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“Our greatest weakness lies in giving up.
The most certain way to succeed is

always to try just one more time.”

Thomas Edison
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Resumo

O figado é um 6rgdo essencial nos vertebrados, desempenhando fun¢des vitais no metabolismo e
no sistema imunitario. Entre as suas multiplas fungdes metabdlicas, destaca-se o metabolismo lipidico.
Alteracdes ou desequilibrios neste processo metabdlico podem levar a uma perturbacdo da homeostase
do figado através da acumulagao irregular de gordura neste 6rgdo, condi¢do conhecida como esteatose
hepatica.

A esteatose hepdtica pode ser causada por diversos fatores, como obesidade, resisténcia a insulina,
diabetes tipo 2, sindrome metabdlica, estilo de vida sedentério, dieta inadequada, niveis elevados de
colesterol e triglicerideos, deficiéncias nutricionais, uso de medicamentos, hepatite, desnutri¢do e con-
sumo crénico de dlcool. Divide-se em dois grandes tipos: esteatose hepdtica alcodlica e nao alcodlica.
O estudo apresentado neste projeto concentra-se em casos de doenga hepdtica crénica relacionada com a
Esteatose hepdtica ndo alcodlica (EHNA).

A EHNA tem uma prevaléncia global de cerca de 25% e estd relacionada com disttirbios metabdlicos,
na sua maioria causados por obesidade e resisténcia a insulina. Adicionalmente, a esteatose hepética
encontra-se frequentemente associada a individuos com uma dieta rica em gorduras, os quais apresentam
uma maior prevaléncia da condicdo. A doenga é definida pela presenca de uma acumulagdo anormal de
lipidos (esteatose) no interior do citoplasma dos hepatdcitos, sob a forma de vacuolos lipidicos, presente
em mais de 5% das células hepaticas (hepatdcitos), na auséncia de consumo significativo de dlcool ou
outras causas de esteatose, incluindo hepatite viral ou lesdo hepética induzida por medicamentos/toxinas.
Estes vactiolos podem variar em ndmero e tamanho, representando uma alteracio morfolégica. Esta
condicdo pode ser benigna, especialmente se detetada num estddio inicial, uma vez que é reversivel em
muitos casos. No entanto, se ndo for tratada, a doenga do figado gordo nio alcodlica pode progredir para
quadros mais graves, como esteato-hepatite (inflamacao do figado), fibrose e, eventualmente, cirrose.

Para o diagnéstico do figado gordo nao alcodlico, deve considerar-se o historial clinico da pessoa
e recorrer inicialmente a métodos de diagndstico ndo invasivos, como andlises ao sangue e exames de
imagem. No entanto, nem sempre estes métodos sao suficientemente precisos para determinar a extensao
da doencga, sendo nesses casos necessdria a realizacdo de um método considerado invasivo: a bidpsia
hepdtica. A bidpsia permite uma avaliacdo detalhada da estrutura celular do figado, identificando a
quantidade de gordura presente nos hepatdcitos e outros sinais de inflamacao, necessdarios a classificacdo
da esteatose e consequente diagndstico.

Apesar dos métodos invasivos fornecerem uma resposta mais precisa relativamente a percentagem de
esteatose no figado, apresentam limitagdes importantes, como o risco de complicagdes, o custo elevado
e a natureza invasiva do procedimento. O gold standard de diagndstico € um método semi-quantitativo,
realizado através de uma biépsia hepdtica, em que o patologista atribui um score categérico de acordo com
o nimero de hepatécitos com vactolos. Embora ndo requeira equipamento especializado, este método
estd sujeito a uma sobrestimacdo da percentagem relativa de hepatdcitos com esteatose, além de estar
sujeito a variagdes entre observadores, sendo que cada categoria abrange uma ampla faixa percentual de



esteatose. Face a estas limitagdes, torna-se evidente a necessidade de quantificar a esteatose hepética de
forma objetiva.

Neste sentido, surgem novas tecnologias computacionais como: algoritmos de machine learning, um
ramo da inteligéncia artificial que permite aos computadores aprenderem padrdes a partir de dados e
técnicas avangadas de andlise de imagem, capazes de quantificar de forma objetiva a esteatose. Entre
estas abordagens, destacam-se: (i) segmentacio automadtica por segmentacao da componente de saturacio
da imagem, e (ii) classifica¢do supervisionada por Random Forest — Weka (Waikato Environment for
Knowledge Analysis), que integra atributos morfol6gicos como circularidade, drea e solidez.

Estas ferramentas permitem uma avaliacdo mais objetiva e padronizada do figado, minimizando a
subjetividade da andlise dependente do observador (normalmente o patologista), oferecendo resultados
mais consistentes e fidveis. O uso de dados quantitativos nestas andlises € vantajoso, pois fornece
informagdes mais precisas sobre o grau de esteatose e contribui para diagndsticos e progndsticos mais
rigorosos.

No contexto do desenvolvimento de novas técnicas de andlise, a utilizagdo de modelos animais tem
sido fundamental na investigacdo da EHNA. Animais, como ratinhos, sdo frequentemente usados para
estudar o desenvolvimento da doenca e testar potenciais tratamentos, dado que estes modelos conseguem
replicar com precisdo as condi¢des metabdlicas que levam ao aparecimento da doenga em humanos.

Neste estudo experimental, o modelo animal utilizado foi o ratinho, sendo submetido a uma dieta
controlada, rica em 4cidos gordos, para induzir a esteatose hepdtica. Com base neste modelo animal,
propde-se a utilizacdo de amostras do figado para analisar a precisao de dois plugins de andlise au-
tomatizada de imagem: Weka e Saturation, ambos disponiveis na plataforma FIJI. O uso de softwares
automadticos permite recolher mais informacao celular e realizar uma quantificacdo mais precisa de varias
medidas dos componentes celulares, como dos vactiolos. Os resultados obtidos por estes plugins foram
usados para avaliar a percentagem de esteatose em imagens histoldgicas do figado, com base em diversas
varidveis da base de dados.

O objetivo principal deste estudo € determinar qual dos dois plugins oferece maior precisdo na
quantificacdo da esteatose hepdtica. Durante esta avaliagdo, o processo serd otimizado, determinando-
se o nimero ideal de imagens histolégicas necessdrias para uma andlise fidvel. E ainda a melhor
combinagdo ou combinacdes de amplia¢do e resolugdao para uma avaliacdo precisa da percentagem de
gordura hepdtica. Pretende-se ainda avaliar se o tamanho dos vactolos lipidicos estd relacionado com
o grau de esteatose. A resposta a estes objetivos envolveu a aplicagao de diversos métodos estatisticos,
nomeadamente: o teste de Wilcoxon, para comparar pares de amostras dependentes; o teste sobre o
coeficiente de correlagdo, para avaliar associacdes entre varidveis; os modelos lineares generalizados
mistos com distribui¢do binomial negativa (GLMM), para modelar o niimero de vactiolos considerando
efeitos aleatorios; a andlise de variancia, para comparar a qualidade de ajustamento entre modelos; e, por
fim, as técnicas de reamostragem bootstrap, para estimar intervalos de confianga e avaliar a estabilidade
das estimativas em diferentes combinagdes de imagens.

Responder a estes objetivos permitird continuar o desenvolvimento e orientacdo da forma de clas-
sificacdo da esteatose hepdtica, essencial para avaliar o grau da doenca e, em contexto de transplante,
prever complicacdes e definir estratégias preventivas e terapéuticas. Este aspeto € especialmente relevante
perante o aumento da prevaléncia da doenga, associado a obesidade, diabetes e alteragcdes no estilo de
vida.

Os resultados obtidos permitiram identificar que apesar das semelhancas entre os métodos, o plugin
Weka identificou um maior nimero de vacuiolos, embora por vezes com maior dispersdo nos dados. A
combinacgdo ideal de ampliacdo e resolu¢do, onde uma menor ampliagdo (maior drea de visualizacio),
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10x, combinada com uma alta resolu¢do (melhor detalhe), 40x ajuda a uma precisa identificacdo dos
vactolos. Quanto ao nimero minimo de imagens necessarias para uma estimativa fidvel, um minimo de 3
imagens sdo fidveis, mas 4 imagens permitem uma quantificacdo mais precisa. Foi ainda possivel detetar
uma associagdo entre o tamanho dos vacuiolos e o grau de esteatose. Destas conclusdes surgiu uma nova
pergunta, o nimero de imagens depende do grau da doenga? Com este estudo, demonstra-se que o uso
de ferramentas quantitativas e automaticas facilita a padronizacdo, reprodutibilidade e replicabilidade
na quantificacio da EHNA. Neste contexto, corroboram-se outros estudos ao mostrar que a utilizagdo
de métodos automaticos permite uma identificacdo mais precisa dos vactolos e, por conseguinte, uma
melhor avaliagdo da percentagem de esteatose em figados de ratinhos.

A utilizacdo de ferramentas estatisticas tornou-se essencial na anélise de dados biolégicos, permitindo
apresentar resultados mais fidveis e precisos. Neste cendrio, a Bioestatistica assume um papel central no
processo de investigacdo, apoiando os investigadores em todas as fases do estudo. A aplicacdo correta de
métodos estatisticos, como por exemplo: (i) os Modelos Lineares Generalizados Mistos, com diferentes
distribui¢des e (ii) a possibilidade de reamostragem através de técnicas bootstrap, permite uma andlise
rigorosa dos dados e uma interpretagdo fundamentada dos resultados, facilitando a comunicacao cientifica
e a tomada de decisdes baseadas em evidéncia.

E importante destacar a relevincia deste estudo, assim como a necessidade da sua continuidade,
incorporando mais dados: pardmetros bioquimicos e demogrificos relativos ao modelo animal, o que
podera viabilizar uma futura aplicagao na avalia¢do de figados humanos. A possibilidade de expandir este
estudo a um maior nimero de varidveis poderd permitir a constru¢do de um modelo que, com base em
variaveis clinicas e demograficas, fornecendo uma estimativa precisa da percentagem de esteatose, que
permita definir o grau da doenca e orientar o tratamento adequado (progndstico). Podera ainda evoluir
para uma ferramenta capaz de prever a mortalidade com base nos parametros do animal.

Palavras chave: Figado; Esteatose hepética ndo alcodlica; Quantificagcdo; GLMM Binomial Nega-
tiva; Bootstrap.
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Abstract

The liver plays a crucial role in metabolism and immunity, aiding in nutrient metabolism, detoxifi-
cation, protein production, digestion, and vitamin storage. The liver is essential for overall well-being.
Hepatic steatosis, or fatty liver, is primarily caused by obesity, type 2 diabetes, poor diet, and chronic
alcohol consumption. A specific form, Non-alcoholic fatty liver disease (NAFLD), is linked to metabolic
issues and high-fat diets. NAFLD is characterized by fat accumulation in liver cells without alcohol
involvement, ranging from benign steatosis to more severe conditions like cirrhosis.

Diagnosing NAFLD typically involves blood or imaging tests, though liver biopsy remains the most
accurate method. However, the standard scoring system for assessing steatosis based on biopsy results
is prone to inaccuracies due to variability among observers. Animal models, particularly mice, are
commonly used in research to study NAFLD progression and evaluate treatments.

New techniques such as machine learning and quantitative data analysis have improved the accuracy
of NAFLD diagnosis. In this study, mouse liver samples will be used to compare two automated image
analysis plugins, Waikato Environment for Knowledge Analysis (Weka) and Saturation, to determine
their accuracy in assessing steatosis. Weka applies machine learning techniques, specifically the Random
Forest classifier, to distinguish vacuoles from other cellular components based on morphological features.
The study also aims to identify the optimal combinations of magnification, resolution, and the number of
images for accurate analysis, and to assess whether there is a pattern in vacuole size related to the steatosis
percentage. The appropriate application of statistical methods, such as generalized linear mixed models
and bootstrap techniques, enables robust data interpretation and supports scientific communication and
evidence-based decision-making.

Weka detected more vacuoles than Saturation, especially at low magnification and high resolution.
Three to four images were sufficient for reliable estimates, and vacuole size was associated with steatosis
severity. Accurate classification of steatosis is vital, as NAFLD is a significant manifestation of metabolic
syndrome and poses increased mortality risks, particularly from cardiovascular diseases. Early diagnosis
and targeted treatment are key to improving patient outcomes and addressing this global health concern.

Keywords: Liver; Non-alcoholic fatty liver disease; Quantification; GLMM Negative Binomial;
Bootstrap.
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Chapter 1

Introduction

The liver, a vital organ in humans and animals, plays a significant role in metabolism and immunity
(e.g., Kupffer cells, specialized macrophages found in the hepatic sinusoids of the liver). It metabolizes
nutrients, detoxifies harmful substances, and produces important proteins. It also helps in digestion and
stores essential vitamins. Given its multifaceted functions, maintaining its health is crucial for overall
well-being.

The leading causes of hepatic steatosis, or fatty liver, are numerous and diverse. These include
obesity, insulin resistance, type 2 diabetes, metabolic syndrome, sedentary lifestyle, poor diet, high
levels of cholesterol and triglycerides, chronic alcohol consumption, nutritional deficiencies, medication,
hepatitis, and malnutrition. Despite this wide range of causes, this work focuses on a specific disease
that is not alcohol-related, namely Non-alcoholic fatty liver disease (NAFLD), which is generally linked
to metabolic issues and a high-fat diet. NAFLD is defined as the presence of fat in > 5% of hepatocytes,
in the absence of other causes of liver disease, hepatocellular injury, or fibrosis (Brunt, 2010; Younossi
et al., 2016). Hepatic steatosis can be benign and, if detected in an early stage, is a reversible condition.
It has a spectrum that ranges from simple steatosis to progressive inflammation (steatohepatitis), and
eventually to fibrosis and cirrhosis.

The diagnosis of NAFLD can be made with non-invasive methods such as blood tests or imaging
tests, but these methods are not precise in determining the severity of the condition. A more accurate
yet invasive alternative is a liver biopsy. In this procedure, a pathologist assesses the biopsy through
the visual examination of histological liver tissue slides. This evaluation is typically performed using a
widely employed semi-quantitative grading system. One commonly used grading system is the NAFLD
Activity Score Non-alcoholic fatty liver disease Activity Score (NAS), which grades key histological
features such as steatosis, lobular inflammation, and hepatocellular ballooning. For instance, steatosis is
graded as an interval percentage: 0 (<5%), 1 (5-33%), 2 (34—66%), or 3 (>66%). While this system
provides a structured approach to classifying disease severity, it is inherently subjective. This work
focuses on assessing the degree of steatosis, excluding other cellular findings included in the NAS.

The subjectivity of this assessment arises from its dependence on the visual interpretation of the
pathologist’s histological slides. This can lead to variability due to intra-observer (the same patholo-
gist giving different assessments at different times) and inter-observer (different pathologists providing
inconsistent assessments of the same slide) differences. Furthermore, the scoring system uses broad
categories, such as 5%-33% for grade 1 steatosis, reducing sensitivity to small but clinically relevant
changes. As a result, while this method is systematic, it introduces potential inaccuracies that can affect
clinical decision-making. Efforts to standardize training and implement automated or Al-assisted grading
methods aim to reduce this subjectivity and improve reliability (Arganda-Carreras et al., 2017; Hallou
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etal., 2021).

With new techniques such as training algorithms and machine learning—particularly Random Forest-
based classifiers applied to pixel-level segmentation in histological images—it is now possible to develop
more accurate methods for assessing NAFLD, reducing the risk of misinterpretation (Arganda-Carreras
et al., 2017; Hallou et al., 2021). The main advantage of using quantitative data is that it can provide
objective, reliable, and reproducible results. Quantitative data can be analysed using rigorous and
standardized methods, including mathematical formulas, statistical models, and dedicated image analysis
software.

The classification of the degree of steatosis is imperative for clinical prognosis, particularly as NAFLD
is now seen as the hepatic manifestation of the metabolic syndrome and is associated with an increased
risk of mortality, mainly due to cardiovascular complications, which constitutes a global health problem
(Chalasani et al., 2018). Early and accurate diagnosis and targeted interventions are needed to mitigate
the long-term risks associated with this condition and improve patient outcomes.

The use of animal models in research has been pivotal in advancing scientific understanding and
facilitating medical progress. These models offer critical insights into biological processes, disease
mechanisms, and therapeutic strategies, enabling studies that are otherwise impractical or ethically
unfeasible in human subjects. The lack of approved pharmacotherapies for NAFLD/Non-alcoholic
steatohepatitis (NASH) underscores the urgent need for robust preclinical animal models that accurately
reflect the pathophysiological features of human NAFLD/NASH.

In this study, mouse models are employed due to their cost-effectiveness and suitability for genetic
manipulation, making them a widely used tool in research. However, these models possess inher-
ent limitations, particularly their inability to fully recapitulate the complex characteristics of human
NAFLD/NASH. As highlighted by Fang et al. (2022), each mouse model presents distinct strengths and
weaknesses, emphasizing the necessity of developing novel models and advanced methodologies that
more precisely replicate the mechanisms and progression of human NAFLD. By leveraging liver samples
from animal models exhibiting steatosis (mice subjected to a controlled hypercaloric diet), we propose
to:

1. Compare two automated image analysis plugins, Weka and Saturation, both implemented in Fiji Is
Just ImageJ (FIJI), to determine which is more accurate;

2. Determine the optimal magnification vs. resolution configuration for reliable vacuole detection;
3. Establish the minimum number of histological images per liver needed for stable quantification;

4. Evaluate whether vacuole size is associated with steatosis percentage.

To achieve these goals:

* For objective (1), automated workflows were developed using FIJI macros for both plugins, sup-
ported by logistic regression classifiers for vacuole segmentation. The performance of each plugin
was compared using descriptive statistics for each variable, Spearman’s rank correlation, and the
Wilcoxon signed-rank test.

* Objective (2) was addressed using generalized linear mixed models (GLMM) with a negative
binomial distribution, accounting for overdispersion and within-subject variability across image
configurations.
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* For objective (3), bootstrap resampling techniques were applied to estimate confidence intervals
and assess the stability of steatosis estimates across different numbers of images per sample.

* Lastly, objective (4) was examined through graphical analysis, using scatter plots to evaluate the
association between the average area of vacuoles and the severity of the disease.

This thesis is structured into six chapters. In Chapter 1, a brief introduction to the topic is presented
to facilitate the interpretation and understanding of the results, along with a description of the project and
its intended objectives.

In Chapter 2, Non-Alcoholic Fatty Liver Disease begins by introducing the liver’s essential role in
the human body, highlighting its key functions in metabolism, detoxification, digestion, and immunity. It
then provides an overview of hepatic steatosis (fatty liver), explaining its definition, underlying causes,
and impact on health. A specific focus is given to NAFLD, covering its prevalence, characteristic features,
progression through various disease stages, and associated comorbidities. The discussion extends to the
challenges in diagnosing NAFLD, outlining current diagnostic methods and their limitations. It further
explores histopathological techniques used to evaluate liver tissue, particularly the semi-quantitative
assessment performed by pathologists. It introduces quantitative methods for analyzing liver steatosis,
specifically the Weka and Saturation image analysis techniques, which offer potential advantages over
traditional visual assessment methods.

Chapter 3, Study Design and Description, outlines the study design employed to achieve the study
objectives. It comprises a detailed description of the methods, variables, study instruments, procedures,
and analytical techniques used. Also focuses on the ethical aspects and objectives, and explores the
dataset used.

In Chapter 4, Statistical Methodology, we will focus on the presentation of theoretical concepts
related to the statistical model used, namely the Generalized Linear Mixed Model (GLMM) with a
negative binomial distribution, which was used to account for overdispersion in the count data. A
combinatorial strategy was applied to explore multiple image subsets and assess their predictive power
and non-parametric bootstrap techniques.

Chapter 5, Results and Discussion, presents the analysis of the results obtained for the defined
objectives.

Finally, Chapter 6, Conclusion, is dedicated to the discussion of the results, the conclusions of the
study, and subsequent final remarks.



Chapter 2

Non-alcoholic fatty liver disease

2.1

Liver

The liver is one of the vital organs in an organism, responsible for numerous essential functions

necessary to maintain overall health and well-being. Both macroscopic and microscopically, the liver’s

appearance in colour, size, location, and shape varies amongst species. In humans, it is the largest internal

organ and gland, located in the right upper quadrant of the abdomen. In mice, the liver is composed

of four lobes: left, right, median, and caudate, located in the cranial part of the abdominal cavity, and

occupy the entire subdiaphragmatic region.

The liver plays a crucial role in many physiological processes, such as:

Lipid metabolism - where it processes and converts nutrients into an energy source by synthesizing
cholesterol and triglycerides;

Bile production - a digestive fluid that is stored in the gallbladder, crucial for fat digestion and
absorption;

Protein synthesis - in which the liver synthesizes various proteins like albumin and clotting factors;
Urea cycle - by converting excess amino acids into urea;

Carbohydrate metabolism - through regulation of blood glucose, in which the liver helps regulate
blood sugar levels by storing excess glucose as glycogen (in a process called glycogenesis) when
blood sugar levels are high and releasing glucose into the bloodstream when blood sugar levels are
low;

Detoxification - as the name implies, detoxing the blood from harmful substances, as observed
through the hydrogen sulfide metabolism regulation and homeostasis (hepatic lipotoxicity);

Storage and management of essential nutrients, like vitamins and minerals;

Immunological defence - through the presence of Kupffer cells, which are specialized macrophages,
essential for defending against various pathogens, contributing to the body’s innate immune re-
sponse. In addition to their immunological role, Kupffer cells are involved in recycling red blood
cells and filtering toxins from the bloodstream. They also regulate inflammatory responses by
releasing cytokines, thereby maintaining liver homeostasis and overall immune balance. Recent
studies reveal that they also play a significant role in insulin resistance and the progression of
non-alcoholic steatohepatitis (NASH).
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Due to the illustrated importance of the liver in assuring an organism’s health, it is important to
devise mechanisms for diagnostic, prognostic, and even therapeutic interventions of the more common
liver diseases, (Manikat & Nguyen, 2023; Trefts et al., 2017).

Rappaport, 1954 proposed the hepatic acinar model, distinguishing zones within the liver based on
gradients of oxygen, nutrients, and toxins. This model divides the hepatic lobules into three zones around

the portal tract and the central vein, Figure 2.1:

» Zone 1, known as the periportal zone, is located closest to the portal triad (portal vein, hepatic
artery, and bile duct). It receives the most highly oxygenated and nutrient-rich blood and is the
most active in processes such as gluconeogenesis, 3-oxidation, and cholesterol synthesis.

* Zone 2 represents an intermediate region between Zones 1 and 3, exhibiting mixed characteristics.

* Zone 3, also known as the centrilobular zone, is located near the central vein. As the last region to
receive blood flow, it is supplied with the least oxygenated blood, making it particularly vulnerable
to hypoxia, toxic injury, and necrosis.

Zone 3 is especially relevant in this study, as it is the primary site where steatosis often initiates in sev-
eral liver diseases, particularly NAFLD, making it a critical area for detecting early pathological changes.
Moreover, Zone 3 hepatocytes are heavily involved in glycolysis, lipogenesis, and drug metabolism,
further contributing to their susceptibility to injury under metabolic stress (Rappaport, 1954). Although
Rappaport’s acinar model was originally based on human liver anatomy, its fundamental principles apply
to rodent models as well, despite some differences in lobular structure and enzyme expression. In this
work, we did not partition images by zone; instead, we used a random sampling approach so that each
field of view could include a mixture of zones, thereby avoiding bias from manual selection of specific
regions.

The liver comprises various cell types with different embryological origins; however, this work
will focus on the hepatocyte. Hepatocytes are the primary epithelial cells of the liver, constituting the
majority of its volume and performing many of its essential functions. These cells are critical for metabolic
processes, detoxification, and immune regulation, playing a central role in maintaining liver homeostasis.
Recent research, as highlighted by Gong et al. (2023), underscores the pivotal role of hepatocytes in liver
inflammation, demonstrating how these cells release pro-inflammatory factors in response to chronic liver

injury.

S Acinus of
(]
®  Rappaport

Figure 2.1: Schematic representation of the liver acinus according to Rappaport’s model. Adapted from (Lau et al.,
2021).
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Given their significance, this study will focus on the pathological processes affecting hepatocytes and
examine their metabolic responses to these disturbances.

Animal models are indispensable for elucidating pathogenic mechanisms due to their cost-effectiveness,
rapid disease progression, controlled experimental conditions, and suitability for genetic engineering.
Mouse models are particularly valuable for studying non-alcoholic fatty liver disease (NAFLD) because
of significant anatomical, physiological, and genetic similarities between mouse and human livers. These
parallels enable researchers to replicate the progression of human NAFLD and investigate its underlying
mechanisms.

Notably, mice share key similarities with humans in liver architecture (not anatomical because mice
liver as four lobes, as show in Figure 2.2), metabolic functions, and genetic regulation. For example,
mouse models exhibit liver inflammation and fibrosis, replicating crucial features of human non-alcoholic
steatohepatitis (NASH). Gene-set enrichment analyses reveal up to 90% similarity in liver gene expression
changes between mice and human NASH patients, underscoring the relevance of these models in studying
inflammatory aspects of NAFLD.

However, mouse models have limitations, as they cannot fully replicate the complexity of human
NAFLD/NASH. Differences in lipid metabolism, immune responses, fibrosis patterns, and genetic
variability lead to discrepancies in the disease’s appearance, progression, and outcomes between species.
Despite these challenges, the morphological evaluation of NAFLD/NASH in animal models remains
a cornerstone of pathologic analysis, as the morphological changes often reflect common endpoints of
pathogenic pathways, regardless of the primary etiology.

This study focuses on quantifying steatosis in mouse models by assessing vacuole distribution using
advanced imaging plugins. Future research will be necessary to adapt these methods for evaluating
human liver samples, bridging the gap between preclinical findings and clinical applications (Denk et al.,
2019; Fang et al., 2022).

Central isthmus Median lobe
Gallbladder of median lobe /

Median lobe Gallbladder—_

Left lobe

Caudate lobe

Right lobe Left lobe \
Rénl renal fossa

Figure 2.2: Anatomy of the mouse liver: The mouse liver has four lobes: Left (largest), right (hemisected), median,
and caudate. The gallbladder fundus protrudes below the central isthmus of the medial lobe when viewed from the
usual ventral perspective. Adapted from Ali et al. (2019).

2.2 Liver Steatosis, Non-alcoholic fatty liver disease

Lipids are a broad group of organic molecules that have numerous biological functions in the human
body, such as acting as structural components of cell membranes, serving as energy storage sources, and
participating in signalling pathways (Fahy et al., 2011). The three main types of lipids are triacylglycerols
(also known as triglycerides), phospholipids, and cholesterol, all of which can accumulate in all cells.

6
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Steatosis is an abnormal accumulation of excess fat within cells or organs. If present in the liver, it is
called hepatic steatosis or fatty liver disease, microscopically seen as lipid droplets in the parenchyma
cells (Brunt, 2010; Fong et al., 2000). This accumulation is particularly notorious in the hepatocytes.

When lipids accumulate, they give origin to steatosis Figure 2.3. In a microscopic view, they give
the liver a gross view of fatty livers, which are pale brown or yellow, heavy, and greasy. Microscopically,
liver steatosis is initially observed as small white round vacuoles within the cytoplasm and beside the
nucleus (lipidic droplets). As the fat accumulation progresses, the small vacuoles cluster into prominent
ones, causing displacement of the nucleus.

Promotes steatosis Reduces steatosis

Lipolysis
(ATGL; CGIS8;
PNAPL3?)

Fatty acid r/Lipoprclteinﬂ\

uptake production
(28D p-oxidation \—/{MTP: ApoB)
Fatty acid

(PPARa)
synthesis -
SREBP1; LXR)

-

(

.

Lipid droplet
accumulation

Figure 2.3: Hepatic steatosis results from an imbalance in lipid storage and lipolysis or secretion (adapted from
(Gong et al., 2023)).

Hepatic steatosis is defined as the intrahepatic triacylglycerol accumulation of at least 5% of liver
weight or 5% of hepatocytes containing lipid vacuoles. If detected early, hepatic steatosis can be
reversible. It implies a healthy lifestyle, physical activity, and dietary habits (Nassir et al., 2015).

When the liver becomes steatotic, the liver functions related to detoxification, digestion, glucose
and lipid metabolism, protein synthesis, immune regulation, nutrient storage, and hormone balance are
compromised.

Hepatic steatosis causes many health problems, which can lead to NAFLD and Alcoholic Liver
Disease (ALD) (Kumar et al., 2015).

NAFLD, first described by Ludwig et al., 1980, represents a clinically significant condition charac-
terized by fat accumulation in at least 5% of hepatocytes. NAFLD encompasses a spectrum of benign,
reversible pathological changes, such as liver steatosis without necro-inflammatory injury, which may
progress to more severe and irreversible pathological states (Cobbina & Akhlaghi, 2017). It is distinctly
differentiated from other liver disorders by the absence of concurrent liver diseases and histological evi-
dence of hepatocellular injury or fibrosis (Brunt, 2005; Drew, 2017). Unlike alcohol-induced cirrhosis,
NAFLD is unrelated to alcohol abuse and excludes secondary causes of hepatic fat accumulation, such
as prolonged exposure to steatogenic medications or monogenic hereditary disorders (Angulo, 2002;
Chalasani et al., 2018; Li et al., 2010; Younossi et al., 2004).

As stated by Leow et al., 2023, (NAFLD), steatosis typically originates in the perivenular region
(zone 3). The variability observed is mainly in the extent of lipid accumulation, rather than in the
distribution pattern. As the disease progresses, fat deposition can extend to other hepatic zones; however,
the initial perivenular pattern generally remains consistent. This zonal preference is believed to be

7
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linked to regional differences in oxygenation and metabolic activity, which make zone 3 hepatocytes
more susceptible to lipid accumulation and oxidative stress. Understanding this distribution is crucial for
accurate histopathological evaluation and disease staging.

Accordingly, Schwabe et al., 2012 reports that approximately 24% of NAFLD patients may develop
active lesions characterized by hepatocyte injury, cell death, and inflammation, leading to (NASH) and
cirrhosis. This fatty liver disease is a prominent cause of liver disease mortality, with a concerning
annual increase in prevalence worldwide, making it a significant public health issue (Chew et al., 2024;
Clark et al., 2002; Vanderbeck et al., 2013). Type 2 diabetes mellitus and cardiometabolic outcomes in
metabolic dysfunction-associated steatotic liver disease population (Chew et al., 2024).

Younossi et al., 2016, indicate considerable heterogeneity among studies for both NAFLD prevalence
and incidence. Several studies suggest differences in the prevalence and severity of NAFLD by race or
ethnicity, which may be linked to differences in lifestyle, diet, metabolic comorbidity profile, and genetic
background, among others. Ethnic differences from different parts of the world are still relatively scarce
and specific to a few countries, Figure 2.4. Younossi et al., 2016 estimated the NAFLD prevalence at
25.2% and the NASH prevalence at 3% to 5%, using imaging tests for diagnosis. To corroborate these two
studies, Cholongitas et al. (2021) performed a meta-analysis which validated that the prevalence is similar
to the global rates (>25%) in European adults and higher if taking into account patients with obesity
and/or metabolic syndrome. Recent data from Portugal estimate the prevalence of NAFLD at 17%, based
on a population-based study that excluded other causes of liver disease through clinical and laboratory
criteria (Leitdo et al., 2020). Although time series data are lacking, this estimate is consistent with the
global trend of increasing prevalence, and the growing burden of NAFLD is expected to mirror the rise
in obesity and metabolic syndrome in the Portuguese population. It is becoming the most common liver
disease. Consequently, according to Nassir et al., 2015, 70% of overweight and diabetic adult individuals
suffer from NAFLD, and the values rise to 90% morbidly in obese adults. NAFLD is also engaging
attention as a significant form of liver disease present in pediatric populations, which in some patients
advances to more severe liver diseases in adulthood (Kleiner et al., 2005). Surprising data shows the
presence in 3 to 10% of normal-weight children and 50% of obese children, according to an Italian study
(Crte et al., 2012).

Change in NAFLD prevalence (%)

1990102010 Niger
2010102019 Afghanistan, Chad, Guinea, Mozambique, Sierra Leone, Uganda
1990102019 All other countries

Figure 2.4: Global heat map of changing NAFLD prevalence. The prevalence of NAFLD increased from 1990
to 2019 in all countries, except Niger (decreased from 2010 to 2019), Afghanistan, Chad, Guinea, Mozambique,
Sierra Leone and Uganda (decreased from 1990 to 2010). NAFLD, non-alcoholic fatty liver disease. Adapted from
Wong et al., 2019.
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This is particularly evident in developed countries, where diets rich in processed foods and sugar,
combined with high obesity rates, contribute significantly to the burden of NAFLD (Younossi et al.,
2016). High-calorie diets, sedentary lifestyles, and ageing of the global population are all risk factors for
chronic liver disease, leading to the current obesity epidemic, with increasing prevalence of metabolic
syndrome among adults and children, and global rise of NAFLD and NASH (Cholongitas et al., 2021;
Sayiner et al., 2016).

NAFLD efficiently progresses to NASH. This development is microscopically illustrated by steatosis,
hepatocyte injury (e.g., ballooning), which could progress to cirrhosis, fibrosis, lobular and portal
inflammation and necrosis, Mallory bodies, liver-related complications and even hepatocellular carcinoma
(Angulo, 2002; Brunt, 2010; Huby & Gautier, 2022; Mendler et al., 2005). Much progress has been
made in understanding the pathogenesis of NASH and the complex and multifactorial molecular pathways
during development and progression (Hardy et al., 2016; Machado & Diehl, 2016).

It is important to note that in (NAFLD), chronic inflammation caused by hepatic fat accumulation
triggers the production of acute-phase inflammatory proteins in Figure2.5. These proteins are key
components of the systemic inflammatory response and play a crucial role in the disease’s progression.
Elevated levels of these proteins can exacerbate liver injury, leading to more severe conditions such as
NASH, fibrosis, and cirrhosis. Additionally, this chronic inflammatory state is associated with increased
oxidative stress and insulin resistance, which further promote liver damage and metabolic complications.
Understanding the role of acute-phase proteins in NAFLD is essential for developing targeted therapeutic
strategies to prevent disease progression (Koruk et al., 2003).

Distinguishing between NAFLD and NASH is crucial because these conditions have different patho-
geneses and outcomes. It is therefore crucial to know the disease stage to distinguish between mild and
severe phenotypes of NAFLD, NASH, and cirrhosis. Identification of the disease stage will ensure the
choice of correct treatment and follow-up (Angulo, 2002; Li et al., 2010; Mendler et al., 2005; Vander-
beck et al., 2013). Early disease recognition and precautionary measures are thus imperative to prevent
progression and control the possible advanced outcome of the disease in terms of disability and death
(Munsterman et al., 2019).

Figure 2.5: Inflammation associated with NAFLD. Adapted from Younossi et al. (2016).

NAFLD can progress through five stages Figure 2.6, but the order may vary per individual.

1. Steatosis (simple fatty liver) deposition in at least 5% of hepatocytes — is a mostly harmless
build-up of fat in the liver cells that may only be diagnosed during tests carried out for other
motives.
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. Non-alcoholic steatohepatitis (NASH) — a more severe form of NAFLD, where the liver has
become inflamed.

. Fibrosis* — where persistent inflammation causes scar tissue around the liver and nearby blood

vessels, but the liver can still function normally.

. Cirrhosis* — the most severe stage, occurring after years of inflammation, where the liver shrinks
and is lumpy due to extensive fibrosis; this damage is permanent and can lead to liver failure and

liver cancer.

. Hepatocellular carcinoma — liver cancer.

Healthy Cirrhosis Hepatocellular
liver NAFL WASH carcinoma
15% - 30% L0 [,/ 12% - 40% P 15% - 25% w
reversible | reversible
Fat < 5% of Steatosis + Steatosis Late stages of
hepatocytes (Fat in >5%hepatocytes) + Inflammation fibrosis
+ Ballooning
* Fibrosis

Figure 2.6: The Pathogenesis of NAFLD. Adapted from Fang et al. (2022).

NAFLD has been associated with a range of non-liver comorbidities, including anthropomorphic

variables such as weight, sociodemographic variables like age and gender, or comorbidities such as

obesity and genetics. Frequently, risks associated with metabolic comorbidities, for instance, overweight

or obesity, might be a consequence of a sedentary lifestyle, fast-food consumption among children and

adults, type 2 diabetes mellitus- insulin resistance, hypertension, atherosclerosis, and systemic micro-

inflammation, jejunoileal bypass, and dyslipidemia. Therefore, the manifestation of metabolic syndrome

remains controversial, as it is unclear whether NAFLD is a cause or a consequence of glucose intolerance
and insulin resistance (Angulo, 2002; Chalasani et al., 2018; Clark et al., 2002; Fong et al., 2000; Kleiner
et al., 2005; Manikat & Nguyen, 2023; Nassir et al., 2015; Tanaka et al., 2019; Younossi et al., 2004).
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(a) Hallmarks of NAFLD. Adapted from (Martin- (b) Associative relationships between NAFLD and various
Grau et al., 2022). health conditions.

Figure 2.7: The Multisystem Impact of NAFLD

Steatosis due to triglycerides has been observed in a range of clinical conditions, including nutritional,
metabolic, alcohol consumption, obesity, NASH, type 2 diabetes mellitus, syndrome X, and drug-induced
processes (Fong et al., 2000).

The leading causes of triglyceride accumulation are toxins, protein-energy malnutrition, type 2
diabetes mellitus (insulin resistance), hepatitis C virus infection, Wilson disease, anoxia, obesity, high
fat and carbohydrate intake, alcohol, drugs, and abnormal lipid metabolism. Furthermore, it is well
recognized that older age, ethnicity and race, starvation, and many everyday medications may also
contribute to ectopic hepatic lipid accumulation (Brunt & Tiniakos, 2010; Fong et al., 2000; Momose
et al., 2011; Promrat et al., 2004). The leading causes of triglyceride accumulation are toxins, Protein-
energy malnutrition (PEM), type 2 diabetes mellitus (insulin resistance), hepatitis C virus infection,
Wilson disease, anoxia, obesity, high fat and carbohydrate intake, alcohol, drugs, and abnormal lipid
metabolism. Furthermore, it is well recognized that older age, ethnicity and race, starvation, and many
everyday medications may also contribute to ectopic hepatic lipid accumulation (Brunt & Tiniakos, 2010;
Fong et al., 2000; Momose et al., 2011; Promrat et al., 2004).

The degree of steatosis is a critical factor in determining an organ’s transplantability. Livers with
more than 30% fat content have a 25% chance of developing primary non-function, significantly reducing
the survival of liver grafts after transplantation (de Graaf et al., 2011; Fiorini et al., 2004; Qayyum et al.,
2012).

Often, NAFLD is diagnosed based on the analysis of the clinical historical and complementary
exams, such as imaging studies and blood tests, which normally detect if the liver enzymes are high. The
diagnosis is usually done progressively, starting from the less invasive methods, and accordingly, these
results go far beyond other methods.

* Blood tests (biomarkers) - A panel of liver function tests, possibly combined with genetic testing,
can be used as an initial assessment. However, blood tests do not always detect the presence of
NAFLD.

* Imaging tests - An ultrasound, Computed Tomography (CT) scan, and Magnetic Resonance
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Imaging (MRI) can show liver damage.

* Biopsy - The most invasive test performed on an individual. A small sample of liver tissue is
collected using a thin needle and analysed by a pathologist. In this case, the pathologist examines
the liver microscopically to analyse the cellular features present and determine the stage of the
disease.

Despite its limitations, liver biopsy remains a valuable diagnostic tool due to its ability to provide
a definitive diagnosis through detailed histological evaluation. It facilitates the assessment of disease
severity by determining the extent of liver damage and enables the differentiation between simple steatosis
and non-alcoholic steatohepatitis (NASH). Furthermore, it aids in excluding other liver diseases, such as
autoimmune hepatitis and hemochromatosis, and offers prognostic value by serving as a critical predictor
of disease progression. The degree of fibrosis identified through biopsy is particularly significant in
predicting outcomes in patients with NAFLD, although fibrosis is not the primary focus of this study.
Consequently, early detection of NAFLD, coupled with appropriate lifestyle modifications, has the
potential to halt or reverse disease progression (Fernando et al., 2019).

2.3 Histopathology

Histology is the study of tissues and their microstructure, whereas Pathology is the study of disease.
Similarly, Histopathology is the study of tissues affected by disease. Histopathology is extremely useful
in making a diagnosis and determining the severity and progress of a condition. Disease processes affect
tissues and species in distinct ways, depending on the tissue type, the disease itself, and how it has
progressed.

This biology area is also used extensively in biomedical research to identify the causes and possible
treatments for disease. This type of research may take place in hospitals, universities, research institutes,
and pharmaceutical companies. Biomedical scientists may receive different samples, from a tiny biopsy
to an intact organ. This study field may include live and post-mortem samples. The conventional work of
a biomedical scientist involves the preparation of tissues for microscope observations by the Pathologist.
This technique requires knowledge from biology to chemistry and work experience. The tissue goes
through various stages along the way:

* Fixation — The main goal is to preserve the tissue, cells, and subcellular components from autolysis
or putrefaction. This means keeping all body components as close as possible to their living state.
Upon cell death, enzymes are released that begin to break down the tissue components. Therefore,
it is carried out immediately after removing the tissue after surgical pathology or immediately after
death. A physical or chemical agent can be used for this process.

* Embedding — This is a delicate process that requires precision and care. The tissue, which needs
to be sectioned into thin sections, is placed in a medium that will solidify around it, creating a block
that is hard enough to be sectioned. This medium could be paraffin (a type of wax) or, depending
on the purpose, Optimal Cutting Temperature (Optimal Cutting Temperature compound (OCT))
compound.

* Sectioning — This involves using a device that allows the block to be sectioned into thin sections.
Different devices are available according to the technique. Normally, for paraffin sections, the
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biomedical scientist uses a microtome and produces 3 pum thick sections. These sections are then
placed on a slide for later viewing by the pathologist.

 Staining — Plays a vital role in histology, as most of the cells and cellular elements are transparent.
Staining the tissue is crucial, as it enhances visibility and improves the quality of histological
analysis. According to the tissue findings, many staining techniques are used. Haematoxylin and
Eosin (H&E) is the main stain used routinely and provides a general view of tissue architecture and
cell morphology (Bancroft & Gamble, 2008).

In this study, tissue samples were collected from murine models subjected to a high-fat diet. The
entire process, from sample collection to slide preparation, was designed to replicate the conditions
commonly encountered in biopsies collected during the diagnostic process. The samples were processed
following the methodology detailed in this thesis, subsequently undergoing microscopic evaluation and
scoring by a pathologist. These same samples were then imaged and analysed using the tested plugins.

2.4 Semi-quantitative Pathologist assessment

Steatosis is routinely evaluated in liver biopsies because it is valuable for establishing accurate
diagnosis, prognosis, and treatment planning. The current gold standard for liver steatosis quantification
is a semi-quantitative method obtained by pathologists, a rapid assessment that does not require any
special equipment. Microscopically, the pathologists evaluate the extent of fat accumulation in cells, and
the presence of inflammation, fibrosis, and ballooning degeneration in the liver by a histologic evaluation
of the haematoxylin and eosin staining slides. The hepatic steatosis is characterized semi-quantitatively
(percentage of hepatocytes containing lipid droplets) by the Pathologist.

This method involves a standardized score system among pathologists to grade steatosis, ensuring
consistency and accuracy in diagnosis and research. Two grading systems are commonly used to stage
and grade the severity of NAFLD: the NAFLD NAS and the Brunt Score System. However, they focus
on different aspects of the disease and are used in distinct contexts.

* NAS comprises 14 histological features, 4 of which are evaluated semi-quantitatively, including
grading steatosis (0—3), lobular inflammation (degree of inflammatory infiltration in liver tissue,
0-2), hepatocellular ballooning (liver cell injury characterized by ballooning of hepatocytes, 0-2),
and fibrosis (0—4). Another nine features are recorded as present or absent (Kleiner et al., 2005).

Steatosis is graded as follows:

Grade 0 (healthy): <5% of hepatocytes contain fat.

Grade 1 (mild): 5% to 33% of hepatocytes contain fat.

Grade 2 (moderate): 34% to 66% of hepatocytes contain fat.

Grade 3 (severe): >66% of hepatocytes contain fat.

This grading provides a clear, semi-quantitative measure of the extent of steatosis. In Appendix
A, there is a table with the comparison of the essential elements of NAFLD/NASH Grading and
Staging Systems.

* Brunt Score System for NAFLD grades steatosis similarly. It provides a comprehensive assess-

ment based on a combination of key histological lesions: steatosis, ballooning, and intra-acinar
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and portal inflammation. This score was developed to reflect both the location and extent of fibro-
sis. The fibrosis score is derived from the extent of zone 3 perisinusoidal fibrosis, with possible
additional portal/periportal fibrosis and architectural remodeling. Fibrosis stages are as follows:

Stage 1: Zone 3 perisinusoidal fibrosis.

Stage 2: As above with portal fibrosis.

Stage 3: As above with bridging fibrosis.

Stage 4: Cirrhosis.

It is also used explicitly for grading and staging non-alcoholic steatohepatitis (NASH) according
to the level of inflammation and liver injury (Kleiner et al., 2005).

The Brunt score categorizes liver disease into stages (from normal liver to cirrhosis) by assigning
a numerical grade to each parameter (Brunt & Tiniakos, 2010; Brunt et al., 1999). The stages
include:

Grade 0: No NAFLD (normal liver).
Grade 1: Mild NAFLD.

Grade 2: Moderate NAFLD.

Grade 3: Severe NAFLD.

Grade 4: Cirrhosis (end-stage liver disease).

The distinction between the scoring systems lies in their focus and application: the NAFLD Brunt
Score emphasizes the assessment of liver fibrosis and overall damage, aiding in classifying the severity
of the disease from mild to cirrhosis. In contrast, the NAFLD NAS concentrates on disease activity
and injury levels, evaluating inflammation, steatosis, and ballooning degeneration. NAS is commonly
used in clinical trials and is valuable for tracking disease progression or response to treatment. Together,
these scoring systems complement each other by offering a comprehensive evaluation of liver health and
disease stage, helping to determine the need for therapeutic intervention (Chalasani et al., 2018; Sanyal
etal., 2011).

Unfortunately, the consistency in such assessment remains imprecise and subject to intra-observer
and inter-observer variations (Gawrieh et al., 2011). Another issue is that some hepatocytes are too small,
numerous, and indistinctive to be counted at low magnification, while overestimation of steatosis tends to
increase with progressing severity. Also, each score has a wide percentage range of steatosis see Figure
2.10. Therefore, accurate and reproducible identification of the hepatic steatosis percentage is paramount
in determining response to therapy.

With new and more advanced techniques, there is significant potential for improvement in this area,
offering hope for a more precise and reliable assessment method in the future.

2.5 Quantitative Methods, F1JI Is Just ImageJ

It is important to note that the semi-quantitative method, while widely used, is not without limitations.
It relies on a score that is susceptible to interobserver and intra-observer variability, making it prone
to inaccuracy. Automatic methods for hepatic steatosis quantification present a compelling alternative.
They offer an objective assessment of steatosis, potentially reducing human bias, increasing accuracy, and
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reliability, and providing continuous grading. These advantages can significantly enhance the perception
of clinicians and researchers in their respective applications. Moreover, the use of quantitative methods
allows for the generalization, and homogenization of findings to a larger population, a crucial step in
making broader inferences and predictions.

Bio-image analysis is:

* Objective — which reduces the influence of personal biases and opinions. This ensures that the
findings are based on measurable and observable features;

* Reproducible — quantitative research follows systematic procedures, making it easier for other
researchers to replicate studies and verify results. This enhances the credibility and reliability of
the results;

* Reliable — on precision and accuracy because these methods allow for precise data measurement
and analysis. Statistical tools can accurately quantify relationships, differences, and effects, leading
to more reliable, evidence-based research ((Kemmer et al., 2023)).

* Colour - In colour digital images, each pixel has 3 values corresponding to Red Green and
Blue (RGB), which vary between 0-255, and the combination of the 3 gives the final colour in the
image;

* Resolution — This is dependent on how the image was acquired, magnification, and camera
specifications. Resolution is the ability to distinguish between two different objects in an image;
therefore, higher resolution allows for the identification of smaller structures. This is limited by
physics to around 350 nm.

A pixel or "picture element" is the smallest unit of a digital image, its value storing information about
the original sample, overall light intensity for black and white images or the red, green, and blue RGB
light values in colour images. Image resolution can also affect analysis.

FIJ1is a widely adopted software platform specifically developed for the analysis of biological images.
Given its critical role in the quantitative analyses conducted in this study, a detailed introduction will be
provided in the subsequent subchapter.

FIJI is a powerful and versatile open-source software package specifically developed to enhane the
capabilities of ImageJ2 for scientific image processing and analysis. As an integrated platform, FIJI
provides a comprehensive suite of tools designed to facilitate a wide range of tasks, from basic image ad-
justments, such as brightness and contrast optimization, to advanced functionalities including microscopy
image analysis, three-dimensional (3D) reconstruction, and quantitative measurements (Pietzsch et al.,
2015; Schindelin et al., 2012; Schmid & Mair, 2014).

One of the distinguishing features of FIJI is its ability to utilize macros—scripts or automated
workflows that enable users to streamline repetitive tasks and standardize analyses. These macros are
not only highly efficient but also inherently shareable, fostering collaboration and reproducibility among
researchers (Huisman & Schutte, 2017).

FIJI is widely adopted within the scientific community, particularly in disciplines requiring sophis-
ticated analysis of biological images and other research data. It has become an indispensable tool for
researchers working with complex datasets derived from techniques such as fluorescence microscopy,
electron microscopy, and other imaging modalities (Cai & Zhou, 2016). The platform’s extensibil-
ity, user-friendly interface, and community-driven development further enhance its appeal, making it a
cornerstone in modern scientific image analysis workflows (Schindelin et al., 2012).
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It is possible to develop or utilize open-source plugins that enhance and customize image analysis
to meet the specific requirements of each experiment or project. These plugins provide flexibility,
adaptability, and an efficient approach to handling diverse experimental conditions and objectives.

In this project, two specific plugins (Saturation and Weka) were selected for evaluation and testing.
The selection was based on several factors: their popularity both within the institute and in the broader
scientific community, the availability of personnel with expertise in their use, and their reputation as
user-friendly tools that facilitate efficient analysis. Additionally, these plugins are supported by an
extensive array of online resources, including documentation, tutorials, and active user forums, which
make them accessible and practical for researchers at various levels of proficiency. This combination of
features ensures that the chosen plugins align well with the project’s goals, providing both reliability and
adaptability in image analysis tasks.

2.5.1 Saturation

Imaging technologies that collect data from images and perform more detailed analyses are trans-
forming the world of bioscience. Techniques such as noise reduction and removal, image segmentation,
and filtering are some of the strongest tools that FIJI can perform. In FIJI, Intensity Saturation, Clipping,
or Over Exposure refer to situations where the pixel values in an image exceed or are capped at certain
limits, leading to a loss of detail in those regions.

Intensity saturation works through threshold segmentation. The image histogram, which shows the
distribution of pixel intensities/values, is crucial to understanding intensity saturation.

The binary thresholding selects a value to divide the image into two subsets of pixels. The algorithm’s
role is to calculate where to place this dividing line for a given image and, essentially, which intensity
level to use as a decision point. When pixel values in an image reach the maximum or minimum limits of
the image’s dynamic range, some areas appear completely white (for maximum saturation) or completely
black (for minimum saturation). This can lead to the loss of details in those regions. The image is then
split into "foreground’ or ’background.” An 8-bit scale image has pixel intensity values ranging from O
(black) to 255 (white), with any values that hit 255 being fully saturated. Whether this step is done with
a resource to an algorithm or manually, it is important to note that applying a filter before segmentation
and post-processing can significantly improve the result.

2.5.2 Waikato Environment for Knowledge Analysis

The trainable Weka Segmentation is a powerful FIJI plugin that combines machine-learning algo-
rithms with selected image features to produce pixel-based segmentations. Commonly used techniques
in image segmentation include supervised learning algorithms such as Random Forest, Support Vector
Machines (SVM), and more recently, deep learning methods (e.g., convolutional neural networks). How-
ever, in the context of Weka, Random Forest remains one of the most widely adopted approaches due to
its robustness and ease of implementation in biomedical image analysis (Arganda-Carreras et al., 2017).

The segmentation process is typically supervised, meaning that the user provides annotated examples
of each class (e.g., vacuole vs. background), and the algorithm learns to classify pixels accordingly. Weka
simplifies this by allowing the user to create and train a classifier interactively, refining the model based
on visual feedback. The training process involves calculating image features (such as mean, median,
variance, and kurtosis, among others), which are then used by the algorithm to distinguish between
structures of interest. For example, the Random Forest classifier, a popular ensemble learning method,
works by constructing multiple decision trees from randomly selected subsets of features and samples.
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Each tree makes a prediction, and the final output is determined by majority vote, increasing accuracy
and reducing overfitting (Breiman, 2001).

In addition to supervised learning, the plugin also offers unsupervised segmentation techniques (e.g.,
clustering) for exploratory analysis or cases where labelled data is not available. Its user-friendly interface
and integration with FIJI make it a valuable tool for histological image analysis, as illustrated in Figure2.8

and Figure2.9.
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Figure 2.8: TWS pipeline for pixel classification. Image features are extracted from an input image using FIJI-native
methods. Next, a set of pixel samples is defined and represented as feature vectors, and a Weka learning scheme is
trained on those samples and finally applied to classify the remaining image data. Adapted from (Arganda-Carreras
et al., 2017)

Steatosis %
Number of vacuoles
Area of vacuoles
Mean area of vacuoles

Figure 2.9: Example of an H&E-stained liver image processed using Weka (40x magnification, 80 x resolution).
Detected vacuoles are highlighted with green.

2.5.3 Illustrative Example of Visual vs. Automated Steatosis Assessment

To illustrate the limitations of visual scoring systems, consider the two histological images in Fig-
ure2.10. At first glance, the tissue samples appear substantially different in terms of fat content. Never-
theless, both were assigned the same score—grade 3 (i.e., > 66% steatosis)— by a trained pathologist,
based on semi-quantitative assessment.

Specifically, Figure2.10a was estimated at approximately 70% steatosis, and Figure2.10b at approxi-
mately 100%, highlighting the wide range of variability within each score category. This reinforces the
concern that substantially different degrees of steatosis may be grouped under the same classification,
potentially reducing diagnostic precision.

When analysed with quantitative methods—using the Saturation and Weka plugins— steatosis levels
were calculated as 16% and 24%, respectively. This discrepancy underscores the potential of automated

image analysis to detect finer differences that may be missed in conventional visual scoring.
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(a) Figure A.

Figure 2.10: H&E liver images at 10x Magnification

Not only is it important to standardize and establish a reliable method for steatosis assessment, but the
combination of magnification and resolution also plays a crucial role in the accuracy and reproducibility of
that evaluation, particularly when using automated image analysis techniques. Inconsistent or suboptimal
imaging parameters can significantly affect the detection and quantification of lipid droplets, leading to
variability in results and potentially compromising the reliability of the analysis. The magnification may
enhance the visibility of finer histological details, while appropriate resolution ensures that the image
retains sufficient clarity for accurate segmentation and feature extraction. As illustrated in Figure 2.11,
the choice of magnification and resolution directly influences the performance of automated systems by
determining the quality of input data used for classification or measurement tasks. Therefore, selecting
optimal imaging settings is essential to ensure robust and consistent steatosis assessment.

Figure 2.11: H&E liver image, Magnification and Resolution
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Study Design and Description

This chapter provides a detailed presentation of the data utilized in this thesis. A comprehensive
understanding of the data is essential to contextualize the application of the statistical methods discussed.
By exploring the characteristics and structure of the dataset, this chapter aims to establish a foundation
for how these methods are tailored to the data’s specific requirements and challenges. This experimental
study was conducted in collaboration with the Histopathology Facility and the Advanced Imaging Unit
at the Gulbenkian Institute for Molecular Medicine. The dataset analyzed in this study was provided by
the Histopathology Facility and consists of 17 mouse liver samples. A schematic representation of the
workflow study design as outlined in Figure 3.1.

Sample Selection A total of seventeen paraffin-embedded liver tissue blocks were obtained from the
Histopathology Facility Biobank. Selection was carried out by a Veterinary Pathologist based on the
inclusion criteria of confirmed fatty liver induced by a hypercaloric diet. To ensure a representation of
different stages of steatosis, the samples were pre-classified using the semi-quantitative score. These
tissue blocks were obtained from previous experiments conducted at the Institute, all approved by the
Directorate-General for Food and Veterinary. Importantly, no animals were specifically tested for this
study. Permission to use the slides was obtained from the original researchers responsible for each
experiment. Furthermore, no additional information about the mice, such as demographic characteristics,
was available.

Sample Preparation and Imaging All liver samples were sectioned at a thickness of 3 pm and
stained using Haematoxylin and Eosin (H&E). The stained slides were scanned using a NanoZoomer-SQ
Digital Slide Scanner (Hamamatsu Photonics) at 40x magnification. The resulting digital images were
reviewed using NDP.view 2 software, and images were saved at multiple magnifications (10x, 20x, 40x),
and export with different resolutions (10x, 20x, 40x, and 80x) for detailed analysis.

Image Analysis and Plugin Application For each scanned image, random regions of interest were
selected for further examination. Two image analysis plugins—Weka and Saturation—were applied
to each selected region using FIJI software. Custom macros were developed for both plugins by the
technician José Serrado Marques from the Advanced Imaging Unit, based on the methods described by
Munsterman et al., 2019. The macros enabled the separation of steatotic hepatocytes, quantify vacuoles
in liver, from other similar objects using a statistical classifier based on logistic regression, available at
Marques, 2021. The study by Munsterman et al. (2019) utilized a logistic regression model to classify
segmented objects as either vacuoles or non-vacuoles, based on their morphological features. In this
context, the response variable was the probability of an object being a vacuole (binary outcome: vacuole
= 1, non-vacuole = 0), and the explanatory variables were four shape descriptors:size (in wm?), circularity,
roundness, and solidity. The resulting classifier was defined as:
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logit(p) = —16.2+0.00272 x size um? 4 5.81 x circularity + 7.054 x roundness + 10.3 x solidity

where p represents the probability that the object is classified as a vacuole.

To refine vacuole detection, both the logit function and a size threshold were implemented into the macros,
using the parameters derived from Munsterman et al. (2019).

Assessment and Scoring The semi-quantitative scoring was performed by a Veterinarian Pathologist,
who reviewed the outputs of the Weka and Saturation plugins. The pathologist evaluated the results based
on the degree of steatosis observed in each image, ensuring consistent classification of fatty liver severity.
For each plugin, the macros were programmed to identify and count vacuoles, measure their area, and
extract shape descriptors. These features were summed to provide a comprehensive profile of vacuole
morphology within the tissue samples. All measurements were compiled into a table format for post-
analysis.

This design enabled a systematic assessment of fatty liver samples while optimizing automated image
analysis techniques for histopathological research. It established standardized classification criteria,
ensuring consistent measurement outputs across all analysed samples.

‘ Steatosis score by the

Pathologist
(0-3)

2711

m\ Trainable Weka Segmentation m\ "—“\5
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. Dataset
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Figure 3.1: Study Design

3.1 Ethical Aspects Study

This study was approved by the Ethical Committees of the involved institutions and does not re-
quire approval by the National Committee for Data Protection. It was done in collaboration with the
Histopathology Facility of Gulbenkian Institute for Molecular Medicine, which shared the database for
this study.

3.2 Objectives

The primary purpose is to evaluate an automated quantification method for hepatic steatosis in
liver histological images. This method can significantly impact the field by providing a more accurate
assessment of hepatic steatosis based on the percentage of the vacuole’s area and size.

To achieve this main goal, the following objectives were defined:
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» Using the variables from the database, conduct a comprehensive evaluation of the performance of
two distinct types of image plugins, Weka and Saturation, both from FIJI. This thorough analysis
will provide a robust foundation for our research.

* Define the adequate magnification and resolution for vacuole identification, allowing the plugins
to identify the vacuoles precisely. It is important to consider that multiple combinations of
magnification and resolution may exist. Additionally, the time each plugin takes to generate results
should also be taken into account.

* Determine the ideal number of histological images per liver relevant to the steatosis percentage
assessment. To optimize the analysis, it is important to define the minimum number of images
required. However, if processing more images enhances accuracy depending on the steatosis stage,
increasing the number of images should be considered. In this case, it is also essential to evaluate
the time each plugin takes to process each image. Balancing the number of images with processing
time is crucial for achieving both accurate and efficient results.

* Analyse the difference between the area of the vacuoles and the percentage and the steatosis score.
It might be interesting to verify if there is a vacuole pattern according to steatosis degree.

3.3 Variables Description and Outcomes

"It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit

theories, instead of theories to suit facts.”

— A. Conan Doyle, A Scandal in Bohemia

This section provides an overview of the variables included in the database compiled by Mafalda
Casanova, along with the reorganized variables used in this study. The description takes into account the
paired nature of the data, highlights the categories excluded due to missing data (10x80), and concludes
with a summary table describing the database used in the analysis. See tables 3.1, and 3.2.
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Image Subset Selection

A random program determined the number of

Slide Scanning selected image subsets per sample, based on
17 liver slides were scanned magnification levels.
Selected quantity: between 4 and 8 images per
sample

. Image Analysis
Image Saving

. . The images were analysed for Saturation and
Each image was saved at different Weka.

magnifications (10x, 20x, 40x) and exported . ..
with various resolutions (10x, 20x, 40x, and ——>| The results were recorded in a table containing

80x). the following data:

A total of 8 distinet combinations Reference, Vacuole Area, Number of Vacuoles,
Mean Area,% Steatosis

Figure 3.2: Description of the data collected for this study

Original Database Variables:

* Reference: A unique code assigned to each mouse liver sample to maintain anonymity (Qualitative
Nominal Variable).

* Area of Vacuoles: Represents the total area occupied by all vacuoles in the corresponding image
(Quantitative Continuous Variable).

* Vacuole_nr: The count of vacuoles present in a given image (Quantitative Discrete Variable).

* Mean_area: The average area of vacuoles, calculated as Area of Vacuoles / Vacuole_nr (Quanti-
tative Continuous Variable).

* Percentage_steatosis: Indicates the percentage of liver steatosis, calculated as Area of Vacuoles /
Total Liver Area (Quantitative Continuous Variable).

* Steatosis Score: A semi-quantitative score assigned by the pathologist to indicate the extent of
steatosis (Qualitative Nominal Variable).

New Database Variables:

* Code: A combination of the liver sample number and a letter representing the order of images within
the same liver sample. Constructed by merging two variables: specimen_nr and specimen_letter.
The values range from "1A" to "17AB" (Qualitative Nominal Variable).

* Vacuole_nr_mean: The average number of vacuoles per liver sample across all images (Quanti-
tative Continuous Variable).

* Magnification: Refers to the magnification level used during image acquisition (10x, 20x, 40x)
(Qualitative Nominal Variable).
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* Resolution: Indicates the image resolution, recorded as 10x, 20x, 40x, or 80x (Qualitative

Nominal Variable).

* Ar: A combined variable representing Magnification x Resolution to capture different image

scaling levels (Qualitative Nominal Variable).

Table 3.1: Database variables

Code Value
Specimen_nr 1-17
Specimen_letter A-X
Vacuoles_area* RT

Vacuole_nr N

Mean_area* RT
Percentage_steatosis* | [0,100]
Vacuole_nr_mean* Rt
Steatosis_score 1,2,3,4
Program Weka, Saturation
Magnification 10, 20, 40
Resolution 10, 20, 40, 80
AR 10x10, 10x20, 10x40, 20x20, 20x40, 20x80, 40x40, 40x80

*Quantitative variable

For the variable percentage of steatosis, values were initially expressed as percentages within the

interval [0, 100]. In some parts of this work, these values were converted to a [0, 1] scale for standardization

and modeling purposes.
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Table 3.2: Number of Images per Sample and Magnification

Specimen_nr | Magnification | Image subset_nr | Specimen_nr | Magnification | Image subset_nr
1 10x 6 9 10x 5
20x 5 20x 6
40x 8 40x 6
2 10x 4 10 10x 6
20x 4 20x 5
40x 6 40x 5
3 10x 7 11 10x 6
20x 6 20x 7
40x 6 40x 7
4 10x 6 12 10x 6
20x 6 20x 7
40x 6 40x 7
5 10x 5 13 10x 5
20x 6 20x 5
40x 6 40x 5
6 10x 5 14 10x 5
20x 5 20x 6
40x 5 40x 6
7 10x 5 15 10x 5
20x 5 20x 6
40x 5 40x 5
8 10x 6 16 10x 6
20x 6 20x 6
40x 5 40x 6
17 10x 5
20x 6
40x 6
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Chapter 4

Statistical Methodology

To quantify liver steatosis using two automatic image processing plugins, Weka and Saturation, and
to analyse their performance, specifically in terms of magnification and resolution, the number of liver
images required, and the distribution patterns of the vacuole sizes, a methodological plan was structured
into three distinct phases, each corresponding to a specific objective.

Initially, Spearman’s rank correlation was employed to assess the strength and direction of the
monotonic relationship between the differences in the mean number of vacuoles detected by the Weka
and Saturation plugins (Conover, 1980), given its suitability for both ordinal and numerical variables, as
well as its robustness to outliers and deviations from normality. This project aims to evaluate and compare
the performance of both plugins. To further investigate this objective, a Wilcoxon signed-rank test was
performed on the paired differences in the mean number of vacuoles to determine whether statistically
significant differences exist between the two plugins while considering the combination of magnification
and resolution. This non-parametric test was chosen due to the non-normal distribution of the paired
differences, as verified by visual inspection (histograms and Q-Q plots) and confirmed by the Shapiro-Wilk
test, which violated the assumptions required for the paired t-test (Razali & Wah, 2011). Subsequently,
a series of univariable GLMM were fitted, each including a single independent variable—namely, the
program (Weka or Saturation), magnification, or resolution-to assess their individual associations with
the number of vacuoles. These models, assuming a Negative Binomial distribution to account for
overdispersion, included a random effect to account for the repeated measures structure of the data (Zuur
et al., 2009). This approach allowed for a consistent modelling framework while isolating the effect of
each covariate individually and identifying the most influential variables, which were then considered
for inclusion in the construction of the final multivariate model. Based on these results, a multivariate
analysis was performed using a GLMM with a Negative Binomial distribution to identify the factors
contributing to variations in vacuole counts.

Building upon the findings from the first phase, a combinatorial analysis was carried out to find the
minimum number of liver images required to achieve a reliable and stable assessment of hepatic steatosis.
A bootstrap analysis was applied to derive confidence intervals, thereby providing a more robust and
accurate estimate of the variability in the image analysis results.

Finally, the third phase focused on determining whether the distribution of vacuole sizes follows a
specific morphological pattern and whether the percentage of hepatic steatosis influences this distribution.
For this purpose, vacuole areas were compared between two groups — mild and severe steatosis — to
assess potential differences in morphological characteristics.
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4.1 Spearman’s Rank Correlation

When the analysis involves studying two random variables simultaneously and examining the rela-
tionship between them, it is referred to as bivariate analysis, often represented by the pair (X,Y).

The concepts of correlation and regression were first developed by Francis Galton in Natural Inheri-
tance (1889). Building on Galton’s work, Spearman (1904) introduced the ordinal correlation coefficient,
denoted by ry, based on the use of ranks instead of raw values (Velosa & Pestana, 2008).

Unlike the Pearson correlation, which measures the linear relationship between variables using raw
data, the Spearman coefficient assesses the strength and direction of a monotonic association by comparing
the ranks of the data.

The Spearman rank correlation coefficient will be calculated in Chapter 5.2.1, where the relationship
between the differences in the mean number of vacuoles for both plugins is analysed.

To compute the Spearman correlation coefficient, the values of the two variables are first converted
to ranks. In the presence of ties, all tied values are assigned the average of the ranks they would occupy
if there were no ties.

Given two random variables, X and Y, and a sample of size n, the raw values x; and y; (fori=1,...,n)
are replaced by their respective ranks. Let v; be the rank of x; in the sample of x’s, and s; be the rank of
y; in the sample of y’s. Let v and § denote the mean ranks of (vy,...,v,) and (sy,...,s,), respectively:

n

1
vi and §= - Zsi
1 ni3

-

<
I
S |-

1

The Spearman correlation coefficient is then given by:

_ i1 (vi— ) (si —3)
VI (i = 92X (5 — 9)2

When there are no tied values in the data, a computationally simpler formula can be used. Let d;

rg

denote the difference between the ranks of the i-th individual or item in the two orderings. The Spearman
rank correlation coeflicient r; is given by:

6y, d}
n(n?—1)

where d; represents the difference between the ranks of corresponding values of X and Y, that is,

rg=1-—

di=v;—s,.
The coeflicient r; ranges from —1 to 1, where:
* ry = 1 indicates a perfect positive correlation,
* ry = —1 indicates a perfect negative correlation (i.e., the variables are exactly inversely related),

* ry = 0 suggests no correlation.

The magnitude of r, indicates the strength of the relationship, with values closer to +1 reflecting a
stronger association. Values near 0 indicate a weak or non-existent relationship between both variables
(Murteira, 2024; Velosa & Pestana, 2008).

Consider a sample of bivariate data (X;,Y;), fori = 1,...,n, drawn from a continuous population X, Y.
Let V; = rank of X; in the sample of X;’s and S; = rank of ¥; in the sample of ¥;’s. Assuming that X and Y
have a continuous distribution, there are no ties. Let D; =V; — §;.
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To assess whether the Spearman correlation is significantly different from zero, the following hy-
potheses are tested:

Hp: There is no monotonic association between the variables X and Y; that is, p = 0.
Depending on the context and the expected direction of association, different alternative hypotheses can
be formulated. Table 4.1 summarizes the possible forms of Hy used in the Spearman rank correlation
test.

Table 4.1: Types of alternative hypotheses for Spearman’s rank correlation

Hy Description

p #0 Two-tailed (any monotonic correlation)
p >0 One-tailed (positive monotonic correlation)
p <0 One-tailed (negative monotonic correlation)

The sample Spearman rank correlation coeflicient is denoted by ry, while R denotes the corresponding
random variable used in the theoretical distribution under the null hypothesis. The Spearman rank
correlation coefficient for the random variable (R;) is then:

66X, D}
n(n>—1)

According to Conover, 1980, under the null hypothesis Hy, the expected value of the Spearman

correlation coefficient is, E(R;) = 0 and var(R,) = -1;.

Ry=1

Then, for large n, the distribution of v/n— 1R can be approximated by the distribution N(0,1)
(Daniel, 2005). For n < 30, there are tables of critical values obtained from the exact distribution of R;.

The decision whether to reject Hy is based on the p-value, calculated according to the type of
alternative hypothesis being tested. Table 4.2 summarizes the formulas used to compute these p-values
under the normal approximation.

Table 4.2: p-values for alternative hypotheses using the normal approximation

Hy p-value

Any monotonic association (p # 0) 2min{P(Z<z),P(Z>2z)}
Positive monotonic association (p >0) P(Z > z)

Negative monotonic association (p < 0) P(Z <7z)

where z is the observed value of the test statistic

Z=vn—1R,, Z~N(0,1).

4.2 Wilcoxon Signed-Rank Test

The Wilcoxon test is a non-parametric statistical method used to assess whether there is a significant
difference between the central tendencies of paired samples or one sample. When data are paired, the
observations are inherently related, which is a key consideration in applying this test. Developed by
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Frank Wilcoxon (1945), this test is particularly valuable for analysing continuous or ordinal data that are
non-normally distributed. It is robust to data skewness, the presence of outliers, and is suitable for small
sample sizes (e.g., n <30). The Wilcoxon test operates on ranked data rather than raw values, making it
less sensitive to extreme outliers that could otherwise distort results in parametric analyses.

Let X and Y represent two variables from which random samples (Xj,...,X,) and (Y;,....,Y,) are
drawn, respectively.

In symmetric populations, where the mean is equal to the median (Daniel, 2005), the Wilcoxon
test indirectly assesses the mean value by testing the equality of the medians. In such cases, the null
hypothesis (Hp) posits that the median of the differences between paired observations is zero, indicating
no difference between the two samples. Conversely, the alternative hypothesis (Hy) states that the median
of these differences is not zero.

Formally, the hypotheses for the Wilcoxon signed-rank test can be stated as:

H()I)C% = X0

Depending on the direction of the effect being tested, different forms of the alternative hypothesis may be
considered. Table 4.3 summarizes the possible alternative hypotheses for the Wilcoxon signed-rank test.

Table 4.3: Alternative hypotheses for the Wilcoxon Signed-Rank Test.

Hy Description

X #xo Two-tailed (the median is different from xg)
X1 > Xo One-tailed (the median is greater than xg)

X1 <Xo One-tailed (the median is less than xg)

where ¥ 1 denotes the population median.

The test compares the ranks of the differences between paired values, considering their magnitudes
but ignoring their signs. By focusing on ranks rather than raw differences, the test evaluates whether there
is a systematic shift in the distribution of differences between two conditions (Daniel, 2005; Murteira,
2024).

Let d, = x; —yy, for k= 1,...,n, be the difference between each pair of matched observations from
the two samples.

The absolute values |dj| are then computed and sorted in ascending order. Each |dy| is assigned a rank
r*(dy), while retaining the original sign of dy. If there are tied absolute differences, they are assigned the
average of the ranks they would occupy if distinct (Velosa & Pestana, 2008).

Then, for large sample sizes, the distribution of the Wilcoxon signed-rank statistic:
n
W= Z r*(dy)
k=1

can be approximated by a normal distribution with mean

n(n+1)

Hw = 1

and standard deviation

nin+1)2n+1)
ow :\/ 24 ‘
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The standardized test statistic is then given by:

W — uw
Ow

—

under the null hypothesis Hy, Z ~ .47(0, 1) (Conover, 1980; Daniel, 2005). In the presence of ties or zero
differences, corrections to o may be required.

In this study, the same liver image was analysed using Weka and Saturation metrics. To assess the
consistency of these evaluations, the Wilcoxon test will be performed and the results will be presented in
Chapter 5.2.2.

4.3 Models

In various fields of research, particularly in health, problems are common, and the primary objective
is to examine the relationship between variables. More specifically, the focus is often on analysing how
one or more explanatory (independent) variables influence a variable of interest, known as the response
(dependent) variable. To address such problems, a range of modelling techniques can be applied, with
regression models being among the most widely used (McCullagh & Nelder, 1989).

Regression models were initially developed assuming the response variable followed a normal distri-
bution. This framework dominated statistical modelling until the mid-20th century. However, it became
evident that the normal linear model was not adequate for many practical situations, especially when
dealing with non-linear relationships or non-normally distributed data. In response to these limitations,
Nelder and Wedderburn, 1972 introduced Generalized Linear Model (GLM) — a unified framework
that extends classical linear models to accommodate a broader class of response distributions and link
functions, thus providing greater flexibility in modeling diverse types of data.

The GLM allows for estimating regression coefficients and quantifying the impact of independent
variables on the dependent variable. It enables the assessment of both the direction and strength of the
relationship, along with its statistical significance (McCullagh & Nelder, 1989).

According to McCullagh and Nelder, 1989, GLM includes a broad class of models where the
response variable follows a distribution from the exponential family, encompassing models such as linear
regression, logistic regression, Poisson regression, and others. Some common special cases of GLM
include the following:

* Classic linear regression model;

* Logistic regression model;

* Poisson regression model;

* Analysis of variance and covariance model,

* Log-linear model for multidimensional contingency tables;

* Probit model for proportion studies, etc.

All of the models mentioned above share a linear regression structure and are characterized by the fact
that the response variable follows a distribution within the exponential family, a class of distributions with
specific mathematical properties. Despite their flexibility, GLM present certain limitations: they require
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the preservation of linearity in the predictor structure, assume that the response distribution belongs to
the exponential family, and rely on the assumption of independence among observations. However, GLM
are versatile in that both response and explanatory variables can be measured on nominal, ordinal, or
continuous scales (Dobson & Barnett, 2008). The GLM framework has played a pivotal role in modern
statistics due to its flexibility and broad applicability across disciplines (McCullagh & Nelder, 1989). Its
popularity among both specialists and non-specialists stems from the wide range of statistical models it
unifies and the increasing availability of user-friendly software for data analysis. However, applying a
GLM requires that the response variable follows a distribution from the exponential family. Therefore, a
formal definition of this family is presented next.

4.3.1 Exponential Family

A random variable Y is said to follow a distribution belonging to the exponential family (or exponential
dispersion family) if its probability density function (for continuous distributions) or probability mass
function (for discrete distributions) can be written in the general form:

f(y]6.0) —exp{w

where 6 and ¢ are scalar parameters, representing the canonical (location) and dispersion (scale) param-

+C(y,¢)} ,

eters, respectively, and a(-), b(-), and ¢(+,-) are known real-valued functions.

In this formulation, 6 is the canonical parameter (i.e., the natural parameter of the distribution), and
¢ is typically assumed to be known and constant across observations. In some contexts, particularly in
linear models, corresponding to the residual variance. It is also assumed that b(-) is differentiable and
that the support of the distribution does not depend on the parameters.

In many applications, the function a(-) takes the form a(¢) = ¢ /w, where w is a known positive
constant called the weight, which may vary from observation to observation. In this case, the expression
simplifies to:

0] 0.6.0) =exp{fp’<ye—b<e>>+c<y,¢,w>},

where o is the weight associated with the observation.

Mean and Variance

To derive the mean and variance of a distribution in the exponential family, we begin by considering
the log-likelihood of a single observation:

((6:¢,y) =In(f(y]6,9)).

The score function is a random variable, as a function of Y:

5(8) = ae(%;g),y)

For regular exponential families, the expected value of the score function is:
E[S(6)] =0,
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and 50 5 Kf%«;g”ﬂ . [W]

Recalling the expression of the log-likelihood from the general form:

b(6)

y0 —
L ea YY) = —  tc Y )
(0:0) = 2t clrp)
we obtain the score function:
Y-0'(0) a5(0) b"(0)
SO)=—F—7=—" = =— ,
=) 90 o)
where b/(0) = 783(69) and b"(0) = 7‘9376)(29).
Since E[S(0)] = 0 and the score is given by S(0) = y;é’d)()e), taking expectations gives:

Var(Y) = a(¢)b"(6)

Thus, the variance of Y can be expressed as the product of two components: »”(0), which depends
only on the canonical parameter 6 (and therefore on the mean () and is typically referred to as the
variance function V (u); and a(¢), which depends solely on the dispersion parameter ¢.

4.3.2 Generalized Linear Models

Considering a random variable Y, referred to as the response variable or dependent variable, and
a vector X = (x1,...,x;)7, where k is the number of explanatory variables under study, also known as
covariates or independent variables, which are assumed to explain part of the variability of the response
variable Y. This response variable Y can be continuous, discrete, or dichotomous, and the covariates,
whether deterministic or stochastic, can also be continuous, discrete, ordinal qualitative, or dichotomous.

Assuming we have data in the form (y;,x;), for i = 1,...,n, resulting from realizations of (¥,x) in
n individuals, where the components ¥; of the random vector Y = (V},...,¥,)T are independent. The
matrix representation of the data would be:

Y1 X111 X122 o Xk

2 X21 X22 ot X2k
y = X =

Yn Xnl X2 0 Xpk

As previously mentioned, generalized linear models are an extension of the classical linear model.

Y=ZB+e,

where Z is a matrix of dimension n X p specifying the model (usually the covariate matrix X with a first
unitary vector), associated with a parameter vector B = (Bi,...,,)”, and € is a vector of random errors
with distribution

Mn(0,671),
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that is, a multivariate normal distribution of dimension », with zero mean vector and covariance matrix
o’l.
These assumptions imply that the expected value of the response variable is a linear function of the
covariates, that is,
EY|Z)=p with p=2ZB.

To simplify the transition from Linear Models (LM) to GLM, the GLM can be specified using three
components, which are defined as:

* Random component: the random variables Y; are independent, with a distribution belonging to the
exponential family, and with E(Y;) = ;.

» Systematic component: A linear predictor 7; is defined as a combination of the explanatory
variables:

ni=z B

 Link function between the random and systematic components:
g(Hi) =1

GLM are obtained by extending the assumptions underlying LM in two main directions:

* The distribution of ¥; can be any distribution belonging to the exponential family, as previously
defined;

* It allows for link functions other than the identity to relate the linear predictor 7n; to the mean y;,
that is,

ni = g(ti)

where g(+) is a monotonic and differentiable function called the link function.

When n; = u;, the function g(-) is referred to as the canonical link function (Dobson & Barnett,
2008).

One of the most commonly used distributions within the exponential family for modelling count data
is the Poisson distribution.

Poisson distribution

The Poisson distribution, denoted by ¥ ~ Po(4), is used to model count data. Such data typically
represent the number of occurrences of some event in a defined time period or space, when the probability
of an event occurring in a very small time (or space) is low, and the events occur independently (Velosa
& Pestana, 2008).

The probability mass function of the discrete random variable Y is

k

A
P(Y:k):e"lﬁ, k=0,1,2,... and A >0,

where A is the expected number of occurrences (i.e., E[Y] = 1), and e * ensures that the total probability
over all possible values of k sums to 1.
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The Poisson distribution can be written in the exponential family form as:

f(:in) =exp(yn —e" —logy!),

where 1 = logA is the natural (canonical) parameter of the exponential family representation, and the
sufficient statistic is Y, (its realization is denoted y), since Y appears as the coefficient of the natural
parameter 7) in the exponent.

If arandom variable follows a Poisson distribution, its expected value and variance are equal. However,
data may exhibit overdispersion when the variance exceeds the mean, Var(Y;) > E(Y;), whereas for the
Poisson distribution, Var(¥;) = E(Y;) (Dobson & Barnett, 2008; Murteira, 2024).

The Negative Binomial distribution provides an alternative model that accommodates overdispersion.

Negative Binomial distribution

The Negative Binomial distribution is a discrete probability distribution that models the number of
trials Y needed to achieve a specified number of successes k, given a constant probability of success p in
each trial (Dobson & Barnett, 2008; Velosa & Pestana, 2008).

However, one limitation of the Poisson distribution is that it assumes the mean and variance of the
response variable are equal. In practice, count data often exhibit overdispersion, where the variance
exceeds the mean.

In such cases, the Negative Binomial distribution provides a more flexible alternative.

Let Y ~ Negative Binomial(k, p). The probability mass function of Y is given by:

n—1

P(Y=n)= <k 1>pk(1 —p)" K, forn=rkk+1,...
and the expected value and variance of Y are given by:

Ey)= =P ) =

p p

k(1—p)
2

The Negative Binomial distribution belongs to the exponential family (McCullagh & Nelder, 1989).
To demonstrate this, its probability mass function must be expressed in the canonical form of the
exponential family.

In the parameterization commonly used in Generalized Linear Models, the Negative Binomial distri-
bution is defined by the mean u and a dispersion parameter » > 0, which reflects the degree of variability
in the data beyond that accounted for by a Poisson model. Specifically,  can be interpreted as a shape or
dispersion parameter that controls the amount of overdispersion (Hilbe, 2007).

Using the mean u and the natural (canonical) parameter 6, we have:

n=E(¥)=""0" §=log (“%)

The probability mass function can be rewritten as:

oot () (%)
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The logarithm of the probability mass function expressed in terms of y and r is:

log f(y; 1, r) = y-log (rf:u) Hrlog <r+ru> loe (F(yr(j;r)lr“)(r)>

This structure fits the exponential family form:

f(v;0,r) =exp(y-0 —b(8)+c(y))

Where:

6 =log (“) (Canonical parameter)

u+tr
b(0) = —r-log(1 —e?) (Cumulant function)

B C(y+r)
cb) =log <r<y+ G

In the case of the negative binomial distribution, the canonical link function is:

<() :log( b )

Mi+r

) (Base measure)

This formulation allows the negative binomial distribution to be used within the GLM framework,
providing a flexible approach for modeling overdispersed count data.

4.3.3 Generalized Linear Mixed Model

When the data exhibit a hierarchical structure, repeated measures, or when dealing with longitudinal
data, a GLMM is appropriate, as it allows for the inclusion of random effects. In this study, a GLMM
with a Negative Binomial distribution was used to model the count of vacuoles, (Y), the dependent
variable, given the presence of overdispersion and the repeated-measures structure of the data. This
approach allows for the appropriate modelling of count data with extra variability (overdispersion) and
incorporates random effects to capture intra-group dependence not explained by fixed covariates (Velosa
& Pestana, 2008).

In this parameterization, the variance is given by

2
Var(Y) = pu + IL’
.

which allows the model to account for overdispersion.
Understanding the model: The fixed coefficients () represent the effect of the predictor variables
on the response variable, on the logarithm of the expected value of the response.

The basic model formula is:
log(p:) = Bo+ Prxii + Boaxai+ -+ + b
Where:
* U; = expected mean of the response variable for observation i
* By = intercept
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* Bj = coefficient associated with the explanatory variable x ;
* b; = random effect associated with observation or group i

A logarithmic link function was used because it assures the positivity of the predicted values and
allows for a multiplicative interpretation of the effects. This approach is appropriate in situations where
proportional changes are more meaningful than absolute ones, and where the response variable is strictly
positive. The estimated coeflicients represent the multiplicative effect of the covariates on the expected
value of the response variable. That is, a one-unit increase in a given covariate multiplies the expected
value of Y by exp(f3;), holding the other variables constant.

The main assumptions of the GLMM are:

* The response variable follows a distribution from the exponential family — in this case, a Negative

Binomial distribution.

The link function correctly specifies the relationship between the mean of the response and the

linear predictor.
* The random effects are normally distributed: b; ~ N(0,6?) independent of the residual variation.
* Observations are conditionally independent given the random effects.

Parameter estimation: The estimation of GLMM parameters is typically performed using Maximum
Likelihood Estimation (MLE). However, due to the presence of random effects, the likelihood involves
integrating over their distribution, which often lacks a closed-form solution. Therefore, numerical
approximation methods such as the Laplace approximation or adaptive Gaussian quadrature are used
(Velosa & Pestana, 2008; Zuur et al., 2009). The glmmTMB() function from the glmmTMB package in
R implements these methods efficiently, allowing for flexible specification of fixed and random effects
structures, and supports a range of distributions, including the Negative Binomial.

4.3.4 Model Comparison

To evaluate and compare different Generalized Linear Mixed Models (GLMM) with the same distribu-
tion family, negative binomial distribution, and the same random effects structure, the anova() function
was used with the Likelihood Ratio Test (Likelihood Ratio Test (LRT)). This approach allows for the
comparison of nested models, models where one is a simplified version of the other, and assesses whether
including variables or interactions significantly improves model fit by comparing their likelihoods.

The anova() procedure relies on Maximum Likelihood estimation and calculates the difference be-
tween the log-likelihoods of the models. The significance of this difference is then evaluated based on
the chi-squared distribution, which is appropriate for comparing fixed effects using the Likelihood Ratio
Test (LRT) (Zuur et al., 2009).

LRT = —2 x (logLo —logL;)
where:
* logLy: log-likelihood of the simpler model
* logL,: log-likelihood of the more complex model
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Additionally, the anova() function provides information criteria such as the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC), which evaluate the trade-off between
model fit and complexity. Lower values of AIC or BIC indicate models that achieve a better fit with fewer
parameters. While both criteria serve to prevent overfitting, AIC tends to favor more complex models,
whereas BIC applies a stronger penalty for the number of parameters, often favoring simpler models by
the principle of parsimony (Velosa & Pestana, 2008).

This analysis thus enables the selection of the most parsimonious model that maintains strong ex-
planatory power, contributing to a robust statistical interpretation of the data while avoiding overfitting.

4.4 Bootstrap Method

Statistical methods allow us to draw inferences about a population and estimate unknown parameters
based on a sample. Point estimation plays a key role by providing values that can support more advanced
analyses.

Given a sample
X = (X1,X2, -+, Xn)

drawn from an unknown population, we aim to estimate parameter 6 by using statistics S(x)

6 = S(x)

from the observed data.

Resampling techniques, such as the bootstrap, generate new samples from the original data, typically
with replacement, to approximate the sampling distribution of 6. As illustrated in Figure 4.1, these
bootstrap samples form the basis of a non-parametric approach to statistical inference.

Original Data

AAAAAA

! |

AAAAAA|- I AAAAA A

Bootstrap samplel (6 ) Bootstrap sample 7 (), )

Figure 4.1: Ilustration of the bootstrap resampling process.

Introduced by Bradley Efron in 1979 (Efron, 1979), the bootstrap is particularly valuable when
classical methods struggle, such as with small sample sizes or non-normal data. It enables estimation
of statistical accuracy, like standard errors or confidence intervals, without strong assumptions about the
underlying population.

The bootstrap method typically follows four main steps:
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1. Resampling with replacement: New samples of the same size are generated by randomly selecting
observations from the original dataset, with replacement.

2. Generation of bootstrap statistics: For each b =1,2,...,B, a bootstrap sample

X = (X7, X555 X0);

it is drawn, and the statistic of interest is computed:

é*b — S(X*b)

3. Repetition: The resampling and computation steps are repeated a large number of times. This
process yields B bootstrap replications.

4. Estimation and inference: The bootstrap statistics are used to estimate the sampling distribution
of the statistic. Confidence intervals can be constructed using the empirical percentiles—typically
the 2.5™ and 97.5™ percentiles—yielding a bootstrap 95% confidence interval. This approach
avoids assumptions about the underlying population distribution and is robust to skewness and
small sample sizes.

Bootstrap distribution: The B statistics

A

Nxl A*2 *B
0! 6*2, ... 6

from the empirical distribution of the estimator under the bootstrap model, serving as an approximation
of its sampling distribution.

The estimate of the standard error of the statistic can be estimated as:

—~

1 é O xb 0 * 2
SE, = ﬁb;(e —6%)

where 6* is the average of the bootstrap estimates:

Percentile confidence interval: To construct a non-parametric (1 — o) confidence interval, the ordered
bootstrap estimates define the bounds:

Cli-a) = [6%(a/2),0*(1-a/2)]

where é*(a /2) and é*(l_a /2) are the empirical quantiles of probabilities /2 and 1 — ¢¢/2 This method
offers an intuitive, assumption-free way to assess the uncertainty of the estimator.
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Results and Discussion

5.1 Descriptive Analysis

Initially, a descriptive analysis was performed to characterize the sample and present the variables
under study, using measures of central tendency, dispersion, and distribution shape. Graphical represen-
tations were also used when considered helpful to improve data visualization. Given the paired nature of
the data, a summary of the key variables is provided below.

All statistical analyses were conducted using R software (version 4.4.1) in the RStudio environment.
Several R packages were employed, including ggplot2 and ggpubr for data visualization, dplyr,
tidyverse, and readx1 for data manipulation and import, boot for bootstrap analysis, glmmTMB and
1me4 for fitting generalized linear mixed models, DHARMa for residual diagnostics, emmeans and MuMIn
for estimated marginal means and model selection, and car and 1Imtest for statistical tests. Additional
packages such as FactoMineR, corrplot, broom, psych, and FSA, among others, were used as needed
throughout the analysis.

5.1.1 Number of vacuoles for Weka and Saturation:

The box plots for the variable number of vacuoles, stratified by the outcome of each plugin that
analyses the same images, reveal differences between the two methods, as outlined in Figure 5.1. The
Weka plugin reaches higher values of the number of vacuoles (as seen by the range), compared to
the Saturation plugin, but 50% upper values above the median are more dispersed, suggesting greater
variability. However, the median values for both plugins are similar. For Saturation, the range spans from
13 to 20795. For this variable, the number of vacuoles ranges from a minimum of 5 to a maximum of
28076.
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Figure 5.1: Distribution of the number of vacuoles identified by each program. The box plots compare the results
obtained using the Saturation and Weka methods.

The distribution of the log-transformed number of vacuoles for both plugins is shown in Histogram
5.2. Given the strong right skewness observed in the raw values, the data have been log-transformed to
improve visualization and interpretability. Without transformation, the high concentration of low counts
and the presence of extreme outliers would obscure relevant distributional patterns. After transformation,
both distributions appear more symmetric and reveal subtle differences between the two methods. While
both distributions peak within a similar range, the Weka plugin shows a slightly narrower and more
centralized distribution compared to Saturation, suggesting that Weka may produce more consistent
estimates of vacuole count. In contrast, Saturation displays a broader spread with a longer right tail,
which may indicate a higher variability in its measurements or sensitivity to larger values.

These differences highlight the importance of assessing not only central tendency but also dispersion

when comparing automated image analysis tools.

Weka Saturation

54.50815 1096.63316 22026.46579 5450815 109663316 22026 46579

vacuole_nr vacuole_nr

(a) Histogram and density plot of the variable log number of (b) Histogram and density plot of the variable log number of
vacuoles for the Weka. vacuoles for the Saturation.

Figure 5.2: Comparison of Weka and Saturation for the variable number of vacuoles. The histogram represents the
distribution of observations, while the overlaid density curve illustrates the estimated probability density function.

5.1.2 Area of Vacuoles for WEKA and Saturation:

The box plots for the variable area of vacuoles, stratified by the result of each plugin that analyses

the same images, shows minimal differences between the two plugins, as shown in Figure 5.3. The Weka
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plugin detects a bigger area of vacuoles (as seen by the range), compared to the Saturation plugin, but
50% upper values above the median are more dispersed, suggesting greater variability. However, the
median values for both plugins are close, but not identical. This could be attributed to Weka detecting
a greater number of vacuoles than Saturation, as shown in Figure 5.1. As a result, it displays a larger
vacuole area compared to Saturation. The slight difference in box sizes suggests variability discrepancies,
with the Weka plugin exhibiting a wider spread in the third quartile relative to the Saturation plugin.
For the vacuole area, the values range from a minimum of 1.71 x 10> um? to a maximum of
8.14 x 10° um?. The average vacuole areais 1.19 x 10° um?, with a standard deviation of 1.53 x 10° um?.
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vacuoles_area
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0e+00 4

Saturation Weka
program

Figure 5.3: Distribution of the area of vacuoles identified by each program. The box plots compare the results
obtained using the Saturation and Weka methods.

Weka Saturation

count

60
40

20

1096 633 22026 466 442413.392 1006.633 22026.466 442413.302

vacuoles_area vacuoles_area
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Figure 5.4: Comparison of Weka and Saturation for the variable area of vacuoles. The histogram represents the
distribution of observations, while the overlaid density curve illustrates the estimated probability density function.

Figure 5.4 illustrates the distribution patterns of log-transformed vacuole areas for both the Weka
and Saturation plugins. The data were log-transformed to improve visualization and interpretability,
particularly in the presence of skewed distributions. This transformation reduces the impact of extreme
values and allows for a clearer comparison across values spanning multiple orders of magnitude, thereby
facilitating more meaningful visual inspection and statistical analysis. In both plugins, the distributions
exhibit positive (right) skewness, characterized by most observations being concentrated at lower vacuole
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areas, with a long tail extending toward higher values. This skewness likely reflects heterogeneity
in vacuole size, possibly due to biological variability or experimental conditions, such as variations
in steatosis severity among samples. Regarding specific differences, the Weka plugin shows a more
pronounced bimodal pattern, with two identifiable peaks: one approximately at 22026 wm? and another
slightly above. This suggests the possible existence of two distinct subpopulations of vacuoles. In
contrast, the Saturation plugin also exhibits bimodality but with a broader and less sharply defined peak,
indicating a more gradual accumulation of vacuole sizes across the mid-range values.

Consistent with previous observations regarding the number of detected vacuoles, Weka tends to
identify a higher number of vacuoles, which leads to a cumulative increase in the measured area. This
results in greater dispersion and higher maximum values, as evidenced by the heavier right tail of the
distribution. Such variations must be considered when selecting or comparing image analysis methods
for vacuole quantification. Further analyses will explore the area of vacuole distribution in relation to
steatosis percentage, aiming to identify possible patterns associated with the progression of fatty liver
disease. These findings are consistent with expectations in mice subjected to a high-calorie diet, which
typically results in a fatty liver phenotype characterized by numerous vacuoles varying in size and number.

5.1.3 Percentage of steatosis for Weka and Saturation:

The box plots 5.5 illustrates the distribution of the percentage of steatosis as estimated by the Saturation
and Weka plugins. Overall, both methods produce similar distributions, with comparable medians and
interquartile ranges, indicating consistency in the ordinal classification of steatosis levels.

For the Saturation plugin, the percentage of steatosis ranges from a minimum of 0.0001 (< 1%) to a
maximum of 0,48 (48%), with a median value of 0.18, and for the Weka plugin, values range from 0.02
to 0.51 (51%), with a slightly higher median of 0.22. The interquartile range is similar between methods,
indicating consistent variability in the central portion of the data.

Both distributions show a similar range and variability, with some extreme values near the upper
whiskers. These results indicate a consistent estimation of steatosis between the two image analysis
methods, particularly in terms of central tendency and overall spread. The agreement supports the
reliability of automated quantification for this variable, which is crucial in evaluating liver damage in

metabolic disease models such as diet-induced steatosis.
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Figure 5.5: Distribution of the percentage of steatosis identified by each program. The box plots compare the
results obtained using the Saturation and Weka methods.
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5.2 Evaluation of the performance: Weka versus Saturation

The first objective is to investigate whether there are significant differences between the two plugins.
Among the variables analysed, the number of vacuoles appears to be the most suitable for distinguishing
between them. This choice was motivated by the variable’s nature as a count of integers, which simplifies
statistical handling and interpretation. Furthermore, it represents a direct measurement rather than a
derived value based on ratios of other variables. This directness reduces potential sources of bias or
compounded measurement error, providing a clearer and more reliable basis for analysis. It is important
to note that we are working with replicates collected under varying conditions of magnification and
resolution. Although the dataset includes 17 liver samples, there is a random number of images per liver
(ranging from 4 to 7), analysed at different magnifications and resolutions for two distinct plugins. To
account for the variability in image numbers among the set of images per liver, and to minimize potential
biases, a new variable—the mean vacuole number—was created and used in further analyses in this work.
It should be emphasized that the dataset does not include information to determine definitively which
plugin performs better. Such an analysis will be an excellent direction for future research if this study
is expanded. At this stage, our goal is to evaluate which plugin is more sensitive in detecting vacuoles.
As demonstrated in Section 5.1 through graphical analysis, the distribution of the number of vacuoles
variable deviates from normality. Accordingly, in all subsequent statistical analyses involving the mean
and median, for the variable number of vacuoles, values of the 17 liver samples (statistical units) will
be treated as non-normally distributed. Statistical tests were therefore conducted under the assumption
of non-normality, thereby enhancing the validity and robustness of the resulting inferences by ensuring
alignment between the analytical methods and the underlying data structure.
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Figure 5.6: Distribution of the number of vacuoles detected by Saturation and Weka across different combinations of
magnification and resolution. Each box plot represents the distribution of Vacuole_nr values for a given condition,
with individual data points overlaid. The figure illustrates the variability and the differences in plugin performance
in vacuole detection under varying imaging conditions.

The box plot 5.6 illustrates the distribution of the number of vacuoles across different Magnification x
Resolution settings for both Weka and Saturation, across all measurements. The medians shown in the box
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plots indicate no substantial differences between the two plugins across most Magnification x Resolution
combinations. However, notable differences are observed at the 10x40, 20x40, and 20x80 settings, where
the Weka plugin detects a greater number of vacuoles compared to Saturation. This is evident from the
higher medians in the box plots, as well as the broader distribution of values above the upper quartile
(Q3) and extending into the whiskers, reflecting greater spread and variability. These patterns suggest
that the Weka plugin consistently detects a larger number of vacuoles than Saturation, particularly under
certain magnification and resolution conditions. Such findings emphasize the importance of selecting
an appropriate Magnification x Resolution setting to obtain an accurate estimate of the percentage of
steatosis. It is important to highlight that accurately assessing the percentage of steatosis is crucial
for guiding treatment decisions, establishing prognostic evaluations, diagnosing disease severity, and
evaluating liver suitability for transplantation.

5.2.1 Spearman’s rank correlation

Accordingly to Triola, 2018, bivariate data analysis is often summarized visually through scatterplot
and numerically through correlation coefficients. Prior to conducting the bivariate correlation analysis,
the distribution of the variable number of vacuoles was assessed through graphical methods (histograms
and Q-Q plots- see Appendix B). These evaluations indicated that the assumption of normality was not
satisfied for the variables under study. Therefore, the Spearman rank correlation coefficient was chosen
as the appropriate measure of association, given its robustness to violations of normality assumptions and
its ability to capture monotonic, but not necessarily linear, relationships between variables (Field, 2013;
Gauthier, 2001).

Given the violation of the assumption of normality, the Spearman rank correlation test was performed
to assess the strength and direction of the monotonic relationship between the differences of the mean
vacuole number detected by Weka and the Saturation plugins.

The hypotheses for the correlation analysis were defined as: Null hypothesis (Hp): There is no
correlation between the mean vacuole number across both plugins (p = 0). Statement as:

Hy:p=0 vs H :p#0

Table 5.1 summarizes the observed Spearman correlation coefficients (r;) and the corresponding
p-values, adjusted using the p.adjust() function, for each Magnification x Resolution (AR) group. This
adjustment accounts for multiple comparisons to control the family-wise error rate. The Bonferroni
correction method, known for its conservative nature, ensures that the overall Type I error rate remains
below a chosen significance threshold (e.g., @ = 0.05). Analysing the Table 5.1, the Spearman correlation
coeflicients () ranged from moderate to high across most combinations of magnification and resolution
between the two plugins. Particularly at lower magnifications (10x), all r; values exceeded 0.90 and
were highly significant (p < 0.00001), indicating strong monotonic agreement between methods under
these settings. However, the correlation coefficients decreased as magnification increased. The 40x40
combination yielded a weaker and non-significant correlation (r; = 0.5837; p = 0.1111), suggesting
reduced reliability and higher variability between methods under this condition. In contrast, the 40x80
combination showed a moderately strong and statistically significant correlation (r; = 0.7770; p = 0.003),
partially recovering consistency. These findings underscore the importance of selecting appropriate
imaging parameters, as both magnification and resolution can influence the agreement between automated
quantification methods.

43



Chapter 5. Results and Discussion

Table 5.1: Spearman correlation coefficients ry and p-values by AR group

Magnification x Resolution rg p-value*
10x 10 0.9289 < 0.00001
10x 20 0.9314 < 0.00001
10 x 40 0.9338 < 0.00001
20 x 20 0.9069 < 0.00001
20 x 40 0.8284  0.00029
20 x 80 0.7377  0.00853
40 x 40 0.5837 0.11119
40 x 80 0.7770  0.00299

*Adjusted p-values using the Bonferroni correction method.

The analysis yielded a Spearman’s rank correlation coefficient (ry), as shown in Figures 5.7, 5.8, and
5.9. A strong positive monotonic relationship was observed between the Weka and Saturation methods
for the variable representing the differences in the mean number of vacuoles, with r; = 0.93 and a
significance level of p-value < 10~ across all combinations (10x10, 10x20, and 10x40). In the 10x10
and 10x20 combinations, the points are closely clustered around the red trend line, suggesting that both
methods provide highly concordant results in measuring the vacuole count differences (i.e., as the Weka
value increases, the Saturation value also increases consistently). However, in the 10x40 combination,
the points are more dispersed around the red trend line, indicating greater variability for medium and

high values of Weka and Saturation.

Scatterplot: Weka vs Saturation (com Spearman p) by Combination 10x10 Scatterplot: Weka vs Saturation (com Spearman p) by Combination 10x20

15000 Spearman R = 0.93 15000 Spearman R = 0.93
p <0.001 p <0.001

10000 10000

Saturation
Saturation

5000

v |

0 5000 10000 15000 20000 0 5000
Weka

10000 15000 20000
Weka

Figure 5.7: Spearman Correlation of the Differences Figure 5.8: Spearman Correlation of the Differences
in the Mean Number of Vacuoles between Weka and in the Mean Number of Vacuoles between Weka and
Saturation Plugins (Combination 10x10) Saturation Plugins (Combination 10x20)
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Scatterplot: Weka vs Saturation (com Spearman p) by Combination 10x40
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Figure 5.9: Spearman Correlation of the Differences in the Mean Number of Vacuoles between Weka and Saturation
Plugins (Combination 10x40)

For the combination 20 20, the analysis yielded a Spearman’s rank correlation coefficient as shown
in Figure 5.10. A strong positive monotonic relationship was observed between the Weka and Saturation
methods for the differences in the mean number of vacuoles, with a Spearman’s rho of r; = 0.91 and a
significance level of p-value < 107°. The points are closely aligned with the red trend line, indicating
a high level of agreement and consistency between the two measurement methods. Similarly, for the
combination 20x40, a strong positive monotonic relationship was observed, as shown in Figure 5.11,
with a Spearman’s rho of 7, = 0.83 and a p-value < 107°. Although the points remain relatively close to
the red trend line, there is slightly greater dispersion compared to the combinations at 10 x magnification,
suggesting increased variability in measurements at intermediate values. For the combination 20x 80,
the analysis revealed a moderately strong positive monotonic relationship, as shown in Figure 5.12, with
a Spearman’s rho of ry = 0.74 and a p-value of 0.001. While the correlation remains significant, there is
noticeably greater dispersion of the points around the trend line, particularly for medium and high values,
indicating higher variability and reduced consistency between the two measurement methods at larger

combination sizes.

Scatterplot: Weka vs Saturation (com Spearman p) by Combination 20x20 Scatterplot: Weka vs Saturation (com Spearman p) by Combination 20x40
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Figure 5.10: Spearman Correlation of the Differences Figure 5.11: Spearman Correlation of the Differences
in the Mean Number of Vacuoles between Weka and in the Mean Number of Vacuoles between Weka and
Saturation Plugins (Combination 20x20) Saturation Plugins (Combination 20x40)
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Scatterplot: Weka vs Saturation (com Spearman p) by Combination 20x80
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Figure 5.12: Spearman Correlation of the Differences in the Mean Number of Vacuoles between Weka and
Saturation Plugins (Combination 20x80)

For the combination 40 x40, the analysis yielded a Spearman’s rank correlation coefficient as shown in
Figure 5.13. A moderate positive monotonic relationship was observed between Weka and Saturation for
the differences in the mean number of vacuoles, with a Spearman’s rho of r; = 0.58 and a significance level
of p-value = 0.014. Although the correlation is statistically significant, the points are widely dispersed
around the red trend line, suggesting a lower degree of agreement between the methods. Moreover, the
near-horizontal orientation of the trend line indicates limited consistency in the measurements for this
combination size, with a weaker association compared to smaller combinations.

For the 40x 80 combination, a strong positive monotonic relationship was observed between Weka
and Saturation, with a Spearman’s rho of r; = 0.78 and a p-value < 10~%. The points show a much better
alignment with the red trend line compared to the 40x40 combination, indicating stronger consistency

between the methods, although some degree of variability remains, particularly for intermediate values.

Scatterplot: Weka vs Saturation (com Spearman p) by Combination 40x40 Scatterplot: Weka vs Saturation (com Spearman p) by Combination 40x80
15000 Spearman R = 0.58 15000 Spearman R =0.78
p=0014 p <0.001

10000 10000
c c
2 S
® ®
E S
o ©
(2] 2]

5000 5000

7 e
0 0 “
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Weka Weka

Figure 5.13: Spearman Correlation of the Differences Figure 5.14: Spearman Correlation of the Differences
in the Mean Number of Vacuoles between Weka and in the Mean Number of Vacuoles between Weka and
Saturation Plugins (Combination 40x40) Saturation Plugins (Combination 40x80)

The analysis of Spearman’s rank correlation coefficients across the eight combinations revealed
consistently positive and statistically significant monotonic relationships between the Weka and Saturation
methods for the mean number of vacuoles. For the combinations 10x 10, 10x20, and 10x40 (at the same
magnification level), a very strong correlation was observed, with points closely aligned to the trend lines,
indicating a high degree of consistency and agreement between both Weka and Saturation. Although a
slight increase in variability was noted for 10x40, where resolution increases, the overall relationship
remained strong. In the intermediate combinations 20x20, 20x40, and 20x80 (Magnification 20x),
greater dispersion around the trend lines was observed, particularly for 20x80, where the correlation
strength decreased (r; = 0.74), suggesting increased measurement variability with larger combination
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sizes. In the 40x40 and 40x80 combinations (magnification 40x), the correlation between methods
remained strong, with better alignment of the points along the trend line at the higher resolution (40 x 80).

Overall, these findings suggest differences across combinations, indicating that smaller combinations
provide greater consistency and agreement between Weka and Saturation measurements, while larger
combinations tend to introduce greater variability and reduce the strength of the association. However,
a robust and statistically significant correlation was consistently observed between the mean number of
vacuoles detected by the two plugins.

5.2.2 Wilcoxon signed-rank test

The objective of this analysis is to evaluate whether there are significant differences between the two
plugins (Weka vs. Saturation) while considering the combination of magnification and resolution as
factors (10x10, 10x20, 10x40, 20x20, 20x40, 20x80, 40x40, and 40x80) for the variable mean of the
number of vacuoles. Each combination includes a sample size of 17 pairs of values. Given the paired
nature of the data, where the same images were analysed by both plugins, a Wilcoxon signed-rank test was
employed to compare the two conditions 5.2. This test examines whether there is a significant difference
in the median values between the two paired conditions. This non-parametric test was chosen because:

1. Non-normal distribution: The Shapiro-Wilk test was used to assess the normality of the paired
differences between each combination of plugins. The test yielded a p-value of 7.42 x 10~?, which
is below for all usual significance levels. Therefore, the null hypothesis of normality was rejected,
indicating that the differences do not follow a normal distribution.

2. Small sample size: Non-parametric methods are more robust for small samples and do not rely on
distributional assumptions.

3. Conservative approach: The use of the Wilcoxon test ensures that any detected differences are
less likely to be influenced by outliers or skewed distributions.

The p.adjust() function was used to adjust the p-values for multiple comparisons, in order to control the
family-wise error rate. The Bonferroni correction method, known for its conservative nature, ensures that
the overall Type I error rate remains below a chosen significance threshold (e.g., & = 0.05). This correction
was applied because multiple tests were conducted across different combinations of Magnification and
Resolution within the same 17 statistical units. In this analysis, a significance level of o = 0.05 was used
to determine statistical significance.

Table 5.2: Wilcoxon Test for paired samples for comparing Weka vs Saturation

Magnification/Resolution 10 20 40 80
10 0.0004 1.0000 0.0002 —
20 — 1.0000 0.0002 0.0001
40 — — 0.36 0.0001

Adjusted p-values using the Bonferroni correction method.

Analysing the results presented in Table 5.2, we observe that the mean of the number of vacuoles
differs between several combinations of magnification and resolution. The effect of the plugin is not
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consistent, suggesting the presence of a heterogeneous effect between the plugin, magnification, and
resolution.

Specifically, for the combinations 10 x 20, 20 x 20, and 40 x 40, both plugins yield comparable results,
with no statistically significant differences. However, for all other combinations, the null hypothesis was
rejected, indicating significant differences between the two plugins under these conditions.

The Wilcoxon test alone does not provide a definitive explanation for the observed differences.
Several factors may account for the discrepancies between Weka and the Saturation method. Weka, a
supervised classifier, extracts multiple features (colour, texture and shape) to identify vacuoles, whereas
the Saturation method segments vacuoles by applying a fixed threshold to the image’s saturation channel.
Consequently, Weka can capture subtle variations in staining and morphology, while the threshold-based
approach may fail to detect vacuoles with atypical appearance or to classify artifacts correctly when
staining intensity varies. Nevertheless, the results highlight that Magnification and Resolution settings
play a crucial role in image analysis, directly influencing vacuole count outcomes. This suggests that
the observed differences may stem from how each plugin processes the images, rather than reflecting an
inherent statistical superiority of one plugin over the other.

5.3 Generalized Linear Mixed Model

The primary objective of this analysis is to identify which program (Weka or Saturation) is more
effective and to determine the best combination (Magnification and Resolution) for detecting the number
of vacuoles. A GLMM with multiple explanatory variables will be constructed to assess how the response
variable, the number of vacuoles, is affected and associated with other variables in the data set, namely
program, magnification, and resolution. Given that both magnification and resolution have multiple levels,
the model will allow for the evaluation of which specific levels contribute significantly to the vacuole
count. During the initial exploration of the dataset, and given that the response variable, the number
of vacuoles, represents count data (non-negative integers), we began the modeling process with a GLM
assuming a Poisson distribution (McCullagh & Nelder, 1989). However, the Poisson model assumes
equidispersion (i.e., the variance equals the mean), an assumption that was violated in our dataset due
to overdispersion, where the variance exceeded the mean. This violation led to underestimated standard
errors and inflated Type I error rates, thereby undermining the model’s reliability (Cameron & Trivedi,
2013). To address this issue, we employed a Negative Binomial GLM, which introduces a dispersion
parameter to accommodate overdispersion (Hilbe, 2011). Although this model provided a better fit to
the variance structure, it did not account for the inherent correlation in the data, as multiple liver images
originated from the same subject and were evaluated by both programs (Weka and Saturation), resulting
in repeated measures. As a result, a Negative Binomial GLMM was employed, which incorporates
random effects to model within-subject variability and is particularly suited for overdispersed count data
with hierarchical or repeated measures designs (Bolker et al., 2009; Zuur et al., 2009). The final model
included the number of vacuoles as the response variable, with program, magnification, and resolution
as explanatory variables. This approach facilitated hypothesis testing regarding the associations between
predictors and the response, providing estimates of their magnitude and direction, and allowed for a
comprehensive understanding of the factors influencing vacuole detection in liver images.

To achieve these objectives, the following methodological approach was followed:

1. The response variable, the number of vacuoles, was analysed separately with each independent
variable (Program, Magnification, and Resolution) to evaluate individual effects and identify
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potential associations. This was performed using a Generalized Linear Mixed Model (GLMM)
with a Negative Binomial distribution, as detailed in Section 5.3.1.

2. Next, the Variance Inflation Factor metric was used to measure multicollinearity among independent
variables in a multivariable model. It quantifies how much the variance of an estimated regression
coeflicient is increased due to the correlation with other predictors in the model.

3. Finally, first, we fitted a negative-binomial GLMM including all independent variables in additive
form and a random intercept to account for heterogeneity between specimens. Next, two models
were fitted by adding interaction terms to capture potential combined effects 5.3.2.

5.3.1 GLMM Univariable Analysis

As an initial exploratory step, we fitted separate Negative Binomial GLMM for each independent
variable - program, magnification, and resolution (see table 5.3). This approach allowed us to assess
the individual association of each qualitative predictor with the mean number of vacuoles while already
accounting for both overdispersion and within-subject correlation. The insights gained from these simpler
models informed the construction of a final multivariable GLMM, including all relevant predictors and
their potential interactions.

log (E[vacuole_nr;]) = Bo + B1X; + Uspecimen(s  Uspecimen(i] ~ ¥ (0,0;)
 vacuole_nr;: response variable (number of vacuoles for unit i).
* PBo: fixed intercept (global mean on the log scale).
* X;: covariate (program, magnification, resolution).
* ug(;): random intercept for group g, to which unit i belongs (specimen_nr).
* E[vacuole_nr;|: expected value of the response variable, modeled using a logarithmic link function.

* g ~ A (0, 02): random effects are assumed to follow a normal distribution with mean 0 and

variance 62

Table 5.3: Univariable GLMM (Negative Binomial) results for each qualitative predictor. Estimates are on the log
scale; exponentiated estimates represent multiplicative effects on the expected number of vacuoles.

Variable Term (B) exp(B) p-value
Program Program (Weka) 0.401 1493 533x10°P
Magnification Magnification 20x  -0.661  0.516 522 x10~*
Magnification 40x  -1.764  0.171  3.91 x 10723
Resolution Resolution 20x 0.772 2.164 7.84x107%°
Resolution 40 x 1.189 3.283 5.38x10°%
Resolution 80 0.603 1.827 3.27x107"?

The model assessing the effect of the independent variable program indicates that using the Weka
plugin is associated with a 49.3% increase in the expected number of vacuoles compared to the Saturation
program (exp(0.401) = 1.493). The coefficient estimate of 0.401, with a standard error of 0.0513, suggests
a relatively precise estimate. The effect is statistically significant (p < 0.001), providing strong evidence
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of a positive association between Weka usage and vacuole count. Regarding the random intercept, it
was modelled as following a normal distribution with mean O and estimated variance of 0.3151 (SD =
0.5613). This reflects the variability in the baseline vacuole counts between specimens, after accounting
for the fixed effect of the program.

The model evaluating the effect of magnification shows that increasing magnification is associated
with a significant decrease in the expected number of vacuoles. Specifically, a magnification of 20x
is associated with a 48.4% reduction in vacuole count compared to the reference level (exp(—0.661) =
0.516), while 40x magnification results in an 82.9% reduction (exp(—1.764) = 0.171). Both effects
are highly significant (p < 0.001), indicating a strong negative association between magnification and
vacuole detection. This pattern is consistent with the fact that increasing magnification reduces the field
of view, capturing a smaller sample area and consequently leading to fewer observed vacuoles. These
results establish a clear inverse relationship between magnification level and vacuole count. Figure 5.15
reinforces that the vacuole count decreases as the magnification increases. At 10x magnification, the
vacuole counts are highly variable, with many high outliers and a median above 4,000; but at 40x, the
vacuole count is much more consistent and lower overall, with very few outliers and a median close to
1,000. As this model includes magnification as a fixed effect, the random intercepts for specimen_nr
showed a variance of 0.2262 (SD = 0.4756), indicating moderate variability between specimens .

Vacuole Count by Magnification
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Figure 5.15: Box plots showing vacuole count distribution across different image magnification levels.

Regarding the variable resolution, the model indicates that higher resolution levels lead to a statistically
significant increase in the expected number of vacuoles. Resolutions of 20, 40, and 80 pixels per
unit are associated with increases of 116% (exp(0.772) = 2.16), 228% (exp(1.189) = 3.28), and 83%
(exp(0.603) = 1.83), respectively, compared to the reference resolution. All estimates are statistically
significant (p < 0.001), suggesting that resolution enhancement improves vacuole detection, with the
most pronounced effect observed at 40 pixels. Looking at Figure 5.16, higher resolutions are generally
associated with increased vacuole detection, with the highest median and variability observed at 40x.
However, 80x shows a decrease in median count, suggesting a potential image saturation or non-linear
relationship. The 10x resolution exhibits a small median and less variability, as expected, due to the
limitation in image detail. In this model, the random intercepts for specimen_nr were assumed to follow a
normal distribution with a mean of 0, an estimated variance of 0.2959, and a standard deviation of 0.544.
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Vacuole Count by Resolution
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Figure 5.16: Boxplots showing the distribution of vacuole counts across different image resolution levels.

In summary, the models suggest that both program and imaging parameters (magnification and
resolution) significantly influence vacuole detection, Figure 5.17. Using the Weka plugin and increasing
image resolution enhances detection, while higher magnification leads to lower vacuole counts due to
reduced field coverage- a result that aligns with biological expectations. These findings highlight the
importance of optimizing imaging settings to ensure analytical accuracy in vacuole quantification.

To increase explanatory power, incorporating all predictors into a single multivariable model may
improve model accuracy and provide a more comprehensive understanding of the factors influencing
vacuole counts.
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Figure 5.17: Multiplicative effects of the variables program, magnification, and resolution on the expected vacuole
count, expressed as exp(f), with error bars representing confidence intervals.
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5.3.2 GLMM Multivariable Analysis

The presence of overdispersion justifies the use of a Negative Binomial regression model. Overdisper-
sion was assessed by initially fitting a Poisson regression model using a GLMM with a log-link function,
and calculating the dispersion index as the ratio between the sum of squared Pearson residuals and the
residual degrees of freedom:

Y (Pearson residuals)?

o=

Residual degrees of freedom

where the Pearson residual was calculated as the standardized difference between the observed and
expected values under the Poisson model, and the residual degrees of freedom, defined as the number of
observations minus the number of estimated parameters.

A value of ¢ > 1 indicates overdispersion, suggesting that the Poisson model underestimates the
variance, thus motivating the use of a Negative Binomial distribution. To assess the adequacy of the
model, the dispersion parameter was calculated using the Pearson residuals. The resulting dispersion
estimate was approximately 1209.6, indicating a substantial overdispersion in the data. This suggests that
the variance of the response variable considerably exceeds the mean.

A negative binomial regression model with the nbinom?2 parametrization was fitted using the glmmTMB
package in R. This distribution allows the variance to increase quadratically with the mean, making it
suitable for overdispersed count data. It is important to mention that the choice between the nbinom1 and
nbinom?2 was evaluated using both Akaike Information Criterion (AIC) and residual diagnostics based
on the DHARMa package. Although the nbinom1 model exhibited slightly better residual behavior the
nbinom?2 model consistently yielded substantially lower AIC values. Since a lower AIC reflects a more
optimal balance between model fit and parsimony, the nbinom?2 distribution was chosen as the most
appropriate specification.

An additive model will be used, which does not account for interactions between independent
variables, assuming separate and independent effects. The model sums the effects of each variable:

log (IE [Vacuole_nri]) = o + B1 program; + f3, magnification, + f33 resolution; + tspecimen(i]
Uspecimen[i] ~ <V (0’ o )
* vacuole_nr;: response variable (number of vacuoles for unit 7).
* Bo: fixed intercept (global mean on the log scale).
* B1, B2, Bs: fixed coeflicients (program, magnification, resolution).
* ug[: random intercept for group g, to which unit i belongs (specimen_nr).
* E[vacuole_nr;]: expected value of the response variable, modeled using a logarithmic link function.

s ugy ~ N (0,62): random effects are assumed to follow a normal distribution with mean 0 and
variance o2.

In contrast, the interaction model allows us to analyse whether the effect of one independent variable
depends on another in cases where a relationship between independent variables might exist. Instead of
simply adding effects, it also considers the combined effect between variables:
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log(E[vacuole_nr;]) = fy + B program, + 8, magnification,
+ B3 (program; x magnification;) -+ B4 resolution; + Uspecimen]i]»
Uspecimen(i] ™ JV(O, Guz)
and,
log (E[vacuole_nr;]) = By + P program, + 8, magnification,

+ B3 (magnification, x resolution;) 4 4 resolution; + Uspecimenli]

Uspecimen(i] ™ f/V(0> Guz)

* vacuole_nr;: response variable (number of vacuoles for unit 7).

* PBo: fixed intercept (global mean on the log scale).

* B1, B, Ba: fixed coefficients (program, magnification, resolution).

* fs: fixed coefficient for the interactions: program; x magnification;, and magnification; x resolution;.
* ug(;): random intercept for group g, to which unit i belongs (specimen_nr).

* E[vacuole_nr;]: expected value of the response variable, modeled using a logarithmic link function.

* g ~ (0, 62): random effects are assumed to follow a normal distribution with mean 0 and
variance G2.

5.3.2.1 Variance Inflation Factor

Before fitting the model, we assessed multicollinearity among the independent variables by computing
the variance inflation factor (Variance Inflation Factor (VIF)). Although multicollinearity does not
invalidate GLMM as a whole, it can inflate the standard errors of the fixed-effect coefficients, render them
unstable or of unexpected sign, and thus hinder the interpretation of individual effects (Zuur et al., 2009).
If the independent variables are uncorrelated, then VIF = 1; the VIF value is expected to increase as the
correlation among predictors increases. Following Montgomery et al., (2006), we consider VIF values
above 5 as indicative of potentially problematic collinearity. Specifically, the VIF for program was 1.02,
while magnification and resolution had values of 1.74 and 1.77, respectively. These results suggest a low
to moderate correlation among predictors, well within acceptable limits, and no evidence of problematic
multicollinearity.

5.3.2.2 Aditive Model

Considering the independent variables Program, Magnification, and Resolution, the following presents
the analysis using an additive model, as shown in model (5.3.2).
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Table 5.4: Multiplicative effects (exp(f)) of predictors on mean vacuole count from the Negative Binomial
(nbinom?2) mixed model. All predictors are statistically significant (p < 0.001).

Variable exp(B) 95% CI  p-value

Program (Weka) 1.48  [1.39,1.58] < 0.001
Magnification 20x ~ 0.30  [0.27,0.32] < 0.001
Magnification 40x 0.08 [0.07,0.09] < 0.001

Resolution 20 324 [2.86,3.66] < 0.001
Resolution 40 6.92 [6.10,7.85] < 0.001
Resolution 80 8.58  [7.40,9.93] < 0.001

Analysing the random effect, where specimen_nr is treated as a random intercept, we observe a
variance of 0.3363 across the 17 liver samples (SD = 0.5799). The estimated residual variance for this
model is approximately 0.4049, so the random-effect variance represents 83.1% of the residual variance,
indicating a large random-intercept effect and substantial between-specimen heterogeneity. This fully
justifies the inclusion of specimen_nr as a random effect. Additionally, the dispersion parameter for
the nbinom2 family is 2.47, confirming the presence of overdispersion in the vacuole count data. This
supports the choice of a Negative Binomial distribution over the Poisson, which assumes equal mean
and variance and would not be appropriate in this context. Examining the fixed effects of the predictor
variables, and comparing them to the reference categories (Saturation, 10x Magnification, and 10x
Resolution), the Program variable shows that utilizing the Weka plugin leads to a 48% increase in the
expected vacuole count (exp(0.391) ~ 1.48) compared to the Saturation method. This result aligns
with findings from the simpler model, suggesting that Weka detects more vacuoles than Saturation,
as shown in Chapter 5.3.1. For Magnification, the analysis reveals a significant reduction in vacuole
count at higher levels. Specifically, compared to the reference level (10x magnification), using 20x
magnification reduces the expected count by approximately 70% (rate ratio = (exp(—1.1915) ~ 0.30),
while 40x magnification results in a nearly 92% reduction (rate ratio = (exp(—2.5114) ~ 0.08). This
pattern is consistent with the simpler regression model containing only Magnification, supporting the
hypothesis that higher magnification leads to fewer counted vacuoles, possibly due to improved resolution
reducing overlapping or misidentified structures, as seen before in Chapter 5.3.1. In contrast, Resolution
exhibits an increasing trend in vacuole count. Compared to 10x resolution, increasing the resolution to
20x, 40x, and 80x results in increases in vacuole count by factors of approximately 3.24, 6.92, and 8.58,
respectively. These values correspond to the exponentiated model coefficients (exp(f3)), representing the
multiplicative change in the expected number of vacuoles relative to the baseline resolution 10x. This
suggests that higher resolutions allow for more precise vacuole detection, potentially counteracting the
reduction caused by higher magnification, as noted in Section 5.3.1. All fixed effects included in the model
(Program, Magnification, and Resolution) had very low p-values (p < 0.001), indicating strong statistical
significance and suggesting that each variable contributes meaningfully to explaining the variability in
vacuole_nr. The random effect associated with specimen_nr had a variance of 0.336, indicating moderate
variability between specimens.

The figure 5.18 shows the multiplicative effects of the predictor estimates on the vacuole count.
The Weka plugin increases the number of detected vacuoles by approximately 1.5 times compared to
the Saturation plugin. Magnifications of 20x and 40x have a negative effect on vacuole counts when
compared to the 10x reference level. In contrast, resolutions of 20x, 40x, and 80x are associated with
an increase in vacuole count relative to the 10x resolution. The resolution predictors show confidence
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intervals well above 1, supporting a positive and statistically significant effect, although the interval for
80x is wider, suggesting greater uncertainty in its estimate.

Effect of predictors on vacuole count (GLMM - Negative Binomial)

program\Veka

ampliacao20

ampliacaod0

resolution20

resolutiond0

resolutiond0

0.0 25 5.0 7.5 10.0
Multiplicative effect on mean vacuocle count (exp(Estimate))

Figure 5.18: Multiplicative effects of each predictor on the expected vacuole count, estimated from a generalized
additive linear mixed model with negative binomial distribution. The bars represent exponentiated coefficients
(exp(Estimate)), which indicate how each variable influences the mean vacuole count relative to the reference
levels (Saturation program, 10x magnification, and resolution 10). Error bars represent 95% confidence intervals.

5.3.2.3 Model with Interactions, Program x Magnification

Considering the independent variables Program, Magnification, and Resolution, the following presents
the analysis using an iterative model, as shown in model 5.3.2.

Previously, an additive model was fitted on subchapter 5.3.2.2, which assumes that the predictor
variables act independently, with no interaction effects. Under this approach, each variable contributes
independently to the prediction of vacuole_nr, without being influenced by or influencing the effects of the
others. To account for potential dependencies between predictors, the model was extended to include both
the main effects and their two-way interaction terms. Specifically, this interaction model includes the main
effects of program, magnification, and resolution, as well as their interactions: program X magnification,
and magnification x resolution. By including these interaction terms, the model allows us to evaluate
whether the effect of one variable depends on the level of another, capturing more complex relationships
in the data. This approach provides a more comprehensive understanding of how predictors jointly
influence the vacuole_nr.

To assess whether the effect of the image analysis program on vacuole detection varies with magnifi-
cation, an interaction term between program and magnification was included in the model; see table 5.5.
This extended model examines the combined influence of program, magnification, and resolution, using
Saturation, 10x magnification, and resolution 10x as reference levels.
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Table 5.5: Multiplicative effects (exp(8)), 95% confidence intervals, and p-values from the Negative Binomial
(nbinom?2) mixed model with interaction Program x Magnification (g1mmTMB).

Variable exp(B) 95% CI p-value

Program (Weka) 1.06
Magnification 20X 0.24
Magnification 40 x 0.06

0.95, 1.19] 0.308
0.22,0.26] < 0.001

[
[
[0.05,0.07] < 0.001
[

Resolution 20 3.36 2.97,3.80] < 0.001
Resolution 40 7.32 [6.45,8.30] < 0.001
Resolution 80 8.82  [7.57,10.28] < 0.001

Weka x Magn. 20x 1.57 [1.35,1.83] < 0.001
Weka x Magn. 40x 1.92 [1.63,2.26] < 0.001

Analysing the random effects, where specimen_nr is included as a random intercept, we observe a
variance of 0.3502 across the 17 liver samples (SD = 0.5918). The estimated residual variance for the
negative-binomial model is approximately 0.3891, so the random-effect variance represents 90.0% of
the residual variance, well indicating a large random-intercept effect and substantial between-specimen
heterogeneity. This objectively justifies the inclusion of specimen_nr as a random effect in the model.
Additionally, the dispersion parameter for the nbinom2 family is estimated at 2.57, the same as in
the additive model. The fixed effects of magnification and resolution were highly significant: higher
magnifications (20x and 40x) were associated with a marked decrease in vacuole count, whereas higher
resolutions (20, 40, and 80) led to substantial increases. Although the main effect of the Weka program
was not significant on its own, its interaction with magnification was highly significant. Specifically, the
interaction terms between Weka (program) and 20x magnification, and between Weka (program) and
40x magnification, indicate that Weka reduces the negative impact of higher zoom levels. For instance,
under 40x magnification, Weka yielded a higher vacuole count compared to Saturation, suggesting that
the program mitigates the loss of detail typically associated with increased zoom.

These findings demonstrate that the effect of magnification on vacuole detection depends on the
program used. In practical terms, this implies that one program may perform better at lower magnifications
while another may be more effective at higher levels. Therefore, program and magnification should be
considered in combination when evaluating the performance of automated image analysis methods. This
interaction highlights the importance of accounting for technical imaging parameters in quantitative
microscopy workflows.

Figure 5.19 shows the predicted number of vacuoles (vacuole_nr) as a function of magnification
levels, for the two plugins (Weka and Saturation). For both programs, the number of vacuoles consistently
decreases as magnification increases, indicating an inverse relationship. This pattern confirms the findings
observed across all fitted models. Weka appears to detect a higher number of vacuoles than Saturation,

particularly at 10x magnification, although the difference becomes less pronounced at 40x.
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Figure 5.19: Predicted number of vacuoles across resolution levels (10, 20, 40, 80) for each magnification level
(10x%, 20x, 40x), based on a negative-binomial GLMM including the Program x Magnification interaction.

5.3.2.4 Model with Interactions, Magnification x Resolution

Considering the independent variables Program, Magnification, and Resolution, the following presents
the analysis using an iterative model, as shown in model 5.3.2.

Analysing the impact of the predictors on vacuole_nr, distinct patterns were observed for Program,
Magnification, Resolution, and the Magnification X Resolution interaction from Table 5.6.

Table 5.6: Multiplicative effects (exp(f)), 95% confidence intervals, and p-values from the Negative Binomial
(nbinom?2) mixed model with Magnification x Resolution interaction (g1lmmTMB).

Variable exp(B) 95% CI p-value
Program (Weka) 1.48 [1.39,1.58] < 0.001
Magnification 20x 0.32 [0.27,0.38] < 0.001
Magnification 40x 0.08 [0.07,0.09] < 0.001
Resolution 20 3.29 [2.88,3.76] < 0.001
Resolution 40 6.81 [5.95,7.79] < 0.001
Resolution 80 8.33 [6.94,10.00] < 0.001

Magn. 20x x Res. 20  0.94 [0.75, 1.18] 0.55
Magn. 20x x Res. 40  0.99 [0.83, 1.19] 0.88

The random intercept for specimen_nr shows a variance of 0.3365 (SD = 0.58) across the 17 liver
samples, indicating meaningful between-sample variability and justifying its inclusion as a random effect
in the model. The results indicate that the use of the Weka plugin increases the expected vacuole count by
a factor of approximately exp(0.39) ~ 1.48, representing an increase of 48% compared to the saturation
method. This finding is consistent with the simpler model that included only Program as a predictor,
reinforcing Weka tendency to detect a higher number of vacuoles. As in previous models, Magnification
shows a significant negative effect on vacuole counts. Compared to the 10x reference level:

* 20x magnification decreases the count by a factor of exp(—1.1547) ~ 0.315, a 68% reduction;
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* 40x magnification reduces it further to a factor of exp(—2.4889) ~ 0.083, a 91% reduction.

These results support the findings from earlier models, confirming that increasing magnification leads to
fewer vacuoles being counted, likely due to a smaller field of view. In contrast, Resolution exhibits the
opposite trend, significantly increasing vacuole counts. Compared to 10X resolution:

* 20x resolution leads to an increase of approximately 228.5%,
* 40x resolution increases counts by 581%, and
* 80X resolution results in a 733% increase.

This suggests that higher resolution improves image clarity, enhancing vacuole detection. At lower
resolutions, vacuoles may be missed due to blurring or pixelation, whereas higher resolutions allow for a
more accurate count, a trend also observed in the simpler models.

Regarding the Magnification x Resolution interaction, some combinations were not statistically sig-
nificant, such as magnification20 x resolution20 and magnification20 x resolution40. This suggests that,
in these cases, the magnification at the reference level (10 x) may perform better. However, interpretation
should be made cautiously, especially for combinations affected by data sparsity or collinearity.

Figure 5.20 shows the predicted number of vacuoles as a function of both resolution and magnification
levels. For all levels of magnification, the number of vacuoles increases with resolution, confirming the
findings previously observed across all models. The curve is steeper at 10x and progressively flattens at
40x. As magnification increases, the benefit of resolution becomes increasingly limited. These results
reinforce the idea that there is an interaction between Resolution and Magnification, and that maximum
detection efficiency can be achieved with low magnification and high resolution.
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Magnification
50004 10

40
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Figure 5.20: Predicted number of vacuoles across resolution levels (10, 20, 40, 80) for each magnification level
(10x%, 20x, 40x), based on a negative-binomial GLMM including the Program x Magnification interaction.

5.3.2.5 ANOVA

The Analysis of Variance (ANOVA), see Section 4.3.4, was performed to determine which model
provides the best fit to the data. Table 5.7 shows a model comparison using likelihood ratio tests
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(GLMM with a negative binomial distribution). The first comparison was made between the additive and
interaction models, including the effect of the interaction between Program and Magnification.

Table 5.7: Model comparison using likelihood ratio tests (Additive GLMM and GLMM including interaction
Program x Magnification)

Model Df AIC BIC logLik Chisq ChiDf Pr(>Chisq)
mod_nb2 9 26192 26241 -13087 - - -
mod_nb2_2 11 26129 26186 -13053 67.715 2 < 0.001

Based on the likelihood-ratio test performed by the anova function, comparing the additive model
(without the interaction) to the model including the Program x Magnification interaction shows a highly
significant improvement in fit, Xg = 67.715,p < 0.0001. This supports the hypothesis that the effect of
the image analysis program on vacuole detection varies depending on the magnification level. The AIC,
where lower values indicate a better model fit, also supports this conclusion: the iterative model has the
lowest AIC value (26129), indicating it is the best-fitting model among those tested. Similarly, the BIC is
also lower for the interaction model (26187), and the log-likelihood is slightly higher (-13053) compared
to the additive model (-13087). Based on these three criteria, the interaction model shows a better fit than
the additive model.

Table 5.8 shows a model comparison using likelihood ratio tests (GLMM with a negative binomial
distribution). This second comparison was made between the additive and interaction models, including
the effect of the interaction between Magnification and Resolution.

Table 5.8: Model comparison using likelihood ratio tests (Additive GLMM and GLMM including interaction
Magnification x Resolution)

Model Df AIC BIC logLik Chisq ChiDf Pr(>Chisq)
mod_nb2 9 26192 26241 -13087
mod_nb2 3 11 26196 26255 -13087 0.4663 2 0.792

However, the interaction between magnification and resolution did not improve model fit compared to
the additive model, Xg =0.4663, p =0.792. This non-significant likelihood-ratio test suggests that these
two variables contribute independently to predicting vacuole count in the current dataset. The AIC and
BIC values for this model are slightly worse, indicating a minor increase in model complexity without
corresponding gains in explanatory power. Additionally, the log-likelihood is identical to the previous
model. Based on these three criteria, the interaction model provides no improvement when adding the
interaction between Magnification and Resolution.

To conclude, the model incorporating the interaction between Program and Magnification demon-
strates the superior fit; consequently, residual diagnostics were performed for this model (see Appendix
C). Among the predictors, most show statistically significant associations (p < 0.001), except for the main
effect of the Weka program, which is not significant. However, Weka significantly interacts with higher
magnification levels, mitigating their otherwise strong negative effect on vacuole count. Consistent with
previous findings, magnification has a strong negative effect: at both 20x and 40X, increasing magnifi-
cation significantly reduces the vacuole count. In contrast, resolution shows a significant and progressive
positive effect, with higher resolution levels (from 20x to 80x) leading to an increased vacuole count
compared to the reference level of 10x. These results confirm that both Magnification and Resolution
and the choice of image analysis program play critical roles in vacuole detection. They should therefore
be jointly considered when developing and optimising automated image analysis workflows.

59



Chapter 5. Results and Discussion

5.4 Number of Images per Liver

Based on the previous model results, Magnification was found to have a strong and consistent negative
effect on vacuole count, with higher magnification levels (20 x and 40 x) significantly reducing the number
of detected vacuoles. In contrast, Resolution exhibited a progressive positive effect, with higher resolution
levels resulting in increased vacuole detection. Given these findings, a configuration combining 10x low
magnification, which avoids loss of vacuole information — and 40X high resolution, which enhances
detection capability, was considered representative and suitable for further analysis. While this choice
does not exclude the possibility of more optimal combinations, this particular setup was selected as a
practical and theoretically justified compromise to carry out the current analysis. This configuration
was therefore applied uniformly across all 17 specimens to determine the minimum number of images

required to obtain a reliable and stable estimate of hepatic steatosis percentage.

Table 5.9: Number of images per specimen at 10x magnification x 40x resolution

Specimen Number of Images

1 6
2 4
3 7
4 6
5 5
6 5
7 5
8 6
9 5
10 6
11 6
12 6
13 5
14 5
15 5
16 6
17 5

This section is divided into two approaches: first, for each specimen and according to the number
of images available, different combinations were tested by comparing the global median of all images
with the median of each combination.The objective is to evaluate from which point the median begins
to stabilize and to determine the minimum number of images required, considering that the number of
images is directly related to the time needed for digitization and processing.

Accordingly, Velosa and Pestana (2008), when we are interested in selecting subsets of k elements
from a total of n available elements, and the order of selection is not important, we are dealing with
combinations of n elements taken k at a time (n > k). In this case, the selection is done without

AN n!
Ck_<k>_k!(n—k)!'
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This expression is valid when n and k are natural numbers.

Given that the available number of images in Table 5.9 varied between specimens, combinations were
generated based on the total number of images per sample. Specifically, the following groupings were anal-
ysed: 4C2—4C3—4C4; 5C2—5C3—5C4—5C5; 6C2—6C3—6C4—6C5—6C6; and 7C2—7C3—7C4—7C5—7C6—7C7. These
combinations simulate real-world situations where only a subset of images might be available for analysis
due to time, cost, or operational constraints.

For each combination, the median percentage of steatosis per sample was calculated (represented in
the plots by black circles). These were compared to the reference value, defined as the median of all
images available for each specimen (highlighted as a red dashed line). The median was chosen instead of
the mean because of its robustness against outliers, a common feature in biological measurements, thus
providing a more stable central tendency indicator.

Secondly, based on the construction of replacement combinations, a new dataset was created using
sets of 5, 6, and 7 images, sampled 3, 4, and 5 at a time, respectively. This analysis is limited to samples
3,5,6,7,9, 10, 14, and 17. These eight specimens, four classified as mild and four as severe, were
selected to explore whether the degree of steatosis could influence the number of images required. The
number of possible combinations with replacement was calculated using the formula:

where n represents the total number of available images and k the size of the combination with
replacement.

The resulting totals for each scenario were as follows:
¢ 3 =35, C4=70, °Cs5=126

e 0C3 =56, °C,=126, 6Cs=252

o IC; =84, Cy=210, C5=462

To further assess the reliability of these means, bootstrap resampling with 30, 50, 80 (5, 6, and 7
images, respectively) iterations for each of the 8 samples was conducted. In each bootstrap replicate,
the mean steatosis percentage was calculated. These means were compared to the global mean obtained
from all available images for each sample. This approach enabled us to evaluate the stability of the mean
as a function of the number of images used. Additionally, empirical quartiles (2.5% and 97.5%) were
obtained for each group of replicates to assess the estimated CI 95% associated with each combination
size. Following the above analysis, 50 replicate bootstraps were run for each combination size (3, 4, and
5 images) per specimen. Using a fixed number of 50 replicates ensures consistent statistical analysis and
allows for graphical comparisons across specimens with different numbers of available images, while
avoiding bias introduced by differing total numbers of possible combinations. From these results, we
calculated how often each combination size (3, 4, or 5 images) yielded the lowest variability and the
closest estimate to the original mean. These frequencies are presented in the table below, providing
insight into the stability of the mean and the potential trade-off between image quantity and processing
effort.

It is important to note that sample 2 (which only had 4 available images), was exclude from the
bootstrap analysis.. The results will provide a comprehensive overview of how the number of images
affects the precision of steatosis quantification and can help guide the selection of an optimal imaging
strategy that balances precision and efficiency.
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5.4.1 Combinatorial Analysis of Image Subsets

The jitter plots are presented in ascending order based on the number of images available per specimen,
starting from 4 up to 7 images per sample.

Analysis of Figure 5.21, corresponding to liver specimen 2 (with a total of 4 images), shows that
the global median of steatosis percentage is 0.2082, represented by the red dashed line. Combinations
4C3 and *C; yield identical medians (0.208), which are essentially equal to the global value. Although
combination *C; shows a slightly higher median (0.213), the difference is minimal. These results suggest
that using just 3 or 4 images may be sufficient to provide a stable estimate of steatosis percentage in this
case. This may support a reduction in the number of images required for efficient analysis.

Distribution of the Medians Specimen 2
Red dashed line represents global median = 0.2082
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Figure 5.21: Distribution of the median steatosis percentages across different image combinations for specimen 2.

Analysis of Figure 5.22a, which refers to liver specimen 5 and the variable steatosis percentage,
shows that the overall median is 0.0351 (represented by the red dashed line). All combinations (CCy,2Cs,
3Cy, and >Cs) yield median values very close to this global median, suggesting high consistency across
different image sets. The variation in median estimates is minimal, with values ranging from 0.035 to
0.038, indicating robust performance regardless of the number of images used. These results suggest that
even reduced combinations, such as >C3 (three images), may be sufficient to produce reliable steatosis
estimates in this specimen.

In Figure 5.22b, the coloured points represent the distribution of medians calculated from all possible
image combinations of a given size, while the solid black circles indicate the median of each combination
group. The red dashed line corresponds to the global median calculated from all available images for this
specimen (0.0553). All combinations (°C»,3C3,°Cy, and °Cs) yield median values that closely match the
global median, ranging narrowly between 0.054 and 0.055. This tight clustering of values reflects high
consistency and low variability across all image sets. These findings suggest that using a reduced number
of images, such as three, may still provide reliable and accurate estimates for this specimen.
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(a) Distribution of the median steatosis percentages across (b) Distribution of the median steatosis percentages across
different image combinations for specimen 5. different image combinations for specimen 6.

Figure 5.22: Specimen 5 and 6 image analysis

Analysis of Figure 5.23a, which refers to liver specimen 7 and the percentage of steatosis, shows
that the global median is 0.0442 (represented by the red dashed line). All combinations present tightly
clustered median values, ranging from 0.044 to 0.049, indicating strong consistency across different
image subsets. Notably, combinations >C3 and >Cs yield median values identical to the global median.
These results support the idea that even reduced combinations, such as those using only 3 images, may
be sufficient to obtain a reliable estimate of steatosis in this specimen.

Analysis of Figure 5.23b, which refers to liver specimen 9 and the percentage of steatosis, shows that
the global median is 0.4006 (represented by the red dashed line). Combinations >C3 and °Cs yield median
values that match the global median, while combinations >C, and >Cj show slightly higher values around
0.406. Although the overall range of median values is narrow (0.401 to 0.406), the spread of individual
estimates in combination >C, appears larger, indicating higher variability in that group. In contrast, >Cs
and °Cs demonstrate more concentrated values around the global median. These results suggest that, for
this specimen, using at least 3 images can provide reliable estimates, particularly when the image subset

is representative and balanced.
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Figure 5.23: Specimen 7 and 9 image analysis

Analysis of Figure 5.24a, which refers to liver specimen 13 and the percentage of steatosis, shows
that the global median is 0.2791 (represented by the red dashed line). Combinations Cz and °Cs yield
median values that exactly match the global median, while combinations >C, and >C, exhibit slightly
lower values of 0.256 and 0.255, respectively. Although combination >C3 appears to be a good indicator
of the steatosis percentage, its median values are more dispersed compared to Cy. This suggests that 4
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images may offer a more stable and consistent estimate in this case.

In Figure 5.24b, the dashed red line represents the global median obtained using all available images
for this specimen (median =0.3698). All combinations exhibit median values that are very close to the
global median, indicating strong consistency across subsets. Although combination >C, shows slightly
more dispersed values, its central estimate remains aligned with the overall median. Considering the time
and resources required for image acquisition and processing, the use of 3 images appears to offer a good

trade-off between analytical effort and estimation accuracy.
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Figure 5.24: Specimen 13 and 14 image analysis

Analysis of Figure 5.25a, which refers to liver specimen 15 and the percentage of steatosis, shows
that the global median is 0.3494 (represented by the red dashed line). Combinations 7C3 and 7Cs yield
median values that exactly match the global median, while combinations >C, and >C; produce values
that are very close to it. Among these, combination C, appears to be a strong indicator of the steatosis
percentage, suggesting that using 4 images may provide a reliable and efficient estimate in this case.

In Figure 5.25b, the dashed red line represents the global median obtained using all available images
for this specimen (median =0.3458). Combinations >C3 and >Cs yield median values that closely match
the global median, while °C, and °Cy display slightly lower values (0.329 and 0.320, respectively). The
dispersion of medians is similar across the different image combinations, although >Cs appears slightly
more concentrated around the central value. These results suggest that, although three images can provide

a reasonable estimate, using five images may improve consistency in this specimen.
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Figure 5.25: Specimen 15 and 17 image analysis
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In Figure 5.26a, the coloured points show the distribution of medians from all possible combinations
of a given size, while the solid black circles indicate the overall median for each group. The dashed
red line represents the global median obtained using all available images for this specimen (0.2103).
Combination °C;, exhibits greater variability, with median values fluctuating more widely and a group
median of 0.195, which is below the global median. This suggests that combinations using only two
images are less stable and tend to underestimate the true value. From combination °C, onwards, the group
medians converge rapidly toward the global median (all equal to 0.210), indicating increased stability and
accuracy with a larger number of images. Therefore, using three images appears to offer a good trade-off

between accuracy and analytical effort.

Analysis of Figure 5.26b, corresponding to specimen 4, shows the median percentage of steatosis
across different image combinations (°C, to °Cy). The red dashed line represents the global median
(0.2154). All group medians are close to the global value, indicating a high degree of consistency.
Among them, combination °Cg yields a median almost identical to the global one. However, combination
6¢C; also performs well and demonstrates low variability, suggesting that using 4 images may offer a good

compromise between analytical accuracy and effort.
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Figure 5.26: Specimen 1 and 4 image analysis

In Figure 5.27a, the coloured points represent the distribution of medians from all possible combi-
nations of a given size, while the solid black circles indicate the overall median for each combination
group. The dashed red line corresponds to the global median calculated using all available images for this
specimen (median = 0.2947). All combinations yield median values that closely match the global median,
indicating strong consistency across image subsets. Notably, the °C; group (combinations of 4 images)
shows the most concentrated distribution around the central value, suggesting that this configuration may
offer an optimal balance between accuracy and efficiency. These results confirm that the steatosis median
estimates for specimen 8 are highly robust, with 4-image combinations standing out in terms of stability.

Analysis of Figure 5.27b, related to specimen 10, shows the median percentage of steatosis across
different image combinations. The red dashed line represents the global median (0.4417). The median
values for all combinations—except ®C, are nearly identical to the global median, indicating strong
consistency. Combination ®C, presents a slightly higher group median (0.451) and greater variability.
From combination °C4 onward, the estimates stabilize, suggesting that using 4 images already provides a

reliable and efficient assessment of steatosis percentage.
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Distribution of the Medians Specimen 8 Distribution of the Medians Specimen 10
Red dashed line represents global median = 0.2946858 Red dashed line represents global median = 0.4417173
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Figure 5.27: Specimen 8 and 10 image analysis

Analysis of Figure 5.28a, related to specimen 11, shows the median percentage of steatosis across
different image combinations. The red dashed line represents the global median (0.2407). The median
values for all combinations, except ®C, are nearly identical to the global median, indicating strong
consistency. Combination °C, presents a slightly lower group. From combination °C, onwards, the
estimates stabilize, suggesting that using 4 images already provides a reliable and efficient assessment of
steatosis percentage.

As observed previously in Figure 5.28a, Figure 5.28b, related to specimen 12, shows the median
percentage of steatosis across different image combinations. The red dashed line represents the global
median (0.238). The median values for all combinations, except °C,, are nearly identical to the global
median, slightly above it, indicating strong consistency. From combination °C4 onward, the estimates
stabilize, suggesting that using 4 images already provides a reliable and efficient assessment of steatosis

percentage.
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(a) Distribution of the median steatosis percentages across (b) Distribution of the median steatosis percentages across
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Figure 5.28: Specimen 11 and 12 image analysis

Figure 5.29, related to specimen 16, shows the median percentage of steatosis across different image
combinations. The red dashed line represents the global median (0.3208). The median values for all
combinations are identical, indicating a high degree of consistency. From combination °C; onwards,
the estimates remain stable, suggesting that using 3 images already provides a reliable and efficient

assessment of steatosis percentage.
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Distribution of the Medians Specimen 16
Red dashed line represents global median = 0.3208
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Figure 5.29: Distribution of the median steatosis percentages across different image combinations for specimen 16.

In Figure 5.30, the red dashed line represents the global median obtained for specimen 3 (0.0923).
A total of six combinations were performed to evaluate the median steatosis percentage across different
image selection strategies. Combinations ’Cs, 'Cs, and ’C; yielded median values that match or closely
approximate the global median, suggesting that these subsets are representative of the overall sample. In
contrast, combinations ’Cy and ’Cg resulted in lower medians, which may indicate a limited representation
of the full variability in the specimen. Combination 'C, shows the greatest deviation and dispersion,
implying that subsets with only two images may not adequately capture the overall distribution. These
findings support the idea that using 4 images ('Cy) provides a good trade-off between accuracy and
analytical efficiency.
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Figure 5.30: Distribution of the median steatosis percentages across different image combinations for specimen 3.

Across all 17 NAFLD specimens with 4, 5, 6, and 7 available images, the median steatosis percentage
calculated from different image combinations reveals a consistent pattern. In most cases, subsets using

67



Chapter 5. Results and Discussion

only 3 images yielded median values very close to the global median derived from all images. Although
combinations using more images (such as 4 or 5) occasionally resulted in slightly more stable or exact
estimates, the added gain was often minimal. Interestingly, even in specimens with a larger number of
images and therefore more potential combinations, the results from 3 image subsets remained robust. This
supports the findings that selecting 3 representative images may offer areliable and efficient approximation
of the true steatosis percentage. From a practical perspective, this approach helps reduce the time and
resources needed for image acquisition and analysis, while maintaining sufficient accuracy for biological
interpretation and decision-making.

5.4.2 Bootstrap Analysis

The following analysis focuses on distinguishing two groups based on steatosis severity: mild and
severe. To support this comparison, bootstrap resampling was applied to estimate the variability and
stability of steatosis percentage across different image combinations. To ensure reproducibility of the
bootstrap resampling, a fixed random seed (set.seed (123)) was used before sampling. The resulting
graphs below illustrate how the number of images used influences the robustness of the estimates within

each group.

Figure 5.31a displays the bootstrap results for specimen 3 (7 images), based on 80 replicates, showing
the median percentages of steatosis calculated for combinations with replacement of 3, 4, and 5 images.
The red dashed line represents the global median derived from all available images for this specimen
(0.09235). Each black circle represents the median of the bootstrapped values corresponding to each
combination size. As the number of images increases, the medians tend to converge towards the global
median. For instance, with 5 images, the median is 0.0923, very close to the global median. The
dispersion of individual medians is generally narrow across all groups; however, 4-image combinations
show slightly more extreme values, while 5-image combinations show the least variability. These results
support the idea that using more images improves the precision of the steatosis estimate. Thus, 5 images
appear to offer the most robust and consistent assessment. Nevertheless, the decision must consider
practical aspects, such as the time and cost associated with acquiring and processing more images, which

may justify opting for fewer images in some scenarios.

Figure 5.31b presents the bootstrap results for specimen 5, using 30 replicates for combinations of
3, 4, and 5 images. The red dashed line shows the global median of all images (0.0351). As before,
black circles mark the median per group. The median for 3 images is slightly below the global median
(0.0351), while the medians for 4 and 5 images are slightly above it (0.0349 and 0.0351, respectively).
Notably, the confidence interval is widest for 3 images, reflecting greater variability. In contrast, 5 images
yield the narrowest confidence interval, indicating greater precision. These findings confirm the trend
that increasing the number of images improves reliability. The difference between using 4 or 5 images
is minimal, so 4 images may be a reasonable trade-off between accuracy and effort. Although 3 images
still provide acceptable estimates, they come with higher variability, which might limit reliability in more

sensitive analyses.
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Distribution of the Bootstrapped Medians, Specimen 5
Red dashed line represents global median = 0.03512
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(b) Bootstrapped median values of the percentage steatosis for
Specimen 5. Each point represents one bootstrap replicate (n
=30). Black dots indicate the median per group, with vertical
lines showing the 95% confidence intervals.

(a) Bootstrapped median values of the percentage steatosis
for Specimen 3. Each point represents one bootstrap replicate
(n = 80). Black dots indicate the meadian per group, with
vertical lines showing the 95% confidence intervals.

Figure 5.31: Bootstrapped median values of the percentage steatosis for specimens 3 and 5.

Figure 5.32a displays the bootstrap results for specimen 6, based on 30 replicates, showing the median
percentage of steatosis obtained from combinations of 3, 4, and 5 images. The red dashed line represents
the global median calculated from all available images for this specimen (0.05534). Each black circle
indicates the median of the bootstrapped estimates for each combination size. The medians for both 3 and
5 images are very close to the global median, indicating good precision. All combinations exhibit similar
confidence interval ranges, although the 4-image group shows a few more extreme values, suggesting
slightly greater point-wise dispersion. These results suggest that using 3 images provides a reliable and
efficient estimate of steatosis percentage. While 5 images offer slightly more consistency, the minimal
differences do not justify the additional effort in many practical scenarios. Therefore, 3 images appear to
be a reasonable trade-off between precision and resource use.

Figure 5.32b presents the bootstrap results for specimen 7, using 30 replicates for combinations of 3,
4, and 5 images. The red dashed line indicates the global median calculated from all available images
(0.04423). As in previous cases, black circles represent the median of the bootstrap estimates for each
image set. The medians for 3 (0.0442), 4 (0.0487), and 5 (0.0442) images are all close to the global
median, indicating good overall precision. Among them, the 4-image group offers a slightly better balance
between accuracy and confidence interval. However, confidence intervals remain relatively wide across
all groups. Although small differences exist, the performance of the 3-image group is comparable to the

others.
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Distribution of the Bootstrapped Medians, Specimen 7

Distribution of the Bootstrapped Medians, Specimen 6
Red dashed line represents global median = 0.04423

Red dashed line represents global median = 0.05534
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Figure 5.32: Bootstrapped median values of the percentage steatosis for specimens 6 and 7.

Figure 5.33a displays the bootstrap results for specimen 9 (5 images), based on 30 replicates, showing
the median percentage of steatosis calculated from combinations of 3, 4, and 5 images. The red dashed line
represents the global median derived from all available images for this specimen (0.40055). The median
values for all image sets are close to the global median, indicating good central tendency alignment.
However, the dispersion appears greater in the 4-image group, suggesting slightly less stability compared
to the 3- and 5-image groups. While using 4 or 5 images may offer more robustness in some cases, the
small difference in median between 3 and 5 images (both 0.4006) supports the use of only 3 images as a
time-efficient alternative with acceptable accuracy.

Figure 5.33b presents the bootstrap results for specimen 10 (5 images), using 30 replicates for
combinations of 3, 4, and 5 images. The red dashed line represents the global median obtained from all
available images (0.43464). The median values for the combinations of 3 (0.4333), 4 (0.4417), and 5
images (0.4333) are all very close to the global median, indicating good precision across all scenarios.
The dispersion is slightly greater in the 4-image group, as seen by the wider spread of values compared to
the 3- and 5-image groups, which show more compact distributions. Despite this, the differences between
the groups are minimal, suggesting that using 3 images is a reasonable and efficient option for estimating

steatosis in this specimen.

Distribution of the Bootstrapped Medians, Specimen 10

Distribution of the Bootstrapped Medians, Specimen 9
Red dashed line represents global median = 0.43464

Red dashed line represents global median = 0.40055
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Figure 5.33: Bootstrapped median values of the percentage steatosis for specimens 9 and 10.

70



Chapter 5. Results and Discussion

Figure 5.34a displays the bootstrap results for specimen 14, based on 30 replicates, showing the
median percentage of steatosis calculated from combinations of 3, 4, and 5 images. The red dashed line
represents the global median derived from all available images for this specimen (0.3698). The medians
obtained for all image sets (3, 4, and 5) are identical or extremely close to the global median (0.3698),
indicating excellent consistency and central tendency. While all groups display relatively low dispersion,
the 5-image group appears slightly more compact, suggesting marginally lower variability and potentially

greater robustness in the estimate.

Figure 5.34b presents the bootstrap results for specimen 17, using 30 replicates for combinations of
3,4, and 5 images. The red dashed line indicates the global median calculated from all available images
(0.34578). The results show that the medians for 3 (0.3456) and 5 images (0.3458) are nearly identical
to the global median, while the 4-image group shows a slightly higher value (0.37198). Regarding
variability, the 3-image group displays the widest dispersion, suggesting less stability in the estimate.
The 5-image group has the narrowest spread, indicating improved precision with more images. Overall,
while 4 and 5 images yield similarly robust results, the minimal difference between the 3- and 5-image
medians supports the idea that using 3 images may still offer acceptable accuracy, though with slightly

higher variability.

Distribution of the Bootstrapped Medians, Specimen 17
Red dashed line represents global median = 0.34578

Distribution of the Bootstrapped Medians, Specimen 14
Red dashed line represents global median = 0.3698
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(a) Bootstrapped median values of the percentage steatosis for
Specimen 14. Each point represents one bootstrap replicate
(n = 30). Black dots indicate the median per group, with
vertical lines showing the 95% confidence intervals.

(b) Bootstrapped median values of the percentage steatosis for
Specimen 17. Each point represents one bootstrap replicate
(n = 30). Black dots indicate the median per group, with
vertical lines showing the 95% confidence intervals.

Figure 5.34: Bootstrapped median values of the percentage steatosis for specimens 14 and 17.

Following the previous findings and aiming to replicate them, a bootstrap procedure was repeated 50
times to assess the variability and mean accuracy using the same sets of images (3, 4, and 5). The table
5.10 presents the summarized results. Across all specimens, using 5 images most frequently resulted
in lower variability, confirming earlier observations that increasing the number of images generally
improves precision and accuracy. This is followed by 4 images, while 3 images tend to show higher
variability. However, 3-image combinations often performed well in terms of mean estimation, indicating
that although they are more variable, they can still yield accurate central estimates. When analysing the
results by the degree of steatosis, specimens 3, 5, 6, and 7 (mild steatosis) suggest that using fewer images
may be acceptable. In contrast, for specimens with severe steatosis (9, 10, 14, and 17), using at least 4

images is advisable, with 5 images providing the best precision and consistency.
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Table 5.10: Frequency of Lowest Variability and Closest Median to the True Value Across Bootstrap 50 Replicates
(k =3, 4, 5). Variability inferred from Bootstrap 95% CI, and the true value corresponds to the global median.

Specimen Criterion k=3 k=4 k=5
Specimen 3 Lowest variability 4 13 33
Specimen 3 Closest median 48 0 2
Specimen 5  Lowest variability 1 33 16
Specimen 5 Closest median 47 0 33
Specimen 6  Lowest variability 7 20 23
Specimen 6 Closest median 41 5 4
Specimen 7  Lowest variability 2 37 11
Specimen 7 Closest median 46 0 4
Specimen 9  Lowest variability 10 20 20
Specimen 9 Closest median 41 1 8

Specimen 10  Lowest variability 5 23 22
Specimen 10 Closest median 19 29 2
Specimen 14  Lowest variability 3 19 28
Specimen 14 Closest median 46 1 3
Specimen 17 Lowest variability 2 37 11
Specimen 17  Closest median 45 2 3

Table 5.11: Bootstrap results for all specimens: standard error (SE), and 95% confidence interval by number of
images.

Specimen k SE CL.inf CI_sup
Specimen3 3 0.00866 7.46x 1077 0.33726
Specimen3 4 0.00574 0.01675 0.21705
Specimen3 5 0.00365 0.03437 0.14844
Specimen5 3 0.00056 0.02717 0.04278
Specimen5 4 0.00041 0.03016 0.04266
Specimen5 5 0.00058 0.02717 0.04278
Specimen 6 3 0.00088 0.05038 0.07504
Specimen 6 4 0.00055 0.05155 0.06582
Specimen 6 5 0.00065 0.05038 0.07504
Specimen7 3 0.00127 0.02862 0.06327
Specimen7 4 0.00091 0.03301 0.06148
Specimen7 5 0.00109 0.02862 0.05978
Specimen9 3 0.00250 0.39937 0.46372
Specimen9 4 0.00163 0.39942  0.43879
Specimen9 5 0.00190 0.39937 0.46372
Specimen 10 3 0.00406 0.39201 0.50536
Specimen 10 4 0.00341 0.40734  0.49633
Specimen 10 5 0.00384 0.42266 0.51275
Specimen 14 3 0.00513 0.27025 0.43690
Specimen 14 4 0.00285 0.31694 0.40975
Specimen 14 5 0.00432 0.27025 0.43690
Specimen 17 3 0.00675 0.24147 0.43527
Specimen 17 4 0.00567 0.24147 0.40768
Specimen 17 5 0.00645 0.24147 0.43527
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The bootstrap analysis above for all eight specimens reveals that the number of images used sig-
nificantly influences the precision of steatosis percentage estimates, and this effect may be modulated
by the degree of steatosis. In specimens with mild steatosis (Specimens 3, 5, 6, and 7), the use of
five images most frequently results in the lowest variability and estimates closest to the global median.
However, the difference is not always substantial, and in some specimens (e.g., 3 and 5), three images
also yield acceptable performance. This suggests that a reduced number of images may be sufficient for
mild cases, particularly when time or resource constraints are relevant. In specimens with more severe
steatosis (Specimens 9, 10, 14, and 17), the benefits of using a higher number of images become clearer.
Although estimates tend to remain close to the global median regardless of k, lower k values often result
in more dispersed variability assignments across replications. Using at least four images consistently
improves the stability of estimates, and five images generally offer the most robust results. These findings
suggest that the degree of steatosis may influence the optimal number of images required. Nevertheless,
using only three images appears to be a viable compromise in many contexts, especially for mild cases.
This approach should be further validated in future analyses, ideally incorporating additional clinical or
imaging variables from the dataset.

Analysing Table 5.11, we observe that for almost all specimens the standard error (SE) decreases as
the number of images (k) increases. This indicates that including more images reduces the variability
of the median estimate, leading to more stable and reliable results. Similarly, the amplitude of the 95%
confidence interval also narrows with higher k values, suggesting increased precision in the estimation
of steatosis percentage. There appears to be a distinction based on the degree of steatosis. In specimens
with mild steatosis (specimens 5, 6, and 7), the SE values are already low with just three images, and
the confidence intervals are narrow and consistent across k. This aligns with the results in Table 5.10,
where three images were frequently sufficient to obtain accurate and precise estimates in mild cases.
In contrast, specimens with more severe steatosis (specimens 9, 10, 14, and 17) show higher SE and
wider confidence intervals when only three images are used. In these cases, using four or five images
significantly reduces the uncertainty of the median estimate. Therefore, in severe cases, a higher number
of images is recommended to ensure robust and reliable assessment of steatosis. These findings support
the idea that the optimal number of images may depend on the degree of steatosis. Although three images
may be sufficient in mild cases, at least four, preferably five, images should be used for more advanced
steatosis to improve precision and reduce uncertainty of the estimation.

5.5 Quantitative Evaluation of Vacuole Size in Mild and Severe Hepatic
Steatosis

The objective of this analysis is to determine whether the distribution of vacuole size follows a specific
morphological pattern and whether the percentage of steatosis influences this distribution.

To investigate this, eight liver samples were selected—four from each category—based on the
pathology-assigned steatosis scores: score 1 (mild steatosis) and score 4 (severe steatosis). The cor-
responding steatosis percentages, quantified using the Weka segmentation program at 10x magnification
and 40 x resolution, ranged between 0-15% for mild cases and 24-51% for severe cases.

This analysis was made possible through the use of quantitative image analysis tools, which provide
detailed measurements, particularly the total area and number of vacuoles in each image.

To assess vacuole morphology, for each image of the selected samples, the ratio between the total
vacuole area (sum of all individual vacuole areas) and the total number of vacuoles was calculated. This
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ratio serves as a proxy for the average vacuole size within each sample.

To hypothesize that liver samples with a higher degree of steatosis, reflected by both pathology score
and steatosis percentage-will exhibit larger average vacuole sizes compared to those with lower steatosis
levels.

To address this hypothesis, the mean of the ratio between vacuole area and vacuole number was
calculated for each specimen.

Figure 5.35 shows the distribution of the ratio between vacuole area and vacuole number for all
images within each specimen. It highlights that certain specimens, such as 3, 5, 6, and 14, exhibit low
intra-specimen variation, suggesting that the measurements are consistent across different images from
the same liver sample. In contrast, other specimens show greater variability, indicating that the vacuole
area may differ between images of the same sample. This variation appears to be more prominent in
specimens with higher degrees of steatosis (Severe), potentially reflecting morphological heterogeneity
at more advanced stages of fat accumulation.
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Figure 5.35: Scatter plot showing the average area of each vacuole (in pm?) across individual specimens. Each
dot represents an image, coloured by steatosis severity (Ratio: Mild vs Severe). The horizontal distribution reflects
vacuole size, and the vertical axis distinguishes specimens. Specimens with Severe steatosis consistently show
higher vacuole area values compared to those with Mild steatosis.

To summarise, these findings reinforce the hypothesis that vacuole enlargement is associated with
higher grades of steatosis, both in terms of pathology-assigned severity and steatosis percentage. Further
analyses could include evaluating the distribution and variance of vacuole sizes across samples, which
may provide additional insights into the progression and characteristics of steatosis at different severity
levels.

74



Chapter 6

Conclusion

This work had three main objectives related to the evaluation of two free, open-source automated
image analysis plugins (Weka and Saturation) for the quantification of hepatic steatosis in NAFLD using
experimental mouse models.

The first objective was to determine whether there are differences between the plugins in terms of
the number of lipid vacuoles detected per image. A strong positive monotonic correlation was found
between the number of vacuoles identified by Weka and Saturation, indicating consistency. However,
the Wilcoxon test revealed significant differences across combinations of magnification and resolution.
To explore the differences between the plugins, three independent variables were analysed (Program,
Magnification, and Resolution), against the dependent variable: the number of vacuoles. A GLMM with
a Negative Binomial distribution, it was shown that both plugin and image settings significantly affect
vacuole detection. The GLMM indicated that Weka tends to identify more vacuoles, particularly at higher
magnification and resolution levels, though the interaction between plugin and image acquisition settings
was heterogeneous.

The second objective was to evaluate the minimum number of images required per specimen for a
reliable estimate of the percentage of steatosis. Based on the previous results, the combination of the
Weka plugin, 10x magnification, and 40x resolution was selected as the reference setting. Although
differences in accuracy were minimal, results indicated that using more than 3 images slightly improved
accuracy. However, due to time and cost constraints, 3 images per specimen provide a reasonable trade-off
between precision and efficiency.

The third objective aimed to explore whether a relationship exists between the degree of steatosis
and the size of lipid vacuoles. To address the limitations of small sample size, bootstrap resampling was
applied and repeated 50 times to generate confidence intervals for the vacuole area in mild vs. severe
steatosis. The results suggest that steatosis severity may influence the optimal number of images required
and that larger vacuoles are associated with more severe steatosis. This supports the hypothesis of a
morphological progression pattern.

This work contributes to the validation and optimization of automated tools for steatosis quantifi-
cation in preclinical NAFLD studies. Both Weka and Saturation are free, user-friendly plugins with
extensive community support, integrated into FIJI (ImageJ). Standardized image acquisition conditions
(Magnification and Resolution) and a consistent number of images per sample are critical factors in
improving accuracy and reproducibility, reducing inter- and intra-observer variability typical of manual,
pathologist-dependent assessments.

While this study focused on mice with different grades of NAFLD, future work could expand the

sample to include healthy liver specimens, thereby enhancing external validity. Additionally, increasing
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the number of specimens would allow for the implementation of a holdout validation strategy, splitting
the data into training and test sets, to adjust and evaluate model performance more accurately. Moreover,
integrating clinical and demographic variables such as age, sex, and biochemical markers, currently
absent from this dataset, would allow for a more comprehensive understanding of disease patterns and
enable the use of survival analysis. Additionally, it may be valuable to develop a model that combines
biochemical data with the percentage of hepatic steatosis to obtain more reliable and clinically meaningful
predictions.

A limitation of this work was the inability to compare automated steatosis percentages with the
semi-quantitative steatosis scores typically assigned by pathologists, due to missing annotations in the
dataset. Despite the use of bootstrap techniques, the relatively small number of images per specimen
limits generalizability and may introduce bias through repeated sampling.

This study builds on previous work, including Forlano et al., 2020, which reported high agreement
(ICC =0.97) between automated and manual assessments, and Munsterman et al., 2019, which developed
a macro-based vacuole detection algorithm. It also aligns with findings from Homeyer et al., 2017,
confirming that 10x magnification is both faster and sufficiently precise for digital pathology workflows.
Moreover, while some previous studies noted that vacuole size may carry diagnostic value, this work took
a step further by quantifying and linking vacuole size directly to disease grade, representing an innovative
contribution to the field. It is important to highlight that, in recent years, there has been an increasing
use of deep learning and machine learning tools in digital pathology. The quantification of metabolic
dysfunction—associated steatotic liver disease (MASLD) has global importance, as the number of related
publications grows steadily. For example, in their study, Farzi et al. (2025) introduced Liver-Quant, an
open-source Python package designed to quantify fat (Steatosis Proportionate Area) and fibrosis (Collagen
Proportionate Area) in whole-slide liver images.

In conclusion, this study validates the feasibility of using open-source automated tools to quantify
hepatic steatosis in experimental NAFLD models. It proposes a statistically robust and reproducible
pipeline that can reduce subjectivity and improve efficiency. Future research could explore the clinical
applicability of these tools in human liver biopsies, potentially aiding early diagnosis, staging, and
treatment decisions, and including transplant eligibility. These contributions are particularly relevant
in the global effort to reduce the burden of NAFLD through scalable, objective, and cost-effective
approaches. To promote reproducibility and transparency, the complete image analysis pipeline developed
in this study, including preprocessing scripts and statistical models, will be made publicly available on
GitHub.
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Appendix A. Brunt system to grade NASH activity

Table A.1: Comparison of key histological features and scoring criteria among the Brunt, NASH CRN, and SAF
systems for grading and staging NAFLD/NASH. Adapted from (Kleiner et al., 2005).

Numerical Grade or Stage | Brunt System ‘ NASH CRN System ‘ SAF System
Fibrosis Stage
0 None None None
1 Zone 3 perisinusoidal fi- | Perisinusoidal or peri- | Perisinusoidal or peri-
brosis only portal fibrosis; 3 sub- | portal fibrosis
stages defined
2 Zone 3 perisinusoidal fi- | Perisinusoidal and peri- | Perisinusoidal and peri-
brosis and periportal fi- | portal fibrosis portal fibrosis
brosis
3 Bridging fibrosis Bridging fibrosis Bridging fibrosis
4 Cirrhosis Cirrhosis Cirrhosis
Ballooning Grade
0 None None Only normal hepato-
cytes
1 Mild, zone 3 Few Few: Clusters of hep-
atocytes with rounded
shape and reticulated cy-
toplasm
2 Prominent, zone 3 Many Many: Enlarged hepato-
cytes (>2x normal)
3 Marked, zone 3
Lobular Inflammation Grade
0 No foci No foci No foci
1 1-2 foci per 20x field <2 foci per 20x field <2 foci per 20x field
2 24 foci per 20x field 2-4 foci per 20x field >2 foci per 20x field
3 >4 foci per 20x field >4 foci per 20x field
Portal Inflammation Grade
0 None None
1 Mild Mild
2 Moderate More than mild
3 Severe
Steatosis Grade
0 None <5% <5%
1 <33% 5% to 33% 5% to 33%
2 33% to 66% 33% to 67% 33% to 67%
3 >66% >67% >67%
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Appendix B

Quantile-Quantile Plots

In this appendix, some diagnostic plots are presented to assess the normality assumptions of the
variables.

B.1 Quantile-Quantile plot of the variable Percentage of Steatosis

Analysing the Quantile-Quantile plot, we observe a tight cluster of values in the lower tail, reflecting
a strong concentration of observations at or near zero. In the central region (roughly the 10th to 90th
percentiles), the points lie close to the reference line, indicating that the bulk of the distribution is
approximately normal. However, the clear departures in both tails reveal right-skewness and a violation
of the normality assumption.

QQPIot Pencentage_Steatosis

Figure B.1: Quantile-Quantile plot of the variable Percentage of steatosis.

B.2 Quantile-Quantile plot of the variable Number of vacuoles

Analysing the Quantile-Quantile plot, we observe a tight cluster of points near zero in the lower tail,
reflecting very small counts. In the central region (roughly the 10th to 90th percentiles), the points fall
close to the reference line, suggesting that mid-range counts are roughly normally distributed. However,
the pronounced upward bend in the upper tail, where extreme values lie well above the line, reveals strong
right-skewness, overdispersion, and a clear violation of the normality assumption.
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Figure B.2: Quantile-Quantile plot of the variable number of vacuoles.

B.3 Quantile-Quantile plot of the variable Area of vacuoles

Analysing the Quantile- Quantile plot, we observe a dense cluster of points near zero in the lower
tail, reflecting many very small measurements. In the central region (approximately the 10th to 90th
percentiles), the points lie close to the reference line, indicating that mid-range vacuole areas approximate
a normal distribution. However, the pronounced upward bend in the upper tail, where the largest area
values fall well above the line, reveals strong right-skewness, overdispersion, and a clear violation of the

normality assumption.
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Figure B.3: Quantile-Quantile plot of the variable area of vacuoles.
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Appendix C

Residual Analysis- Model with
Interactions, Program x Magnification

The DHARMa (Diagnostics for Hierarchical Regression Models) package implements a simulation-
based approach to generate readily interpretable scaled (quantile) residuals for fitted generalized linear
(mixed) models. It is a comprehensive tool that provides several diagnostic plots and test functions
to detect common model misspecifications, such as overdispersion, zero-inflation, and residual spatial
autocorrelation. The resulting residuals are standardized to values between O and 1 and can be interpreted
similarly to residuals from a linear regression model. Overdispersion is often a consequence of omitted
predictors or an incorrectly specified model structure, yet standard residual plots often fail to capture such
issues via residual correlations or patterns against predictors. Moreover, not all overdispersion is alike:
in count data models, a negative binomial distribution produces different residual behaviour compared
to a Poisson model with observation-level random effects. Additionally, heteroscedasticity—dispersion
varying with predictors, is frequently present but seldom tested in GLMM, despite its influence on
inference. Lastly, residual checks in GLMM are usually conducted conditionally on the estimated
random effects, limiting diagnostics to the final level of the model hierarchy and neglecting potential
issues with the full model structure (Hartig, 2024).

By analysing the Figure C.1:

The left panel: Quantile-Quantile plot residuals, tests whether the distribution of residuals matches
the expected uniform distribution.

* KS test (Kolmogorov—Smirnov): p =0
The distribution of residuals significantly deviates from uniformity.

* Dispersion test: p =0.072
No statistically significant evidence of overdispersion or underdispersion at the 5% level.

* Outlier test: p =3 x 107>
Strong evidence of outliers.

The observed "S-shaped" deviation in the Quantile-Quantile plot indicates a misfit in the distributional
assumptions. Although the dispersion test is not significant, this pattern could be indicative of overfitting,
zero-inflation, or non-independence in the data that allows the model to fit the training set too closely.

The right panel: Residuals vs. predicted values, the plot of DHARMa residuals against model
predictions shows the empirical quantiles (0.25, 0.5, 0.75 in red) compared to their expected uniform

distribution (horizontal dashed lines):



Appendix C. Residual Analysis- Model with Interactions, Program x Magnification

* The quantile curves deviate visibly from horizontal, indicating systematic patterns in the residuals.

* The combined quantile test is significant, reinforcing the evidence of poor residual fit.

This implies that the model does not fully capture the structure of the data across the range of predicted

values.
DHARMa residual
DHARMa residual vs. predicted
QQ plot residuals Quantile deviations detected (red curves)
Combined adjusted quantile test significant
o _ S _
= KStest: p=0 -
w | Deviation significa — o
o g 0~
© o
@ _ @
o —
% 0.072 g §
<
S o7 f-f
< w
o 5 o
I _| o o
© Outlier test: p= 3e-05
o | Deviation significant b=
e I — — o
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Expected Model predictions (rank transformed)

Figure C.1: DHARMa Residual Diagnostics: Quantile-Quantile Plot and Residuals vs. Predicted.

Additional test interpretations

* testDispersion() returns a dispersion statistic of 0.358 (ratio of observed to simulated SD),
suggesting possible underdispersion. However, with p-value = 0.072, this deviation is not statis-
tically significant. This suggests that while the model may slightly overestimate variability, the
negative binomial distribution is adequate for modeling the overall dispersion in the data.

* testZeroInflation() returns p-value = 1, with a simulated median of zero zeros, meaning
zero-inflation is not a concern for this model or dataset.

* testUniformity() results in a p-value < 2.2 x 1071, strongly rejecting the null hypothesis of
uniform residuals, confirming overall model misfit.

Despite these issues, we opted for a linear and interpretable GLMM structure that incorporates a
random intercept for specimens, which accounts for between-specimen variability. Our primary goal is
not prediction but understanding the effects of key variables on the response.

Nonetheless, the significant departures from residual uniformity suggest that model improvements,
such as including additional covariates, revising the link function, or testing Nonlinear mixed models
(NLMMs), could be explored in future work to better account for the observed heterogeneity.
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