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ABSTRACT  
 
Analysis of TIM2 deficiency in the mouse retina 
 
Careful control of iron availability in the retina is central to maintenance of iron homeostasis, 

as its imbalance is associated with oxidative stress and progress of several retinopathies, such 

as diabetic retinopathy. Ferritin, known for its role in iron storage and detoxification, has also 

been proposed as an iron-transporter and can be regarded as a potential deliverer of a 

considerable large amount of iron to the retina compared to transferrin, the classical iron-

carrier protein. Ferritin can bind to scavenger receptor class A member 5 (Scara5) and T-cell 

immunoglobulin and mucin-domain 2 (TIM2) receptors and is likely endocytosed. In this study, 

the presence of TIM2, which remained unknown in the retina, was investigated. Although no 

human ortholog for mouse TIM2 has been identified, human TIM1 and mouse TIM2 have 

similar functions. 

Our results revealed for the first time the presence of TIM2 receptors in the mouse retina, 

mainly expressed in Müller cells, unveiling new aspects of retinal iron metabolism regarding 

the putative role of TIM2 in this tissue. A knockout mouse for this membrane receptor was 

generated in order to better understand TIM2 functions in the retina. TIM2 deficiency affected 

retinal iron metabolism. Iron-loaded ferritin accumulation, probably due to increased ferritin 

uptake mediated by Scara5, and increased iron uptake by transferrin receptor 1 (TfR1)-

transferrin binding led to retinal iron overload. Consequently, increased vascular permeability 

and blood-retinal barrier (BRB) breakdown were observed, inducing edema of the central 

retina. Paracellular and transcellular transports were impaired with tight junction integrity loss 

and increased caveolae number. Two mechanisms seem to be involved in this process: 

association of iron and ferritin overload with vascular endothelial growth factor (VEGF) 

overexpression and oxidative stress triggered by reactive oxygen species (ROS) 

overproduction generated by retinal iron overload. 

Altogether, these results point to TIM2 as a new key player in iron homeostasis in the mouse 

retina, possibly modulating cellular iron levels, and a potential target for the treatment of 

diabetic macular edema. 

 
Keywords: TIM2 receptors, iron metabolism, blood-retinal barrier integrity, edema, 

retinopathy. 
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RESUMO 
 
Análise da deficiência de TIM2 na retina de murganho 
 

A retina necessita especificamente de ferro, devido a este ser um co-factor essencial da 

enzima guanilato ciclase que assegura a síntese de monofosfato de guanosina cíclico, 

segundo mensageiro na cascata de fototransdução. Para além disso, a retina é 

particularmente dependente de ferro devido à contínua necessidade de síntese de 

membranas, para suprir a constante renovação dos segmentos externos dos fotorrecetores, 

que requer como co-factor este elemento. Porém, o desequilíbrio da homeostasia do ferro 

está associado ao dano oxidativo e ao desenvolvimento de várias situações de retinopatia, 

como por exemplo a retinopatia diabética. A retina é particularmente propensa a stress 

oxidativo e o excesso de ferro exacerba potencialmente esta situação, devido à participação 

do ferro na reação de Fenton, que gera a superprodução de espécies reativas de oxigénio 

que, por sua vez, desencadeiam stress oxidativo. Por conseguinte, a manutenção da 

homeostasia do ferro é crucial neste tecido. Contudo, mecanismos de regulação do ferro na 

retina ainda não são completamente conhecidos. A retina obtém ferro a partir da circulação 

sanguínea. No entanto, a barreira hemato-retiana isola a retina da circulação sanguínea, 

protegendo-a de potenciais estímulos nocivos. Assim, são necessários mecanismos 

específicos e rigorosamente regulados de absorção de ferro para atravessar esta barreira e 

importar a quantidade de ferro estritamente essencial para o normal funcionamento da retina. 

Classicamente, a transferrina foi estabelecida como a proteína transportadora de ferro na 

retina, sendo aceite que a transferrina sérica se liga ao seu recetor de membrana, recetor da 

transferrina 1, na superfície das células endoteliais e do epitélio pigmentar da retina. Após a 

endocitose deste complexo, o ferro é libertado no parênquima retiniano. Mais recentemente, 

a ferritina, considerada classicamente como uma proteína de armazenamento de ferro e 

destoxificação, foi também proposta como uma proteína transportadora deste elemento. A 

vantagem da ferritina sérica em relação à transferrina no transporte de ferro prende-se na 

capacidade da ferritina de incorporar ~ 4,500 átomos de ferro, ao passo que a transferrina 

apenas transporta 2 átomos de ferro, constituindo, assim, a ferritina uma fonte muito eficiente 

de ferro para os tecidos. A molécula da ferritina é composta por 24 subunidades de dois tipos: 

cadeia leve (L) e cadeia pesada (H) que se unem aos recetores Scara5 (scavenger receptor 

class A member 5) e TIM2 (T-cell immunoglobulin and mucin-domain 2), respetivamente. 

O nosso grupo identificou pela primeira vez a presença de recetores Scara5 na retina humana 

e do murganho. No entanto, até à data, a presença de recetores TIM2 na retina não foi 

reportada na bibliografia. O TIM2, uma proteína transmembranar do tipo 1, é um membro da 

família de genes portadores dos domínios mucina e imunoglobulina de células T e, para além 

de ser um recetor para a ferritina-H, está envolvido na regulação da resposta imunitária. 
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Apesar de não ter sido identificado um gene ortólogo no humano para o TIM2 do murganho, 

o TIM1 humano e o TIM2 do murganho partilham uma homologia de 36% e funções similares, 

tal como a ligação à ferritina-H. 
Neste estudo, a presença de recetores TIM2 na retina do murganho, que se expressam 

principalmente nas células de Müller, é revelada pela primeira vez, abrindo caminho para uma 

nova abordagem no metabolismo do ferro na retina, tendo em consideração o papel putativo 

do TIM2 neste tecido. O facto de os recetores TIM2 se expressarem maioritariamente nas 

células de Müller, as células mais importantes da glia na retina, é também de grande 

relevância devido ao papel que estas células desempenham na manutenção da homeostasia 

do ferro, sendo consideradas mediadores importantes no transporte, distribuição e regulação 

deste elemento na retina.  

No sentido de compreender as funções do TIM2 na retina, foi gerado e analisado um modelo 

de murganho mutante para o recetor TIM2. Os nossos resultados confirmaram a diminuição 

da expressão dos recetores TIM2 e mostraram um aumento da expressão das principais 

proteínas envolvidas no metabolismo do ferro, nomeadamente Scara5, recetor da transferrina 

1, transferrina, ferritina-L e ferritina-H, nos murganhos com deficiência de recetores TIM2. O 

aumento da expressão de ferritina observado deve-se provavelmente ao aumento de entrada 

de ferritina sérica através da sua ligação aos recetores Scara5. Efetivamente, observámos a 

presença de uma maior densidade de moléculas de ferritina carregadas com ferro, 

principalmente nas células de Müller, e uma sobrecarga de ferro nas retinas destes 

murganhos. O aumento da expressão da transferrina e do seu recetor contribuíram também, 

provavelmente, para o aumento do conteúdo em ferro observado nestas retinas. No estudo 

das consequências deste excesso de ferro na retina, observámos, in vivo, por oftalmoscopia 

de varrimento laser, a existência de derrames de fluoresceína dos vasos sanguíneos para o 

parênquima retiniano, o que está descrito como sendo um indicativo de aumento da 

permeabilidade vascular e rutura da barreira hemato-retiniana. A análise destas retinas por 

meio de microscopia eletrónica de transmissão revelou a presença de espaços perivasculares 

a rodear os vasos sanguíneos, aspeto consistente com a acumulação de fluído no espaço 

extracelular e a formação de edema, sendo este mais pronunciado na parte central da retina. 

Consequentemente, analisámos as principais proteínas constituintes das junções de oclusão, 

zonula occludens 1, claudina-5 e ocludina, que estão envolvidas no controlo do transporte 

paracelular ao longo da barreira hemato-retiniana. Esta análise revelou uma perda de 

integridade de todas as proteínas juncionais e a alteração do transporte paracelular, 

conduzindo, assim, ao aumento da permeabilidade vascular. Foi também avaliada a 

expressão da proteína associada a vesículas do plasmalema, cuja expressão normalmente é 

baixa ou está ausente em barreiras hemato-retinianas intactas. Foi observado um aumento 

da expressão desta proteína bem como do número de cavéolas, o que sugeriu um aumento 

do transporte transcelular, contribuindo para o aumento da permeabilidade vascular. Para 
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além disso, encontrámos sobreexpressão de VEGF (vascular endothelial growth factor), bem 

como superprodução de espécies reativas de oxigénio e o aumento da expressão de 

proteínas associadas com dano do DNA e peroxidação lipídica nas retinas destes murganhos. 

No entanto, apesar de todos estes aspetos serem característicos de uma situação de 

retinopatia diabética/edema macular diabético, os murganhos com diminuição de recetores 

TIM2 apresentaram normoglicémia, excluindo, desta forma, um quadro de diabetes. 

No conjunto, os nossos resultados mostraram que a deficiência de recetores TIM2 no 

murganho alterou o metabolismo do ferro na retina, observando-se uma acumulação de 

ferritina e ferro, sobretudo a nível das células de Müller. Em consequência, a acumulação de 

ferro deu origem a um aumento da permeabilidade vascular e à rutura da barreira hemato-

retiniana, responsáveis pela formação de edema, mais proeminente na retina central. Neste 

processo podem estar envolvidos dois mecanismos. Por um lado, a associação de excesso 

de ferro e ferritina com a sobreexpressão de VEGF, levando à fosforilação e degradação das 

proteínas que constituem as junções de oclusão, bem como o aumento de expressão da 

proteína associada a vesículas do plasmalema e de cavéolas, responsáveis pela alteração do 

transporte paracelular e transcelular, respetivamente. Por outro lado, o excesso de ferro 

desencadeia um estado de stress oxidativo na retina devido à superprodução de espécies 

reativas de oxigénio, o que por sua vez pode levar também à disrupção das proteínas das 

junções de oclusão. Para além disto, a sobreexpressão crónica de ferritina, longe de ser 

neuroprotetora, pode originar um efeito contrário, de modo que o ferro armazenado nas 

moléculas de ferritina pode, eventualmente, ter um efeito pró-oxidante, contribuindo também 

para a rutura da barreira hemato-retiniana. A sobreexpressão de Scara5 mostrou que esta 

proteína poderá ter um papel protetor na manutenção da estrutura da parede vascular, uma 

vez que inibe a expressão das metaloproteinases de matriz 2 e 9, mediadoras da degradação 

ou remodelação da matriz extracelular. 

No conjunto, os nossos resultados revelaram a presença de um novo recetor de ferritina na 

retina do murganho, o recetor TIM2, e o seu envolvimento na homeostasia do ferro, 

possivelmente modulando os níveis deste elemento ao longo da retina neural. Os nossos 

resultados mostraram ainda que a acumulação de ferro, associada à diminuição de TIM2, em 

situação de normoglicémia, foi suficiente para provocar a rutura da barreira hemato-retiniana 

e a formação de edema, características do edema macular diabético, confirmando o papel do 

ferro no mecanismo de disfunção desta barreira. Por conseguinte, o recetor TIM2 pode vir a 

ser um alvo terapêutico de interesse nos modelos animais para tratamento do edema macular 

diabético, sobretudo se atendermos à existência do seu ortólogo TIM1 em pacientes 

humanos. 

 
Palavras-Chave: recetores TIM2, metabolismo do ferro, integridade da barreira hemato-

retiniana, edema, retinopatia. 
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INTRODUCTION 
 

 

 

A. The retina and its vascular system  
 

The eye is the sensory organ responsible for visual perception. Positioned within the orbit, the 

eye is surrounded by bone and soft tissue and is formed by the eyeball and its accessory 

organs, including the extrinsic muscles of the eyeball, eyelids, conjunctiva, and lacrimal 

apparatus (Metz, 1868; Ruberte at al., 2016).  

 

 

A.1. Localization of the retina in the eyeball  
 

The eyeball (Bulbus oculi) comprises three concentric tunicae in close apposition: the fibrous 

layer of the eyeball (Tunica fibrosa bulbi), creating the outer wall of the eyeball; the vascular 

tunic of the eyeball (Tunica vasculosa bulbi), a highly vascularized and pigmented medial layer; 

and the internal layer of the eyeball (Tunica interna bulbi), which consists of the retina and its 

pigmented epithelium, as well as retinal blood vessels (Vasa sanguinea retinae) (Schaller, 

1992; Smith, 2002; Gartner & Hiatt, 2007).  

 
The fibrous layer of the eyeball is formed by the sclera (Sclera) and cornea (Cornea) (Figure 

1). The sclera is a white protective layer covering the posterior portion of the eye and consists 

of dense fibrous connective tissue rich in type I collagen and elastic fibers (Schaller, 1992; 

Smith, 2002; Gonçalves & Bairos, 2006). This resistant fibroelastic coat protects the eyeball 

and is the point of insertion for the extrinsic muscles of the eyeball (Gartner & Hiatt, 2007). The 

cornea, situated in the anterior portion of the eyeball, is a transparent, avascular, and highly 

innervated membrane responsible for the refraction of the light (Schaller, 1992; Gartner & Hiatt, 

2007). The transition between the cornea and the sclera is called the limbus. In the mouse 

limbus, it is possible to observe a circumferential vascular ring (Ruberte et al., 2016).  

 
The vascular tunic of the eyeball, also named uvea, consists of the choroid (Choroidea) in its 

posterior portion, and the ciliary body (Corpus ciliare) and the iris (Iris) in the anterior portion 

(Figure 1) (Ruberte et al., 2016). The choroid is a pigmented and well-vascularized tissue 

loosely attached to the sclera and separated from the retina by the Bruch's membrane (Lamina 

basalis) (Schaller, 1992; Gartner & Hiatt, 2007). The vast network of blood capillaries of the 

choroid ensures the metabolic needs of the outer layers of the retina of both human and mouse 
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(Gartner & Hiatt, 2007; Ruberte et al., 2016). In addition, due to its high pigmentation, the 

choroid is responsible for the absorption of light, preventing reflections through the retina. 

Unlike other nocturnal species, the mouse has no tapetum lucidum, an avascular area of the 

choroid that reflects light and enhances nocturnal vision (Wise, Dollery & Henkind, 1971; 

Ruberte et al., 2016).  

 
The ciliary body is a thick annular structure located between the iris and the vitreous chamber, 

projecting towards the lens. The ciliary processes (Processus ciliares) lay in its inner surface 

and consist of radially arranged fibroelastic ridges responsible for the secretion of aqueous 

humor, together with the ciliary crown (Corona ciliaris) (Schaller, 1992; Esperança-Pina, 2000). 

In the outermost portion of the ciliary body, closest to the sclera, resides the ciliary muscle 

(Musculus ciliaris), responsible for the accommodation of the lens (Esperança-Pina, 2000; 

Cook & Peiffer, 2001). In the mouse, the ciliary muscle is not well developed, causing the lack 

of accommodation of the lens (Ruberte et al., 2016).  
 
The iris is the most anterior part of the vascular tunic and separates the anterior and posterior 

chambers of the eyeball. This structure acts as a contractile diaphragm with a central opening 

(Pupilla) that regulates the amount of light admitted into the fundus of the eye through the 

modification of the size and shape of the pupil (Cook & Peiffer, 2001; Gartner & Hiatt, 2007). 
  
The internal tunica of the eyeball consists of the retina (Retina) (Figure 1) (Schaller, 1992; 

Gartner & Hiatt, 2007). The retina is the neurosensory part of the eye and lines the inner 

surface of the eyeball (Smith, 2002). During embryogenesis, the retina develops from the optic 

cup, an outgrowth of the diencephalon, which is composed of two neuroepithelial layers: the 

inner layer that develops into the neural retina; and the outer layer, which becomes the retinal 

pigment epithelium (RPE) (Carlson, 1999; Rossant & Tam, 2002; Willoughby et al., 2010). The 

optic disc (Discus nervi optici) is the point from which retinal fibers converge into the optic 

nerve, and also where the central retinal artery and vein emerge (Wise et al., 1971; Hildebrand 

& Fielder, 2011). In the mouse, the optic disc is situated in the central axis of the eye (Ruberte 

et al., 2016).  

 
The interior of the eyeball contains the lens (Lens) and three chambers of fluid, including the 

anterior (Camera anterior bulbi) and posterior chambers (Camera posterior bulbi) filled with 

the aqueous humor, and the vitreous chamber (Camera vitrea bulbi) filled with a more viscous 

fluid, the vitreous humor (Figure 1) (Ruberte et al., 2016).  
 
The lens, located between the posterior portion of the iris and the vitreous body, is a 

transparent, biconvex, flexible, and avascular structure that focuses the light on the retina. In 

comparison to the human eye, the mouse lens is much larger and rounder, occupying 75% of 

the intraocular space (Ruberte et al., 2016). The aqueous humor (Humor aquosus), a 
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colourless fluid continuously secreted by the ciliary processes, provides nutrients to the 

surrounding avascular structures, mainly the lens and the cornea, and helps maintaining 

hydrostatic pressure. The vitreous humor (Corpus vitreum), in close apposition to the retina, is 

a transparent gel mainly composed of glycosaminoglycans, hyaluronic acid, and water. The 

main function of the vitreous humor is to ensure structural support to the eyeball, as well as to 

provide a transparent path for light to reach the retina. In the mouse, as the eyeball is mostly 

occupied by the lens, the vitreous chamber is proportionally smaller compared to that of the 

human eyeball (Smith, 2002). 

 

 

 
 
Figure 1. The mouse eyeball. Topographical (A) and histological (B) sections of the mouse eyeball. 1, 

anterior pole; 2, posterior pole; 3, anterior chamber of the eyeball; 4, posterior chamber of the eyeball; 

5, lens; 6, vitreous chamber of the eyeball; 7, retina; 8, choroid; 9, ciliary body; 10, iris; 11, cornea; 12, 

sclera; 13, optic nerve. Images from Ruberte et al., 2016. 

 

 

A.2. Retinal organization and function  
 

The retina is the most complex substructure of the eye and is organized in several layers 

(Figure 2), from the innermost (adjacent to vitreous chamber) to the outermost (related to the 

choroid) (Smith, 2002; Hildebrand & Fielder, 2011; Ruberte et al., 2016):  

 

- Internal limiting membrane (Stratum limitans internum): adjacent to the vitreous chamber, this 

layer is the basal lamina of the inner retina and is formed by the footplates of Müller cells.  

- Nerve fiber layer (Stratum neurofibrarum): composed of unmyelinated axons of ganglion cells 

that converge towards the optic disc. Axons are surrounded by astrocytes and Müller cell 

processes.  

- Ganglion cell layer (Stratum ganglionicum): contains numerous retinal ganglion cells 

characterized by large vesicular nuclei with prominent nucleoli. Displaced amacrine cells and 
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astrocytes have also been found in this layer.  

- Inner plexiform layer (Stratum plexiforme internum): matrix in which synapses between 

ganglion, bipolar, and amacrine cells occur. Occasionally, displaced cells from adjacent layers, 

such as astrocytes, can also be found.  

- Inner nuclear layer (Stratum nucleare internum): harbors the nuclei of bipolar, horizontal, 

amacrine, and Müller cells.  

- Outer plexiform layer (Stratum plexiforme externum): consists of a thin layer of synapses 

between photoreceptor axons and dendrites of bipolar and horizontal cells.  

- Outer nuclear layer (Stratum nucleare externum): contains the nuclei of photoreceptor cells, 

cones and rods.  

- External limiting membrane (Stratum limitans externum): this is not considered a true 

membrane, but rather an outer limit created by apical processes of Müller cells that relate to 

the inner segments of photoreceptor cells.  

- Inner and outer segments of photoreceptors (Stratum neuroepitheliale): rods and cones are 

tightly stacked together into a single layer of photoreceptor cells, which contains inner 

segments and outer segments. This is the only light-sensitive part of the neuroretina, and all 

other layers collectively serve to process and transmit these nerve signals between cells.  

- Retinal pigment epithelium (Stratum pigmentosum): consists of a monolayer of retinal 

pigment epithelial (RPE) cells containing numerous melanosomes. It is the pigmented 

outermost layer of the retina, adjacent to the choroid, which covers most of the inside of the 

eyeball.  

 
Figure 2. Structure of the retina. Hematoxylin-eosin stained paraffin section of the retina showing the 

different layers and cells of the retina. NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner 

plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; IS, inner 

segments of the photoreceptor cells; OS, outer segments of the photoreceptor cells; RPE, retinal 

pigment epithelium. Images from Ruberte et al., 2016. 
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The main function of the retina is to capture and transform light into an electrical signal, which 

is transmitted to the brain (Willoughby et al., 2010). Neural signals, generated when light 

interacts with photoreceptors, are directly conducted by synaptic transmission along the 

vertical pathway of excitatory neurotransmission to bipolar and ganglion cells (Figure 3) 

(Maureen, McCall & Gregg, 2008; McCall & Gregg, 2008b). Then, the visual information is 

conducted through the axons of ganglion cells that converge into the optic nerve to reach the 

visual cortex (Maureen et al., 2008; McCall & Gregg, 2008a). In addition, lateral inhibitory 

pathways, mediated by horizontal and amacrine cells, modulate the nervous impulses. As a 

result, the normal visual functioning requires a finely tuned interrelationship and functional 

integration of all cell populations that include neuronal, glial, vascular, and retinal epithelial 

cells. 

 
 

Figure 3. Schematic representation of the retinal circuitry. In the vertebrate retina, 
neurotransmission along the vertical pathway comprises photoreceptors, rods (ro) and cones (co), 

transducing light energy into a neural signal that is relayed via bipolar cells (bi) to retinal ganglion cells 

(ga). Visual signals are shaped by a lateral pathway mediated by horizontal (ho) and amacrine cells 

(am). Glial cells, Müller cells (mü) and astrocytes, fulfill supportive functions in the retina. Microglial cells 

(mi) are the resident macrophages of the retina. ILM, internal limiting membrane; GCL, ganglion cell 

layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear 

layer; ELM, external limiting membrane; IS/OS, inner and outer segments of the photoreceptor cells; 

RPE, retinal pigment epithelium. 
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A.2.1. Retinal neuronal cells 
 

Several neuronal types can be found within the retinal parenchyma: photoreceptors, bipolar, 

ganglion, horizontal, and amacrine cells (Figure 3). 

 
Photoreceptor cells are a specialized type of sensory neurons able to interact with light, thus 

generating a nervous impulse that is conducted through the retinal neuronal path to the optic 

nerve to reach the visual cortex. The photoreceptor layer is formed by two basic cell types, 

rods and cones, which are responsible for scotopic and photopic vision, respectively (Jeon et 

al., 1998; Ebrey & Koutalos, 2001). According to this, rods are specialized in the perception of 

changes in intensity of dim light and have very low spatial resolution. In the mouse, a nocturnal 

species, rods represent 95% of photoreceptors (Jeon et al., 1998; Smith, 2002). Cones, on the 

contrary, have very high spatial resolution, are specialized for acuity, and perceive bright light 

and colors.  
 
Beyond the outer limiting membrane are located the inner and outer segments of the 

photoreceptors. The inner segments contain the machinery, such as many mitochondria and 

abundance of glycogen and ribosomes, needed to meet the high metabolic demands 

associated with phototransduction. The outer segments are endowed with visual pigments and 

their plasma membrane is stacked into hundreds of membranous laded flat discs. The outer 

segments are renewed in a highly dynamic fashion, with assembly of new discs at the base, 

and the shedding and phagocytosis by the RPE at the distal part (Young & Bok, 1969; Wolf, 

2004).  

 
Bipolar cells, the most abundant cells in the inner nuclear layer, receive signals from 

photoreceptors and transmit them to ganglion cells. Their unique axons synapse with ganglion 

cells and also with amacrine cells (Jeon et al., 1998; Masland, 2011).  
 
Ganglion cells, the last step in the retinal visual pathway, contribute to the formation of the 

ganglion cell layer. The long axons of ganglion cells form the nerve fiber layer and converge 

radially in the surface of the retina towards the optic disc (Masland, 2011). 
 
In the vertebrate retina, the visual signal is shaped by feedback and feedforward inhibition by 

interneurons (Diamond, 2017). Horizontal cells, constituting around 3% of inner nuclear layer 

cells, mediate interactions between photoreceptor cells and bipolar cells, regulating and 

adapting responses. Horizontal cells are also responsible for providing feedback signals that 

modulate the gain of the visual pathway (Jeon et al., 1998; Forrester et al., 2002). Amacrine 

cells constitute up to 40% of inner nuclear layer cells and establish synapses with bipolar and 

ganglion cells. In this regard, amacrine cells are responsible for shaping both spatial and 

temporal characteristics of visual signals (Jeon et al., 1998; Masland, 2011; Diamond, 2017). 
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A.2.2. Retinal glia and microglia 

 

Glial cells fulfill supportive functions in the retina, as they do in the rest of the central nervous 

system (CNS). In general, the mammalian retina is populated by two types of macroglial cells: 

Müller cells and astrocytes (Figure 3).  

 
Müller cells are the most predominant glial elements and are the only cells spanning the entire 

thickness of the neurosensory retina, from the vitreous chamber to the external limiting 

membrane, filling all retinal space unoccupied by neurons and helping maintain retinal 

structural integrity (Kolb et al., 2011; Vecino et al., 2016). Mϋller cells have a range of functions 

vital to neuron survival, including metabolic support, clearance of neural waste products, 

synthesis and recycling of neurotransmitters, phagocytosis of neuronal debris, and regulation 

of extracellular ionic balance (Kolb et al., 2011). Moreover, Müller cells play an important role 

in vessel integrity, regulation of blood flow, and neuronal activity, so as to maintain a strictly 

regulated retinal environment (Newman & Reichenbach, 1996; Gardner et al., 2002; 

Bringmann et al., 2006; Kur, Newman & Chan-Ling, 2012). Müller cells processes 

communicate with blood vessels and neurons, forming the so-called neurovascular unit 

(Hollander et al., 1991; Gardner et al., 2002). Due to this specific disposition, Müller cells are 

ideally situated to regulate blood flow and match neuronal metabolic needs (Newman, 2003).  

 
Astrocytes are confined to the vascularized areas of the retina where their processes surround 

blood vessels and unmyelinated axons (Hollander et al., 1991; Gardner et al., 2002). 

Astrocytes, as Müller cells, perform support functions for neuronal homeostasis, such as 

provision of metabolites, regulation of ionic concentrations, and recycling of neurotransmitters 

(Hollander et al., 1991). These cells also contribute to the retina architectural support (Zhang 

& Stone, 1997), as well as to the functional hyperemia and vascular regulation.  

 
Glial cells, and specially Müller cells, respond to any retinal damage by becoming “reactive”. 

This reaction is called gliosis and in early, acute phases, is characterized by the secretion of 

neuroprotective and antioxidant molecules with the aim of protecting the tissue (Bringmann et 

al., 2006).  

 
Microglial cells, the resident macrophages of the retina, are located in the superficial layers of 

the retina (Figure 3). Generally, microglial cells remain quiescent, but under certain stimuli may 

become activated, contributing to the defense against pathogens, phagocytosis, 

immunoregulation, and tissue repair (Roitt, Brostoff & Male, 2001; Chen, Yang & Kijlstra, 2002; 

Gardner et al., 2002). 
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A.3. Retinal vascular system  
 

Light must cross the entire retinal parenchyma to reach the photoreceptors (Figure 3). 

However, blood vessels deflect incoming light. To overcome this situation, the retinal vascular 

system shows unique features and adaptations to supply sufficient oxygen and nutrients to the 

tissue while minimizing the interference of retinal blood vessels with the passage of light to 

photoreceptor cells (Funk, 1997; Puro, 2012; Ramos et al., 2013). Thus, the retina is 

characterized by sparse and thin capillaries, which represent only 5% of total retinal mass 

(Gartner & Hiatt, 2007; Ramos et al., 2013), leaving large vessel-free spaces (Figure 4) (Funk, 

1997; Delaey & Van De Voorde, 2000; Wangsa-Wirawan & Linsenmeier, 2003). However, the 

extremely active retinal metabolism entails a high level of blood oxygen extraction (Delaey & 

Van De Voorde, 2000), and this specific vascular distribution leaves little functional reserve for 

adjusting the relatively low blood flow to meet retinal needs, making this tissue very susceptible 

to hypoxia (Alm & Bill, 1973; Bristow et al., 2002; Wangsa-Wirawan & Linsenmeier, 2003; 

Ramos et al., 2013). Hence, retinal vasculature must strictly couple blood flow to local needs 

(Funk, 1997; Delaey & Van De Voorde, 2000; Pournaras et al., 2008).  

 

 

 

 
 
Figure 4. Retinal vascular system. The retina is characterized by sparse and thin capillaries 

(arrowheads). A, arterioles; Col IV, collagen IV; FITC, fluorescein isothiocyanate; OD, optic disc; V, 

venules. Images from Ramos et al., 2013. 
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A.3.1. Retinal vascular pattern  
 

Vertebrates show a wide variety of retinal vascular patterns, ranging from the anangiotic 

pattern, found in avian retinas and some rodents, and characterized by completely avascular 

retinas, to the holoangiotic pattern, which is found in most mammals, including mouse and 

man, where retinas are completely vascularized by a complex network of blood vessels 

(Figures 4 and 5), including arteries, veins, and capillaries (Wise et al., 1971; De Schaepdrijver, 

1989; Dreher, Robinson & Distler, 1992; Germer et al., 1998; Ramos et al., 2013).  
 
Holangiotic retinas are nourished by a dual circulation: retinal vessels supply blood to the inner 

portion of the retina, from the internal limiting membrane to the inner nuclear layer; while 

choroidal vessels irrigate the remaining outer retinal layers (Anderson & McIntosh, 1967; Wise 

et al., 1971; Ramos et al., 2013; Catita et al., 2015).  

 

 

 

 

 
 
Figure 5. Retinal vascular pattern. Paraffin sections of mouse (A) and human (B) retinas 

immunohistochemically labelled with anti-collagen IV antibody (red). Nuclei were counterstained with 

sytox green (green). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Arrows: 

blood vessels. Scale bars: A = 16.92 μm; B = 13.73 μm. Images from Ruberte et al., 2016. 

 

 



INTRODUCTION 

12 

A.3.2. Three-dimensional spatial distribution of blood vessels 
 
In mouse and human, the retinal vasculature is organized in a three-dimensional network, 

creating three vascular plexi (Paques et al., 2003): the superficial, the intermediate, and the 

deep vascular plexi (Figure 6).  

 
 
 

 
 

Figure 6. Retinal vascular plexi. A. Schematic representation of the distribution of blood vessels 

thorough the retinal parenchyma. Nuclei were counterstained with ToPro3 (blue). The localization of the 
retinal blood vessels in the superficial (B) and deep (C) vascular plexi was evidenced using Indian ink 

injection (black). A, arteriole; C, capillaries; DVP, deep vascular plexus; GCL, ganglion cell layer; SVP, 

superficial vascular plexus; IVP, intermediate vascular plexus; V, venule; INL, inner nuclear layer; IPL, 

inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer. Scale bar = 20.36 μm. 

Images from Ruberte et al., 2016. 
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The superficial vascular plexus (SVP) is located at the level of the ganglion cell layer and 

contains large arterioles and venules, as well as a capillary network that connects them.  

 
The intermediate vascular plexus (IVP), located at the inner plexiform layer, is filled with short 

capillary segments that run towards the deep layers (Paques et al., 2003; Smith, 1950). 

 
Lastly, the deep vascular plexus (DVP), in the outer plexiform layer, consists predominantly of 

an anastomotic network of capillaries (Paques et al., 2003; Kur et al., 2012).  

 
In the mouse, the central retinal artery (A. centralis retinae) emerges at the optic disc where it 

divides into four to eight retinal arterioles, a variable number depending on the strain and even 

on the individual (McLenachan et al., 2015; Ruberte et al., 2016). Recently, McLenachan and 

our laboratory (2015) proposed a classification for categorizing the types of arteriolar 

bifurcation patterns (Figure 7): Type A1 arterioles undergo major bifurcation at the peripheral 

retina, while Type A2 and Type A3 arterioles bifurcate at the central retina, either proximal to 

the optic disc or at the optic disc, respectively. Main retinal arterioles extend radially towards 

the retinal periphery, while dividing by both dichotomous and side-arm branching into pre-

capillary arterioles, spreading across the superficial retina (Anderson & McIntosh, 1967; Wise 

et al., 1971; Kur et al., 2012). As retinal arterioles divide into pre-capillary arterioles, their walls 

become thinner and the vascular lumen decreases until they branch into numerous retinal 

capillaries (Wise et al., 1971; Watson et al., 2012; McLenachan et al., 2015). Some pre-

capillary arterioles from the superficial plexus run almost vertically into the deep layers of the 

retina (Smith, 1950).  

 
The deep retinal capillary bed is drained by post-capillary venules that converge into larger 

retinal venules located in the superficial vascular layer (Pournaras et al., 2008; McLenachan 

et al., 2015). The mouse retina possesses between five to six retinal venules. Interestingly, 

venules may be classified into two types (McLenachan et al., 2015) (Figure 7): Type V1 

venules extend to the retinal margins and form an incomplete circumferential vein that drains 

peripheral regions of the capillary bed, while Type V2 venules end in a more central region of 

the retina to connect with the deep vascular plexus. As retinal venules approach the optic disc, 

their caliber and wall thickness increase, and leave the eye through the central retinal vein (V. 

centralis retinae), which drains hypoxic blood directly or via the ophthalmic vein (V. 

ophthalmica) into the cavernous sinus (Anderson & McIntosh, 1967; Sobotta & Becher, 1974; 

Pournaras et al., 2008). 
  
In man, the central retinal artery branches into four main retinal arterioles as it enters through 

the optic disc: superonasal and inferonasal arteries (Arteriolae nasalis retinae superior et 

inferior), and superotemporal and inferotemporal arteries (Arteriolae temporalis retinae 

superior et inferior) (Sobotta & Becher, 1974). The venous system of humans is supplied by 
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four main branches of the central retinal vein, which run parallel to the arterioles: superonasal 

and inferonasal venules (V. nasalis retinae superior et inferior), and superotemporal and 

inferotemporal venules (V. temporalis retinae superior et inferior) (Sobotta & Becher, 1974).  

 

 

 
 
Figure 7. Vascularization of the retina. A. Schematic representation of arteriolar and venular retinal 

pattern distribution in the mouse - A1, A2, A3: types of arterioles; V1, V2: types of venules. B and C. 
Fundus fluorescein angiograms of the mouse retina showing retinal arterioles (red) and retinal venules 

(blue). A, arterioles; OD, optic disc; V, venules. Images from McLenachan et al., 2015. 

 

 

In addition, the human retina has an avascular area near the central part of the retina known 

as the macula (Macula lutea). In the center of the macula resides the fovea (Fovea centralis) 

(Wise et al., 1971). The fovea, that is the area of maximal visual acuity, is characterized by the 

lack of vessels and flattened retinal layers to confer the most transparency to this region 

(Gartner & Hiatt, 2007). The mouse, unlike man, has no fovea and the central axis of the eye 

coincides with the optic disc (Smith et al., 2002; Ruberte et al., 2016). 
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A.3.3. Choroidal vascularization and the retina  
 
Choroidal blood vessels nourish the avascular layers of the outer retina via diffusion processes 

through the RPE (Figure 8) (Saint-Geniez, Maldonado & D’Amore, 2006; Kur et al., 2012). 

Unlike the retinal vasculature, choriocapillaries are highly fenestrated and very permeable to 

plasma proteins (Bill, Törnquist & Alm, 1980; Federman, 1982).  

 
 
 
 

 
 

Figure 8. Choroidal vasculature. A. Arterial injection with Indian ink. B. Indocyanine green 

angiography. C. Confocal laser microscopy image of immunodetection against collagen IV (green). 
Nuclei were counterstained with ToPro3 (blue). D. Scanning electron microscopy image of vascular 

corrosion cast (Mercox). 1, long posterior ciliary artery; 2, dorsal branch; 3, ventral branch; 4, major 

circulus arteriosus of iris; 5, vascular circulus of optic nerve; 6, short posterior ciliary artery; 7, central 

retinal artery; 8, lamina choriocapillaris. Images from Ruberte et al., 2016. 

 
 
A.3.4. Structure of blood vessels  
 

The structural conformation of the vessel wall is essential to control vascular diameter, regulate 

blood flow, and maintain vascular permeability (Martinez-Lemus, 2012). The blood vessel wall 

comprises three layers or tunicae: the tunica intima, the innermost layer, formed by a 
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monolayer of endothelial cells; the tunica media, where smooth muscle cells and/or pericytes 

are found, depending on vessel type; and the tunica adventitia, the most external layer, 

consisting of connective tissue (Wise et al., 1971; Saint-Geniez & D’Amore, 2004).  

 
The tunica intima of retinal arterioles consists of a single layer of endothelial cells oriented 

longitudinally along the vessel axis (Figure 9). Endothelial cells within this layer remain 

attached to a subendothelial layer of connective tissue, which is continuous to the basement 

membrane of the tunica media. The tunica media of arterioles contains a well-developed coat 

of smooth muscle cells circularly oriented to the vessel axis, each being surrounded by its 

basement membrane. As vessels branch into smaller pre-capillary arterioles, the number of 

smooth muscle cells decreases, giving rise to a discontinuous layer of sparse cells. The 

external layer, tunica adventitia, mainly consists of collagen fibers surrounding all the 

components of the arteriolar wall (Wise et al., 1971; Kur et al., 2012; Pournaras et al., 2008).  

Retinal venules, as retinal arterioles, are composed of the tunica intima, the tunica media, and 

the tunica adventitia. The tunica intima of retinal venules, similar to the tunica intima of 

arterioles, consists of a single layer of endothelial cells (Figure 9). In comparison to arterioles, 

the subendothelial layer of venules is thinner. Moreover, the tunica media contains widely 

spaced pericytes and smooth muscle cells, yet small caliber venules are reduced to only one 

layer of pericytes (Wise et al., 1971; Kur et al., 2012). The basement membrane of retinal 

venules is mainly composed of loosely arranged collagen fibers. 

 

 

 

 
 

Figure 9. Retinal arterioles and venules. A. Immunohistochemistry with collagen IV (green) showing 
the distribution of the retinal vessels. Confocal microscopy image of an arteriole (B) and a venule (C) 

labelled with the lectin from Lycopersicon sculentum (red). Nuclei were counterstained with ToPro3 

(blue). A, arteriole; C, capillaries; V, venule. Scale bar = 111.09 μm. Images from Ruberte et al., 2016. 
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Retinal capillaries consist of a continuous layer of endothelial cells and discontinuous layer of 

pericytes, which extend parallel to the vessel axis and share a common basement membrane 

(Figure 10) (Hughes & Chan-Ling, 2004; Kur et al., 2012). Capillaries may be classified into 

three groups, based on blood flow direction: pre-capillaries, mid-capillaries, and post-

capillaries (Nehls & Drenckhahn, 1991). 

 

 

 
 

Figure 10. Retinal capillaries. A. Confocal laser microscopy images of retinal capillaries 

immunostained with collagen IV (green). Nuclei were counterstained with propidium iodide (red). B. 
Digested retinal capillaries stained with PAS-Hematoxylin evidencing intervascular bridges (3), which 

are fibrous strands that connect neighboring capillaries. C. Scanning electron microscopy image of a 

partially corroded retina. 1, endothelial cell; 2, pericyte; 3, intervascular bridge. Images from Ruberte et 

al., 2016. 

 
 
A.3.4.1 Vascular wall components  
 

The vascular wall components, endothelial cells, smooth muscle cells, pericytes, and 

basement membrane, are dynamically interconnected and have characteristic features 

according to the blood vessel type, tissue type or even between neighboring cells of the same 

organ and vessel type (Nehls & Dreckhahn, 1991; Worth et al., 2001; Aird, 2012).  

 
 
A.3.4.1.1. Endothelial cells  
 

Endothelial cells are elongated cells with flattened cytoplasm and long elliptical nuclei, which 

protrude into the lumen, and line the inside of the vessel (Figure 11) (Arribas et al., 2007; 

Bharadwaj et al., 2013). Ultrastructurally, endothelial cells show nuclei with highly condensed 

heterochromatin along the nuclear membrane, abundant mitochondria and ribosomes, as well 
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as vesicular components, such as caveolae, which are implicated in cellular endocytosis and 

transcytosis (Ishikawa, 1963; Wise et al., 1971; Bharadwaj et al., 2013; Catita et al., 2015). 

One distinctive morphological feature of retinal endothelial cells is the presence of tight 

junctional complexes along the opposing surfaces of adjacent cells. In the retina, arteriolar 

endothelial cells are elongated and spindle-shaped in comparison to the more polygonal shape 

in venules, or to an irregularly shape in capillaries (Yu et al., 1997; Aird, 2007; Yu et al., 2010). 
 
Endothelial cells play a wide variety of functions in blood vessels. The endothelium is 

necessary to maintain vascular functional integrity and acts as a semi-permeable barrier to 

control the transfer of small and large molecules (Cunha-Vaz, 1976; Pournaras et al., 1998; 

Sumpio, Riley & Dardik, 2002; Michiels, 2003; Aird, 2007). In fact, the retinal endothelium is 

considered one of the main components of the blood-retinal barrier (BRB) mainly due to its 

elaborate network of tight junctions (Pournaras et al., 1998). Endothelial cells are also involved 

in the regulation of vascular tone, blood flow, hemostasis, and inflammatory and immunologic 

responses, as well as in angiogenesis and vasculogenesis (Thorin & Shreeve, 1998; Michiels, 

2003; Aird, 2007).  

 

 
 

 
 

Figure 11. Endothelial cells. A. Confocal laser microscopy images of retinal capillaries immunostained 

with collagen IV (green). Nuclei were counterstained with ToPro3 (blue). B. Retinal trypsin digestion 

stained with PAS-Hematoxylin. C. Transmission electron microscopy image of a retinal vessel. 1, 

endothelial cell; 2, pericyte; 3, vascular lumen; 4, basement membrane; 5, Müller cell; 6, astrocyte; 7, 

erythrocyte. Scale bars: A = 3.2 μm; C = 2.07 μm. Images from Ruberte et al., 2016. 
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A.3.4.1.2. Smooth muscle cells  
 

In general, vascular smooth muscle cells display a spindle-shaped morphology with variable 

size and arrangement based on the vessel type (Figure 12) (Absher et al., 1989). 

Ultrastructurally, the nucleus of these cells is flattened and elongated and there is an 

accumulation of mitochondria, Golgi apparatus, and sarcoplasmic reticulum close to nuclear 

poles. Vesicles and caveolae are particularly frequent on the abluminal side of the cell 

(Komuro, Desaki & Uehara 1982). Numerous myofilaments run along the cytoplasm of these 

cells, including thick filaments, actin filaments, and intermediate filaments (Komuro et al., 1982; 

Tang, 2008). In the retina, arteriolar smooth muscle cells show a more irregular or flattened 

shape with few cytoplasmic processes, whereas in pre-capillary arterioles the cell bodies are 

distinctly protruding and their cytoplasmic processes are arranged circularly, surrounding the 

vessel (Komuro et al., 1982; Armulik, Genové & Betsholtz, 2011; Kur et al., 2012). In contrast, 

venular smooth muscle cells are bigger and stellate-shaped with several branching processes 

(Armulik et al., 2011). 

 
Vascular smooth muscle cells are responsible for the regulation of blood vessel tone, blood 

pressure, and blood flow distribution (Owens, Kumar & Wamhoff, 2004; Hughes & Chan-Ling, 

2004). Vascular smooth muscle cells also have the ability to synthesize large amounts of 

extracellular matrix to promote vascular repair, as well as migrate and proliferate in response 

to growth factors and cytokines, and initiate inflammatory signals (Worth et al., 2001; Wynne, 

Chiao & Webb, 2009; Lacolley et al., 2012). 

 
 
 

 
 
Figure 12. Smooth muscle cells. A. F-actin stained with Phalloidin (red). B. α-smooth muscle actin 

(green) evidenced by immunohistochemistry. Both images were acquired from whole-mount retinas with 

a confocal microscope. Nuclei were counterstained with ToPro3 (blue). 1, smooth muscle cells. Scale 

bars: A = 7.69 μm; B = 8.51 μm. Images from Ruberte et al., 2016. 
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A.3.4.1.3. Pericytes  
 

Pericytes, together with smooth muscle cells, represent the contractile cell population of blood 

vessels. Pericytes are embedded within the vascular basement membrane and surround 

endothelial cells (Figure 13) (Sims, 1986; Armulik et al., 2011). There is great morphological 

heterogeneity within pericytes, with regard to their origin, distribution, phenotype, and function 

(Nehls & Drenckhahn, 1991; Pfister et al., 2008).  
 
In addition to regulating blood flow at capillary level, pericytes have the ability to control 

endothelial proliferation and are involved in processes such as angiogenesis and 

neovascularization (Enge et al., 2002; Pfister et al., 2008; Pournaras et al., 2008). It has also 

been proposed that pericytes aid in the maintenance and structural rigidity of the microvessel 

wall and stabilize developing microvessels by depositing extracellular matrix (Herman & 

D’Amore, 1985; Sims, 1986; Armulik et al., 2011). Moreover, the BRB is further strengthened 

by pericytes (Yao et al., 2014). 

 
 

 
 

Figure 13. Pericytes. A. EGFP detection in a capillary of a β-actin EGFP transgenic mouse. B. Trypsin 

digestion of the retina stained with PAS-Hematoxylin. C and D. Double immunohistochemistry using two 

well-known pericyte biomarkers, neuron glial 2 chondroitin sulfate (C, green) and platelet-derived growth 
factor receptor-β (D, red). Nuclei were counterstained with ToPro3 (blue). 1, pericyte; 2, endothelial cell. 

Scale bars: A = 3.2 μm; C = 3.5 μm; D = 3.44 μm. Images from Ruberte et al., 2016. 
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A.3.4.1.4. Basement membrane of blood vessels 
  

The blood vessel basement membrane forms a connective sheath surrounding endothelial 

cells, pericytes, and smooth muscle cells. Basement membranes are continuous self-

assembled layers of proteins, glycoproteins, and proteoglycans (Baluk et al., 2003; Catita et 

al., 2015). The primary function of the basement membrane is to provide strength, support, 

and integrity to the vessel wall, acting as a framework for vascular cells and anchoring the 

vessel to the surrounding tissue (Baluk et al., 2003; Hayden, Sowers & Tyagi, 2005; Catita et 
al., 2015). At the same time, the basement membrane regulates endothelial cell proliferation 

and migration, and tissue repair (Forrester & Knott, 1997; Pöschl et al., 2004), and is a 

fundamental component of the BRB, acting as an important selective barrier, regulating the 

pass of blood-borne molecules to retinal parenchyma (Pournaras et al., 2008). 
 
 
A.4. The blood-retinal barrier 
 
The retina is gifted with a complex and restrictive system of physical barriers, the BRB, which 

maintains an appropriate environment for the neural tissue by regulating the permeability, ion 

concentrations, and the delivery of nutrients, while protecting from the action of harmful stimuli 

(Figure 14) (Cunha-Vaz, 1976; Bradbury & Lightman, 1990; Törnquist, Alm & Bill, 1990; 

Pournaras et al., 2008; Cunha-Vaz, Bernardes & Lobo, 2011; Campbell & Humphries, 2012; 

Kur et al., 2012). Considered as a special part of the blood-brain barrier (BBB), the BRB shares 

many properties, structurally and functionally, with the BBB. Both barriers are formed by a 

complex architecture of cell-to-cell junctions between barrier-forming cells and a paucity of 

vesicles within those cells (Vinores, 1995). However, in contrast with the BBB, the BRB 

consists of both an inner BRB (iBRB), that comprises retinal endothelial cells, and an outer 

BRB (oBRB), that consists of RPE cells and Bruch’s membrane (Figure 15) (Campbell & 

Humphries, 2012). 

 
Alterations and loss of function of the BRB play a crucial role in the development of retinal 

diseases and vision loss (Cunha-Vaz, 1976). The most relevant retinal diseases with BRB 

alterations and/or breakdown are diabetic retinopathy and age-related macular degeneration 

(Cunha-Vaz et al., 2011). Although it is now accepted that dynamic adaptations of endothelial 

cells and other cell types involved in the BRB underlie vascular leakage in retinal disease, 

there is still a fundamental lack of understanding of the cellular mechanisms underlying both 

the function of the BRB in physiological conditions as well as its dysfunction in pathological 

conditions.  
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Figure 14. Blood-retinal barrier. Intact BRB integrity showed by intravascular confinement of 
horseradish peroxidase (HRP) injected intravenously and developed with 3,3'-diaminobenzidine 

substrate (brown). Images from Ruberte et al., 2016. 

 
 

 
Figure 15. Schematic representation of the blood-retinal barrier. Structurally, the BRB is composed 

of two distinct barriers that regulate the permeability between blood and retinal parenchyma. The iBRB, 

located in the inner retinal microvasculature, is formed by tight junctions between retinal endothelial 
cells. The oBRB consists of tight junctions between retinal pigment epithelial cells, at the choroid-

epithelial interface. as, astrocyte; ec, endothelial cell; GCL, ganglion cell layer; iBRB, inner blood-retinal 

barrier; INL, inner nuclear layer; L, lumen; mü, Müller cell; oBRB, outer blood-retinal barrier; ONL, outer 

nuclear layer; RPE, retinal pigment epithelium. 
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A.4.1. The inner blood-retinal barrier 
 

The iBRB plays a major role in controlling fluid entry into the neural retina and is mainly 

maintained by retinal endothelial cells, which are characterized, similarly to endothelial cells in 

the brain, by having the highest number of tight junction strands of the organism, lack of 

fenestrations, and low pinocytic activity. In addition to the vascular endothelium, there are other 

elements that contribute to this barrier, such as glial cells, pericytes, and the basement 

membrane (Cunha-Vaz, 1976; Abbott, Rönnbäck & Hansson, 2006; Armulik et al., 2010; 

Klaassen, Van Noorden & Schlingemann, 2013). In this regard, a neuro-glio-vascular cross-

talk involving astrocytes and Müller cells, as well as interactions of endothelial cells with 

pericytes and smooth muscle cells, dynamically regulates tight junctions (Fruttiger, 2007; 

Cunha-Vaz, 2009; Campbell & Humphries, 2012; Klaassen et al., 2013; Sorrentino et al., 

2016). Moreover, it is known that glial cells closely invest all retinal vessels, creating the glial 

limiting membrane (Glia limitans) that separates vessels from the retinal parenchyma and 

delimits the perivascular space (Wise et al., 1971; Gardner et al., 2002). Thus, glial cells play 

a critical role in the formation, modulation, and maintenance of the iBRB, in the uptake of 

nutrients, and in the disposal of waste products under normal conditions (Tout et al., 1993; 

Distler & Dreher, 1996; Abbott et al., 2006; Reichenbach et al., 2007; Yao et al., 2014). In fact, 

astrocytes, Müller cells, and pericytes are able to transmit regulatory signals to endothelial 

cells to influence their and iBRB activity to adapt to changes in the microenvironment of the 

retinal neuronal circuitry (Cunha-Vaz at al., 2011).  

 
Pericytes have also been described to maintain the integrity and permeability of the BRB, due 

to their close interaction with endothelial cells (Herman & D’Amore, 1985; Sims, 1986; Vinores, 

1995; Gardner et al., 2002). Lastly, the basement membrane is part of the iBRB, providing 

structural support and a physical barrier to restrict the diffusion of particles from the cell into 

the blood (Wang et al., 2006).  

 

 

A.4.2. The outer blood-retinal barrier 
 

To complete the protective environment created by the iBRB, the oBRB is formed by tight 

junctions between neighboring RPE cells, which rest on the underlying Bruch’s membrane, 

and separates the neural retina from the fenestrated choriocapillaries. Therefore, this barrier 

functions to regulate the access of solutes and nutrients from the choroid to the 

photoreceptors, as well as to eliminate waste products and to maintain retinal adhesion, 

preserving homeostasis of the outer third of the retina. The metabolic relationship of the RPE 

apical villi and photoreceptors is considered to be critical for the maintenance of visual function 

(Wallez & Huber, 2008; Cunha-Vaz et al., 2011; Campbell & Humphries, 2012).  
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A.4.3 Tight junctions 
 

Tight junctions, also known as zonula occludens, are specialized polymeric adhesion 

complexes, which act to seal the intercellular space of neighboring cells, and, thereby, 

generate a permeability barrier required for transport processes and limit the diffusion of 

molecules through this barrier (Figure 16) (Farquhar & Palade, 1963; Hogan, Alvarado & 

Weddell, 1971; Balda & Matter, 1998; Ghassemifar, Lai & Rakoczy, 2006; Günzel & Yu, 2013). 

In addition, tight junctions function as a cell signaling coordination center that affects 

differentiation, proliferation, and polarity of cells (Klaassen et al., 2013).  
 

 
 

Figure 16. Tight junctions. A. Schematic representation of tight junctions in retinal endothelial cells. 

Transmembrane proteins include occludin, claudins, and junctional adhesion molecules (JAMs). Integral 

membrane proteins, such as zonula occludens (ZO) 1 and 2, couple the transmembrane proteins to the 

actin cytoskeleton. B and C. Transmission electron microscopy micrograph of a tight junction. 1, lumen; 

2, endothelial cell; 3, pericyte; 4, basement membrane; tj, tight junction. B and C images from Ruberte 
et al., 2016. 
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Several types of transmembrane, scaffolding, and signaling proteins interact to form the tight 

junctional complex. Transmembrane proteins include occludin, claudins, and junctional 

adhesion molecules (JAMs). These proteins extend to the paracellular space creating the 

characteristic seal. In addition, there are also integral membrane proteins forming tight 

junctions: zonula occludens (ZO) and cingulin (Fanning, Mitic & Anderson, 1999). 

 
Occludin and claudins, the main components of tight junctions, span the plasma membrane, 

have four transmembrane domains, and are able to interact homotypically and heterotypically 

(Furuse et al., 1993, 1998; Phillips et al., 2008; Peng et al., 2011). Occludin was the first 

transmembrane protein to be isolated (Furuse et al., 1993) and it has been suggested that, 

although not crucial for tight junction formation, may have key regulatory roles (Antonetti et al., 

1998). In the mammalian eye, occludin immunoreactivity was detected along the borders of 

endothelial and RPE cells (Morcos et al., 2001).  
 
Claudins constitute a large family of transmembrane proteins believed to form the backbone 

of tight junctions (Tsukita, Furuse & Itoh, 2001). It seems to exist a tissue- and cell-specificity 

in claudins expression. In this regard, claudin-5 has been found to be expressed in endothelial, 

but not epithelial, tight junctions of different tissues, including the brain, confirming the specific 

confinement of this protein to vascular beds (Morita et al., 1999). The analysis of brain blood 

vessels from mice lacking claudin-5 expression revealed tight junctions of normal appearance 

(Nitta el al., 2003). However, an increase of the BBB permeability mainly to small size solutes 

was observed. These observations suggest that different types of claudins may confer different 

barrier properties to cells that express them. In endothelial cells of retinal vessels, claudin-1 

and claudin-5 have been observed (Morcos et al., 2001; Barber & Antonetti, 2003; Koto el al., 

2007).  

 
Other transmembrane proteins include JAMs, a family of proteins belonging to the 

immunoglobulin superfamily, which seem to associate laterally to the claudin-based backbone 

of tight junction strands (Martin-Padura et al., 1998; Tsukita et al., 2001; Ebnet et al., 2004; 

Cunha-Vaz et al., 2011).  

 
The ZO family of proteins comprises ZO-1, ZO-2, and ZO-3. These peripheral cytoplasmic 

proteins, found ubiquitously within tight junctions of epithelial and endothelial cells (Harhaj & 

Antonetti, 2004), function to anchor the transmembrane proteins to the actin cytoskeleton 

through multiple protein-protein interaction domains, and are crucial for the distinct 

organization and initial formation of tight junctions (Stevenson et al., 1986; Konari et al., 1995; 

Campbell & Humphries, 2012). In fact, the lack of expression of all three ZO family members 

in a cell line caused the abolition of tight junction formation and failure of claudin molecules 

polymerization (Umeda et al., 2006). The expression of ZO-1 protein has been observed in the 

barrier-forming cells of the retina (Tserentsoodol et al., 1998). Moreover, retinal ZO-1 
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phosphorylation has been associated with the disruption of the BRB (Antonetti et al., 1999), 

suggesting that ZO-1 could be a key regulator of retinal permeability.  

 
Tight junctions are frequently entangled with adherens junctions, mainly formed by VE-

cadherin, and gap junctions, composed of connexins. Accordingly, the presence of adherens 

junctions stimulates the formation of tight junctions (Taddei et al., 2008), while gap junction 

proteins facilitate the assembly of adherens and tight junctions (Klaassen et al., 2013). In fact, 

as the tighter regulation of permeability is required, the more complex this system is structured. 

 

 

A.4.4. Selective transport across the blood-retinal barrier 
 

The BRB is not an absolute barrier but a highly selective barrier that regulates the movement 

of ions, water, solutes, and cells across the vascular bed and epithelia. The net movement 

over time across the BRB is described by permeability and depends on two routes: the 

paracellular and the transcellular transports (Figure 17) (Díaz-Coránguez, Ramos & Antonetti, 

2017). 
 

 
Figure 17. Mechanisms of transport across the blood-retinal barrier. Schematic overview of 

transcellular mechanisms of the BRB: lipid-soluble molecules cross the BRB by passive transport; other 

transport mechanism are energy-dependent processes and comprise receptor-mediated or receptor-

independent transport through caveolae, carrier-mediated transporters, ion transporters, and efflux 

pumps. Paracellular transport allows the movement of small molecules from the blood (luminal) into the 

retinal (abluminal) side via the paracellular space regulated by tight junctions. 
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A.4.4.1. Paracellular transport 
 

The paracellular pathway is regulated by the dynamic opening and closing of tight junctions 

(Figures 16 and 17) and restricts passage of solutes larger than 3 nm in radius across epithelia 

and endothelia, while water and small water-soluble compounds pass preferentially through 

this route (Pappenheimer, Renkin & Borrero, 1951; Klaassen et al., 2013).  
 
Claudins and occludins are the main tight junction components involved in paracellular 

permeability. The extracellular loops of claudins have been proposed to create charge-

selective paracellular aqueous pores that permit the passive diffusion of ions between cells. 

Thus, the claudin composition of a tight junction determines the ion selectivity of the 

paracellular pathway, because changes in claudin expression correlate with alterations in 

conductivity for specific ions (Van Itallie & Anderson, 2006; Krause et al., 2008). On the other 

hand, occludin has been linked to the formation of the intramembrane diffusion barrier and 

regulates the paracellular diffusion of small hydrophilic molecules and the transepithelial 

migration of neutrophils (Antonetti et al., 1998; Aijaz, Balda & Matter, 2006). Furthermore, 

JAMs have been reported to regulate the paracellular transmigration of leukocytes across the 

endothelium. 

 

 

A.4.4.2. Transcellular transport 
 

Transcellular transport, the movement of solutes across a cell layer through the cells, is 

necessary for the regulation of retinal homeostasis. In general, there are a variety of routes 

that conform the transcellular route. More concretely, transport across the endothelium and 

the RPE cells is highly selective and regulated by membrane transporters and by vesicular 

mechanisms (Figure 17).  

 
For a wide range of lipid-soluble molecules passive transport across the BRB is possible 

(Hosoya et al., 2010; Toda et al., 2011). All other types of transcellular transport for larger 

lipophilic molecules and hydrophilic molecules are energy-dependent and involve: transport 

through caveolae with or without binding to cargo-specific receptors; carrier-mediated 

transport mechanisms; specific transporters, such as ion and amino acid transporters; and 

active efflux pumps, such as multidrug resistance pumps (Zlokovic, 2008; Klaassen et al., 

2013).  

 
The transport of molecules depends on their size, charge, and chemistry, and also on the 

structural-functional properties of the endothelium/epithelium and, in particular, the caveolae 

that actively carry the cargo across the barrier by receptor-mediated and receptor-independent 
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transcytosis, generally bypassing the lysosomes. Some plasma proteins follow dual pathways, 

endocytosis and transcytosis. The endocytosed plasma proteins and the molecules that they 

carry or their metabolites are used by cells themselves, whereas the transcytosed proteins are 

made available to the adjacent tissues. For a given molecule, the endocytosis/transcytosis 

ratio may vary with the pathophysiological state of the vascular bed involved (Simionescu & 

Simionescu, 1991; Simionescu, Gafencu & Antohe, 2002; Simionescu, Popov & Sima, 2009). 
 
Caveolae-mediated transcytosis involves the migration of plasma membrane vesicles from 

one side of the cell to the other, and/or a channel resulting from vesicular fusion (Simionescu, 

1979). Caveolae, a special type of lipid raft, are cell-surface plasma membrane invaginations 

(Figure 18) (Palade, 1953; Yamada, 1955), and, besides transcellular transport, are also 

associated with endocytosis (Anderson, 1993), regulation of cholesterol levels (Rothberg et 

al., 1990), sensing of flow (Milovanova et al., 2008), and signal transduction (Lisanti et al., 

1994). Caveolin-1, the major protein component of caveolae, is expressed in developing and 

mature retinal vessels and choroidal vasculature (Gu et al., 2014).  
 
The transcellular pathway, facilitated by caveolae and receptor-mediated transport 

mechanisms, is the preferred route for active transport of macromolecules, allowing albumin, 

transferrin, insulin, lipoproteins, and possibly immunoglobulins to penetrate from the circulation 

into tissues (Predescu, Vogel & Malik, 2004; Red-Horse & Ferrara, 2007; Anderson, 2008).  
 
 

 

 
 
Figure 18. Caveolae. Transmission electron microscopy micrograph of a caveola. 1, lumen; 2, 

endothelial cell; 3, basement membrane; Cav, caveola. 

 
 
Brain and retinal endothelia are characterized by a relative low number of caveolae, with a 

preferential location at the abluminal cell surface, suggesting a preferential direction of 

transcytosis from tissue to blood. In contrast, non-barrier endothelium typically has more 



INTRODUCTION 

29 

caveolae at the luminal surface (Sagaties et al., 1987; Hofman et al., 2000, 2001). Interestingly, 

transcytosis is altered during retinal pathological conditions. In fact, it has been shown that 

vascular endothelial growth factor (VEGF) induces increased permeability through an increase 

vesicular transport (Hofman et al., 2000). Moreover, transcytosis rate is also increased in 

streptozotocin-induced diabetic rats (Gardiner, Stitt & Archer, 1995). 

 
 

B. Iron 
 

Iron is the fourth most abundant element in the Earth’s crust and is essential for most life on 

the planet (Frey & Reed 2012). Mammalian cells require sufficient amounts of iron to satisfy 

metabolic needs or to accomplish specialized functions, such as oxygen transport, adenosine 

triphosphate (ATP) production, myelin synthesis and maintenance, and neurotransmitters 

synthesis (Yefimova et al., 2000; Wang & Pantopoulos, 2011; Duck & Connor, 2016). 

Furthermore, enzymes of the citric acid cycle, succinate dehydrogenase, and aconitase, are 

iron dependent. Iron is also a crucial component of cytochromes a, b, and c, cytochrome 

oxidase, and the iron-sulfur complexes of the electron transport chain, making iron essential 

for ATP production (Wigglesworth & Baum, 1988; Poss & Tonegawa, 1997). Iron is also 

required by the ribonucleotide reductase, which is the rate-limiting enzyme of the first metabolic 

reaction in deoxyribonucleic acid (DNA) synthesis (Wigglesworth & Baum, 1988). In the CNS, 

oligodendrocytes require iron for myelin synthesis and maintenance (LeVine & Macklin, 1990; 

Morris et al., 1992). Iron is also an essential cofactor for synthesis of neurotransmitters, 

including dopamine, norepinephrine, and serotonin (Youdim, 1990; He et al., 2007). Moreover, 

iron plays an important role in xenobiotic metabolism, cell growth, apoptosis, gene regulation, 

and inflammation (Cairo & Recalcati, 2007; He et al., 2007; Outten & Theil, 2009; Zhang & 

Enns, 2009; Wang & Pantopoulos, 2011). Therefore, cells must maintain a sufficient amount 

of iron. 

 
 
B.1. Iron homeostasis 

 

In physiological conditions, iron can exist in two different oxidation states, the reduced ferrous 

(Fe2+) and the oxidized ferric (Fe3+) iron forms (Figure 19). In fact, the biological importance of 

iron relays in its properties as a transition metal, namely its ability to readily undergo one-

electron redox reactions between the Fe2+ and Fe3+ states. Both of these forms have different 

reactivity and different chemical properties. Although being the most stable form, Fe3+ is largely 

insoluble and therefore plants and animals poorly absorb it. Thus, acidification of the 
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environment is necessary to promote its reduction to Fe2+, which will be transported across the 

plasma membrane (Miller & Berner, 1989; García-Castiñeiras, 2010; Ganz & Nemeth, 2015).  

 
 

 

 
Figure 19. Iron oxidation states. Iron is a transition metal and readily undergoes one-electron reaction 

between the reduced ferrous iron form (Fe2+) and the oxidized ferric form (Fe3+). 

 

 

While the redox reactivity of iron makes it extremely useful, iron in excess becomes toxic 

because of its propensity to generate free radical. Free Fe2+ participates in the Fenton reaction 

by catalyzing the conversion of hydrogen peroxide to the hydroxyl radical, the most reactive of 

reactive oxygen species (ROS) (Halliwell & Gutteridge, 1984; Udipi, Ghugre & Gokhale, 2012). 

Moreover, as disposal of excess iron is usually a slow process, there is a tendency to iron 

accumulation with aging (Cook & Yu, 1998; Kohgo et al., 2008; Xu et al., 2008; Gozzelino & 

Arosio, 2016). Thus, iron homeostasis must be tightly controlled at both systemic and cellular 

levels to maintain the delicate balance between iron essentiality and toxicity (Figure 20). Due 

to this dual nature, there are elegant and elaborate control mechanisms to maintain iron 

homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of 

stored iron. In this regard, a set of iron-binding and transport proteins (iron-handling proteins) 

are involved in iron import (transferrin, transferrin receptor 1 (TfR1), and divalent metal 

transporter-1), storage (ferritin), and export (ceruloplasmin, hephaestin, ferroportin, and 

hepcidin) (Burdo & Connor, 2003; Wang & Pantopoulos, 2011). More recently, ferritin has also 

been proposed as an iron transport protein (Ponka, Beaumont & Richardson, 1998; Fisher et 

al., 2007) that can specifically bind to scavenger receptor class A member 5 (Scara5) (Li et al., 

2009) and T-cell immunoglobulin and mucin-domain 2 (TIM2) (Chen et al., 2005). 
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Figure 20. Iron in pathophysiologic conditions. Although essential to ensure survival, disruption of 

iron homeostasis has been shown to be involved in several pathophysiological conditions. 

 
 
B.1.1. Classical pathway of iron import into the tissue 
 

In general, iron is taken up by most tissues through a transferrin mediated mechanism (Figure 

21). Under physiological conditions, non-heme iron in the circulation is bound to apo-transferrin 

as Fe3+, which limits the generation of toxic radicals. Apo-transferrin can bind two atoms of 

Fe3+ at the same time (Baker & Morgan, 1994). At the cell surface, iron-loaded holo-transferrin 

binds with high affinity to the TfR1. Then, this complex is internalized via clathrin-coated pits 

into endosomes (Yefimova et al., 2000; He et al., 2007; Song & Dunaief, 2013). A proton pump 

promotes acidification of the endosome to lower the pH to about 5.5, triggering the release of 

Fe3+ from transferrin that remains bound to TfR1 (Sipe & Murphy, 1991). An endosomal 

ferrireductase, such as STEAP3, reduces Fe3+ to Fe2+, which is transported across the 

endosomal membrane by the divalent metal transport 1 (Gunshin et al., 1997; Burdo et al., 

2001; Song & Dunaief, 2013). The apo-transferrin-TfR1 complex is then recycled to the cell 

surface, where apo-transferrin is released to capture plasma Fe3+ (Hunt & Davis, 1992).  

Although iron import through ferritin was established, the exact mechanism of ferritin uptake 

by cells is still not completely understood (Ponka et al., 1998; Fisher et al., 2007). 
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Figure 21. Schematic representation of the classical pathway of iron import into tissues. Iron-

loaded transferrin (Holo-Tf) binds with high affinity to the transferrin receptor 1 (TfR1) at the cell surface. 

This complex is then internalized into an endosome, where the release of Fe3+ is triggered under 

acidification. Fe3+ is reduced by STEAP3 to Fe2+, which is transported across the endosomal membrane 

by the divalent metal transport 1 (DMT-1) and becomes part of the labile iron pool (LIP) in the cytosol. 

Apo-Tf, apo-transferrin; Fe2+, ferrous iron; Fe3+, ferric iron. 

 
 
B.1.2. Intracellular iron utilization 
 

The iron released from the endosome becomes part of the labile iron pool (LIP) in the cytosol 

where remains bound to small organic chelators, such as citrate or adenosine phosphate, 

carboxylate, and polypeptides (Figure 22) (Richardson & Ponka, 1997; Kohgo et al., 2008; 

Jiang et al., 2009; Hentze et al., 2010). LIP is an important source of iron for numerous cytosolic 

and nuclear iron proteins, as well as being a source for cellular organelles, such as 

mitochondria which process most of the metabolically active iron in the cell (Rouault & 

Cooperman, 2006; He et al., 2007). Although LIP is biologically active in intracellular 

metabolism, it is toxic if present in excess. Thus, maintenance of appropriate LIP levels is 

critical for homeostasis (Mackenzie, Iwasaki & Tsuji, 2008). 
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Figure 22. Schematic representation of the utilization and storage of intracellular iron. Iron in the 

labile iron pool (LIP) is an important source for numerous cytosolic and nuclear iron-dependent proteins, 
as well as being a source for cellular organelles, such as mitochondria. Intracellular iron can also be 

safely incorporated into ferritin, which can be then released to satisfy possible intracellular demands. 

Fe2+, ferrous iron; Fe3+, ferric iron; H-ferritin, heavy ferritin; L-ferritin, light ferritin. 
 
 
B.1.3. Intracellular iron storage 
 

In non-erythroid cells, the majority (70-80%) of intracellular iron is safely incorporated into 

ferritin (Figure 22) (Aisen, Enns & Wessling-Resnik, 2001; Arosio & Levi, 2010), an iron-

handling protein ubiquitously distributed, classically known for its role in iron storage and 

detoxification (Arosio, Ingrassia & Cavadini, 2009). Ferritin forms a hollow sphere capable of 

storing ~ 4,500 iron atoms which can be released to satisfy possible intracellular demands 

(Levi et al., 1992; Aisen et al., 2001). Lysosome- and proteasome-mediated degradation 

mechanisms are thought to be involved in iron release from ferritin, which is then used in the 

cytosol for further cellular metabolic purposes (Kurz et al., 2004; Mehlhase et al., 2005).  
 
Ferritin is composed of 24 subunits of heavy (H) or light (L) type, each with a specific function, 

with variable stoichiometry of the two ferritin subunits in different tissues. Fe2+ entering ferritin 

is oxidized to Fe3+ by the ferroxidase activity of H-ferritin in an oxygen-dependent manner. 

Subsequently, Fe3+ is transported to the protein cavity, where core formation commences. L-

ferritin is 50% identical to H-ferritin at the amino acid level but lacks ferroxidase activity, thus 

storing iron at a low rate compared with the H subunit (Harrison & Arosio, 1996; Levi et al., 

1992, 1994; Aisen et al., 2001; He et al., 2007). This enclosure and sequestration of iron is 
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vital, as it prevents toxic redox reactions from occurring, reducing oxidative stress (Harrison & 

Arosio, 1996; Chasteen & Harrison, 1999; Arosio & Levi, 2010).  

 
Inside the cell, iron levels are also tightly controlled by an elegant machinery involving the iron 

regulatory proteins (IRPs) that bind to the iron responsive elements (IREs) on the messenger 

ribonucleic acid (mRNA) of iron-handling proteins (Mackenzie et al., 2008; Wang & 

Pantopoulos, 2011; Anderson et al., 2012). This regulation allows individual cells to regulate 

iron uptake, sequestration, and export depending on their iron status. Under conditions of iron 

starvation, IRPs are activated for high affinity binding to IREs in the 3'-untranslated region of 

TfR1 mRNA and to a single IRE in the 5'-untranslated region of the mRNAs encoding both H- 

and L-ferritin chains. This stabilizes TfR1 mRNA (Binder et al., 1994) and inhibits ferritin mRNA 

translation (Muckenthaler, Gray & Hentze, 1998). Conversely, failure of IRPs to bind to cognate 

IREs in iron-replete cells leads to degradation of TfR1 mRNA and synthesis of ferritin. 

 

 

B.1.4. Cellular iron export 
 

Iron that is not utilized or stored by the cell may be exported. Ferroportin is a transmembrane 

iron transporter that cooperates with ferroxidases, such as ceruloplasmin and hephaestin, to 

export intracellular Fe2+ and oxidize it to the Fe3+ (Osaki, Johnson & Frieden, 1966; Vulpe et 

al., 1999; Abboud & Haile, 2000; Donovan et al., 2000; McKie et al., 2000). These enzymes 

are crucial for iron export and, when disrupted, result in cellular iron accumulation and cellular 

degeneration (Song & Dunaief, 2013). Ferroportin is regulated by trans-acting factors, 

including the peptide hormone hepcidin. Hepcidin binds to ferroportin, triggering its 

internalization and degradation (Nemeth et al., 2004; Knutson et al., 2005).  

 

 

B.2. Iron in the retina 

 

In the retina, iron is particularly important for the visual phototransduction cascade as iron is 

an essential cofactor for the enzyme guanylate cyclase, which synthesizes cyclic guanosine 

monophosphate (cGMP), the second messenger in this cascade (Yau & Baylor, 1989). 

Additionally, RPE65, the isomerohydrolase found in the microsomal membrane of the RPE 

and responsible for catalyzing the conversion of all-trans-retinyl ester to 11-cis-retinol in the 

visual cycle, is an iron-containing protein that is also dependent on iron for its 

isomerohydrolase activity (Moiseyev et al., 2005). Additionally, photoreceptor cells are 

constantly shedding and synthesizing their outer segments containing disc membranes. Thus, 

photoreceptors depend highly on iron-containing enzymes, including fatty acid desaturase, for 

synthesis of lipids used in disc membrane replacement (Schichi, 1969).  
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B.2.1. Iron import into the retina 
 

As previously discussed, the retina is isolated from the bloodstream by the BRB. Tight 

junctions of the neuroretinal vasculature and RPE cells prevent intercellular diffusion, thereby 

protecting both sides of the retina from potentially harmful substances that circulate in the 

blood. A consequence of such a blockade, however, is that transport mechanisms must be 

designed for the many trophic substances that are required for normal retinal function (Cunha-

Vaz, 1976; Cunha-Vaz et al., 2011). 
 
According to the classical pathway of iron import, iron-loaded holo-transferrin is endocytosed 

by cells following binding to the TfR1 found in the cell surface. Transferrin and TfR1 have been 

found in the retinal parenchyma. Immunohistochemistry has revealed the presence of 

transferrin in the inner retina, inner and outer segments of photoreceptors, and RPE, while 

immunolabeling of TfR1 has been observed in the ganglion cell layer, inner nuclear layer, outer 

plexiform layer, inner segments of photoreceptors, and RPE (Yefimova et al., 2000). Thus, 

transferrin has been established as the classical iron transporter protein in the retina, being 

widely accepted that serum transferrin binds to its receptor on the surface of vascular 

endothelial cells and RPE and, in this way, iron is delivered to the retina (Hunt, Dewey & Davis, 

1989; Burdo et al., 2003; Burdo & Connor, 2003; García-Castiñeiras, 2010). 

 
 
B.2.2. New pathway of iron import into the retina 

 

Recently, serum ferritin has also been proposed as a new iron carrier protein in the retina 

through L-ferritin binding to Scara5 (Mendes-Jorge et al., 2014). L-ferritin binds specifically 

and saturably to Scara5 (Li et al., 2009), and is likely to undergo endocytosis and be 

transcytosed across the BRB (Ponka et al., 1998; Fisher et al., 2007). The advantage of serum 

ferritin as an iron carrier, compared to serum transferrin, is that ferritin can sequester 2000-

fold more iron than transferrin (Fisher et al., 2007), constituting a very efficient non-transferrin 

source of iron to tissues. Nevertheless, little is known about the role of these receptors in the 

retina and despite its importance, iron influx and cell type involved in iron accumulation and 

storage mechanisms in the retina are still not completely understood. 
 
TIM2 membrane receptor can also function as an iron uptake pathway by binding to its ligand 

H-ferritin, which leads to the endocytosis of extracellular H-ferritin (Chen et al., 2005; Han et 

al., 2011). TIM2 expression has been described in spleen, mainly on germinal center B cells, 

bile duct epithelial cells and hepatocytes, renal distal tubule cells, as well as in 

oligodendrocytes (Chen et al., 2005; Watanabe et al., 2007; Todorich et al., 2008). However, 

the presence of TIM2 in the retina still remains unknown.  
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TIM2, a type 1 transmembrane protein, is a member of the T cell immunoglobulin and mucin 

domain containing protein family. The TIM family is comprised of three members in humans 

(TIM1, TIM3, and TIM4) and eight in mice (TIM1-8), and it is known by its involvement in the 

regulation of immune responses (McIntire et al., 2001; McIntire, Umetsu & DeKruyff, 2004). 

TIM2 has been shown to participate in T-cell activation upon binding to Semaphorin 4A, 

thereby exerting its effects on the immune system (Kumanogoh et al., 2002; Rodriguez-

Manzanet et al., 2009). Although no human ortholog for mouse TIM2 has been identified, 

human TIM1 and mouse TIM2 share a homology of 36% with each other and similar functions, 

specifically binding to H-ferritin and Semaphorin 4A (Chiou et al., 2018).  

 

 

B.3. Deleterious effects of iron 

 

Although an essential micronutrient for the normal function of the organism, iron can be toxic 

if its level and/or distribution are not carefully regulated. It is well known that iron is a potentially 

harmful pro-oxidant when accumulated excessively in tissues, triggering the production of 

ROS. Toxicity associated with iron overload in the retina is developed through the 

overproduction of ROS that overwhelms inherent antioxidant mechanisms of neurons, 

vascular, and glial cells, leading to a cascade of oxidative stress that contributes to retinal 

damage (Wong et al., 2007; Galaris & Pantopoulos, 2008; Goralska et al., 2009; Kell, 2009; 

Loh, Hadziahmetovic & Dunaief, 2009; Gammella, Recalcati & Cairo, 2016).  

 
ROS, a collection of partially reduced oxygen-containing molecules, including peroxides (H2O2 

and ROOH), superoxide anion (O2•-), and free radicals, are formed during normal cellular 

metabolism. In fact, physiological concentrations of ROS are essential for life as these 

molecules are necessary to support redox signaling events that are involved in important 

physiological functions and adaptive cell responses, such as chemotaxis, hormone synthesis, 

immune response, cytoskeletal remodeling, and calcium homeostasis (Dröge, 2002; 

Trachootham et al., 2008; Ray, Huang & Tsuji, 2012). Moreover, the production of O2•- and 

H2O2 is an inevitable consequence of aerobic metabolism. O2•- is generated continuously by 

the mitochondrial electron transport system as well as during several cellular oxidase catalyzed 

reactions. H2O2 is generated as a result of enzymatic (superoxide dismutase) and non-

enzymatic destruction of O2•-.  

 
These molecules are not particularly reactive by themselves. However, the interaction of these 

partially reduced forms of oxygen with transition elements, including iron, lead to the production 

of highly damaging radicals (Halliwell & Gutteridge, 1984, 1990; Harwell, 2007; Kell, 2009; 

Udipi et al., 2012; Gammella et al., 2016). The most important reaction of H2O2 with free or 
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poorly liganded Fe2+ is the Fenton reaction (Figure 23). In this reaction, Fe2+ is oxidized to Fe3+, 

generating a hydroxyl ion (OH-) and a hydroxyl radical (HO•). HO• is exceptionally damaging 

and reacts with all kind of biological molecules, including nucleic acids, carbohydrates, 

proteins, and lipids, and may irreversibly destroy or alter the function of the target molecule, 

affecting cellular function (Halliwell & Gutteridge, 1984, 1990; Wardman & Candeias, 1996; 

Meneghini, 1997; Dröge, 2002; Harwell, 2007; Kell, 2009; Udipi et al., 2012). O2•- can also 

react with Fe3+ in the Haber-Weiss reaction to produce Fe2+ again thereby effecting redox 

cycling (Figure 23) (Kehrer, 2000).  

 

 

 
 
Figure 23. Reactive oxygen species and iron redox cycling. In the Fenton reaction, ferrous iron 

(Fe2+) is oxidized to ferric iron (Fe3+) through the reaction with hydrogen peroxide (H2O2), leading to the 

generation of hydroxyl radical (HO•) and hydroxyl ion (OH-). Ferric iron (Fe3+) is again reduced to ferrous 

iron (Fe2+) by one-electron transfer from superoxide anion (O2•-) to give oxygen (O2) in the Haber-Weiss 

reaction, thereby effecting redox cycling. 

 

 

Oxidative stress, induced by increased iron-mediated ROS generation, causes DNA damage, 

lipid peroxidation, and aberrant posttranslational modifications of proteins, thus leading to 

injury, cell death, and disease (Figure 24) (Halliwell & Gutteridge, 1984, 1990; Dröge, 2002; 

Galaris & Pantopoulos, 2008; Kell, 2009; Ray et al., 2012; Udipi et al., 2012; Gammella et al., 

2016). In the nucleus, HO• causes DNA damage, especially double strand breaks as well as 

chemical changes in deoxyribose, purines, and pyrimidines. HO• can be added onto C-8 of 

guanine leading to guanine modification. Many of the damaged proteins are enzymes, hence 

critical cellular functions, including ATP generation, are adversely affected. Lipid peroxidation 

increases membrane fragility of cell organelles, such as mitochondria, lysosomes, and 

endoplasmic reticulum, leading to impaired cell function (Fardy & Silverman, 1995; Casanueva 

& Viteri, 2003; de La Rosa, Moshage & Nieto, 2008; Kell, 2009).  
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Figure 24. Oxidative stress cascade. Iron in excess, through the participation in the Fenton reaction, 

generates the overproduction of ROS, which triggers oxidative stress. In turn, oxidative stress elicits 
DNA damage, lipid peroxidation, and aberrant protein modifications that ultimately lead to injury, cell 

death, and disease. 

 
 

Conversely, oxidative stress itself influences iron metabolism and iron proteins, which may in 

turn propagate a vicious cycle of oxidative stress and iron accumulation (Deb et al., 2009; 

Hadziahmetovic et al., 2011b). Thus, maintaining the cellular LIP as low as possible is crucial 

for redox biology and for the regulation of metabolism and other cellular functions by ROS. 

 
The retina, due to the constant exposure to light, oxygen-rich environment, high oxygen 

tension, high metabolic rate, and high concentration of polyunsaturated fatty acids, combined 

with high requirements of iron, is particularly prone to oxidative stress (Berman, 1991; He et 

al., 2007; Loh et al., 2009; García-Castiñeira, 2010; Gnana-Prakasam et al., 2010; Song & 

Dunaief, 2013). Therefore, regulation of iron homeostasis is crucial in the retina, where the 

slightest iron imbalance would automatically exacerbate any possible situation of oxidative 

stress (Halliwell & Gutteridge, 1990; Sies, 1991; Ray et al., 2012).  

 
Iron overload, accompanied by cellular damage and oxidative stress, has been implicated in 

neurodegenerative diseases affecting the brain, including Parkinson’s and Alzheimer’s 

diseases (Lhermitte, Kraus & McAlpine, 1924; Connor et al., 1992; Greenough, Camakaris & 

Bush, 2013; Ayton et al., 2014; Gozzalino & Arosio, 2016), and in the pathogenesis of retinal 

diseases, such as age-related macular degeneration (Dunaief, 2006; Wong et al., 2007) and 

diabetic retinopathy (Feng et al., 2007; Ciudin, Hernández & Simó, 2010; Chaudhary et al., 

2018). 
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B.3.1. Diabetic retinopathy 
 

Diabetes mellitus is a chronic metabolic disease that affects 415 million adults worldwide and 

its prevalence is expected to reach 642 million by 2040 (Sabanayagam et al., 2016). The 

epidemic of diabetes and its complications poses a major global health and economic threat 

with a substantial economic burden at both patients and health systems levels. Therefore, 

there is an urgent need to develop and implement new therapies to cure diabetes mellitus and 

to delay its progression to complications. 

 
Diabetic retinopathy is the most common microvascular complication in diabetic patients that 

can progress to the loss of vision, affecting approximately 35% of the diabetic population 

(Congdon, Friedman & Lietman, 2003; Hammes, 2018). Diabetic retinopathy is characterized 

by inflammation, neurodegeneration, and microvascular alterations in the retina (Barber et al., 

1998; Antonetti et al., 2006; Tang & Kern, 2011). The progress of diabetic retinopathy can be 

divided in non-proliferative and proliferative phases. Non-proliferative diabetic retinopathy is 

characterized by vasodegenerative changes, including pericyte loss, thickening of blood vessel 

basement membrane, acellular capillaries, capillary closure, and increased vascular 

permeability. These vascular abnormalities cause diabetic macular edema and ischemia 

(Barber et al., 2005; Kaur, Foulds & Ling, 2008). Retinal ischemia, in turn, triggers the 

upregulation of angiogenic factors leading to the neovascularization that occurs during the 

proliferative phase of the disease. Diabetic macular edema is a complex pathological process 

caused by multiple factors, including BRB breakdown and oxidative stress (Madsen-Bouterse 

& Kowluru, 2008; Zhang et al., 2014), and represents the most common cause of vision loss 

in patients with diabetic retinopathy (Duh, Sun & Stitt, 2017).  
 
Intracellular retinal iron accumulation has been associated to the development and 

exacerbation of diabetic retinopathy (Feng et al., 2007; Ciudin et al., 2010; Chaudhary et al., 

2018). However, implications of retinal iron imbalance in this pathology are still not completely 

elucidated. During diabetic retinopathy, the retinal microenvironment may accumulate iron by 

various mechanisms. Hyperglycemia has been reported to cause breakdown of heme 

containing molecules releasing free iron (Cussimanio et al., 2003). Intraretinal and intravitreal 

hemorrhages associated with diabetic retinopathy also result in additional iron overload. 

Additionally, inflammation can alter the expression of iron-regulatory gene hepcidin leading to 

iron accumulation (Gnana-Prakasam et al., 2008; Wessling-Resnik, 2010). Furthermore, 

retinal iron overload affects BRB integrity and accelerates retinal cell loss by enhancing 

oxidative stress (Ciudin et al., 2010; Chaudhary et al., 2018). 
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OJECTIVES 
 

 

 

RATIONALE 
 
Background: 

1. Iron overload is implicated in diabetic retinopathy. 

2. Ferritin, a known marker of iron status, is increased in the retina during diabetes. 

3. Ferritin, a classical iron storage protein, was recently proposed as a new iron 

transporter protein. 

4. Scara5 and TIM2 are specific receptors for ferritin import to tissues.  

5. Our laboratory described, for the first time, ferritin uptake into the retina via L-ferritin 

specific binding to Scara5. 

6. TIM2 has not been reported yet in the retina. 

 
Hypothesis: 
The expression of TIM2, the main receptor for H-ferritin, could be a mechanism for influencing 

the entry of ferritin into the retina and modulate iron levels during diabetic retinopathy. 

 
 

MAIN OBJECTIVE 
 
To prove that a decrease of TIM2 expression affects iron import into the retina. In order to 

achieve this, a TIM2 knockout mice model will be generated and analyzed. 

 

Specific objectives: 
- To characterize TIM2 expression in the mouse retina. 

- To analyze the consequences of retinal TIM2 deficiency in iron import. 
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MATERIAL AND METHODS 
 

 

 

A. Material 
 
A.1. Mice  
 

In the present study, 4- to 6-month-old TIM2 heterozygous (+/-) mice and wild-type (WT) 

littermates were used. Mice were genotyped by standard polymerase chain reaction (PCR) of 

tail genomic DNA (B.1).  

 
All mice were fed ad libitum with a standard diet (2018S TEKLAD Global, Harlan Teklad, 

Madison, WI, USA) and maintained under conditions of controlled temperature and light (12-

hour light/dark cycles, light on at 8:00 A.M.). 

 
Animals were euthanized by means of anesthetics inhalation (IsoFlo®, Esteve, Barcelona, 

Spain). Animal care and experimental procedures were approved by the ethics committee in 

animal and human experimentation of the Universitat Autònoma de Barcelona. 

 

 

A.1.1. Generation of TIM2 knockout mice 
 

Embryonic stem cell clones C57BL/6N-A/a carrying the Timd2 knockout (KO) with conditional 

potential (Timd2tm1a(KOMP)Wtsi) were obtained from KOMP (Knockout Mouse Project) Repository. 

TIM2 KO mice were generated after injection of the clone EPD0604_4_C03 into 

C57BL/6JOlaHsd blastocysts. Chimeric offspring were mated with C57BL/6JOlaHsd mice. 

Germline transmission of the mutant allele was confirmed by PCR analysis of genomic DNA 

from tails of mice. 

 

 

A.2. Equipment 
 

The instruments and material used during this work were facilitated by CIISA (Faculty of 

Veterinary Medicine, Universidade de Lisboa), CBATEG (Universitat Autònoma de Barcelona), 

Anatomy and Embryology Unit (Veterinary School, Universitat Autònoma de Barcelona), and 

Microscopy and Chemistry Analysis Facilities and Luminescence and Spectroscopy 
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Biomolecules Laboratory (Faculty of Science, Universitat Autònoma de Barcelona). The 

following equipment was employed: 

 

• Microscopes: 

- Epifluorescence microscope: Nikon Eclipse E-800 (Nikon Corp., Tokyo, Japan) 

- Stereoscopic microscopes: Nikon SMZ-800 and Nikon SMZ-1000 (Nikon) 

- Confocal laser microscopes: Leica TCS-SP2 AOBS and Leica TCS-SP5 X confocal 

microscope (Leica Microsystems GmbH, Heidelberg, Germany) 

- Transmission electron microscope: Jeol JEM-1400 (Jeol Ltd., Tokyo, Japan) 

- Transmission electron microscope: Jeol JEM-2011 (Jeol) 

• Digital cameras: 

- Nikon digital camera DXM 1200F (Nikon) 

- Soft Imaging System CC-12 (Olympus Soft Imaging Solutions Gmbh, Münster, 

Germany) 

• Ophthalmoscope: 

- Heidelberg Retina Angiography 2 (HRA2) Imaging Instrument (Heidelberg 

Engineering, Germany) 

• Spectrometer: 
- Agilent 7500ce (Agilent, Santa Clara, CA, USA) 

• Spectrophotometer: 

- NanoDrop ND-2000c (Thermo Fisher Scientific, Willmington, DE, USA) 

• Microtomes: 

- Microtome Shandon Retraction AS325 (Rankin Biomedical Corporation, Holly, MI, 

USA) 

- Ultramicrotome Leica EM UC6 (Leica Microsystems) 

• Imaging detection system: 
- Molecular Imager ChemiDoc XRS System (Bio-Rad Laboratories, Hercules, CA, USA) 

• Thermal cyclers: 
- T100 Thermal cycler (Bio-Rad) 

- CFX384 Thermal cycler (Bio-Rad) 

• Microplate reader: 
- iEMS Reader/Dispenser MF (Labsystems Oy, Helsinki, Finland) 

- PowerWave HT (BioTek, Winooski, VT, USA) 

• Biochemistry analyzer: 

- Olympus AU400 Autoanalyzer (Olympus, Hamburg, Germany) 

- Glucometer Elite (Bayer, Leverkusen, Germany) 
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• General laboratory equipment: 
- Centrifuge 5702R (Eppendorf, Hamburg, Germany) 

- Shaker UNIMAX -1010, incubator INKUBATOR-1000 and vortex REAX-top (Heidolph 

instruments, Schwabach, Germany) 

- Modular inclusion center AP280: cryo-console AP280-1 and dispensing console 

AP280-2 (Especialidades médicas Myr SL, Tarragona, Spain) 

- pH meter PHM210 Standard (Radiometer analytical SAS, Villeurbanne Cedex, France) 

- Vacuum oven Fisher Bioblock Scientific (Fisher, Strasbourg, France) 

- Electric homogenizer Ultra-turrax T8 (IKA-Werke, Staufen, Germany) 

- Water bath Grant GD100 (Grant Instruments, Cambridge, UK) 

- Dry Thermostat block Tembloc-P (JP Selecta S.A., Barcelona, Spain) 

 

 

B. Methods 
 

B.1. Genotyping  
 

Genotyping is the process of determining the genetic variants of an individual by examining 

the individual’s DNA, thus enabling to proper identify and confirm the genotype of genetically 

modified animals. Genotyping protocols are frequently based on reliable methods, such as 

PCR and Southern blotting (Picazo & García-Olmo, 2015). In this study, standard PCR 

analysis was used for routine genotyping during maintenance of the genetically modified mice 

colony. 

 

 

B.1.1. DNA extraction from mouse tail 
 

High-quality genomic DNA may be isolated from various biological tissues. Tail biopsy is 

considered the most common tissue sampling method for genotyping mice (Picazo & García-

Olmo, 2015). The protocol used for isolating a highly purified DNA preparation from mouse tail 

is described as follows: 

 

1. Sample: 0.5-1 cm of mouse tail was cut into a sterile eppendorf tube. 

2. Lysis: 700 μl of lysis buffer TESNA 1  containing 10% proteinase K (Roche, Basel, 

Switzerland) was added per tail and incubated, in a water bath with gentle shaking, 

overnight at 57°C. 

                                                
1 TESNA: 5 ml Tris-HCl 2M (pH 8) + 1 ml EDTA + 0.2 g sodium dodecyl sulfate + 1.17 g NaCl in 100 ml milliQ water.  
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3. Centrifugation: samples were centrifuged at 8,000 g for 15 minutes and the supernatant 

was transferred to a new sterile tube.  

4. DNA precipitation: 700 μl of isopropanol (Panreac Química SLU, Castellar del Vallés, 

Spain) was added to each tube and shaken, and mixed vigorously. 

5. Centrifugation: samples were centrifuged at 8,000 g for 10 minutes to remove and discard 

the supernatant.  

6. DNA purification: 400 μl of 70% ethanol was added to each tube.  

7. Centrifugation: samples were centrifuged at 8,000 g for 10 minutes to remove and discard 

the supernatant. 

8. Remove ethanol: to eliminate residual ethanol, the samples were air dried at 37ºC for 10 

minutes. 

9. DNA elution: 1 ml of milliQ water was added to each tube and incubated for 1 hour at 

65ºC, while shaking to resuspend DNA. (Total yield was approximately 50-100 ng/µl DNA). 

DNA samples were stored at 4ºC until further analysis. 

 

 

B.1.2. PCR amplification  
 

PCR amplification is based on temperature cycling on a DNA template to be amplified and 

generate numerous identical copies that can be readily analyzed. Initially, high temperature is 

used to separate double-strands of DNA and then temperature is lowered to let primers anneal 

to the template. Primers are specific sequences of oligonucleotides that determine the targeted 

genomic DNA fragment (Table 1). A final temperature of around 72°C is required for optimal 

DNA polymerase activity to extend the two primers by incorporating deoxynucleotides 

(dNTPs). DNA fragments are then separated by size of base pairs (bp) with agarose gel 

electrophoresis (Picazo & García-Olmo, 2015). The PCR-based genotyping from mouse tail 

genomic DNA protocol used was the following: 

 

1. DNA amplification: GoTaq® G2 Flexi DNA Polymerase Kit (Promega, Madison, WI, USA) 

was used to amplify mouse tail DNA in a thermal cycler. The 30 µl PCR reaction mixture 

contained 6 µl of 5x Green GoTaq Flexi Buffer, 2.4 µl MgCl2 (2 mM), 0.6 µl of dNTP mix 

solution (each 0.2 mM), 0.99 µl of each primer (0.3 µM), 0.3 µl of GoTaq® G2 Flexi DNA 

Polymerase (1.5 units), and 2 µl of genomic DNA as template. The cycling program used 

begins with an initial denaturation at 94°C for 3 minutes, followed by 35 cycles of DNA 

denaturation at 94°C for 30 seconds, optimized annealing reaction at 60°C for 30 seconds, 

extension at 72ºC for 30 seconds and a final step of 72ºC for 2 minutes. No template 

samples were used as negative controls. 
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2. Agarose gel: to visualize DNA amplification, 20 µl of PCR products were separated on 1% 

agarose gel made with TAE2 buffer using standard electrophoresis methods (80-120 V). 

3. Staining: agarose gels were stained with ethidium bromide (EtBr, Sigma-Aldrich, St. Louis, 

MI, USA) diluted in milliQ water (10 mg/ml).  

4. Visualization: DNA amplified bands were imaged under UV light using a ChemiDoc XRS 

System with QuantityOne software version 4.5 (Bio-Rad). 

 
 Table 1. Oligonucleotide primers for genotyping mouse tail DNA. 

 
 
 
 
 
 
B.2. Morphological studies 
 

B.2.1. Tissue processing 
 
Taking into account that different methods may require different preparation of tissue samples, 

retinas used in this study were processed depending on the method envisioned. 

 

 

B.2.1.1. Whole-mounts 
 

The use of tissue whole-mounts, where an entire tissue is directly placed onto a slide, is a 

widely accepted tool in the fields of retinal neurobiology. The main advantage of using retinal 

whole-mounts is adequate preservation of cell morphology. This approach allows visualization 

of the entire retinal parenchyma and preservation of the vascular network structure, while 

minimizing tissue damage during dissection (Hashimoto, Ishikawa & Kusakabe, 1999; 

McMenamin, 2000). Mouse eyes were processed as follows: 

 

1. Eye dissection: eyeballs were enucleated from euthanized mice and immersed in cold 

phosphate buffered saline (PBS)3 on a dissection plate provided with a latex pad.  

2. Retinal dissection: each eye was anchored to the latex pad with two insect pins: one pin 

fixed in the cornea and the other in the posterior pole of the eyeball. To access the anterior 

chamber of the eye, an incision was made along the corneo-scleral groove. After removing 

                                                
2 TAE 50x (pH 8): 24.2 g Tris base + 5.71 ml of CH3CO2H + 3.72 g EDTA.2H2O + 100 ml milliQ water; TAE 1x: 20ml TAE 50x + 
980 ml milliQ water.  
3 PBS: 1.5 g Na2HPO4.2H2O + 0.28 g NaH2PO4.H2O + 8.1 g NaCl + 1000 ml distilled water.  

Mice Direction Sequence (5’ to 3’) 

WT Forward AGG AGT CAG GTG GGA GGA TTA 

WT Reverse CGT GTG CAT GTT TGT TTT CC 

TIM2+/- Reverse GGT ATC GTT ATG CGC CTT CT 
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the lens, the retina was separated from the choroid and isolated by cutting the optic nerve. 

Usually, the retinal pigment epithelium remained adhered to the choroid. 

3. Fixation: After flattening the retinas by anchoring 4-5 insect pins to the latex pad plate, the 

samples were embedded in 10% neutral buffered formalin (NBF)4 for 2 hours at room 

temperature. 

4. Washing: several washes (at least 5) in phosphate buffer Igepal (PBI)5 were performed to 

remove the fixative solution. 

 

 

B.2.1.2. Paraffin embedded sections 
 

The advantages of using paraffin sections of retina are the preservation of the structural 

relationships between cells and extracellular components useful for fluorescence and confocal 

microscopy, as well as long-term storage, and the possibility of using several techniques in the 

same sample. Paraffin sections of mouse eyes were obtained as follows: 

 

1. Eye dissection: eyeballs were enucleated from euthanized mice. 

2. Fixation: eye samples were immersed and fixed in 10% NBF for 24 hours at room 

temperature. 

3. Washing: fixative solution was removed by washing 15-20 minutes in PBS (at least 4 

washes), under constant agitation in a shaker. 

4. Dehydration: eye samples were dehydrated through a series of graded ethanol baths to 

displace the water: 

- 70% ethanol, 2 washes of 1 hour each. 

- 80% ethanol, 2 washes of 1 hour each. 

- 96% ethanol, 2 washes of 1 hour each.  

- 100% ethanol, 2 washes of 1 hour each. 

5. Transparency: to render the tissue transparent, eye samples were immersed in xylene 

(Panreac Química) for 1 hour. 

6. Paraffin infiltration: samples were placed in a paraffin bath for 24 hours at 57ºC in a 

vacuum oven. Paraffin wax was changed once during this period. The infiltrated tissues 

were then embedded into paraffin blocks. 

7. Eye sections: paraffin blocks were sectioned using a microtome. Sagittal 3-4 µm thick 

sections of the eye were obtained and mounted in glass slides previously covered with 

Silane (Sigma-Aldrich). 

 

                                                
4 NBF: 100 ml of 37% formaldehyde + 4 g NaH2PO4.H2O + 6.5 g Na2HPO4 in 900 ml distilled water.  
5 PBI: 1000 μl Igepal + 1000 ml PBS.  
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B.2.2. Conventional histologic hematoxylin-eosin stain 
 

Hematoxylin and eosin (H-E) stains are commonly used to demonstrate a wide range of normal 

and abnormal structures or functional components in various tissues (Fischer et al., 2008; 

Titford 2009). Hematoxylin stains nucleic acids, while eosin stains proteins nonspecifically so 

that in a typical tissue, nuclei are stained blue, whereas the cytoplasm and extracellular matrix 

have different degrees of pink staining (Fischer et al., 2008). The following protocol describes 

H-E stain of retinal paraffin sections: 

 

1. Deparaffinization and rehydration: 

- Xylene: 2 washes of 5 minutes each. 

- 100% ethanol, 2 washes of 5 minutes each. 

- 96% ethanol, 2 washes of 5 minutes each. 

- 80% ethanol, 1 wash of 5 minutes. 

- 70% ethanol, 1 wash of 5 minutes. 

- Distilled water, 1 wash of 5 minutes. 

2. Washing: samples were washed in running water for 5 minutes. 

3. Harris’ Hematoxylin: sample slides were immersed in Harris’ Hematoxylin solution (Sigma-

Aldrich) for 5-10 minutes. 

4. Washing: samples were washed in running water for 5 minutes. 

5. Differentiating: quick immersion in a solution of 0.25% HCl diluted in 70% ethanol. 

6. Eosin: sample slides were immersed in Eosin solution (Merck Millipore, Billerica, MA, 

USA) from 30 seconds to 1 minute. 

7. Dehydration: sample slides were dehydrated by 2 quick immersions in 96% ethanol and 

1 in 100% ethanol. 

8. Transparency: sample slides were immersed in xylene for 5 minutes. 

9. Mounting: sample slides were mounted with DPX Mountant (Sigma-Aldrich) and covered 

with a coverslip. 

10. Visualization: the analysis of the samples was performed by means of an optical 

epifluorescence microscope (Nikon Eclipse E-800). Images were acquired with a digital 

camera (Nikon DXM 1200F). 

 

 

B.2.3. Immunohistochemistry 
 

Immunohistochemistry is a widely used method to identify proteins within a tissue by the 

interaction of target antigens with specific antibodies (Presnell & Schreibman, 1997). The site 
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of antigen-antibody binding is then visualized with an appropriate chromogen or fluorochrome 

labeled to a secondary antibody directed against the specific primary antibody. 

 
This technique was used to analyze the distribution and localization of specific cellular 

components within tissue context. Double immunohistochemistry was accomplished using two 

primary antibodies on the same sample, each labeled with a different chromogen, to analyze 

topographic relationships between two proteins or to identify two different cells. To avoid non-

specific bindings, primary antibodies were always incubated in a solution containing 10% of 

normal serum from the host of the secondary antibody. When the secondary antibody was 

produced in goat, albumin from bovine serum (BSA, Sigma-Aldrich) was not used. When 

primary antibodies employed were produced in mouse a blocking mouse on mouse 

commercial kit was used following the suggested protocol (KIT MOMTM, Vector Laboratories, 

USA). Negative controls were always carried out by omitting the primary antibody. Antibodies 

and fluorochromes, as well as dilutions employed and commercial suppliers, are summarized 

in tables 2, 3, and 4. 
 
 
         Table 2. Primary antibodies used for immunohistochemistry. 

Primary antibody Antigen 
retrieval Dilution Commercial supplier 

Goat anti-TIM2 Citrate 1:100 R&D Systems 

Rabbit anti-Scara5 Citrate 1:200 LSBio 

Rat anti-transferrin receptor 1 EDTA 1:100 Abcam 

Rabbit anti-transferrin Citrate 1:100 Abcam 

Rabbit anti-ferritin heavy chain Citrate 1:100 Abcam 

Rabbit anti-ferritin light chain Citrate 1:100 Abcam 

Rabbit anti-parvalbumin Citrate 1:100 Abcam 

Rabbit anti-calbindin Citrate 1:100 Swant 

Mouse anti-PKCα Citrate 1:100 Sigma-Aldrich 

Rabbit anti-GS Citrate 1:500 Sigma-Aldrich 

Rabbit anti-GFAP Citrate 1:1000 Dako 

Rabbit anti-laminin Citrate 1:100 Dako 

Rabbit anti-4HNE Citrate 1:100 Abcam 

Lectin PNA Citrate 1:50 Sigma-Aldrich 

Goat anti-collagen IV Citrate 1:20 Merck Millipore 

Mouse anti-Brn3a Citrate 1:100 Santa Cruz Biotechnology 

Rabbit anti-ZO-1 - 1:50 Thermo Fisher Scientific 

Rabbit anti-claudin-5 - 1:50 Thermo Fisher Scientific 

Rabbit anti-occludin - 1:50 Thermo Fisher Scientific 
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 Table 3. Secondary antibodies used for immunohistochemistry. 

 

 
 
 
 
 
 
 
 
 

    Table 4. Fluorochromes used for immunohistochemistry. 
 
 
 
 
 

When required, to ensure a better penetration of fixative, thoracic aortas of mice were 

cannulated cranially (25G catheter) and injected with 1 ml of PBS followed by 1 ml of 10% 

NBF. This procedure was performed after euthanasia with isoflurane overdose on mice 

previously injected intraperitoneally with 0.1 ml of 5% heparin (Hospira Productos 

Farmacéuticos y Hospitalarios S.L., Spain).  

 
 

B.2.3.1. Whole-mount retinas 
 

After mice retinas were processed, as previously described (B.2.1.1.), the following protocol 

was used: 

 

1. Permeabilization: samples were immersed in a solution of 0.1% Triton X-100 (Sigma-

Aldrich) in PBS for 2 hours at room temperature or overnight at 4ºC. 

2. Washing: 4 washes in PBI under constant agitation for 10 minutes each were performed. 

3. Blocking: samples were immersed in wash buffer (WB)6 under constant agitation for 10 

minutes at room temperature. 

4. Primary antibody: samples were incubated with primary antibody under constant agitation 

for 30 minutes at room temperature and then overnight at 4ºC.  

5. Washing: 4 washes in PBI for 10 minutes each, and 1 wash in WB for 10 minutes were 

performed.  

                                                
6 WB: 3 g BSA + 1 ml Igepal in 1000 ml PBS.  

Secondary antibody Dilution Commercial supplier 

Anti-rat IgG-biotin 1:100 Abcam 

Anti-goat-biotin 1:100 Santa Cruz Biotechnology 

Anti-rabbit IgG-alexa 568 1:100 Invitrogen 

Anti-rabbit IgG-alexa 488 1:100 Abcam 

Anti-goat IgG-alexa 568 1:100 Invitrogen 

Anti-goat IgG-alexa 488 1.100 Life Technologies 

Fluorochrome Dilution Commercial supplier 

Streptavidin Alexa Fluor 488 1:100 Molecular Probes 

Streptavidin Alexa Fluor 568 1:100 Molecular Probes 
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6. Secondary antibody: samples were incubated with secondary antibody under constant 

agitation for 3 hours at room temperature or overnight at 4ºC.  

7. Washing: 5 washes in PBI for 10 minutes each were performed.  

8. Fluorochrome (if biotinylated secondary antibody): samples were incubated with 

fluorochrome under constant agitation for 1 hour at room temperature.  

9. Washing: 5 washes in PBI for 10 minutes each were performed.  

10. Counterstain: nuclei counterstaining was performed using Hoechst (Sigma-Aldrich) or To-

Pro-3 iodide (Molecular probes, Eugene, OR, USA), both diluted in PBS 1:100 and 

incubated under constant agitation for 10 minutes at room temperature. 

11. Washing: samples were rinsed in 5 washes of PBI for 1 hour. 

12. Mounting: retinas were flattened over a slide with the retinal internal face directed to the 

coverslip. Fluoromount (Sigma-Aldrich) was used as anti-fading mounting media. Finally, 

slides were sealed with nail lacquer. 

13. Visualization: images were taken with a Leica TCS SP2 or TCS-SP5 confocal laser 

scanning microscope with Leica LAS AF Lite imaging software (Leica). 

 

 

B.2.3.2. Paraffin embedded retinal sections 
 

Once paraffin embedded retinal sections were processed as detailed in section B.2.1.2., the 

following protocol was performed: 

 

1. Deparaffinization and rehydration: 

- Xylene: 2 washes of 5 minutes each. 

- 100% ethanol, 2 washes of 5 minutes each. 

- 96% ethanol, 2 washes of 5 minutes each. 

- 80% ethanol, 1 wash of 5 minutes. 

- 70% ethanol, 1 wash of 5 minutes. 

- Distilled water, 1 wash of 5 minutes. 

2. Antigen retrieval (optional): to expose the antigenic site after formalin fixation in order to 

allow antibodies to bind, the slides were incubated in different antigen retrieval solutions: 

- Heat-induced: samples were incubated in sodium citrate retrieval solution 7  or 

ethylenediaminetetraacetic acid (EDTA) solution8 for 4 minutes at boiling temperature 

using a pressure cooker, and rest for 30 minutes. 

3. Washing: samples were washed in PBI for 5 minutes 

4. Blocking: samples were immersed in WB for 5 minutes. 

                                                
7 Sodium citrate solution (pH 6): 0.283 g citric acid + 1.8 g sodium citrate in 750 ml distilled water.  
8 EDTA solution (pH 9): 0.372 g EDTA 1mM in 1000 ml distilled water.  
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5. Primary antibody: samples were incubated with primary antibody overnight at 4ºC. 

6. Washing: 3 washes in PBI for 5 minutes each, and 1 wash in WB for 5 minutes were 

performed. 

7. Secondary antibody: samples were incubated with secondary antibody for 3 hours at room 

temperature.  

8. Washing: 3 washes in PBI for 5 minutes each were performed. 

9. Fluorochrome (if biotinylated secondary antibody): samples were incubated with 

fluorochrome for 1 hour at room temperature. 

10. Counterstain: nuclei counterstaining was performed using Hoechst or To-Pro-3 iodide, 

both diluted in PBS 1:100 and incubated for 5 minutes at room temperature. 

11. Washing: 3 washes in PBI for 5 minutes each were performed. 

12. Mounting: Fluoromount was used as anti-fading mounting media. The slides were sealed 

with nail lacquer. 

13. Visualization: images were taken with a Leica TCS SP2 or TCS-SP5 confocal laser 

scanning microscope with Leica LAS AF Lite imaging software (Leica).  

 

 

B.2.4. Transmission electron microscopy 
 

Transmission electron microscopy (TEM) is a microscopy technique that entails imaging of 

stained thin sections of tissues by using a beam of electrons that passes through the sample 

to be absorbed and scattered, producing an image of different contrasts (Winey et al., 2014). 

For TEM studies, mouse eyes were processed following the protocol described below: 

 

1. Dissection: fresh eye samples were preserved at 4ºC. The cornea and lens were removed 

by making an incision around the outside of the cornea, where the cornea meets the 

sclera. Next, the lens was discarded.  

2. Retinal sections: retinal fragments (approximately 1 mm2) were dissected from the retina. 

3. Fixation: samples were immersed in fixative solution containing 2.5% glutaraldehyde and 

2% paraformaldehyde for 2 hours. 

4. Post-fixation: samples were rinsed in PBI and post-fixed for 2 hours with 1% osmium 

tetroxide.  

5. Washing: samples were repeatedly washed in distilled water. 

6. Dehydration and infiltration: samples were immersed in a series of increasing acetone 

solutions (Panreac Química). Spurr resin (Sigma-Aldrich) was also added gradually as 

follows: 

- 70% acetone, overnight. 

- 80% acetone, 2 washes of 10 minutes each. 
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- 90% acetone, 2 washes of 10 minutes each. 

- 96% acetone, 3 washes of 10 minutes each. 

- 100% acetone, 3 washes of 10 minutes each. 

- Acetone-Spurr resin 3:1, 5 hours. 

- Acetone-Spurr resin 1:1, overnight. 

- Acetone-Spurr resin 1:3, 8 hours. 

- 100% Spurr resin for 2 days. 

7. Polymerization: Spurr resin blocks were polymerized at 60ºC for at least 48 hours. 

8. Semithin sections: 1 µm sections were made from resin blocks using an ultramicrotome.  

9. Staining: semithin sections were stained with 0.5% toluidine blue (Panreac Química).  

10. Ultrathin sections: semithin sections were observed with a stereoscopic microscope to 

select retinal regions of interest. Ultrathin sections (60-80 nm) were cut from the selected 

regions. 

11. Contrast: ultrathin sections were contrasted with lead citrate9 and 2% aqueous uranyl 

acetate. 

12. Visualization: retinal samples were analyzed with a transmission electron microscope Jeol 

JEM-1400 (Jeol). 

 

 

B.2.4.1. Inverted transmission electron micrographs 
 
Staining with lead citrate and uranyl acetate confers electron-density to all structures allowing 

the visualization by TEM (Winey et al., 2014). Ultrathin sections of 12 samples were left 

unstained in order to enable the visualization of metal-charged structures with a transmission 

electron microscope (Iancu & Manov, 2017). Images selected for their electron-dense content 

were inverted to obtain inverted micrographs. 

 

 

B.2.5. Scanning laser ophthalmoscopy 
 

Scanning laser ophthalmoscopy (SLO) produces dynamic fundus images based on a laser 

beam that enters the eye through the pupil while the reflected light is detected by a 

photomultiplier (Paques et al., 2006). This fundus imaging technique is of great interest for 

diagnostic imaging of retinal diseases in humans as well as in experimental mice models 

(Staurenghi et al., 2005; Paques et al., 2006). The protocol used for in vivo fluorescein 

angiographies of mice is described below: 

                                                
9 Lead citrate: 1.33 g Pb(NO3)2 + 1.76 g Na3(C6H5O7).2H2O in 30 ml distilled water.  
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1. Anesthesia: 10 to 40 units of anesthetic solution10 were injected intraperitoneally into each 

mouse. After induction of anesthesia, a drop of Tropicamide (Alcon, Barcelona, Spain) 

and Collyrium anesthetic (Alcon) was applied on each eye to dilate the pupils and relax 

the lens. To prevent dry eyes, a drop of Viscofresh sterile ophthalmic solution (Allergan, 

Ireland) was applied on each eye and a custom-made mouse contact lens was placed on 

the cornea. Application of eye drops was repeated as necessary during the procedure. 

2. Fluorescent dye: to stain blood vessels, 5 units of 5% sodium fluorescein (Sigma-Aldrich) 

were injected subcutaneously in each mouse. 

3. Angiography: retinal images were acquired for both eyes with HRA2 Imaging Instrument 

and the Heidelberg Eye Explorer software (Heidelberg Engineering) focusing on the 

different vascular plexus. After angiography procedures, mice were transferred to a warm 

cage to recover under close observation. 

 

 

B.2.6. Detection of LacZ expression: X-gal staining 
 
The TIM2 gene trap contains the LacZ reporter gene, which encodes the β-galactosidase 

enzyme. X-gal staining is a rapid and convenient histochemical technique used to detect the 

LacZ reporter gene expression. Briefly, β-galactosidase cleaves X-gal, into galactose and 5-

bromo-4-chloro-3-hydroxyindole; this second compound is then oxidized into a final product 

that is blue in color (5,5’-dibromo-4,4’-dichloro-indigo).  

 
X-gal staining provides a visual assay of LacZ activity (Burn, 2012; Shen et al., 2017) and the 

blue stain can be used as a marker of our gene of interest in various tissues of the TIM2+/- 

mouse. WT littermate controls were processed to identify patterns of non-specific staining due 

to endogenous galactosidase and resident bacterial enzyme activity. The following protocol 

was used: 

 

1. Organ harvesting: following perfusion with PBS, organs were harvested and washed in 

PBS. 

2. Fixation: samples were immersed and fixed in 4% paraformaldehyde for 2 hours at room 

temperature. 

3. Washing: fixative solution was removed by washing 10 minutes in PBS (at least 3 

washes), under constant agitation in a shaker. 

4. X-gal incubation: samples were immersed overnight in x-gal solution 11  under gentle 

agitation in a shaker at 37ºC covered from light. 

                                                
10 Anesthetic solution: 0.5 ml xilacine 2% + 2 ml ketamine 50% + 7.5 ml physiological saline serum.  
11 X-gal solution: 20 µl K4Fe(CN)6 + 20 µl K3Fe(CN)6 + 2 µl MgCl2 + 10 µl X-gal stock solution (40 mg/ml) + 948 µl PBS. 
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5. Washing: x-gal solution was removed by washing 10 minutes in PBS (at least 3 washes), 

under constant agitation in a shaker. 

6. Visualization: the analysis of the samples was performed using a stereoscopic microscope 

and images were acquired with a digital camera (Nikon DXM 1200F). 

7. Inclusion: samples were stored in 10% NBF at 4ºC covered from light until being 

processed for paraffin embedding.  

 

 

B.3. Analytical, morphometrical, and biochemical studies 
 

B.3.1. Analyses of iron metabolism parameters in blood 
 
Blood samples were obtained after anesthesia by inhalation with an overdose of isoflurane, 

either by decapitation or intracardiac sampling. Blood was immediately collected for analyses 

of iron metabolism parameters. Once centrifuged, samples were kept frozen at -80ºC. Serum 

iron concentration and unsaturated iron binding capacity (UIBC) were determined using an 

automated biochemistry analyzer (Chemistry Analyzer AU400, Olympus) and manufacturer’s 

reagents (Olympus System Reagent, Beckman Coulter, Galway, Ireland). Total iron binding 

capacity (TIBC) was calculated by adding serum iron and UIBC. In turn, transferrin saturation 

was inferred by the ratio between serum iron and TIBC. Serum ferritin levels were determined 

using a highly sensitive two-site enzyme-linked immunosorbent assay (ELISA) for measuring 

ferritin in mouse biological samples (Mouse Ferritin ELISA kit, Abcam) and standard microplate 

ELISA methodology (iEMS Reader/Dispenser MF, Labsystems Oy). 

 

 
B.3.2. Energy dispersive X-ray spectroscopy 
 
Energy dispersive X-ray spectroscopy is a technique that enables to detect and measure 

chemical components in samples. The microscope's electron beam is focused on a minute 

area of the sample, and the relative abundance of all detectable elements in the irradiated 

region are determined rapidly by measuring the intensities of characteristic X-rays emitted by 

their atoms (Whallon, Flegler & Klomparens, 1989). For the analysis of iron by energy 

dispersive X-ray spectroscopy, 160 nm thick retinal unstained ultrathin sections of 12 samples 

were observed in a transmission electron microscope Jeol JEM-2011 (Jeol) equipped with an 

X-ray detector Oxford INCA (Oxford Instruments, Abingdon, UK) using an accelerating voltage 

at 200 kV. Acquired spectra were analyzed with the Oxford INCA software (Oxford 

Instruments). 
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B.3.3. Inductively coupled plasma mass spectrometry  
 
Inductively coupled plasma mass spectroscopy is one of the most powerful and sensitive 

methods for qualitative and quantitative trace element detection. It features a multielemental 

capability, good precision, a long linear dynamic range, low detection limits, and the ability to 

do rapid isotopic analysis. Inductively coupled plasma mass spectroscopy has been widely 

used for the analysis of metallic, inorganic as well as organic, and biological samples. Briefly, 

atomic elements are led through a plasma source where they become ionized. Then, these 

ions are sorted on account of their mass (Pröfrock & Prange, 2012). For retinal iron content 

studies, mouse eyes were processed following the protocol described below: 

 

1. Dissection: fresh enucleated eyes were placed on a dissection plate with PBS on ice 

to quickly dissect the retina. Both retinas from each animal were collected in individual 

vials. 

2. Sample digestion: samples were treated with concentrated nitric acid in a dry block at 

120ºC for 30 minutes in order to achieve complete retinal digestion. 

3. Metal determination: retinal iron content was determined using an inductively coupled 

plasma mass spectrometer Agilent 7500ce and referenced to the total retinal iron 

content per animal (μg iron/animal). PBS was also analyzed to normalize values. 

 
 
B.3.4. Quantification of iron by colorimetric analysis 
 

Retinal iron content as well as Fe2+ and Fe3+ contents were measured by colorimetric analysis 

using a commercial iron assay kit (Abcam), according to manufacturer’s instructions: 

 

1. Dissection: fresh enucleated eyes were placed on a dissection plate with PBS on ice 

to quickly dissect the retina.  

2. Homogenization: a pool of 10 retinas from each group of animals was homogenized in 

500 μl iron assay buffer using a Dounce homogenizer sitting on ice in order to obtain 

sufficient amount of sample to perform duplicate reading of total iron and Fe2+. 

3. Centrifugation: samples were centrifuged at 8,000 g at 4°C for 10 minutes in order to 

aspirate the supernatant. 

4. Standard curve: a set of standard dilutions was prepared using 1 mM iron standard. 

5. Microplate preparation: 100 μl of each sample and standard dilution were set up in 

duplicate in a microplate. Samples assigned to Fe2+ determination were incubated with 

5 μl iron assay buffer while standards and samples assigned to total iron determination 

were incubated with 5 μl iron reducer for 30 minutes at 25ºC. Followed this, all samples 
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and standards were incubated with 100 μl iron probe for 60 minutes at 25ºC protected 

from light. 

6. Iron determination: the optical density of each well was measured at 593 nm using a 

colorimetric microplate reader (PowerWave HT, BioTek). Total iron and Fe2+ contents 

were extrapolated directly from the standard curve obtained. Fe3+ content was obtained 

by calculating the difference between total iron and Fe2+ contents. 

 
 
B.3.5. Quantitative analysis of vascular tortuosity 
 
Tortuosity of the retinal vasculature was quantified using fundus fluorescein angiograms 

acquired by SLO, as described by Mohsenin, Mohsenin & Adelman (2013). Tortuosity index 

was calculated by dividing the vessel length (arc length) by the linear distance between two 

crossing points of the vessel (chord length): 

 

 
 
 
 
ImageJ software (National Institutes of Health, Bethesda, MD, USA) was used to draw a 

concentric circle centered on the optic disc to limit the area of interest. A straight line was 

drawn from the center of the circle (optic disc) to the crossing point of the circumference (Chord 

length). Individual measurements of major arterioles and venules were obtained drawing the 

vascular path starting from the optic disc to the crossing point of the circle (arc length). Finally, 

tortuosity indices were compared by statistical analysis. 

 
 
B.3.6. Quantitative analysis of retinal thickness  
 

Measurement of thickness of retinal layers offers a comprehensive assessment of retinal 

anatomy that can potentially identify retinal alterations (Shinoda et al., 2008; Wanek et al., 

2016). Two paraffin sections close to the optic nerve were collected for each eye followed by 

H-E staining. The measurements were taken on the total thickness of the retina over a 100, 

500, and 1000 µm distances on both sides of the optic nerve. All measurements were 

performed on each retinal section with a Nikon Eclipse E-800 microscope (Nikon) equipped 

with Soft Imaging System CC-12 (Olympus) and the analySIS image-analytical software 

(Olympus). Finally, retinal morphology of TIM2+/- and WT based on mean thickness of total 

retina for 100, 500, and 1000 μm apart of the optic nerve were compared by statistical analysis. 

 

Tortuosity = 
Arc length 

 
Chord length 
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B.3.7. Glycemia 
 
Mouse tail vein blood glucose levels were determined using a glucometer (Bayer). 

 
 
B.3.8. Detection of labile iron 

 

Labile Fe2+ in whole-mount retinas was detected using FeRhoNox-1 fluorescent imaging probe 

(Goryo Chemical, Inc., Sapporo, Japan), according to manufacturer’s instructions. FeRhoNox-

1 is an activatable fluorescent probe that specifically detects labile Fe2+ ions via red 

fluorescence. FeRhoNox-1 was dissolved in dimethyl sulfoxide to produce a 1mM solution, 

which was further diluted with PBS to a final concentration of 5 µM. Whole-mount retinas were 

washed in PBS and then incubated with the diluted solution for 60 minutes at 37ºC, 5% CO2, 

protected from light. After rinsing with PBS, nuclei were counterstained with Hoechst. Images 

were taken with a Leica TCS SP2 or TCS-SP5 confocal microscope with Leica LAS AF Lite 

imaging software (Leica). 

 

 

B.3.9. Evaluation of oxidative stress  
 

Dihydroethidium (DHE) fluorescence has been extensively used to detect ROS production. 

DHE specifically reacts with intracellular superoxide anion and is converted to the red 

fluorescent compound ethidium, which intercalates with the cell’s DNA (Zhao et al., 2003; 

Robinson et al., 2006; Zielonka, Vasquez-Vivar & Kalyanaraman, 2008, Sasaki et al., 2010). 

To evaluate retinal oxidative stress levels, ROS generation was detected by DHE (Invitrogen, 

Carlsbad, CA, USA). Retinal paraffin sections were incubated with 50 µM DHE for 30 minutes 

at 37°C in dimethyl sulfoxide, protected from light, and nuclei counterstaining was performed 

using Hoechst. Images were taken with a Leica TCS SP2 or TCS-SP5 confocal microscope 

with Leica LAS AF Lite imaging software (Leica). Values of mean fluorescence intensity 

measured with the same software were compared by statistical analysis. 

 

 
B.3.10. Quantitative analysis of fluorescence microscopy images 
 
Quantitative analysis of fluorescence microscopy images is both a sensitive and specific 

method that can provide a quantitative analysis of protein expression in specific regions 

(Ntziachristos, 2006; Hamilton, 2009). Mean fluorescence intensity was measured with Leica 

LAS AF Lite imaging software according to the equation:  
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Where i(p) is the intensity of a pixel within the confocal plane of the cell, and n(p) is the total 

number of pixels of the plane. The results are reported in arbitrary units (AU). 

 

 

B.4. Western blotting  
 
In molecular biology, western blotting is a technique used to identify specific proteins from 

whole-tissue or cells. Briefly, this technique involves the separation of proteins by 

electrophoresis into a polyacrylamide gel according to their molecular weight, followed by their 

transfer to a more solid surface, such as a high binding affinity membrane, producing a replica 

of the original gel. Finally, the target protein is identified by the specificity of the antibody-

antigen interaction (Mahmood & Yang, 2012). 

 

 

B.4.1. Sample processing 
 
For western blot analysis of retinal tissue, the samples were processed as follows: 

 

1. Dissection: fresh enucleated eyes were placed on a dissection plate with PBS or Tris 

buffered saline (TBS)12, on ice to prevent degradation by proteases. The cornea and lens 

were removed by making an incision around the limbus, where the cornea meets the 

sclera.  

2. Sample lysis: a pool of 12 retinas from each group of animals was processed in order to 

obtain sufficient amount of protein sample to perform all the experiments. Retinas were 

placed in 600 μl lysis solution (radioimmunoprecipitation assay buffer, RIPA)13 containing 

a protease inhibitor cocktail (Roche). Next, samples were manually macerated using 

scalpel, electric homogenizer, and vortex homogenization, and kept on ice for 30 minutes.  

3. Centrifugation: samples were centrifuged at 8,000 g at 4°C for 10 minutes in order to 

aspirate the supernatant lysate. 

4. Protein quantification: total protein concentration was determined using Pierce BCA 

Protein Assay kit (Sigma-Aldrich) according to manufacturer’s instructions to ensure equal 

loading of samples. Protein samples were stored at -20ºC until further analysis. 

                                                
12 TBS (pH 7.6): 6 g Tris base + 8 g NaCl + 0.2 g KCl in 1000 milliQ water.  
13 RIPA buffer: 0.88 g NaCl + 1 g Triton X-100 + 1 g sodium deoxycholate + 0.1 g sodium dodecyl sulfate + 2.5 ml Tris-HCl 1M 
(pH 7.6) in 100 ml milliQ water.  

∑ i(p) 
 

n(p) 
 

AFP = (Intensity units/pixel) 
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B.4.2. Gel electrophoresis, transfer, antibody probing, and detection 
 
Retinal pools of western blot samples were used following the protocol: 

 

1. Protein denaturation: retinal lysates were resuspended in Laemmli sample buffer14 and 

heated at 95°C for 5 minutes. 

2. Protein separation and transfer: equal amounts of protein samples were separated in a 

12% pre-cast SDS-PAGE gel (Bio-Rad) and transferred to an Immobilon-P polyvinylidene 

fluoride (PVDF) membrane (Merck Millipore) for antibody probing. 

3. Washing: 3 washes of 0.05% Tween 20 (Sigma-Aldrich) in TBS (TBST) or PBS (PBST) 

under constant agitation for 10 minutes each were performed. 

4. Blocking: the membrane was incubated in blocking buffer15 for 1 hour at room temperature 

under constant agitation. 

5. Antibody probing: the membrane was incubated with the recommended dilution of primary 

antibodies in blocking buffer overnight at 4ºC and after washing with TBST or PBST, 

membranes were incubated with HRP-conjugated secondary antibody in blocking buffer 

for 30 minutes at room temperature. A summary of antibodies employed is described in 

Table 5. 

6. Washing: 3 washes of 0.05% TBST or in PBST under constant agitation for 10 minutes 

each were performed. 

7. Signal detection: enhanced chemiluminescence (ECL) was performed by using Luminata 

Crescendo HRP substrate (Merck Millipore) or Westar ᶯC Ultra 2.0 (Cyanagen, Bologna, 

Italy) following the kit manufacturer’s recommendations.  

8. Visualization: digital images of chemiluminescent westerns were acquired using Molecular 

Imager ChemiDoc XRS System with QuantityOne software version 4.5 (Bio-Rad). 

9. Densitometric quantification: the signal of each protein was determined using ImageJ 

software (National Institutes of Health) after verifying that the band signal was not 

saturated with QuantityOne software (Bio-Rad). To correlate the antibody staining 

intensity with density of the bands, background signal was subtracted, and total protein 

expression levels were estimated using Plot lane tool of ImageJ software (National 

Institutes of Health), after normalizing blot loading to the levels of α-tubulin primary 

antibody (Abcam). Densitometry results are the means of relative expression values 

(normalized to WT) from 3 repetitions of western blot experiments using the same 

samples. 

 

                                                
14 Laemmli buffer (2x): 2.4 ml Tris-HCl 1M (pH 6.8) + 4 ml glycerol + 0.01% bromophenol blue + 0.8 g sodium dodecyl sulfate + 
1 ml 2-β-mercaptoethanol + 2.8 ml milliQ water. 
15 Blocking buffer: 5% non-fat dry milk or 3% BSA in TBST or PBST.  
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      Table 5. Primary and secondary antibodies used for western blotting. 

 
 

B.5. Quantitative real-time PCR  
 
Quantitative real-time PCR (qRT-PCR) is a method frequently used for the analysis and 

quantification of gene expression of biological samples, by means of amplification of 

complementary DNA (cDNA) obtained from reverse transcription of mRNA (Kubista et al., 

2006; Nascimento, Suarez & Pinhal, 2010). 

 

 

B.5.1. RNA isolation and cDNA preparation 
 
Mouse eye samples for PCR analysis were processed as follows: 

 

1. Dissection: fresh enucleated eyes were placed in a dissection plate with sterile RNAse-

free cold water solution to quickly dissect the retina. 

Antibody Dilution Commercial supplier 

 

Rabbit anti-α-tubulin 1:500000 Abcam 

Rat anti-TIM2 1:1000 Abcam 

Rabbit anti-Scara5 1:1000 Abcam 

Rabbit anti-transferrin receptor 1 1:200 Abcam 

Rabbit anti-transferrin 1:5000 Acris 

 Rabbit anti-ferritin light chain 1:500 Abcam 

Primary Rabbit anti-ferritin heavy chain 1:300 Abcam 

 Rat anti-PLVAP 1:500 Abcam 

 Rabbit anti-ZO-1 1:100 Thermo Fisher Scientific 

 Rabbit anti-claudin-5 1:100 Thermo Fisher Scientific 

 Rabbit anti-occludin 1:100 Thermo Fisher Scientific 

 Rabbit anti-RPA2 1:25000 Abcam 

 Rabbit anti-g-H2AX 1:250 Abcam 

 Goat anti-VEGF-A 1:100 Santa Cruz Biotechnology 

 
 
Secondary 

Anti-rabbit IgG-HRP 1:25000 Bionova Scientific 

Anti-rat IgG-HRP 1:20000 Abcam 
 Anti-goat IgG-HRP 1:10000 Dako 
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2. RNA extraction: RNA was purified and treated with DNase using the Maxwell RSC simply 

RNA tissue Kit (Promega) following the manufacturer’s instructions. 

3. RNA quantification: total RNA was quantified by measuring the absorbance at 260 nm 

using a NanoDrop ND-2000c spectrophotometer (Thermo Fisher Scientific), and the purity 

was assessed by determining the ratio of the absorbance at 260 and 280 nm (NanoDrop), 

which indicated that all 260/280 nm ratios were >1.9.  

4. cDNA transcription: RNA was reverse transcribed into cDNA using iScript cDNA synthesis 

kit (Bio-Rad). Briefly, each reverse transcription reaction contained 1000 ng of extracted 

total RNA sample using iScript Reverse Transcriptase according to the manufacturer's 

instructions, with an RNase inhibitor in a final volume of 20 μl. The transcription program 

was the following: 25°C for 5 minutes, 42°C for 30 minutes, 85°C for 5 minutes. cDNA 

aliquots were stored at -20ºC until further analysis. 

 

 

B.5.2. Analysis of gene expression 
 
Quantification of amplified cDNA was performed with the SYBR green dye (Bio-Rad), which 

binds to the double strands of cDNA synthesized in each successive cycle, resulting in an 

increase in fluorescence intensity emitted proportional to the amount of cDNA produced 

(Storch, 2007). Relative gene expression was determined using housekeeping genes, an 

accurate and validated normalization factor (Vandesompele et al., 2002). Housekeeping genes 

are used as endogenous control of gene expression because they are expected to maintain 

constant expression levels in all cells and conditions (Eisenberg & Levanon, 2013). For this 

particular study, 36B4 and GAPDH genes were chosen as stable and recommended reference 

genes (Simpson et al., 2000; Zhang et al., 2016). 
 
Gene relative quantification was carried out with SYBR green dye (Bio-Rad) using a T100 or 

CFX384 Thermal cycler (Bio-Rad) and MicroAmp Optical 96- or 384-well plates (Bio-Rad), 

respectively. The 10 µl PCR reaction mixtures contained 5 µl of iTaq Universal SYBR Green 

Supermix (Bio-Rad), 0.5 µl of each primer pair, and 0.25-1 µl of diluted cDNA as template. 

According to Mus musculus gene, validated primers pairs (PrimePCR SYBR Green Assay, 

Bio-Rad) used are listed in table 6. 
 
Standard cycling conditions were used according to manufacturer’s instructions: initial 

denaturation at 95°C for 5 seconds, followed by 35 cycles of cDNA denaturation at 95ºC for 

30 seconds, annealing and extension at 60ºC for 30 seconds, and a final step of melt curve 

analysis from 65ºC to 95ºC with 0.5ºC increments every 5 seconds. Negative (non-template 

control) controls were included in each round of PCR amplification. Primer specificity and the 

formation of primer-dimers were confirmed by melt curve analysis. Measurements of each 
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sample for each gene were made in triplicate and the relative quantification for each target 

gene was analyzed by the CFX Maestro software (Bio-Rad) according to the 2-∆∆Ct method for 

relative quantification in qRT-PCR suggested by Pfaffl (2001, 2002), using a normalization 

factor, which was the geometric mean of 36B4 and GAPDH genes. Relative expression values 

were compared by statistical analysis. 
 
 

           Table 6. Primers pairs for qRT-PCR.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

B.6. Functional studies: Assessment of retinal vascular integrity  
 
Serum albumin has been used to show BRB failure (Vinores, 1995; Minshall & Malik, 2006). 

In order to evaluate retinal vascular integrity, anesthetized mice received tail vein injections of 

fluorescein isothiocyanate conjugated-BSA (FITC-BSA, 100 mg/kg) (Sigma-Aldrich) in sterile 

PBS. Eyes were dilated with a drop of Tropicamide and Collyrium anesthetic and the 

vasculature was visualized by means of SLO. After the last session, mice were sacrificed, and 

left eyes were removed and fixed in 10% NBF for paraffin embedding. Retinas from right eyes 

were dissected and fixed in 10% NBF for 2 hours at 4°C. The protocol for 

immunohistochemistry was used as previously described in B.2.4.1. and B.2.4.2. and images 

were taken with a Leica TCS SP2 or TCS-SP5 confocal microscope with Leica LAS AF Lite 

imaging software (Leica). 
 

 

C. Statistical analysis 
 

Results are shown as mean ± standard error of the mean (SEM). Statistical analyses were 

performed by unpaired t-test using Prism software version 6 (GraphPad Software, Inc., La 

Jolla, CA, USA). Significance was accepted at p<0.05.  

Target PrimePCR assay ID Commercial supplier 

H-Ferritin qMmuCID0009602 Bio-Rad 

L-Ferritin qMmuCED0049569 Bio-Rad 

Scara5 qMmuCID0013506 Bio-Rad 

TfR1 qMmuCID0039655 Bio-Rad 

Tf qMmuCID0061477 Bio-Rad 

36B4 qMmuCED0061738 Bio-Rad 

GAPDH qMmuCED0027497 Bio-Rad 
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RESULTS 
 

 

 

A. Characterization of TIM2 expression in the mouse retina 
 
A.1. TIM2 expression in the mouse retina 
 

In order to demonstrate TIM2 expression in the retina, western blot and immunohistochemistry 

analyses were performed with specific antibodies. To assure that the target antigen was 

expressed in the retina and add confidence in the specificity of the antibody labeling, mouse 

spleen was used as a positive control tissue (Chen et al., 2005). 

 
Western blot analysis of TIM2 protein expression in the spleen and retina showed a specific 

band with a molecular weight of 33 kDa (Figure 25A), confirming the presence of TIM2 

receptors in the retina. 

 
As expected, immunolabeling of spleen paraffin embedded sections against TIM2 showed that 

this receptor was expressed in the red and white pulp, with stronger expression in the germinal 

center (Figure 25B). Retinal paraffin embedded sections immunostained with the same 

antibody revealed that TIM2 was expressed throughout the entire retinal parenchyma, 

predominantly in the ganglion cell layer, along the internal limiting membrane. Moreover, the 

subcellular localization of TIM2 in the retina seemed to be predominantly cytoplasmic and the 

protein expression pattern suggested that TIM2 was mainly expressed in Müller cells (Figure 

25B).  

 
These results revealed for the first time the presence of TIM2 in the mouse retina.  

 

 

A.2. Localization of TIM2 in retinal cells 
 
Once established that TIM2 was present in the mouse retina, we next aimed to characterize 

the precise cell type expressing TIM2 receptors. Therefore, colocalization analyses were 

performed in paraffin embedded sections immunolabeled with anti-TIM2 antibody and a variety 

of specific cellular markers.  
 
Dual immunostaining with anti-glutamine synthetase antibody, a specific marker of Müller cells 
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(Mizutani, Gerhardinger & Lorenzi, 1998), was performed. As expected, TIM2 and glutamine 

synthetase revealed a strong colocalization, with higher immunoreactivity in cell processes and 

endfeet of Müller cells along the internal limiting membrane (Figure 26). On the other hand, 

dual immunostaning with anti-glial fibrillary acidic protein (GFAP) antibody, a specific marker 

of astrocytes (Sarthy, Fu & Huang, 1991), revealed no TIM2 expression in these glial cells 

(Figure 27). 

 

 

 

 
 

Figure 25. Analysis of TIM2 expression in the mouse spleen and retina. A. Western blot revealed 

that TIM2 was expressed in the spleen and retina. B. Spleen sections immunostained with an anti-TIM2 

antibody (green) showed that TIM2 was expressed in the red and white pulp, with stronger expression 
in the germinal center. Retinal sections immunostained with the same anti-TIM2 antibody (green) 

showed that TIM2 was expressed throughout the retinal parenchyma, predominantly in the ganglion cell 

layer. Nuclei were counterstained with Hoechst (blue). GCL, ganglion cell layer; INL, inner nuclear layer; 

ONL, outer nuclear layer. Scale bars: Spleen = 49.92 μm; Retina = 39.27 μm.  
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Figure 26. Analysis of TIM2 expression in Müller cells. A. Dual immunostaining with anti-GS antibody 

(red) and anti-TIM2 antibody (green) revealed a strong colocalization between TIM2 and GS. B. TIM2 

expression was stronger in cell processes and endfeet along the internal limiting membrane. Nuclei 

were counterstained with Hoechst (blue). ELM, external limiting membrane; GCL, ganglion cell layer; 
GS, glutamine synthetase; ILM, internal limiting membrane; INL, inner nuclear layer; ONL, outer nuclear 

layer. Scale bars: A = 23.9 μm; B = 18.84 μm. 
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Figure 27. Analysis of TIM2 expression in astrocytes. Dual immunostaining against GFAP (red) and 

TIM2 (green) revealed no TIM2 expression in astrocytes. Nuclei were counterstained with Hoechst 

(blue). as, astrocyte; GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale 
bar = 21.76 μm. 

 

 

 

Concerning retinal neurons, no TIM2 expression was detected in ganglion cells, identified with 

Brn3a, a specific marker (Nadal-Nicolás et al., 2009) (Figure 28). 
 
Anti-protein kinase C alpha, parvalbumin, and calbindin antibodies were used to identify 

bipolar, amacrine, and horizontal cells, respectively (Haverkamp & Wässle, 2000; Koch & 

Hess, 2011; Morona et al., 2008). Double immunohistochemistry analyses showed a weak 

expression of TIM2 surrounding the nucleus of all these retinal neuronal cells (Figures 29, 30, 

and 31). TIM2 expression was also found in some axons of bipolar cells (Figure 29). 

 
The peanut agglutinin is a lectin commonly used to identify cones by its selective binding to 

the inner segments of these cells. Rods are not stained with this lectin (Ohtoshi et al., 2004). 

Dual staining with anti-TIM2 antibody and peanut agglutinin lectin showed TIM2 expression in 

the inner segments of photoreceptors, although no colocalization was observed with peanut 

agglutinin lectin. This result reveled that TIM2 was not expressed in cones, but it was detected 

in the inner segments of rods (Figure 32).  
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Figure 28. Analysis of TIM2 expression in ganglion cells. The double staining with anti-Brn3a (red) 

and anti-TIM2 (green) antibodies revealed no TIM2 expression in ganglion cells. Nuclei were 

counterstained with Hoechst (blue). ga, ganglion cell; GCL, ganglion cell layer; INL, inner nuclear layer; 

ONL, outer nuclear layer. Scale bar = 18.98 μm. 
 
 

 
 
Figure 29. Analysis of TIM2 expression in bipolar cells. PKCα-positive bipolar cells (red) expressed 

TIM2 (green) in the cytoplasm. Nuclei were counterstained with Hoechst (blue). bi, bipolar cells; GCL, 

ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; PKCa, protein kinase C alpha. 

Scale bar = 21.02 μm. 
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Figure 30. Analysis of TIM2 expression in amacrine cells. Amacrine cells immunolabeled with anti-

parvalbumin (red) and anti-TIM2 (green) antibodies showed TIM2 expression in their cytoplasm. Nuclei 

were counterstained with Hoechst (blue). am, amacrine cells; GCL, ganglion cell layer; INL, inner 

nuclear layer; ONL, outer nuclear layer. Scale bar = 21.17 μm.  
 

 

 
 

Figure 31. Analysis of TIM2 expression in horizontal cells. Dual immunolabeling with anti-calbindin 

(red) and anti-TIM2 (green) antibodies detected the expression of TIM2 in horizontal cells. Nuclei were 

counterstained with Hoechst (blue). GCL, ganglion cell layer; ho, horizontal cell; INL, inner nuclear layer; 
ONL, outer nuclear layer. Scale bar = 18.8 μm.  
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Figure 32. Analysis of TIM2 expression in photoreceptor cells. Dual staining with PNA lectin (red) 
and anti-TIM2 antibody (green) showed no TIM2 expression in cones (arrow), but rather an expression 

in the inner segments of rods. Nuclei were counterstained with Hoechst (blue). co, cones; GCL, ganglion 

cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; PNA, peanut agglutinin. Scale bar = 22.81 

μm. 

 

 

Altogether, our results showed that TIM2 was mainly expressed in Müllers cells. A weak 

expression could be detected in bipolar, amacrine, and horizontal cells, and at the level of the 

inner segments of rods. No expression was detected in astrocytes, ganglion cells or cones 

(Table 7). 

 
       Table 7. TIM2 expression in retinal cells.  

Retinal cell type TIM2 expression 

Müller cells +++ 

Astrocytes - 

Ganglion cells - 

Bipolar cells + 

Amacrine cells + 

Horizontal cells + 

Cones - 

Rods + 
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A.3. TIM2 expression in retinal blood vessels 
 

To evaluate the expression of TIM2 in the retinal vascular tree, double immunohistochemistry 

with antibodies against TIM2 and laminin, to evidence the blood vessel basement membrane 

(LeBleu, Macdonald & Kalluri, 2007), was performed.  

 
Our results demonstrated that, although TIM2 was found surrounding blood vessels, no TIM2 

expression was detected in endothelial cells or any other cellular component of the vessel wall 

(Figure 33). 

 

 
 

 
 

Figure 33. Analysis of TIM2 expression in retinal blood vessels. Double immunohistochemistry with 
anti-laminin (red) and anti-TIM2 (green) antibodies evidenced that, although TIM2 was found 

surrounding blood vessels, TIM2 expression was not detected in endothelial cells or any other cellular 

component of the vessel wall. Nuclei were counterstained with Hoechst (blue). INL, inner nuclear layer; 

ONL, outer nuclear layer. Left panel: venule; right panel: arteriole. Scale bar = 34.01 μm. 
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B. Generation and validation of TIM2 knockout mice 
 

B.1. Generation of TIM2 knockout mice 
 

Having confirmed and characterized TIM2 expression in the mouse retina, we proceed to our 

second objective in this study, the analysis of the consequences of retinal TIM2 deficiency in 

iron import. In the literature, a TIM2 deficient mouse model had already been generated to 

study immune response (Rennert el al., 2006). However, the genetic background of the mouse 

strain used (BALB/c) was not suitable for our purpose due to some abnormalities described in 

several retinal layers (Huber et al., 2009; Santos et al., 2010; Bell et al., 2012). 

 
For this work, a TIM2 knockout mouse model was generated by disrupting TIM2 gene function 

through the insertion of a cassette containing the LacZ reporter gene into the intron of the TIM2 

gene (Figure 34A). Mice genotyping was performed by PCR analysis of genomic DNA from 

tails of mice. Only TIM2 heterozygous knockout (TIM2+/-) mice were obtained, probably due to 

embryonic lethality in TIM2 homozygous (TIM2-/-) mice (Figure 34B). 

 
For the present work, TIM2+/- mice and their wild-type (WT) littermates were used.  
 
 
 

 
 
 

Figure 34. Generation of TIM2 KO mice. A. Schematic diagram of the generation of TIM2 KO mice 
used to study the TIM2 deficiency in mice. B. Genotyping of mice by PCR analysis of genomic DNA 

from mice tails. TIM2+/- mice were identified by the presence of two size bands (~250 and ~500 bp) 

equivalent to a KO allele and a WT allele. bp, base pair; E, exon; FRT, flippase recognition target; KO, 

knockout; LacZ, gene encoding bacterial beta-galactosidase; loxP, locus of crossover in P1; neo, 

promoter-driven neomycin resistance gene; P, promoter; pA, SV40 polyadenylation signal poly A; SA, 

splice acceptor element from engrailed-2; WT, wild-type. 
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B.2. Validation of the generated TIM2 heterozygous knockout mouse  
 
TIM2+/- mice generated should contain the LacZ reporter gene that can be detected by X-gal 

staining (Burn, 2012; Shen et al., 2017). Taking advantage of this, X-gal staining was 

performed in spleens of TIM2+/- and WT mice. A blue stain was observed throughout the red 

and white pulp, with stronger expression in the germinal center of spleens from TIM2+/- mice. 

No blue stain was observed in spleens of WT mice. Our results demonstrated the presence of 

the LacZ reporter gene only in TIM2+/- mice (Figure 35A) in a localization consistent with TIM2 

expression in WT mice.  
 
H-E staining performed in sections from X-gal stained TIM2+/- spleens confirmed the insertion 

of LacZ reporter gene throughout the red and white pulp (Figure 35B), and the disruption of 

TIM2 gene function in this tissue. 
 
Western blot analysis of TIM2 protein expression was also performed, revealing a decrease of 

TIM2 protein expression in spleens from TIM2+/- mice, consistent with a decrease in the 

intensity of the 33 kDa band observed. Quantitative densitometry analysis confirmed a 

decrease in TIM2 protein levels (0.45-fold change) in a pool of 6 TIM2+/- spleens relative to a 

pool of 6 WT spleens (Figure 35C). 

 

 

B.3. Evaluation of the effects of TIM2 deficiency on the retinal cellular architecture 
 
Having confirmed the decrease of TIM2 expression in TIM2+/- mice, we then evaluated whether 

this deficiency influenced the spatial arrangement of retinal cells. To assess retinal cell 

disposition, paraffin embedded sections were stained with H-E, and comparison between WT 

and TIM2+/- retinas was made. As shown in Figure 36, the cellular architecture of each layer 

was maintained in retinas from TIM2+/- mice. All the retinal layers were clearly identifiable and 

the characteristic cellular organization was maintained, although a separation between some 

nuclei could be observed.  

 
Retinal layers were also evaluated by TEM. Ultrathin sections of retinas from TIM2+/- mice also 

showed a normal cellular disposition at the level of the ganglion cell layer (Figure 37A), inner 

nuclear layer (Figure 37B), and outer nuclear layer (Figure 37C) compared to WT mice. 

 
These results indicated that TIM2 gene deficiency had no apparent effect in the retinal cellular 

organization, with all retinal layers preserved in TIM2+/- mice. 
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Figure 35. Validation of TIM2 KO mice. Spleen was used as a positive control tissue to validate the 

reduction of TIM2 expression in TIM2+/- mice vs. WT littermates. A. X-gal detection of LacZ activity 

showed a dark blue stain (arrows) in spleens from TIM2+/- mice, confirming the correct insertion of the 

cassette containing LacZ in the TIM2 gene. LacZ expression was not detected in spleens from WT 

littermates. B. Paraffin embedded spleen sections stained with H-E from X-gal stained TIM2+/- mice 

showed a blue pattern (arrows) compatible with that of X-gal staining. C. Western blot analysis and 

quantitative densitometry revealed a decrease of TIM2 protein expression in a pool of 6 TIM2+/- spleens 

compared to a pool of 6 WT spleens. a-tubulin was used as a loading control. WT, wild-type. Scale bar 

= 44.77 μm. 
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Figure 36. Analysis of retinal morphology. Paraffin embedded retinal sections stained with H-E from 

WT and TIM2+/- mice revealed a normal architecture of all retinal layers. GCL, ganglion cell layer; IPL, 

inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; 
IS/OS, inner and outer segments of photoreceptors; WT, wild-type. Scale bars: WT = 14.86 μm; TIM2+/- 

= 14.83 μm.  
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Figure 37. Ultrastructural analysis of retinal morphology. Transmission electron microscopy images 

from TIM2+/- mice showed normal cellular disposition at the level of the ganglion cell layer (A), inner 

nuclear layer (B), and outer nuclear layer (C) compared to WT mice. am, amacrine cell; bi, bipolar cell; 

co, cone; ga, ganglion cell; ho, horizontal cell; ILM, internal limiting membrane; mü, Müller cell; ro, rod; 

WT, wild-type. Scale bars: (A) WT = 3.51 μm; TIM2+/- = 3.51 μm; (B) WT = 4.74 μm; TIM2+/- = 4.74 μm; 
(C) WT = 4.74 μm; TIM2+/- = 4.74 μm. 
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B.4. Analysis of TIM2 expression in TIM2+/- mice retinas 
 

We next proceeded to confirm the diminution of TIM2 expression in the retina of TIM2+/- mice 

by means of western blot and immunohistochemistry analyses.  

 
As expected, western blot analysis showed a decrease of TIM2 protein expression in retinas 

from TIM2+/- mice, consistent with a decrease in the intensity of the 33 kDa band observed. 

The quantification by densitometry confirmed a decrease in the protein expression of TIM2 

(0.41-fold change) in a pool of 12 retinas from TIM2+/- mice compared to a pool of 12 retinas 

from WT mice (Figure 38A). Accordingly, immunolabeling with anti-TIM2 antibody also showed 

a decrease in the intensity of TIM2 expression throughout the retina in TIM2+/- mice (Figure 

38B). 

 

 
 

Figure 38. Analysis of TIM2 protein expression in the retina. A. The expression of TIM2 protein 
assessed by western blot analysis and quantified by means of densitometry showed a decrease of TIM2 

protein expression in a pool of 12 TIM2+/- retinas compared to a pool of 12 WT. α-tubulin was used as a 

loading control. B. Retinal sections immunostained with anti-TIM2 antibody (green) showed decreased 

expression throughout the retinal parenchyma of TIM2+/- mice compared to WT mice. Nuclei were 

counterstained with Hoechst (blue). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer 

nuclear layer; WT, wild-type. Scale bars: WT = 32.63 μm; TIM2+/- = 32.62 μm.  
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C. Analysis of the consequences of TIM2 deficiency in retinal iron import  
 
Having achieved our goal in decreasing retinal TIM2 expression, we next studied the effects 

on iron-handling proteins expression involved in iron import into the retina.  

 
 
C.1. Effects on ferritin expression 
 
As previously exposed, the ferritin molecule is composed of H- and L-ferritin subunits, specific 

antibodies for each chain were used to evaluate ferritin expression in the retina (Mendes-Jorge 

et al., 2014).  

 
Western blotting revealed an increased H-ferritin expression in TIM2+/- retinas, shown by a 

specific band with higher intensity with a molecular weight of 21 kDa. After normalization, 

quantitative densitometry analysis of western blot results indicated that H-ferritin protein was 

overexpressed (1.60-fold change) in a pool of 12 TIM2+/- retinas compared to a pool of 12 WT 

retinas (Figure 39A). This was paralleled by an increase of intensity of the specific 

immunolabeling of anti-H-ferritin antibody throughout the retinal parenchyma in TIM2+/- mice 

evaluated by scanning laser confocal microscopy (Figure 39B). The protein expression of L-

ferritin was also increased in retinas from TIM2+/- mice, demonstrated by western blot with a 

specific band with higher intensity (19 kDa). Quantitative densitometry analysis confirmed L-

ferritin overexpression (1.75-fold change) in a pool of 12 retinas from TIM2+/- mice compared 

to WT (Figure 40A). Immunohistochemistry against L-ferritin showed a similar increase of L-

ferritin expression throughout the retina in TIM2+/- mice (Figure 40B). 

 
H- and L-ferritin mRNA transcript levels were also analyzed by qRT-PCR and normalized by 

36B4 and GAPDH housekeeping genes (Simpson et al., 2000; Zhang et al., 2016). This 

analysis revealed that, although H-ferritin mRNA transcript levels were increased 1.15-fold 

along with a 1.62-fold increase in mRNA transcript levels of L-ferritin in retinas from TIM2+/-, 

neither of the mRNA transcript levels was significantly upregulated (p=0.4742 and p=0.0778, 

respectively; n=6) (Figure 41). 

 
Our results showed that despite the diminution of TIM2 receptors, retinal ferritin expression 

was increased. Since no significant L- and H-ferritin upregulation was detected, ferritin import 

into the retina seemed to be the mechanism responsible for ferritin content accumulation in 

this tissue. 
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Figure 39. Analysis of H-ferritin protein expression in the retina. A. Western blot analysis and 
quantitative densitometry revealed that H-ferritin protein expression was increased in a pool of 12 

TIM2+/- retinas in comparison to a pool of 12 WT retinas. α-tubulin was used as a loading control. B. 
Retinal sections immunostained with anti-H-ferritin antibody (red) showed increased expression 

throughout the retinal parenchyma of TIM2+/- mice compared to WT. Nuclei were counterstained with 

Hoechst (blue). GCL, ganglion cell layer; H-ft, H-ferritin; INL, inner nuclear layer; ONL, outer nuclear 

layer; WT, wild-type. Scale bars: WT = 31.36 μm; TIM2+/- = 34.55 μm.  
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Figure 40. Analysis of L-ferritin protein expression in the retina. A. Western blot analysis and 

quantitative densitometry revealed that L-ferritin protein expression was increased in a pool of 12 TIM2+/- 
retinas in comparison to a pool of 12 WT retinas. α-tubulin was used as a loading control. B. Retinal 

sections immunostained with anti-L-ferritin antibody (red) showed increased expression throughout the 

retinal parenchyma of TIM2+/- mice compared to WT mice. Nuclei were counterstained with Hoechst 

(blue). GCL, ganglion cell layer; L-ft, L-ferritin; INL, inner nuclear layer; ONL, outer nuclear layer; WT, 

wild-type. Scale bars: WT = 24.58 μm; TIM2+/- = 24.58 μm.  
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Figure 41. Analysis of H- and L-ferritin mRNA transcript levels in the retina. A. mRNA transcript 
levels of H-ferritin evaluated by qRT-PCR were not significantly increased in retinas from TIM2+/- mice 

compared with retinas from WT mice, after normalization with 36B4 and GAPDH housekeeping genes. 

B. mRNA transcript levels of L-ferritin evaluated by qRT-PCR were not significantly increased in retinas 

from TIM2+/- mice compared with retinas from WT mice, after normalization with 36B4 housekeeping 

gene. Data are presented as mean ± SEM (n=6). ns, not significant; WT, wild-type. 

 
 
 
For cellular uptake, H-ferritin specifically binds to TIM2 (Chen et al., 2005) while L-ferritin binds 

to Scara5 membrane receptors (Li et al., 2009). In the light of the increased import of ferritin 

into the retina, we next evaluated ferritin entry through Scara5 specific binding to L-ferritin 

subunit. 

 
We found that Scara5 mRNA transcript levels, normalized by 36B4 and GAPDH housekeeping 

genes, were significantly upregulated (1.78-fold change; p=0.0404; n=6) in retinas from TIM2+/- 

mice compared to retinas from WT mice (Figure 42A). 

 
Accordingly, Scara5 protein expression measured by western blot was also increased in 

TIM2+/- retinas, shown by a specific band with higher intensity with a molecular weight of 48 

kDa. The quantification by densitometry confirmed Scara5 overexpression (1.60-fold change) 

in a pool of 12 retinas from TIM2+/- mice compared to a pool of 12 retinas from WT mice (Figure 

42B). 

 
Consistent with gene and protein overexpression, Scara5 immunohistochemical analysis also 

indicated increased expression of this protein in retinas from TIM2+/- mice (Figure 42C). 

 
Our results showed that Scara5 was overexpressed in TIM2+/- retinas, suggesting that the 

increased ferritin import was mainly mediated by Scara5 receptors.  
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Figure 42. Analysis of Scara5 expression in the retina. A. Scara5 mRNA transcript levels evaluated 

by qRT-PCR were significantly upregulated in retinas from TIM2+/- mice compared with retinas from WT 

mice, after normalization with 36B4 and GAPDH housekeeping genes. Data are presented as mean ± 

SEM (n=6). B. Western blot analysis and quantitative densitometry showed that Scara5 was increased 

in a pool of 12 TIM2+/- retinas in comparison to a pool of 12 WT retinas. α-tubulin was used as a loading 
control. C. Retinal sections immunostained with anti-Scara5 antibody (red) showed increased 

expression throughout the retinal parenchyma of TIM2+/- mice compared to WT mice. Nuclei were 

counterstained with Hoechst (blue). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer 

nuclear layer; WT, wild-type. Asterisks indicate statistically significant differences: *p<0.05. Scale bars: 

WT = 26.35 μm; TIM2+/- = 23.65 μm.  
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C.2. Effects on transferrin and TfR1 expression  
 

Once established the increased intake of exogenous ferritin through Scara5 receptors in 

TIM2+/- retinas, we next aimed to investigate the effects of TIM2 deficiency on transferrin and 

TfR1 expression. 

 
Transferrin mRNA transcript levels, normalized by 36B4 and GAPDH housekeeping genes, 

were significantly upregulated (1.65-fold change; p=0.0449; n=6) in retinas from TIM2+/- mice 

compared with retinas from WT mice (Figure 43A). Transferrin protein expression measured 

by western blot and quantified by densitometry was also increased by 1.65-fold in a pool of 12 

TIM2+/- retinas compared to a pool of 12 WT retinas (Figure 43B). Transferrin 

immunohistochemical analysis also indicated increased expression in the retina from TIM2+/- 

mice (Figure 43C). 
 
TfR1 mRNA transcript levels, normalized by housekeeping genes 36B4 and GAPDH, were 

significantly upregulated (1.77-fold change; p=0.0177; n=6) in retinas from TIM2+/- mice 

compared with retinas from WT mice (Figure 44A). TfR1 protein expression measured by 

western blot and quantified by densitometry was also increased by 1.90-fold in a pool of 12 

TIM2+/- retinas compared to a pool of 12 WT retinas (Figure 44B). Immunohistochemistry 

against TfR1 showed an increased in the protein expression in TIM2+/- retinas compared to WT 

retinas (Figure 44C). 
 
Altogether, our results showed that besides exogenous ferritin accumulation, transferrin-bound 

iron import was also significantly increased in TIM2+/- retinas (Table 8). 

 

 

 
     Table 8. Iron-handling protein expression in TIM2+/- retinas vs. WT retinas. 

Iron-handling proteins Gene expression Protein expression 

H-ferritin ns + 

L-ferritin ns ++ 

Scara5 ++ + 

Transferrin + + 

TfR1 ++ ++ 

     ns, not significant; +, >1.5-fold change; ++, ³1.75-fold change. 
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Figure 43. Analysis of transferrin expression in the retina. A. Transferrin mRNA transcript levels 

evaluated by qRT-PCR were significantly upregulated in retinas from TIM2+/- mice compared with retinas 

from WT mice, after normalization with 36B4 and GAPDH housekeeping genes. Data are presented as 
mean ± SEM (n=6). B. Western blot analysis and quantitative densitometry revealed that transferrin was 

increased in a pool of 12 TIM2+/- retinas in comparison to a pool of 12 WT retinas. α-tubulin was used 

as a loading control. C. Retinal sections immunostained with anti-transferrin antibody (red) showed 

increased expression throughout the retinal parenchyma of TIM2+/- mice compared to WT mice. Nuclei 

were counterstained with Hoechst (blue). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer 

nuclear layer; Tf, transferrin; WT, wild-type. Asterisks indicate statistically significant differences: 

*p<0.05. Scale bars: WT = 26.85 μm; TIM2+/- = 24.58 μm.  
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Figure 44. Analysis of TfR1 expression in the retina. A. TfR1 mRNA transcript levels evaluated by 

qRT-PCR were significantly upregulated in retinas from TIM2+/- mice compared with retinas from WT 

mice, after normalization with 36B4 and GAPDH housekeeping genes. Data are presented as mean ± 

SEM (n=6). B. Western blot analysis and quantitative densitometry revealed that TfR1 was increased 

in a pool of 12 TIM2+/- retinas in comparison to a pool of 12 WT retinas. α-tubulin was used as a loading 
control. C. Retinal sections immunostained with anti-TfR1 antibody (red) showed increased expression 

throughout the retinal parenchyma of TIM2+/- mice compared to WT mice. Nuclei were counterstained 

with Hoechst (blue). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; WT, 

wild-type. Asterisks indicate statistically significant differences: *p<0.05. Scale bars: WT = 29.8 μm; 

TIM2+/- = 26.7 μm.  
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C.3. Effects on iron status 
 

Having observed that the expression of iron carriers in the retina was increased in TIM2+/- mice, 

we next aimed to investigate the iron status. 

 
We evaluated serum ferritin status in TIM2+/- mice by means of ELISA and, as expected, we 

observed a significant increase in serum ferritin levels in TIM2+/- mice compared to WT mice 

(1485 ± 79.85 vs. 1200 ± 81.09 ng/ml; p=0.0289; n=12) (Figure 45A). 

 
We next assessed serum iron and unsaturated iron binding capacity, by means of standard 

biochemistry analyses. Serum iron, soluble Fe3+ and transferrin-bound Fe3+ (Geisser & 

Burckhardt, 2011), levels were similar between TIM2+/- and WT mice (103.2 ± 6.362 vs. 106.3 

± 6.396 μg/dl; p=0.7569; n=12) (Figure 45B). 

 
Transferrin saturation percentage over 60% is suggestive of iron overload (Santos et al., 2000; 

Chaudhury et al., 2006). Transferrin saturation percentage in serum, inferred by the ratio 

between serum iron and total iron binding capacity, did not differ significantly between TIM2+/- 

and WT mice (33. 24 ± 1.868 % vs. 33.39 ± 2.199 %; p=0.9614; n=12) (Figure 45C), revealing 

normal serum iron state in TIM2+/- mice. 

 
These results showed that, although in TIM2+/- mice serum iron levels were normal, serum 

ferritin levels were significantly increased, consistent with ferritin overexpression observed in 

the retinal parenchyma.  

 

 

  
Figure 45. Analysis of iron status. A. Serum ferritin level evaluated by ELISA was significantly 

increased in TIM2+/- mice compared to WT mice. B. The analysis of serum iron showed no significant 

differences between TIM2+/- and WT mice. C. Transferrin saturation percentage in serum was similar 

between TIM2+/- and WT mice. Data are presented as mean ± SEM (n=12). ns, not significant; WT, wild-

type. Asterisks indicate statistically significant differences: *p<0.05. 
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C.4. Localization of ferritin in the retina 

 
In light of ferritin accumulation in the retina of TIM2+/- mice, we next studied the cellular 

distribution of this protein. The presence of ferritin molecules can be evidenced from the 

spherical shape and size (~ 8 nm) of their electron-dense cores in TEM (Massover & Cowley, 

1973; Iancu, 1992). Regarding this, the localization of ferritin in TIM2+/- retinas was analyzed 

by means of TEM, revealing an increase in the number of spherical electron-dense particles, 

mainly observed in Müller cells, particularly at the level of their inner cytoplasmic prolongations 

(Figure 46). The size of these spherical electron-dense particles was ~ 8 nm, compatible with 

that of ferritin (Figure 47), confirming the accumulation of ferritin in TIM2+/- retinas in 

accordance to previous protein overexpression observed. 

 
 
 
 

 
 

Figure 46. Localization of ferritin in the retina. Transmission electron microscopy analysis of retinas 

from TIM2+/- mice showed an increase in electron-dense particles (black arrows), mainly localized in 

Müller cells. The size of the spherical electron-dense particles was ~ 8 nm, compatible with the size of 

ferritin (arrowheads), while the measured size of larger electron-dense particles was ~ 30 nm, 
compatible with glycogen (white arrows). ga, ganglion cell; mü, Müller cell; WT, wild-type. Scale bars: 

WT = 2.96 μm; TIM2+/- = 2.96 μm. 
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C.5. Evaluation of iron content in retinal ferritin  
 

Considering the accumulation of ferritin electron-dense particles in Müller cells in TIM2+/- 

retinas, we next investigated their iron content. Under TEM, metal-charged molecules, like 

iron-loaded ferritin, present a characteristic electron-density in unstained ultrathin sections. 

However, to be visualized, ferritin must contain at least 1500 atoms of iron (Iancu, 1983; Iancu 

& Manov, 2017). 

 

TEM images of unstained ultrathin sections of retinas from TIM2+/- mice revealed the presence 

of ~ 8 nm electro-dense particles in Müller cells, compatible with iron-loaded ferritin (Figure 

47A). Digital light inversion of micrographs allowed an easier visualization of these electro-

dense structures (Figure 47B). In order to identify its metallic component, we performed energy 

dispersive X-ray spectroscopy, focusing in ~ 8 nm particles compatible with iron-loaded ferritin 

(Figure 47C). Our results confirmed the presence of iron in these ~ 8 nm electro-dense 

particles (4.91 ± 0.43 %), corroborating the presence of iron-loaded ferritin in TIM2+/- mice 

Müller cells. 

 

 

 

Figure 47. Analysis of iron content in ferritin in the retina. A. Transmission electron microscopy 
analysis of unstained ultrathin sections of retinas from TIM2+/- mice showed ~ 8 nm size (arrowheads) 

metal-charged particles, compatible with iron-loaded ferritin (black arrows). B. Inverted micrograph 

emphasizing the same metal-charged particles compatible with iron-loaded ferritin (white arrows). C. 
Energy dispersive X-ray spectroscopy analysis revealed a higher peak corresponding to iron in particles 

compatible with ferritin (1) in comparison to adjacent areas (2). AU, arbitrary units; eV, electron volts; 

Fe, iron; ga, ganglion cell; mü, Müller cell. Scale bars: A = 2.7 μm; C = 0.08 μm. 
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C.6. Evaluation of iron content in the retina 
 

Taking in consideration the increase in iron-loaded ferritin, we next evaluated the total retinal 

iron content in TIM2+/- mice by means of inductively coupled plasma mass spectrometry and 

colorimetric analysis. 

 
Inductively coupled plasma mass spectrometry analysis showed a significant increase of iron 

content in retinas from TIM2+/- mice when compared with retinas from WT mice (0.038 ± 0.002 

vs. 0.032 ± 0.0018 μg; p=0.0442; n=10) (Figure 48A).  

 
Consistently, the colorimetric analysis of retinal iron using a commercial iron assay kit revealed 

that iron was increased in a pool of 10 retinas from TIM2+/- mice compared to a pool of 10 

retinas from WT mice (1.2138 vs. 1.1034 μg/ml) (Figure 48B). 

 

Altogether, our results confirmed that retinal iron overload was present in parallel with serum 

and retinal ferritin accumulation. 
 

 

 

 
 
Figure 48. Analysis of iron content in the retina. A. The retinal iron content analyzed by inductively 

coupled mass spectrometry revealed that iron was significantly increased in retinas from TIM2+/- mice 

compared with retinas from WT mice. Data are presented as mean ± SEM (n=10). B. The analysis of 

retinal iron by colorimetric assay using a commercial iron assay kit also demonstrated an increase in 

iron in a pool of 10 retinas from TIM2+/- mice in comparison to a pool of 10 retinas from WT mice. WT, 

wild-type. Asterisks indicate statistically significant differences: *p<0.05.  
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D. Assessment of retinal iron overload effects in TIM2+/- mice 
 
D.1. Effects on vascular integrity 
 

Once established a significant iron overload in retinas from TIM2+/- mice, we next examined its 

consequences in vascular integrity. In order to do this, in vivo fluorescein angiography was 

performed. Retinal vascularization was readily visualized with a scanning laser 

ophthalmoscope, revealing focal points of vascular leakage in TIM2+/- mice (Figure 49). 

 
This result suggested that iron overload in TIM2+/- retinas was associated with increased 

permeability. 

 

 

 
 

Figure 49. Assessment of vascular integrity in the retina. Fundus fluorescein angiograms acquired 

in vivo by SLO showed retinal vascular leakage (arrows) in TIM2+/- mice. 
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Serum albumin has been used as a tracer to assess BRB function. The demonstration of 

extravascular albumin within the neural retina is indicative of BRB failure (Vinores, 1995; 

Minshall & Malik, 2006). To further assess vascular permeability and BRB integrity, albumin 

extravasation was studied. For this purpose, FITC-BSA was injected intravenously in 6 TIM2+/- 

and 6 WT mice. Visualization in vivo by means of SLO showed diffuse leakage of FITC-BSA 

in the retinal parenchyma of retinas from TIM2+/- mice compared to exclusively intravascular 

FITC-BSA in WT retinas (Figure 50). 
 
Accordingly, confocal microscopy analyses of whole-mount retinas and paraffin embedded 

retinal sections from mice injected intravenously with FITC-BSA and immunolabeled with anti-

collagen IV antibody, for blood vessel basement membrane identification, showed diffuse 

extravasation of FITC-BSA (Figure 51A), with higher accumulation at BRB breakdown sites in 

TIM2+/- retinal blood vessels (Figure 51B). 
 
The presence of vascular leakage was an indicative of BRB breakdown, confirming the 

increased vascular permeability in TIM2+/- mice probably due to vascular integrity loss. 

 

 
 
 
 

 
 

Figure 50. Assessment of vascular permeability in the retina. The permeability of BRB was 

assessed by intravenous injection of FITC-BSA. Fundus angiograms acquired in vivo by SLO showed 

diffuse leakage of FITC-BSA in the retinal parenchyma of retinas from TIM2+/- mice compared to 

exclusively intravascular FITC-BSA in WT retinas. WT, wild-type. 

 
 

 
 



RESULTS 

 99 

 

 
 

Figure 51. Assessment of blood-retinal barrier integrity. A. Confocal microscopy analysis of whole-

mount retinas from mice injected intravenously with FITC-BSA revealed diffuse extravascular FITC-BSA 

(green) in the parenchyma of retinas from TIM2+/- mice immunostained with anti-collagen IV antibody 

(red) compared to exclusively intravascular FITC-BSA (arrowhead) observed in WT retinas. B. A 

number of blood vessels in retinal sections from TIM2+/- mice presented extravascular FITC-BSA (green; 

arrows) in the parenchyma adjacent to the blood basement membrane stained with anti-collagen IV 

antibody (red) compared to exclusively intravascular FITC-BSA (arrowhead) observed in WT retinas. 

Nuclei were counterstained with Hoechst (blue). Col IV, collagen IV; FITC-BSA, fluorescein 
isothiocyanate conjugated-bovine serum albumin; GCL, ganglion cell layer; INL, inner nuclear layer; 

WT, wild-type. Scale bars: (A) WT = 39.68 μm; TIM2+/- = 39.68 μm; (B) WT = 22.86 μm; TIM2+/- = 26.89 

μm. 
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D.2. Evaluation of edema  
 
A consequence of BRB breakdown is abnormal inflow and accumulation of proteins and fluids 

into the neuroretinal tissue, which leads to edema formation. Edema is characterized by focal 

enlargement of the extracellular space and retinal thickening, contributing to vision loss by 

altering the functional cell relationship (Cunha-Vaz, 1976; Coscas, Cunha-Vaz & Soubrane, 

2010; Daruich et al., 2018). Considering the previous result, we proceeded to assess the 

presence of edema in TIM2+/- retinas. 
 
TEM analysis of retinal blood vessels of TIM2+/- mice revealed perivascular spaces surrounding 

blood vessels, consistent with the accumulation of fluid in the extracellular space, mainly at 

the level of ganglion cell layer (Figure 52A).   
 
Quantitative assessment of retinal thickness, widely considered a reliable method to evaluate 

edema formation (Shahidi et al., 1991; Cunha-Vaz, 2010), was performed in histological 

sections stained with H-E in a central area, a medial area, and a peripheric area on both sides 

of the optic disc (Figure 52B). The result showed that TIM2+/- retinas were significantly thicker 

than WT retinas in all measured areas, with the highest difference observed in that closest to 

the optic disc (219.6 ± 4.18 vs. 191.0 ± 7.023 μm; p=0.0091) (Figure 52C). 
 
Taken together, our results confirmed that increased vascular permeability and BRB 

breakdown induced edema in TIM2+/- retinas, which was more pronounced in the central part 

of the retina. 

 

 

D.3. Effects on vascular morphology 

 

Since abnormalities in the retinal vascular pattern, such as changes in vessel shape and 

tortuosity, are often associated with the occurrence of retinopathies (Joshi, 2012; McLenachan 

et al., 2015), we aimed to assess if the vascular morphology was also affected. Vascular 

tortuosity was studied in 2D fundus fluorescein images of 10 mice per group (Figure 53A), and 

its index was defined as the ratio of the vessel length over the linear distance of the same 

vascular segment (Figure 53B) (Mohsenin et al., 2013).  
 
Quantitative analysis of vascular tortuosity revealed no significant differences between WT 

and TIM2+/- retinas, either in arterioles (1.048 ± 0.0024 vs. 1.056 ± 0.005 AU; p=0.1299) (Figure 

53C) or venules (1.033 ± 0.0017 vs. 1.035 ± 0.0024 AU; p=0.4344) (Figure 53D).  
 
Our results showed a normal vascular pattern in TIM2+/- retinas, excluding vascular tortuosity 

as a possible cause for the increased permeability observed. 
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Figure 52. Evaluation of edema formation in the retina. A. Transmission electron microscopy 

analysis of retinal vessels revealed perivascular spaces (stars) surrounding the blood vessel wall of 

TIM2+/- mice, consistent with the presence of edema. B. Total thickness was assessed in a central area 

(C), a medial area (M), and a peripheric area (P) on both sides of the optic disc in retinal sections stained 
with H-E from WT and TIM2+/- mice. C. Quantitative analysis of total retinal thickness revealed that 

retinas from TIM2+/- mice were significantly thicker in all measured areas than retinas from WT mice. 

Data are presented as mean ± SEM (n=6). Asterisks indicate statistically significant differences: 

*p<0.05, **p<0.01. ec, endothelial cell; er, erythrocyte; GCL, ganglion cell layer; INL, inner nuclear layer; 

L, lumen; mü, Müller cell; pc, pericyte; ONL, outer nuclear layer; WT, wild-type. Scale bars: (A) WT = 

2.03 μm; TIM2+/- = 1.68 μm; (B) WT = 35.23 μm; TIM2+/- = 35.25 μm. 
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Figure 53. Assessment of vascular tortuosity in the retina. A. Vascular tortuosity was assessed in 

retinal arterioles (red) and venules (blue) of WT and TIM2+/- mice using 2D images of fundus fluorescein 

angiograms acquired by SLO. B. Tortuosity index was calculated by dividing the arc length by the chord 

length. Quantitative analysis of vascular tortuosity revealed no significant differences of tortuosity in 

retinal arterioles (C) or retinal venules (D) between WT and TIM2+/- mice. Data are presented as mean 
± SEM (n=10). AU, arbitrary units; ns, not significant; OD, optic disc; WT, wild-type.  
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D.4. Effects on paracellular transport 
 
In BBB and BRB, the very tight control of solute and fluid flux across the endothelium is 

conferred by well-developed tight junctions (Klaassen et al., 2013). As shown above, vascular 

leakage was evident in TIM2+/- retinas. We next focused in the analysis of tight junction integrity 

in retinal endothelial cells of TIM2+/- mice, knowing that tight junction disruption leads to BRB 

breakdown, increased permeability, and paracellular transport alteration. 
 
Ultrathin sections of retinas analyzed by TEM revealed a reduced electron-density of tight 

junctions and slight separation between adjacent membranes of neighboring endothelial cells 

in TIM2+/- mice (Figure 54), confirming compromised endothelial cell-cell junctional integrity 

and altered paracellular transport. 

 

 

 

 
 
Figure 54. Ultrastructural analysis of tight junctions in the retina. Transmission electron microscopy 

analysis of retinal blood vessels from TIM2+/- mice revealed reduced electron-density of tight junctions 

and slight separation (arrowheads) between adjacent membranes of neighboring endothelial cells in 

comparison to strong electro-dense tight junctions (arrows) in retinal capillaries from WT mice, due to 
close apposition of transmembrane molecules. ec, endothelial cell; L, lumen; mü, Müller cell; tj, tight 

junction; WT, wild-type. Scale bars: WT = 1.57 μm; TIM2+/- = 1.56 μm. 
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Considering the morphological alterations observed, we further analyzed the expression of the 

main proteins that constitute tight junctions, ZO-1, claudin-5, and occludin, by western blot and 

immunohistochemistry analyses with specific antibodies (Haurigot et al., 2009). 

 
Western blot analysis revealed a decrease of ZO-1 protein expression, consistent with 

decreased intensity of the 220 kDa band, in TIM2+/- retinas compared to WT retinas. 

Quantitative densitometry confirmed reduced ZO-1 protein expression (0.52-fold change) in a 

pool of 12 retinas from TIM2+/- mice relative to a pool of 12 retinas from WT mice (Figure 55A). 

Consistently, whole-mount retinas immunolabeled with anti-ZO-1 and anti-collagen IV 

antibodies showed a disruption in the continuity of ZO-1 staining along endothelial cell borders 

in blood vessels of TIM2+/- mice, while intact ZO-1 expression along the contour of endothelial 

cells was observed in retinal blood vessels of WT mice (Figure 55B).  

 
 
Figure 55. Analysis of ZO-1 expression in the retina. A. Western blot analysis and quantitative 

densitometry revealed reduced ZO-1 protein expression in a pool of 12 TIM2+/- retinas relative to a pool 

of 12 WT retinas. α-tubulin was used as a loading control. B. Confocal microscopy analysis of whole-

mount retinas stained with anti-ZO-1 (red) and anti-collagen IV (green) antibodies showed disrupted 
ZO-1 expression in blood vessels of TIM2+/- mice compared to intact expression in blood vessels of WT 

mice. Nuclei were counterstained with Hoechst (blue). Col IV, collagen IV; WT, wild-type. Scale bars: 

WT = 9.02 μm; TIM2+/- = 14.33 μm. 
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A reduced intensity of the specific band of claudin-5, with a molecular weight of 25 kDa, 

compatible with a decrease of claudin-5 protein expression, was also observed in TIM2+/- 

retinas compared to WT retinas. The quantification by densitometry confirmed reduced 

claudin-5 protein expression (0.70-fold change) in a pool of 12 retinas from TIM2+/- mice relative 

to a pool of 12 retinas from WT mice (Figure 56A). This was paralleled by a reduced claudin-

5 staining in endothelial cell borders in TIM2+/- retinal blood vessels compared to the intact 

claudin-5 expression in retinal blood vessels of WT mice observed by means of 

immunohistochemistry analysis (Figure 56B).  
 
 
 
 

 
 
Figure 56. Analysis of claudin-5 expression in the retina. A. Western blot analysis and quantitative 

densitometry demonstrated a decrease of claudin-5 protein expression in a pool of 12 TIM2+/- retinas in 

comparison to a pool of 12 WT retinas. α-tubulin was used as a loading control. B. Confocal microscopy 

analysis of whole-mount retinas stained with anti-claudin-5 (red) and anti-collagen IV (green) antibodies 

showed disrupted expression of claudin-5 in blood vessels of TIM2+/- mice compared to intact expression 

in blood vessels of WT mice. Nuclei were counterstained with Hoechst (blue). Col IV, collagen IV; WT, 
wild-type. Scale bars: WT = 13.48 μm; TIM2+/- = 14.51 μm. 
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The analysis of occludin protein expression by western blot also demonstrated a decrease of 

occludin protein expression in TIM2+/- retinas compared to WT retinas, consistent with a 

decrease in the intensity of the 53 kDa band observed. Quantitative densitometry confirmed 

reduced occludin protein expression (0.60-fold change) in a pool of 12 retinas from TIM2+/- 

mice relative to a pool of 12 retinas from WT mice (Figure 57A). Similarly, 

immunohistochemistry against occludin showed a disrupted stain in retinal blood vessels of 

TIM2+/- mice compared to the intact occludin expression in retinal blood vessels of WT mice 

(Figure 57B). 
 
Altogether, these results showed a decrease in the levels of ZO-1, claudin-5, and occludin, 

accounting for tight junction integrity loss in retinas from TIM2+/- mice, which led to paracellular 

transport alteration, increased permeability, and BRB failure. 

 
 
Figure 57. Analysis of occludin expression in the retina. A. Western blot analysis and quantitative 

densitometry revealed a decrease of occludin protein expression in a pool of 12 TIM2+/- retinas in 

comparison to a pool of 12 WT retinas. α-tubulin was used as a loading control. B. Confocal microscopy 

analysis of whole-mount retinas stained with anti-occludin (red) and anti-collagen IV (green) antibodies 
showed disrupted occludin expression in blood vessels of TIM2+/- mice compared to intact expression 

in blood vessels of WT mice. Nuclei were counterstained with Hoechst (blue). Col IV, collagen IV; WT, 

wild-type. Scale bars: WT = 15.97 μm; TIM2+/- = 14.71 μm. 
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D.5. Effects on transcellular transport 
 

Endothelial caveolae are structures responsible for the transcellular transport across the retinal 

vascular wall. Transcellular transport dysfunction can also be responsible for increased 

vascular permeability (Minshall et al., 2003; Klaassen et al., 2013). Plasmalemma vesicle-

associated protein (PLVAP) is an endothelial cell-specific protein that is known to be a 

structural component of caveolae (Schlingemann et al., 1985; Hallmann et al., 1995; Stan et 

al., 1999; Stan, 2005). PLVAP expression is absent or low in intact BRB and BBB endothelia, 

correlating with a low number of caveolae. However, in pathological conditions, its expression 

is highly up-regulated and associated with increased barrier permeability. Therefore, PLVAP 

is a well-accepted marker for increased transcytosis and its expression is associated with 

barrier function loss (Vinores, 1995; Schlingemann et al., 1997, 1999; Wisniewska-Kruk et al., 

2016; Díaz-Coránguez et al., 2017). In view of the previous result concerning tight junction 

protein expression accounting for the increased permeability of retinal blood vessels and BRB 

breakdown, we next investigated the contribution of transcellular transport to BRB permeability 

and integrity loss by verifying the presence of PLVAP and caveolae in retinal vasculature of 

TIM2+/- mice. 

 
Western blot analysis with a specific antibody (Wisniewska-Kruk et al., 2014) revealed an 

increase of PLVAP expression in TIM2+/- retinas compared to WT retinas, demonstrated by a 

specific band with higher intensity with a molecular weight of 51 kDa band. The quantification 

by densitometry confirmed PLVAP overexpression (1.67-fold change) in a pool of 12 retinas 

from TIM2+/- mice relative to a pool of 12 retinas from WT mice (Figure 58). This was paralleled 

by the presence of more caveolae in endothelial cells of retinal blood vessels of TIM2+/- mice 

observed by means of TEM (Figure 59). 

 
Our results confirmed the presence of PLVAP and an increased transcellular transport via 

caveolae in TIM2+/- retinal vasculature, contributing to the vascular permeability and BRB 

impairment observed. 

 

 

 
Figure 58. Analysis of PLVAP expression in the retina. Western blot analysis and quantitative 

densitometry revealed that PLVAP protein expression was increased in a pool of 12 TIM2+/- retinas 

compared to a pool of 12 WT retinas. α-tubulin was used as a loading control. WT, wild-type. 



RESULTS 

108 

 
 

Figure 59. Ultrastructural analysis of caveolae in the retina. Ultrathin sections observed by 

transmission electron microscopy showed more caveolae in endothelial cells of retinal blood vessels of 

TIM2+/- mice compared to WT mice. bm, basement membrane; cav, caveolae; ec, endothelial cells; er, 

erythrocyte; L, lumen; pc, pericyte; WT, wild-type. Scale bars: WT = 0.8 μm; TIM2+/- = 1.05 μm. 

 

 

D.6. Evaluation of VEGF expression 
 
VEGF, a potent inducer of vasopermeability and angiogenesis, disrupts the endothelial barrier 

by inducing tight junction phosphorylation and degradation (Antonetti et al., 1999; Argaw et al., 

2009; Klaassen et al., 2009; Wisniewska-Kruk et al., 2012) and increasing transcellular 

transport in endothelial cells mediated by caveolae (Feng et al., 1999; Hofman et al., 2000; 

Klaassen et al., 2009). PLVAP expression in endothelium is triggered by high levels of VEGF 

and may therefore be involved in VEGF-induced BRB breakdown (Hofman et al., 2000; 

Strickland et al., 2005; Wisniewska-Kruk et al., 2012, 2016). Regarding this, we next evaluated 

VEGF expression in TIM2+/- retinas.  

 
Western blot analysis with a specific antibody (Cheung et al., 2005) revealed an increase of 

VEGF expression in TIM2+/- retinas compared to WT retinas, demonstrated by an increase in 

the intensity of the 42 kDa band. Quantitative densitometry confirmed VEGF overexpression 

(1.60-fold change) in a pool of 12 retinas from TIM2+/- mice relative to a pool of 12 retinas from 

WT mice (Figure 60). 
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Our result suggested that the association of iron and ferritin overload with VEGF 

overexpression could be a possible explanation for the increased vascular permeability and 

BRB impairment observed in TIM2+/- retinas. 

 

 

 

 
Figure 60. Analysis of VEGF expression in the retina. Western blot analysis and quantitative 
densitometry revealed an increase of VEGF protein expression, consistent with an increase in the 

intensity of the 42 kDa band, in a pool of 12 TIM2+/- retinas compared to a pool of 12 WT retinas. α-

tubulin was used as a loading control. WT, wild-type. 

 

 

 
D.7. Evaluation of glycemia 
 

In diabetes, vision loss is most commonly the result of diabetic retinopathy and diabetic 

macular edema (Cheung, Mitchell & Wong, 2010). Diabetes result in a persistently elevated 

blood glucose concentration as a consequence of insufficient insulin release by pancreatic β-

cells. Both reduced β-cell mass and impaired β-cell function have been proposed to underlie 

the defective insulin secretion (Elayat, el-Naggar & Tahir, 1995; Pour, Standop & Batra, 2002; 

Göke, 2008; Ashcroft & Rorsman, 2012). Hyperglycemia is the strongest risk factor for the 

development and progression of diabetic retinopathy (Cheung et al., 2010). We next evaluated 

blood glucose levels to rule out diabetes-associated hyperglycemia as a cause of retinal 

edema in TIM2+/- mice. Rodents have been considered diabetic when fasting glucose levels 

exceed 250 mg/dl (Surwit et al., 1988; Svenson et al., 2007; Fajardo et al., 2014).  

 
Two blood samples were collected from 10 WT mice and 10 TIM2+/- mice for blood glucose 

analysis: the first during ad libitum feeding, and, one week later, a second one, after a 12-hour 

fasting period. No significant statistical differences were found between WT and TIM2+/- mice 

regarding glycemia in ad libitum feeding (143.30 ± 3.14 vs. 136.80 ± 4.53 mg/dl; p=0.1592; 

n=10) or fasting conditions (69.64 ± 2.44 vs. 63.22 ± 2.44 mg/dl; p=0.1642; n=10) and the cut-

off for diabetes was not reached (Figure 61A), suggesting that edema formation was due to 

causes other than hyperglycemia in TIM2+/- retinas. 

 



RESULTS 

110 

The pancreatic islets of Langerhans contain the insulin-producing β-cells and therefore play 

an important role in glucose metabolism and diabetes. Histological studies of pancreas of 

diabetic mice demonstrated reduction in size and number of islets as well as cellular atrophy 

and increased number of vacuoles in islets (Huang et al., 2011; Walvekar et al., 2016; Elkotby 

et al., 2018). 

 
The analysis of paraffin embedded sections from TIM2+/- pancreas stained with H-E showed 

typical spherical shaped islets with a large number of β-cells with a normal round shape and 

distinct round nuclei (Figure 61B). This result suggested that insulin secretion was not affected 

in TIM2+/- mice, corroborating the normoglycemia obtained in blood glucose analysis.  

 
Altogether, our results demonstrated that TIM2+/- mice were not diabetic, excluding 

hyperglycemia as the cause of VEGF overexpression and edema formation in TIM2+/- retinas. 

 

 

 
 

Figure 61. Analysis of blood glucose and pancreatic islets. A. The analysis of blood glucose in ad 

libitum feeding and fasting conditions revealed no significant differences between WT and TIM2+/- mice. 

B. Paraffin embedded sections from WT and TIM2+/- pancreas stained with H-E showed apparent similar 

morphology of pancreatic islets. ns, not significant; WT, wild-type. Scale bars: WT = 33.83 μm; TIM2+/- 

= 33.82 μm. 
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D.8. Evaluation of inflammation 
 

One of the cardinal signs of retinal inflammation is macular edema (Daruich et al., 2018). In 

response to inflammation, retinal injury, and disease, Müller cells undergo major cellular and 

molecular changes, known as reactive gliosis (Bringmann et al., 2009; Dinet et al., 2012), 

whose hallmark is the upregulation of cytoskeletal intermediate filaments, such as GFAP, 

vimentin, and nestin (Lewis & Fisher, 2003).  
 
In order to assess retinal inflammation through the evaluation of gliosis, paraffin embedded 

retinal sections of WT and TIM2+/- mice were immunolabeled with a specific anti-GFAP 

antibody.  

 
Confocal analysis showed no overexpression of GFAP intermediate filaments (Figure 62), 

excluding the presence of gliosis in TIM2+/- retinas and thereby the involvement of inflammation 

in the pathogenesis of edema.  

 

 

 

 

 

 
 
Figure 62. Analysis of gliosis in the retina. Retinal sections immunostained with anti-GFAP antibody 

(red) showed similar expression between WT and TIM2+/- mice, excluding the presence of gliosis in 

TIM2+/- mice. Nuclei were counterstained with Hoechst (blue). GCL, ganglion cell layer; INL, inner 

nuclear layer; ONL, outer nuclear layer; WT, wild-type. Scale bars: WT = 36.9 μm; TIM2+/- = 36.9 μm.  
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D.9. Evaluation of reactive oxygen species and oxidative stress 
 

Intracellular iron exists in two forms: the highly reactive Fe2+ form, that remains free in the 

cytoplasm, as part of LIP, and Fe3+ safely incorporated into ferritin (Richardson & Ponka, 1997; 

Kohgo et al., 2008; Hentze et al., 2010; Arosio & Levi, 2010). Having found iron and ferritin 

overload in TIM2+/- retinas, we next determined Fe2+ and Fe3+ content in this tissue.  
  
Retinal iron measured by a colorimetric assay revealed an increase in Fe2+ in a pool of 10 

retinas from TIM2+/- mice compared to a pool of 10 retinas from WT mice (1.1334 vs. 1.0759 

μg/ml). Fe3+ was also increased in the same pool of TIM2+/- retinas in comparison to the pool 

of WT retinas (0.0804 vs. 0.0276 μg/ml) (Figure 63A). As expected, our results confirmed that 

both free Fe2+ and ferritin-bound Fe3+ were increased in TIM2+/- retinas. 
 
Previously we showed that TIM2+/- Müller cells presented iron-loaded ferritin accumulation, 

with Fe3+ stored in its core. We further aimed to investigate free Fe2+ cellular distribution. 

 
Fe2+ was detected in whole-mount retinas using FeRhoNox-1 fluorescent imaging probe by 

means of confocal microscopy. Our results revealed a stronger staining in the ganglion cell 

layer, compatible with the localization of Müller cell processes and endfeet, in retinas from 

TIM2+/- mice (Figure 63B). This result confirmed a higher content of free Fe2+ in the retinas of 

TIM2+/- mice, predominantly accumulated in Müller cells.  

 
Fe2+ participates in the Fenton reaction and, when in excess, generates the overproduction of 

ROS, triggering oxidative stress, which plays an important role in the pathogenesis of several 

retinopathies, as diabetic retinopathy (Halliwell & Gutteridge, 1984, 1990; Dröge, 2002; Galaris 

& Pantopoulos, 2008; Kell, 2009; Gammella et al., 2016; Chaudhary et al., 2018). We next 

evaluated ROS production in retinas from TIM2+/- mice, regarding the high content of free Fe2+.  

 
Retinal sections stained with DHE, used to detect ROS generation (Zhao et al., 2003; Zielonka 

et al., 2008), and analyzed by means of confocal microscopy, revealed a stronger staining 

throughout the entire retinal parenchyma (Figure 64A), consistent with increased generation 

of ROS in TIM2+/- retinas. Quantitative analysis of DHE fluorescence confirmed a significant 

increase of fluorescence intensity in retinas from TIM2+/- mice compared with retinas from WT 

mice (30.29 ± 2.15 vs. 15 ± 1 AU; p=0.0001; n=6) (Figure 64B).  

 
Taken together, our results suggested that elevated levels of oxidative stress in TIM2+/- retinas, 

promoted by the association of free Fe2+ overload with overproduction of ROS, could also be 

accounting for the increased vascular permeability and BRB impairment observed in TIM2+/- 

retinas.  
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Figure 63. Analysis of Fe2+ and Fe3+ content in the retina. A. The analysis of retinal iron by a 

colorimetric assay demonstrated an increase in Fe2+ and Fe3+ in a pool of 10 retinas from TIM2+/- mice 

in comparison to a pool of 10 retinas from WT mice. B. Detection of Fe2+ in whole-mount retinas using 

FeRhoNox-1 fluorescent imaging probe (red) revealed stronger staining in TIM2+/- retinas compared to 

WT retinas. Nuclei were counterstained with Hoechst (blue). WT, wild-type. Scale bars: WT = 16.85 μm; 

TIM2+/- = 17.32 μm; Negative control = 17.63 μm. 
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Figure 64. Evaluation of oxidative stress in the retina. Retinal oxidative stress levels were evaluated 

by the detection of ROS generation by DHE. A. Confocal microscopy analysis of retinal sections 

incubated with DHE from WT and TIM2+/- mice showed stronger labeling of DHE (red) throughout the 
entire retinal parenchyma in TIM2+/- mice, consistent with increased generation of ROS. Nuclei were 

counterstained with Hoechst (blue). B. Quantitative analysis of DHE fluorescence confirmed a significant 

increase in fluorescence intensity in TIM2+/- retinas compared with retinas from WT mice. Data are 

presented as mean ± SEM (n=6). Asterisks indicate statistically significant differences: ***p<0.001. AU, 

arbitrary units; DHE, dihydroethidium; GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer 

nuclear layer; WT, wild-type. Scale bars: WT = 32.7 μm; TIM2+/- = 29.82 μm. 
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Excess of ROS leads to oxidative DNA damage and lipid peroxidation. Replication protein A 

(RPA), the eukaryotic single-stranded DNA-binding protein, essential for proper DNA 

duplication and maintenance, is heavily phosphorylated, specifically on its subunit 2 (RPA2), 

in response to DNA damage (Iftode, Daniely & Borowiec, 1999; Binz, Sheehan & Wold, 2004). 

An early event in response to DNA damage is also the phosphorylation of histone H2A variant 

H2AX (g-H2AX), particularly when the damage involves induction of double-strand DNA 

breaks, participating in homologous recombination DNA repair (Rogakou et al., 1998; Jackson, 

2002; Xie et al., 2004). 4-hydroxynonenal (4-HNE), a lipid peroxidation product, is upregulated 

during oxidative stress (Gnana-Prakasam et al., 2008). We further evaluated effects of 

oxidative stress in the retina by means of western blot and immunohistochemistry analyses. 

 
By means of western blot analysis, we detected an increase in RPA2 and g-H2AX protein 

expression in retinas from TIM2+/- mice compared with retinas from WT mice, consistent with 

higher intensity of 32 and 15 kDa bands observed, respectively. Quantitative densitometry 

confirmed increased RPA2 (Figure 65A) and g-H2AX (Figure 65B) protein expression (1.85 

and 1.50-fold change, respectively) in a pool of 12 retinas from TIM2+/- mice relative to a pool 

of 12 retinas from WT mice, demonstrating the presence of DNA damage probably in response 

to elevated oxidative stress. 

 
Confocal analysis of retinal sections immunostained with anti-4-HNE antibody revealed 

stronger immunoreactivity in retinas from TIM2+/- mice compared with retinas from WT mice, 

manly observed in blood vessels, confirming an increase in lipid peroxidation in response to 

elevated oxidative stress (Figure 65C).  

 
Altogether, these results confirmed elevated oxidative stress levels in TIM2+/- retinas induced 

by overproduction of ROS, that elicited DNA damage, along with homologous recombination 

DNA repair. ROS could be involved in disrupting tight junctions, concomitant with the 

rearrangement of the actin cytoskeleton and redistribution of tight junction protein such as 

occludin, claudin-5, and ZO-1, with changes in barrier permeability. Contribution of lipid 

peroxidation to tight junction and BRB loss of integrity was also suggested in TIM2+/- retinas. 
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Figure 65. Evaluation of DNA damage and lipid peroxidation in the retina. Western blot analysis 

and quantitative densitometry revealed an increase in RPA2 (A) and g-H2AX (B) protein expression in 

a pool of 12 TIM2+/- retinas compared to a pool of 12 WT retinas. α-tubulin was used as a loading control. 

C. Immunolabeling against 4-HNE (red) showed an increased in the expression of 4-HNE in blood 

vessels (arrow) of retinas from TIM2+/- mice compared with retinas from WT mice. Nuclei were 

counterstained with Hoechst (blue). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer 
nuclear layer; WT, wild-type. Scale bars: WT = 26.54 μm; TIM2+/- = 26.29 μm. 

 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

119 

 

DISCUSSION 
 

 

 

Classically, iron import into cells has been known to be mediated by transferrin endocytosis. 

Fe3+ bound to transferrin in the circulation is taken up by high-affinity TfR1 at the cell surface. 

Ferritin, known for its role in iron storage and detoxification, has also been proposed as an iron 

carrier protein, likely to undergo endocytosis and be transcytosed across the BRB (Ponka et 

al., 1998; Fisher et al., 2007). This was paralleled by the identification of new membrane 

receptors for ferritin: human TIM1 and mouse TIM2 for the H subunit (Chen et al., 2005; Chiou 

et al., 2018), and Scara5 for the L subunit (Li et al., 2009). Recently, our group described 

Scara5 in human and mouse retinas for the first time and demonstrated that serum ferritin is 

transported across the BRB into the retinal parenchyma through L-ferritin binding to Scara5, 

suggesting the existence of a new pathway for retinal iron delivery and trafficking (Mendes-

Jorge et al., 2014). As ferritin is capable of transporting ~ 4,500 iron atoms while transferrin 

can only bind to two atoms of iron, ferritin can be established as a very efficient iron carrier 

and source of iron to tissues (Fisher et al., 2007).  

 
TIM2 expression has been described in mouse spleen, liver, kidneys, and brain (Chen et al., 

2005; Watanabe et al., 2007; Todorich et al., 2008). Our results revealed for the first time the 

presence of TIM2 receptors in the mouse retina, giving rise to a new approach in retinal iron 

metabolism regarding the putative role of TIM2 in this tissue. Furthermore, our results showed 

that, in the mouse retina, TIM2 is mainly expressed in Müller glial cells. 

 
To our knowledge, no human ortholog for mouse TIM2 has been identified so far. However, it 

is known that mouse TIM1 and TIM2 share a homology of 66% with each other and 41 and 

36%, respectively, with human TIM1. This resulted in a postulation that TIM2 evolved as a 

gene duplication of mouse TIM1 and that it also shares functional characteristics with human 

TIM1 because it is found only in rodents and not in primates (McIntire et al., 2001; Kuchroo et 

al., 2003; Meyers et al., 2005; Rodriguez-Manzanet et al., 2009). Recently, Chiou and 

colleagues (2018) demonstrated that mouse TIM2 functions, including H-ferritin uptake, are 

mediated via TIM1 receptor in humans.  
 
Rodent and human oligodendrocytes express TIM2 and TIM1, respectively (Todorich et al., 

2008; Chiou et al., 2018). Oligodendrocytes, as well as microglia, astrocytes, and ependymal 

cells are the major components of neuroglia (Junqueira & Carneiro, 1983). Given the lack of 

TfR1 in these cells (Hill et al., 1985; Hulet et al., 1999a,b; Han et al., 2003) and their high 
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requirement of iron for myelin synthesis (Connor & Menzies, 1996), TIM2 and TIM1 provide an 

alternative pathway for iron import into oligodendrocytes (Todorich et al., 2008; Chiou et al., 

2018).  

 
Müller cells, the major component of retinal glia (Bringmann et al., 2006; Goldman, 2014), 

ensure proper retinal function by performing several functional and supportive roles for the 

surrounding neurons, including maintaining homeostasis of the neuronal microenvironment, 

providing nutritional support, and removing metabolic waste (Newman & Reichenbach, 1996; 

Gardner et al., 2002; Bringmann et al., 2006; Kolb et al., 2011; Kur et al., 2012). Previously, 

Müller cells have also been proposed to play a major role in the maintenance of retinal iron 

homeostasis and considered important mediators of retinal iron transport, distribution, and 

regulation (Baumann et al., 2017). In this regard, Müller cells are critical for the iBRB function, 

together with endothelial cells, creating a physical barrier to prevent the unregulated flux of 

iron into the retina (Hollander et al., 1991; Tout et al., 1993; Gardner et al., 2002; Klaassen et 

al., 2013). Moreover, all proteins involved in iron import, export, and regulation are expressed 

in Müller cells, whose processes extend almost the entire thickness of the retina and contact 

all layers of neurons (Gnana-Prakasam et al., 2010; Kolb et al., 2011; Newman, 2013; Vecino 

et al., 2016; Baumann et al., 2017). TIM2 high expression in Müller cells, together with the 

involvement of these cells in iron homeostasis, unravels TIM2 as a new important player in 

retinal iron homeostasis.  

 
Mice can be genetically modified using a number of different approaches, such as gene KO 

and gene overexpression. Genetically modified models are important tools for studying the 

function or regulation of a specific gene of interest and for modeling human diseases. KO 

mouse models are primarily used to understand the role of a specific gene by investigating the 

effect of gene loss, comparing the KO to a WT with the same genetic background (Capecchi, 

1994; Majzoub & Muglia, 1996; Hall, Limaye & Kulkarni, 2009). Thereby, to better understand 

TIM2 functions in the retina, a KO mouse for this receptor was generated. 

 
Rennert and colleagues (2006) had already generated a TIM2 deficient mouse model on a 

BALB/c background to study the immune response. However, this model was not suitable for 

our study in the retina as some mutations can occur in the architecture of retinal layers in 

BALB/c background (Huber et al., 2009; Santos et al., 2010; Bell et al., 2012). We generated 

a TIM2 KO mouse model on a C57BL/6 background by disrupting TIM2 gene function. 

Although only TIM2+/- mice were obtained, probably due to embryonic lethality in TIM2-/- mice, 

we were able to decrease TIM2 protein expression in TIM2+/- mice, which was in line with our 

purpose for this study. Considering that a specific distribution of different retinal cell types is 

required for proper functioning of the retina (Runkle & Antonetti, 2011), we confirmed the 
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maintenance of the spatial arrangement of the retinal layers, thus validating TIM2+/- mice as a 

physiological model.  

 
Due to the involvement of TIM2 in the iron metabolism as a receptor for ferritin, we further 

investigated the influence of decreasing TIM2 expression. The analysis of the main iron-

handling proteins revealed that retinal TIM2 deficiency affected iron metabolism, probably 

increasing iron import into the retina through ferritin binding to Scara5 that led to the 

accumulation of iron-loaded ferritin, mainly in Müller cells. Similarly, iron import into the retina 

mediated by transferrin and TfR1 was also increased. Serum ferritin can also be regarded as 

an indicator of body iron stores, being upregulated during intracellular iron accumulation 

(Chaudhary et al., 2018). Consequently, and concomitantly with higher levels of serum ferritin, 

retinal iron overload was established in TIM2+/- mice. 
 
Cellular iron levels are modulated by an elegant machinery involving IRPs that bind to the IREs 

on the iron-handling proteins mRNA (Mackenzie et al., 2008; Wang & Pantopoulos, 2011; 

Anderson et al., 2012). Accordingly, when LIP levels rise, IRPs remain inactive and do not bind 

to IREs on ferritin mRNA, enhancing ferritin synthesis, or TfR1 mRNA that undergoes 

degradation by nucleases, leading to a decrease in iron import and an increase in iron storage, 

reducing intracellular free Fe2+ (Rouault, 2006; Wallander, Leibold & Eisenstein, 2006; 

Muckenthaler, Galy & Hentze, 2008; Anderson et al., 2012). On the other hand, in conditions 

of iron deficiency, IRPs bind to IREs on mRNAs to prevent mRNA translation and ferritin 

synthesis and TfR1 mRNA degradation resulting in TfR1 synthesis, leading to an increase in 

iron import and a decrease in iron storage, incrementing intracellular free Fe2+ (Binder et al., 

1994; Muckenthaler et al., 2008).  

 
Appropriate LIP levels are critical for homeostasis, as free Fe2+ in the LIP is toxic when in 

excess (Rouault & Cooperman, 2006; He et al., 2007; Mackenzie et al., 2008; Song & Dunaief, 

2013). In general, LIP mirrors the cellular iron content and its levels are tightly regulated by 

stimulating or inhibiting ferritin and TfR1 synthesis (Mackenzie et al., 2008; Wang & 

Pantopoulos, 2011; Anderson et al., 2012). LIP level dysregulation probably led to the 

accumulation of ferritin and iron in retinas from TIM2+/- mice. Moreover, to counterbalance the 

decrease in TIM2 expression, Scara5 expression was upregulated, probably leading to the 

increase in ferritin import. On the one hand, upregulation of ferritin in iron overload conditions 

is expected to sequester iron and protect cells against oxidative damage by reducing LIP 

levels. But chronic overexpression of ferritin rather than be protective may lead to the opposite 

effect in mice, suggesting that iron sequestered in ferritin shells may eventually become pro-

oxidant. Heavily iron-loaded ferritin can create a pool of easily releasable iron. For example, 

in the brain, prolonged elevation of ferritin levels within dopaminergic midbrain neurons results 

in their progressive age-related neurodegeneration (Kaur et al., 2007; Kaur, Rajagopalan & 
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Andersen, 2009). It was demonstrated that Fe3+ stored within the ferritin shell can be easily 

reduced by cytotoxic byproducts of dopamine oxidation within dopaminergic neurons, including 

superoxide and 6-hydroxydopamine, allowing its release from ferritin as Fe2+ (Thomas & Aust, 

1986; Monteiro & Winterbourn, 1989; Kienzl et al., 1995; Linert et al., 1996; Double et al., 1998; 

Comporti, 2002). The present study demonstrates that the retina accumulates ferritin and iron 

when TIM2 expression is decreased, suggesting that TIM2 has a crucial role in the effective 

modulation of iron levels. Furthermore, retinal chronic accumulation of ferritin seems to have 

deleterious effects rather than protective.   
 
The retina is constantly exposed to oxidative stress caused by photo-oxidation, and iron 

overload within this tissue exacerbates this oxidative stress, leading to deleterious effects. 

Also, increased iron accumulation is associated with several degenerative diseases, such as 

diabetic retinopathy (Feng et al., 2007; Ciudin et al., 2010; Chaudhary et al., 2018). Iron 

overload in TIM2+/- retinas was paralleled with increased vascular permeability and BRB 

breakdown, which consequently induced edema. The neurosensory retina is protected from 

potentially harmful molecules in the circulation by the iBRB that regulates the entry of 

molecules into the inner retina. This barrier is mainly formed by specialized tight junctions 

sealing the intercellular space between endothelial cells and an array of specific transcellular 

transport mechanisms and supported by glial cells and pericytes (Cunha-Vaz, 1976; Abbott et 

al., 2006; Fruttiger, 2007; Klaassen et al., 2013). An intact BRB is essential for proper vision 

and its breakdown, resulting in retinal vascular leakage and subsequent macular edema, plays 

an important role in the pathology and vision loss in diabetic retinopathy, age-related macular 

degeneration, retinal vein occlusion, and uveitis (Klassen et al., 2013). Furthermore, diabetic 

macular edema, characterized by focal enlargement of the extracellular space and retinal 

thickening, is the major cause of loss of vision in patients with diabetic retinopathy due to the 

alteration of the functional cell relationship (Cunha-Vaz, 1976; Coscas, Cunha-Vaz & 

Soubrane, 2010; Cunha-Vaz et al., 2011; Frey & Antonetti, 2011; Duh et al., 2017; Daruich et 

al., 2018). Endothelial cells of an intact BRB possess well-developed tight junctions, have few 

caveolae, which are mainly localized at their abluminal side, and express selective 

transporters. Dynamic adaptations of endothelial cells and other cell types that constitute the 

BRB underlie vascular leakage in retinal disease. In this regard, two main cellular mechanisms 

have been proposed to cause BRB loss: increased paracellular transport due to disrupted 

interendothelial cell tight junction integrity and increased transendothelial transport mediated 

by caveolae (Lum & Malik, 1994; Antonetti et al., 1999; Minshall at al., 2003; Abbott et al., 

2006; Klaassen et al., 2013; Díaz-Coránguez et al., 2017).  

 
Low levels and disrupted expression of the main endothelial tight junction proteins, ZO-1, 

claudin-5, and occludin, were found in TIM2+/- retinas, leading to the increased vascular 

permeability with fluorescein and serum albumin leakage observed in the retinas of these mice. 
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ZO proteins are considered to be the center of tight junction assembly and organization and 

also account for claudin molecules polymerization, and increased paracellular flux has been 

associated with delocalization of ZO-1 from the cell border (Fischer et al., 2002; Harhaj & 

Antonetti, 2004; Umeda et al., 2006). Occludin and claudins have been reported to be 

decreased in conditions associated with BRB permeability (Antonetti et al., 1998; Barber & 

Antonetti, 2003; Nitta et al., 2003). Reduced levels of endothelial tight junction proteins have 

been associated with retinal vascular permeability in diabetic retinopathy (Antonetti et al., 

1998; Barber et al., 2005).  
 
Furthermore, the expression of the transcellular transport-related protein PLVAP was 

increased in parallel with a higher number of caveolae in TIM2+/- retinas. It has been suggested 

that PLVAP is necessary for the formation of new caveolae in conditions with increased 

permeability (Wisniewska-Kruk et al., 2016). PLVAP is an endothelial cell-specific protein that 

is upregulated in pathologic conditions, such as diabetic retinopathy, and associated with loss 

of BRB and BBB and increased transcellular transport (Schlingemann et al., 1985, 1997, 1999; 

Vinores, 1995; Wisniewska-Kruk et al., 2016; Díaz-Coránguez et al., 2017). As PLVAP is one 

of the structural components of caveolae (Schlingemann et al., 1985; Stan et al., 1999; Stan, 

2005), which carry out transendothelial transport, it may contribute to vascular permeability by 

increasing transcellular endothelial transport. 

 
Our results showed that both paracellular and transcellular transport are altered in retinas from 

TIM2+/- mice, which lead to increased vascular permeability and BRB loss of integrity. As a 

result of BRB breakdown, abnormal inflow and accumulation of fluid in the extracellular space 

induced the formation of edema.  

 
Hyperglycemia, inflammation, hypoxia, VEGF, ROS, and oxidative stress are the main 

underlying factors contributing to BRB impairment (Klaassen et al., 2013). Though presenting 

a diabetic macular edema-like phenotype, TIM2+/- mice are not diabetic nor present retinal 

inflammation indications, therefore excluding the involvement of hyperglycemia and 

inflammation in BRB breakdown. On the other hand, VEGF overexpression was found in 

TIM2+/- retinas. VEGF is the most potent and primary endothelial specific angiogenic growth 

factor, both in physiological and pathological conditions. VEGF signaling is ultimately required 

for normal vascular development and homeostasis, but it is also actively engaged in tumor 

progression by promoting growth of tumor vasculature and vasopermeability, disrupting the 

endothelial barrier by inducing tight junction phosphorylation and degradation (Antonetti et al., 

1999; Fischer et al., 2002; Shibuya, 2008; Argaw et al., 2009; Klaassen et al., 2009; 

Wisniewska-Kruk et al., 2012) and increasing transcellular transport in endothelial cells 

mediated by caveolae (Feng et al., 1999; Hofman et al., 2000; Klaassen et al., 2009). 

 
Increased retinal VEGF levels are associated with BRB breakdown in diabetic rodents, 
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primates, and humans (Klaassen et al., 2009; Wisniewska-Kruk et al., 2014, 2016). 

Hyperglycemia and hypoxia promote VEGF signaling, resulting in diabetic microvascular 

complications (Crawford et al., 2009; Gupta et al., 2013). There are also potentially important 

relationships between intracellular iron metabolism and VEGF, as iron seems to be also 

involved in regulation of VEGF production through its effects on hypoxia inducible factor-1, the 

most potential stimulator of VEFG production. It is predicted that iron chelation could suppress 

several angiogenic mediators including VEGF (Harned et al., 2010; Guo et al., 2014). 

Moreover, Guo and colleagues (2014) showed that high levels of ferritin co-occur with high 

levels of VEGF, and a strong positive correlation was found between serum ferritin and VEGF 

in diabetes patients. It has also been reported that retinal iron overload upregulates GPR91 

expression in retinas of HFE and hemojuvelin KO mice models of hemochromatosis, a genetic 

disorder of iron overload, and subsequently stimulates the production of VEGF (Gnana-

Prakasam et al., 2011; Arjunan et al., 2016; Chaudhary et al., 2018). In this study, we show 

that the association of elevated levels of iron and ferritin with VEGF overexpression in 

normoglycemia conditions may contribute to increased vascular permeability and BRB failure 

in TIM2+/- retinas. 

 
In addition, high VEGF levels induce PLVAP expression in a VEGF receptor 2 dependent 

manner (Hofman et al., 2000; Strickland et al., 2005; Wisniewska-Kruk et al., 2012, 2016). 

VEGF receptor 2 is the key mediator of VEGF signaling in endothelial cells and is localized in 

caveolae (Witmer et al., 2003; Olsson et al., 2006; Tahir, Park & Thompson, 2009). In healthy 

patients, with intact BRB, low numbers of caveolae and low VEGF receptor-2 and PLVAP 

protein expression are found. On the other hand, in diabetic retinopathy conditions, both VEGF 

receptor 2 and PLVAP are expressed in retinal capillaries with BRB loss (Schlingemann et al., 

1999; Witmer et al., 2002, 2004). Besides VEGF receptor 2, caveolae harbor many other 

receptors involved in vascular permeability (Santibanez et al., 2008). 

 
ROS act as a double-edged sword in the vasculature. On the one hand, ROS are involved in 

important physiological functions and adaptive cell responses. Transient or low levels of ROS 

are able to activate signaling pathways that eventually promote regeneration and growth 

(Dröge, 2002; Maulik & Das, 2002; Trachootham et al., 2008; Ray et al., 2012; Kim & Byzova, 

2014). On the other hand, chronically produced or highly concentrated ROS are detrimental 

for most tissues. Iron overload promotes the Fenton reaction, generating the overproduction 

of ROS, which triggers oxidative stress. In turn, oxidative stress causes DNA damage, lipid 

peroxidation, and protein modifications, playing an important role in the pathogenesis of 

several retinopathies, as diabetic retinopathy (Halliwell & Gutteridge, 1984, 1990; Dröge, 2002; 

Galaris & Pantopoulos, 2008; Kell, 2009; Ray et al., 2012; Udipi et al., 2012; Gammella et al., 

2016; Chaudhary et al., 2018). Conversely, oxidative stress itself influences iron metabolism 

and iron proteins, thus a vicious cycle of oxidative stress and iron accumulation may be 
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installed (Deb et al., 2009; Hadziahmetovic et al., 2011b). Regarding this, iron may be 

mobilized from ferritin by oxidative stress. Severe ROS attack on iron-loaded ferritin could 

become a further considerable threat when safely stored iron is released rendering LIP 

uncontrollable due to an impaired iron buffering capacity (Galaris & Pantopoulos, 2008; 

Bresgen & Eckl, 2015).  

 
Furthermore, ROS and oxidative stress may trigger several signaling pathways, including 

protein kinase B and C, mitogen-activated protein kinases, phosphoinositide 3-kinase, and 

Rho, that mediate tight junction disruption and barrier dysfunction. In this sense, increased 

paracellular permeability may be induced by endothelial cell retraction, disruption or 

rearrangement of the actin cytoskeleton, and redistribution of tight junction protein such as 

occludin, claudin-5, and ZO-1 (Abbott, 2000; Gloor et al., 2001; Harhaj & Antonetti, 2004; 

Pérez et al., 2006; Schreibelt et al., 2007; González-Mariscal, Tapia & Chamorro, 2008; Rao, 

2008). In addition, ROS can also stimulate the induction of VEGF expression in various cell 

types, such as endothelial and smooth muscle cells, and macrophages, whereas VEGF further 

stimulates ROS production through the activation of NAPDH oxidase in endothelial cells 

(Chua, Hamdy & Chua, 1998; Ushio-Fukai & Alexander, 2004; Wang et al., 2011). Animal 

studies have demonstrated that oxidative stress in result of metabolic dysregulation contributes 

to the development and exacerbation of diabetic retinopathy and retinal iron overload is 

involved in BRB loss of integrity and accelerates retinal cell loss by enhancing oxidative stress 

(Feng et al., 2007; Ciudin et al., 2010; Frey & Antonetti, 2011; Chaudhary et al., 2018). 

Elevated levels of oxidative stress as well as increased expression of oxidative stress-related 

DNA damage and lipid peroxidation markers were detected in TIM2+/- retinas, probably due to 

iron overload triggering the overproduction of ROS, which can also contribute for the increased 

vascular permeability and BRB impairment observed in these retinas. Furthermore, ROS may 

also be involved in VEGF overexpression and vice-versa, thus exacerbating BRB disruption. 

 
Additionally, RPA2 and g-H2AX, the two DNA damage markers used in this study, are involved 

in the cascade of DNA repair in response to DNA damage. Cells respond to DNA damage by 

activating a complex molecular mechanism developed to detect and repair DNA damage, the 

DNA damage response. RPA2, the main eukaryotic single-stranded DNA-binding protein, is 

essential to nucleotide excision repair and the repair of double-strand breaks by homologous 

recombination, mediating the coordinated assembly of the DNA repair apparatus at sites of 

DNA damage through specific interactions with key repair proteins. This is concomitant to 

RPA2 binding tightly to single-stranded DNA and stimulates DNA repair and replication 

(Bochkarev et al., 1997; Wold, 1997; Iftode et al., 1999; Binz et al., 2004). g-H2AX has been 

considered as a biomarker for the presence of DNA damage, particularly when the damage 

involves induction of double-strand DNA breaks (Rogakou et al., 1998; Jackson, 2002; Redon 

et al., 2011; Heylmann & Kaina, 2016). These breaks represent the most severe form of DNA 
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damage, since they result in chromosomal changes and cell death by apoptosis (Durant et al., 

2013; Roos & Kaina, 2013). g-H2AX play a role in the DNA damage response and is required 

for the assembly of DNA repair proteins at the sites containing damaged chromatin as well as 

for activation of checkpoints proteins which arrest the cell cycle progression, participating in 

homologous recombination DNA repair (Xie et al., 2004; Franco et al., 2006; Kouzarides, 2007; 

Kinner et al., 2008; Podhorecka, Skladanowski & Bozko, 2010). 

Thereby, the activation of the DNA damage response in TIM2+/- retinas suggests an attempt 

to counterbalance the damage caused by elevated levels of oxidative stress, which may 

explain no evidence of retinal degeneration. 

 
Furthermore, diabetic retinopathy is commonly accompanied by abnormalities in the 

morphology of the retinal vasculature, such as vessel tortuosity, which may be an early 

indication of microvascular damage (Dougherty, Johnson & Wiers, 2010; Sasongko et al., 

2011, 2012, 2016). In retinal vessels, tortuosity, a key parameter to evaluate the vascular 

pattern, is considered as an indicative of the optimality of the state of the retinal microcirculation 

and level of tissue perfusion (Koh et al., 2010). Increased retinal vessel tortuosity has been 

related to diabetes-related changes, including disturbed blood flow, tissue hypoxia, endothelial 

dysfunction, and an increased production of VEGF (Kristinsson, Gottfredsdottir & Stefansson, 

1997; Hartnett et al., 2008; Sasongko et al., 2011; Han, 2012). Vessel wall weakening, due to 

degradation of extracellular matrix components and the lack of support from cells of the vessel 

wall, lead to tortuosity (Han, 2012; Lee et al., 2012; Martinez & Han, 2012). 

Our results showed a normal vascular pattern in TIM2+/- retinas. We hypothesize that this intact 

retinal vascular morphology, though presenting vascular leakage and VEGF overexpression, 

is due to the protective role of Scara5 overexpression in TIM2+/- retinas. 

 
Scara5, a type II transmembrane protein, is a member of class A scavenger receptor family, a 

structurally diverse group of membrane receptors. Scara5 is widely expressed in humans and 

mice, including testis, bladder, ovary, trachea, adrenal gland, lung, skin, heart, kidney, muscle 

bundles, and brain (Jiang et al., 2006; Li et al., 2009; Zani et al., 2015). Our group described 

Scara5 expression in mouse and human retina for the first time (Mendes-Jorge et al., 2014).  

The overexpression of Scara5 has been shown to significantly inhibit the expression levels of 

matrix metalloproteinases 2 and 9 (Wen et al., 2016). Matrix metalloproteinases have 

proteolytic activity and mediate the degradation or remodeling of the extracellular matrix, in 

particular matrix metalloproteinases 2 and 9 (Massova et al., 1998; Clark et al., 2008). 

Increased expression and activity of these extracellular proteinases play a role in early diabetic 

retinopathy and alteration of the BRB (Bhatt & Addepalli, 2010). As the basement membrane 

and extracellular matrix are degraded by these matrix metalloproteinases, which can lead to 

tortuous vessels, Scara5 overexpression may be exerting a protective role by inhibiting matrix 
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metalloproteinases 2 and 9 expression, accounting for maintenance of the morphologic 

structure with no tortuosity in TIM2+/- retinas. 

 
Moreover, elevated expression of matrix metalloproteinases in the retina are associated with 

tight junction disruption not only by basement degradation, but also by cleavage of tight 

junction proteins (Gurney, Estrada & Rosenberg, 2006; Reijerkerk et al., 2006; Feng et al., 

2011). In diabetic animals, matrix metalloproteinases 2, 9, and 14 are upregulated and are 

associated with BRB permeability changes. The increase of matrix metalloproteinases may be 

partly due to the direct effect of hyperglycemia, increased VEGF expression, ROS, and 

advanced glycation end products. Results suggest that elevated expression of matrix 

metalloproteinases in the retina may facilitate an increase in vascular permeability by a 

mechanism involving proteolytic degradation of the tight junction protein occludin, followed by 

disruption of the overall tight junction complex (Giebel et al., 2005). Therefore, this pathway 

seems to be not involved in tight junction impairment observed in TIM2+/- retinas, considering 

Scara5 overexpression protective role. 
 
In conclusion, and knowing that iron accumulation has been associated with the progression 

and exacerbation of diabetic retinopathy, the present study shows that iron overload in 

normoglycemia conditions is enough to trigger BRB breakdown and edema, two aspects 

characteristic of diabetic macular edema, thus confirming the role of iron in BRB dysfunction. 

All things considered, TIM2 may be a crucial key player in iron homeostasis in the mouse 

retina, modulating cellular iron levels and affecting iron metabolism in this tissue. Thus, this 

new receptor could be a potential therapeutic target in animal models for the treatment of 

diabetic macular edema, especially considering the existence of its ortholog, TIM1, in human 

patients. 
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CONCLUSIONS 
 

 

 

1. TIM2 is expressed throughout the entire mouse retina, mainly in its internal surface. 

 
2. TIM2 is expressed in Müller cells but not in astrocytes. 
 
3. All retinal neurons except ganglion cells express TIM2, although to a lesser extent than 

Müller cells. 

 
4. Rods but not cones express TIM2 in their inner segments. 

 
5. None of the cellular components of the vascular wall in retinal blood vessels expresses 

TIM2. 

 
6. The TIM2 KO model generated targets cells expressing TIM2 and, unlike other models, 

the general morphology of the retina is maintained. 
 
7. Only TIM2+/- mice are obtained, probably due to embryonic lethality in TIM2-/- mice. 

 
8. As expected, retinas from TIM2+/- mice show a substantial decrease of TIM2 protein 

expression. 

 
9. Although H- and L-ferritin subunit mRNA transcript levels are not significantly increased in 

retinas from TIM2+/- mice, both proteins levels are increased. 

 
10. mRNA and protein expression levels of Scara5, the receptor for L-ferritin are significantly 

increased in retinas from TIM2+/- mice, suggesting the exogenous origin of ferritin 

accumulation in retinal cells. 

 
11. The increase of H- and L-ferritin proteins in retinas from TIM2+/- mice is concomitant with 

a significant elevation of serum ferritin. 

 
12. mRNA and protein expression levels of transferrin and its receptor are significantly 

increased in retinas from TIM2+/- mice, suggesting both endogenous production and 

exogenous import. 

 



CONCLUSIONS 

132 

13. The iron saturation of serum transferrin and serum iron content are not changed in TIM2+/- 

mice, suggesting that specific retinal iron accumulation is mediated by ferritin 

accumulation. 

 
14. A high density of ferritin granules loaded with iron is observed by TEM analysis, mainly in 

the inner cytoplasmic prolongations of TIM2+/- Müller cells. This is consistent with a 

significant increase of retinal iron content in retinas from TIM2+/- mice measured by mass 

spectrometry and colorimetric analysis. 

 
15. Although the vascular pattern is not altered, fundus fluorescein angiography revealed focal 

points of vascular leakage in retinas from TIM2+/- mice. 

 
16. Serum albumin is observed both in vivo and ex vivo in the retinal parenchyma of TIM2+/- 

mice after tail vein injection of fluorescein-labelled serum albumin, suggesting a 

breakdown of the BRB. 

 
17. TEM analysis shows morphological alterations of tight junctions between endothelial cells 

in retinas from TIM2+/- mice, and this is paralleled with a decrease of the main proteins 

that constitute tight junctions in the retina, ZO-1, claudin-5, and occludin, suggesting an 

alteration of the paracellular transport.  

 
18. PLVAP is overexpressed in retinas from TIM2+/- mice and this is paralleled with an 

increase in caveolae, suggesting an alteration of the transcellular transport. 
 

19. VEGF is overexpressed in TIM2+/- retinas, suggesting an association of iron and ferritin 

overload with VEGF expression as a possible explanation for tight junction integrity loss 

and PLVAP expression accounting for increased vascular permeability and BRB 

impairment. 
 
20. As a consequence of BRB breakdown, perivascular edema is observed in retinas from 

TIM2+/- mice. The retinal edema is more pronounced in the central part of the retina 

resembling what happens in diabetic macular edema, although TIM2+/- mice are not 

diabetic nor presented retinal inflammation indications. 
 
21. Ferrous iron is increased in retinas from TIM2+/- mice leading to oxidative stress, a well-

known trigger of BRB breakdown. 

 
22. As a consequence of oxidative stress, DNA damage and lipid peroxidation are observed 

in retinas from TIM2+/- mice. 
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23. 1st FINAL CONCLUSION: TIM2 deficiency leads to retinal iron overload probably 

mediated by serum ferritin accumulation. The association of iron and ferritin overload with 

VEGF overexpression and oxidative stress triggered by the overproduction of ROS lead 

to the breakdown of the BRB, both at the paracellular and transcellular level. 

Consequently, BRB breakdown leads to edema of the central retina, similarly as occurs 

during diabetic macular edema, although TIM2+/- mice are not diabetic.  

 

24. 2nd FINAL CONCLUSION: Altogether, these results point to TIM2 as a new key player in 

iron homeostasis in the mouse retina and a potential target in animal models for the 

treatment of diabetic macular edema in human patients, since it has recently been 

elucidated that iron overload exacerbates diabetic edema. 
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