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Abstract 
 
In this paper, we empirically assess by means of the local projection method, the impact of different 
types of financial crises on a variety of pollutant emissions categories for a sample of 86 countries 
between 1980-2012. We find that financial crises in general lead to a fall in CO2 and methane 
emissions. When hit by a debt crisis, a country experiences a rise in emissions stemming from 
either energy related activities or industrial processes. During periods of slack, financial crises in 
general had a positive impact on both methane and nitrous oxide emissions. If a financial crisis hit 
an economy when it was engaging in contractionary fiscal policies, this led to a negative response 
of CO2 and production-based emissions. 
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1. Introduction  

 

The eruption of the Global Financial Crisis (GFC) and its contagion to the real economy has 

reopened the well-known debate on the compatibility between economic development and 

environmental protection but has also led to a wider discussion on the usefulness of environmental 

policies and actions within countercyclical packages. The fall in economic activity due to the GFC 

did lead to reductions in energy consumption and, thus, carbon dioxide emissions (particularly 

those related from fossil-fuel combustion and cement production).1 More importantly, in contrast 

with the oil price crises of the 1970s, the GFC did not lead to a structural change in the growth 

path of emissions in the years that followed (Peters et al., 2011).2 In fact, after a modest decline of 

1.4 percent in 2009, in 2010 a 3 percent growth was already observed in global CO2 emissions, 

followed by 2.2 percent in 2012, and 2.3 percent in 2013 (The Global Carbon Project). Moreover, 

in 2011 global carbon dioxide emissions reached an all-time high.3 This fact fueled increasing 

debates on how the recent crisis may have impacted climate change policies (Egenhoffer, 2008). 

On the one hand, drops in emissions often provoke claims from climate sceptics that worries over 

global warming are exaggerated. On the other, increases in emissions lead to concerns among 

environmental groups that not enough is being done to address the issue.4 Against this background, 

                                                 
1 Several papers have assessed the output-emissions decoupling hypothesis and how their cyclical relationship has 
changed over time (e.g. Kristrom and Lundgren (2005) for Sweden; Ajmi et al. (2015) for G7 countries; Doda (2014) 
for 81 countries; Cohen et al. (2018) for the top 20 emitters). There is also a large literature on the Environmental 
Kuznets Curve and many good surveys of the literature—see, e.g., Stern (2004) and Kaika and Zervas (2013). 
2 The authors compare this effect to the effect on emissions after the oil crises in 1973 and 1979. The shifts from the 
1970s energy crises in the US were initially from oil and natural gas (which was thought near total exhaustion) to coal. 
In fact, no oil or natural gas fired electric power plants could be built after a law was passed in 1978, and not repealed 
until the mid-1980s. Later, the shift was mainly from coal (not oil) to natural gas.. In contrast, the Asian financial 
crisis also led to a drop in global CO2 emissions that lasted post-crisis as a result of economic and political changes. 
3 This relatively uncharacteristic bounce back in emissions can be attributed to: (1) the globally coordinated action of 
central banks and initial fiscal stimulus; (2) the immediate easing of energy prices reducing pressure for structural 
changes in energy consumption; (3) the continuing and accelerated increase in coal-fired power (IEA 2013). 
4 For instance, a rise in German emissions in 2016 led to alarm in some circles that the country had “further dented” 
its chances of reaching its 2020 climate targets (Wettengel, 2016). 
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the Paris climate accord in 2015 – the so-called COP21 – was a landmark effort on the part of 

countries to set and monitor commitments to mitigate global warming.5 Subsequently, the COP23 

in 2017 in Bonn “sought to maintain the global momentum to decouple output from greenhouse 

gas emissions” (Gough, 2017).   

This paper empirically assesses the impact of (financial) crises on pollutant emissions. To 

this end we rely on Jorda’s (2005) local projection method to trace the short to medium-term 

impact of crises on emissions. A perusal of the literature reveals no such study in a systematic and 

comprehensive way. We contribute to the literature in several ways. First, we look at the role 

played by different types of financial crises (systematic, non-systematic, banking, currency or 

debt) on a variety of emissions split either by gas nature or sector of activity. Second, we account 

for the prevailing macroeconomic and fiscal conditions at the time of the crisis in affecting the 

response of emissions. Third, we cover a large sample of 86 countries split between 31 advanced 

and 55 emerging and low-income countries between 1980-2012. Finally, we employ recent and 

state of the art econometric techniques that have several advantages relative to alternative 

approaches as discussed in section 3. 

Our results show that financial crises in general led to a statistically significant fall in CO2 

and methane emissions. Moreover, when hit by a debt crisis, a country experiences a rise in 

emissions stemming from either energy related activities or industrial processes. Splitting the 

sample, we find that, in normal times in advanced (developing) economies, systemic and banking 

crises resulted in a fall in methane, nitrous oxide and production based GHG (CO2) emissions. 

                                                 
5 Leichenko et al. (2010) used the GFC as an example of the close linkage between globalization and climate change. 
Amann et al. (2009) provide estimates of greenhouse gas mitigation potentials and costs in different countries. They 
employ the IIASA’s Greenhouse gas-Air pollution Interactions and Synergies (GAINS) model. These types pf models 
have been applied before to identify cost-effective air pollution control strategies, and to study the co-benefits between 
greenhouse gas mitigation and air pollution control in Europe and Asia (Hordijk and Amann, 2007; Tuinstra, 2007). 
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During periods of slack, financial crises in general had a positive and statistically significant 

impact on both methane and nitrous oxide emissions. Under strong economic conditions however, 

financial crises (weakly) led to the reduction of various types of emissions, but the effects were 

not always precisely estimated. If a financial crisis hit an economy when it was engaging in 

contractionary fiscal policies, this led to a negative and statistically significant response of CO2 

and production-based emissions. Furthermore, CO2 emissions reacted negatively after banking 

and debt crises and a loosening of the fiscal stance. 

The remainder of the paper is organized as follows. Section 2 briefly review the scarce 

literature on the topic of financial crises and emissions. Section 3 describes our data and presents 

some descriptive statistics and Section 4 outlines the empirical methodology. Section 5 discusses 

our main results and the last section concludes.  

 

2. Literature Review  

 

Carbon dioxide, the major greenhouse gas, has been shown to fluctuate with economic 

situations and to be highly correlated with GDP and energy consumption (Gierdraitis et al., 2010; 

Lane, 2011). In fact, Giedraitis et al. (2010) analysis of the 1870s and 1930s depressions and, more 

recently, Stavytskyy et al. (2016) found support to the claim that past economic crises were 

associated with lower amounts of CO2 emissions.6 This paper expands the analysis by Stavytskyy 

et al. (2016) by considering a much larger sample of countries (they only analyze a set of four 

advanced economies) and also many more crises episodes. Also, Siddiqi (2000), looking at the 

                                                 
6 “The Panic of 1873” led to a global reduction of carbon dioxide emissions. The Great Depression of the 1930s led 
to an even larger reduction of emissions. 
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Asian Financial Crisis, defended some positive consequences stemming from it to the global 

environment. Equally looking at the Asian Financial Crises, Dauvergne (1999) concluded that the 

crisis contributed to extensive environmental changes with variations across sectors, countries and 

time. 

In addition, York (2012) demonstrated that the response of emissions to an increase in 

income was greater during economic expansions than during contractions. Instead of taking a 

modelling approach and projecting the trajectory of CO2 emissions depending on the stages of the 

business cycle, this paper explores the asymmetry nature of the crisis-emissions nexus empirically 

looking at a large panel of countries and years. Sobrino and Monzon (2014) looked at the 

environmental effects of the Global Financial Crisis in Spain and found that it has led to a reduction 

of transport activity and higher energy efficiency on the road. They further inferred that countries 

tend to be more efficient in a crisis that in prosperity. Declercq et al. (2014), who investigated the 

impact of recessions on CO2 emissions in the European power sector from 2008 to 2009, suggested 

that the lower demand for electricity during recession periods was the most important factor for 

carbon emission mitigation. 

 These studies however seem to mix the short versus the long-term implications of financial 

crises for the environment. For some, despite short-term reductions in emissions in crises years, 

economic crises in general are not good for the environment. The main argument is that, contrary 

to what many would expect, economic recessions, by making access to capital more difficult, 

negatively affect emissions reduction efforts through their discouraging effects on investments in 

general (including investments in low-carbon technologies) (Del Río and Labandeira, 2009).7 As 

                                                 
7 Investors will tend to prioritize less capital-intensive technologies, i.e., investments with lower up-front costs and 
shorter pay-back periods. This makes low-carbon capital-intensive technologies (such as renewables or nuclear 
energy) a less attractive option with respect to other technologies (such as combined cycle) which, in turn, has 
consequences for future target-compatible emissions (and concentrations) trajectories. 
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both governments and the private sector focus on the recovery and on adapting their respective 

budgets, they shift priorities away from climate policies. In this sense, crises tend to lead to 

deferment and postponement of environmental projects and investment as surviving the crisis and 

recovering becomes the aim, rather than becoming a “green” company or economy. More 

importantly, at a time of economic crisis, carbon lock-in is more likely.8 Depressed aggregate 

demand, the fall in the prices of some goods and lower economic capacity may encourage the 

consumption of goods with an inferior environmental quality (and lower prices) and to an over-

exploitation of resources with associated environmental degradation effects (Del Río and 

Labandeira, 2009). Moreover, lower energy prices in times of crisis, reduce the economic viability 

for the development and operation of cleaner technologies. Furthermore, governments are likely 

to avoid burdening business and industry with extra costs and regulation at a time when the 

economy is fragile and jobs may be at risk (Wooders and Runnalls, 2008). This assumes, 

nonetheless, a low political will to implement climate policy in the short term and a reduced 

incentive to participate in international agreements to tackle the issue in the longer term.  

There are, however, other people that advocate the opposite, i.e., that crises provide an 

opportunity for developing and investing in low-carbon technologies that, in turn, could provide a 

way out of the recession (Greenpeace, 2008). According to this view, given the long lifetime of 

most energy infrastructures and technologies, the opportunities provided by crises to replace 

carbon-intensive technologies by cleaner alternatives should not be missed. According to 

Papandreou (2015) crises can open up opportunities for new institutional pathways if the forces 

                                                 
8 Carbon lock-in refers to the difficulty to shift the economy and technological systems into a low-carbon path. 
Whereas traditional economic approaches emphasize the role of existing physical infrastructures and the long age of 
the capital stock in key sectors (energy production and transport), more recent “evolutionary” approaches consider a 
wide array of sources of carbon lock-in, including economic and non-economic barriers to changes in complex 
technological systems (Unruh, 2000; Marechal, 2007). 
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they unleash give rise to changes in existing norms, regulations and institutions.9 Crises throw 

existing paradigms into new critical light.10 In fact, given the greater competition for scarce 

resources, economic crises should strengthen the case for a suitable design of climate policies 

which lead to cost-effective emissions reductions in an intertemporal perspective.11 Proponents of 

this view then call for clear, long-term and stable policy frameworks and more international 

cooperation. This paper empirically aims to test the two conflicting propositions: whether crises 

give rise to an increase or decrease in emissions. As to whether these originate and propel the use 

of greener technologies it is a matter of relevance that goes beyond the scope of the paper. 

 

3. Empirical Methodology 

 

The empirical analysis consists in estimating and tracing out the average evolution of various 

types of emissions in the aftermath of financial crises. The statistical method follows the approach 

proposed by Jordà (2005) to estimate impulse-response functions. This approach has been 

advocated by Stock and Watson (2007), Auerbach and Gorodnichencko (2013) and Romer and 

Romer (2017), among others, as a flexible alternative to vector autoregression (autoregressive 

distributed lag) specifications since it does not impose dynamic restrictions. It is also particularly 

suited to estimating nonlinearities in the dynamic response.  

                                                 
9 Acemoglu and Robinson (2012) provide a sweeping account of the development of nations over millennia and how 
different crises or historical contingencies were often turning points that could substantially alter the trajectory of a 
country, locking them into a virtuous cycle of prosperity or sometimes having the opposite effect. 
10 Geels (2013) frames the relationship between the financial crises and sustainability transitions within a multi-level 
perspective (see also Geels 2002; Van Bree et al., 2010). 
11 While typically crises have both economic and social costs, the benefits of greener policies (e,g. Germany´s 
Energiewende) while also initially costly, must be weighted in present discounted terms against the potential savings 
and benefits (positive externalities) they can generate. Such cost-benefit analyses imply a number of ah-hoc 
assumptions and are beyond the scope of this paper. We thank an anonymous referee to raising this point. 
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The first regression specification is estimated as follows: 

 

𝑦௜,௧ା௞ − 𝑦௜,௧ିଵ = 𝛼௜ + 𝜇௧ + 𝛽௞𝐹𝐶௜,௧ + θX௜,௧ + 𝜀௜,௧      (1) 

 

in which 𝑦௜,௧ା௞ is the natural logarithm of an emissions variable (see section 4 for details) in country 

i in period t+k; 𝛼௜ are country fixed effects included to control for unobserved cross-country 

heterogeneity; 𝜇௧ are time effects to control to control for global shocks; 𝐹𝐶௜,௧ is our financial crisis 

dummy variable, which takes value 1 when a financial crisis took place and zero otherwise. 𝐹𝐶௜,௧ 

takes the value of 1 for the starting year of a given financial crises and 0 otherwise (we focus only 

on the first year of a given crisis episode to improve the identification and minimize reverse 

causality problems – for a similar approach see Ball, Furceri, Leigh, Loungani, 2013). X௜,௧ is a set 

of controls including two lags of the dependent variable, two lags of the crisis variable and two 

lags of real GDP growth.12 𝜀௜,௧ is an i.i.d. disturbance term satisfying standard assumptions of zero 

mean and constant variance. Equation (1) is estimated via Ordinary Least Squares (OLS) for each 

k=0,..,6 with robust standard errors clustered at the country level. Impulse response functions are 

computed using the estimated coefficients 𝛽௞, and the confidence bands associated with the 

estimated impulse-response functions are obtained using the estimated standard errors of the 

coefficients 𝛽௞. 

 

                                                 
12 While the presence of a lagged dependent variable and country fixed effects may in principle bias the estimation in 
small samples (Nickell (1981)), the length of the time dimension mitigates this concern. Note that the finite sample 
bias is in the order of 1/T. While the number of lags was chosen to be 2, results remain qualitatively unchanged to 
alternative lag structure specifications (refer to section 5.b - Sensitivity). 
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We are aware of alternative ways of estimating dynamic impacts but, as we explain, those 

are inferior options. The first possible alternative would be to estimate a Panel Vector 

Autoregression (PVAR). However, this is generally considered a “black-box” since all relevant 

regressors are considered endogenous. Moreover, one has to know the exact order in which they 

enter in the system. Since economic theory rarely provides such an ordering, the Choleski 

decomposition is often used as a solution of limited value for providing structural information to 

a VAR. Moreover, a major limitation of the VAR approach is that it has to be estimated to low 

order systems. Since all effects of omitted variables are in the residuals, this may lead to big 

distortions in the IRFs, making them of little use for structural interpretations (see e.g. Hendry 

1995). In addition, all measurement errors or misspecifications also induce unexplained 

information left in the error terms, making interpretations of the IRFs even more difficult (Ericsson 

et al., 1997). One should bear in mind that due to its limited number of variables and the aggregate 

nature of the shocks, a VAR model should be viewed as an approximation to a larger structural 

system. In contrast, the approach used here does not suffer from these identification and size-

limitation problems and, in fact, has been suggested by Auerbach and Gorodnichenko (2013), inter 

alia, as a sufficiently flexible alternative.  

A second alternative of assessing the dynamic impact of financial crises would be to 

estimate an Autoregressive-Distributed-Lag (ARDL) model of changes in inequality and 

consolidation episodes and to compute the IRFs from the estimated coefficients (Romer and 

Romer, 1989; and Cerra and Saxena, 2008). Note that the IRFs obtained using this method, 

however, tend to be lag-sensitive, therefore undermining the overall stability of the IRFs. 

Moreover, the statistical significance of long-lasting effects can result from one-type-of-shock 

models, particularly when the dependent variable is very persistent, as are emissions (Cai and Den 
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Haan, 2009). Contrarily, in the local projection method we do not experience such issue since 

lagged dependent variables enter as control variables and are not used to derive the IRFs. Lastly, 

estimated IRFs’ confidence intervals are computed directly using the standard errors of the 

estimated coefficients without the need for Monte Carlo simulations. 

 

In the second specification, the dynamic response is allowed to vary with the state of the 

economy: 

 

𝑦௜,௧ା௞ − 𝑦௜,௧ିଵ = 𝛼௜ + 𝜇௧ + 𝛽௞
௅𝐹(𝑧௜,௧)𝐹𝐶௜,௧+𝛽௞

ு(1 − 𝐹(𝑧௜,௧))𝐹𝐶௜,௧ + θ𝑀௜,௧ + 𝜀௜,௧  (2)                 

 

with 

 𝐹(𝑧௜௧) =
ୣ୶୮ (ିఊ௭೔೟)

ଵାୣ୶୮ (ିఊ௭೔೟)
,     𝛾 > 0 

 

in which 𝑧௜௧ is an indicator of the state of the economy normalized to have zero mean and unit 

variance. Following Auerbach and Gorodnichenko (2012), the indicator of the state of the economy 

is the real GDP growth rate, and Fit is a smooth transition function used to estimate the polluting 

impact of financial crisis in expansions versus recessions. They further argue for setting 𝛾 = 1.5, 

which we also use. The results do not qualitatively change if we use alternative positive values of 

𝛾. The main reasons for identifying the state of economy using real GDP growth instead of the 

output gap are that the latter is unobservable and subject to substantial and frequent revisions, as 

well as that estimates of output gaps are typically surrounded by great uncertainty. In the 

robustness checks section, we present the results based on an alternative measure of economic 

slack (output gap computed via the recent Hamilton (2017) filtering approach). M is the same set 
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of control variables used in the baseline specification, but now including also two lags of 𝐹(𝑧௜,௧). 

Equation (2) is also estimated using OLS and the same assumptions as in equation (1) apply.  

This approach is equivalent to the smooth transition autoregressive model developed by 

Granger and Terävistra (1993). The advantage of this approach is twofold. First, compared with 

a model in which each dependent variable would be interacted with a measure of the business 

cycle position, it permits a direct test of whether the effect of crises varies across different regimes 

such as recessions and expansions. Second, compared with estimating structural vector 

autoregressions for each regime it allows the effect of crises to change smoothly between recessions 

and expansions by considering a continuum of states to compute the impulse response functions, 

thus making the response more stable and precise. This estimation strategy can also more easily 

handle the potential correlation of the standard errors within countries, by clustering at the country 

level.13 

 

4. Data and Issues 

 

4.1 Emissions 

We use data aggregated by the World Resources Institute (WRI), which includes GHG 

emissions by gas and economic sectors. GHG emissions rely on a gas aggregation method that 

includes carbon dioxide (CO2) and non-CO2 emissions, such as methane (CH4), nitrous oxide 

(N2O), and fluorinated gases (F-gases), converted based on their 100-year Global Warming 

Potential (GWP-100) according to the IPCC’s 2nd Assessment Report. We do not include GHG 

                                                 
13 The standard errors of the estimated coefficients discussed below are even smaller if we allow for correlation in 
the standard errors across countries and cluster at the time period level. 
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emissions from Land-use and Land-use Change and Forestry (LULUCF) in our baseline results, 

given the discrepancies between FAO data and what countries report to the UNFCCC.14 

CO2 emissions from fossil fuel combustion and cement manufacture are taken from the 

International Energy Agency (IEA) for the 34 OECD’s industrialized countries and 101 

developing economies), the Carbon Dioxide Information Analysis Center (CDIAC) for 50 

countries that lack IEA data (cover mostly cement production and up to 2011), and the U.S. Energy 

Information Administration (USEIA), which complements the CDIAC’s 2012 emissions for the 

50 countries that lack IEA data.  

CH4 and N2O are taken from U.S. Environmental Protection Agency (US-EPA), which 

provides data on emissions from industrial processes and waste, and from the Food and Agriculture 

Organization (FAO), which includes data on agriculture emissions. Fluorinated gas emissions are 

provided by the US-EPA and fall within the industrial processes sector. 

Emissions by economic sector regroup agriculture, energy, industrial processes, and waste 

emissions. Agriculture emissions are made of CH4 and N2O (data from FAO) and energy 

emissions are composed of CO2 from fuel combustion (IEA) and of CH4 and N2O from fugitive 

emissions (US-EPA). Industrial processes include CO2 from cement production (CDIAC) and 

other related emissions (US-EPA), and waste emissions are produced by CH4 and N2O from 

landfills and human sewage (US-EPA). 

With the exception of CO2 for which we have longer time series – starting in 1980 – all 

other emission series begin in 1990. CO2 produces eight times less greenhouse effects than 

methane. However, with a focus on the concentration, among Carbone dioxide, methane and 

nitrous oxide, the CO2 has the biggest impact on global warming. Moreover, whereby methane 

                                                 
14 Our results are robust even with the inclusion of LULUCF. 
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naturally breaks down relatively quickly in the atmosphere, the lifespan of CO2 exceeds the first 

one. As a result, in order to further inspect the relevance of financial crises in affecting CO2 

emissions, we resort to IEA categorization into CO2 stemming from electricity and gas, from 

manufacturing, from transportation and from other fuel combustion. These series also go back to 

1980. 

 

4.2 Financial Crises and Other Data 

Financial crises dummies come from Leaven and Valencia’s (2010) publicly available 

database. These include overall financial crises, systemic and non-systemic crises, banking crises, 

currency crises and, finally, debt crises. Under their definition, a systemic crisis occurs when a 

country's corporate and financial sectors experience a large number of defaults, and financial 

institutions and corporations face difficulties in repaying debt on time. The authors combine 

quantitative data with some subjective assessments by country experts. A currency crisis is defined 

as an episode during which there was a nominal depreciation of the currency vis-à-vis the US 

dollar of at least 30 percent that is also at least 10 percentage points higher than the rate of 

depreciation in the year before. For debt crises, they identify and date episodes of sovereign debt 

default and restructuring. 

In addition, real GDP (in national currency) and real GDP growth are retrieved from the latest 

update of the IMFs World Economic Outlook (WEO) database, which covers 189 countries 

starting in 1980. For robustness purposes, we also use an indicator of the fiscal stance based on 

government’s consumption forecasts errors, retrieved from the October vintage of the WEO 

forecasts. Actual data on government consumption correspond to the first release. Summary 

statistics are presented in the Appendix Table A.1. 
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4.3 Event Study of Crises and Emissions 

 

In Figure 1 we do a simple event-study exercise in which we plot the average level (in logs) of 

different types of emissions during, before and after a financial crisis. We do so by splitting the 

sample by country groups to inspect more closely heterogeneity given the underlying fundamental 

differences in economic structures and stages of development. In the first row we observe that 

financial crises to not seem to affect much the level of CO2 in Advanced Economies, but they 

increase in developing countries during t+1 and t+2. In Advanced Economies GHG emissions 

increase in the year of the crisis but they quickly return to lower levels afterwards. All other 

graphical results provide an unclear picture supporting the case for a serious econometric 

inspection that will follow. 

 

Figure 1. Event Study of Emissions and Crises, AE vs DEV 
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5. Results 

a. Baseline 

 

Figure 2 presents the results obtained by estimating equation (1) for our six types of 

financial crises and for the four components of production-based GHG, namely CO2, N2O, CH4 

and F-gas. Financial crises in general (top left panel) seem to lead to a statistically significant fall 

in CO2 and methane emissions (with the latter getting increasingly imprecisely estimated as the 
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horizon expands). Magnitudes are non-negligible: a financial crisis can lead to the fall of up to 4 

percent in CO2 emissions after 2 years (and slowly reducing to a fall of about 2 percent after 6 

years).15 The fall in both CO2 and methane emissions is particularly sizeable when non-systemic 

crises take place (top right panel). Turning to different types of crises, CO2 emissions also respond 

negatively and significantly following banking crises (a fall of up to 6 percent in these emissions 

in the medium-term), while methane and fluorinated gas react positively and significantly 

following debt crises (an increase of about 12 percent in these emissions in the medium-term). In 

all remaining cases, confidence bands do not allow us to state unequivocally that crises positively 

or negatively impacted a specific type of emissions. 

 

  

                                                 
15 The full set of results underlying this figure is present in Appendix Table A2 for completeness. 
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Figure 2. Impulse Responses of GHG components to different financial crises, 

baseline, all countries 
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Figure 2.1. Effect of Systemic Crises
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Figure 3.1. Effect of Non Systemic Crises
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Figure 4.1. Effect of Banking Crises
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Figure 5.1. Effect of Currency Crises
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Figure 6.1. Effect of Debt Crises
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Note: blue continuous line denotes the impulse response from equation 1. Dotted blue lines are the 90 percent 

confidence bands. The horizontal axis is expressed in annual frequency. t=0 is the starting year of a financial crisis. 

 

 

From this point onwards, only those IRFs yielding statistically significant results are show 

for reasons of parsimony (the full set of results is nonetheless available from the authors upon 

request). The previous set of unconditional effects mask, however, considerable variation 

depending on business cycle conditions, as shown by the OLS estimation of equation (2) reported 

in Figure 3.  

During periods of slack, financial crises in general seem to have a positive and statistically 

significant impact on both methane and nitrous oxide emissions (reaching about a 7 percent 

increase after 6 years). The reverse is true in good times (more so for the nitrous oxide), but the 

magnitude is not symmetric to that of bad times. Systemic crises that hit a country undergoing 

economic difficulties are associated with larger CO2 and production-based GHG. As for the type 

of financial crisis that seems to have larger impacts, yet again, debt crises are associated with 

increases in production based GHG emissions irrespectively of the phase of the business cycle.  

Also, methane, F-gas and nitrous oxide react positively in the short to medium-run following debt 

crises that take place during bad economic times. Under strong economic conditions however, 

financial crises seem to mildly lead to the reduction of various types of emissions, but the effects 

are not always precisely estimated. 

We also redid the previous analysis by focusing instead on economic sectors instead of gas 

nature. Such results are displayed in Figure A1 in the Appendix. They show that when hit by a 

debt crisis, a country experiences a rise in emissions stemming from either energy related activities 

or industrial processes. These effects are potentially large in the medium term and statistically 
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different from zero. In addition, relying on longer CO2 series, Figure A2 shows that carbon dioxide 

emissions emanating from manufacturing (transportation) decrease (increase) following a 

financial/banking (systemic) crisis. 
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Figure 3. Impulse Responses of Emissions to different financial crises, state 

contingent, all countries (selection) 
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Note: Blue continuous line denotes the impulse response from equation 2. Dotted blue lines are the 90 percent 

confidence bands. the yellow continuous line represents the unconditional baseline IRF from equation 1 (for 

comparison purposes). The horizontal axis is expressed in annual frequency. t=0 is the starting year of a financial 

crisis. 

 

Next, we split between advanced economies and developing countries. Re-estimating 

equation 1 separately for each sub-sample yields the results displayed in Figures 4 and 5.  

 

In Figure 4, left hand side panel, we observe that systemic and banking crises result in a 

fall in methane, nitrous oxide and production based GHG emissions in advanced economies in 

normal times. When we condition by the state of the economy, most types of crises (with the 

exception of currency and debt ones) are associated with a rise in emissions from CO2 and 

production based GHG during periods of economic slack, but their decline during booms. 
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Evidence seems to suggest that in bad times, advanced economies do not take that opportunity to 

get away from carbon-intensive technologies and invest in cleaner ones, contrary to Papandreou’s 

(2015) argument.  

In Figure 5, the unconditional results for developing economies (left hand side panel) show 

negative (positive) and statistically significant response of CO2 (production based GHG) 

following systemic/banking (debt) crises. Estimating equation 2 for the subsample of developing 

economies shows a similar outcome in terms of a rise in emissions during bad times (but there 

CO2 is absent, i.e., results are statistically insignificant). In periods of strong economic conditions, 

most IRFs are not statistically different from zero (except the positive association between 

production based GHG and debt crises).  
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Figure 4. Impulse Responses of GHG components to different financial crises, 

baseline and state contingent, advanced economies (selection) 

  

Note: Panel on the left includes the baseline estimation of equation 1 for the sample of advanced economies. Blue 

continuous line denotes the impulse response from equation 1. Dotted blue lines are the 90 percent confidence bands. 

Panel on the right include the state contingent estimation of equation 2 for the sample of advanced economies. Blue 

continuous line denotes the impulse response from equation 2. Dotted blue lines are the 90 percent confidence bands. 

the yellow continuous line represents the unconditional baseline IRF from equation 1 (for comparison purposes). The 

horizontal axis is expressed in annual frequency. t=0 is the starting year of a financial crisis. 
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Figure 5. Impulse Responses of GHG components to different financial crises, 

baseline and state contingent, developing economies 

  

Note: see note Figure 4. 
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our findings, equation 1 was re-estimated by excluding country fixed effects from the analysis. 

The results (not shown but available upon request) suggest that this bias is negligible (the 

difference in the point estimate is small and not statistically significant). 

As an additional sensitivity check, equation (1) was re-estimated for different lags (l) of the 

variables in the X vector. The results for zero lags, one lag and three lags (not shown but available 

upon request) confirm that previous findings are not sensitive to the choice of the number of lags. 

Robustness to the identification of slack 

As an alternative variable measuring economic slack to use in the 𝐹(𝑧௜௧) function that enters 

equation 2, we have employed an output gap measure. Despite substantial progress in the 

estimation methodologies to calculate potential output, there is still not a widely accepted approach 

in the profession. According to Borio (2013), two alternative approaches to estimate potential GDP 

are used: i) there are univariate statistical approaches, which consist of filtering out the trend 

component from the cyclical one; ii) there are the structural approaches, which derive the estimates 

directly from the theoretical structure of a model. Aware of the shortcomings of using either one 

or the other16, and at the cost of not maximizing the total number of observations in our panel 

dataset, instead of relying on the IMF’s WEO measure of output gap17, we rather apply the recent 

filtering technique developed by Hamilton (2017). In addition, we are also mindful of the 

criticisms surrounding the use of the popular Hodrick-Prescott (HP) filter (such as the 

identification of spurious cycles), particularly in the context of a large sample of very 

                                                 
16 Statistical methods suffer from the end-point problem, that is, they are extremely sensitive to the addition of new 
data and to real-time data revisions. Structural models, on the other hand, may be difficult to implement consistently 
in cross-sectional environments and rely on the imposition of pre-determined assumptions. 
17 The IMF does not have an official method for computing potential output and every country desk decides which 
measure fits best. While the most common IMF approach uses a production function approach, assumptions vary 
greatly across countries and discretion is left to the country desks. 
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heterogeneous countries (Harvey and Jaeger, 1993; Cogley and Nason, 1995). Hamilton’s (2017) 

approach to extract the cyclical and trend component of a generic variable tx  (denoted t
cx  and 

tx  , respectively), consists of estimating:  

𝑥௧ା௛ = 𝛾଴ + ∑ 𝛾௝ + 𝑥௧ି௝ + 𝑢௧ା௛
௞
௝ୀ଴  (3) 

where t
c

tt xxx   .  

The non-stationary part of the regression provides the cyclical component: 

𝑥௧
௖ = 𝑢௧ෞ  (4) 

while the trend is given by 

𝑥௧
ఛ = 𝛾଴ෝ + ∑ 𝛾ఫෝ + 𝑥௧ି௛ି௝

௞
௝ୀ଴   (5) 

Hamilton (2017) suggests that h and k should be chosen such that the residuals from equation 

(3) are stationary and points out that, for a broad array of processes, the fourth differences of a 

series are indeed stationary. We choose h = 2 and k = 3, which is line with the dynamics seen in 

real GDP. Results of re-estimating equation 2 using the newly computed output gap as measure of 

slack, are displayed in Figure A3 in the appendix. We can see that while there are some similarities 

there are also some insightful differences with respect to the IRFs presented in Figure 3. We still 

get a positive (but weaker in significance) effect of financial crises in bad times on methane 

emissions. the differences are that CO2 emissions decline in times of economic strain after a 

financial crisis (particularly non-systemic and banking ones). Moreover, production based GHG 

emissions always reactive positively and significantly following a debt crisis irrespectively of the 

state of the economy. Finally, methane and nitrous oxide emissions increase after a debt crisis that 

hits the economic during periods of slack. 
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Does the prevailing fiscal stance matter? 

The response of emissions to financial crises may also depend on whether the government is 

engaging in expansionary or contractionary fiscal policy at the time the economy is hit. To our 

knowledge, the only paper relating fiscal policy and the environment is the one by Lopez et al. 

(2011). The authors model (and empirically test) the impact of fiscal spending patterns on the 

environment and find that there is a reallocation of government spending composition towards 

social and public goods that tend to reduce pollution when an economy is hit by a negative shock. 

They further conclude that increasing total government spending (that is, engaging in expansionary 

fiscal policy) without altering its composition, does not reduce polluting emissions. while our 

setting is not identical, we still aim to shed further light into the effects of crises on the environment 

conditioning on prevailing (at the time of the shock) fiscal conditions. To this end, we consider an 

alternative version of equation 2 where instead of the state of the economy, we use instead an 

indicator of fiscal policy stance. The indicator fiscal policy stance is a government consumption 

shock, identified as the forecast error of government consumption expenditure relative to GDP (for 

a similar approach see, e.g., Auerbach and Gorodnichenko 2012, 2013; and Abiad et al., 2015).18 

Here, δ = 1 is used to assess the role of the fiscal policy.19 Figure 6 shows the results. Financial 

crises hitting an economy when it is engaging in contractionary fiscal policies, leads to a negative 

and statistically significant response of CO2 and production-based emissions. In contrast, after 

systemic (non-systemic) crises that take place in periods of fiscal relaxation, production based 

GHG (CO2) emissions go up (down) in the medium term. Furthermore, CO2 emissions react 

negatively after banking and debt crises and a loosening of the fiscal stance. Finally, currency 

                                                 
18 This procedure also overcomes the problem of fiscal foresight (Forni and Gambetti 2010; Leeper et al., 2012, 2013; 
Ben Zeev and Pappa 2014), because it aligns the economic agents’ and the econometrician’s information sets. 
19 The results do not qualitatively change for different values of δ > 0. 
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crises that take place at times of fiscal retrenchment lead to a fall in both CO2 and production 

based GHG emissions. 

6. Conclusion  

 

In this paper, we have provided empirical evidence on the impact of different types of financial 

crises on pollutant emissions for a sample of 86 countries between 1980-2012. We relied on the 

local projection method to plot the impulse responses of a variety of emissions categories (by type 

of gas and economic activity) to financial crises.  

We found that financial crises in general led to a statistically significant fall in CO2 and 

methane emissions. CO2 emissions responded negatively and significantly following banking 

crises, while methane and fluorinated gas reacted positively and significantly following debt crises. 

Results also showed that production-based emissions increased following debt crises. Moreover, 

when hit by a debt crisis, a country experiences a rise in emissions stemming from either energy 

related activities or industrial processes. More specifically, CO2 emissions emanating from 

manufacturing (transportation) decrease (increase) following a financial/banking (systemic) crisis.  

When we split the sample, we observed that, in normal times in advanced economies, 

systemic and banking crises resulted in a fall in methane, nitrous oxide and production based GHG 

emissions. In normal times in developing economies, systemic/banking (debt) crises resulted in a 

negative (positive) and statistically significant response of CO2 (production based GHG). 

During periods of slack, financial crises in general had a positive and statistically 

significant impact on both methane and nitrous oxide emissions. Systemic crises that hit a country 

undergoing economic difficulties were associated with larger CO2 and production-based GHG. 

Debt crises were associated with increases in production based GHG emissions irrespectively of 
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the phase of the business cycle.  Under strong economic conditions however, financial crises 

(weakly) led to the reduction of various types of emissions, but the effects were not always 

precisely estimated. 

Finally, if a financial crisis hit an economy when it was engaging in contractionary fiscal 

policies, this led to a negative and statistically significant response of CO2 and production-based 

emissions. In contrast, after systemic (non-systemic) crises that took place in periods of fiscal 

relaxation, production based GHG (CO2) emissions went up (down) in the medium term. 

Furthermore, CO2 emissions reacted negatively after banking and debt crises and a loosening of 

the fiscal stance. 

For policy makers, it is important so see financial crises as opportunities to make big reductions 

in emissions that one can then lock in, and ensure that carbon prices, investments and other policies 

nudge us all toward innovations that in turn give the tools to be a low carbon society, with a 

business model that combines prosperity with responsibility. As there is no one size fits all when 

it comes to policy implications (depends on development stage, initial conditions, current policy 

and institutional setting, political economy concerns, etc.) it is difficult to elaborate on country 

specific implications. This paper´s findings reinforce the need to improve economic and financial 

resilience to shocks as a way to prevent certain types of emissions to rise (as a result of a financial 

crisis). Hence, focus on macroprudential preventive regulation is a necessary component, while 

simultaneously countries with fiscal space should promote fiscal policies that support greener 

technologies (tax rebates, subsidies, deductions, etc.) so that the productive structure slowly 

transforms itself into a less pollutant one (with clear environmental sustainability positive 

externalities). 



 

Figure 6. Impulse Responses of GHG components to different financial crises, state contingent, all countries 
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APPENDIX 

Figure A1. Impulse Responses of Emissions to different financial crises, emissions 
by economic sector, all countries 

 

Figure A2. Impulse Responses of Emissions to different financial crises, CO2 
emissions by type of activity, all countries 
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Figure A3. Impulse Responses of Emissions to different financial crises, state 
contingent using alternative measure of slack (Hamilton, 2017 filter), all countries 
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Table A1. Summary Statistics 

Variable Observations Mean Standard Deviation Min Max 

financial crises 2,408 0.075 0.263 0 1 

systemic crises 2,408 0.049 0.216 0 1 

non-systemic crises 2,408 0.146 0.353 0 1 

banking crises 2,408 0.030 0.171 0 1 

currency crises 2,408 0.039 0.193 0 1 

debt crises 2,408 0.013 0.115 0 1 

real GDP growth 3,740 2.864 5.947 -69.700 53.810 

CO2 4,416 147.984 596.615 0.018 9019.518 

production based GHG 3,402 221.398 800.399 0.036 10975.500 

consumption based GHG 3,261 240.267 838.756 0.010 9337.216 

CH4 3,338 39.516 104.983 0.011 914.002 

N2O 3,338 17.413 46.911 0.002 572.441 

F-gas 3,404 3.109 14.801 0.000 185.609 

emissions from energy 2,752 211.210 736.074 0.742 8649.794 

emissions from industrial processes 3,290 11.587 57.608 0.000 1296.546 

emissions from agriculture 3,338 31.252 85.110 0.005 844.544 

emissions from waste 3,404 8.154 22.604 0.003 197.602 

CO2 from electricity and heat 3,766 77.949 306.266 0.000 4404.920 

CO2 from manufacturing 3,766 37.924 149.139 0.000 2546.060 

CO2 from transportation 3,766 36.029 149.739 0.040 1789.870 

CO2 from other fuel combustion 3,766 25.035 77.117 0.000 695.050 
Note: all emissions expressed in MtCO2e. 
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Table A2. Regression Results underlying Figure 2  

Crisis Type Financial Crises Systemic Crises Non-Systemic Crises 
Variable Horizon Coef. S.E. Horizon Coef. S.E. Horizon Coef. S.E. 

CO2 -1 0 0 -1 0 0 -1 0 0 
 0 -0.71 1.68 0 -0.90441 1.057367 0 -1.76888 1.7479 
 1 -4.53 1.78 1 0.772272 2.316384 1 -6.54578 3.360587 
 2 -5.28 2.35 2 0.883894 2.96218 2 -5.61757 2.695062 
 3 -3.90 2.79 3 -0.67152 2.674513 3 -8.0619 3.775799 
 4 -4.33 2.34 4 0.328073 2.610025 4 -8.64919 3.858104 
 5 -4.33 2.60 5 1.17447 2.870513 5 -8.49758 3.780209 
 6 -2.36 2.80 6 1.235166 2.713416 6 -5.73042 2.936191 

Nitrous Oxide -1 0 0 -1 0 0 -1 0 0 
 0 -1.01 0.63 0 -1.09885 1.528136 0 -2.37996 1.103232 
 1 -0.90 0.97 1 1.835653 2.707504 1 -1.78975 1.408438 
 2 -0.97 1.95 2 -0.84715 2.98527 2 -2.17112 1.98824 
 3 0.35 2.30 3 -1.31435 4.682515 3 -2.3841 2.436445 
 4 0.10 1.84 4 -2.65448 5.603994 4 -2.61899 2.724618 
 5 2.01 1.87 5 -5.25579 5.631676 5 -1.34331 3.210178 
 6 2.64 1.65 6 -5.47139 6.595737 6 -0.6659 3.442593 

GHG -1 0 0 -1 0 0 -1 0 0 
 0 2.63 2.85 0 -1.37979 0.890642 0 -0.51243 0.977136 
 1 1.84 2.99 1 0.400627 2.636837 1 -2.37006 1.559154 
 2 1.48 3.02 2 0.632599 2.339572 2 -1.77698 1.691703 
 3 2.65 3.20 3 0.917608 2.136018 3 -0.89121 2.168527 
 4 2.68 3.30 4 0.150942 3.124706 4 -1.32284 2.281911 
 5 4.08 3.34 5 0.296645 3.559678 5 -1.55331 2.570712 
 6 4.39 3.54 6 -0.13134 3.523921 6 -1.29786 2.659318 

Methane  -1 0 0 -1 0 0 -1 0 0 
 0 -1.01 0.37 0 -1.09885 1.103059 0 -2.37996 0.85067 
 1 -0.90 0.69 1 1.835653 1.997665 1 -1.78975 0.645781 
 2 -0.97 0.73 2 -0.84715 2.400755 2 -2.17112 1.173948 
 3 0.35 0.96 3 -1.31435 3.060335 3 -2.3841 1.580965 
 4 0.10 1.09 4 -2.65448 4.136325 4 -2.61899 1.782092 
 5 2.01 1.34 5 -5.25579 4.627652 5 -1.34331 2.328402 
 6 2.64 1.40 6 -5.47139 5.005467 6 -0.6659 2.464712 
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(cont.) 
Crisis Type Banking Crises Currency Crises Debt Crises 

Variable Horizon Coef. S.E. Horizon Coef. S.E. Horizon Coef. S.E. 
CO2 -1 0 0 -1 0 0 -1 0 0 

 0 -3.80212 2.589324 0 1.66637 1.725489 0 0.150624 1.963288 
 1 -5.87962 2.406554 1 -1.47369 1.769458 1 -3.66276 3.458048 
 2 -4.56673 2.107138 2 -3.28143 3.485882 2 -4.71787 3.983103 
 3 -5.99366 3.124376 3 0.065792 3.053412 3 -5.23135 4.524772 
 4 -7.46269 3.205056 4 0.463461 2.887159 4 -2.61295 4.527835 
 5 -7.93038 3.860955 5 2.869655 2.803182 5 -4.39965 6.420521 
 6 -6.01086 3.446878 6 4.652825 2.845627 6 -7.39872 6.936317 

Nitrous Oxide -1 0 0 -1 0 0 -1 0 0 
 0 -0.80921 0.729287 0 -1.71099 0.83935 0 0.236698 1.812968 
 1 -1.21593 1.027824 1 -0.60392 1.317535 1 1.514265 3.462669 
 2 -0.41014 1.452431 2 -2.1012 2.701583 2 5.194294 3.132698 
 3 0.604175 1.824026 3 -0.94348 3.278729 3 4.718475 3.128873 
 4 1.33193 2.06327 4 -2.46193 2.554982 4 5.681625 3.400002 
 5 1.602326 2.434544 5 0.51329 2.719101 5 3.687199 4.910997 
 6 1.715606 2.71248 6 0.945725 2.108958 6 4.772572 4.727071 

GHG -1 0 0 -1 0 0 -1 0 0 
 0 -0.51519 0.75696 0 2.759019 4.188067 0 2.301983 1.41463 
 1 -2.22241 1.053105 1 3.716023 4.2982 1 5.998375 2.391651 
 2 -1.90463 1.197318 2 3.423266 4.344099 2 7.753236 2.296185 
 3 -0.82515 1.549602 3 4.115162 4.577513 3 9.57633 2.338375 
 4 -1.37045 1.661871 4 4.602129 4.698332 4 11.56606 2.065934 
 5 -1.1818 1.88728 5 7.122493 4.731679 5 12.39219 2.073119 
 6 -1.24582 2.063264 6 6.939784 4.808266 6 11.52471 1.841711 

Methane  -1 0 0 -1 0 0 -1 0 0 
 0 -0.80921 0.417815 0 -1.71099 0.529014 0 0.236698 0.99905 
 1 -1.21593 0.758213 1 -0.60392 0.650377 1 1.514265 2.084379 
 2 -0.41014 0.921955 2 -2.1012 0.920469 2 5.194294 2.447521 
 3 0.604175 1.250166 3 -0.94348 1.341592 3 4.718475 2.697006 
 4 1.33193 1.505258 4 -2.46193 1.547163 4 5.681625 3.377401 
 5 1.602326 1.878642 5 0.51329 1.935123 5 3.687199 3.601817 
 6 1.715606 1.99962 6 0.945725 1.992354 6 4.772572 3.77971 

Note: horizon denotes the k-period ahead. “coef” and “S.E.” denote the coefficient estimate and corresponding 
standard error estimated in equation 1.  
 
 
 


