 

parasites were still able to initiate daughter cell budding, in particular, parasites that still could 

form intranuclear MT spindles and were able to manufacture and assemble, with varying 

degrees of success, new daughter conoids with the accompanying IMC and associated MTs. In 

some cases, there were still able to undergo the correct nuclear division and fission. However, 

that parasite nucleus never became anchored into the developing daughters, resulting in 

parasites that cannot finish the daughter cell budding, as daughter cell budding requires and is 

driven by MT polymerization (Shaw et al., 2000). In the most severely affected parasites, the 

subpellicular and presumptively the spindle MTs are completely and irreversibly disturbed, 

resulting in the loss of cell polarity and the shape, forming enormous intracellular inclusions, 

that are incapable of cell division, as the nuclear division and budding ceased, but have a 

nucleus dramatically increased in size. The conjugation of all these effects leads to parasite 

death in approximately one week after TgTBCB KO induction. 
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Chapter V: Concluding Remarks 

 

Toxoplasma gondii is one of the world's most prevalent and successful parasites. Its 

invasion process is a key step for the parasite success, otherwise the parasite would not be able 

to infect such a wide range of hosts. Being so, the accurate undertaking of the mechanisms and 

proteins involved in parasite invasion is crucial in order to develop new effective vaccination 

strategies and new therapeutics towards the T. gondii and the Apicomplexa parasites. 

We started by searching, studying and comparing the TBCB protein sequence in 

toxoplasma and in other Apicomplexa parasites. Doing that we were able to conclude that the 

toxoplasma TBCB protein has a low identity with TBCB Human isoform 1 and is slightly 

bigger. Nevertheless, both proteins conserve the main functional domains, namely the CAP-

Gly (C-terminal region) and the UbL domain (N-terminal region), in identical positions. 

However, we were unable to identify the coil-coil domain in the parasite protein.  

The TgTBCB CAP-Gly domain does not harbor the conserved GK(N/H)DG sequence that 

specifically recognize the EE[Y/F] motifs, founded at the C-terminus of α-tubulin and several 

MTs tip-binding proteins. Instead, in T. gondii we identified the sequence GCTDG, which only 

preserved the first G and the last DG amino acids from that conserved sequence. On the other 

hand, we recognized the DEI/M motif, which is extremely important for the TBCBs since it is 

required for TBCE–TBCB heterodimer formation and it also auto inhibits its own CAP-Gly 

domain, apparently controlling the mechanism of MT depolymerization. Interestingly, we also 

found two highly conserved sequences in Apicomplexa CAP-Gly domains, the GVALDEPL 

and the EVGDFPPIDP, leaving open the question if they play any important role in 

Apicomplexa TBCBs.  

Concerning the protein sub-cellular localization in the parasite, we concluded that 

TgTBCB localizes at the anterior region of the parasite, close to the apical complex and 

immediately below the conoid. However, we did not find any evidence of a possible localization 

at the centrosome or in the mitotic spindle MTs as it was described in mammalian cells. Using 

the super resolution microscopy, we could confirm the cytoplasmic localization of the protein 

and possible interaction with the glutamylated-tubulin, demonstrating that the TBCB in T. gondii 

is a soluble cytoplasmic protein that it may interact with the subpellicular MTs, mainly at the 

the apical cap, and conserves the same localization in extracellular and in intracellular 

tachyzoites. Additionally, we admit that TgTBCB could be in close association with the 

subpellicular MTs and once they taper to be attached to the apical polar ring we observed a 

TgTBCB ring-like shape staining in this region. Nevertheless, as the apical polar ring is one 

MTOC of the parasite (Morrissette & Sibley, 2002a), and in human cells the TBCB is present 
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in the MTOC (Kortazar et al., 2007), we cannot exclude the hypothesis that TgTBCB could be 

associated to the apical polar ring. 

Considering the TgTBCB localization in the apical region of the parasite and the evidences 

of its presence in the tachyzoite secretome (X. W. Zhou et al., 2005), we postulated that it could 

be present in the secretory organelles of the parasite. In fact, the super resolution microscopy 

confirmed some dots of co-localization with some microneme proteins, what could indicate a 

possible presence in that secretory vesicle or a possible interaction with microneme. To address 

this hypothesis, we have done a secretion analysis and an invasion assay in the presence of an 

anti-TgTBCB specific polyclonal serum. The interpretation of both results led us to admit that 

the TgTBCB could be involved in some kind of micronemal trafficking by propulsion along 

subpellicular MTs tracks, as it has been suggested in the Plasmodium (Schrevel et al., 2008) 

and since in T. gondii defects in the apical polar ring alters the MTs organization, affecting the 

micronemes distribution, and leading to a reduction in MIC2 secretion (Leung et al., 2017). 

However, further studies are needed to confirm this hypothesis. 

Regarding the over-expressing results, we can conclude that the TBCB overexpression in 

T. gondii leads to a pronounced decrease in the parasite invasion rate, but no differences were 

found in the replication and egress rates. No further assays were performed to prove the MT 

network destabilization upon TBCB overexpression in the parasite. However, we observed by 

IF an interaction of the TgTBCB with the subpellicular MTs, an essential structure for the host 

cells invasion (Morrissette & Sibley, 2002b). In addition, TBCB overexpression in drosophila, 

yeast and mammals has been shown to trigger MT network destabilization, yet with some 

differences (Baffet et al., 2012; Fanarraga, Villegas, Carranza, Castaño, & Zabala, 2009; 

Kortazar et al., 2007; Lopez-Fanarraga et al., 2007; Radcliffe et al., 1999; W. Wang et al., 

2005). Putting these evidences together, we hypothesise that the reduction in the T. gondii 

invasion rate, observed in the TBCB overexpression backgrounds, can be explained by a 

depolymerizing event of the subpellicular MT cytoskeleton of the parasite, even if these MTs 

are relatively stable and highly resistant to depolymerizing conditions (Morrissette & Sibley, 

2002a).   

Characterizing the TgTBCB KO, we observed that the depletion of the TgTBCB protein is 

followed by the decrease of α-tubulin, acetylated and glutamylated tubulin levels. By IF was 

possible to show the decrease of the acetylated and polyglutamylated tubulin, which, in 

conjugation with the above observation, reveals an extremely affected MT network in the 

parasite. As a consequence, the KO parasites were less efficient at invading the host cell 

(reduction of approximately 61%) and had serious problems in the replication (approximately 

50% less efficient to replicate), being unable to survive in culture for more than one week. As 
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observed by IFs and Electron microscopy, the parasites that were able to invade the host cell 

showed problems in the replication, such as cells with multiple centrosomes, huge or multiple 

nucleus per cell, loss of cell polarity, loss of cell shape and replication control, culminating in 

the entire disorganization of the parasitophorous vacuoles. Putting together all these evidences, 

we concluded that since the TgTBCB is gradually lost after the KO induction, it is clear that 

the parasite MTs cytoskeleton network also follows this trend, being gradually affected and 

degraded. This happens due to the impossibility to form new and/or to recycle the α/β-tubulin 

heterodimer, and as a directed consequence of that, the parasite cannot add new heterodimer on 

its MT cytoskeleton or polymerize new MTs. Moreover, the specific decrease in α-tubulin 

levels is directly related with the instability of those unfolded monomers in the absence of 

TBCB. Consequently, since the α-tubulin monomers could not be chaperoned by the TgTBCB, 

they were immediately degraded by the parasite. 

Therefore, the TgTBCB KO compromises irreversibly the parasite tubulin folding 

pathway, the tubulin recycling and subsequently the MT cytoskeleton network, causing the total 

and irreversible loss of the MT cytoskeleton in the parasite. Furthermore, the TgTBCB proves 

to be an essential protein to the parasite, being required to generate a functional MT network, 

which is indispensable to sustain the invasion, replication and cell polarity of the parasite. Being 

so, the TgTBCB can be a new target for therapeutic approaches to control T. gondii replication.  
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Chapter VI: Future perspectives 

 

To study the role of a protein in a cell, we need to study its sub-cellular localization, the 

abundance and turnover, the post-translational modifications of the protein, its activity and 

interaction with other cell components, etc., being aware that these aspects are intrinsically 

linked and that to properly understand one of them we need to know the others. In the specific 

case of our work, we only covered some of those aspects and much more can and should be 

done. 

One field that we started to explore but, unfortunately, we could not finish, was the 

identification of the proteins that interact with TgTBCB in vivo. One of our main future 

perspectives is to complete this part of our work using the BioID system (proximity- dependent 

biotin identification system); a genetic tool to detect TBCB proximal and interacting proteins 

in Toxoplasma gondii. BioID is a protein interaction detection method that requires tagging a 

protein of interest with a modified form of a bacterial biotin ligase, the BirA (Roux, Kim, Raida, 

& Burke, 2012). BirA biotinilates the binding partners and near neighbors of the fused protein 

in native cellular conditions. After the biotin tagging, cells can be lysed in as stringent 

conditions as needed without loss of the tag that is what will be detected by streptavidin-coated 

agarose beads in the pull-down step. 

Regarding the localization of the protein we will perform co-localization assays between 

TgTBCB and at least one of the proteins from the apical polar ring. Of course, this new door 

will be opened as soon as the interaction studies are done, as all of the fields are intrinsically 

linked together. 

In terms of post-translational modifications, there is already one report demonstrating that 

the TBCB function is regulated by the Pak1.This can be a very interesting study in T. gondii, 

but since Pak1 is just a predicted protein, it can be a great challenge. However, the deep 

understanding of how TBCB activity is regulated in the parasite will have unequivocally great 

value. 

Concerning the activity of the protein, there are several proteins reported to interact with 

the TBCB and modulate its activity. The main one is the TBCE, its partner. Therefore, it will 

be very interesting to study this other cofactor in the parasite and its interaction with TBCB. 

We already tried to amplify the TgTBCE cDNA but we think that there is a problem with the 

TBCE annotation.  

Finally, the overexpression and the KO lines should be further explored by performing: 

- immunofluorescence of secreted proteins to check their localization in the presence of 

excess or in the absence of the TgTBCB 
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- immunofluorescence assays to explore the pattern of tubulin post-translation 

modifications in the presence of high levels of TgTBCB 

- MT depolymerizing assays to test the subpellicular MT stability in the presence of excess 

or in the absence of TgTBCB  

- native protein electrophoresis to evaluate the levels of the soluble tubulin heterodimer in 

the presence of excess or in the absence of TgTBCB  

Ultimately, a future perspective much more distant but possible, is the development of a 

new drug that specifically interacts with the parasite TBCB and blocks its activity. We saw that 

the TgTBCB protein is very different from the Human isoform 1 and that the Apicomplexa 

have high conserved sequences on its TBCB’s proteins, consequently it can also be a possibility 

to be explored, in order to develop a new treatment for those parasites.  
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Annex I. Protein Homology/analogY Recognition Engine Report for the T. gondii TBCB. 
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