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Functional characterization of unassigned African Swine Fever Virus proteins 

putatively involved in transcription and replication towards an efficient vaccine 

design 

Abstract  

African swine fever (ASF) is an infectious disease of domestic pigs and wild boars with 

mortality rates reaching up to 100% and is endemic in most of the Sub-Saharan countries. 

In 2007 it was introduced in Georgia and spread to neighbouring countries, reaching the 

Russian Federation, several European countries and, more recently, China and Vietnam 

(February 2019). Currently, there is neither a vaccine nor a treatment against ASF and the 

control of the disease depends strictly on sanitary measures, including stamping out and trade 

bans of animals and pork products leading to devastating socio-economic losses to affected 

countries. The etiologic agent of the disease is African swine fever virus (ASFV), a large 

(approx. 190 nm) double-stranded DNA (170 to 193 kbp) enveloped virus. ASFV genome 

encloses more than 150 open reading frames (ORFs) and to this date most of them lack 

any known or predictable function. ASFV is quite independent from cellular machinery 

encoding enzymes required for replication, transcription and virion assembly, including the 

putative I215L E2 Ubiquitin-conjugating enzyme, QP509L, Q706L RNA Helicases and the 

P1192R type II topoisomerase. The E2 ubiquitin-conjugating enzymes are part of the 

essential cellular post-transcriptional regulation ubiquitin-proteasome pathway. In this 

study, the pI215L binding activity was characterized as being mono and poly-ubiquitinated 

in the Cys85 at different temperatures and pH values. Moreover, I215L gene is transcribed 

from 2 hours post infection (hpi), and immunoblot analysis confirmed that pI215L is 

expressed from 4 hpi being detected all over the cell specially in the viral factories from 8 

hpi. Downregulation assays by siRNA suggested that pI215L plays a critical role in the 

transcription of late viral genes and in viral DNA replication. RNA helicases are described as 

essential for infections, modulating RNA-RNA and RNA-protein interactions, gene expression, 

viral egress and host antiviral responses. In the present work, we found that QP509L, Q706L 

are conserved between ASFV virulent and non-virulent isolates. Furthermore, ASFV-

QP509L and Q706L are actively transcribed from 2 hours post infection, and both proteins are 

localized in the viral factories at 12 hours post infection. However, QP509L was also detected 

in the cell nucleus. Transcript downregulation uncovered the essential role of these proteins 

during viral cycle progression, in particular for the late transcription. Type II topoisomerases 

are involved in resolving DNA tangles and supercoils by cutting the duplex and allowing the 

DNA replication to proceed. In this study, we report that P1192R is actively transcribed 

throughout infection, being detected from 2 hpi and reaching a maximum concentration 

around 16 hpi. P1192R knockdown experiments revealed its critical role for viral infection, 

given by a reduction in viral transcripts, cytopathic effect, the number of viral factories per 

cell, and virus yields. We also demonstrated that enrofloxacin exposure during the late 

phase of infection induces viral genomes fragmentation, whereas, when added at early 

phase of infection completely abolishes replication. The data obtained from I215L, QP509L. 

Q706L and P1192R characterization studies opens new venues to the rational design of a 

mutant virus lacking these genes, and also points new pathways to be targeted by antiviral 

drugs. 

Keywords: African swine fever virus, ASFV, I215L, QP509L, Q706L, P1192R, vaccine, 

antivirals. 
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Caracterização funcional de proteínas do vírus da peste suína Africana 

putativamente envolvidas na transcrição e replicação com o intuito de 

desenvolvimento de uma vacina.  

Resumo 

 

A peste suína africana é uma doença viral infeciosa que afeta os suínos domésticos e os 

selvagens, com taxas de mortalidade perto dos 100%, originando perdas económicas 

elevadas nos países afetados. A doença é endémica na maioria dos países subsaarianos, e 

desde 2007, assistiu-se uma expansão nos países Europeus, incluindo membros da União 

Europeia, e mais recentemente, na China e Vietname. Atualmente não existe vacina ou 

tratamento para esta infeção e o controlo da doença baseia-se no diagnóstico rápido, na 

eliminação compulsiva dos suínos e no bloqueio ao comércio de suínos e produtos derivados. 

O agente etiológico é o vírus da peste suína africana (VPSA), um vírus composto por uma 

molécula de ADN de cadeia dupla (170 to 193 kbp) contendo mais de 150 grelhas de leitura. 

Algumas destas estão devidamente caracterizadas codificando para proteínas estruturais ou 

regulatórias, contudo, a grande maioria foi identificada por homologia de sequência com 

outros vírus não se conhecendo, até à data, qual a sua função durante a infeção. Apesar dos 

inúmeros esforços ao longo dos anos, a complexidade viral, a falta de conhecimento sobre 

muitos dos aspetos da biologia do vírus e das suas interações com o hospedeiro invalidaram 

a obtenção de uma vacina segura e eficaz. Por um lado, as abordagens clássicas embora 

promissoras não garantem proteção contra estirpes heterólogas, enquanto a produção de 

vacinas de ADN ou proteína, mesmo com adjuvantes, não induzem imunidade contra uma 

segunda infeção. No entanto, a identificação de suínos previamente infetados e que resistem 

a novas infeções reforça a ideia da possibilidade de se obter uma imunidade protetora. Dadas 

as circunstâncias atuais de expansão da doença, estudos recentes apontam a necessidade 

de se aprofundar o conhecimento sobre os aspetos da biologia do VPSA com vista a 

identificação de novas estratégias para o desenvolvimento racional de vacinas ou de 

identificação de novos alvos para o uso de fármacos com vista a controlar a infeção. Neste 

contexto, os estudos apresentados neste trabalho caracterizam a I215L, QP509L, Q706L e 

P1192R, identificadas inicialmente, por homologia de sequência com outras proteínas 

tipicamente envolvidas na replicação e transcrição de outros vírus. A I215L foi identificada por 

partilhar identidade com as enzimas E2 de conjugação da ubiquitina. Estas enzimas 

pertencem a uma cadeia de sinalização do sistema de regulação pós-transcricional ubiquitina-

proteossoma. Os estudos realizados revelaram que a pI215L tem a capacidade de receber 

uma ou duas ubiquitinas (mono e di-ubiquitinada) no resíduo Cisteína-85, a diferentes 

temperaturas e valores de pH, evidenciando a sua plasticidade em participar em diferentes 

fases da infeção quer no hospedeiro quer no vetor. Além disto, o gene é transcrito 

precocemente (2 horas após infecção, hpi) e a proteína expressa desde as 4h, sugerindo que 

esta deverá ser necessária desde o início da infecção. Paralelamente, os nossos estudos por 

imunofluorescência revelaram uma distribuição da pI215L por toda a célula, e em especial, 

nas fábricas virais, sugerindo um papel ativo na regulação de vários processos, incluindo 

replicação de ADN e da transcrição. Os ensaios de ARN de interferência (siRNA) contra o 

I215L demonstraram um papel essencial desta proteína durante a infeção, originando uma 

redução dos transcritos tardios, do número de genomas (-63 a -68%) e na libertação de 

partículas infeciosas (até -94%). 
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A QP509L e Q706L, identificadas previamente como RNA helicases, estão envolvidas no 

metabolismo do ADN e do ARN, na replicação, recombinação do ADN, transcrição, síntese 

ribossomal, processamento e maturação do ARN, entre outros. Os resultados realizados 

revelaram que as sequências codificantes dos genes QP509L, Q706L apresentam-se 

conservadas entre os isolados virulentos e não virulentos do VPSA. Além disso, ambos os 

genes são ativamente transcritos a partir das 2 hpi e as proteínas correspondentes são 

detetadas nas fábricas virais 12 hpi, no entanto, a pQP509L encontra-se também distribuída 

pelo núcleo da célula, sugerindo a sua participação em processos distintos durante a infeção. 

A depleção dos transcritos dos genes QP509L e Q706L, por ARN de interferência, revelou 

uma redução dos transcritos virais tardios (até -46.2% e -77,7%, respetivamente), do número 

de cópias de genoma (até -53.4% e -71.4%, respetivamente) e de partículas virais infeciosas 

(até -99.4 e -98.6%, respetivamente), demostrando o papel crucial destas helicases para a 

progressão da infeção viral. 

Por último, este trabalho contribuiu para a caracterização funcional da pP1192R 

(topoisomerase do tipo II) durante a infeção. Genericamente estas enzimas estão envolvidas 

na resolução de constrangimentos e enrolamentos do ADN, sendo responsáveis pelo 

rearranjo estrutural da molécula através do corte e religação da cadeia dupla de ADN. Neste 

estudo, verificou-se que o gene viral P1192R é ativamente transcrito ao longo da infeção, 

sendo detetado a partir de 2 hpi e atingindo um ponto máximo de acumulação pelas 16 hpi. A 

depleção do transcrito durante a infeção revelou o papel indispensável desta enzima, 

originando uma redução do efeito citopático (-66%), diminuição dos transcritos virais (-89%), 

do número de fábricas e da progenia viral (até -99.7%, 2.5 log). Além disto, os nossos estudos 

clarificaram o mecanismo de ação das fluoroquinolonas contra a pP1192R. Os resultados 

obtidos mostram que as células infetadas e expostas a enrofloxacina numa fase final do ciclo 

de infeção (15-16 hpi) apresentavam uma fragmentação dos genomas virais. Por outro lado, 

quando a exposição foi efetuada desde o início da infeção (2-16 hpi), observou-se um bloqueio 

total da replicação. 

Em suma, os dados obtidos nos estudos aqui apresentados para o I215L, QP509L, Q706L e 

P1192R abrem novas perspetivas para o desenvolvimento racional de vacinas tendo por base 

vírus mutantes. Adicionalmente, levantam a possibilidade de recorrer a ferramentas 

farmacológicas visando diretamente estas proteínas, ou os processos em que estas estão 

envolvidas, permitindo o eventual bloqueio da infeção viral. 

 

Palavras-Chave: Vírus da peste suína africana, VPSA, I215L, QP509L, Q706L, P1192R, 

vacina, antivirais. 
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NCLDV  nucleo-cytoplasmic large DNA virus 

nt   nucleotides 

OD    optical density 

Oe    Outer envelop 

OIE    Office International des Épizooties - World Animal Health Organization 

ORF   Open reading frame 

PBS   Phosphate-buffered saline 

PBST   Phosphate-buffered saline supplemented with Tween-20 

PCR   Polymerase chain reaction 

PIPES   piperazine-N,N′-bis 2-ethanesulfonic acid 

PMSF   phenylmethylsulphonyl fluoride 

poly‐Ub   polyubiquitylation 

qPCR   quantitative PCR 

RNA   ribonucleic acid 

ROS    Reactive oxygen species 

rpm   rotations per minute 

RT   Room temperature 

SDS   Sodium dodecylsulphate 

SDS-PAGE  Sodium dodecylsulphate-polyacrylamide gel electrophoresis 

SE   Standard error 

SF2   Superfamily 2 



XIV 
 

siRNA   Small interfering RNA  

Topo   Topoisomerase 

Tx   Triton X-100 

UBA   Ubiquitin-activating 

v/v   volume per volume 

w/v   weight per volume 

wt   wild-type 

X-Gluc   5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid 

 

 

 



 

 1 

 

 

 

 

 

 

 

 

 

 

CHAPTER I 

INTRODUCTION 

  



 

 2 

1. African Swine Fever 

1.1. History and geographic expansion 

 

African swine fever (ASF) is considered a highly threatening disease for pig husbandry and 

was firstly described in Kenya (Montgomery, 1921). The etiologic agent is the African swine 

fever virus (ASFV), against which there is neither an effective vaccine nor a treatment and 

whose control relays, exclusively, on strict sanitary measures (Costard, Mur, Lubroth, 

Sánchez-Vizcaíno, & Pfeiffer, 2013). The disease is historically endemic in most of the sub-

Saharan countries, having reached Europe through Portugal in 1957 via contaminated waste 

from airline flights, which was used to feed pigs nearby the Lisbon airport. This first outbreak 

was successfully controlled and eradicated in the following years. However, a second 

introduction was reported in 1960 (Manso Ribeiro & Azevedo, 1961) spreading to neighbouring 

countries and throughout Europe (France, Italy, Malta, Belgium and the Netherlands). Infection 

crossed the Atlantic Ocean reaching Cuba (1971 and 1980), Dominican Republic Brazil (1978) 

and Haiti (1979). Fortunately, the disease was eradicated from almost all of the above-

mentioned countries, remaining endemic in the Italian island of Sardinia, since 1978 (Costard 

et al., 2009, 2013; Sánchez-Vizcaíno et al., 2012). More recently, in 2007, the disease was 

reported in Georgia (Sánchez-Vizcaíno et al., 2012) and quickly spread to the Transcaucasian 

countries and to the Russian Federation (Costard et al., 2013; Gogin, Gerasimov, 

Malogolovkin, & Kolbasov, 2013). ASF dramatic expansion continued to Ukraine (2012), 

Belarus (2013) (Gallardo et al., 2015) and reached the EU through Lithuania (2014). Further 

outbreaks were reported in Poland, Latvia, Estonia, Czech Republic, Moldova and Romania 

(Gallardo et al., 2015) and during the latest months of 2018 in Belgium and China and during 

more recently to Vietnam and Cambodia (WAHID. 2019). 

 

1.2. Hosts and transmission of African swine fever 

 

African swine fever virus infects all members of the family Suidae and soft ticks (genus 

Ornithodoros). ASFV is transmitted by direct contact among pigs, pig meat and other 

contaminated materials (e.g. blood secretions, excretions, faeces, urine or saliva) or by tick 

bite (Penrith & Vosloo, 2009). In susceptible pigs, ASFV enters the body via the tonsils or 

pharyngeal mucosa, heading to the mandibular or retropharyngeal lymph nodes, from where 

the virus spreads through viraemia (Sánchez-Vizcaíno et al., 2009). In Africa, the warthog 

(Phacochoerus africanus), the bushpigs (Potamochoerus larvatus), the red river hogs 

(Potamochoerus porcus) and the giant forest hogs (Hylochoerus meinertzhageni) are known 

as asymptomatic carriers of the virus. In contrast, in domestic pigs the acute form of the 

disease is characterized by massive apoptosis of lymphocytes and haemorrhage with 

disseminated intravascular coagulation leading to death in few days (Blome, Gabriel, & Beer, 
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2013; Oura, Powell, Anderson, & Parkhouse, 1998). The extent of lymphocyte apoptosis is 

correlated with the level of ASFV replication and with the virulence of the isolate (Galindo-

Cardiel et al., 2013; Portugal, Leitão, & Martins, 2009). In Africa, the warthog is considered the 

original vertebrate host of ASFV and the most important reservoir of disease, being involved 

in the sylvatic cycle of transmission with soft ticks of the genus Ornithodoros. Although the low 

viremia in adult animals seems to be unable to infect ticks, the high viremia presented by young 

animals, bitten in the burrows by naive ticks, are an important vehicle of dissemination 

(Thomson, 1985). The role of the remaining groups in transmission remains unclear due to low 

population density, geographic distribution and degree of isolation from susceptible domestic 

pigs and also distinct ecology since they have nocturnal habits and do not use burrows, 

reducing the potential contact with soft ticks (Jori & Bastos, 2009). The role of Ornithodoros 

moubata in ASFV transmission, in domestic and wild pigs, is very well documented in Southern 

regions of Africa and Madagascar, but it is almost absent in Central and West Africa (Costard 

et al., 2013; Jori & Bastos, 2009). Nevertheless, other species of ticks may be involved in ASF 

transmission, since they have been confirmed in laboratory conditions to be susceptible to 

ASFV infection (O. coriaceus, O. turicata, O. parkeri, O. puertoricensis from North America 

and Caribbean; O. savignyi from North Africa; and O. sonrai from West Africa) as previously 

reviewed (Vial et al., 2007). ASFV can persist in ticks for long periods of time, being important 

for the maintenance of ASF despite the absence of the natural host (pigs).  

In Europe, a similar scenario was observed with O. erraticus showing an important role in 

ASFV persistence and recurrence of the disease across the Iberian Peninsula (Boinas, Wilson, 

Hutchings, Martins, & Dixon, 2011; Louza, Boinas, Caiado, Vigario, & Hess, 1989; Wilkinson, 

1984). Although ticks seemed to play an important role in the previous epidemic of ASFV in 

Europe, their contribution for the current spread of the disease in the Caucasus, Russia and 

Eastern Europe is unlikely (Guinat et al., 2016; Jori & Bastos, 2009). Nowadays, the main 

dissemination routes in Europe include the transmission from infected wild boars to non-

infected domestic pigs and direct contact between infected and naive domestic pigs, together 

with intense movement and/or trade of pigs and the lack of biosecurity measures (e.g. 

contaminated clothes and footwear, vehicles, equipment, bedding) (Gabriel et al., 2011; 

Gallardo et al., 2015). This scenario is also aggravated by the resistance of ASFV to 

inactivation and its lengthy persistence in pork products (Costard et al., 2013). A schematic 

representation of ASFV transmission routes, in Europe, is represented in Figure 1. 

 

 

 

 



 

 4 

Figure 1. African swine fever transmission routes in Europe. 

 

 

ASF can be transmitted to susceptible domestic and wild boars via direct contact with infected 
animals, indirectly through the consumption of contaminated pork products and contaminated 
objects (fomites) such as animal bedding or feed, vehicles, clothes, footwear and equipment. 
Wild boar contaminated carcasses are also thought to be relevant in transmission, as well as 
ticks (in particular European regions) as disease vectors. 

 

1.3. ASF clinical signs and control strategies 

 

The clinical and pathological signs of ASF in domestic and wild pigs vary considerably 

depending on the virulence of the ASFV strain and host factors. The highly virulent strains are 

usually responsible for more acute forms of the disease, characterized by febrile syndrome 

with erythema and cyanosis of the skin, multifunctional failure of internal organs, vomiting and 

haemorrhagic diarrhoea leading to mortality rates up to 100% in 1-9 days post-infection. In 

subacute forms, the mortality rates decrease from 30 to 70%, with pigs showing a persistent 

or fluctuating fever that can persist for up to 20 days. In the chronic forms, clinical signs and 

lesions are not specific, inducing a delayed growth, emaciation, skin ulcers, arthritis and 

pneumonia that can persist for several months (Blome et al., 2013; Gallardo et al., 2015; 

Sánchez-Vizcaíno et al., 2015). Despite the research efforts along the last 50 years there is 

neither a vaccine nor a treatment for the infection (Costard et al., 2009; Penrith & Vosloo, 

2009). The control of ASFV relies on rapid laboratory diagnosis and the implementation of 

strict sanitary measures, such as culling of all infected and susceptible animals, movement 

restrictions and notification (EFSA Panel, 2014; Wieland, Dhollander, Salman, & Koenen, 

2011). Due to ASF complex epidemiology and transmission, together with increasing global 
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travelling and the international economic scenario, the World Organisation for Animal Health 

(OIE) was compelled to classify ASF as an obligatory notifiable disease (Costard et al., 2013; 

Mur, Martínez-López, & Sánchez-Vizcaíno, 2012; Sánchez-Vizcaíno et al., 2009). 

 

1.4. ASF vaccine development 

 

The recent dissemination to Europe and Asia, the endemic occurrence in Africa and the lack 

of vaccines or treatments to control African swine fever emphasize the need for the 

development of a safe and effective vaccine against this major threat for global pig husbandry. 

The huge efforts on vaccine development are in part supported by the fact that pigs surviving 

ASFV infection have been reported to resist challenge by parental viruses (Detray, 1957; 

Malmquist, 1963). However, experiments with inactivated vaccines, such as extracts of 

infected cells, supernatants of infected pig peripheral blood leukocytes, purified and inactivated 

ASFV virions and detergent-treated infected alveolar macrophage cell cultures, failed to induce 

protection (Forman, Wardley, & Wilkinson, 1982; Mebus et al., 1978; Stone & Hess, 1967). 

More recently, it was shown that some adjuvants do not enhance the protection (Blome, 

Gabriel, & Beer, 2014). Previous studies showed that pigs became protected from highly 

virulent isolates after being exposed to natural occurring ASFV isolates (ASFV/NH/P68), and 

when infected with virus attenuated by passage in tissue culture or by deletion of genes 

involved in virulence (Boinas, Hutchings, Dixon, & Wilkinson, 2004; Leitão et al., 2001). 

Protection induced by the non-virulent OURT88/3 isolate seems to be mediated by CD8+ T 

cells as the depletion of these cells was shown to retract this protection (Oura, Denyer, 

Takamatsu, & Parkhouse, 2005). Moreover some ASFV neutralization was reported, however, 

the effect of specific antibodies had not been clearly demonstrated (Onisk et al., 1994).  

Although these studies report an effective protection, there are safety issues that preclude the 

release of attenuated live vaccines. For example, during the first ASFV introduction in Europe, 

via Portugal (1960) a field isolate was serially passed through primary bone marrow cell 

cultures and then used to vaccinate about half a million pigs in Portugal. A substantial 

percentage of these vaccinated pigs developed undesirable post-vaccination reactions, 

including death. In addition, these vaccination campaigns lead to the generation of a large 

number of carrier animals, hampering subsequent efforts to eradicate the disease (Manso 

Ribeiro, 1962; Manso Ribeiro, Nunes Petisca, Lopes Frazao, & Sobral, 1963). Despite this 

early incident, the current prospect of developing attenuated vaccines has improved due to the 

progress made in the identification of ASFV genes involved in virulence and immune evasion. 

Besides this, the availability of complete genome sequences for several ASFV isolates has 

also contributed for a better understanding of the differences between virulent and non-virulent 

isolates (Bishop et al., 2015; Chapman, Tcherepanov, Upton, & Dixon, 2008; De Villiers et al., 



 

 6 

2010; Tulman, Delhon, Ku, & Rock, 2009). Further studies identified some of the antigens 

involved in protective immunity (Takamatsu et al., 2013) and the viral proteins involved in host 

immune evasion (Correia, Ventura, & Parkhouse, 2013), thus providing a path to the rational 

construction of attenuated ASFV vaccines. In the last years several studies presented 

candidates for attenuated live vaccines by deletion of genes linked to virulence (Abrams et al., 

2013; Gallardo et al., 2018). However, there are still issues related with cross protection 

against non-related viruses. On the other hand, several ASF subunit vaccines have been 

tested and induced a certain degree of protection (Lokhandwala et al., 2016, 2017), but to date 

none was able to induce sufficient protective immunity in pigs (Argilaguet et al., 2013; Neilan 

et al., 2004; Rock, 2016). Under this scenario, there is a need to improve previous strategies 

or to develop new approaches, such as the generation of self-limited replication mutant viruses. 

ASFV and other related viruses are quite independent of the host cell in terms of replication 

and transcriptional machineries (Dixon, Chapman, Netherton, & Upton, 2013; Salas & Andrés, 

2013) and the deletion of genes involved in these processes may allow the production of an 

ASFV-disabled infectious single cycle (DISC) virus. These approaches have been developed, 

with promising results, in other viruses (e.g. human immunodeficiency virus, the herpes 

simplex virus, bluetongue virus) for which the traditional strategies to produce a vaccine did 

not succeed (Dudek & Knipe, 2006; Matsuo et al., 2011; Moussa et al., 2015). These mutant 

viruses are expected to infect the host cells and express most of the early proteins as does the 

wild type virus. However, replication will be blocked due to the lack of an essential protein, 

although still triggering an immune response (Dudek & Knipe, 2006). Depending on the deleted 

gene, one or more functions essential to viral genome replication, viral protein synthesis or to 

the assembly of viral particles are compromised. This methodology combines safety 

advantages (when compared with inactivated virus) with the ability to simultaneously allow the 

expression and the presentation of viral antigens via host MHC class I and II (Morrison & Knipe, 

1996). 

The deletion of crucial genes and the incapacity to generate infective viral progeny demands 

the generation of a complementing/helper cell line in order to fully rescue the target gene 

function and produce these viral particles on a large scale. Therefore, the generation of a 

vaccine or treatment against ASFV has proved to be very challenging, due to virus complexity, 

mostly related with host immune response evasion, genotype variability and lack of knowledge 

on ASFV gene function and immunity (Rock, 2016). Most of the studies agree that a vaccine 

against ASFV must induce antibody response and cytotoxic activity by T cells. They also 

highlight the need to deepen the knowledge in ASFV putative genes involved in evasion, 

replication and transcription in order to identify potential candidates to be deleted and used as 

mutant vaccines or as drug target (Arias et al., 2017; Arias, Jurado, Gallardo, Fernández-

Pinero, & Sánchez-Vizcaíno, 2018). 
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1.5. African swine fever virus 

1.5.1. ASFV classification  

 

African swine fever virus is the only member of the family Asfarviridae, genus Asfivirus (Dixon 

et al., 2012), belonging to the nucleocytoplasmic large DNA virus (NCLDV) clade. The 

phylogenetic analysis of NCLDV group revealed that these viruses share several conserved 

proteins, including DNA polymerases, DNA helicases and ATPase pumps for DNA packaging, 

Topoisomerase II, RNA polymerase, that contribute for the autonomy of these viruses from 

host cells. This clade shares a common ancestor and is constituted by Mimivirus and 

Mamavirus (Mimiviridae family), Marseillevirus and Lausannevirus (Marseilleviridae family), 

some members of the Ascoviridae family, Vaccinia virus (Poxviridae family), Iridoviruses, 

Phycodnaviruses and Asfivirus (Colson et al., 2013; Koonin & Yutin, 2010; Yutin & Koonin, 

2012). 

 

1.5.2. ASFV morphology  

 

The African swine fever virus particle has an icosahedral morphology with an average diameter 

of 200 nm, organized in a complex multi-layered structure composed by capsid, inner 

envelope, inner core shell and nucleoid (Fig.2). The extracellular virions also contain an 

external membrane acquired by budding from the cytoplasmic membrane of the infected cell. 

Although the outer membrane could have an important role in the infection progression, 

intracellular virions also remain infectious (Andrés, García-Escudero, Viñuela, Salas, & 

Rodríguez, 2001). The viral capsid is formed by 1892 - 2172 hexagonal capsomers, each with 

13 nm in diameter, being mainly constituted by the structural p72, encoded by the gene B646L. 

The protein pE120R is also present in the capsid, being involved in the transport of viral 

particles from the viral factory to the plasma membrane (Andrés et al., 2001; Epifano, Krijnse-

Locker, Salas, Salas, & Rodríguez, 2006). Besides this, the pB602L is a non-structural protein 

that acts as a chaperone promoting the correct folding of the capsid (Cobbold, Windsor, & 

Wileman, 2001; Epifano et al., 2006), whereas pB438L has been proposed to be an integral 

part of the capsid due to its role for the correct acquisition of the icosahedral structure (Epifano 

et al., 2006). The inner envelope layer is composed by the p54, p17 and pE248R and is derived 

from the endoplasmic reticulum (Rodríguez, Nogal, Redrejo-Rodríguez, Bustos, & Salas, 

2009; Rodríguez, García-Escudero, Salas, & Andrés, 2004; Rouiller, Brookes, Hyatt, Windsor, 

& Wileman, 1998; Suárez, Gutiérrez-Berzal, Andrés, Salas, & Rodríguez, 2010) The presence 

of vp12, a transmembranar protein (Alcamí et al., 1992) both in outer and inner membranes, 

may be due to its involvement in the pathway that directs proteins to the plasma membrane 

(Zanetti, Pahuja, Studer, Shim, & Schekman, 2011). The particle core shell is a thick protein 

layer composed mainly by proteins produced from the proteolytic processing of viral 
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polyproteins pp220 (vp150, vp37, vp34, vp14), pp62 (vp35 and vp15) and pS273R (Andrés, 

Alejo, Salas, & Salas, 2002; Andrés et al., 2001). The nucleoid is the last structure to be formed 

and contains the viral genome and several DNA binding nucleoproteins such as the DNA-

binding protein p10 and the histone-like protein pA104R (Borca et al., 1996; Munoz, Freije, 

Salas, Vinuela, & Lopez-Otin, 1993) This structure also comprises the transcriptional 

machinery for the synthesis and modification of early RNAs (Salas & Andrés, 2013).  

 

Figure 2. Structure and protein composition of ASFV particle. 

 

 

ASFV particle: (A) Electron micrograph of an intracellular full ASFV particle. (B) Electron micrograph of 
an extracellular mature ASF virion. (C) Schematic representation of the localization of ASFV structural 
proteins. Outer envelope (oe), capsid (ca), inner envelope (ie), core shell (cs) and nucleoid (nu). Figure 
and legend were adapted from Salas and Andrés (2013). 
 

1.5.3. ASFV genome 

 

The ASFV genome consists of a linear double-stranded DNA molecule flanked by inverted 

terminal repeats and closed by hairpin loops, with a length ranging between 170 and 193 

kbp, depending of the isolate (Chapman et al., 2008; Dixon et al., 2013; Yáñez et al., 1995). 

ASFV genome encloses more than 150 open reading frames (ORFs) and most of them lack 

any known or predictable function (Chapman et al., 2008; Yáñez et al., 1995). These ORFs 

are closely spaced and are found on both DNA strands, comprising several genes involved 

in nucleotide metabolism, transcription, replication, repair, immune evasion and modulation of 

host cell apoptosis (Dixon et al., 2013). In the upstream region of each gene, a short 
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sequence rich in A/T content acts as a promotor being recognised by the viral RNA 

polymerase complex and by the transcription factors conducting to distinct temporal phases 

(early, intermediate and late) of viral gene expression (Dixon et al., 2013). 

 

1.5.4. ASFV infection cycle  

1.5.4.1. Cell entry and uncoating  

 

ASFV infects preferentially cells of the mononuclear–phagocytic system, including 

macrophages and monocytes. Like many other viruses, ASFV enters the cell by endocytosis, 

in order to overcome the physical barrier of the cytoplasmic membrane. In the last years, 

different hypotheses have been proposed for viral entry in the host cell including phagocytosis 

(Basta, Gerber, Schaub, Summerfield, & McCullough, 2010), macropinocytosis (Sánchez et 

al., 2012), micropinocytosis and receptor-mediated endocytosis (Alcamí, Carrascosa, & 

Viñuela, 1989; Galindo et al., 2015; Hernaez & Alonso, 2010). This event was recently 

reviewed and based on several studies it was reported that ASFV is internalized via two distinct 

endocytic pathways: macropinocytosis and clathrin-mediated endocytosis in a temperature, 

energy and pH-depended manner (Sánchez, Pérez-Núñez, & Revilla, 2017). Several viral 

proteins are important for viral attachment and internalization such as p30, p12 and p54 

(Angulo, Viñuela, & Alcamí, 1993; Gómez-Puertas et al., 1998). However, CD163, whose 

expression is restricted to cells of the monocyte/macrophage lineage, is postulated as the main 

receptor to virus binding (Sánchez-Torres et al., 2003). After internalization, ASFV particle 

traffics throughout the entire endolysosomal system and depends of late endosomal 

maturation by a process of acidification allowing the capsid disassembly from 35 to 45min post 

infection (Alonso et al., 2013; Cuesta-Geijo et al., 2012). Afterwards, the inner membrane 

becomes exposed and fused with the endosomal membrane, allowing the viral core egress 

into the cytosol to promote the replication (Hernáez, Guerra, Salas, & Andrés, 2016). Finally, 

the virion is transported to perinuclear relying on the host microtube motor of dynein with 

interaction with p54 (Alonso et al., 2013), enabling the start of replication. Recent studies 

showed that ubiquitin–proteasome system is involved in final degradation of the viral cores, 

enabling the release of the viral DNA in order to start replication and transcription (Barrado-

Gil, Galindo, Martínez-Alonso, Viedma, & Alonso, 2017). However, pathways and proteins 

involved in this mechanism are still unknown. 
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1.5.4.2 DNA replication  

 

During the initial phase of DNA replication, in the nucleus, short viral DNA fragments are 

synthesized in the proximity of the nuclear membrane and then exported to the cytoplasmic 

space (García-Beato, Salas, Viñuela, & Salas, 1992). It was also shown that ASFV requires 

intact nuclei for early DNA replication (Dixon et al., 2013; García-Beato, Salas, et al., 1992; 

Ortin & Vińuela, 1977; Tabares & Sánchez Botija, 1979). Surprisingly, the DNA found in 

mature viral particles is composed both by nuclear and cytoplasmic fragments (Ortin, 

Enjuanes, & Vinuela, 1979; Rojo, García-Beato, Viñuela, Salas, & Salas, 1999), highlighting 

the essential role of nucleus in viral DNA replication. Recently, it was also shown that the 

early intranuclear replication disrupts nuclear structures and modifies the landscape of the host 

cell nucleus (Ballester et al., 2011; Simões, Martins, & Ferreira, 2015; Simões, Rino, Pinheiro, 

Martins, & Ferreira, 2015). Nevertheless, the viral DNA replication is predominantly 

cytoplasmic, occurring in defined perinuclear factories previously identified (Breese & 

DeBoer, 1966). One of the initially proposed hypothesis was that cellular topoisomerases 

could trap the DNA to this perinuclear region (Käs & Laemmli, 1992). Later studies showed 

that ASFV encodes its own topoisomerase II (ORF P1192R) that might be also involved in 

this process (García-Beato, et al., 1992). Several aspects of ASFV replication are inferred 

from poxvirus as both virus share a common ancestor and show several similarities, 

including their genomic structure, core genes, and the presence of replication intermediates 

consisting in head to head genome concatemer (Koonin & Yutin, 2010; Yutin & Koonin, 

2012). In Vaccinia virus, replication starts with the introduction of a single strand nick in the 

genome near to one or both termini. From here the exposed 3′-OH group is targeted by the 

DNA polymerase which initiates the DNA synthesis towards the genome termini. This event 

generates a self-complementary intermediate resulting in a self-priming hairpin structure. 

The ASFV genome encodes for a DNA polymerase type B (G1211R) that could be involved 

in this process, and for a PCNA-like protein (E301R) which may increase the processability 

of the viral DNA polymerase (Iyer, Balaji, Koonin, & Aravind, 2006; Yáñez et al., 1995). In 

Vaccinia virus another crucial enzyme to initiate this process is the DNA primase (D5), (De 

Silva, Lewis, Berglund, Koonin, & Moss, 2007), suggesting that its counterpart in ASFV, the 

putative DNA primase (C962R), may also be important for the initiation of the DNA 

replication. Other studies showed that large ASFV DNA fragments synthesised in the 

cytoplasm are chased into mature cross-linked DNA, providing some clues about the 

dynamics of the viral DNA replication event. It is suggested that mature head to head 

intermediates concatemers are resolved in single length cross-linked genomes within the 

viral factories, in order to be packed in the mature virions (Rojo et al., 1999). Some of the 

ASFV enzymes that may be important to resolve this intermediate concatemers are the viral 

ERCC4-like nuclease (EP364R), that shares high homology with the cellular Mus81 and the 
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exonuclease lambda type D345L (Iyer et al., 2006). Replication in macrophages implies a 

strong DNA repair mechanism adaptation due to the production of reactive oxygen species 

(ROS) that intend to induce DNA lesions in the microbe genomes. ASFV encodes for three 

enzymes that may be involved in this process; the DNA polymerase type X (O174L), the 

adenosine triphosphate (ATP)-dependent-DNA ligase (NP419L) and a class II 

apurinic/apyrimidinic (AP) endonuclease (E296R) (Dixon et al., 2013). Although the DNA 

polymerase X is involved in the base excision repair pathway it was suggested that the error 

prone activity of this polymerase might contribute to increase of mutation frequency, leading 

to the generation of antigenic variants and thereby facilitating virus survival (Showalter, 

Byeon, Su, & Tsai, 2001). 

 

1.5.4.3 Temporal regulation of gene expression 

 

Temporal regulation of ASFV gene expression is characterized by a tight control of 

transcription initiation followed by a fast rate of mRNA degradation. The late promotors are 

located between −36 and +5 relative to the transcription initiation site expression and point 

deletion in the TATA box in these promotor regions strongly reduce their activities (García-

Escudero & Viñuela, 2000). The early phase is set before the onset of DNA replication and 

a late phase after the beginning of DNA replication (Rodríguez & Salas, 2013). Early 

transcription or pre-replicative starts almost immediately after the virus enters the cell and 

depends on viral factors present in the viral particle (Almazán et al., 1992; Almazán, 

Rodríguez, Angulo, Viñuela, & Rodriguez, 1993;. Salas, Rey-Campos, Almendral, Talavera, 

& Viñuela, 1986; Salas, Kuznar, & Viñuela, 1981) and continues until the initiation of DNA 

replication. Similarly to what is described for poxvirus, after DNA replication step the 

transcription is divided into two stages: the intermediate transcription, the transcripts are 

synthesized immediately after DNA replication, and the late transcription, occurring just after 

the intermediate ones (Broyles, 2003). In terms of gene expression control, the regulatory 

factors for each phase are expressed in the subsequent stage with the exception of the 

early factors that are expressed in the late phase of infection and are packaged into the viral 

particles (Salas & Andrés, 2013). The late transcription starts following the onset of DNA 

replication in the cytoplasm at about 6h post-infection were a shift in the pattern of virus 

gene transcription occurs (Salas et al., 1986). More than 20 genes (Table 1) are involved in 

transcription and in transcript modification and, similarly to Vaccinia virus, an accurate 

temporal control of viral gene expression is required (Rodríguez & Salas, 2013). Although 

experimental data on the role of the above-mentioned proteins in viral transcription is very 

limited, studies have identified a viral mRNA capping enzyme (NP868R) with three catalytic 

activities (triphosphatase, guanyl transferase and methyltransferase) required for 
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modification of ASFV transcripts by promoting the addition of a 5′ cap and 3′ polyA tail 

(Pena, Yáñez, Revilla, Viñuela, & Salas, 1993) and a mRNA decapping activity on protein 

pD250R (Parrish, Hurchalla, Liu, & Moss, 2009). Most of the information regarding proteins 

function relay only in the degree of homology between ASFV and other members of the 

NCLDV clade (Table 1) (Koonin & Yutin, 2010; Rodríguez & Salas, 2013). Among these 

genes, ASFV encodes six putative members of helicase superfamily II (A859L, F105L, 

B92L, D1133L, QP509L, Q706L) (Dixon et al., 2013). Furthermore, putative polyadenylation 

enzyme (C475L) has been also identified by comparison with Vaccinia virus (Iyer et al., 

2006), and a recent study showed that a Vaccinia virus core polyadenylation enzyme also 

adenylates the 3′ end of micro RNAs (miRNA) resulting in their destabilisation (Backes et 

al., 2012). However, it remains to be determined if the ASFV counterpart has a similar 

function. 

 

Table 1. ASFV genes involved in replication, transcription and transcript modification. 

 

Similarity/activity ASFV gene 

RPB1 NP1450L 

RPB2 EP1242L 

RPB3 H359L 

RPB5 D205R 

RPB6 C147L 

RPB7 D339L 

RPB10 CP80R 

TFIIB C315R 

TFIIS I243L 

D6/D11-like D1133L/Q706L 

A7-like G1340L 

I8-like B962L 

A1-like B175L 

A2-like B385R 

A18-like QP509L/A859L 

Poly(A) polymerase C475L 

Capping enzyme NP868R 

mRNA decapping enzyme D250R 

DNA topoisomerase II P1192R 

RNA ligase M448R 

 
ASFV genes involved in replication and transcription (right) in comparison with other member of the 

Nucleocytoplasmic Large DNA Virus or with experimental data available (left). Table and legend were 

adapted from  Rodríguez and Salas (2013). 
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1.5.4.4 Encapsidation  

 

The mechanisms for genome encapsidation have not been elucidated for ASFV. Data from 

electron microscopy suggest that viral genome begins to condense into a pronucleoid and 

then inserted, at a single vertex, into an “empty” particle. The maturation of the viral particle 

starts with closure of the narrow opening in the icosahedron and gives rise to “intermediate” 

particles, where the nucleoprotein core undergoes additional consolidation to produce the 

characteristic mature or “full” virions (Brookes, Hyatt, Wise, & Parkhouse, 1998;. Salas & 

Andrés, 2013). Repressing expression for the gene encoding the pp220 polyprotein, which 

encodes the major components of the virus core shell, results in formation and egress of 

empty virus particles (Andrés et al., 2002). 

 

1.5.4.5 Virion egress 

 

The mature viral particles assembled in the viral factories are transported along microtubules 

to the cell surface, depending on the kinesin family of motor proteins and on the capsid protein 

ASFV-pE120R (Andrés et al., 2001; Jouvenet, Monaghan, Way, & Wileman, 2004). ASFV 

particles are released by budding giving rise to extracellular enveloped virions (Breese & 

DeBoer, 1966). Although both extracellular or intracellular viral particles are infectious, different 

structural and antigenic features are recognised leading to important changes in the host 

immune response against ASFV (Andrés et al., 2001; Jouvenet et al., 2006). 

2. Study of ASFV genes involved in transcription, replication and host immune system 

evasion, towards a potential vaccine candidate or drug target 

 

African swine fever virus is currently spreading in Russia, in several European countries and 

Asia. The infection is characterized by the absence of clear neutralizing immune response, 

which has so far impaired the development of a conventional vaccine (Sánchez et al., 2017). 

ASFV genome enclosures more than 150 ORFs, enabling a high degree of independence from 

the cell and complex viral-host interaction. Facing this uncontrolled global dissemination it is 

urgent to deep the knowledge in the basic aspects of the virus biology and look for new tools 

towards an effective protection. Several studies highlighted the need to better characterize the 

viral proteins involved in canonical mechanisms of DNA replication, gene expression and host 

immune evasion to search for new potential therapies or candidates to vaccine development 

(Arias et al., 2017; Galindo & Alonso, 2017). Among others, four viral ORFS have been 

previously identified by sequence homology as being putatively involved in replication and 

transcription. 
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2.1. ASFV I215L putative E2 ubiquitin-conjugating enzyme 

 

The ubiquitin-proteasome system is a major pathway in the cell, regulating a diversity of cellular 

processes such as transcription, translation, regulation of the immune response, control of cell 

division (Mosesson et al., 2003), development, endocytosis (Haglund & Dikic, 2005), cellular 

trafficking (Hoeller et al., 2006) and cell survival control (Hershko & Ciechanover, 1998; Nandi, 

Tahiliani, Kumar, & Chandu, 2006). This pathway is constituted by three main components: 

the proteasome holoenzymes, several ubiquitin ligases and a large variety of deubiquitinating 

enzymes. In the ubiquitination reaction three main steps are recognized: first, the ubiquitin-

activating enzyme (E1) that promotes the establishment of a thiol ester bond with the C-

terminal Gly of free ubiquitin, becoming active for nucleophilic attack. Then, the pre-activated 

ubiquitin is transferred to an ubiquitin conjugating enzyme (E2) binding to its catalytic cysteine 

residue by transesterification. The E2 primary function is to determine which types of 

polyubiquitin chains are catalysed (Fig.3A). Finally, the ubiquitin is attached, usually by an 

isopeptide bond, to the target protein by the action of an ubiquitin ligase (E3), which is substract 

specific (Fig.3B). Ubiquitination is a reversible modification and proteolytic removal of 

covalently attached ubiquitin is catalysed by deubiquitylating enzymes (DUBs) which play an 

import role in the regulation of the system (Randow & Lehner, 2009). The ubiquitin molecule 

is a small (76 amino acids) and highly conserved protein present in almost all eukaryotic cells. 

The binding of ubiquitin chains signalises the target protein to participate in many regulatory 

functions, or serves as a signal for proteasome degradation (Fig.3C). On the other hand, Lys 

63-linked polyubiquitin chains will trigger the protein to participate in the oxidative response 

and the regulation of innate immunity signalling pathways (Deng et al., 2000; Silva, Finley, & 

Vogel, 2015; Weissman, 2001). The eukaryotic genome encodes only two E1 enzymes, about 

40 E2 ubiquitine-conjugating enzymes, more than 400 putative E3 ligases and at least 90 

DUBs. This multistep signalling cascade reaction ensures the highly specificity of the 

ubiquitination pathway (Randow & Lehner, 2009). 
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Figure 3. Ubiquitin proteasome system. 

 

The Ubiquitin proteasome system (A) Schematic representation of Ub modifications and their cellular 
functions. Monoubiquitylation (mono‐Ub), given by the attachment of single Ub molecule to a single Lys 
(K) residue leads to protein involvement in several process (e.g virus budding, DNA repair). Multiple 
monoubiquitylation (multi‐Ub), is the addition of several single Ub molecules to different Lys residues 

(e.g. endocytosis, endosomal sorting). Polyubiquitylation (poly‐Ub) consists in the attachment of a chain 

of Ub molecules to one or more Lys residues. When Ub chains are formed via Lys48 (K48) of Ub, target‐
modified proteins are signalized for proteasomal degradation, whereas when chains are linked via Lys63 
(K63) are implicated in DNA repair and activation of protein kinases. Figure and legend were adapted 
from Haglund and Dikic (2005). (B) Transfer of free ubiquitin from the ubiquitin-activating enzyme E1 to 
the E2 ubiquitin-conjugating enzyme followed by its transfer onto the target protein X by the substrate 
specific ubiquitin ligase E3. (C) Schematic representation of protein X degradation in the proteasome, 
composed of the 20S barrel and two 19S lids. Figure and legend were adapted from Seissler, Marquet, 
and Paillart (2017). 

 

As obligatory parasites, viruses have evolved to subvert the host ubiquitin-proteasome 

pathway to overcome the cell innate immune defences (González-Santamaría et al., 2011; 

Gustin, Moses, Früh, & Douglas, 2011). Nowadays, it is very well documented that viruses 

modulate the ubiquitin-proteasome system of cells, through different mechanisms, such as 

encoding ubiquitin-related enzymes (Isaacson & Ploegh, 2009; Randow & Lehner, 2009) or 

recruiting the endogenous cellular ligases to regulate several aspects of the infection cycle 

(Randow & Lehner, 2009). Back in the early 90s, a study identified an ASFV protein (UBCv1) 

showing high homology with E2 ubiquitin-conjugating enzymes (Hingamp, Arnold, Mayer, & 

Dixon, 1992). This protein was detected in the extracellular viral particle suggesting that the 

ubiquitin-proteasome pathway could play an important role at early stages of infection 
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(Hingamp et al., 1995). Corroborating this theory, a recent study demonstrated that the 

ubiquitin-proteasome pathway is crucial for ASFV replication. The authors found that inhibition 

of the final stage of the ubiquitin-proteasome pathway leads to a post-internalization step 

blockage with severe consequences for ASFV genome replication, late gene expression and 

viral progeny production (Barrado-Gil et al., 2017). ASFV just by coding its own E2´s enzyme 

reveals that the ubiquitination pathway maybe essential to viral cycle progression like reported 

for many other virus. Indeed dengue virus make use of the host UBE2J1 (E2 conjugating 

enzyme) to degrade the transcription factor IRF3, thereby negatively regulating the type one 

IFN expression and promoting RNA virus infection (Feng et al., 2018). In human 

cytomegalovirus infection, several E2 ubiquitin-conjugating enzymes regulate US2-mediated 

immunoreceptor downregulation (Van de Weijer et al., 2017). Thus, further characterization 

studies on ASFV putative E2 ubiquitin-conjugating could reveal new insights about virus host 

interactions pointing new pathways to control the infection aiming the development of a vaccine 

or as target for ubiquitin inhibitors as an potential antiviral approach (Randow & Lehner, 2009). 

 

2.2. ASFV QP509L and Q706L RNA helicases 

 

Approximately 20% of ASFV´s genome contains 20 genes that are considered to be involved 

in the transcription and modification of its mRNA (Poly (A) polymerase, capping enzyme, 

mRNA decapping enzyme, topoisomerase II, RNA ligase) (Rodríguez & Salas, 2013). 

Unfortunately, only a few characterization studies were performed on the functional role of 

these genes, and most of the information is gathered taking in consideration the role of similar 

proteins in other virus (e.g. vaccinia virus, orthopoxvirus). Nevertheless, it is known that ASFV 

gene transcription is quite independent from cellular transcription machinery and does not 

require the host RNA polymerase II and it is therefore presumed that the virus encodes all the 

enzymes and factors needed to transcribe and process mRNAs. Besides other critical putative 

enzymes, ASFV encodes several putative RNA helicases including the QP509L (58.103 kDa) 

and Q706L (80.376 kDa). In silico analysis revealed that QP509L is orthologous to the 

vaccinia virus A18R helicase (Baylis, Twigg, Vydelingum, Dixon, & Smith, 1993; Roberts, 

Lu, Kutish, & Rock, 1993; Rodríguez & Salas, 2013) and Q706L to the vaccinia virus D6/D11 

helicase (Rodríguez & Salas, 2013; Yáñez, Rodríguez, Boursnell, Rodriguez, & Viñuela, 

1993). These two vaccinia virus enzymes are involved in transcription, being essential for 

the elongation, termination and release of the viral transcripts. Based on the high homology 

between ASFV QP509L/Q706L RNA helicases and vaccinia virus counterparts a similar 

essential role for these two enzymes can be predicted. ASFV QP509L and Q706L RNA 

helicases are classified as superfamily 2 (SF2) members, due to the ATP-binding motif 

(Gorbalenya & Koonin, 1993). Superfamily 2 has been further divided into 10 families including 
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RecQ-like, RecG-like, Rad3/XPD, Ski2-like, type I restriction enzyme, RIG-I-like, NS3/NPH-II, 

DEAH/RHA, DEAD-box and Swi/Snf based on their sequence homology (Fig.4A). Both ASFV 

QP509L and Q706L display DEAH motifs, however some studies joint this family with the 

DEAD-box family into a large DExH/D family (Jankowsky, 2000; Jankowsky & Bowers, 2006) 

based on their sequence homology (Fig.4B). 

 

Figure 4. Superfamily 2 helicases and SF2 ATP-binding motifs. 

 

Superfamily 2 helicases and SF2 ATP-binding motifs. (A) Schematic cladogram showing SF2 families 
(left) vs the three families of the SF1 (right). Family clusters were identified by a combination of 
phylogenetic analysis of the alignment of all SF1 and SF2 proteins from human, S. cerevisiae, E. coli, 
and selected viruses. Branch lengths are not in scale. Figure and legend were adapted from Fairman-
Williams, Guenther, and Jankowsky (2010). (B) Sequence motifs of DEAH, DEAD and DExH proteins. 
Within each group, identical amino acids are represented in gray blocks, conservative substitutions are 
shown in regular letters, and x represents variable residues. The points separating the conserved motifs 
do not reflect the exact spacing between the motifs, however, aligned amino acids from the different 
groups have comparable distance. Figure and legend were adapted from Jankowsky (2000). 

 

The central region of these helicases are formed by the two RecA-like domains, harboring 

conserved motifs which are crucial for these NTPase-dependent RNA helicases to achieve 

their function. The I, II, V and VI motifs are necessary for nucleoside triphosphate binding and 

hydrolysis, whereas Ia, Ib and IV motifs are involved in RNA binding and the motif III 

participates in coupling the NTPase and the unwinding activity (Caruthers & McKay, 2002; 

Cordin & Beggs, 2013; Cordin, Hahn, & Beggs, 2012). The C-terminal region is highly 

conserved in DEAH-box helicases and is composed by three domains: a winged helix (WH), a 
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ratchet and an oligosaccharide binding (OB) fold (Andersen, & Nielsen, 2010). The N-terminal 

region is distinctly more variable and the length differs between the members of this subfamily. 

The N-terminal region is involved in the pre-mRNA processing and in the targeting to the 

nucleus (Fouraux et al., 2002; Schneider & Schwert, 2001). A schematic representation of a 

SF2 RNA helicase is displayed in figure 5. 

 

Figure 5. Schematic representation of the characteristic sequence motifs for SF2 
Helicases core proteins. 

 

 

SF2 RNA helicases. Motifs were colored accordingly to their predominant biochemical function: red, 

ATP binding and hydrolysis; yellow, coordination between nucleic acid and NTP binding sites; blue, 

nucleic acid binding. Green circled asterisks mark insertions of additional domains. Motifs were 

numbered consecutively. The Motif IVa in SF2 proteins is frequently marked QxxR and motif Ic often 

TPGR. The asterisk on motif Ib indicates that in some proteins this motif is replaced by an additional 

domain (distance/length in not to scale). Figure and legend were adapted from Fairman-Williams et al., 

2010. 

 

Helicases are ubiquitous in all the kingdoms of life and are involved in essentially every step 

in DNA and RNA metabolism, including replication, DNA repair, recombination, transcription, 

translation, chromatin rearrangement, ribosome synthesis, RNA maturation and splicing, 

nuclear export, Holliday junction movement, displacement of proteins from DNA and RNA 

replication (Jankowsky, 2011; Jeang & Yedavalli, 2006). In eukaryotes, this type of enzymes 

is known to unwind duplexes formed during RNA mechanism in an ATP-dependent fashion 

(Bizebard, Ferlenghi, Iost, & Dreyfus, 2004; Yang, Del Campo, Lambowitz, & Jankowsky, 

2007; Yang & Jankowsky, 2006) and also recognized to be important in the anti-viral immune 

response either as sensor, by identifying foreign viral nucleic acids, and/or as effectors that 

directly participate in viral clearance (Ahmad & Hur, 2015). However, viruses evolve rapidly to 

evade immune system and some hijack cellular RNA helicases for their own proposes (Jeang 

& Yedavalli, 2006). For example, the cellular DDX3 (DEAD-box) is recruited by human 

immunodeficiency virus (HIV) -1, by binding to CRM1 (nuclear export receptor) and to HIV-1 

Rev leading to an increase of Gag protein production. In vaccinia virus DDX3 is essential 

during infection by interacting with vaccinia virus K7 protein, which blocks transcriptional 
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activation of the interferon responsive genes (Ranji & Boris-Lawrie, 2010). However, other 

viruses encode their own helicases like ASFV (Asfaviridae) (Utama et al., 2000), members of 

Herpesviridae (Chattopadhyay, Chen, & Weller, 2006), Poxviridae (Jankowsky, Gross, 

Shuman, & Pyle, 2000), Parvoviridae (Christensen & Tattersall, 2002) and Flaviviridae (Utama 

et al., 2000). In hepatitis C virus (HCV), the NS3 (DExH box protein) is required to unwind the 

double-stranded RNA intermediate, which may enable movement of HCV NS5b polymerase 

(Belon & Frick, 2009; Dumont et al., 2006; Piccininni et al., 2002). Moreover, the NS3 assists 

in virus assembly and is likely to act as a scaffold for interaction with viral or cellular cofactors 

(Ma, Yates, Liang, Lemon, & Yi, 2008). Thus, more knowledge about the basic aspects of RNA 

helicases and identifying their specific role during viral infections by modulating RNA-RNA and 

RNA-protein interactions, gene expression, viral egress and host antiviral responses (Frick 

& Lam, 2006; Ranji & Boris-Lawrie, 2010) raised an opportunity to explore new molecular 

targets for the development of selective inhibitors (Briguglio, Piras, Corona, & Carta, 2011; 

Ranji & Boris-Lawrie, 2010; Shuman, 1992). The study of ASFV RNA helicases is fundamental 

for understanding the viral-host interface. Given the role of other viral RNA helicases, these 

studies may also uncover ways to control gene expression that results in proper utilization of 

the viral RNA in translation and viral assembly. 

 

2.3. ASFV P1192R type II topoisomerase  

 

Topoisomerases are ubiquitous and responsible for altering DNA topology, also being 

important targets of antibacterial and anticancer drugs (Drlica et al., 2009; Nitiss, 2009a; Vos, 

Tretter, Schmidt, & Berger, 2011). Topoisomerases have a relevant role in DNA replication 

being responsible for relieving torsional stress ahead of the replication fork, in particular the 

topoisomerase IV, that reveals an effective decatenating activity essential for de novo 

separation of genomes (Drlica & Malik, 2003; Drlica, Malik, Kerns, & Zhao, 2008; Malik, 

Hussain, & Drlica, 2007). In prokaryotes, two highly conserved type IIA topoisomerases can 

be found: the topoisomerase (topo) IV and the DNA gyrase involved, respectively, in 

chromosome relaxation/segregation and DNA supercoiling (Gellert, Mizuuchi, O’Dea, & Nash, 

1976; Zechiedrich & Cozzarelli, 1995). The topo IV is a tetramer constituted by two subunits, 

ParC and ParE, that form an active E2C2 complex; in a similar way gyrases are formed by 

GyrA and GyrB subunits, as schematic described in figure 6A (Corbett & Berger, 2004). These 

enzymes transiently cleave both strands of DNA in an ATP-dependent fashion and pass a 

second DNA duplex through the break which is then resealed (Corbett, Schoeffler, Thomsen, 

& Berger, 2005; Mizuuchi, Fisher, O’Dea, & Gellert, 1980). The DNA is captured by closure of 

the N gate implying adenosine triphosphate (ATP)-dependent dimerization of the 

topoisomerase/gyrase (ParE/GyrB) ATPase domains and allowing the DNA presentation to 

the cleavage core of the enzyme, passage through the G (gate) DNA bound at the DNA 
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cleavage gate and subsequent release through the protein C gate (Roca, 2004; Roca, Berger, 

Harrison, & Wang, 1996). A schematic representation of the mechanism is illustrated in Figure 

6B and C. Some antibacterial drugs such as novobiocin target the ATPase gate, whereas 

clinically important fluoroquinolones such as levofloxacin interfere with DNA resealing at the 

DNA cleavage gate (Bax et al., 2010; Chan et al., 2015; Laponogov et al., 2009, 2010). 

Eukaryotic cells express topoisomerase IIA and IIB isoforms and rely in a close related 

mechanism of action, sharing a similar double-strand break process using the sequential 

operation of N (ATPase), DNA and protein C gates (Nitiss, 2009b; Vos et al., 2011). The 

cleavage gates are inhibited by clinically important anticancer drugs such as doxorubicin and 

etoposide (Wu et al., 2011; Wu, Li, Wang, Li, & Chan, 2013). These two cellular 

topoisomerases (Topoisomerase-IIA and IIB) share a high sequence homology (Gadelle, 

Filée, Buhler, & Forterre, 2003), except in their degenerate C-terminal region containing 

nuclear localization signals (Mirski, Gerlach, & Cole, 1999), in their regulatory sites (Isaacs et 

al., 1998) and in their biologic function (Nitiss, 2009a). 

 

Figure 6. Type IIα topoisomerases structure and mechanism. 

  

Type II α topoisomerases (A) Primary domain structures of representative bacterial type II 
topoisomerases (topoisomerase IV and gyrase). Domains are indicated by color and important residues 
are indicated by black bars. Gene names are shown above each primary structure along with the subunit 
compositions of the holoenzymes. Figure and legend were adapted from Allyn J. Schoeffler & Berger, 
2008. (B) Schematic model for type IIα topoisomerase elements. ATPase domains are shown in yellow 
(the GHKL subdomain) and orange (the transducer subdomain), with the N-terminal straps represented 
by black lines. The DNA gate is formed by two 5Y-CAP domains (green); a pair of toprim folds (red) 
assists with the catalysis of DNA cleavage. The tower domains are coloured light blue, the C-gate dark 
blue and the CTD purple. Bacterial GyrB/ParE subunits encompass the ATPase, transducer and toprim 
folds, while the GyrA and ParC subunits comprise the other elements. (C) Schematic representation of 
the type IIα topo catalytic cycle. Domains are coloured as in B. The G-segment (pale green) first binds 
to the DNA gate (step 1). A T-segment (teal) is captured by dimerization of the ATPase domains upon 
ATP (black star) binding (step 2). ATP hydrolysis followed by Pi release triggers DNA gate opening and 
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T-segment passage (step 3). C-gate opening allows escape of the T-segment (step 4), while re-ligation 
of the G-segment and release of hydrolysis products lead to opening of the ATP gate, thus resetting the 
enzyme for another round of catalysis (step 1). Figure and legend were adapted from Schoeffler e 
Berger, 2005. 

Topo-IIA is involved in positive supercoils relaxation and is considered a key enzyme in DNA 

replication and chromosome segregation being highly expressed in actively-dividing cells. In 

the other hand, Topo-IIβ is mostly expressed in quiescent cells and does not have a special 

affinity to positive supercoils, while being crucial for transcription (Grue et al., 1998; 

McClendon, Rodriguez, & Osheroff, 2005; Nitiss, 2009a). In viruses, type IIA topoisomerases 

have been identified in several NCLDV families, such as Iridoviridae, Asfarviridae, Mimiviridae 

and Phycodnaviridae (Iyer, Aravind, & Koonin, 2001; Yutin, Colson, Raoult, & Koonin, 2013), 

as well as in bacteriophages of the T4 superfamily (Kreuzer, 1998). ASFV is the only known 

virus that infects mammals encoding for a type II topoisomerase (ASFV-Topo II, ORF 

P1192R). Surprisingly, phylogenetic studies revealed that this viral protein do not cluster 

with cellular topoisomerases (Gadelle et al., 2003), being more closely related with the 

bacterial DNA gyrases and topoisomerase IV (Liu, 1994), raising the possibility of targeting 

this protein with specific anti-bacterial topoisomerase/gyrase drugs (fluoroquinolones). 

Although the specific role of this enzyme during infection remains unclear, recent studies 

showed that anti-topoisomerase bacterial inhibitors induced a viral genome fragmentation 

and a delay in late protein synthesis in ASFV infected cells. These results suggest a similar 

mechanism of action of these drugs between ASFV and prokaryotes (Mottola et al., 2013). 

Moreover, it was also shown that ASFV topoisomerase II is functional in complementation 

assays and is localized at late times post infection in the viral factories where most of the 

viral DNA replication takes place (Coelho, Martins, Ferreira, & Leitão, 2015). As expected, 

phylogenetic analysis also revealed that this protein is conserved between ASFV isolates 

(Coelho et al., 2015). It was also demonstrated that recombinant ASFV-Topo II is active 

under conditions similar for other type II topoisomerases and is capable to catenate, 

decatenate and relax DNA. The same authors also showed that ASFV-Topo II was inhibited 

by common topoisomerase II poisons and inhibitors, namely by doxorubicin, coumermycin 

A1 and m-AMSA (Coelho, Ferreira, Martins, & Leitão, 2016). It is very likely that ASFV-topo 

II can also be essential for viral DNA replication, however, further studies are needed to 

uncover the essential role of this putative enzyme during the infection, and thus explore the 

possibility to target this enzyme in order to control the infection. 
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3. Objectives 

 

In the last years, research developed at the Laboratório de Doenças Infecciosas (LDI) 

FMV/ULisboa has been dedicated at improving knowledge on ASFV biology towards the 

identification of new strategies for the development of effective and safe vaccine(s) and 

potential use of drugs. According to this strategy, the central objective of the research herein 

presented is to increase our understanding on basic molecular mechanisms of ASFV 

replication, transcription and host immune evasion. The main objectives of this work were as 

follows: 

 

• To characterize the putative pI215L E2 ubiquitin-conjugating enzymatic activity in vitro, 

evaluate I215L transcription pattern, pI215L protein expression and distribution in 

infected cells. The effects of downregulating I215L were also studied in order to better 

understand the relevance of pI215L for viral replication (chapter II). 

• To investigate the phylogenetic relation of QP509L and Q706L among different ASFV 

isolates and with other SF2 ATP-dependent RNA helicases belonging to 

nucleocytoplasmic large DNA viruses; to assess the transcript dynamics, protein 

expression patterns and cellular localization of ASFV-QP509L and Q706L RNA 

helicases during the infection; and to clarify the importance of these two RNA helicases 

for ASFV infection cycle by siRNA-mediated silencing (chapter III). 

• To characterize the role of the putative ASFV P1192R type II topoisomerase in 

replication by investigating its transcription pattern and assess the effects of transcript 

downregulating during the infection; and finally to uncover the mechanism of action 

behind the antiviral effects of fluoroquinolones against this viral protein (chapter IV). 

 

It is expected that the results obtained during this work will contribute to the rational 

development of novel approaches to precisely control the infection, allowing the use of anti-

viral drugs or the generation of mutants lacking in these proteins (e.g. defective infectious 

single cell cycle particle) to be used as vaccines. 
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CHAPTER II 

African swine fever virus encodes for an E2-ubiquitin conjugating 

enzyme that is mono- and di-ubiquitinated and required for viral 

replication cycle 

 

Ferdinando B. Freitas, Gonçalo Frouco, Carlos Martins, Fernando Ferreira (2018) Scientific 

Reports. 134:34-41 http://doi.org/10.1038/s41598-018-21872-2 
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Abstract  

 

African swine fever virus is the etiological agent of a contagious and fatal acute haemorrhagic 

viral disease for which there are no vaccines or therapeutic options. The ASFV encodes for a 

putative E2 ubiquitin conjugating enzyme (ORF I215L) that shows sequence homology with 

eukaryotic counterparts. In the present study, we showed that pI215L acts as an E2-ubiquitin 

like enzyme in a large range of pH values and temperatures, after short incubation times. 

Further experiments revealed that pI215L is polyubiquitinated instead of multi-mono-

ubiquitinated and Cys85 residue plays an essential role in the transthioesterification reaction. 

In infected cells, I215L gene is transcribed from 2 hours post infection and immunoblot analysis 

confirmed that pI215L is expressed from 4 hpi. Immunofluorescence studies revealed that 

pI215L is recruited to viral factories from 8 hpi and a diffuse distribution pattern throughout the 

nucleus and cytoplasm. siRNA studies suggested that pI215L plays a critical role in the 

transcription of late viral genes and viral DNA replication. Altogether, our results emphasize 

the potential use of this enzyme as target for drug and vaccine development against ASF. 
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1. Introduction  

 

African swine fever (ASF) is a contagious haemorrhagic disease of domestic and wild suids, 

associated with mortality rates close to 100% and devastating socio-economic implications on 

affected regions (Costard et al., 2009; Penrith & Vosloo, 2009). Despite all the efforts applied 

to control the disease, the disease is solely controlled through the application of strict sanitary 

measures including among others, slaughtering of infected and exposed animals and trade 

restrictions (Costard et al., 2009, 2013). Currently, ASF is endemic in most of sub-Saharan 

Africa, in Sardinia and since its introduction in Georgia via contaminated food in 2007, has 

been spreading through the Caucasus (Georgia, Armenia and Azerbaijan), Eastern Europe 

(Belarus, Moldova, Poland, Russia and Ukraine) and the Baltic countries (Estonia, Latvia and 

Lithuania), (Sánchez-Vizcaíno et al., 2015). Caused by a large (≈200nm) lipoprotein-

enveloped, icosahedral, double-stranded DNA virus (170 to 190kbp) and being the only 

member of family Asfarviridae, the African swine fever virus (ASFV) infects different species 

of soft ticks, wild and domestic pigs (Tulman et al., 2009). ASFV genome encloses between 

151 and 167 open reading frames (ORFs), with half of them lacking any known function 

(Costard et al., 2013; Dixon et al., 2013; Tulman et al., 2009). As reported for other viruses 

(González-Santamaría et al., 2011; Gustin et al., 2011), ASFV must evade the cellular antiviral 

defenses and modulate gene expression to establish a productive infection, probably by 

disrupting the ubiquitination and SUMOylation status of host proteins. The ubiquitin pathway 

is a major cellular system consisting of enzymes that conjugate the 76-amino-acid protein tag 

ubiquitin to and deconjugate it from host target proteins for proteasomal degradation, thereby 

regulating signaling cascades and cell cycle. Interestingly, ASFV encodes for a putative 

ubiquitin-conjugating E2-like enzyme (pI215L, ASFV-UBCv1), (Hingamp et al., 1992) found 

within the virion, suggesting that pI215L may be involved in the early steps of infection 

(Hingamp et al., 1995). As previously described, ASFV-infected cells tightly regulate ubiquitin 

mRNA levels when compared to mock-infected cells, strengthening the idea that ASFV 

perverts the ubiquitin pathway to its own benefit (Bulimo, Miskin, & Dixon, 2000). Although the 

exploitation of ubiquitin system by viruses is emerging as a central theme and several studies 

highlight the use of ubiquitin inhibitors as an antiviral approach (Randow & Lehner, 2009), few 

data is available on the ASFV ubiquitin-conjugating E2-like enzyme and its role during 

infection. Thus, this study aims to characterize the pI215L E2 ubiquitin-conjugating enzymatic 

activity in vitro and to evaluate the transcription pattern of the ASFV-I215L gene, as well as its 

expression and its distribution in infected cells. To better understand the importance of pI215L 

during infection, the transcription activity of early and late viral genes, the number of ASFV 

genomes and the viral progeny were analyzed and compared between I215L-knockdown cells 

and mock-transfected cells. Finally, the biological role of the pI215L in a cellular context was 
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schematically illustrated, suggesting that pI215L can be a good candidate for the development 

of a vaccine against ASF or used as a target for antiviral therapy. 

 

2. Material and methods 

2.1. Viruses and cells  

 

The Vero-adapted ASFV isolate Ba71V was used to infect cells and was propagated as 

described (Carrascosa, Bustos, & de Leon, 2011). Infections were carried out at the indicated 

multiplicities of infection (MOI), and at the end of the adsorption period (1h), the inoculum was 

removed and cells were washed twice with serum-free medium. The virus titration was 

performed on sub-confluent Vero cells grown in 96-well plates inoculated with ten-fold viral 

dilutions of viral suspensions. Viral infection was assessed by CPE observation and calculated 

by using the Spearman-Kärber method (Kärber, 1931). All experimental infections were 

conducted with the non-pathogenic ASFV-Ba71V strain (Rodríguez et al., 2015) and 

performed in a BSL-3-like containment laboratory.  

Vero E6 cells (kidney epithelial cells of African green monkey Cholorocebus aethiops) were 

obtained from the European Cell Culture Collection (ECACC, Salisbury, UK) and maintained 

as previously reported (Freitas, Frouco, Martins, Leitão, & Ferreira, 2016). All experiments 

were conducted on actively replicating sub confluent cells. 

 

2.2. Cloning, expression and purification of recombinant ASFV-pI215L 

 

The complete ORF I215L, lacking the stop codon, was PCR-amplified from Ba71V genomic 

DNA, using the 215Fw and 215Rv primers (Table 2), which include at their 5´and 3´ ends, NheI 

and XhoI restriction endonuclease sites to facilitate vector insertion. The PCR reactions were 

performed as follow: 98 °C for 2 min., 30 cycles at 98 °C for 30 seconds, 65 °C for 30 seconds, 

72 °C for 30 seconds plus one extension step at 72 °C for 10 min. After confirmation of correct 

fragment size by electrophoresis on a 1% agarose gel, the DNA fragments were purified and 

quantified in the NanoDrop 2000c. Then, these fragments were inserted in a cloning vector 

(pET24a, Novagen) to add a 6xHis-tag at the tag C-terminal, in order to facilitate the purification 

step. Two clones were sequenced to avoid mutations generated from Taq polymerase errors. 

Confirmed plasmids were then transformed into the E.coli strain BL21(DE3)-pLysS (Novagen) 

and grown in LB medium (10 g tryptone, 5 g yeast extract, 5 g NaCl, pH 7.2) supplemented 

with kanamycin (30 μg/ml) plus chloramphenicol (34 μg/ml), at 37 °C, with shaking at 200 rpm, 

until the OD600 reached 0.1-0.2. Induction of protein expression was carried out by adding 

isopropyl-β-D-1-thiogalactopyranoside (IPTG) at a final concentration of 1 mM during 5 hours. 
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After this step, bacterial cells were harvested by centrifugation (10,000 g for 10 min, 4 °C), and 

washed with sterile water. The pellet was resuspended in binding buffer (20 mM sodium 

phosphate, 500 mM NaCl, 20 mM imidazole, pH 7.4) and cells were lysed by a lysis solution 

(0.2 mg/ml lysozyme, 20 µg/ml DNAse and 1mM PMSF) and sonicated for 5x5 minutes on ice 

(5 cycles, 70% amplitude). Lysates were then centrifuged at 3000g for 15 minutes and pellets 

were discarded. The extracts were thereafter filtered (0.45 µm syringe filter Rotilabo®, 

CarlRoth) and incubated with Ni Sepharose 6 Fast Flow slurry (GE Healthcare) for 1 hour. The 

mixture was loaded onto a PD-10 column (GE Healthcare), washed with binding buffer solution 

(20 mM sodium phosphate, 500 mM NaCl, pH 7.4) containing increasing concentrations of 

imidazole (40, 60 and 80 mM), and the recombinant pI215L was eluted with an elution buffer 

(20 mM sodium phosphate, 500 mM NaCl, 500 mM imidazole, pH 7.4). Fractions were 

collected in low-binding tubes (Maxymum Recovery® TM tubes, Axygen, Corning Life 

Sciences, Amsterdam, The Netherlands), analyzed by SDS-PAGE and the recombinant 

pI215L, purified under native conditions, was stored at -80 °C until further use. The three single 

point mutants (pI215LC85A, pI215LC162A, pI215LC189A) were generated using the QuikChange II 

XL Site-Directed Mutagenesis Kit (Agilent Technologies), following the manufacturer's 

instructions and using the primers indicated in Table 2. 

 

2.3. In vitro ubiquitination assay 

 

To determine if the ASFV-pI215L has a catalytic activity similar to an E2 ubiquitin conjugating 

enzyme, a commercial kit was used (E2-Ubiquitin Conjugation Kit, ab139472, Abcam) and the 

manufacturer's instructions were followed. Reactions were performed in a 50 µl mixture 

containing 5 µl of ubiquitination buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 15 μM ZnCl2, 

0.3 mM dithiothreitol (DTT,) 0.006% DTT, 2 mM ATP, 10 U creatine phosphokinase, and 10 

mM phosphocreatine), 2.5 µl of biotinylated ubiquitin (2.5 µM) or with a mutant biotinylated 

ubiquitin lacking the seven acceptor lysine residues (UbNOK, Boston Biochem), 2.5 µl of an E1-

enzyme (recombinant UBA1 at 100 nM), 5 µl of  an E2-enzyme at 2.5 µM (recombinant pI215L 

or recombinant UbcH5b provided by the kit) and 10 µl of an inorganic pyrophosphatase 

solution (IPP, 100 U/mL). To investigate whether pI215L-ubiquitin conjugates were mediated 

by thioester bond formation, samples were incubated at 95 °C with 5% 2-mercaptoethanol 

(Sigma) during 10 min. Additionally, the reactions were performed in the presence and 

absence of ATP-Mg2+ (2.5 µl at 5 mM) and incubated at 37 ºC during 120 min, except when 

indicated. To further characterize the E2-ubiquitin conjugating activity of pI215L, the assay was 

also performed at different incubation temperatures (4, 24, 37 and 42°C) and pH values (4, 

7.5, 9 and 14), and different incubation times (1, 5, 15, 30 and 120 min).  

Soluble and insoluble protein fractions were prepared from mock infected and Ba71V-infected 

Vero cells, harvested at 6 and 16 hpi. Initially, cells were washed with phosphate-buffered 
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saline (PBS) and incubated with a buffer containing 50 mM HEPES (pH 7.6), 100 mM NaCl, 2 

mM Ethylenediaminetetraacetic acid (EDTA), 250 mM sucrose, 0.1% Tx-100, supplemented 

with protease (cOmplete, Mini, EDTA-free from Roche) and phosphatase inhibitors (PhosStop, 

Roche). After a centrifugation step (10000 x g for 10 min, 4ºC), the supernatant was collected 

(soluble fraction) and the pellet containing insoluble proteins was lysed in RIPA buffer [25 mM 

Tris, 150 mM NaCl, 0.5% (v/v) NP40, 0.5% (w/v) sodium deoxycolate, 0.1% (w/v) SDS, pH 

8.2] supplemented with protease-inhibitor cocktail (cOmplete, Mini, EDTA-free, Roche) and 

phosphatase-inhibitor cocktail (PhosStop, Roche). pI215L activity in protein fractions was 

investigated by incubating the reaction mixtures at 37 ºC during 120 min. Reactions were 

quenched by adding 50 µl of 2x non-reducing gel loading buffer. Reaction products were 

resolved by SDS-PAGE using 8-16% (w/v) polyacrylamide separating gels and transferred to 

a 0.2 μm pore diameter nitrocellulose membrane (Whatman Schleider & Schuell) by 

electroblotting. Finally, membranes were incubated with a streptavidin-Horseradish peroxidase 

(HRP) antibody (RPM 1231, GE Heathcare, 1:10,000 dilution in 3% TBST- bovine serum 

albumin -BSA solution) or with the anti-pI215L antibody. 

 

2.4. RNA extraction and cDNA synthesis  

 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Courtaboeuf, France) and treated 

with DNAse I (Qiagen) to remove contaminant genomic DNA. RNA concentrations and purity 

were measured using a spectrophotometer (NanoDrop 2000c, Thermo Fisher Scientific, 

Waltham, USA). 200 ng of each RNA sample was reverse transcribed into complementary 

DNA (cDNA) using the Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, 

Switzerland). The obtained cDNA was diluted (1/20) in ultra-pure water and stored at -20°C 

until further use. 

 

2.5. Recombinant plasmids and standard curves  

 

The amplified fragments corresponding to the viral genes (ASFV-I215L, B646L, and CP204L) 

and the housekeeping gene (Cyclophilin A) were cloned into a pGEM-T Easy Vector System 

II (Promega, Madison, USA). Each plasmid was used to transform E. coli DH5α competent 

cells, followed by an incubation step at 37 °C, under selective antibiotic pressure. Recombinant 

plasmids were isolated from bacteria using the Roche High Pure Plasmid Isolation Kit (Roche 

Applied Science, Germany) and quantified by spectrophotometric absorbance (NanoDrop 

2000c). Their corresponding copy number was calculated using the equation: pmol (dsDNA) 

= μg (dsDNA) x 1515 / DNA length in pb (pmol = picomoles, dsDNA = double-strand DNA, 

DNA length in pb = number of base pairs from the amplified fragment; 1 mol = 6,022 x 1023 
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molecules). Finally, the cloned fragments were amplified by PCR and the sequence confirmed 

by DNA sequencing. For each amplification plate, a standard calibration curve was obtained 

for viral genes and for Cyclophilin A to insure the accuracy of the results. Standart curves were 

plotted by following a previously described protocol (Pfaffl, 2001). 

 

2.6. Quantitative PCR 

 

Quantification of ASFV-I215L, B646L and CP204L transcripts was performed by qPCR using 

Maxima SYBR Green PCR Master Mix (Thermo Fisher) according to the manufacturer’s 

instructions [12.5 µl of master mix, 2.5 µl of forward and reverse primers (50 nM each), 5 µl of 

Milli-Q water and 2.5 µl of cDNA)]. All qPCR reactions were performed in the Applied 

Biosystems 7300 Real Time PCR system (Thermo Fisher), and with the following thermal 

profile: initial denaturation at 95°C for 10 min followed by 40 cycles of 15 s at 95°C, 60°C for 

60 s, and a final denaturation step at 65°C for 5 s with a 20°C/s ramp rate and subsequent 

heating of the samples at 95°C with a ramp rate of 0.1°C/s. Quantification of ASFV-I215L, 

B646L, CP204L  and Cyclophilin A mRNA levels was determined by the intersection between 

the fluorescence amplification curve and the threshold line. The crossing point values of each 

plasmid obtained from different known concentrations were plotted in a standard curve used 

to determine the copy number of each transcript. The values were determined using the 

comparative threshold cycle method, which compares the expression of a viral gene 

normalized to the housekeeping gene (Cyclophilin A). The validation of the housekeeping gene 

was confirmed using the ANOVA test, whereas the specificity of the qPCR assays was 

confirmed by the melting curve analysis. The sequences of all primers used in this study are 

shown in Table 2. To quantify viral gene expression, Vero cells seeded onto 30 mm dishes 

were infected with a MOI of 1,5. After 1 hour of adsorption, the virus inoculum was washed off 

with DMEM, and every 2 hours (from 0 to 20 hpi), total RNA extraction was performed from 

one culture dish. Results were expressed as the mean standard error of the mean and were 

obtained from three independent experiments performed in different days, to ensure the 

biological relevance of the results. 
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Table 2. Primers used in the present study. 
 

 

Target Primer 
designation 

Sequence (5´- 3´) Coordinates* Orientation 

ASFV-I215L 215FwE AGACACCTGATAGAGAACCC 157562-157581 Foward 
ASFV-I215L 215FwI TCCAATGTTCCACCAATACCC 157069-157089 Foward 
ASFV-I215L 215RvI TCATCCATCTCTTCATCCTCCTC 156971-156993 Reverse 
Cyclophilin A CycloFw1 AGACAAGGTTCCAAAGACAGCAG - Foward 
Cyclophilin A CycloRev AGACTGAGTGGTTGGATGGCA - Reverse 
Cyclophilin A CycloFw2 TGCCATCCAACCACTCAGTCT - Foward 
VP72 VP72Fw ACGGCGCCCTCTAAAGGT 88273-88290 Foward 
VP72 VP72Rev CATGGTCAGCTTCAAACGTTTC 88322-88343 Reverse 
VP32 VP32Rev TCTTTTGTGCAAGCATATACAGCTT 108162-108186 Foward 
VP32 VP32Fw TGCACATCCTCCTTTGAAACAT 108228-108249 Reverse  
ASFV-I215L 215Fw ACTAGCTAGCATGGTTTCCAGGTTTTTAATAGCA

GAG 
157562-157581 Foward 

ASFV-I215L 215Rv TCCGCTCGAGCTCATCATCCATCTCTTCATCCT
C 

157069-157089 Reverse 

ASFV-I215L C85AFW TATTTACCCTGATGGAAGACTAGCTATCTCTATC 
TTACACGGAGAC 

157336-157381 Foward 

ASFV-I215L C85ARV GTCTCCGTGTAAGATAGAGATAGCTAGTCTTCC 
ATCAGGGTAAATA 

157336-157381 Reverse 

ASFV-I215L C162AFW ATTTTTAAAATATTCTATGTCTTCTGGTGAAGCC 
TCATCTAATGATTTTTTGACAGTCTTTTTA 

   157336-157381 Foward 

ASFV-I215L C162ARV TAAAAAGACTGTCAAAAAATCATTAGATGAGG 
CTTCACCAGAAGACATAGAATATTTTAAAAAT 

157096-157159 Reverse 

ASFV-I215L C189AFW ATACCCAGTGATGCTTATGAAGATGAAGCTGA 
AGAAATGGAGGATG 

157029-157029 Foward 

ASFV-I215L C189ARV CATCCTCCATTTCTTCAGCTTCATCTTCATAAGC 
ATCACTGGGTAT 

157029-157029 Reverse 

*Primer coordinates are relative to Ba71V sequence used has template for primer design. 

 

 

2.7. Antibodies 

 

The purified recombinant pI215L was used to produce a mouse polyclonal antiserum. Briefly, 

young female mice (BALB/c, 4 to 6-week-old) were injected subcutaneously with 100 μg of 

purified pI215L in a mixture with Freund’s complete adjuvant. Following the primary injection, 

two booster injections were administered at 2-week intervals. Finally, the total blood was 

collected 10 days after the second booster injection and sera were aliquoted and stored at -20 

°C until further use for immunoblotting and immunofluorescence studies. The specificity of the 

polyclonal antiserum was tested against purified recombinant ASFV-pI215L and whole 

infected-cells extracts. The immunostaining of pI215L and ASFV-infected cells was achieved 

by incubation with two in-house primary antibodies: mouse anti-pI215L [1:10 in PBST 

(Phosphate Buffered Saline with Tween 20 0.01% v/v), overnight at 4ºC] and swine anti-ASFV 

polyclonal antibody (1:100, 1h, RT). Two secondary fluorescent-conjugated antibodies were 

used as follows: anti-mouse FITC (1:300, sc-2099, Santa Cruz Biotechnology) and anti-swine 

Texas Red (1:500, ab6775, Abcam). Between each antibody incubation, cells were wash twice 

with PBS (5 min) and once with PBST (0.1% v/v, 5 min). All incubations were performed in a 

dark humidified chamber to prevent fluorochrome fading and a mounting medium with DAPI 

http://www.stabvida.net/clients.php
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(4′,6-diamidino-2-phenylindole) was used to detect the cell nucleus and viral factories 

(Vectashield, Vector Laboratories, Peterborough, UK).  

For immunoblot analysis, two primary antibodies (anti-pI215L, 1:100; anti-α-tubulin, 1:1250, 

#2125, Cell Signalling Technology) and two HRP-conjugated secondary antibodies were used 

(anti-rabbit IgG, 1:10000, 4010-05; anti-mouse IgG, 1:30000, 1010-05; both from 

SouthernBiotech). All antibody dilutions were performed in blocking solution and incubated 

according to the manufacturers’ recommendations. 

 

2.8. Immunoblot analysis 

 

Vero cells grown in 30 mm dishes were infected with ASFV-Ba71V isolate (MOI of 5) and when 

indicated, exposed to cytosine arabinoside (50 µg/ml, AraC; Sigma-Aldrich), after the 

adsorption period (1h). Cells were washed twice with PBS and then lysed in ice-cold modified 

RIPA buffer supplemented with protease-inhibitor cocktail (cOmplete, Mini, EDTA-free, Roche) 

and phosphatase-inhibitor cocktail (PhosStop, Roche). Clarified whole-cell lysates harvested 

at 4, 8, 12, 14, 16, 18 and 20 hpi, were then analyzed by western blot technique as previous 

described (Freitas et al., 2016), using the above mentioned antibodies. α–Tubulin was used 

as a loading control. 

 

2.9. Immunofluorescence and microscopy analysis 

 

Vero cells seeded on glass coverslips (1x105/cm2) were infected with the ASFV Ba71V isolate 

(MOI of 10). At 4, 8, 12, and 16 hpi, cells were fixed and subsequently processed as previously 

described (Freitas et al., 2016). Fluorescence images were acquired using an epifluorescence 

microscope equipped with a 40X objective (Leica DMR HC model, Wetzlar, Germany) and 

data sets were acquired with the Adobe Photoshop CS5 software (Adobe Systems, Inc., San 

Jose, USA). 

 

2.10. siRNA assays 

 

Two double-stranded siRNAs (I215L siRNA_I and I215L siRNA_II; ON-TARGETplus, Thermo 

Fisher Scientific, USA) targeting different regions of ASFV-I215L mRNA were designed 

(siDESIGN Center, Thermo Fisher Scientific, USA), based on the full genome sequence of 

ASFV Ba71V isolate (GenBank/EMBL, accession number: ASU18466). One siRNA against 

the GAPDH gene (siRNA-GAPDH; Silencer™ GAPDH siRNA human control number 4605; 

Ambion/Thermo Fisher Scientific) was used as a control. The siRNA sequences targeting 
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ASFV-I215L are shown in Table 3. All siRNAs duplexes were diluted at different final 

concentrations (10, 50 and 100 nM) in serum-free Opti-MEM (Gibco, Life Technology, 

Karlsruhe, Germany) and using 8 μl HiPerfect Transfection reagent (Qiagen, Courtaboeuf, 

France). Mixtures were incubated at room temperature for 20 min to allow the formation of 

transfection complexes, and thereafter, 100 μl of the transfection solution was incubated with 

2x104 Vero cells cultured in 500 μl of DMEM supplemented with 10 % fetal bovine serum (FBS) 

(24-well plate) for 8 h at 37 °C. One hour after infection, the culture medium was removed and 

fresh medium was added to allow recovery of the cells. Next, cells were infected with ASFV 

Ba71V (MOI = 0.1). Then, the virus inoculum was removed one hour after and cells maintained 

at 37 °C for 72 h. The viability of transfected cells was assessed every 8 hours, until 72 hours, 

by phase-contrast microscopy. The two different siRNAs were used individually and their 

antiviral effects were evaluated by the quantification of CP204L and B646L mRNA levels, 

titration of the ASFV genomes and viral progeny, at 4, 8 and 16 hpi. To ensure high RNA 

concentrations for qPCR measurements, the siRNA assays were performed in quadruplicated. 

 

Table 3. siRNA sequences to knockdown expression I215L. 
 

Target siRNA 
designation 

Sequence (5´- 3´) Target coordinates* Orientation 

ASFV-I215L I215L_I GUGAAGAAAUGGAGGAUGAUU 565-584 Sense 
ASFV-I215L I215L_II GCUAAAAGCUACCGUAAAUUU 394-412 Sense 

*siRNA coordinates according to the relative position in gene nucleotide sequence (start at position 1, 

ATG).   

 

2.11. Quantification of ASFV genomes by qPCR 

 

Viral DNA was extracted from Ba71V-infected Vero cells (MOI of 0.1) transfected separately 

with two siRNAs targeting I215L, at 72 hours post infection (hpi), using the High Pure Viral 

Nucleic Acid Kit (Roche). The number of viral genomes was determined by quantitative PCR 

as described by King et al., 2003. Mock-infected and infected cells transfected with siRNA-

GAPDH were used as controls. 

 

2.12. Statistical analysis 

 

The Kolmogorov-Smirnov test was used to check the normal distribution of the results from the 

RNAi assays (mRNA expression, ASFV genome copy number and virus titer). Differences 

between experimental groups were assessed using the non-parametric Wilcoxon-Mann-

Whitney test, because a normal distribution was not obatained. p-values less than 0.05 were 
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considered significant and the GraphPad Prism software (version 7.02) was used to perform 

statistical analysis. 

3. Results 

3.1. pI215L acts as an E2-ubiquitin conjugating enzyme, binding one or two ubiquitin 

molecules at the cysteine 85, in an ATP- and Mg2+-dependent manner 

 

Considering the sequence homology (49% identity) between the ASFV-pI215L (accession 

number: AJZ77128.1) and human E2-ubiquitin conjugating enzyme G2 (accession number: 

CBW46807.1), we aimed to confirm previous results which have shown that pI215L has the 

ability to bind ubiquitin, to determine the optimal conditions required for the formation of the 

thioester bond, to identify the cysteine residue of pI215L essential for the formation of the 

Ub-conjugates and to analyze the pI215L-ubiquitin conjugates forms present in detergent 

insoluble/soluble protein fractions collected from ASFV-infected cells. Immunoblot analysis 

showed that pI215L only binds to pre-activated ubiquitin (by an E1 enzyme, UBA1) and in 

the presence of ATP and Mg2+, similarly to the human E2-ubiquitin conjugating enzyme 

UbcH5b, used as control (Fig.7A). Two distinct biotinylated-ubiquitin conjugates 

corresponding to mono-ubiquitinated (≈36 KDa, pI215L-Ub1) and di-ubiquitinated (≈47 KDa, 

pI215L-Ub2) species were detected. Since the upper band (pI215L-Ub2) can result from 

multi-ubiquitinated pI215L forms (two monoubiquitinations in two different cysteine 

residues) and/or from poly-ubiquitinated forms of pI215L (di-ubiquitination of one or more 

cysteine residues), the ubiquitin wild type was substituted by a commercial ubiquitin mutated 

in the seven acceptor lysine residues (UbNOK), thus preventing ubiquitin chain elongation 

(polyubiquitination). The results obtained show a loss of the upper band when the Ub NOK 

mutant replaces the ubiquitin wild type (Fig.7B), indicating that pI215L has oligoubiquitin 

chains that contain only two ubiquitin molecules, not being multi-ubiquitinated. Taking in 

consideration these results, we next investigated if ubiquitin binds to pI215L using the same 

cysteine or not. Although cysteine residue at position 85 is conserved in all ASFV isolates 

and in eukaryotic E2-ubiquitin conjugating enzymes, and annotated as the putative catalytic 

residue of pI215L, its importance in ubiquitin ligation in unknown, as well as the Cys-162 

and Cys-189 residues. In order to evaluate if these residues are responsible for the 

formation of mono- and di-ubiquitinated pI215L conjugates, three single point mutants were 

generated by site-directed mutagenesis: pI215LC85A, pI215LC162A and pI215LC189A. 

Immunoblot results showed that replacement of the sulfur containing cysteine at position 85 

by a nonpolar amino acid (alanine) totally inhibits the formation of ubiquitin pI215L 

conjugates contrasting with the pI215Lwt and the single point mutants: pI215LC162A and 

pI215LC189A (Fig.7C). To investigate if a transesterification reaction mediates the transfer of 

ubiquitin between the E1-ubiquitin activating enzyme and cysteine-85 present at the active 

site of pI215L, reaction mixtures were incubated with the 2-mercaptoethanol (a reducing 
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agent) and, as expected, the ubiquitin pI215L conjugates become lost after a short 

incubation period, indicating that ubiquitin binds to pI215L through a thioester bond (data 

not shown). Further experiments to characterize the binding activity of pI215L revealed that 

mono-ubiquitinated and di-ubiquitinated species were detectable in a wide range of 

temperatures, although their formation seems to be favored at 37 °C (Fig.7D). When the 

reaction mixtures were incubated at different pH values, the E2-ubiquitin conjugating activity 

of pI215L was maximal at a pH value of 7.5, with the mono-ubiquitinated species not being 

detected at pH values below 4 or above 9. In addition, an upper band corresponding to poly-

ubiquitinated forms was detected in acidic conditions and an almost complete absence of 

ubiquitin-conjugating activity was found at pH values of 14 (Fig.7E). Interestingly, the 

formation of di-ubiquitinated conjugates was identified after short incubation times (e.g. 

1 min), whereas mono-ubiquitinated pI215L forms were only detected at longer incubation 

times (Fig.7F). Finally, to better characterize the pI215L E2-ubiquitin conjugating activity, 

reaction mixtures were incubated with soluble and insoluble protein fractions prepared from 

mock infected and Ba71V-infected cells (6 and 16 hpi). Results revealed that pI215L has 

two distribution pools, with three species of pI215L-ubiquitin conjugates being detectable in 

the detergent soluble protein fraction (Fig.7G) and only a faint band corresponding to di-

ubiquitinated forms was observed in insoluble protein fractions (Fig. 7G, asterisks). 
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Figure 7. pI215l acts as an E2-ubiquitin conjugating enzyme. 

 

 

(A) Results from an in vitro ubiquitination assay showed that recombinant pI215L binds one or two 
ubiquitin molecules, in an ATP- and Mg2+-dependent manner, and in the presence of an E1 ubiquitin-
activating enzyme (UBA1). Reaction mixtures were incubated 2 hours at 37 C, quenched with a non-
reducing protein loading buffer, and then subjected to polyacrylamide gel electrophoresis. (B) When the 
ubiquitination assay was performed using an ubiquitin that is mutated in all lysine residues (UbNoK), the 
di-ubiquitinated forms of pI215L were not detected. (C) The residue cysteine-85 is essential for the E2-
like activity of pI215L. Site-directed mutagenesis revealed that replacement of Cys-85 by an alanine 
residue led to an absence of ubiquitinated species, whereas the substitution of the Cys-162 or Cys-189 
residue does not hamper the formation of ubiquitinated forms of pI215L. (D) pI215L forms thioester 
bonds with ubiquitin in a wide range of temperatures, although mono-ubiquitinated forms of pI215L were 
less detectable at 4 °C and 24 °C. (E) pI215L binds ubiquitin in a broad range of pH values, with mono-
ubiquitinated forms only found at a pH value of 7.5. (F) Poly-ubiquitinated forms of I215L were detected 
after a short incubation period of 1 min, whereas the mono-ubiquitinated forms were detected later 
(5 min), showing increased concentrations in longer incubation times (e.g. 30, 60 minutes). (G) Mono- 
and poly-ubiquitinated forms of pI215L were mainly found in the Triton X-100-soluble fractions harvested 
at 6 and 16 hpi. In detergent-insoluble fractions, only the di-ubiquitinated form of pI215L was faintly 
detected (asterisks). Blots of Fig. 1(D to F) were cropped to improve clarity, full-length blots are 
presented in supplementary Figure S1. Fig. 1(G) is composed by two individual blots obtained from 
soluble and insoluble fractions. 
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3.2. ASFV-I215L gene encodes for a very early protein that localizes in viral factories 

and host cell nucleus 

 

qPCR results revealed that ASFV-I215L gene is actively transcribed from 2hpi onwards 

(Fig.8A), showing two transcription peaks at early and late infection time points (2 and 16 hpi), 

suggesting that pI215L is involved in different phases of viral life cycle. However, ASFV-I215L 

mRNA levels were much lower than the ones found in two viral genes that encode for structural 

proteins and were used as controls (the early CP204L viral gene and the late B646L viral 

gene). In order to ensure that normalized mRNA levels of three viral genes are comparable, 

only qPCR reactions with efficiency values ranged from 90 to 91% and showing R2 

values > 0.987 were considered. 

The immunoblot analysis showed that pI215L is detectable in ASFV-infected Vero cells from 4 

hpi onwards (Fig.8B), increasing its concentration throughout the infection, in accordance with 

I215L mRNA levels. As expected, pI215L was detected in whole extracts of infected cells 

exposed to cytosine arabinoside (AraC), an inhibitor of ASFV DNA replication and of late 

transcription phase, supporting that pI215L is an early viral protein (Fig.8B). In parallel, 

immunostaining studies revealed that pI215L accumulates in viral cytoplasmic factories, 

colocalizes with other ASFV proteins and shows a diffuse nuclear pattern (Fig.8C), from 8 hpi 

onwards. 
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Figure 8. ORF I215L encodes an early viral protein that accumulates in viral factories 

 

 

(A) I215L transcripts were detected from 2 hpi onwards showing a maximum peak at 16 hpi. The 
mRNA levels of CP204L (vp32) and B646L (vp72) were measured in paral lel and used as controls 
of early and late viral gene expression, respectively. Results are shown as mean ± standard error by 
dividing the number of transcripts of each viral gene by the number of Cyclophilin A mRNA molecules 
(housekeeping gene), obtained from three independent experiments run in duplicate. (B) ASFV-
I215L gene encodes for an early protein detectable from 4hpi onwards, with expressing levels 
unchanged by the AraC treatment. Vero cells infected with ASFV/Ba71V isolate (MOI of 5) and 
harvested at the indicated time points. The cytosine arabinoside treatment (AraC, 50 µg/ml) was 
performed after the initial viral adsorption period (1 hour) and cells were collected at 20 hpi. (C) Vero-
infected cells (MOI = 2) were fixed (4, 8, 12 and 16 hpi), immunostained and analyzed by fluorescent 
microscopy. pI215L was detected from 8 hpi onwards, being recruited to viral factories, co-localizing 
with other viral proteins (e.g. pA104R and VP72, data not shown) and showing a faint distribution 
pattern in cell nucleus. In the merged images, pI215L, ASFV and DAPI staining is shown in green, 
red and blue, respectively. Representative images of at least three independent experiments are 
shown. 
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3.3. Knockdown of pI215L impairs viral infection 

 

Considering the in vitro results, and the evidences that ASFV-I215L expression occurs during 

infection, siRNAs experiments were conducted to further explore the role of pI215L during 

infection. In order to avoid off-target effects and ensure the biological significance of the results, 

two siRNAs targeting I215L were used, showing significant knockdown efficiency at 4, 8 and 

16 hpi (from −23% to −40%, Fig.9A). The qPCR analysis also revealed that I215L-knockdown 

cells showed reduced mRNA levels of the late B646L viral gene (up to −57.1%, Fig.9C), when 

compared to control cells (transfected with siRNA against the housekeeping GAPDH gene), 

whereas the transcriptional activity of the early CP204L viral gene was unaltered (Fig.9B). In 

addition, pI215L seems to be involved in ASFV DNA replication, with depleted cells showing 

lower number of viral genomes (−65.83% for siRNA_1, −64.87% for siRNA_2) and lower viral 

progeny (from −68.37% to −99.24%) when compared with Vero cells transfected with siRNA 

against GAPDH (p ≤ 0.05, Fig.10A and B). 

 

Figure 9. siRNAs targeting I215L disrupt late viral transcription. 

 

 

 

(A) siRNAs against I215L significantly reduced its mRNA levels at 4, 8 and 16 hpi in comparison to 
the infected control (p ≤ 0.05). I215L-depleted cells showed significantly lower mRNA levels of the 
ASFV B646L late gene (p ≤ 0.05) (C), although the mRNA levels of the early viral gene CP204L 
(vp32) remained similar to the levels detected in control group (B). Results are shown as 
average ± standard error (AVG ± S.E.), between the number of molecules of each viral transcript and 
the number of Cyclophilin A transcripts (housekeeping gene). Data were obtained from three 
independent experiments run in duplicate. 



 

 39 

Figure 10. Knockdown of I215L mRNA levels inhibits ASFV DNA replication 
andprogeny production. 

 

(A) I215L-depleted cells showed a decreased number of ASFV genomes [1.01 × 109 genomes/ml for 
siRNA_I sequence (−65.83%) and 1.09 × 109 genomes/ml for siRNA_II (−64.87%)] when compared 
to the control group (2.98 × 109 genomes/ml, p ≤ 0.05). Results represent the mean of three 
independent experiments. (B) A statistically significant reduction in viral yield was observed in ASFV-
infected Vero cells (MOI of 0.1) transfected with siRNAs against ASFV-I215L (100 nM), in 
comparison with the GAPDH siRNA-transfected infected cells (between −96.86% and −99.24%; 
1 × 104.88 and 1 × 105.50 versus 1 × 107.00 viral particles/ml; p ≤ 0.05), at 72 hpi. The virus yield of each 
supernatant was calculated from the average of three independent experiments. Error bars represent 
standard error (SE) of the mean values. 
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4. Discussion 

 

For more than 20 years, studies on ASFV have identified the presence a putative E2 Ubiquitin-

conjugating enzyme (Dixon et al., 1994; Hingamp et al., 1995; Rodriguez, Salas, & Viñuela, 

1992; Yáñez et al., 1995), the first to be described in eukaryotic viruses (Dixon et al., 1994; 

Hingamp et al., 1995; Rodriguez et al., 1992; Yáñez et al., 1995). Nowadays, it is well known 

that several viruses modulate the ubiquitin-proteasome system of cells, through different 

mechanisms, as encoding ubiquitin-related enzymes (Isaacson & Ploegh, 2009; Randow & 

Lehner, 2009). However, so far the role of the ubiquitination machinery in ASFV infection 

remains poorly understood, in particular, regarding the function of the viral E2-like protein 

(pI215L). In this study, we showed that pI215L has the capacity to bind one or two ubiquitin 

molecules pre-activated by an E1 ubiquitin-activating enzyme, reinforcing the hypothesis that 

pI215L acts as an E2-like enzyme (Hingamp et al., 1992). This scenario is further supported 

by the loss of a thioester bond between the carboxyl-terminal of ubiquitin molecules and the 

conserved catalytic residue of pI215L identified by mutagenesis analysis (Cys 85), when the 

reducing agent dithiothreitol was added. In addition, the need of ATP and Mg2+ as cofactors, 

mimics the requirements of other E2 ubiquitin-conjugating enzymes (Alonso et al., 2013; 

Hernáez et al., 2016), strengthening the idea that pI215L acts as an E2 ubiquitin-conjugating 

enzyme.  

Moreover, both ubiquitinated forms of pI215L were detected under a wide range of pH values 

(4 to 9), suggesting that pI215L found in the viral particles (Hingamp et al., 1995) may remain 

catalytically active during the cell entry process, which occurs via a low-pH-dependent 

endosomal pathway (Alonso et al., 2013; Hernáez et al., 2016). This catalytic feature may also 

contribute to ensure the E2-like activity of pI215L in the midgut epithelial cells of the tick 

Ornithodoros spp., where the pH levels are lower than 7 (Sojka et al., 2013). In parallel, pI215L-

ubiquitin conjugates were also observed under a broad range of temperatures (4ºC to 42ºC), 

further suggesting that pI215L is active in the disease’s vector and in infected animals (Lvov, 

Shchelkanov, Alkhovsky, & Deryabin, 2015). Interestingly, the di-ubiquitinated species were 

detected earlier (after 1 min of incubation) and in larger amounts than mono-ubiquitinated 

forms of pI215L (after 5-10 minutes). Although the monoubiquitination is well documented for 

E2 enzymes (Li et al., 2009; Petroski & Deshaies, 2005), the formation of di-ubiquitinated forms 

was recently reported in E2 ubiquitin-conjugating enzymes (Hochstrasser, 2006). In this last 

scenario, the ubiquitin chain pre-generated in the E2 active site may be transferred to a specific 

E3 ubiquitin ligase and then to the target protein (Li, Tu, Brunger, & Ye, 2007) or be related to 

a mechanism of E2 autoregulation that may lead to its degradation in the proteasome (David, 

Ziv, Admon, & Navon, 2010). Moreover, the higher amounts of mono- and di-ubiquitinated 

forms detected with detergent-soluble protein fractions, as well as poly-ubiquitinated species, 

suggest that, in cellular context, pI215L may participate in distinct regulation mechanisms, 
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since the ability to generate diverse substrate-ubiquitin structures is essential to target different 

host/viral proteins. Indeed, it is reported that monoubiquitination of several nuclear proteins 

modulates DNA repair and cellular gene expression (Passmore & Barford, 2004; Sadowski & 

Sarcevic, 2010), whereas the polyubiquitination of a target protein occurs via K48 of ubiquitin 

can lead to protein degradation through the 26S proteasome pathway or activated 

phosphatases (Feenstra, Pap, & van Rijn, 2015; Matsuo et al., 2011), or by endocytosis if 

polyubiquitination occurs via K63 residue of ubiquitin. Also noticeable is the distinct pool of di-

ubiquitinated forms detected in detergent-insoluble extracts, probably caused due to the 

pI215L binding affinity to host proteins containing an ARID DNA-binding domain (Bulimo et al., 

2000). 

Results obtained from the ASFV-infected Vero cells revealed that I215L viral gene is 

transcribed throughout infection, showing two transcription peaks (at 2 and 16 hpi), suggesting 

that pI215L may be required at different stages of the viral life cycle (e.g. viral transcription, 

genome replication and viral egress), as reported for other viruses (Fukuyo, Horikoshi, Ishov, 

Silverstein, & Nakajima, 2011). As expected, the pI215L was detected throughout infection 

(from 4 hpi to 20 hpi), even in the presence of AraC, proving that pI215L is an early viral protein 

and corroborating the idea that ubiquitin expression must be tightly regulated during ASFV 

infection (Ferreira, 1996). Immunolocalization studies revealed that pI215L is recruited to viral 

factories, strengthening the hypothesis that this viral E2 ubiquitin-conjugating enzyme is 

involved in viral transcription and/or DNA replication, while its diffuse distribution throughout 

the cytoplasm may be related to its role in ubiquitination of viral proteins and/or host proteins 

involved in nuclear functions (e.g. antiviral responses, DNA damage responses). Finally, 

results from siRNA experiments disclosed that pI215L is involved in the late viral transcription 

with pI215L-knockdown cells showing a lower number of B646L transcripts, while the mRNA 

levels of the early viral gene CP204L remained unchanged in comparison with mock-

transfected Vero cells. Additionally, a decreased number of ASFV genomes (between 63 to 68 

%) and a reduced viral progeny (up to -94%) was detected also in pI215L-depleted cells 

presented, even though siRNAs targeting I215L transcripts exhibited a moderate gene-

silencing efficiency (-23 to -40%). Altogether, these results strongly suggest that ASFV 

genome replication, viral late transcription and progeny production are mediated thought the 

ubiquitin pathway, as reported for other human and swine viruses (Calistri et al., 2014). These 

findings are schematically illustrated in the proposed working model for ASFV-pI215L 

presented as Figure 11. 

In summary, our results showed that pI215L plays a key role in ASFV infection, probably by 

interfering with the ubiquitin machinery and, therefore potentially modulating many viral 

mechanisms (e.g. transcription, replication and encapsidation) and cellular functions (e.g. 

antiviral responses, DNA damage responses, apoptosis), raising the hypothesis that an ASFV 

mutant lacking ORF I215L can be a good candidate for the development of an effective DISC 
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vaccine, a novel vaccination strategy successfully used in other animal viral disease (Matsuo 

et al., 2011) Indeed, an ASFV I215L-defective mutant is expected to enter host cell and to 

express the immediate-early genes products, providing enough antigens to induce a protective 

response in infected pigs and producing a noninfectious progeny that undergo only one cycle 

of replication. As vaccines, these defective viral mutants are designed to combine the safety 

and advantages of inactivated vaccines with the immunogenic activity of live viral vaccines, 

requiring a complementary cell line that expresses pI215L in order to isolate and propagate 

the ASFV mutant obtained by homologous recombination. 

 

Figure 11. Proposed working model of the role of pI215L during ASFV infection. 

 

 

 

Once ASFV enters the host cell, different host mechanisms are subverted in other to generate a 
productive infection. By encoding an E2 ubiquitin-conjugating enzyme (pI215L), ASFV hijacks the 
cellular ubiquitin-proteasome system modulating the function and subcellular localization of host 
proteins and its own proteins. By controlling the ubiquitination status of the cellular proteins, viruses are 
able to evade host antiviral responses by targeting proteins to proteasomal degradation and to modulate 
the activity of viral proteins in different mechanisms. Our model suggests that by downregulating I215L 
expression, a reduction in the abundance of ubiquitin-tagged proteins occurs and consequently causes 
an inhibition of several crucial viral processes (e.g. genome replication, gene transcription, translation, 
egress), as well as host pathways (e.g. antiviral immune response, apoptosis). 
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Abstract 

 

African swine fever virus is complex DNA virus that infects pigs with mortality rates up to 100% 

leading to devastating socioeconomic effects in the affected countries. There is neither a 

vaccine nor a treatment to control ASF. African swine fever virus genome encodes two putative 

SF2 RNA helicases (QP509L and Q706L). In the present study, we found that these two RNA 

helicases do not share a common ancestral besides sharing a sequence overlap. Although our 

phylogenetic studies revealed that they are conserved among virulent and non-virulent 

isolates, it was possible to observe a degree of variation between isolates corresponding to 

different genotypes occurring in distinct geographic regions. Further experiments showed that 

QP509L and Q706L are actively transcribed from 2 hours post infection. Immunoblot analysis 

revealed that both protein co-localized in the viral factories at 12 hours post infection, however, 

QP509L was also detected in the cell nucleus. Finally, siRNA assays uncover the relevant role 

of these proteins during viral cycle progression in particular for the late transcription, genome 

replication and viral progeny (a reduction of infectious particles up to 99.4% when siRNA 

against QP509L was used and 98.4 % for siRNA against Q706L). Thus, our results suggest 

that both helicases are essential during viral infection, highlighting the potential use of these 

enzymes as target for drug and vaccine development against ASF. 
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1. Introduction  

 

African swine fever (ASF) was first described in 1921 by Montgomery (Montgomery, 1921), 

being caused by African swine fever virus a large (≈200nm), enveloped, icosahedral double-

stranded DNA virus, which belongs to the NCLDV group and family Asfarviridae (Tulman et 

al., 2009). In domestic pigs, the African swine fever virus (ASFV) replicates, preferentially, in 

cells of the monocyte lineage causing a broad range of symptoms and lesions, ranging from 

hyperacute to chronic forms of disease, with mortality rates up to 100%. Therefore, ASF leads 

to devastating effects on pig production and animal trade with high economic and social costs 

to affected areas (Costard et al., 2009; Penrith & Vosloo, 2009). 

Besides being endemic in most sub-Saharan countries and in Sardinia, ASF was introduced 

in Georgia (2007) spreading to neighboring countries including Armenia, Azerbaijan, Russia 

(Gulenkin, Korennoy, Karaulov, & Dudnikov, 2011; Sánchez-Vizcaíno et al., 2015) and, 

Ukraine and Belarus (from 2012 to 2013). In 2014, ASF was reported in Lithuania, making the 

first arrival of the disease in European Union in decades, before outbreaks in Poland, Estonia 

and Latvia (Stokstad, 2017). During 2016, ASF was declared in Moldova and last year in Czech 

Republic, Romania, Hungary and Belgium (August 2018) putting the European Union on high 

alert. Also during the last months of 2018, and for the first time, ASF was identified in several 

cities of China, and also in Vietnam during 2019 (WAHID, 2019.). Since neither, a vaccine nor 

a treatment is available, the control of the disease rely on sanitary measures, including 

stamping out and trade bans of animals and pork products. 

Under this scenario, further studies are needed towards the identification of ASFV genes that 

regulate viral replication and transcription, in order to develop an efficient vaccine and/or to 

use as targets for antiviral agents (Arias et al., 2017; Galindo & Alonso, 2017). In other virus, 

RNA helicases have been described as essential for infection, modulating RNA-RNA and 

RNA-protein interactions, gene expression, viral egress and host antiviral responses (Frick & 

Lam, 2006; Ranji & Boris-Lawrie, 2010), being used for novel antiviral strategies (Briguglio et 

al., 2011; Ranji & Boris-Lawrie, 2010; Shuman, 1992). Interestingly, ASFV encodes for five 

putative RNA helicases, including the DEAD-box ATP-dependent RNA helicases QP509L and 

Q706L (Arias et al., 2017; Frick & Lam, 2006; Galindo & Alonso, 2017; Ranji & Boris-Lawrie, 

2010). Although in silico analysis revealed that QP509L is orthologous to the vaccinia virus 

A18R helicase (S. A. Baylis et al., 1993; Roberts et al., 1993; Rodríguez & Salas, 2013) and 

Q706L to the vaccinia virus D6/D11 helicase (Rodríguez & Salas, 2013; Yáñez et al., 1993), 

no additional information is available on these viral enzymes. Therefore, in this study, we 

investigated the monophyly of the five RNA helicases encoded by ASFV and explore the 

phylogenetic relationship of the QP509L and Q706L among different ASFV isolates and with 

DEAD-box ATP-dependent RNA helicases from other nucleocytoplasmic large DNA viruses 

(NCLDV), (Yutin & Koonin, 2012). The dynamics of the transcription and expression patterns 
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of ASFV-QP509L and ASFV-Q706L RNA helicases were evaluated during the infection, as 

well as their intracellular distribution. Finally, the involvement of each ASFV RNA helicases in 

viral transcription, genome replication and progeny production was assessed by siRNA-

mediated silencing. 

 

2. Material and methods 

2.1. Phylogenetic analysis  

 

 

Amino acid sequences of the five ATP-dependent RNA helicases of ASFV (QP509L, Q706L, 

A859L, B962L and D1133L) were obtained by in silico translation using genomic sequences 

of different ASFV isolates available in GenBank (ASFV/Ba71V, NC_001659.1; ASFV/Benin 

97/1, AM712239.1; ASFV/L60, KM262844.1; ASFV/OURT 88/3, AM712240.1; ASFV/Mkuzi 

1979, AY261362.1; ASFV/Georgia 2007/1, FR682468.1; ASFV/Malawi Lil/20/1, AY261361.1; 

ASFV/Kenya 1950, AY261360.1; ASFV/NHV 1968, KM262845.1; ASFV/Tengani 62, 

AY261364.1; ASFV/Warmbaths 2003, AY261365.1; ASFV/Pretorisuskop/96/4, AY261363.1; 

ASFV/Warthog 2004, AY261366.1). Similarly, the amino acid sequences of other superfamily 

2 (SF2) RNA helicases encoded by different NCLDV (Ranavirus, ORF55, ASQ42908.1; 

Bathycoccus sp. RCC1105 virus BpV1, BpV1_050, NC_014765.1; Acanthocystis turfacea 

Chlorella virus, TN603.4.2_736L, JX997186.1; Paramecium bursaria Chlorella virus CVM-1, 

CVM-1_251R, JX997163.1; Vaccinia virus, A18R, NC_006998.1; Vaccinia virus, D11, 

NC_006998.1; Marseillevirus marseillevirus, MAR_ORF241,NC_013756.1; Ostreococcus 

tauri virus, OtV6_066, JN225873.1) and by pig (Sus scrofa, DDX58, AAG09428.1) were also 

retrieved from GeneBank. 

MAFFT software (version 7, https://mafft.cbrc.jp/alignment/server/) was used to perform 

sequence alignments (employing default parameters) (Katoh, Rozewicki, & Yamada, 2017; 

Kuraku, Zmasek, Nishimura, & Katoh, 2013) and MEGA 7 software was used to selected the 

best model (ML) for phylogenetic tree construction based on amino acid alignments(Kumar, 

Stecher, & Tamura, 2016; Nei & Kumar, 2000). Maximum likelihood trees were constructed by 

adopting Le_Gascuel_2008 model with 1000 bootstrap replicates, using MEGA 7 (Kumar et 

al., 2016; Le & Gascuel, 2008). 

 

2.2. Cells and virus 

 

Vero E6 cells obtained from the European Authenticated Cell Cultures Collection (ECACC, 

Salisbury, UK) were maintained in DMEM (Dulbecco Modified Eagle's minimal essential 

medium) supplemented with L-GlutaMax, 10% heat-inactivated fetal calf serum, 1x non-
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essential amino acids and penicillin/streptomycin at 100 units/ml (all from Gibco, Life 

Technology, Karlsruhe, Germany). All experiments were conducted on actively replicating sub 

confluent cells, grown at 37 °C, under a 5% CO2 humidified atmosphere (≥95% air). The Vero-

adapted ASFV strain (Badajoz 1971, Ba71V) was used in all infections and propagated as 

previously described (Carrascosa et al., 2011). For viral titration, culture supernatants 

harvested at 72 hours post infection (hpi) were used to infect new cell monolayers, in 10-fold 

serial dilutions, during 5 days (Spearman-Kärber endpoint method) using 96-well plates. 

Cytopathic effect was evaluated and the results were expressed as TCID50/ml. 

 

2.3. RNA extraction and cDNA synthesis 

 

For qPCR analysis, total RNA was extracted from ASFV-infected Vero cells (MOI=1.5) at 

different time points of infection, using the RNeasy Mini Kit (Qiagen, Courtaboeuf, France) and 

with possible DNA contaminants degraded by a treatment in column with DNAse I (Qiagen). 

RNA concentrations and purity were measured using a spectrophotometer (NanoDrop 2000c, 

Thermo Fisher Scientific, Waltham, USA) and only RNA samples showing high purity 

(A260/A280 ratio between 1.8 and 2.0) were used. 200 ng of each total RNA sample was 

reverse transcribed (Transcriptor First Strand cDNA Synthesis Kit, Roche, Basel, Switzerland), 

according to the manufacturer’s instructions. The obtained cDNA was diluted (1/20) in ultra-

pure water and stored at -20 °C until further use. 

 

2.4. Recombinant plasmids 

 

The amplified fragments (ASFV-QP509L, ASFV-Q706L, ASFV-CP204L, ASFV-B646L and 

Cyclophilin A) were cloned into a plasmid vector (pGEM-Teasy Vector System II, Promega, 

Madison, USA), and used to transform DH5α competent cells. Then, plasmids were isolated 

from bacteria using the Roche High Pure Plasmid Isolation Kit (Roche Applied Science, 

Germany), according to the manufacturer's manual. To determine whether the cloned DNA 

fragments were incorporated into vectors, the inserts were amplified by PCR and their 

sequences were confirmed. Following this step, the concentration of each plasmid preparation 

was determined by spectrophotometric absorbance (NanoDrop 2000c). Their corresponding 

copy number was calculated using the equation: pmol (dsDNA) = μg (dsDNA) x 1515 / DNA 

length in pb (pmol = picomoles, dsDNA = double-strand DNA, DNA length in pb = number of 

base pairs from the amplified fragment; 1 mol = 6.022 x 1023 molecules). 
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2.5. Standard curves optimization 

 

Ten-fold serial dilutions of each plasmid (ASFV-QP509L, ASFV-Q706L, ASFV-CP204L, 

ASFV-B646L and Cyclophilin A), ranging from 1x10-1 to 1x10-9 were initially used in duplicate 

to generate the standard curves in two different days. Threshold cycle (Ct) values obtained 

from each dilution were plotted against the logarithm of their initial template copy numbers and 

corresponding standard curves were generated by linear regression of the plotted points. From 

the slope of each standard curve, PCR amplification efficiency (E) was calculated according 

to the equation: E (%) = (10-1/slope-1) x 100% (Pfaffl, 2001). 

 

2.6. Quantitative PCR 

 

Quantification of ASFV-QP509L, ASFV-Q706L, ASFV-CP204L and ASFV-B646L transcripts 

were performed by qPCR using the Maxima SYBR Green PCR Master Mix (Thermo Fisher), 

according to the manufacturer’s instructions [12.5 µl of master mix, 2.5 µl of forward and 

reverse primers (50 nM each), 5 µl of Milli-Q water and 2.5 µl of cDNA)]. All qPCR reactions 

were performed in Applied Biosystems 7300 Real Time PCR system (Thermo Fisher), using 

the following thermal profile: 10 min at 95°C for initial denaturation; 40 cycles of 15 s at 95°C 

and 60 s at 60°C, followed by a final denaturation step of 5 s at 65°C with a 20°C/s ramp rate 

and subsequent heating of the samples to 95°C with a ramp rate of 0.1°C/s. Quantification of 

ASFV-QP509L, ASFV-Q706L, ASFV-CP204L, ASFV-B646L and Cyclophilin A mRNA levels 

were determined by the intersection between the fluorescence amplification curve and the 

threshold line. The crossing point values of each plasmid obtained from different known 

concentrations were plotted in a standard curve used to determine the copy number of each 

transcript. The values were determined using the comparative threshold cycle method, which 

compares the expression of a target gene normalized to the reference gene (Cyclophilin A). 

The validation of the reference gene was confirmed using the ANOVA test (p<0.05) and the 

specificity of the qPCR assays was confirmed by melting curve analyses. Sequences of the 

primers used in this study are shown in Table 4. To characterize the transcription pattern of 

both ASFV RNA helicases, Vero cells grown onto 30 mm dishes were infected (MOI=1.5) and 

collected at indicated time points (0, 2, 4, 6, 8, 10, 12, 16 and 20 hpi), for total RNA extraction. 

Results represent the mean value of two independent experiments performed in different days. 
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Table 4. Primers used in the present study. 

 

Target Primer 
designation 

Sequence (5´- 3´) Target 
coordinates* 

Orientation 

ASFV-QP509L 509FwE GTGCCTGAGAAAGAGCGGTA 142562-142581 Forward 
ASFV-QP509L 509FwI GTCCCACCACAACCTTTTCC 142927-142908 Forward 
ASFV-QP509L 509RvI AATACACACAGGGCTAACGAAGT 142870-142848 Reverse 
ASFV-Q706L 706FwE TCCCCGTCCAAATAGAAGCA 142211-142192 Forward 
ASFV-Q706L 706FwI CAGGGGGAAAACACACGGG 142050-142032 Forward 
ASFV-Q706L 706RvI AAGTGAGATGGCAAGCGACA 154439-154420 Reverse 
Cyclophilin A CycloFw1 AGACAAGGTTCCAAAGACAGCAG - Forward 
Cyclophilin A CycloRev AGACTGAGTGGTTGGATGGCA - Reverse 
Cyclophilin A CycloFw2 TGCCATCCAACCACTCAGTCT - Forward 
ASFV-B646L VP72Fw ACGGCGCCCTCTAAAGGT 88273-88290 Forward 
ASFV-B646L VP72Rev CATGGTCAGCTTCAAACGTTTC 88322-88343 Reverse 
ASFV-CP204L VP32Rev TCTTTTGTGCAAGCATATACAGCTT 108162-108186 Forward 
ASFV-CP204L VP32Fw TGCACATCCTCCTTTGAAACAT 108228-108249 Reverse  
ASFV-QP509L 509FwSacI1 GAGCTCATGGCTTACAATAATGCAGCGTG 143213-143194 Forward 
ASFV-QP509L 509RvXhoI1 CTCGAGAGGGCTAACGAAGTCAGGA 142875-142857 Reverse 
ASFV-QP509L 509FwSacI2 GAGCTCATGTACGGGCGTAGAGGCA 142529-142514 Forward 
ASFV-QP509L 509RvXhoI2 CTCGAGTTTGGACGGGGAAGGA 142215-142200 Reverse 
ASFV-Q706L 706FwNdeI1 CATATGATGTATGAAAGATTCTACACCGCTTA

TG 
141540-141516 Forward 

ASFV-Q706L 706RvXhoI1 CTCGAGTTTTAGCATGCGCACTATTTT 141108-141088 Reverse 
ASFV-Q706L 706FwNdeI2 CATATGATGTCTAAAACGGGAGCTGAGG 140742-140724 Forward 
ASFV-Q706L 706RvXhoI2 CTCGAGTTCGTAAAAGGTATAGCCTAATCCT

AC 
140241-140215 
 

Reverse 

*Primer coordinates are relative to Ba71V sequence used has template for primer design. 

 

 

2.7. Cloning, expressing and purifying recombinant fragments of ASFV-QP509L and 

ASFV-Q706L 

 

In order to produce antibodies against ASFV-QP509 and ASFV-Q706L, the hydrophobicity 

profile of both viral proteins was analyzed to select two distinct hydrophilic regions in each 

ORF. Taking into account this information, specific primers were designed to include in the 

5´and 3´, a restriction enzyme site to facilitate vector insertion [ASFV-Q706L, clone using NdeI 

(5’) and XhoI (3’); ASFV-QP509L, clone using SacI (5’) and XhoI (3’)] and the correspondent 

DNA fragments were amplified by PCR. The PCR reactions were performed as follows: 1x 

98ºC for 2’, 30x 98ºC for 30’’, 72ºC for 1’10’’ plus one extension step of 72ºC for 10’. After size 

confirmation in agarose gel (1%), the fragments were purified and DNA concentration was 

quantified (NanoDrop 2000c). The DNA fragments were inserted in the pET24a expression 

vector (Novagen) in order to add a C-terminal 6xHis tag to allow purification. Two clones per 

ORF were sequenced to confirm eventual mutations and plasmids transformed into the E.coli 

strain BL21(DE3)-pLysS (Novagen) and grown in LB medium (10 g tryptone, 5 g yeast extract, 

5 g NaCl, pH 7.2), supplemented with kanamycin (30 μg/ml) plus chloramphenicol (34 μg/ml), 

at 37 °C, with shaking at 200 rpm, until the OD600 reached 0.1-0.2. Protein expression was 

induced by adding isopropyl-β-D-1-thiogalactopyranoside (IPTG, 1 mM, 5 h). After this step, 

bacterial cells were harvested by centrifugation (10,000 g for 10 min, 4 °C), and washed with 

sterile water. The pellet was resuspended in binding buffer (20 mM sodium phosphate, 500 

mM NaCl, 20 mM imidazole, pH 7.4) and cells were lysed with a lysis solution (0.2 mg/ml 
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lysozyme, 20 µg/ml DNAse and 1mM PMSF) and sonicated for 5x5 minutes on ice (5 cycles, 

70% amplitude). Lysates were then centrifuged at 3000g for 15 minutes and pellets were 

discarded. The extracts were thereafter filtered (0.45 µm syringe filter Rotilabo®, CarlRoth) 

and incubated with Ni Sepharose 6 Fast Flow slurry (GE Healthcare) for 1 hour. The mixture 

was loaded onto a PD-10 column (GE Healthcare), washed with binding buffer solution (20 

mM sodium phosphate, 500 mM NaCl, pH 7.4) containing increasing concentrations of 

imidazole (40, 60 and 80 mM), and the recombinant fragments of pQP509L and pQ706L were 

eluted with an elution buffer (20 mM sodium phosphate, 500 mM NaCl, 500 mM imidazole, pH 

7.4). Finally, fractions were collected in low-binding tubes (Maxymum Recovery® TM tubes, 

Axygen, Corning Life Sciences, Amsterdam, The Netherlands), analyzed by SDS-PAGE and 

the recombinant proteins, purified under native conditions and stored at -80 °C until further 

use. 

 

2.8. Antibody production 

 

Briefly, young female mice (BALB/c, 4 to 6-week-old) were injected subcutaneously with 100μg 

of each purified fragment of ASFV-pQP509L and ASFV-pQ706L, in a mixture with Freund’s 

complete adjuvant. Following the primary injection, two booster injections were administered 

at 2-week intervals. After 10 days from the date of the second booster injection, the total blood 

was collected and sera were aliquoted and stored at -20 °C until further use. The specificity of 

the polyclonal antiserum was tested against purified recombinant ASFV-pQP509L and ASFV-

pQ706L and whole infected-cells extracts. 

 

2.9. Immunofluorescence and microscopy analysis 

 

Vero cells seeded on glass coverslips (1x105/cm2) were mock-infected or infected with the 

ASFV Ba71V isolate (MOI of 1). At 8, 12, and 16 hpi, cells were fixed in 3.7% paraformaldehyde 

and HPEM buffer [25 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 60 

mM PIPES (piperazine-N,N′-bis 2-ethanesulfonic acid), 10 mM EGTA (ethylene glycol 

tetraacetic acid) and 1 mM MgCl2] for 15 min, at room temperature, and permeabilized with 

PBS/Tx-100 (0.5%, v/v) during 5 min. Following this step, cells were washed in PBS, blocked 

with PBST/BSA (3%, w/v) for 30 min and incubated with the appropriate primary and secondary 

antibodies. The immunostaining of ASFV-pQP509L and ASFV-pQ706L and ASFV-infected 

cells was achieved by incubation with two in-house primary antibodies: mouse anti-ASFV-

pQP509L and anti-ASFV-pQ706L (1:10 in PBST, 0.01%, overnight, 4ºC) and swine anti-ASFV 

polyclonal antibody (1:100, 1h, RT). Two secondary fluorescent-conjugated antibodies were 

used as follows: anti-mouse FITC (1:300, sc-2099, Santa Cruz Biotechnology) and anti-swine 
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Texas Red (1:500, ab6775, Abcam). Between each antibody incubation, cells were wash twice 

with PBS (5 min) and once with PBST (0.1% v/v, 5 min). All incubations were performed in a 

dark humidified chamber to prevent fluorochrome fading and a mounting medium with DAPI 

(4′,6-diamidino-2-phenylindole) was used to detect the cell nucleus and viral factories 

(Vectashield, Vector Laboratories, Peterborough, UK).  

Fluorescence images were acquired using an epifluorescence microscope equipped with a 

40X objective (Leica DMR HC model, Wetzlar, Germany) and data sets were acquired with the 

Adobe Photoshop CS5 software (Adobe Systems, Inc., San Jose, USA). Images were 

subsequently processed using the ImageJ open source software (version IJ 1.48g, National 

Institutes of Health, Bethesda, MD, USA). 

 

2.10. Immunoblot analysis 

 

Vero cells grown in 30 mm dishes were infected with the ASFV-Ba71V isolate (MOI of 5) and 

when indicated, exposed to cytosine arabinoside (50 µg/ml, AraC; Sigma-Aldrich), after the 

adsorption period (1h). Following this step and before protein extraction, mock-infected, 

infected and AraC-treated infected-cells were washed twice with PBS and then lysed in ice-

cold modified RIPA buffer [25 mM Tris, 150 mM NaCl, 0.5% (v/v) NP40, 0.5% (w/v) sodium 

deoxycolate, 0.1% (w/v) SDS, pH 8.2] supplemented with a protease-inhibitor cocktail 

(cOmplete, Mini, EDTA-free, Roche) and a phosphatase-inhibitor cocktail (PhosStop, Roche). 

Clarified whole-cell lysates harvested at 4, 8, 12, 14, 16, 18 and 20 hpi, were subjected to 

SDS-PAGE gel electrophoresis using 8-16% (w/v) polyacrylamide separating gels (Bio-Rad), 

and transferred to a 0.2 μm pore diameter nitrocellulose membrane (Whatman Schleicher & 

Schuell) by electroblotting. Blot membranes were then blocked with phosphate-buffered saline 

plus 0.05% (v/v) Tween-20 (PBST), containing 5% (w/v) of BSA (Sigma-Aldrich), during 1 hour 

at RT, and thereafter incubated with specific primary antibodies (RT,1 h), followed by a wash 

step with PBST (3x 10 min). The membranes were then incubated with appropriate secondary 

antibodies conjugated with HRP, for 1 hour, at RT. Finally, a wash step in PBST (3x 10 min) 

was performed before protein detection with a chemiluminescence detection kit (Pierce® ECL 

Western Blotting Substrate, Thermo Scientific), on Amersham Hyperfilm ECL (GE Healthcare). 

α-Tubulin was used as a loading control. For blot analysis, three primary antibodies (anti- 

ASFV-pQP509L and ASFV-pQ706L, 1:100; anti-α-tubulin, 1:1250, #2125, Cell Signalling 

Technology) and two HRP-conjugated secondary antibodies were used (anti-rabbit IgG, 

1:10000, 4010-05; anti-mouse IgG, 1:30000, 1010-05; both from SouthernBiotech). All 

antibody dilutions were performed in blocking solution and incubated according to the 

manufacturers’ recommendations. 
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2.11. siRNA assays 
 

Four double-stranded siRNAs (ON-TARGETplus, Thermo Fisher Scientific) targeting different 

sequence regions of the ASFV-QP509L and ASFV-Q706L transcripts were designed 

(siDESIGN Center, Thermo Fisher Scientific), based on the full genome sequence of ASFV 

Ba71V isolate (GenBank/EMBL, accession number: ASU18466). One siRNA against the 

GAPDH gene (siRNA-GAPDH; Silencer™ GAPDH siRNA human control number 4605; 

Ambion/Thermo Fisher Scientific) was used as a control in all siRNA assays. The siRNA 

sequences used in the study are shown in Table 5. All siRNAs duplexes were diluted at 

different final concentrations (10, 50 and 100 nM) in serum-free Opti-MEM (Gibco) and using 

8 μl HiPerfect Transfection reagent (Qiagen). Mixtures were incubated at room temperature 

for 20 min to allow the formation of transfection complexes. Thereafter, 100 μl of the 

transfection solution was incubated with 2x104 Vero cells cultured in 500 μl of DMEM 

supplement with 10 % FBS in a 24-well plate, during 8h. One hour before infection, the culture 

medium was removed and fresh medium was added to allow recovery of the cells. Next, cells 

were infected with ASFV Ba71V (MOI = 0.1) during one hour and harvested at 37 °C for 16 hpi 

for quantification of the viral transcripts or 72 h for quantification of genome copy number and 

viral progeny titration. Due to economic and practical reasons only the two siRNAs duplexes 

that showed higher inhibitory results (CPE reduction), were used for these assays. To ensure 

high RNA concentrations, the siRNA assays were performed in quadruplicated and the qPCR 

assay was performed in duplicate to improve the biological relevance of the results. The ASFV-

genome copy number was estimated by measuring B646L gene using qPCR and TaqMan 

probes (King et al., 2003).  

Table 5. siRNA sequences to knockdown ASFV-QP509L and ASFV-Q706L transcripts. 

Target siRNA 
designation 

Sequence (5´- 3´) Target 
coordinates* 

Orientation 

ASFV-QP509L QP509_IF GCAAGAAGCCUGAGCAGUUUUUU 596-614 Sense 
ASFV-QP509L QP509_IR AAAACUGCUCAGGCUUCUUGCUU 596-614 Anti-sense 
ASFV-QP509L QP509_IIF AGCAAGAAAUGGUCGAUAAUUUU 302-320 Sense 
ASFV-QP509L QP509_IIR AAUUAUCGACCAUUUCUUGCUUU 302-320 Anti-sense 
ASFV-Q706L Q706_IF GGAUAAGGCCCGAGAGGAUUUUU 1566-1584 Sense 
ASFV- Q706L Q706_IR AAAUCCUCUCGGGCCUUAUCCUU 1566-1584 Anti-sense 
ASFV-Q706L Q706_IIF CCGAAAUGCUAACAGUAAAUUUU 1043-1061 Sense 
ASFV- Q706L Q706_IIR AAUUUACUGUUAGCAUUUCGGUU 1043-1061 Anti-sense 

*siRNA coordinates according to the relative position in gene nucleotide sequence (start at position 1, ATG). 

 

2.12. Statistical analysis 

 

The GraphPad Prism software (version 7.02) was used to perform statistical analysis. The 

Kolmogorov-Smirnov test was used to verify the normal distribution of data from the RNAi 

assays (mRNA expression, ASFV genome copy number and virus titre) and differences 

between experimental groups were identified by the non-parametric Wilcoxon-Mann-Whitney 

test. p-values less than 0.05 were considered statistically significant. 
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3. Results 

3.1. The ASFV DEAD-box RNA helicases QP509L and Q706L are conserved among 

virulent and non-virulent isolates, uncovering genotype clustering and showing 

partial homology with RNA helicases of other NCLDV  

 

The sequence homology analysis among the five ASFV RNA helicases, revealed a high 

degree of similarity between virulent and non-virulent ASFV isolates (e.g. L60 and Ba71V, 

Fig.12A). Our analysis also showed that ASFV RNA helicases do not share a common 

ancestor, with the exception of ASFV-Q706L and ASFV-D1133L helicases that form a 

monophyletic group (Fig.12A). Surprisingly, no phylogenetic relation was found between 

ASFV-QP509L and ASFV-Q706L, although belonging to the Super family 2 and sharing a 

DEAD-box domain and a sequence overlap of 126 base pairs (bp) (between 3’ end of ASFV-

QP509L and 5’ end of ASFV-Q706L, Fig.12B). 

 

Figure 12 The ASFV-QP509L and Q706L RNA helicases are highly conserved among 

virulent and non-virulent isolates, sharing a distinct ancestor. 

 

(A) Phylogenetic analysis of ASFV RNA helicases. Maximum-likelihood phylogenetic tree constructed 
from a multiple amino acid sequence alignment of ASFV-QP509L, Q706L, A859L, B962L, D1133L 
ORFs, using two different ASFV isolates (L60 – virulent and Ba71V – non-virulent). Sequence from a 
RNA helicase SF2 of Sus scrofa worked as outgroup. Bootstrap values are indicated. (B) Schematic 
representation of ASFV genome, including the localization of ASFV-QP509L and ASFV-Q706L. Relative 
positions of DEAD box motifs, ATP-binding sites and sequence overlap (126 bp) are represented. 

 

Furthermore, the phylogenetic analysis of both SF2 RNA helicases among different ASFV 

isolates, showed a similar cluster distribution, with sequences from the West of Africa and 

Europe (e.g. Angola, L60, Ba71V) being separated from isolates of East Africa countries (e.g. 

Kenya 1950 and Malawi 1983) and also from South African isolates (e.g. Mkuzi 1979) (Fig.13 

A and B). In addition, the sequence of ASFV-QP509L RNA helicase from the European isolate 

Georgia 2007/1 clusters with the Tengani 1962 (Malawi) isolate (Fig. 13A), whereas the ASFV-

Q706L sequence from Georgia 2007/1 appears isolated (Fig. 13B). Finally, the comparison of 
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the amino acid sequences between the two SF2 RNA helicases encoded by ASFV and SF2 

RNA helicases encoded by other NCLDV members revealed that ASFV-QP509L clusters with 

the A18 helicase from vaccinia virus and with ORF55 Ranavirus helicase, as ASFV-Q706L 

clusters with vaccinia virus D11 helicase and MAR_ORF241 helicase of Marseillevirus (Fig. 

13C). This analysis also showed that ASFV-QP509L sequence is more close to other viral SF2 

RNA helicases encoded by other NCLDV than ASFV-Q706L (e.g. Bathycoccus sp. RCC1105 

virus; Ostreococcus tauri; Chlorella virus 1) (Fig. 13C). 

 

Figure 13. ASFV-QP509L and ASFV-Q706L RNA helicases show a similar genotype 

cluster segregation to ASFV-B646L, sharing the same monophyletic groups with other 

SF2 RNA helicases from NCLDV. 

 

(A) The maximum-likelihood phylogenetic tree was constructed from a multiple amino acid sequence 
alignment of ASFV-QP509L, using 13 different ASFV isolates. (B) Maximum-likelihood phylogenetic tree 
was constructed from a multiple amino acid sequence alignment of ASFV-Q706L, using 13 different 
ASFV isolates. Geographic distribution and genotype of ASFV isolates are also indicated. (C) 
Phylogenetic analysis of ASFV-QP509L, ASFV-Q706L and other viral Superfamily 2 (SF2) RNA 
helicases. The maximum-likelihood tree was generated from a multiple amino acid sequence alignment 
of ASFV-QP509L and ASFV-Q706L RNA helicases with other SF2 encoded by NCLDV members. The 
sequence of one SF2 RNA helicase of Sus scrofa (DDX58) acted as outgroup. Bootstrap values are 
indicated. 
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3.2. QP509L and Q706 ASFV genes are transcribed during infection, encoding for two 

intermediate-late proteins with distinct localization  

 

The detection and quantification of specific viral transcripts by qPCR revealed that QP509L 

gene is actively transcribed from 2 hpi onwards, reaching a maximum concentration peak at 

12 hpi (Fig. 14A). Similarly, the ASFV-Q706L transcripts were detected from 2 hpi, showing a 

peak concentration at 10 hpi (Fig. 14B). As expected, the mRNA levels of both ASFV SF2 RNA 

helicases were found much lower than the transcripts of two viral genes (CP204L and B646L) 

which encode for two structural proteins (vp32 and vp72, Fig. 14 C and D), suggesting that 

expression of the two ASFV RNA helicases is highly regulated. 

 

Figure 14.ASFV-QP509L and ASFV-Q706L are transcribed from early times of 
infection. 

 

(A) ASFV-QP509L transcripts were detected from 2 hpi, showing a maximum concentration peak at 12 

hpi. (B) ASFV-Q706L transcripts were detected from early times of infection (2 hpi) reaching a maximum 

concentration at 10 hpi. (C, D) ASFV-CP204L and ASFV-B646L mRNA were used as controls. Results 

are shown as mean ± standard error of the number of transcripts of each viral gene normalized with 

Cyclophilin A mRNA levels (reference gene). Three independent experiments were performed in 

duplicate. 

 

In parallel, immunostaining studies showed that pQP509L accumulates in viral cytoplasmic 

factories from 12 hpi onwards, displaying a diffuse nuclear localization at later times of infection 

(Fig. 15A). Regarding pQ706L, results disclosed that this viral protein is also detected from 12 

hpi onwards, without any nuclear staining (Fig. 15B). The immunoblot analysis unveiled that 

pQ706L is detectable from 12 hpi onwards, showing increased concentrations among infection 

course, corroborating the immunostaining results (Fig. 15C). Finally, pQ706L expression was 

absent in ASFV-infected cells exposed to cytosine arabinoside (AraC), an inhibitor of ASFV 
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DNA replication and late transcription (Fig. 15C), suggesting that ASFV-Q706L RNA helicase 

is synthesized before viral DNA replication. 

 

Figure 15. ASFV-pQP509L and ASFV-pQ706L are detected at late times of infection, 

showing distinct distribution patterns. 

 

(A) ASFV-pQP509L was detected at viral factories and host nucleus from 12 hpi onwards. (B) ASFV-

pQ706L was identified only within viral factories and also after 12 hpi. Vero-infected cells (MOI= 2) were 

fixed (4, 8, 12 and 16 hpi), stained and analyzed by fluorescence microscopy. In the merged images, 

ASFV-pQP509L and ASFV-pQ706L were labelled in green, infected cells in red and DNA in blue (DAPI 

staining). Representative images of at least three independent experiments are shown. (C) Immunoblot 

analysis revealed that ASFV-pQ706L is a late protein, being absence in the presence of cytosine 

arabinoside (AraC). Vero cells infected with ASFV/Ba71V isolate (MOI of 5) were harvested at the 

indicated time points. The AraC (50 µg/ml) exposure was performed after an initial viral adsorption period 

(1 hour) and cells were collected at 20 hpi. 

 

3.3. QP509L and Q706L ASFV RNA helicases are required for viral infection showing 

non-redundant functions  

 

Taking in the consideration, the expression patterns of both viral SF2 RNA helicases, siRNAs 

experiments were performed to explore the downregulation effect of ASFV-pQP509L or ASFV-

pQ706L in viral replication. To achieve this goal, the efficacy of two siRNAs targeting each 

ASFV transcript was separately assed. A significant knockdown efficiency was found for both 

siRNAs targeting ASFV-QP509L transcripts (up to -41.2%, p≤0.05, Fig. 16A) and for a siRNA 

duplex against ASFV-Q706L transcripts (up to -41.7%, p≤0.05, Fig.16D). Additional qPCR 

analysis revealed lower transcription levels of ASFV B646L late gene in ASFV-QP509L 
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depleted cells (up to -46.2%, p≤0.05, Fig. 16C) and in ASFV-Q706L knockdown cells (up to -

77.7%, p≤0.05, Fig. 5F) in comparison to control infected cells (transfected with siRNA 

targeting GAPDH transcripts). However, no significant reduction in the transcriptional activity 

of ASFV CP204L early gene was found (Fig. 16 B and E). 

 

Figure 16. siRNAs targeting ASFV-QP509L and ASFV-Q706L transcripts disrupt late 

viral transcription. 

 

(A) siRNAs against ASFV-QP509L showed significant depletion efficacy at 16 hpi (p≤0.05). (B) 
Unchanged ASFV-CP204L mRNA levels between QP509L-depleted cells and control group. (C) 
QP509L-depleted cells showed significant lower mRNA levels of late ASFV-B646L gene (p≤0.05). (D) 
Q706L siRNA_II showed significant knockdown efficacy at 16 hpi (p≤0.05). (E) Unchanged ASFV-
CP204L mRNA levels between Q706L- knockdown cells and control group. (F) Q706L-depleted cells 
showed a significantly lower mRNA levels of ASFV-B646L gene (p≤0.05). Results are shown as average 
± standard error (AVG ± S.E.), between the number of molecules of each viral transcript and the number 
of Cyclophilin A mRNA molecules (reference gene). Three independent experiments were performed in 
duplicate. 

 

Additionally, a significant decreased number of viral genomes was measured in depleted cells, 

ranging between -26.1% and -53.4% in ASFV-QP509L- knockdown cells (p≤0.05; Fig. 17A) 

and between -68.3% and -71.4% in ASFV-Q706L knockdown cells (p≤0.05; Fig. 17A). Finally, 

a significant reduction of viral progeny was found in ASFV-QP509L depleted cells (between -

82.2 % to -99.4%; p≤0.05) and in ASFV-Q706L depleted cells (-92.5% to -98.6%) in 

comparison to controls (p≤0.05, Fig. 17B). 
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Figure 17. ASFV-QP509L and ASFV-Q706L downregulation disrupts ASFV DNA 

replication and progeny production. 

 

(A) QP509L and Q706L-depleted cells showed a decreased number of ASFV genomes [2.21x109 

genomes/ml using QP509L siRNA_I (-26%), 1.39x109 genomes/ml for QP509L siRNA_II (-53%), 

8.53x108 genomes/ml for Q706L siRNA_I (-71%) and 9.45x108 genomes/ml using Q706L siRNA_II (-

68.32%)] when compared to the control group (2.98x109 genomes/ml, p≤0.05). Results represent the 

mean of three independent experiments. (B) A statistically significant reduction in viral yields was 

observed between ASFV-infected Vero cells (MOI of 0.1) transfected with siRNAs against ASFV-

QP509L and ASFV-Q706L (-82.2% and -99.4% for QP509L siRNA I and II, respectively, and -92.5% 

and 98.6% for Q706L siRNA I and II), in comparison with the GAPDH siRNA-transfected infected cells 

(p≤0.05). Results were obtained from three independent experiments. Error bars represent standard 

error (SE) of the mean values. 
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3. Discussion 

 

RNA helicases are found in all kingdoms of life, participating in several aspects of RNA 

metabolism and in different events of DNA replication (Jankowsky, 2011; Jeang & Yedavalli, 

2006). Although many viruses hijack cellular RNA helicases (Jeang & Yedavalli, 2006), 

members of some viral families encode their own, as Herpesviridae (Chattopadhyay et al., 

2006), Poxviridae (Jankowsky et al., 2000), Parvoviridae (Christensen & Tattersall, 2002), 

Flaviviridae (Utama et al., 2000). Notably, ASFV encodes five putative RNA helicases, 

including the two pQP509L and pQ706L SF2 DEAD-box RNA helicases (Freije, Lain, Vinuela, 

Lopez Otin, & Lopez-Otin, 1993; Linder & Jankowsky, 2011). In eukaryotes, these enzymes 

are known to unwind duplexes formed during RNA transcription, in an ATP-dependent fashion 

(Bizebard et al., 2004; Yang et al., 2007; Yang & Jankowsky, 2006), with viral counterparts 

being involved in DNA-RNA and RNA-protein interactions that occur from the beginning of viral 

gene expression and culminate with the release of infectious particles (Frick & Lam, 2006; 

Ranji & Boris-Lawrie, 2010). Thus, these proteins are being explored as antiviral drug targets 

(Briguglio et al., 2011). In ASFV, and besides the initial sequence data assembly and 

annotation, scarce information is available about the role of viral RNA helicases in infection. In 

this study, we showed that ASFV RNA helicases are highly conserved among virulent and non-

virulent isolates, with ASFV-QP509L and ASFV-Q706L helicases belonging to distinct 

monophyletic lines, despite their partial sequence overlap and common superfamily 2 motifs. 

An identical geographic/genotype cluster segregation was found for both viral RNA helicases, 

similar to the one reported for ASFV-B646L (Bastos et al., 2003; Boshoff, Bastos, Gerber, & 

Vosloo, 2007; Lubisi, Bastos, Dwarka, & Vosloo, 2005) and other viral genes (Michaud, 

Randriamparany, & Albina, 2013). However, and probably due to the recent recombination 

events reported in Georgia 2007/1 isolate (Rowlands et al., 2008), the QP509L sequence of 

this genotype II clusters with a ASFV isolate belonging to genotype V (Tengani 62), reinforcing 

the idea that viral phylogenetic studies should include more than one ORF (Chapman et al., 

2011). In addition, the comparison between the two ASFV SF2 RNA helicases and SF2 RNA 

helicases encoded by other NCLDV members revealed that ASFV-QP509L shares the same 

monophyletic group with vaccinia virus A18R and Ranavirus ORF55 RNA helicases, whereas 

ASFV-Q706L clusters with vaccinia virus D6/D11L and Marseillevirus marseillevirus 

MAR_ORF241 RNA helicases, corroborating previous studies (Baylis et al., 1993; Duffy, 

Shackelton, & Holmes, 2008; Roberts et al., 1993; Rodríguez & Salas, 2013; Yáñez et al., 

1993). Although these results are somehow expected, since NCLDV members share a 

common ancestor (Yutin & Koonin, 2012), the two genes of SF2 RNA helicases in vaccinia 

virus are separated approximately 20000 bp, suggesting a different evolutionary route for 

ASFV. Indeed, recent studies reported that ASFV presents a higher evolutionary rate than 

other DNA viruses (Alkhamis et al., 2018; Duffy et al., 2008; Grenfell et al., 2004), probably 
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due to its complex inter-species transmission (wild boars, ticks and domestic pigs), showing a 

diversity peak over the last 200 years (Alkhamis et al., 2018). 

Regarding the expression patterns of the two ASFV SF2 RNA helicases, maximum mRNA 

levels were detected between 8 and 12 hpi, suggesting that both enzymes are mainly required 

during the intermediate and late stages of the infection cycle, when the viral DNA replication 

and transcription are more active. In fact, pQP509L was detected from 12 hpi within viral 

factories and host nucleus, whereas pQ706L was detected only at viral factories from 12 hpi 

onwards, indicating that both ASFV RNA helicases have different roles during replication cycle. 

Despite an early intranuclear phase has been proposed for ASFV (García-Beato, et al., 1992; 

Simões, et al., 2015), the presence of pQP509L in this cellular compartment, at later times of 

infection, can be related to other viral events than transcription and/or DNA replication as, for 

example, modulation of antiviral responses. This plethora of activities is described for other 

viral RNA helicase as, for example, in NS3 RNA helicase of HCV which is involved in unwinding 

of the double-stranded RNA intermediates (Dumont et al., 2006) and viral assembly (Ma et al., 

2008), and in D6/D11 RNA helicase of vaccinia virus that unwinds RNA-RNA, RNA-DNA and 

RNA-protein intermediates (Jankowsky et al., 2000). Thus, these viral SF2 DEAD-box RNA 

helicases were described as essential for infection by HCV (Lam & Frick, 2006; Mackintosh et 

al., 2006), Vaccinia virus (Gross & Shuman, 1998; Shuman, 1992) and Plum pox virus 

(Fernández & Guo, 1997), with cellular RNA helicases being unable to rescue the activity of 

viral counterparts. In a very similar way, our results from siRNA experiments disclosed that 

QP509L- and Q706L-knockdown cells show lower levels of late viral transcripts (ASFV-

B646L), although the expression of an early viral gene (ASFV-CP204L) is not affected. 

Depleted cells also exhibited a reduced number of viral genomes coupled with a decreased 

viral yield, indicating that both ASFV RNA helicases have relevant and non-redundant 

functions, not rescued by cellular RNA helicases. Considering our above results and the data 

reported on vaccinia virus counterparts, a working model for both ASFV SF2 RNA helicases is 

depicted in figure 18. Briefly, ASFV-Q509L and ASFV-Q706L RNA helicases are mainly 

involved in viral transcription events, with ASFV-Q509L assisting termination and release of 

late viral transcripts (as reported for vaccinia virus A18R helicase orthologous), whereas 

ASFV-Q706L regulates elongation and release of late viral transcripts (as vaccinia virus 

D6/D11 helicase). 
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Figure 18. Proposed working model for ASFV-QP509L and ASFV-Q706L RNA helicases. 

 

Considering the experimental data available for ASFV-QP509L and ASFV-Q706L orthologous (A18R 

and D6/D11 SF2 RNA helicases of Vaccinia virus, respectively), our model hypothesized that absence 

of ASFV-QP509L on the transcription complex will leads to continuous reading of neighbouring viral 

ORFs and transcriptionally silenced regions, giving rise to an accumulation of long RNAs, with its release 

being also affected. In parallel, our working model postulates that downregulation of ASFV-Q706L will 

disrupt transcription elongation and termination with serious implications in viral progeny production. 

 

Finally, taking into consideration that there is neither a vaccine nor a treatment available 

against ASFV and the important roles of both ASFV SF2 RNA helicases, we hypothesized that 

a mutant on ASFV-QP509L or ASFV-Q706L gene can be a good candidate to generate a live 

attenuated vaccine. These ASFV mutants will not produce progeny, allowing the immediate-

early and early viral gene expression and providing antigens that can induce a protective 

immune response. 
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Abstract 

African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal 

disease of domestic pigs, leading to serious socio-economic impact in affected countries. To 

date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment 

of African swine fever (ASF), emphasizing the need for more detailed studies at the role of 

ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for 

a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several 

fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in 

vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with 

transcripts being detected as early as 2 hpi and reaching a maximum peak concentration 

around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA 

knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication 

and gene expression, with transfected cells presenting lower viral transcripts (up to 89% 

decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, 

a significant decrease in the number of both infected cells (75.5%) and viral factories per cell 

and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA 

targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the 

late phase of infection (from 15 to 16 hpi) induces fragmentation of viral genomes, whereas no 

viral genomes were detected when enrofloxacin was added from the early phase of infection 

(from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our 

results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome 

replication and transcription, emphasizing the idea that this enzyme can be a potential target 

for drug and vaccine development against ASF. 
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Graphical Abstract
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1. Introduction  

 

African swine fever (ASF) is a highly contagious hemorrhagic disease that affects domestic 

and wild suids. Clinical signs may vary from a hyperacute form, with 100% mortality, to a less 

common chronic and asymptomatic forms that can turn pigs into carrier state (Costard et al., 

2009; Penrith & Vosloo, 2009). Until today there is no effective vaccine or treatment for ASF 

and control strategies include, among others, quarantine and compulsory slaughter of affected 

animals (reviewed in Gallardo et al., 2015; Michaud et al., 2013). The economic losses from 

these measures can disrupt both the local and, in severe outbreaks, the national economy due 

to international trade restrictions (Costard et al., 2009; Michaud et al., 2013). Nowadays, ASF 

is endemic in most of the sub-Saharan countries and in the Italian island of Sardinia for more 

than 35 years (Costard et al., 2009; Mur et al., 2016). In 2007, it was introduced in Georgia 

spreading to Armenia, Azerbaijan, Russia, to Ukraine in 2012 and, to Belarus in 2013 

(reviewed in Sánchez-Vizcaíno et al., 2013, 2015). In 2014, ASF reached the European Union, 

namely Lithuania, Poland, Estonia and Latvia (reviewed in Sánchez-Vizcaíno et al., 2015). The 

etiological agent of the disease is the African swine fever virus (ASFV), a large (≈200nm) 

enveloped icosahedral double-stranded DNA virus (170 to 190 kbp). ASFV is the only known 

Asfarviridae member and infects different species of soft ticks (Ornithodoros spp), wild and 

domestic pigs (reviewed in Boinas et al., 2014; Tulman et al., 2009). Its genome contains 

between 151-167 genes depending on the strain, however, about half of them lack any known 

or predictable function (Chapman et al., 2008; reviewed in Dixon et al., 2013). Remarkably, 

ASFV is the only known virus that infects mammals encoding for a protein with type II DNA 

topoisomerase activity (ASFV-Topo II) (Coelho et al., 2015), sharing high similarity with 

bacterial topoisomerases, although its sequence homology with eukaryotic type II 

topoisomerases is low (Baylis et al., 1992; García-Beato et al., 1992; Gadelle et al., 2003; 

Coelho et al., 2015). Type II topoisomerases control DNA topology during replication, 

transcription, chromosome condensation-decondensation and segregation by catalysing 

transient double-stranded breaks in one helix DNA, pass a second DNA helix, and then close 

the gate, in all forms of life (reviewed in Champoux, 2001; de Souza et al., 2010; Forterre et 

al., 2007). 

Although previous studies show that several bacterial topoisomerase II inhibitors disrupt ASFV 

infection (Salas et al., 1983; Mottola et al., 2013), very little is known about the role of ASFV-

Topo II during infection and how these drugs act. Indeed, more information about this protein, 

putatively involved in viral replication/transcription, is urgently needed to understand if ASFV-

Topo II is a good target for drug development and/or vaccine design. In this study, qPCR was 

performed to investigate the transcription pattern of ASFV-Topo II gene during infection. siRNA 

technology was used to selectively knock down the ASFV-Topo II expression in order to 

analyze the role of this protein in viral replication and transcription, an approach that has been 
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recently described to evaluate the importance of viral genes in West Nile virus infection 

(Anthony et al., 2009), dengue virus (Wu et al., 2010; Ye et al., 2011), influenza virus (Hirsch, 

2010) and also in ASFV (Keita, Heath, & Albina, 2010). Finally, a mechanism of action is 

proposed for the antiviral effects of fluoroquinolones, supported by the results obtained from 

the comet assay. 
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2. Material and methods 

2.1. Cells and viruses 

 

Vero cells from the European Collection of Cell Cultures (ECACC, Salisbury, UK) were 

maintained in DMEM (Dulbecco Modified Eagle's minimal essential medium) containing 10% 

(v/v) heat inactivated fetal calf serum, 1% of non-essential amino acids and 

Penicillin/Streptomycin at 100 units/ml and 100 µg/ml, respectively (all from Gibco, Life 

Technology, Karlsruhe, Germany). All experiments were conducted on actively replicating sub 

confluent cells grown at 37 °C under a 5% CO2 humidified atmosphere (≥95%). The Vero-

adapted ASFV strain (Badajoz 1971, Ba71V) was used in all infections and propagated as 

previously described (Carrascosa et al., 2011). Viral suspension titrations were performed by 

observation of cytopathic effect (CPE) at end-point dilutions, using Vero cells inoculated with 

10-fold serial dilutions of supernatants during 5 days and results were expressed as TCID50/ml 

(Spearman-Kärber endpoint method). 

 

2.2. Cytopathic effect (CPE) evaluation 

 

Cells were seeded, transfected and infected (MOI = 0.025 and 0.1) as described in siRNA 

delivery assay (see 2.8.). Using an inverted microscope, CPE’s were evaluated by two 

researchers at 72 hpi, based on a four grade scale: 0 (no CPE), 33 (CPE ≤ 33%), 66 (CPE > 

33% and ≤ 66%) and 100 (CPE > 66%), as previously described (Servan de Almeida et al., 

2007; Keita et al., 2010). CPE values were calculated as the arithmetic mean of the two 

individual scores. 

 

2.3. RNA extraction and cDNA synthesis 

 

For all qPCR quantifications total RNA was extracted using the RNeasy Mini Kit (Qiagen, 

Courtaboeuf, France). Possible DNA contaminants in the RNA preparation were eliminated by 

treatment in column with DNAse I (Qiagen). RNA concentrations and purity were measured 

(OD value at 260 nm and A260/A280 coefficient) using a spectrophotometer (NanoDrop, 

2000c, Thermo Fisher Scientific, Waltham, USA) and only RNA samples showing high purity 

(A260/A280 ratio between 1.8 and 2.0) were used. 200 ng of each total RNA sample was 

reverse transcribed (Transcriptor First Strand cDNA Synthesis Kit, Roche, Basel, Switzerland), 

according to the manufacturer's instructions. The obtained cDNA was diluted (1/20) in ultra-

pure water and stored at −20 °C until further use. 
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2.4. Recombinant plasmids 

 

The amplified fragments were cloned into a pGEM-Teasy Vector System II (Promega, 

Madison, USA), and the plasmids were used to transform DH5α competent cells. The vector 

plasmids were isolated from bacteria using the Roche High Pure Plasmid Isolation Kit (Roche 

Applied Science, Germany), according to the manufacturer's manual. To determine whether 

the cloned DNA fragments (ASFV-Topo II, VP32, VP72 and Cyclophilin A) were incorporated 

into isolated vectors, the inserts were amplified by PCR and their sequences were confirmed. 

Following this step, the concentration of each plasmid preparation was determined by 

spectrophotometric absorbance (NanoDrop, model 2000c). Their corresponding copy number 

was calculated using the equation: pmol (dsDNA) = μg (dsDNA) × 1515/DNA length in pb 

(pmol = picomoles, dsDNA = double-strand DNA, DNA length in pb = number of base pairs 

from the amplified fragment; 1 mol = 6022 × 1023 molecules). 

 

2.5. Standard curves optimization 

 

A ten-fold serial dilutions of each plasmid (ASFV-Topo II, VP32, VP72 and Cyclophilin A), 

ranging from 1x10-1 to 1x10-9 were initially used in duplicate to construct the standard curves 

in two different days. Threshold cycle (Ct) values obtained from each dilution were plotted 

against the logarithm of their initial template copy numbers and corresponding standard curves 

were generated by linear regression of the plotted points. From the slope of each standard 

curve, PCR amplification efficiency (E) was calculated according to the equation: E (%) = (10–

1/slope– 1) x 100% (Pfaffl, 2001). 

 

2.6. Quantitative PCR 

 

ASFV-Topo II, VP32, VP72 and Cyclophilin A mRNA levels were quantified by qPCR using 

Maxima SYBR Green PCR Master Mix (Thermo Fisher) according to the manufacturer's 

instructions [12.5 μl of master mix, 2.5 μl of forward and reverse primers (50 nM each), 5 μl of 

water and 2.5 μl of cDNA)]. All qPCR reactions were performed in Applied Biosystems 7300 

Real Time PCR system (Thermo Fisher) with the following thermal profile: 10 min at 95 °C for 

initial denaturation; 40 cycles of 15 s at 95 °C and 60 s at 60 °C, followed by a final denaturation 

step of 5 s at 65 °C with a 20 °C/s ramp rate and subsequent heating of the samples to 95 °C 

with a ramp rate of 0.1 °C/s. Quantification of ASFV-Topo II, VP32, VP72 and Cyclophilin A 

mRNA levels were determined by the intersection between the fluorescence amplification 

curve and the threshold line. The crossing point values of each plasmid obtained from different 

known concentrations were plotted in a standard curve used to determine the copy number of 
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each transcript. The values were determined using the comparative threshold cycle method, 

which compares the expression of a target gene normalized to the reference gene (Cyclophilin 

A). The validation of the reference gene was confirmed using the ANOVA test. The specificity 

of the qPCR assays was confirmed by melting curve analyses. The sequences of all primers 

used in this study are shown in Table 6. 

Table 6. List of used primers. 

 

Target Primer 
designation 

Sequence (5´- 3´) Coordinates* Orientation 

     
ASFV-Topo II TOPOup TTGCCGCTTGCTATTATGGA 133242-133261 Foward 
ASFV-Topo II TOPOlow CGGGCCCAAGTGGTGTAC 133292-133309 Reverse 
Cyclophilin A CycloFw1 AGACAAGGTTCCAAAGACAGCAG - Foward 
Cyclophilin A CycloRev AGACTGAGTGGTTGGATGGCA - Reverse 
Cyclophilin A CycloFw2 TGCCATCCAACCACTCAGTCT - Foward 

VP72 VP72Fw ACGGCGCCCTCTAAAGGT 88273-88290 Foward 
VP72 VP72Rev CATGGTCAGCTTCAAACGTTTC 88322-88343 Reverse 
VP32 VP32Rev TCTTTTGTGCAAGCATATACAGCTT 108162-108186 Foward 
VP32 VP32Fw TGCACATCCTCCTTTGAAACAT 108228-108249 Reverse  

*Primer coordinates are relative to Ba71V sequence used has template for primer design. 

 

2.7. Quantification of ASFV-Topo II, VP32, VP72 mRNA levels 

 

To quantify the ASFV-Topo II mRNA expression levels during infection, Vero cells (5×105) 

were seeded onto 30 mm dishes and infected with a multiplicity of infection (MOI) of 1.5 (ASFV-

Ba71V isolate). After 1 h of adsorption, the virus inoculum was removed, the cells were washed 

twice and fresh DMEM was added. Total RNA was extracted at indicated time points after 

infection (2, 4, 6, 8, 10, 12, 14, 16, and 20 hpi). The extraction protocol, cDNA synthesis and 

qPCR amplifications were performed as previous described (see 2.3 RNA extraction and cDNA 

synthesis, 2.6 Quantitative PCR). Three independent experiments were performed to verify 

the reliability of the results. 

 

2.8. siRNA assays 

 

Four double-stranded siRNAs (ON-TARGETplus, Thermo Fisher Scientific) targeting different 

sequence regions of the ASFV-Topo II transcript were designed (siDESIGN Center, Thermo 

Fisher Scientific), based on the full genome sequence of ASFV Ba71V isolate 

(GenBank/EMBL, accession number: ASU18466). One siRNA against the GAPDH gene 

(siRNA-GAPDH; Silencer™ GAPDH siRNA human control number 4605; Ambion/Thermo 

Fisher Scientific) was used as a control in all siRNA assays. The siRNA sequences used in 

the study are shown in Table 7. All siRNAs duplexes were diluted at different final 

concentrations (10, 50 and 100 nM) in serum-free Opti-MEM (Gibco, Life Technology, 

Karlsruhe, Germany) and using 8 μl HiPerfect Transfection reagent (Qiagen, Courtaboeuf, 

France). Mixtures were incubated at room temperature for 20 min to allow the formation of 

https://www.sciencedirect.com/science/article/pii/S0166354216302133?via%3Dihub#sec2.6
https://www.sciencedirect.com/science/article/pii/S0166354216302133?via%3Dihub#tbl2
https://www.sciencedirect.com/science/article/pii/S0166354216302133?via%3Dihub#sec2.3
http://www.stabvida.net/clients.php
https://www.sciencedirect.com/science/article/pii/S0166354216302133?via%3Dihub#sec2.3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=protein&doptcmdl=genbank&term=ASU18466
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transfection complexes. Thereafter, 100 μl of the transfection solution was incubated with 

2×104 Vero cells cultured in 500 μl of DMEM supplement with 10% FBS in a 24-well plate 

during 8 h. One hour before infection, the culture medium was removed and fresh medium was 

added to allow recovery of the cells. Next, cells were infected with ASFV Ba71V (MOI = 0.025 

and 0.1), the viral inoculum was removed 1 h after and further incubated at 37 °C for 72 h. The 

viability of transfected cells was assessed every 8 h until 72 h by phase-contrast microscopy. 

The different siRNAs were used individually or in combination (50 + 50 nM) and their antiviral 

effects were evaluated by titrating viral progeny, quantifying the number of infected cells, the 

CPE and mRNA levels (ASFV-Topo II, VP32 and VP72). Due to economic and practical 

reasons only the two siRNAs duplexes (including combinations) that showed higher inhibitory 

results (CPE reduction) were used in further assays. 

 

Table 7. siRNA used in this work. 

 

Target siRNA 
designation 

Sequence (5´- 3´) Target 
coordinates* 

Orientation 

ASFV-Topo II ASFV_TOPOII_I CCUAAUAGCACGAUACAUAUU 790-808 Sense 
ASFV-Topo II ASFV_TOPOII_I PUAUGUAUCGUGCUAUUAGGUU 790-808 Antisense 
ASFV-Topo II ASFV_TOPOII_II CCAUUAAGGCCGAUGCAAAUU 815-833 Sense 
ASFV-Topo II ASFV_TOPOII_II PUUUGCAUCGGCCUUAAUGGUU 815-833 Antisense 
ASFV-Topo II ASFV_TOPOII_III GGGCGGAACCAGAGUACUAUU 2492-2510 Sense 
ASFV-Topo II ASFV_TOPOII_III PUAGUACUCUGGUUCCGCCCUU 2492-2510 Antisense 
ASFV-Topo II ASFV_TOPOII_IV GGGCCUACGUCGAUAAGAAUU 2618-2636 Sense 
ASFV-Topo II ASFV_TOPOII_IV PUUCUUAUCGACGUAGGCCCUU 2618-2636 Antisense 

*siRNA coordinates according to the relative position in gene nucleotide sequence (start at position 1, 

ATG).   

 

2.9. Immunofluorescence and microscopy analysis 

 

Cells were seeded onto glass coverslips (2×104), in 24-well plates, transfected with ASFV-

Topo II siRNA_III + IV, and infected with ASFV Ba71V isolate (MOI = 1). At 12 hpi, cells were 

fixed in 3.7% paraformaldehyde and HPEM buffer [25 mM HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid), 60 mM PIPES (piperazine-N,N′-bis 2-ethanesulfonic acid), 10 

mM EGTA (ethylene glycol tetraacetic acid), 1 mM MgCl2] for 15 min at room temperature and 

permeabilized in PBS/Tx-100 1% for 5 min. Following this step, cells were washed in PBS, 

blocked with PBS/BSA 1% for 30 min and incubated with an anti-ASFV conjugated FITC serum 

(1:50). A mounting medium with DAPI (4′,6-diamidino-2-phenylindole), was used (Vectashield, 

Vector Laboratories, Peterborough, UK). All incubations were performed in a dark humidified 

chamber to prevent fluorochrome fading. Immunofluorescence analysis was performed using 

an epifluorescence microscope (Leica DMR HC model, Wetzlar, Germany), data sets were 

acquired by Adobe Photoshop CS5 software (Adobe Systems, Inc., San Jose, USA) and 

images were subsequently processed using the ImageJ open source software (version 1.46r). 
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2.10. Quantification of ASFV-Topo II, VP32 and VP72 transcripts after the siRNA 

treatments 

 

Vero cells (2 × 104) were transfected with the most efficient siRNA during 8 h. At 1 h post-

transfection, cells were infected with Ba71V (MOI = 1) and at 16 hpi total RNA was extracted. 

To ensure high RNA concentrations, the siRNA assays were performed in quadruplicated. The 

extraction protocol, cDNA synthesis and qPCR amplifications were performed as previous 

described (see 2.3 RNA extraction and cDNA synthesis, 2.6 Quantitative PCR). The qPCR 

assay was performed in triplicate to ensure the biological relevance of the results. 

 

2.11. Comet assay 

 

Comet assay was performed using the alkaline technique (Singh, McCoy, Tice, & Schneider, 

1988). In brief, Vero cells (2x105) infected with Ba71V (MOI = 1) were exposed to enrofloxacin 

(100 µg/ml) from 0 to 12 hpi or from 15 to 16 hpi. In addition, infected and non-exposed, non-

infected exposed and non-exposed to enrofloxacin were used as controls. At indicated time 

points, cells were gently washed twice in PBS, trypsinized and embedded in 60 μL of low-

melting-point agarose (0.7%, Lonza, Rockland, USA) prewarmed at 37°C. The mixture was 

immediately pipetted onto frosted microscope slides precoated with a layer of 1% normal 

melting point agarose diluted in PBS (Sigma, St. Louis, USA), and allowed to jellify (4°C, 10 

min). Slides were then immersed in an alkaline lysis solution (2.5 M NaCl, 100 mM EDTA, 10 

mM Tris-HCl, 1% Triton X-100, pH 10), for 1 hour at 4°C. Before electrophoresis, slides were 

incubated with a fresh cold electrophoresis buffer (1 mM EDTA, 300 mM NaOH) during 10 min 

to allow unwinding of DNA. Electrophoresis was performed at 0.83 V/cm on ice for 20 min. 

After the electrophoresis, slides were washed in neutralization buffer (0.4 M Tris-HCl, pH 7.5) 

during 15 min. All steps described above were carried out in the absence of light to avoid DNA 

damage. For DNA staining, slides were incubated with a nucleic acid staining solution 

(RedSafe Nucleic Acid Staining Solution, 0.02 μl/mL, iNtRON Biotechnology, Gyeonggi-do, 

South Korea), and visualized in an epifluorescence microscope (Leica DM R HC model, 

Wetzlar, Germany). For each sample, 5 randomly selected microscopic fields were captured 

using Adobe Photoshop CS5 software (Adobe Systems, Inc., San Jose, USA) and DNA 

damage was evaluated by comparing the intensity of the comet tails between the experimental 

groups. 
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2.12. Effect of enrofloxacin on ASFV transcription  

 

To evaluate the effect of enrofloxacin on ASFV transcription, Vero cells (2x105) were seeded 

into a 24-well plate, incubated at 37°C and infected with ASFV-Ba71V isolate (MOI of 1). After 

1 hour of adsorption, the virus inoculum was removed, the cells were gently washed and then 

exposed to enrofloxacin (100 µg/ml) during 6, 12 and 24 hours followed by extraction of total 

RNA. The extraction protocol, cDNA synthesis and qPCR amplifications were performed as 

previous described (see 2.3. and 2.6). Results represent the mean value of three independent 

experiments performed in different days. 
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3. Results 

3.1. ASFV-topoisomerase II gene is transcribed from the early phase of infection 

 

Our results showed that ASFV-Topo II transcripts are detected as early as 2 hpi, gradually 

increasing throughout the infection and reaching a maximum peak at 16 hpi (Fig.19). 

Additionally, ASFV-Topo II viral gene is less transcribed than the two viral structural genes 

used as controls (VP32 and VP72). In order to ensure that the normalized mRNA levels of 

different viral genes are comparable, only qPCR reactions with efficiency values ranged from 

90 to 91% and showing R2 values>0.987 were considered. 

 

Figure 19. ASFV-Topo II is a late gene. 

 

ASFV-Topo II transcripts were detected from 2 hpi onwards, reaching a maximum concentration at 16 
hpi. Transcription levels were compared with VP32/VP72 mRNA levels and normalized to Cyclophilin A 
(reference gene). Error bars represent standard error of the mean from three independent experiences. 
(MOI of 1.5). 

 

3.2. siRNAs targeting ASFV-Topo II impairs viral infection 

 

The inhibitory activity of four siRNA duplex targeting ASFV-Topo II mRNA was initially 

screened by visualizing the viral-induced cytopathic effect (CPE). When Vero cells were 

transfected individually with siRNA III or IV (100 nM) or in combination between them (50 + 50 

nM) prior to infection (MOI = 0.025) the induced CPE was reduced in 66%, whereas when 

siRNA oligos were individually used at 10 and 50 nM, a decrease of 33% was found. No 

additional inhibitory effects were seen with increasing concentration beyond 100 nM (data not 

shown). In contrast, siRNA I or II did not showed any antiviral effects. As expected, the siRNA 

against GAPDH did not alter the viral CPE (Fig. 20A). Although similar results were observed 

when cells were infected with a MOI of 0.1, the reduction of CPE induced by ASFV was less 

obvious reaching a maximum value of 33% for the siRNA III or IV at 100 nM (data not shown). 
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Considering the CPE inhibition observed in siRNA experiments, the supernatants harvested 

from the controls and from infected Vero cells transfected with siRNA III, IV (alone and 

combined) or siRNA GAPDH were used to infect new cells cultures, in order to assess the 

siRNAs effects on viral progeny. A virus titer reduction of 1.25–2.50 log was observed in 

infected cells transfected with siRNA III and IV (a decrease of 94.3–99.7%) in comparison with 

control groups (Fig. 20b). 

 

Figure 20. siRNAs against ASFV-Topo II inhibit ASFV replication. 

 

 

(a) A significant inhibition of CPE was observed when infected cells (MOI of 0.025) were transfected 

with siRNA_III or/and siRNA_IV. The CPE assay was performed as described previously (Keita et al., 

2010) Error bars represent standard error of the mean from three independent experiences. (b) A 

reduction in virus yield was also found in infected cells transfected with siRNA_III and/or siRNA_IV (up 

to 99.9%). Error bars represent standard error of the mean from three independent experiences. 

 

Considering the role of type II topoisomerases in DNA synthesis and transcription and given 

our results, we assessed if siRNA III + IV against ASFV-Topo II had an effect in these 

processes by evaluating the number of infected cells and viral factories in Vero cells 

transfected with siRNA using immunofluorescence. Due to economical and practical reasons 

only this siRNA combination was used in this assay. A significant reduction (75.5%, P < 0.002) 

in the average number of infected cells was found between the group of transfected cells and 

the control group (7.30 ± 1.22, 29.80 ± 5.28, respectively), at 12 hpi (Fig. 21a and b). Regarding 

the number of ASFV factories per cell, a decrease was found in transfected cells when 
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compared to control group (one factory: 5.30 ± 1.01, 19.50 ± 3.97, P = 0.006; two factories: 

0.70 ± 0.33, 4.30 ± 0.94, P = 0.004 and three factories: 1.30 ± 0.42, 6.00 ± 1.25, P = 0.005), 

(Fig. 21c), with the number of each morphological type (circular or irregular) being significantly 

lower on transfected cells (circular P = 0.010; asymmetrical P = 0.006; data not shown). 

Although the above results suggest that ASFV-Topo II plays a key role during infection it 

remains to verify the efficiency of siRNA against the ASFV-Topo II mRNA and the impact in 

the viral transcription. For these propose, the mRNA levels of ASFV-Topo II and two viral 

structural genes were measured by qPCR. Results show a repression of the specific target 

transcript (up to 89%) but also a reduction in mRNA levels of VP32 (73%) and VP72 (77%) 

when compared with the infection control (Fig. 22). 

 

Figure 21. siRNAs anti-ASFV-Topo II inhibit the viral protein synthesis and the 

formation of viral factories sites. 

 

 

 

 

 

 

 

 

 

(a,b)- A significant reduction in the number of infected cells was observed between the transfected group 

(siRNA_III + IV, 50 nM each) and the non-transfected group (, P = 0.001). (c)  The average number of 

viral factories per cell was also lower in the transfected group than in control group (P = 0.002 for one 

factory and, P = 0.003 for two and three factories). Error bars represent standard error (±SE) of the 

mean of three independent experiments. Scale bar, 60 μm. 
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Figure 22. ASFV-Topo II siRNAs disrupt viral transcription. 

 

 

The most effective siRNAs (III and IV) were able to reduce ASFV-Topo II mRNA levels up to 89%, VP32 

mRNA levels up to 73% and VP72 gene transcription up to 77%. Transcripts levels were normalized to 

Cyclophilin A mRNA levels (reference gene) and error bars represent standard error of the mean from 

three independent experiences. 

 

3.3. Enrofloxacin acts as an ASFV-Topo II poison during infection 

 

In previous studies it was shown that fluoroquinolones inhibit ASFV genome replication 

(Mottola et al., 2013), however the mechanism of action remains unknown, leading us to clarify 

the inhibitory effects of enrofloxacin during infection using a single cell electrophoresis analysis 

(comet assay). When ASFV-infected Vero cells were exposed to enrofloxacin from 15 to 16 

hpi, a tail of fragmented DNA (comet) was observed (Fig. 23c), in contrast to infected cells 

exposed from the early phase of infection (0 to 12 hpi, Fig. 23f). As expected, no DNA 

fragmentation was identified in both infection control groups without any treatment (Fig. 23be) 

as in negative infection controls (Fig.23ad). Although effects of enrofloxacin upon viral DNA 

were detected by comet assay, it remains to be verified whether this drug interferes with 

transcription. For this purpose, ASFV-Topo II, VP32 and VP72 mRNA levels were compared 

between the infection control and infected Vero cells exposed to enrofloxacin. In early phase 

of infection (6 hpi), no changes were found in the viral transcript levels (ASFV-Topo II and 

VP32) between the non-exposed and exposed infected groups. At later times (12 and 24 hpi), 

ASFV-infected Vero cells exposed to enrofloxacin showed lower viral mRNA levels than 

control, while the transcript of the late gene VP72 was not detected at all (Fig. 24). This 

outcome strongly suggest that the fluoroquinolones are able to interfere with gene transcription 

by completely blocking the expression of later genes (e.g. VP72). 
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Figure 23. Enrofloxacin induces viral DNA breaks, thus acting as an ASFV-

topoisomerase poison. 

 

Although the ASFV-infected Vero cells (MOI = 1) exposed to enrofloxacin from the early phase of 

infection (0–12 hpi) did not show viral DNA breaks or viral genomes (f), ASFV-infected Vero cells (MOI 

= 1) treated with enrofloxacin (100 μg/ml, 1 h) showed a tail of fragmented DNA (c). As expected, no 

DNA fragmentation was identified in both infected (b and e) and non-infected treated controls (a and d). 

Representative images of at least three independent experiments are shown. Scale bar, 60 μm. 

 

Figure 24. Enrofloxacin disrupts ASFV transcription activity. 

 

 

Despite the fact that, at 6 hpi, ASFV-infected Vero cells (Ba71V, MOI = 1) exposed to enrofloxacin (100 

μg/ml) showed similar ASFV-Topo II (black bars) and VP32 (grey bars) mRNA levels to infected control, 

at 12 hpi the mRNA levels of these genes become reduced and the transcripts of the late VP72 gene 

were not detectable (white bars). At 24 hpi, when a second infection cycle was already initiated, the 

ASFV-infected cells exposed to enrofloxacin showed a clear reduction in VP32 and ASFV-Topo II mRNA 

levels, in comparison to untreated cells, as the VP72 mRNA levels still absent. Transcripts levels were 

normalized to Cyclophilin A mRNA levels and error bars represent standard error of the mean from three 

independent experiences. 
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4. Discussion 

 

It was recently shown that ASFV encodes for a protein (ORF P1192R) that co-localizes with 

cytoplasmic viral factories at intermediate and late phases of infection, being able to 

complement a Saccharomyces cerevisiae Top2A temperature-sensitive mutant (Coelho et al., 

2015). Although phylogenetic studies revealed that ORF P1192R shares high sequence 

homology (Forterre et al., 2007) and functional motifs and domains with bacterial 

topoisomerases (Coelho et al., 2015), no further studies have been conducted to explore the 

role of ASFV-Topo II in ASFV infection. Using a well-established in vitro model of infection we 

showed that ASFV-Topo II mRNA levels continuously increase from 2 hpi to 16 hpi, similarly 

to other late ASFV genes (reviewed in Rodríguez and Salas, 2013). Most probably, The 

transcription kinetics of ASFV-Topo II indicates it is most likely needed during the stage of 

accumulation of viral genomes that serve as templates for DNA replication and transcription, 

thus showing an increasing number of topological complexities (e. g. knots, tangles and 

catenanes) that must be solved (reviewed in Rodríguez and Salas, 2013). Still, we cannot 

reject the possibility that ASFV-Topo II activity may also be required for other mechanisms like 

genome unpacking after virus entry or genome compaction before viral egress. Furthermore, 

our siRNA experiments show that a partial depletion of transcripts encoding ASFV-Topo II 

reduces the viral-induced CPE, the ASFV progeny, the number of infected cells and also the 

number of viral factories per cell, suggesting that viral transcription activity is diminished. 

Indeed, Vero cells transfected with siRNAs showed a reduction in mRNA levels of ASFV genes 

VP32 and VP72, early and late transcripts, respectively (Gil et al., 2008; Zhang et al., 2010). 

Even though viral transcription is repressed, we cannot exclude that depletion of ASFV-Topo 

II mRNA levels is in fact inhibiting viral DNA replication, avoiding the synthesis of an enough 

number of transcription templates to support viral progression. It is also important to refer that 

some of the siRNA did not induce a higher repression effect, although several siRNA 

combinations were used to prevent an eventual misbinding like described in other studies 

(Boden et al., 2003; Gitlin et al., 2005; Keita et al., 2010). In the present study enrofloxacin 

was found to induce ASFV DNA fragmentation when added at the intermediate-late phase of 

infection. This phase is characterized by a high rate of viral DNA replication (reviewed in 

Rodríguez and Salas, 2013) probably when ASFV-Topo II DNA relaxation activity is more 

needed for viral genome segregation. In contrast, when ASFV-infected Vero cells are exposed 

to enrofloxacin from the early phase of infection, no viral genomes are detected, suggesting 

that viral DNA synthesis was completely abolished. Although the mechanism of action of 

fluoroquinolones in bacteria is not fully understood, it is well known that these drugs target 

DNA gyrase and topoisomerase IV, blocking the replication machinery and inducing 

irreversible chromosome fragmentation (Drlica & Malik, 2003; Drlica et al., 2008; Malik et al., 

2007). In a similar way, our results strongly suggest that enrofloxacin blocks the activity of 
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ASFV-Topo II in infected cells, reinforcing previous in vitro studies (Mottola et al., 2013; Coelho 

et al., 2016), and further supporting that the mechanism of action is conserved between ASFV 

and bacteria.Enrofloxacin most likely acts as a poison by trapping ASFV-Topo II on DNA and 

stabilizing cleavage complexes which leads to viral DNA fragmentation. When infected cells 

were exposed to enrofloxacin from 2 hpi onwards, no VP72 transcripts were detected, whereas 

the early transcription of VP32 and ASFV-Topo II genes seems to be unaffected. These results 

corroborate a previous research in which enrofloxacin only disrupts late ASFV protein 

synthesis (Mottola et al., 2013). Overall our results suggest that ASFV-Topo II plays a major 

role in the intermediate-late phase of infection, probably by unwinding the viral DNA ahead of 

the transcription and replication machineries. Moreover, it also unlikely that ASFV-Topo II is 

carried in the virion, since no changes in the transcription of early genes were found. Overall, 

our results strongly suggest that ASFV-Topo II plays a key role both at intermediate and late 

stages of viral infection, when viral DNA replication and transcription events are increased. 

However, we cannot exclude the possibility that this enzyme may also be involved in other 

early viral mechanisms (e.g unpacking of viral genomes, processing and control of genome 

concatemerization), since ASFV-Topo II transcripts were detected immediately after infection, 

reinforcing the idea that ASFV-Topo II could be a good candidate for the development of an 

effective vaccine or used as target for antiviral therapy. A shematic representation of ASFV 

TopoII inhibition is represented in figure. 
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1. Discussion 

 

Since its discovery African swine fever virus is considered one of the most puzzling and 

enigmatic disease agents in veterinary virology. The virus genome contains more than 150 

ORFs, some of them characterized as being involved in replication, transcription and virus 

assembly (Dixon et al., 2013). However, and besides the continuous efforts, most of these 

ORFs lack any known biological function. The complexity of the virus and the lack of knowledge 

on ASFV biology and on viral-host interactions have precluded so far the generation of an 

effective vaccine against this infection (Rock, 2016). Although several studies point out that a 

vaccine against ASFV must stimulate antibody responses and cytotoxic activity by T cell 

lymphocytes, so far, either traditional approaches or advanced strategies using recombinant 

DNA/protein procedures failed to obtain efficient and safe vaccines (Sunwoo et al., 2019). 

Nevertheless, the basis of vaccine development is supported by the evidence that pigs 

recovering from ASFV infection develop protection against homologous viral isolates (Boinas 

et al., 2004; Hamdy & Dardiri, 1984; Mebus & Dardiri, 1980). Moreover, previous studies have 

also shown that pigs are protected against virulent isolates after initial infection with natural 

low virulence isolates, with virus attenuated by passage in tissue culture or with mutant virus 

(in genes involved in virulence) (King et al., 2011; Lacasta et al., 2015; Leitão et al., 2001; 

Lewis et al., 2000; O’Donnell et al., 2015; Reis et al., 2016). These methodologies have, 

however, failed to confer protection against heterologous virus and have also shown safety 

concerns preventing them to be used as vaccines. The current epidemiological scenario of 

ASF and the devastating socio–economic impacts of the disease in the affected areas highlight 

the need to fill the knowledge gaps in ASFV critical mechanisms, in order to uncover possible 

candidates for vaccine development or to be used as drug targets (Arias et al., 2017, 2018). 

Under this context, the objectives of the studies here described were to characterize the role 

of ASFV I215L, QP509L, Q706L and P1192R during the infection, aiming at interfering with 

ASFV replication cycle. 

 

1.1. Characterization of ASFV I215L during the infection  

 

In the present study, it was shown that ASFV pI215L has the capacity to bind to one or two 

pre-activated ubiquitin molecules in the catalytic residue 85 (Cys 85), as reported in other E2-

conjugating enzymes (Randow & Lehner, 2009), that are capable to transfer pre-activated 

ubiquitin to an E3 enzyme. In other words, these E2 ubiquitin-conjugating enzymes are key 

players in the proteasome signaling pathway (Randow & Lehner, 2009). Previous studies 

revealed the presence of ASFV pI215L in extracellular particles (Hingamp et al.,1995), 

suggesting that this protein is needed for the early steps of infection. Our studies revealed the 

presence of pI215L conjugation complexes in a wide range of pH values (4-9) suggesting that 
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this viral enzyme remains active during cell entry via low-pH-dependent endosomal pathway 

and in the mid gut of the tick where the pH is very low (Sojka et al., 2013). Indeed, a recent 

study showed that the ubiquitin proteasome system is required for the ASFV early infection, 

supporting our data and the idea that ASFV subverts this post-transcriptional mechanism for 

its own benefit (Barrado-Gil et al., 2017). Moreover, ASFV pI215L is able to bind free ubiquitin 

at distinct temperatures (from 4 to 42 °C) suggesting its participation in different aspects of the 

viral replication cycle including the infection of the vector under distinct environmental 

temperatures and during high fever episodes of pigs as previous described (Lvov et al., 2015). 

Interestingly, mono- di- and poly- ubiquitinated forms were detected in detergent soluble 

protein fractions of infected cells suggesting that during infection pI215L can be involved in the 

regulation of a plethora of mechanisms. On the other hand, the detection of di-ubiquitinated 

forms in detergent-insoluble extracts is probably due to the fact that pI215L binds to host 

proteins containing an ARID DNA-binding domain like initially reported (Bulimo et al., 2000). 

The involvement of pI215L in different stages and mechanisms during the infection is 

corroborated by the detection of two main peaks of I215L mRNA levels (at 2 and 16 hpi), 

similarly to other viruses (Fukuyo et al., 2011). Moreover, pI215L was earlier detected by 

immunoblotting studies from 4 hpi throughout infection even in the presence of AraC, a strong 

transcription inhibitor. Immunolocalization studies also revealed that pI215L is recruited to viral 

factories (suggesting its involvement in viral transcription and/or DNA replication), presenting 

a diffuse distribution throughout the cytoplasm that may be related to its role in the 

ubiquitination of different viral proteins and/or host proteins. Finally, the downregulation assays 

conducted by siRNA, showed that pI215L i) is crucial for the late viral transcription as identified 

by a reduction of the transcripts of the late B646L gene, ii) affects the genome replication, since 

a reduction in the number of ASFV genomes up to 68 % was detected, and iii) induces a 

decrease of the viral progeny around 94%. Altogether, these results strongly suggest that 

ASFV subverts the cellular ubiquitin-proteasome pathway being important for viral entry, 

genome replication, late viral transcription and progeny production similarly to other human 

and swine viruses (Calistri et al., 2014; Feng et al., 2018; van de Weijer et al., 2017). Although 

more studies are needed to identify the viral ubiquitination targets during infection, the 

essential role of pI215L suggests that this mechanism and, this particular protein, can be used 

to design antiviral strategies such as vaccines and also be an interesting target for drugs. 

 

1.2. ASFV QP509L and Q706L; phylogenetic analysis and activity characterization 

during the infection 

 

ASFV encodes several putative RNA helicases, suggesting a high degree of independence 

from the cellular transcription machinery (Rodríguez & Salas, 2013). Previous studies 

hypothesized that QP509L is orthologous to the vaccinia virus A18R helicase (Baylis et al., 

1993; Roberts et al., 1993; Rodríguez & Salas, 2013) and Q706L to the vaccinia virus 
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D6/D11 helicase (Rodríguez & Salas, 2013; Yáñez et al., 1993). However, no functional 

characterization studies were previously performed to uncover their involvement in ASFV 

transcription or in other viral or cellular regulatory processes. QP509L and Q706L share a 

sequence overlap in ASFV genome, whereas, in vaccinia virus, their counterparts are 

separated by approximately 20000 bp. Our phylogenetic analysis showed that ASFV-QP509L 

and Q706L helicases belong to distinct monophyletic clades being highly conserved among 

virulent and non-virulent isolates. Although the geographic/genotype cluster segregation was 

found to be very similar for both viral RNA helicases, as reported for ASFV-B646L (Bastos et 

al., 2003; Boshoff et al., 2007; Lubisi et al., 2005) and for other viral genes (Michaud et al., 

2013), some exceptions were identified in our analysis. Namely, the QP509L from the isolate 

Georgia 2007/1 clusters with Tengani 62 isolate (belonging to distinct genotype) reinforcing 

the recombination events, recently reported (Rowlands et al., 2008). Indeed, several studies 

point out that ASFV presents a higher evolutionary rate compared with other DNA virus 

(Alkhamis et al., 2018; Duffy et al., 2008; Grenfell et al., 2004) probably due its complex inter-

species transmission routes between wild boars, ticks and domestic pigs. Besides this, when 

the phylogenetic analyses was performed between ASFV-QP509L, Q706L and among other 

RNA helicases belonging to other NCLDV members, a high degree of homology was found 

corroborating the previous studies and the idea of a common ancestor (Baylis et al., 1993; 

Duffy et al., 2008; Roberts et al., 1993; Rodríguez & Salas, 2013; Yáñez et al., 1993). Our 

experiments also revealed that the maximum peak of mRNA transcripts of the two ASFV SF2 

RNA helicases was detected between 8 and 12 hpi, corresponding to the intermediate and late 

stages of the infection, when the viral DNA replication and, in particular the transcription, are 

more active. pQP509L was detected from 12 hpi in viral factories and host nucleus, whereas 

pQ706L was detected only at viral factories from 12 hpi onwards, indicating different roles 

during replication cycle. In particular, the presence of pQP509L in the nucleus at later times of 

infection suggests its participation in other viral processes besides transcription and/or DNA 

replication as, for example, modulation of antiviral responses and viral assembly (Dumont et 

al., 2006; Fairman-Williams et al., 2010; Gross & Shuman, 1998; Lam & Frick, 2006; Ma et al., 

2008; Mackintosh et al., 2006; Shuman, 1992). siRNA assays against ASFV-QP509L and 

Q706L transcripts revealed the essential role of both proteins as showed by the reduction in 

late viral transcripts (ASFV-B646L), decreased number of viral genomes and viral progeny. 

These data also support the idea of non-redundant functions for both ASFV RNA helicases 

and the incapacity of cellular RNA helicases to rescue their function. Although more studies 

are needed to precisely identify the biological activity of these RNA helicases, our results and 

the known role of their counterparts in vaccinia virus, suggest that those proteins are involved 

in viral transcription. The QP509L is probably crucial in termination and release of late viral 

transcripts (as reported for vaccinia virus A18R helicase ortholog), whereas ASFV-Q706L 

regulates elongation and release of late viral transcripts (like vaccinia virus D6/D11 helicase). 
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In eukaryotes, these enzymes are typically associated with the unwind of RNA duplexes in an 

ATP-dependent fashion (Bizebard et al., 2004; Yang et al., 2007; Yang & Jankowsky, 2006). 

On the other hand, and during viral infections, they are involved in DNA-RNA and RNA-protein 

interactions, interfering with gene expression and with the release of infectious particles (Frick 

& Lam, 2006; Ranji & Boris-Lawrie, 2010). Not surprisingly the essential role of this type of 

enzymes has also been explored as antiviral drug target (Briguglio et al., 2011). Finally, taking 

into consideration that there is neither a vaccine nor a treatment available against ASFV and 

the essential roles of both ASFV SF2 RNA helicases, it can be hypothesized that a mutant on 

ASFV-QP509L or ASFV-Q706L gene can be a good candidate to generate a live attenuated 

vaccine. These ASFV mutants will not produce progeny, allowing the immediate-early and 

early viral gene expression, providing antigens that can induce a protective immune response. 

 

1.3. ASFV-ORF P1192R activity characterization studies during infection 

 

Although some information is available regarding ASFV replication, due to its complexity and 

to its degree of independence from the host cell, several aspects are still unclear, as the role 

of ASFV-pP1192R (Dixon et al., 2013). Similarly to eukaryotes and prokaryotes, the ASFV 

DNA molecule needs to undergo conformational changes before DNA replication takes place. 

Type II topoisomerases are the type of enzymes that traditionally solve DNA constraints during 

replication, transcription, chromosome condensation-decondensation and segregation by 

catalysing transient double-stranded breaks in one DNA helix. In addition, in prokaryotes these 

proteins are also targets for clinically important antibacterial molecules (fluoroquinolones) and, 

in eukaryotes, for anticancer drugs (Drlica et al., 2009; Nitiss, 2009a; Vos et al., 2011). ASFV 

encodes a type II DNA topoisomerase and, interestingly, this viral ORF shares around 20% 

sequence identity with bacterial topoisomerases (Baylis et al., 1992; García-Beato et al., 1992; 

Gadelle et al., 2003). Besides this first evidence, only recently it was shown that 

fluoroquinolones disrupt ASFV infection (Mottola et al., 2013). In this thesis, the role of ASFV-

topo II during infection and the anti-viral effect of fluoroquinolones were clarified. The 

quantification of ASFV-Topo II mRNAs showed an expression dynamic that mimics other well 

studied late viral transcripts, being detected from 2 hpi but increasing continuously up to 16 

hpi (reviewed in Rodríguez and Salas, 2013). This data suggests that this enzyme is important 

in the intermediate-late phase of infection, when most of DNA replication occurs and when 

conformation complexities must be solved (reviewed in Rodríguez and Salas, 2013). 

Moreover, ASFV topo II expression pattern seems to be in accordance with the previous data 

showing that ASFV topo II co-localizes with cytoplasmic viral factories at intermediate and late 

phases of infection (Coelho et al., 2016, 2015). However, the role of this enzyme during ASFV 

infection remained to be clarified. Our siRNA assays revealed that ASFV topo II depletion leads 

to a reduction in i) viral progeny, ii) the number of infected cells and iii) the number of viral 
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factories per cell. In parallel, the early and late transcription were also found to be disrupted. 

However, we cannot exclude that this could be due to a viral DNA replication inhibition that 

prevents the synthesis of an enough number of transcription templates to support viral 

progression. Our studies also suggest a similar mechanism of action of fluoroquinolones 

between ASFV and prokaryotes. Indeed, the exposure to enrofloxacin during the intermediate-

late phase of infection induced ASFV DNA fragmentation. This phase of infection is 

characterized by a high rate of viral DNA replication (reviewed in Rodríguez and Salas, 2013), 

probably when ASFV-Topo II DNA relaxation activity is more relevant for viral genome 

segregation. Interestingly, when ASFV-infected Vero cells are exposed to enrofloxacin from 

early times of infection, the viral DNA synthesis is completely abrogated. Fluoroquinolones are 

widely used in clinical practice, still, their mechanism of action in bacteria is not fully 

understood. Some studies state that fluoroquinolones interfere with DNA resealing at the DNA 

cleavage gate (Bax et al., 2010; Chan et al., 2015; Laponogov et al., 2009, 2010), thus blocking 

the replication machinery and inducing irreversible chromosome fragmentation (Drlica & Malik, 

2003; Drlica et al., 2008; Malik et al., 2007). Indeed, when infected cells were exposed to 

enrofloxacin from 2 hpi onwards, no VP72 transcripts (late) were detected at all, whereas the 

early transcription of VP32 seems to be unaffected, suggesting that enrofloxacin is indeed 

blocking ASFV topo II activity after early gene expression, when the viral DNA replication is 

increased. Since no changes in the transcription of early genes were found it is unlikely that 

ASFV-Topo II is carried in the virion; however, its expression from 2 hpi raises the possibility 

that this enzyme may also be involved in other early viral processes including genome 

unpacking. Previous studies have also shown a disruption of late ASFV protein synthesis when 

infected cells were exposed to enrofloxacin (Mottola et al., 2013). Our results suggest that 

ASFV-Topo II plays a major role in the intermediate-late phase of infection, probably by 

unwinding the viral DNA ahead of the transcription and replication machineries, similarly to 

other topoisomerases. In vitro studies revealed that ASFV topo II is functional in yeast 

complementation assays and, capable to catenate, decatenate and relax DNA in vitro 

(Coelho et al., 2016, 2015). Altogether, the results published by our lab suggest that ASFV 

pP1192R maybe a good candidate to design effective strategies to block the viral infection 

or even to generate deleted or attenuated viruses to be used as a vaccine (s). 

 

1.4. Future perspectives  

 

The present work reveals that ASFV I215L, QP509, Q706L and P1192R are essential for the 

viral replication cycle, being involved in DNA replication, RNA transcription and other key 

regulatory processes. These characterization studies uncover new pathways that may interfere 

with ASFV infection, either by directly targeting these proteins or the mechanisms they are 

involved with. Taking into consideration the results obtained and the data available from similar 
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proteins in other biological systems, including viruses, it is expected that ASFV infectious 

virions lacking ASFV pI215L will result on an interference with viral protein regulation, crucial 

for viral cycle progression, during virus entry, viral early/late transcription and DNA replication. 

Regarding the viral particles deleted in RNA helicases pQP509L and pQ706L, the absence of 

these proteins will lead to a deficient viral transcription, in elongation and/or release phases. 

In a similar way, viral particles deleted in P1192R will infect host cells, but viral genome 

replication will be blocked inducing an irreversible genome fragmentation, thus preventing the 

release of infectious progeny. It is expected that in the absence of the proteins described 

above, related to relevant steps in transcription and replication, the expression of other of viral 

proteins at earlier stages of infection may allow the induction of host protective immune 

responses that may be silenced upon full viral replication. To further explore this possibility, 

recombinant particles lacking ASFV I215L, QP509L and Q706L genes were generated. In 

brief, a selection marker β-glucuronidase (GUS) gene was inserted in a vector (pJET 1.2 

Thermo Scientific), flanked by the left and right homology arms (500bp) of each specific ORF, 

under the control of a strong viral promotor B646L (p72). In the 5´end of the right arm, a 

restriction (EcoRV- New England Biolabs) site was inserted to facilitate the insertion of the 

central region of the construct. The vector was used to transfect previously infected Vero cells 

where by homologous recombination the target gene was replaced by the selection maker like 

previously described (Abrams & Dixon, 2012) (Figure 25). Primers used to generate these 

constructs are presented in table 8. To further isolate and expand these viruses deleted in 

essential genes it is mandatory to generate a complementary cell line expressing the 

corresponding viral proteins. A complementary helper cell line was also engineered. 

 

Figure 25. Schematic diagram representing the generation recombinant ASF viruses 

expressing GUS reporter gene. 

 

 

Schematic representation of the strategy to generate ASF recombinant virus. The target gene will be 

excise by homologous recombination and replaced by the selection marker. The selection marker will 

allow the identification and isolation of recombinant virus in infected cells. 
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In our preliminary results, the strategy to obtain the recombinant virus (deleted in ASFV I215L 

and QP509L or Q706L) seems to be a successful approach since the recombinant viruses 

expressing the reported GUS gene were identified by the presence of blue plaques when X-

Gluc (5-bromo-4-chloro-3-indolyl-b-D-glucuronic acid, Sigma-Aldrich) was added (Figure 26A). 

In addition, the target replacement by the selection marker was confirmed by PCR for each 

target gene under study. However, the unsuccessful attempts to isolate and replicate these 

recombinant viruses, suggest that the generated complementary Vero cell lines do not support 

the replication of recombinant mutants (Figure 26B). 

The main issue in the generation of virus lacking essential genes is the production of a helper 

cell line expressing the corresponding viral gene, being able to rescue the original function of 

the protein. So far, these difficulties preclude our strategy to obtain an ASFV DISC. However, 

further studies should be done to generate a stable cell line. At the time of writing this thesis, 

new approaches to generate complementary cell lines are being performed using the 

CRISPR/Cas9. This strategy aims to introduce the viral ORF in specific regions of the cell 

genome (non-essential but actively transcribed regions), and to tightly regulate the expression 

of heterologous protein. Moreover, once isolated, these DISC particles must be characterized 

in terms of transcript expression, genome replication and viral progeny production. 

 

Figure 26. Isolation of recombinant virus using the plaque method.  

 

 

 

Supernatants of the recombination step were used to infect new Vero-cells expressing pI215L, 

pQP509L and pQ706L. A layer of agarose and X-Gluc was added after infection (A). 

Recombinant virus detected by a blue infection plaques, (B). The blue plaques formed were 

picked and used to infect new cell cultures. No blue plaques were visible in a third passage. 
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Table 8. Primers used to generate the constructs for viral gene deletion. 

 

Target Primer 
designation 

Sequence (5´- 3´) Orientation 

ASFV-I215L 215LarmFw GGTACCCTTTAAATGTATAACGACAACTA
AAACCCCT 

Forward 

ASFV-I215L 215LarmRv CGCGGATCCATCGGTCCCACGGTTATTT
AATATTAATTAAATTCCCTGGTTTATTCC 

Forward 

ASFV-I215L 215RarmFw TGGATCCAGCGGCCCGACGTACGTTTAC
ATTTTAGTGTTGATTTTAGTTACTTAGATT
TTAGTG 

Reverse 

ASFV-I215L 215RarmRv TCTAGATGCATGAAATGCCAGCAG Forward 
ASFV-QP509L 509LarmFw GGTACCGATAAACAAGCTCACTCACTTCT

GAGTG 
Forward 

ASFV-QP509L 509LarmRv CGCGGATCCATCGGTCCCACATGGCCTC
CATTCTCGC 

Reverse 

ASFV-QP509L 509RarmFw TGGATCCAGCGGCCCGACGTACGATGTC
TTGCGTGCACAACAA 

 

ASFV-QP509L 509RarmRv TCTAGAGGCGCTATTGATAATTCCTCTAA
AGAG 

 

ASFV-Q706L 706LarmFw GGTACCCGATGAGCCGTATGGCATC  
ASFV-Q706L 706LarmRv CGCGGATCCATCGGTCCCACCTCTTTAT

ATTTTTCATATACCTCTTTTAGGTATGCTT 
Forward 

ASFV-Q706L 706RarmFw TGGATCCAGCGGCCCGACGTACGATGTC
CAGGCCGGAACA 

Reverse 

ASFV-Q706L 706RarmRv TCTAGACAGCGCTTCCAAAGTCAATG Forward 
GUS-gene GUSFw ATTTAATAAAAACAATAAATTATTTTTATA

ACATTATATATGTTACGTCCTGTAGAAAC
CCCAACC 

Reverse  

GUS-gene GUSRV TCATTGTTTGCCTCCCTGCTG Forward 

 

 

1.5. General conclusion 

 

ASF is a major threat to pig husbandry at global scale. Following the transcontinental 

introduction of the disease in Georgia (2007) and due to existing poor biosecurity conditions, 

complex transmission routes and the lack of a vaccine or treatment, the continuous spread of 

ASF to non-endemic areas of Europe and Asia constitutes one of the major concerns for 

national and international animal health authorities. Despite the efforts in the last decades, 

ASFV complexity and the gaps on the knowledge of its biology thwart the development of an 

efficient vaccine to control the disease. Under these circumstances, this work aimed at 

characterizing the ASFV I215L, QP509L, Q706L and P1192R proteins during the infection. 

These studies contribute to increase the knowledge on ASFV biology, by uncovering the 

expression dynamics, cellular distribution and biologic role of each of those proteins, in key 

steps of the viral infection, which open new insights for the rational design of efficient vaccines 

against ASF. 
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