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Resumo Extended Abstract

OModelo Standard (SM) da física de partículas é uma teoria quântica de campo, matematicamente con-

sistente e renormalizável, que descreve todas as interações não-gravitacionais (i.e., as interações eletro-

magnética, fraca e forte) com enorme sucesso (Capítulo 2). No entanto, mesmo quando combinado com

a teoria da Relatividade Geral (que descreve a gravitação), não consegue explicar todos os fenómenos

físicos que observamos. Um possível exemplo, entre vários outros (Secção 3.1), é o mistério da natureza

da matéria escura (DM), uma forma não-bariónica de matéria que apesar de invisível, constitui cerca de

26% da matéria-energia total (o que corresponde a 84% da matéria total) do Universo observável. A vasta

gama de evidências experimentais para a existência de matéria escura (e.g., desde curvas de rotação de

galáxias “espirais” a medições da radiação cósmica de fundo emmicro-ondas (CMB)), provêm exclusiva-

mente dos efeitos gravitacionais produzidos pela mesma (Secção 3.1.1). Estas evidências experimentais

de natureza gravítica fornecem informação acerca das propriedades da matéria escura, como o facto de

interagir de forma fraca, e ser “fria”, eletricamente neutra e estável (Secção 3.2). Mas para percebermos

o que é matéria escura, precisamos de a observar a interagir não-gravitacionalmente com matéria visível

(i.e., bariónica). Apesar de um grande esforço internacional por via de inúmeras experiências de deteção

direta, deteção indireta e buscas em aceleradores (Secção 3.2.2), esta ainda não foi detetada.

Neste trabalho assumimos que matéria escura corresponde a uma ou mais partículas elementares que

ainda não foram descobertas, o que necessariamente exige a extensão do Modelo Standard, que (por si

só) não contém nenhuma partícula candidata a matéria escura. Em particular, apenas vamos considerar a

classe de candidatos “weakly interactive massive particle” (WIMP), que são termicamente produzidas de

acordo com omecanismo “freeze-out” (Secção 3.2.1). Existemmuitas extensões doModelo Standard que

fornecem um candidato viável a matéria escura, que além de satisfazer as propriedades acima referidas,

terá que reproduzir a densidade de relíquia observada de Ωobs
DMh

2 = 0.120 ± 0.001, e não ser excluída

pelas experiências de deteção. Uma das formas mais simples de extender o Modelo Standard com uma

partícula candidata a matéria escura, sem quebrar a simetria de gauge SU(3)c × SU(2)L × U(1)Y ou a

renormalizabilidade da teoria, consiste em introduzir um campo singleto de SU(3)c × SU(2)L × U(1)Y

escalar real S(x) ∼ (1, 1, 0) e uma simetria discreta Z2 : S(x) → −S(x), SM → +SM não-quebrada

(ou exata) que garante a estabilidade (i.e., impede o decaimento) da nova partícula S (Secção 3.3). No

entanto, como verificámos após aplicarmos os mais recentes constrangimentos experimentais ao espaço

de parâmetros livres (Secção 3.3.1), este modelo está excluído para massas de matéria escura inferiores a

3535GeV (não considerando o cenário ressonantemS ≈ mh/2). Assim, é impossível testar esta extensão

do SM singleto-escalar-real (SM+RSS) através de buscas no Large Hadron Collider (LHC), que opera a

uma energia do centro-de-massa de
√
s = 13.6 TeV (Run 3), e nunca ultrapassará um valor máximo de

√
s = 14 TeV (HL-LHC). Esta é a principal motivação por detrás da subsequente investigação.

Este trabalho dedica-se ao estudo de extensões do SMn = 2, 3multi-singleto-escalar-real (SM+nRSS)

com simetrias discretas×n
r=1Z

(r)
2 ≡ Z(1)

2 × · · · ×Z
(n)
2 não-quebradas (Capítulos 4 e 5). Debaixo deste

produto direto de grupos discretos de simetria, os campos transformam-se tal que Sr(x)
Z(r)

2−−−→ −Sr(x),
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Sr′(x)
Z(r)

2−−−→ +Sr′(x), SM
Z(r)

2−−−→ +SM (r, r′ = 1, . . . , n∧ r′ 6= r). Ao permanecerem não-quebradas, as

simetrias dão origem a n = 2, 3 partículas estáveis Sr candidatas a matéria escura e zero extra partículas

tipo-Higgs (não há mistura de sabores nos termos de massa escalares). As partículas de matéria escura

acoplam ao bosão deHiggs através dos termos de portalLportal(r) = −κHr/2S2
rΦ

†Φ (que ligam os setores

“escuros” ao setor do SM),mas também entre si através dos termos de interaçãoLint(r,r′) = −λrr′/4S2
rS

2
r′

(que ligam os setores “escuros” entre si).

Começámos por estudar o caso n = 2, i.e., a extensão dois-singleto-escalar-real com uma simetria

discretaZ(1)
2 ×Z

(2)
2 não-quebrada (Capítulo 4). Antes de aplicar constrangimentos no espaço de parâmet-

ros livres, determinámos expressões analíticas para as secções eficazes relevantes para a deteção direta e

densidade de relíquia (Secção 4.2), sendo estas, respetivamente, a secção eficaz spin-independente (SI)

σSI(SrN → SrN), N = p, n de dispersão elástica de uma partícula de matéria escura num nucleão

(Secção 4.2.1), e as secções eficazes σ(SrSr → XX̄), X = SM, Sr′ 6=r de processos de aniquilação

de matéria escura (Secção 4.2.2). De seguida, impusemos analiticamente (Secção 4.3) os constrangi-

mentos teóricos e experimentais que qualquer extensão do Modelo Standard é obrigada a satisfazer (i.e.,

não-específicos de matéria escura), nomeadamente: condições para o potencial escalar ser limitado por

baixo, condições de unitariedade perturbativa (dois teóricos), limite superior para o “branching ratio”

(BR) do decaimento do bosão de Higgs para produtos invisíveis e medições de precisão de observáveis

eletrofracos (dois experimentais). Obtidas as condições analíticas, ficámos prontos para impor os con-

strangimentos provenientes de experiências de matéria escura através de uma análise numérica.

Como os constrangimentos experimentais da densidade de relíquia observada e da deteção direta,

combinados, conseguem dar conta (sem as restantes experiências) de todo o espaço de parâmetros livres

que é excluído na extensão singleto-escalar-real; fizemos o scan do espaço de parâmetros da extensão

dois-singleto-escalar-real, (novamente) com o código micrOMEGAs 6.0, para estes dois constrangimen-
tos experimentais específicos de matéria escura (Secção 4.4). Tomando S1 (S2) como aWIMP mais leve

(pesada) – sem perda de generalidade, devido à simetria S1 ↔ S2 do modelo – encontrámos três regiões

não-excluídas (ou permitidas) principais: 1) o casomS1 ∼ mS2 > 1 TeV, onde ambas as partículas DM

são pesadas; 2) o casomh/2 < mS1 < 1 TeV < mS2 , onde uma das partículas DM é mais leve (do que

1 TeV) e a outra é pesada; 3) o caso de ressonância mh/2 ≈ mS1 < mS2 . Destas regiões permitidas,

o caso mh/2 < mS1 < 1 TeV < mS2 é o único que não estava já (analogamente) presente na exten-

são (n = 1) singleto-escalar-real. Além disso, ao fornecer uma partícula DM mais leve que pode ser

alvo de buscas no LHC, esta região permitida tornou-se o nosso foco de interesse. A nossa subsequente

análise numérica (Secção 4.4.1) mostra que, neste caso não-excluído, a partícula DM mais pesada S2 é

responsável por (quase) toda a densidade de relíquia observada, e consequentemente, a sua massa mS2

e coeficiente de portal κH2 estão (juntamente) altamente constrangidos (limitados por baixo e por cima)

devido à “tensão” entre sobre-densidade de relíquia e exclusão por deteção direta associada a S2, esta úl-

tima sendo determinada pela secção eficaz SI em σSI(S2N → S2N)×ΩS2/ΩDM ≈ σSI(S2N → S2N).

Em contraste, a partícula DM mais leve S1 faz uma contribuição virtual de ΩS1h
2 ∼ 10−7 para a densi-

dade de relíquia total de matéria escura, de forma a quemS1 e κH1 apenas estão constrangidos (limitados

por baixo e por cima, e por baixo, respetivamente) devido à exclusão por deteção direta associada a S1,

que é agora determinada pela fração de abundância em σSI(S1N → S1N) × ΩS1/ΩDM. Também se

concluiu que o coeficiente “inter-escuro” λ12 que regula a aniquilação (dominante) S2S2 → S1S1 não

influencia a densidade de relíquia total de forma tão significativa quantomS2 e κH2, não sendo por isso

constrangida pela mesma. Mas como afeta a fração de abundânciaΩS1/ΩDM, é limitado por cima devido

à exclusão por deteção direta associada a S1.
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No entanto, esta região permitida do caso uma-leve-uma-pesada mS1 < mS2 está quase excluída

pelos novos resultados LUX-ZEPLIN (LZ) de 2024. Estes constrangimentos recentes não estão (ainda)

incorporados no código micrOMEGAs 6.0, pelo que tivemos que fazer a correspondente exclusão por
deteção direta (Secção 4.4.2) à parte da análise numérica anterior. Os valores σSI(SrN → SrN) ×
ΩSr/ΩDM (r = 1, 2) previstos pelo modelo, para os pontos permitidos (de espaço de parâmetros) do

caso mS1 < mS2 , excedem o limite superior estabelecido pela experiência LZ 2024 para a secção efi-

caz SI da dispersão elástica WIMP-nucleão, com parte destas previsões contidas na banda de incerteza

experimental para ambas as partículas DM.

Isto levou-nos a estudar a extensão n = 3, i.e., a três-singleto-escalar-real com uma simetria disc-

reta Z(1)
2 × Z(2)

2 × Z(3)
2 não-quebrada (Capítulo 5). Por via de uma análise numérica semelhante (mas

com scans locais, em regiões alvo do espaço de parâmetros), identificámos duas regiões permitidas de

interesse: 1) o caso duas-leves-uma-pesada mS3 < mS1 < 1 TeV < mS2 , onde S3 assume o papel de

uma partícula DM leve adicional; 2) o caso uma-leve-duas-pesadasmS1 < 1 TeV < mS2 < mS3 , onde

S3 assume o papel de uma partícula DM pesada adicional (Secção 5.4). O primeiro destes casos é idên-

tico ao caso (uma-leve-uma-pesada) mS1 < mS2 do modelo SM+2RSS, excepto pela (desnecessária)

partícula DM leve extra. No entanto, o segundo caso tem a característica (até agora, única) de ter duas

partículas DM pesadas que são simultaneamente responsáveis pela densidade de relíquia total, tal que∑3
r=1ΩSr ≈ ΩS2 + ΩS3 , com ΩS2 ∼ ΩS3 . Adicionalmente, a exclusão por deteção direta associada

às partículas DM pesadas S2,3 é agora também determinada pelas frações de abundância ΩS2,3/ΩDM, e

não apenas pelas secções eficazes SI. Assim, a “tensão” entre sobre-densidade de relíquia e exclusão por

deteção direta associada às partículas DM pesadas S2,3 é “aliviada”, enfraquecendo os (fortes) constrang-

imentos dos valores permitidos para as massas mS2,3 e coeficientes de portal κH2,3 das partículas DM

pesadas. Consequentemente, esta região permitida do caso uma-leve-duas-pesadas mS1 < mS2 < mS3

contem pontos que prevêem valores σSI(SrN → SrN) × ΩSr/ΩDM que não estão acima do limite

superior LZ 2024 para as três partículas DM Sr=1,2,3 (Secção 5.4.1).

Por fim, identificámos as experiências do LHC mais relevantes para determinar se os nossos pontos

permitidos (pela densidade de relíquia e deteção direta) estavam experimentalmente excluídos por buscas

em aceleradores (Secções 4.5 e 5.5). As buscas selecionadas são as chamadas buscas jato, mono-Higgs

e mono-Z, realizadas com o detetor ATLAS, que estabeleceram limites superiores “model-independent”

para a secção eficaz visível dos processos de produção de matéria escura correspondentes. As nossas

previsões para as secções eficazes visíveis estão pelo menos cerca de uma ordem de grandeza abaixo

dos limites de exclusão destas três análises experimentais, em todos os pontos permitidos do espaço de

parâmetros de ambos os modelos (n = 2, 3). No entanto, estão suficientemente próximas de serem ex-

cluídas pelas buscas jato e mono-Higgs, o que sugere que umaWIMP escalar poderá ser detetada durante

o restante período de operação do LHC, especialmente na fase HL-LHC.

Palavras-chave: além do Modelo Standard, física Higgs, partícula matéria escura, WIMP escalar
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Abstract

Despite extensive experimental evidence supporting the existence of dark matter (DM), its fundamental

nature remains unknown. A common assumption is that DM consists of one or more undiscovered ele-

mentary particles. One of the simplest ways of extending the Standard Model (SM) of particle physics

with a dark matter particle candidate, without breaking the SU(3)c × SU(2)L × U(1)Y gauge symme-

try of the SM or spoiling renormalizability, is by adding a real scalar singlet (RSS) field and imposing

an additional unbroken Z2 discrete symmetry that ensures the stability of the corresponding new spin

0 particle. However, this minimal Higgs-portal extension is highly constrained by the observed relic

density and direct detection experiments. Being experimentally excluded for DM masses below 3535

GeV, this model cannot be probed through collider searches at the Large Hadron Collider (LHC). In

this work, after re-constraining the real scalar singlet SM extension (SM+RSS) with the most recent ex-

periments, we study multi-real-scalar-singlet SM extensions (SM+nRSS) featuring n = 2, 3 real scalar

SU(3)c × SU(2)L ×U(1)Y singlets and unbroken×n
r=1Z

(r)
2 ≡ Z(1)

2 × · · · ×Z
(n)
2 discrete symmetries.

These models provide n = 2, 3 (respectively) stable scalar DM particle candidates that in addition to cou-

pling to the Higgs boson, also couple to each other. In both (n = 2 and n = 3) cases, we obtain a lower

non-excluded mass range for at least one of the DM candidates, well below 1 TeV. The corresponding

allowed free parameter space regions are, however, close from being excluded by the most recent (2024)

LUX-ZEPLIN results. Therefore, not only can these (n = 2, 3) multi-real-scalar-singlet SM extensions

be probed in upcoming direct detection experiments, but also through collider searches targeted at the

lighter DM particle candidates at the LHC or future colliders.

Keywords: beyond Standard Model, Higgs physics, particle dark matter, scalar WIMP
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Chapter 1

Introduction

The StandardModel (SM) of particle physics is amathematically self-consistent, renormalizable quantum

field theory that describes all known non-gravitational (electromagnetic, weak and strong) interactions

between all known elementary particles with remarkable success, making it the closest we have to a

fundamental theory. However, even when combined with general relativity (GR), it fails to explain all

the physical phenomena we observe. One of the most fundamental questions in physics concerns the

nature of dark matter (DM), an invisible non-baryonic form of matter that constitutes about 26% of the

total matter-energy and 84% of the total matter of the observable Universe. From the rotation curves of

spiral galaxies to Cosmic Microwave Background (CMB) observations [7] at the cosmological scale, the

overwhelming experimental evidence for the existence of dark matter arises solely from the gravitational

effects it produces. These gravitational probes provide valuable information on the properties of DM –

such as it being cold, weakly interactive, electrically neutral and stable – but understanding the nature of

DM requires the observation of its non-gravitational interactions with ordinary visible matter. Despite

the global effort to search for DM through numerous direct, indirect and collider detection experiments,

it has never been detected so far.

The most popular approach to this problem relies on the common assumption of DM consisting of a

new elementary particle (or particles) that has yet to be discovered [8, 9, 10], thus requiring an extension of

the Standard Model of particle physics. These extension models introduce new symmetries to ensure the

stability of potential DM particle candidates. The most common choice – although not unique (e.g., U(1)

symmetries are also widely used) – is a Z2 discrete symmetry under which all the SM fields transform

trivially (Z2-even), while the DM field does not (Z2-odd). This prevents interaction terms that are linear

in the DM field and subsequent DM decay, thereby ensuring the stability (and viability) of the candidate.

One of the first models to be proposed was the real scalar singlet SM extension (SM+RSS) with an

unbrokenZ2 symmetry S(x)→ −S(x), SM→ +SMwhich prevents the real scalar SU(3)c×SU(2)L×
U(1)Y singlet DM particle candidate S from decaying [11, 12, 13]. The appeal of this model lies in its

simplicity and minimalism: 1) The singlet field S(x) ∼ (1, 1, 0) cannot (explicitly or spontaneously)

break the SM gauge symmetry. 2) The singlet S(x) couples exclusively to the Higgs doublet Φ(x),

through a portal term Lportal ∝ S2Φ†Φ linking the SM and dark sectors. 3) The model introduces only

three extra free parameters beyond the SM: the DM mass, the portal coefficient, and the quartic self-

interaction coefficient (the latter being irrelevant at tree-level in perturbation theory). However (as we

shall see), the observed DM relic density and direct detection experiments exclude this model for DM

masses below about 3.5 TeV, making it impossible to probe at the Large Hadron Collider (LHC).

There are many generalizations of the real scalar singlet SM extension that despite being more elabo-

rate (e.g., increased number of free parameters), still retain some of its features. One possible alternative
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1. Introduction

is the complex scalar singlet SM extension (SM+CSS) with a softly broken U(1) global (dark) symmetry,

that provides a pseudo-Goldstone boson DM candidate [14]. Another approach is to study Higgs-portal

effective interactions under the framework of effective field theory (EFT) [15, 16, 17]. Finally, and

amongst many other possible alternatives, one can just consider an increased number of real scalar sin-

glets (and possibly, but not necessarily, of independent Z2 symmetries).

These n = 1, 2, . . . multi-real-scalar-singlet SM extensions (SM+nRSS) will be the main focus of

our work. In particular, we shall study the n = 2, 3 cases and impose a symmetry with respect to the

discrete direct product group×n
r=1Z

(r)
2 ≡ Z(1)

2 × · · · × Z
(n)
2 , under which the fields transform as

Z(r)
2 : Sr(x)→ −Sr(x), Sr′(x)→ +Sr′(x), SM→ +SM , (1.1)

r, r′ = 1, . . . , n∧r′ 6= r. The symmetry remains unbroken, thus leading ton = 2, 3 stable DM candidates

Sr (and zero extra Higgs-like particles, because there is nomixing), that we assume are weakly interactive

massive particles (WIMPs) [18] that were thermally produced according to the freeze-out mechanism.

Then = 2 case (i.e., the SM+2RSSmodel) with aZ(1)
2 ×Z

(2)
2 symmetry has already been studied [19, 20],

but for different scenarios than ours (which to our knowledge, has not been proposed in the literature).

In Ref. [19], the Z(1)
2 × Z(2)

2 symmetry is spontaneously broken down to no residual symmetry (i.e.,

both symmetries are spontaneously broken), thus leading to two extra Higgs-like particles and zero DM

candidates. In Ref. [20], on the other hand, the symmetry also remains unbroken, but one of the (two) DM

candidates is a feebly interactive massive particle (FIMP) that was produced according to the freeze-in

mechanism.1 The SM+3RSS model (n = 3 case) with an unbroken Z(1)
2 × Z(2)

2 × Z(3)
2 symmetry has

never been studied.

This work is organized as follows. In Chapter 2, we construct the SMof particle physics from the local

gauge symmetry principle, by imposing SU(3)c×SU(2)L×U(1)Y gauge invariance without mentioning

experimental motivations or historical perspectives. In Chapter 3, we give a brief introduction to the

field of particle dark matter, and then proceed to re-study the real scalar singlet SM extension – our

starting point, and motivation for what follows. Chapter 4 is dedicated to the two-real-scalar-singlet

SM extension. First, we present the model, compute relevant cross sections and perform an analytical

analysis for the theoretical and experimental constraints related to particle physics. We then perform

a numerical analysis for the experimental constraints related to DM – specifically, the observed relic

density, direct detection experiments and LHC searches – and identify the allowed free parameter space

regions of interest. Chapter 5 is analogous to the previous Chapter 4, but for the three-real-scalar-singlet

SM extension. Finally, we present our conclusions and final remarks in Chapter 6.

1Ref. [20] also briefly considers an alternative (unbroken) symmetry group Z(1,2)
2 under which both singlets transform

non-trivially, thus leading to the S1S2 mixing scenario (which excludes the Higgs boson).
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Chapter 2

The Standard Model of Particle Physics

Before extending the Standard Model of particle physics with new physics phenomena, one must un-

derstand how this quantum field (gauge) theory is constructed. Therefore, we shall build the SM from

scratch, by imposing the local SU(3)c × SU(2)L × U(1)Y gauge symmetry to a free massless spinor

field theory. Both the variational principle of least action and the local gauge symmetry principle are dis-

cussed in detail in Appendix A. Our treatment will not cover historical developments nor experimental

motivations, and many important details will be left out.

There is a vast literature on the topics of quantum field theory [21, 22, 23, 24, 25, 26, 27], group

theory [28, 29] and – more relevant to this chapter – Standard Model and beyond [30, 31], which have

directly or indirectly impacted this work. The textbook by P. Langacker [32], the lectures on Standard

Model by Filipe Joaquim [33] and the (respective) lecture notes by Luís Lavoura [34] were the most

influential to this chapter. Nevertheless, we follow our own conventions.

2.1 Electroweak Interaction from SU(2)L × U(1)Y Gauge Symmetry

We start by introducing the chiral projection operators PL,R ≡ (1∓ γ5)/2, where γ5 ≡ iγ0γ1γ2γ3 has

the following properties: (γ5)2 = 1, γ5
†
= γ5, {γµ, γ5} = 0. The matrices γµ (µ = 0, 1, 2, 3) are the

usual 4× 4 Dirac matrices, satisfying {γµ, γν} = 2gµν1 and γµ† = γ0γµγ0. The first two properties of

γ5 imply that its eigenvalues are ∓1, the so-called chirality values. Eigenstates of γ5 have well-defined
chirality −1(+1), and are referred to as left(right)-handed chiral states.1 Using the first property of γ5,

it is trivial to show that PL,R satisfy the projection operator algebra: PL + PR = 1, P 2
L,R = PL,R,

PL,RPR,L = 0. Hence, any spinor ψ can be decomposed into left-handed (LH) and right-handed (RH)

chiral components, ψ = (PL + PR)ψ = ψL + ψR (with γ5ψL,R = ∓ψL,R). The second and third
properties of γ5 imply P †

L,R = PL,R and γµPL,R = PR,Lγ
µ (respectively), so that for a Dirac adjoint

spinor ψ̄ ≡ ψ†γ0, one has

ψL,R = (PL,Rψ)
†γ0 = ψ†P †

L,Rγ
0 = ψ†PL,Rγ

0 = ψ†γ0PR,L = ψ̄PR,L . (2.1)

Finally, with the previous conditions, we are able to obtain the following relations

ψ̄ψ = ψ̄(PL + PR)ψ = ψ̄(P 2
L + P 2

R)ψ = ψRψL + ψLψR

ψ̄γµψ = ψ̄γµ(PL + PR)ψ = ψ̄γµ(P 2
L + P 2

R)ψ = ψ̄(PRγ
µPL + PLγ

µPR)ψ = ψLγ
µψL + ψRγ

µψR ,

1This is because helicity eigenstates with helicity ∓1/2 correspond to γ5 eigenstates (or chiral states) with chirality ∓1 in
the relativistic (massless fermion) limit (m� E).
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which will be widely used throughout this Chapter 2 (without further demonstration). We are now pre-

pared to introduce the electroweak theory of interactions.

Our starting point is a theoryL(f)kin =
∑

ψ iψ̄/∂ψ ≡
∑

ψ iψ̄γ
µ∂µψ of free massless matter (or fermion)

fields ψ. The Standard Model of particle physics – the final goal of this Chapter 2 – is a gauge theory, i.e.,

a quantum field theory based on the local gauge symmetry principle. For now, we shall focus on the theory

of electroweak (EW) interactions (the strong interaction will be later introduced, in Section 2.4). From

numerous experimental results (e.g., the observation of parity violation in weak interactions, revealing

their chiral structure), we know that the electromagnetic and weak interactions emerge from a gauge

symmetry with respect to the continuous direct product group SU(2)L × U(1)Y (as a whole, which is

why they are said to be “unified”). This symmetry group has dimension 3 + 1 = 4, with generators Ti

(i = 1, 2, 3) of SU(2)L and Y of U(1)Y . The definition of direct product group requires the SU(2)L and

U(1)Y transformations to be independent, which implies (via the Baker–Campbell–Hausdorff formula)

the commutation [Ti, Y ] = 0. Finally, the U(1)Y charge, known as the weak hypercharge, is defined

such that the U(1)Q charge of electromagnetism (electric charge) is given byQ = T3+Y (implying that

U(1)Q is a subgroup of SU(2)L × U(1)Y ).

The fermion fields can be placed in n-multiplets Ψ of SU(2)L with well-defined hypercharge Y (Ψ)

which transform under the following Ψ ∼ (n, Y (Ψ)) representations of SU(2)L × U(1)Y

LαL =

(
ναL

`αL

)
=

(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
∼ (2,−1/2) (2.2)

QαL =

(
uαL

dαL

)
=

(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
∼ (2,+1/6) (2.3)

ναR = νeR, νµR, ντR ∼ (1, 0) , `αR = eR, µR, τR ∼ (1,−1) (2.4)

uαR = uR, cR, tR ∼ (1,+2/3) , dαR = dR, sR, bR ∼ (1,−1/3) , (2.5)

where α = 1, 2, 3 are generation/family indices, and the leptons να, `α and quarks uα, dα (i.e., all

fermions) are introduced. The LH and RH components of the fermion fields transform under different

representations of this group, and hence, the SU(2)L×U(1)Y symmetry is said to be chiral. Our starting

theory of free massless fermions L(f)kin =
∑

ψ iψ̄γ
µ∂µψ can be expressed in terms of the SU(2)L×U(1)Y

multiplets (2.2)–(2.5), giving

L(f)kin =
∑
α

(
i`αγ

µ∂µ`α + iναγ
µ∂µνα

)
+
∑
α

(
iuαγ

µ∂µuα + idαγ
µ∂µdα

)
(2.6)

=
∑
α

(
i`αLγ

µ∂µ`αL + i`αRγ
µ∂µ`αR + iναLγ

µ∂µναL + iναRγ
µ∂µναR

)
+
∑
α

(
iuαLγ

µ∂µuαL + iuαRγ
µ∂µuαR + idαLγ

µ∂µdαL + idαRγ
µ∂µdαR

)
=
∑
α

(
iLαLγ

µ∂µLαL + i`αRγ
µ∂µ`αR + iναRγ

µ∂µναR
)

+
∑
α

(
iQαLγ

µ∂µQαL + iuαRγ
µ∂µuαR + idαRγ

µ∂µdαR
)
, (2.7)

which is explicitly invariant underΨ→ Ψ′ = e−i
∑
i α

iTie−iY θΨ global (but not local) SU(2)L×U(1)Y
transformations. The corresponding local gauge symmetry is obtained trough the minimal coupling re-
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2.1. Electroweak Interaction from SU(2)L × U(1)Y Gauge Symmetry

placement procedure ∂µ ↪→ Dµ, with the SU(2)L × U(1)Y covariant derivative

Dµ = ∂µ + igw

3∑
i=1

TiW
i
µ + ig′Y Bµ , (2.8)

provided that the SU(2)L and U(1)Y gauge boson fieldsW i
µ(x) (i = 1, 2, 3) and Bµ(x) transform as

W i
µ

SU(2)L−−−−→ W ′i
µ =W i

µ +
3∑

j,k=1

εijkα
j(x)W k

µ +
∂µα

i(x)

gw
=

[
~Wµ + ~α(x)× ~Wµ +

∂µ~α(x)

gw

]i
(2.9)

Bµ
U(1)Y−−−−→ B′

µ = Bµ +
∂µθ(x)

g′
, (2.10)

where gw and g′ are the EW coupling constants, and εijk (elements of the Levi-Civita tensor) are the

structure constants of the non-Abelian Lie group SU(2)L. As shown in Eq. (2.9), the SU(2)L gauge

bosons W i
µ(x) are components i = 1, 2, 3 of a vector

(
W 1
µ W 2

µ W 3
µ

)>
which transforms under the

adjoint 3 representation of SU(2)L. Defining W±
µ = (W 1

µ ∓ iW 2
µ)/
√
2 and T± = (T1 ± iT2)/

√
2

(≡ T±/
√
2), we get T1W

1
µ + T2W

2
µ = T+W+

µ + T−W−
µ , which can be introduced in the covariant

derivative (2.8) to obtain the charged current weak interactions. However, ifW 3
µ and Bµ were physical

bosons, the covariant derivative term igwT3W
3
µ + ig′Y Bµ would not reproduce the observed neutral

current electroweak interactions.2 Defining the two physical neutral EW gauge bosons through an SO(2)

flavour rotation of the “original” ones, as in the Glashow-Weinberg-Salam model,

(
Zµ

Aµ

)
=

(
cos θw − sin θw
+ sin θw cos θw

)(
W 3
µ

Bµ

)
,

cos θw = gw√
g2w+g

′2

sin θw = g′√
g2w+g

′2

⇒ tan θw =
g′

gw
, (2.11)

the covariant derivative (2.8) of SU(2)L × U(1)Y is parametrized as

Dµ = ∂µ + ieQAµ + i
gw

cos θw

(
T3 −Q sin2 θw

)
Zµ + igw

(
T+W+

µ + T−W−
µ

)
, (2.12)

where e = g′ cos θw = gw sin θw = gwg
′/
√
g2w + g′2 is the electromagnetic gauge coupling. The mini-

mal coupling ∂µ ↪→ Dµ replacement in the kinetic Lagrangian density (2.7) leads to

L(f)kin+(ew)int =
∑
α

(
iLαLγ

µDµLαL + i`αRγ
µDµ`αR + iναRγ

µDµναR
)

+
∑
α

(
iQαLγ

µDµQαL + iuαRγ
µDµuαR + idαRγ

µDµdαR
)

(2.13)

=
∑
α

[
i`αγ

µ∂µ`α + iναγ
µ∂µνα + eAµ`αγ

µ`α −
gw

2 cos θw
Zµ`αγ

µ
(
−PL + 2 sin2 θw

)
`α

− gw
2 cos θw

Zµναγ
µPLνα −

gw√
2

(
W+
µ ναγ

µPL`α + h.c.
)]

+
∑
α

[
iuαγ

µ∂µuα + idαγ
µ∂µdα −

2

3
eAµuαγ

µuα +
1

3
eAµdαγ

µdα

− gw
2 cos θw

Zµuαγ
µ

(
PL −

4

3
sin2 θw

)
uα −

gw
2 cos θw

Zµdαγ
µ

(
−PL +

2

3
sin2 θw

)
dα

2It would reproduce an electromagnetic-type interaction mediated by Bµ and another neutral current interaction, mediated
byW 3

µ , where RH fermions (SU(2)L singlets) do not participate – thus contradicting experiment.
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2. The Standard Model of Particle Physics

− gw√
2

(
W+
µ uαγ

µPLdα + h.c.
)]

, (2.14)

where h.c. stands for “hermitian conjugate”. These are the observed electroweak interactions. It should

be noted that this Lagrangian density can be written in the more compact form

L(f)kin+(ew)int =
∑
ψ

(
iψ̄/∂ψ − eAµjµem[ψ]−

gw
2 cos θw

Zµj
µ
NC(w)[ψ]

)
+

∑
(ψ(u),ψ(d))

− gw√
2

(
W+
µ j

−µ
CC(w)[ψ(u), ψ(d)] + h.c.

)
, (2.15)

where the electromagnetic (EM) and weak neutral currents (NC) are given by

jµem[ψ] = Q(ψ)ψ̄γµψ (2.16)

jµ
NC(w)[ψ] = ψ̄γµ

(
2I

(ψL)
w3 PL − 2Q(ψ) sin2 θw

)
ψ = ψ̄γµ

(
g
(ψ)
V − g(ψ)A γ5

)
ψ , (2.17)

∀ψ = `α, να, uα, dα (all SM fermions), with g
(ψ)
V = I

(ψL)
w3 − 2Q(ψ) sin2 θw and g

(ψ)
A = I

(ψL)
w3 being the

vector and axial-vector neutral current coefficients; and the weak charged current (CC) is given by

j−µ
CC(w)[ψ(u), ψ(d)] = ψ(u)γ

µPLψ(d) , ∀

(
ψ(u)

ψ(d)

)
=

(
να

`α

)
,

(
uα

dα

)
, (2.18)

with the corresponding h.c. j+µ
CC(w)[ψ(u), ψ(d)] = j−†µ

CC(w)[ψ(u), ψ(d)] = ψ(d)γ
µPLψ(u).

Additionally, the electroweak gauge bosonsW±
µ , Z

µ, Aµ are not external/auxiliary, but rather dynam-

ical fields, thus requiring kinetic terms. The missing SU(2)L×U(1)Y gauge invariant and renormalizable

terms are the usual “pure gauge” terms of any gauge theory,

LSU(2)L×U(1)Ygauge = −1

4

3∑
i=1

W i
µνW

i µν − 1

4
BµνB

µν , (2.19)

where

W i
µν ≡ ∂µW i

ν − ∂νW i
µ − gw

3∑
j,k=1

εijkW
j
µW

k
ν = [∂µ ~Wν − ∂ν ~Wµ − gw ~Wµ × ~Wν ]

i (2.20)

Bµν ≡ ∂µBν − ∂νBµ (2.21)

are the so-called field strength tensors. The (supposedly) physical gauge boson are obtained through

unitary transformations of the “original” gauge bosons, thus yielding correctly normalized kinetic terms;

additionally, the non-Abelian nature of SU(2)L leads to self-interactions of the gauge bosons,

LSU(2)L×U(1)Ygauge =− 1

2

3∑
i=1

[
(∂µW

i
ν)∂

µW i ν − (∂µW
i
ν)∂

νW i µ
]
− 1

2
[(∂µBν)∂

µBν − (∂µBν)∂
νBµ]

+ gw

3∑
i,j,k=1

εijk(∂
µW i ν)W j

µW
k
ν −

g2w
4

3∑
i,j,k,l,m=1

εijkεilmW
j
µW

k
νW

l µWmν (2.22)

=−
[
(∂µW

−
ν )∂µW+ ν − (∂µW

−
ν )∂νW+µ

]
− 1

2
[(∂µZν)∂

µZν − (∂µZν)∂
νZµ]

6



2.2. Spontaneous Symmetry Breaking and the Higgs Mechanism

− 1

2
[(∂µAν)∂

µAν − (∂µAν)∂
νAµ]

+ gw(∂
µ ~W ν) · ( ~Wµ × ~Wν)−

g2w
4
[( ~Wµ · ~Wµ)2 − ( ~Wµ · ~Wν)( ~W

µ · ~W ν)] . (2.23)

Finally, we still lack the mass terms for both weak gauge bosons and fermions. Vector gauge boson

mass terms explicitly break the symmetry of any gauge theory, and in the case of a chiral symmetry

(where LH and RH fermion fields transform under different representations), fermion mass terms are

also forbidden. Nevertheless, since both are (in general) known to be massive, this must be addressed.

2.2 Spontaneous Symmetry Breaking and the Higgs Mechanism

There are two different types of symmetry breaking: explicit symmetry breaking (ESB) occurs when a

symmetry of the Lagrangian density is broken,3 and spontaneous symmetry breaking (SSB) occurs when

a symmetry of the vacuum is broken, so that the vacuum ends up having a smaller symmetry group than

that of the Lagrangian density. In order to generate gauge boson mass terms without explicitly breaking

the respective local gauge symmetry, one needs the so-called Higgs Mechanism, which relies on SSB.

As we shall see, when SSB occurs, quantum fields acquire a non-zero vacuum expectation value (VEV).

However, only scalar fields can have non-zero VEVs without breaking Lorentz invariance. Hence, the

simplest way to spontaneously break the local SU(2)L ×U(1)Y gauge symmetry is to insert a complex4

scalar SU(2)L doublet field

Φ(x) =

(
φ1(x)

φ2(x)

)
=

(
1√
2
(ϕ1(x) + iϕ2(x))

1√
2
(ϕ3(x) + iϕ4(x))

)
∼ (2, Y (Φ)) (2.24)

with well-defined U(1)Y hypercharge Y (Φ) in our theory, by adding the most general renormalizable5

and local SU(2)L × U(1)Y gauge invariant6 scalar sector,

LH = (DµΦ)
†DµΦ− V (|Φ|) , with V (|Φ|) = µ2HΦ

†Φ+ λH(Φ
†Φ)2 . (2.25)

The scalar potential V [Φ] is bounded from below if and only if λH > 0.

2.2.1 The Vacuum and its Spontaneous Symmetry Breaking

The vacuum state (or ground state) is the state of minimum energy, and corresponds to a constant value

〈Φ〉0 (so that ∂µ 〈Φ〉0 = 0) which minimizes the scalar potential V [Φ] ≤ V [〈Φ〉0]. This value is, of
course, the vacuum expectation value 〈Φ〉0 ≡ 〈0|Φ(x) |0〉, obtained by the usual minimization

∂V
∂Φ

∣∣
Φ=〈Φ〉0

= 〈Φ〉†0 (µ2H + 2λH 〈Φ〉†0 〈Φ〉0) = 0

∂V
∂Φ†

∣∣
Φ=〈Φ〉0

= (µ2H + 2λH 〈Φ〉†0 〈Φ〉0) 〈Φ〉0 = 0
⇔ 〈Φ〉0 = 0︸ ︷︷ ︸

trivial sol.

∨ 〈Φ〉†0 〈Φ〉0 =
−µ2H
2λH

≡ v2

2︸ ︷︷ ︸
non-trivial sol.

.

(2.26)

3Typically done by introducing terms that break this symmetry.
4The doublet components are necessarily complex, since the fundamental 2 representation of SU(2), defined by the mapping

Ti 7→ σi/2 (σi, i = 1, 2, 3 being the Pauli matrices), is complex.
5A theoryL(ϕr, ∂µϕr) =

∑
i ciOi(ϕr, ∂µϕr) of fieldsϕr is renormalizable if and only if [Oi(ϕr, ∂µϕr)] ≤ [m]4 = [E]4

(in natural units). Since [Φ] = [m], we can go up to quartic terms in Φ,Φ† in the scalar potential V .
6The only possible terms are (Φ†Φ)n, n = 1, 2 (for n = 0 we get a constant term without physical meaning, and for n > 2

the theory is no longer renormalizable).
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2. The Standard Model of Particle Physics

The trivial solution 〈Φ〉0 = 0 –which corresponds to aminimum forµ2H > 0, and amaximum forµ2H < 0

– although invariant under local SU(2)L×U(1)Y gauge transformations, is non-degenerate, and therefore

does not allow SSB to occur. On the other hand, the non-trivial solution 〈Φ〉†0 〈Φ〉0 = v2/2 ∈ R+ is

possible if and only if µ2H < 0, and corresponds to an infinitely degenerate vacuum{
〈Φ〉0 : 〈Φ〉

†
0 〈Φ〉0 =

−µ2H
2λH

≡ v2

2

}
(2.27)

that is also invariant under local SU(2)L × U(1)Y gauge transformations, since

〈Φ〉†0 〈Φ〉0 → 〈Φ
′〉†0 〈Φ

′〉0 = 〈Φ〉
†
0 e

+iY θ(x)e+i
∑
i α

i(x)Tie−i
∑
i α

i(x)Tie−iY θ(x) 〈Φ〉0 = 〈Φ〉
†
0 〈Φ〉0 .

Hence, SSB occurs when (µH transitions from µ2H > 0 to) µ2H < 0, because Nature realizes a particular

VEV out of the possible continuous set (2.27), and the vacuum no longer contains the (full) symmetry of

the Lagrangian density. Let us take, without loss of generality, the conventional VEV

〈Φ〉0 ≡ 〈0|Φ(x) |0〉 :=

(
0
v√
2

)
, with v = +

√
−µ2H
λH

> 0 , (2.28)

which corresponds to choosing a direction and complex phase of (2.27) so that 〈φ1〉0 = 0, 〈φ2〉0 = v√
2
;

or equivalently, 〈ϕ1〉0 = 〈ϕ2〉0 = 〈ϕ4〉0 = 0, 〈ϕ3〉0 = v (with v ∈ R+). Notice that the SU(2)L and

U(1)Y generators do not annihilate the vacuum, i.e.

Ti 〈Φ〉0 =
σi
2

(
0
v√
2

)
6=

(
0

0

)
, Y 〈Φ〉0 = Y (Φ)12×2

(
0
v√
2

)
6=

(
0

0

)
, (2.29)

so that 〈Φ〉0 → 〈Φ′〉0 = e−i
∑
i α

i(x)Tie−iY θ(x) 〈Φ〉0 6= 〈Φ〉0. However, we do not want to sponta-

neously break the local U(1)Q gauge symmetry of electromagnetism.7 Hence, the U(1)Q generator must

annihilate the vacuum (or equivalently, the VEV must be neutrally charged)

Q 〈Φ〉0 = (T3 + Y ) 〈Φ〉0 =
(σ3
2

+ Y (Φ)12×2

)( 0
v√
2

)
=

(
+1/2 + Y (Φ) 0

0 −1/2 + Y (Φ)

)(
0
v√
2

)

=

(
0

(−1/2 + Y (Φ)) v√
2

)
:=

(
0

0

)
⇔ Y (Φ) := +

1

2
, (2.30)

so that 〈Φ〉0 → 〈Φ′〉0 = e−iQα(x) 〈Φ〉0 = e−iα(x)T3e−iY α(x) 〈Φ〉0 = 〈Φ〉0, i.e. the VEV remains

invariant under local U(1)Q ⊂ SU(2)L × U(1)Y gauge transformations. With the previous imposition,

QΦ(x) =

(
1 0

0 0

)(
φ1(x)

φ2(x)

)
=

(
+φ1(x)

0

)
, (2.31)

and changing notations to G+(x) ↔ φ1(x), φ
0(x) ↔ φ2(x), one concludes that the complex scalar

G+ (≡ φ1) has electric charge +1 and the complex scalar φ0 (≡ φ2) has electric charge 0.
Quantum fields that correspond to physical particles are perturbations (or excitations) around the state

of minimum energy (the vacuum), and therefore have zero VEV (necessary condition, yet not sufficient).

7The reason for this will later become clear. For now, we simply state that the U(1)Q gauge symmetry is observed in Nature,

where Q = T3 + Y is the electric charge operator.
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2.2. Spontaneous Symmetry Breaking and the Higgs Mechanism

Hence, we expand the scalar doublet around the VEV 〈Φ〉0 ≡ 〈0|Φ(x) |0〉,

Φ(x) =

(
G+(x)

φ0(x)

)
=

(
G+(x)

v+h(x)+iG0(x)√
2

)
∼ (2,+1/2) , (2.32)

where h(x) ≡ ϕ3(x) − v is the perturbation of ϕ3(x) around its VEV 〈ϕ3〉0 ≡ 〈0|ϕ3(x) |0〉 = v, and

we made an additional change of notation G0(x)↔ ϕ4(x).

2.2.2 Higgs Mass, Self-Interactions and Goldstone Bosons

Expanding the scalar potential V [Φ] around the VEV 〈Φ〉0 ≡ 〈0|Φ(x) |0〉 one obtains (using the mini-
mum condition v2 = −µ2H/λH ⇔ µ2H = −λHv2)

V (|Φ|) =
1

2

=m2
h︷ ︸︸ ︷

(2λHv
2)h2 + λHvh

3 +
λH
4
h4 +

λH
4
G04 + λH(G

−G+)2 + λHvhG
02 +

λH
2
h2G02

+ 2λHvhG
−G+ + λHh

2G−G+ + λHG
02G−G+−λHv

4

4︸ ︷︷ ︸
= const.

, (2.33)

which means that we have a massive real scalar h(x) withmh =
√
2λHv2, a massless real scalarG

0(x)

and two massless complex scalars G+(x), G−(x) ≡ G+†(x) (mG0 = mG± = 0). Ignoring the unphys-

ical constant term, and writing the interaction terms in terms ofmh, we get

−LH ⊃ V (|Φ|) =
1

2
m2
hh

2 +
m2
h

2v
h3 +

m2
h

8v2
h4 +

m2
h

8v2
G04 +

m2
h

2v2
(G−G+)2 +

m2
h

2v
hG02

+
m2
h

4v2
h2G02 +

m2
h

v
hG−G+ +

m2
h

2v2
h2G−G+ +

m2
h

2v2
G02G−G+ , (2.34)

which contains all the scalar interactions and self-interactions. We now state an important theorem re-

garding SSB.

Theorem 1 (Nambu-Goldstone Theorem) For each (“broken”) generator of a spontaneously broken

continuous global symmetry (of the vacuum), a corresponding massless scalar boson emerges. These are

known as Nambu-Goldstone (NG) bosons.

If the spontaneously broken symmetry concerned the 4-dimensional8 SU(2)L×U(1)Y group, there would

be 4 Nambu-Goldstone bosons. However, the U(1)Q ⊂ SU(2)L × U(1)Y residual symmetry remains

unbroken,9 as imposed by Eq. (2.30). Hence, the spontaneously broken symmetry concerns the 4−1 = 3

dimensional {SU(2)L × U(1)Y }/U(1)Q coset space [35, 24], and we end up with 4 − 1 = 3 massless

Nambu-Goldstone bosons: G0, G+ and G−.

The Goldstone Theorem has an important nuance. If the global symmetry that is spontaneously bro-

ken is a consequence (particular case) of the (more general) respective local symmetry, then we can lo-

cally transform the Lagrangian density (under the symmetry group) so that the Nambu-Goldstone bosons

vanish. In this case, the Nambu-Goldstone fields do not correspond to physical particles, and are re-

ferred to as would-be Goldstone bosons. In our particular case, one can make an SU(2)L × U(1)Y local

8One should remember that the dimension of a continuous (or Lie) group is given by the number of generators.
9Some authors phrase it as the SU(2)L×U(1)Y symmetry being spontaneously “broken down to” U(1)Q, or just SU(2)L×

U(1)Y → U(1)Q. Another popular phrasing is to say that one SU(2)L × U(1)Y generator, Q ≡ T3 + Y , was not “broken”;
therefore leaving 4− 1 = 3 Nambu-Goldstone bosons for the 4− 1 = 3 “broken generators”.
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transformation (consistently, in the entire Lagrangian density) which sets Φ(x)→ 1√
2

(
0 v + h(x)

)>
,

resulting in the so-called unitary gauge. Hence, we are left with just 1 (out of 4) scalar h with physical

meaning: the Higgs boson, discovered at the LHC in 2012 [36, 37].

2.2.3 Masses of the Electroweak Gauge Bosons and the Higgs Mechanism

The Higgs mechanism, in its most general form, is a mass term generation mechanism for fields that

bilinearly couple to a scalar field that acquires a non-zero VEV upon the SSB of a given symmetry

(discrete, global continuous or local continuous). In the particular case of SSB of a local gauge symmetry,

the scalar acquiring a VEV necessarily transforms under the corresponding gauge symmetry group,10 and

therefore, the respective gauge bosons are bilinearly coupled to the scalar through the minimally coupled

scalar kinetic term (thus gaining mass). This is precisely what happens in the SM with the electroweak

gauge bosons, which bilinearly couple to the Higgs doublet field through the minimally coupled Higgs

kinetic terms

(DµΦ)
†DµΦ = (Dµ 〈0|Φ |0〉)†Dµ 〈0|Φ |0〉+

[
(DµΦ)

†DµΦ− (Dµ 〈0|Φ |0〉)†Dµ 〈0|Φ |0〉
]

(2.35)

= L(ew)gaugemass + L(H)
kin+(ew)int (2.36)

The EW gauge boson mass terms are generated in the pure Higgs VEV 〈0|Φ(x) |0〉 =
(
0 v/

√
2
)>

contribution after EW SSB, i.e.11

L(ew)gaugemass = (Dµ 〈0|Φ |0〉)†Dµ 〈0|Φ |0〉 (2.37)

=
g2wv

2

4︸ ︷︷ ︸
=m2

W

W−
µ W

+µ +
1

2

(
g2wv

2

4
W 3
µW

3µ−gwg
′v2

2
W 3
µB

µ︸ ︷︷ ︸
mixing mass term

+
g′2v2

4
BµB

µ

)
, (2.38)

where 1
2(W

1
µW

1µ +W 2
µW

2µ) = W−
µ W

+µ was used. As explicitly shown, the mass of theW±
µ weak

charged bosons is given by mW = gwv/2. Additionally, there is a mass term where the fieldsW 3
µ and

Bµ mix, thus revealing they are not physical fields (associated to physical particles), since they do not

satisfy the “correct” equation of motion of the massive vector field (Proca equation).12 Hence,W 3
µ , Bµ

must be a linear combination of two physical fields Zµ, Aµ (and vice-versa), such that the mass terms no

longer contain flavour mixing when expressed in terms of these fields. Adopting a matrix notation, we

have

L(ew)gaugemass ⊃ 1

2

(
W 3
µ Bµ

)
M2

(
W 3µ

Bµ

)
, with M2 =

(
g2wv

2

4 −gwg′v2

4

−gwg′v2

4
g′2v2

4

)
. (2.39)

The symmetric non-diagonal squared-mass matrixM2 ∈ R2×2 can be diagonalized by a single matrix

U ∈ R2×2, so that U−1M2U = diag(m2
Z ,m

2
A) ≡ D2 is diagonal with real positive elements. Solving

(M2−m21)~v = 0 yields two non-degenerate eigenvaluesm2
Z = (g2w+ g′2)v2/4 andm2

A = 0. The two

10The scalar acquiring a VEV must transform under a given group for the symmetry with respect to that group to be sponta-

neously broken (otherwise, the vaccum would still be invariant under transformations of that group)!
11For didactic purposes, we use the covariant derivative (2.8) with the “original” gauge bosonsW i

µ(x), Bµ(x) which corre-
spond to the Ti, Y generators, respectively; instead of its Glashow-Weinberg-Salam parametrization (2.12) with the physical

gauge bosonsW±
µ (x), Zµ(x), Aµ(x).

12These fields do not have well-defined masses, and in the absence of interactions, do not propagate as free independent

particles (i.e., as eigenstates of the free Hamiltonian).
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2.2. Spontaneous Symmetry Breaking and the Higgs Mechanism

respective eigenvectors ~vZ = (g2w+ g′2)−1/2
(
gw −g′

)>
and ~vA = (g2w+ g′2)−1/2

(
+g′ gw

)>
form

an orthonormal basis of the flavour space, so that

U =
1√

g2w + g′2

(
gw +g′

−g′ gw

)
=

(
cos θw + sin θw

− sin θw cos θw

)
∈ SO(2) ,

cos θw = gw√
g2w+g

′2

sin θw = g′√
g2w+g

′2

(2.40)

(⇒ tan θw = g′/gw), and the mass terms (2.39) written in this basis are given by

L(ew)gaugemass ⊃ 1

2

(
W 3
µ Bµ

)
M2

(
W 3µ

Bµ

)
=

1

2

(
W 3
µ Bµ

)
U(θw)U

>(θw)M
2U(θw)U

>(θw)

(
W 3µ

Bµ

)

=
1

2

(
Zµ Aµ

)
D2

(
Zµ

Aµ

)
=

1

2

g2w + g′2

4
v2ZµZ

µ +
1

2
× 02 ×AµAµ , (2.41)

where the physical gauge bosons are given by
(
Zµ Aµ

)>
= U>(θw)

(
W 3
µ Bµ

)>
, where Zµ is the

weak neutral Z boson field andAµ is the electromagneticA boson (i.e., the photon γ) field. These results

would be directly obtained by using the Glashow-Weinberg-Salam parametrization (2.12), but we have

now seen how this parametrization is not arbitrary, but rather necessary for obtaining the physical EW

gauge bosons! The only missing relation is e = g′ cos θw = gw sin θw = gwg
′/
√
g2w + g′2, which is

readily obtained by inserting the previous relations in the covariant derivative. In summary, the EW

gauge boson mass terms (2.38) are

L(ew)gaugemass = m2
WW

−
µ W

+µ +
1

2
m2
ZZµZ

µ +
1

2
m2
AAµA

µ ,


mW = gwv

2

mZ =
√
g2w+g

′2

2 v = gwv
2 cos θw

mA = 0

. (2.42)

As expected, nomass term is generated for the gauge boson of the unbroken (residual) symmetryU(1)Q ⊂
SU(2)L × U(1)Y , since it does not couple to the electrically neutral lower component (the one which

acquired the VEV) of the Higgs doublet.

2.2.4 Higgs Interactions with the Electroweak Gauge Bosons

Finally, the Higgs kinetic and interaction terms with the SU(2)L ×U(1)Y gauge bosons are given by all

remaining terms in (DµΦ)
†DµΦ that are not EW gauge boson mass terms, i.e.

L(H)
kin+(ew)int =(DµΦ)

†DµΦ− L(ew)gaugemass = (DµΦ)
†DµΦ− (Dµ 〈0|Φ |0〉)†Dµ 〈0|Φ |0〉 (2.43)

=
1

2
(∂µh)∂

µh+
1

2
(∂µG

0)∂µG0 + (∂µG
−)∂µG+

−mZZµ∂
µG0 +mW (iW+

µ ∂
µG− + h.c.) (2.44)

+
gwmZ

2 cos θw
ZµZ

µh+ gwmWW
−
µ W

+µh

+ emWA
µ(W+

µ G
− + h.c.)− gwmZ sin

2 θwZ
µ(W+

µ G
− + h.c.)

− gw
2 cos θw

Zµh
←→
∂µG

0 − ieAµG−←→∂µG+ − igw cos (2θw)
2 cos θw

ZµG−←→∂µG+

+
gw
2
[iW+µ(h

←→
∂µG

−) + h.c.]− gw
2
[W+µ(G0←→∂µG−) + h.c.] (2.45)

11



2. The Standard Model of Particle Physics

+
g2w

8 cos2 θw
ZµZ

µh2 +
g2w
4
W−
µ W

+µh2 +
g2w

8 cos2 θw
ZµZ

µG02 +
g2w
4
W−
µ W

+µG02

+ e2AµA
µG−G+ +

g2w(1− tan2 θw)

4
ZµZ

µG−G+ +
g2w
2
W−
µ W

+µG−G+

+
egw cos (2θw)

cos θw
AµZ

µG−G+ +
egw
2
Aµ(W+

µ G
− + h.c.)h+

egw
2
Aµ(iW+

µ G
− + h.c.)G0

− g2w sin
2 θw

2 cos θw
Zµ(W+

µ G
− + h.c.)h− g2w sin

2 θw
2 cos θw

Zµ(iW+
µ G

− + h.c.)G0 , (2.46)

where
←→
∂µ ≡

−→
∂µ −

←−
∂µ. The two flavour mixing kinetic terms (2.44) have no physical meaning, since the

thewould-beGoldstone bosonsG0(x), G±(x) do not correspond to physical particles. Hence, they can be

“gauged away” (unitary gauge), and the same applies to all 3-linear (2.44)–(2.45) and 4-linear (2.45)–(2.46)

interaction terms containing these would-be Goldstone bosons. As expected, the gauge boson Aµ(x) of

the unbroken (residual) symmetry U(1)Q does not couple to the electrically neutral Higgs boson h(x) (or

to G0(x)).

2.3 The Yukawa Sector

As already stated, fermionmass termsψ = −mψ̄ψ = −m(ψLψR+h.c) explicitly break SU(2)L×U(1)Y
invariance, since left-handed and right-handed components transform under different representations of

the symmetry group. This can be shown by taking ψL ≡ ΨIw3 L
as the Iw3 ≡ I

(ψL)
w3 component of an

SU(2)L × U(1)Y fermion doublet ΨL =
(
ψ(+)L ψ(−)L

)>
∼ (2, Y (ΨL)), so that

ψRψL ≡ ψRΨIw3 L
→ ψ′

Rψ
′
L ≡ ψ′

RΨ
′
Iw3 L

= ψR e
+iY (ψR)θe−iY

(ψL)θ
∑
I′=±

UIw3 I′(~α)ΨI′L (2.47)

= ψR e
+iIw3 θ

∑
I′=±

UIw3 I′(~α)ΨI′L 6= ψRΨIw3 L
, (2.48)

with U(~α) = e−i
∑
i α

iTi , and thus −m(ψLψR + h.c)→ −m(ψ′
Lψ

′
R + h.c) 6= −m(ψLψR + h.c) is not

invariant under both local and (also) global SU(2)L × U(1)Y transformations.

However, we have not yet introduced all gauge invariant and renormalizable terms of our theory (as

one must, in a gauge theory). Since [ψ̄φψ] = [m]4, any SU(2)L × U(1)Y gauge invariant terms of this

form allow fermion fields to bilinearly couple to the Higgs doublet field, thereby generating fermion

mass terms trough the Higgs mechanism after EW SSB. Such terms indeed exist, and are described by

the Yukawa Lagrangian density13

LYuk = −
∑
α,β

Y
(`)
αβ LαLΦ`βR −

∑
α,β

Y
(u)
αβ QαLΦ̃uβR −

∑
α,β

Y
(d)
αβ QαLΦdβR + h.c. (2.49)

= L(f)mass + L(Yuk)int ,

where

Φ̃(x) ≡ iσ2Φ∗(x) =

(
φ0∗(x)

−G−(x)

)
=

(
v+h(x)−iG0(x)√

2

−G−(x)

)
∼ (2,−1/2) (2.50)

is an SU(2)L doublet field with the opposite U(1)Y hypercharge to that of the Higgs doublet, and the

13We do not consider the missing invariant terms −
∑
α,β Y

(ν)
αβ LαLΦ̃νβR + h.c., since for Y

(ν)
αβ 6= 0, they lead to (Dirac)

neutrino mass terms. Neutrinos are massless in the SM.

12



2.3. The Yukawa Sector

coupling constants Y
(l,u,d)
αβ are components of arbitrary 3 × 3 complex matrices of flavour (or genera-

tion/family) space, without any constraint from gauge (or any other) symmetry.

The fermion mass terms are generated by the Higgs VEV 〈0|Φ(x) |0〉 =
(
0 v/

√
2
)>

after SSB,

L(f)mass = −
∑
α,β

Y
(`)
αβ LαL 〈0|Φ |0〉 `βR −

∑
α,β

Y
(u)
αβ QαL 〈0| Φ̃ |0〉uβR −

∑
α,β

Y
(d)
αβ QαL 〈0|Φ |0〉 dβR + h.c.

= − v√
2

∑
α,β

`αLY
(`)
αβ `βR −

v√
2

∑
α,β

uαLY
(u)
αβ uβR −

v√
2

∑
α,β

dαLY
(d)
αβ dβR + h.c.

= −
∑
α,β

`αLM
(`)
αβ `βR −

∑
α,β

uαLM
(u)
αβ uβR −

∑
α,β

dαLM
(d)
αβ dβR + h.c. , (2.51)

withM
(`,u,d)
αβ = v√

2
Y

(`,u,d)
αβ , and the Yukawa interaction terms come from the contribution of the Higgs

doublet field around the VEV, Φ(x)− 〈0|Φ(x) |0〉 =
(
G+(x) (h(x) + iG0(x))/

√
2
)>

,

L(Yuk)int =−
∑
α,β

Y
(`)
αβ√
2
h`αL`βR −

∑
α,β

Y
(u)
αβ√
2
huαLuβR −

∑
α,β

Y
(d)
αβ√
2
hdαLdβR

− i
∑
α,β

Y
(`)
αβ√
2
G0`αL`βR + i

∑
α,β

Y
(u)
αβ√
2
G0uαLuβR − i

∑
α,β

Y
(d)
αβ√
2
G0dαLdβR

−
∑
α,β

Y
(`)
αβ G

+ναL`βR +
∑
α,β

Y
(u)
αβ G

−dαLuβR −
∑
α,β

Y
(d)
αβ G

+uαLdβR + h.c. , (2.52)

where the last six terms (and respective h.c.) can be “gauged away” into the unitary gauge, since the

would-be Goldstone bosons G0(x), G±(x) do not correspond to physical particles.

2.3.1 Flavour Space Rotations: Weak and Mass Eigenstates

From now on, rather than carrying the generation/family indices α, β throughout our derivations, we will

adopt the more convenient matrix notation, since

ναL,R =

νeL,RνµL,R

ντL,R


α

, `αL,R =

eL,RµL,R

τL,R


α

, uαL,R =

uL,RcL,R

tL,R


α

, dαL,R =

dL,RsL,R

bL,R


α

(2.53)

can be expressed in terms of 3-dimensional vectors of the flavour (or generation/family) space.

Since the mass matrices in Eq. (2.51) are not constrained by gauge symmetry (i.e., are arbitrary),

they are (in general, for M (l,u,d) 6= 13×3) non-diagonal, thus leading to flavour mixing mass terms.

These mixing fermion fields are not physical (i.e., associated to particles), and shall be denoted with a
(w) superscript from now on (explanation below).

Being square matrices,M (`,u,d) ∈ C3×3 can each be bi-diagonalized by two unitary matrices V
(`,u,d)
L

and V
(`,u,d)
R , so that

V
(`)†
L M (`)V

(`)
R = diag(me,mµ,mτ ) ≡ D(`) (2.54)

V
(u)†
L M (u)V

(u)
R = diag(mu,mc,mt) ≡ D(u) (2.55)

V
(d)†
L M (d)V

(d)
R = diag(md,ms,mb) ≡ D(d) (2.56)

13



2. The Standard Model of Particle Physics

are diagonal matrices with real positive elements. Thus, the fermion mass terms (2.51) can be written as

L(f)mass =− `(w)L M (`)`
(w)
R − u(w)L M (u)u

(w)
R − d(w)L M (d)d

(w)
R + h.c. (2.57)

=− `(w)L V
(`)
L V

(`)†
L M (`)V

(`)
R V

(`)†
R `

(w)
R − u(w)L V

(u)
L V

(u)†
L M (u)V

(u)
R V

(u)†
R u

(w)
R

− d(w)L V
(d)
L V

(d)†
L M (d)V

(d)
R V

(d)†
R d

(w)
R + h.c.

=− `(m)
L D

(`)`
(m)
R − u(m)

L D
(u)u

(m)
R − d(m)

L D
(d)d

(m)
R + h.c. , (2.58)

where

`
(m)
L,R = V

(`)†
L,R `

(w)
L,R , u

(m)
L,R = V

(u)†
L,R u

(w)
L,R , d

(m)
L,R = V

(d)†
L,R d

(w)
L,R . (2.59)

are the flavour space vectors in the mass eigenstate basis (m) – the basis in which the mass matrices are

(real, positive and) diagonal (D(Ψ)
αβ = δαβmΨα ∈ R+

0 ), thus leaving the mass terms without flavour

mixing:

L(Ψ=`,u,d)
mass =−Ψ

(m)
L D

(Ψ)Ψ
(m)
R + h.c. = −

∑
α

(
Ψ

(m)
αL D

(Ψ)
αα︸︷︷︸

=mΨα

Ψ
(m)
αR +Ψ

(m)
αR D

(Ψ)†
αα︸ ︷︷ ︸

=mΨα

Ψ
(m)
αL

)
(2.60)

=−
∑
α

mΨα

(
Ψ

(m)
αL Ψ

(m)
αR +Ψ

(m)
αR Ψ

(m)
αL

)
= −

∑
α

mΨαΨ
(m)
α Ψ(m)

α , (2.61)

∀Ψα = `α, uα, dα. Therefore, Eq. (2.58) gives

L(f)mass = −
∑
α

m`α`
(m)
α `(m)

α −
∑
α

muαu
(m)
α u(m)

α −
∑
α

mdαd
(m)
α d(m)

α . (2.62)

These field components of the flavour space vectors in the mass eigenstate basis are the physical fields

(associated to particles), and particle physicists simply call them “mass eigenstates”.

Prior to this change of basis (or rotation) in flavour space, we were working in the (weak) interaction

eigenstate basis (w), where there was no fermion generation mixing in the interaction terms (2.14) with the

EW gauge bosons. The field components of the flavour space vectors in the interaction eigenstate basis

are referred to as “interaction eigenstates”. The question now is what happens to the fermion interaction

terms (2.14) when written in terms of the physical fields (i.e., in the mass basis).

2.3.2 Lepton Masses and Mixing

As we have just seen in Eqs. (2.57), (2.58), (2.62) the lepton mass terms

L(`)mass = −`(w)L M (`)`
(w)
R + h.c. = −`(m)

L D
(`)`

(m)
R + h.c. = −

∑
α

m`α`
(m)
α `(m)

α (2.63)

are diagonal in the mass eigenstate basis `
(m)
L,R = V

(`)†
L,R `

(w)
L,R. The kinetic and interaction terms of the

massive charged leptons in Eq. (2.14), at the time written in the weak eigenstate basis, are

L(`)kin+(ew)int = i`(w)/∂`(w) − eAµjµem[`]−
gw

2 cos θw
Zµj

µ
NC(w)[`]−

gw√
2

(
W+
µ j

−µ
CC(w)[ν, `] + h.c.

)
, (2.64)

where the kinetic terms

L(`)kin = i`(w)γµ∂µ`
(w) = i`

(w)
L γµ∂µ`

(w)
L + i`

(w)
R γµ∂µ`

(w)
R (2.65)
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2.3. The Yukawa Sector

= i`
(m)
L V

(`)†
L γµ∂µV

(`)
L `

(m)
L + i`

(m)
R V

(`)†
R γµ∂µV

(`)
R `

(m)
R

= i`
(m)
L γµ∂µ`

(m)
L + i`

(m)
R γµ∂µ`

(m)
R = i`(m)γµ∂µ`

(m) ; (2.66)

the EM interaction terms L(QED)int [`, Aµ] = −eAµjµem[`], with

jµem[`] = −`(w)γµ`(w) = −
(
`
(w)
L γµ`

(w)
L + `

(w)
R γµ`

(w)
R

)
(2.67)

= −
(
`
(m)
L V

(`)†
L γµV

(`)
L `

(m)
L + `

(m)
R V

(`)†
R γµV

(`)
R `

(m)
R

)
= −

(
`
(m)
L γµ`

(m)
L + `

(m)
R γµ`

(m)
R

)
= −`(m)γµ`(m) ; (2.68)

and the NC weak interaction terms LNC(w)int [`, Zµ] = − gw
2 cos θw

Zµj
µ
NC(w)[`], with

jµ
NC(w)[`] = `(w)γµ

(
−PL + 2 sin2 θw

)
`(w) (2.69)

= 2 sin2 θw

(
`
(w)
L γµ`

(w)
L + `

(w)
R γµ`

(w)
R

)
− `(w)L γµ`

(w)
L

= 2 sin2 θw

(
`
(m)
L V

(`)†
L γµV

(`)
L `

(m)
L + `

(m)
R V

(`)†
R γµV

(`)
R `

(m)
R

)
− `(m)

L V
(`)†
L γµV

(`)
L `

(m)
L

= 2 sin2 θw

(
`
(m)
L γµ`

(m)
L + `

(m)
R γµ`

(m)
R

)
− `(m)

L γµ`
(m)
L

= `(m)γµ
(
−PL + 2 sin2 θw

)
`(m) (2.70)

remain diagonal (without flavour mixing) in the mass eigenstate basis. Conversely, the CC weak inter-

action terms LCC(w)int [ν, `,W±
µ ] = − gw√

2

(
W−
µ j

+µ
CC(w)[ν, `] + h.c.

)
, with

j+µ
CC(w)[ν, `] = `(w)γµPLν = `

(w)
L γµνL = `

(m)
L V

(`)†
L γµνL (2.71)

are non-diagonal in the mass eigenstate basis – there is flavour mixing. Notice, however, that neutrinos

aremassless in the SM, and therefore neutrino fields can be arbitrarily rotated!14 Redefining the physical

neutrinos as

ν ′L = V
(`)†
L νL ⇔ νL = V

(`)
L ν ′L , (2.72)

the lepton weak charged current (2.71) is given by

j+µ
CC(w)[ν, `] = `

(m)
L γµν ′L = `(m)γµPLν

′ , (2.73)

and the CC weak interaction terms also remain diagonal in the mass eigenstate basis.

All lepton (both kinetic and EW interaction) terms L(`)kin+(ew)int in Eq. (2.14) are diagonal (without

flavourmixing) in themass eigenstate basis. Therefore, in the SM, the leptonmass eigenstates necessarily

correspond to weak gauge eigenstates – there is no need to distinguish between them, and we shall drop

the (m) superscript from now on.

It is worth reminding that this happens because the SM considers neutrinos to be massless, allow-

ing for the neutrino flavour rotations (2.72) that are responsible for the diagonalization of the lepton

14This is because neutrino fields only appear in kinetic and NC interaction terms, which are invariant under flavour space

rotations. Neutrino mass terms (like any other fermion mass term) would not be invariant, but they do not exist in the SM!
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weak charged current in Eq. (2.73). However, the discovery of neutrino flavour oscillations (between

weak eigenstates) showed that neutrinos are in fact massive, with mass eigenstates ν
(m)
L = U †

PMNSν
(w)
L

(UPMNS 6= 1 is the lepton mixing matrix) that do not correspond to weak eigenstates (more details in

Section 3.1)

2.3.3 Quark Masses, Mixing and the CKMMatrix

As we have just seen in Eqs. (2.57), (2.58), (2.62) the quark mass terms

L(q)mass = −u(w)L M (u)u
(w)
R − d(w)L M (d)d

(w)
R + h.c. = −u(m)

L D
(u)u

(m)
R − d(m)

L D
(d)d

(m)
R + h.c. (2.74)

= −
∑
α

muαu
(m)
α u(m)

α −
∑
α

mdαd
(m)
α d(m)

α (2.75)

are diagonal in the mass eigenstate basis u
(m)
L,R = V

(u)†
L,R u

(w)
L,R, d

(m)
L,R = V

(d)†
L,R d

(w)
L,R. The kinetic and inter-

action terms of the quarks in Eq. (2.14), at the time written in the weak eigenstate basis, are

L(q)kin+(ew)int = iu(w)/∂u(w) + id(w)/∂d(w) − eAµ (jµem[u] + jµem[d])

− gw
2 cos θw

Zµ

(
jµ
NC(w)[u] + jµ

NC(w)[d]
)
− gw√

2

(
W+
µ j

−µ
CC(w)[u, d] + h.c.

)
, (2.76)

where, performing the analogous computations that we did for the leptons in the previous section (now

leaving them as exercise), the kinetic terms

L(u)kin = iu(w)γµ∂µu
(w) = iu(m)γµ∂µu

(m) , L(d)kin = id(w)γµ∂µd
(w) = id(m)γµ∂µd

(m) ; (2.77)

the EM interaction terms L(QED)int [u, d,Aµ] = −eAµ (jµem[u] + jµem[d]), with

jµem[u] = +
2

3
u(w)γµu(w) = +

2

3
u(m)γµu(m) , jµem[d] = −

1

3
d(w)γµd(w) = −1

3
d(m)γµd(m) ; (2.78)

and the NC weak interaction terms LNC(w)int [u, d, Zµ] = − gw
2 cos θw

Zµ

(
jµ
NC(w)[u] + jµ

NC(w)[d]
)
, with

jµ
NC(w)[u] = u(w)γµ

(
PL −

4

3
sin2 θw

)
u(w) = u(m)γµ

(
PL −

4

3
sin2 θw

)
u(m) , (2.79)

jµ
NC(w)[d] = d(w)γµ

(
−PL +

2

3
sin2 θw

)
d(w) = d(m)γµ

(
−PL +

2

3
sin2 θw

)
d(m) (2.80)

remain diagonal (without flavour mixing) in the mass eigenstate basis. Conversely, the CC weak inter-

action terms LCC(w)int [u, d,W±
µ ] = − gw√

2

(
W+
µ j

−µ
CC(w)[u, d] + h.c.

)
, with

j−µ
CC(w)[u, d] = u(w)γµPLd

(w) = u
(w)
L γµd

(w)
L = u

(m)
L V

(u)†
L γµV

(d)
L d

(m)
L (2.81)

= u(m)γµPL

[
V

(u)†
L V

(d)
L

]
d(m) (2.82)

are non-diagonal in the mass eigenstate basis – there is flavour mixing. Defining the so-called Cabibbo-

Kobayashi-Maskawa (CKM) matrix as

VCKM ≡ V (u)†
L V

(d)
L ⇔ V †

CKM ≡ V
(d)†
L V

(u)
L = V −1

CKM , (2.83)
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the quark CC weak interaction terms are given by

LCC(w)int [u, d,W±
µ ] =− gw√

2

(
W+
µ u(m)γµPLVCKMd

(m)

= j−µ
CC(w)

[u,d]

+W−
µ d(m)V †

CKMγ
µPLu

(m)

= j+µ
CC(w)

[u,d]

)
(2.84)

=− gw√
2

∑
α,k

(
W+
µ u

(m)
α γµPLVαkd

(m)
k +W−

µ d
(m)
k V ∗

αkγ
µPLu

(m)
α

)
. (2.85)

Therefore, in the SM, the quark mass eigenstatesmay not correspond to weak gauge eigenstates. To state

it precisely, it should be clear from Eq. (2.83) that VCKM = 1⇔ V
(u)
L = V

(d)
L is necessary and sufficient

condition for the mass eigenstates to correspond to weak eigenstates; and conversely, VCKM 6= 1 ⇔
V

(u)
L 6= V

(d)
L is necessary and sufficient condition for the mass eigenstates to not correspond to weak

eigenstates. This is something that can only be determined experimentally, since we have considered

the most general mass matrices M (`,u,d) = v√
2
Y (`,u,d) for the fermion mass terms (2.51) in the weak

eigenstate basis, without any particular constraint.

Experiment confirmed Nature’s choice: |(VCKM)αk| 6= δαk, and thus, there is flavour mixing in the

quark CC weak interaction. The standard convention is to define the quark mass eigenstates as u
(m)
α =

u
(w)
α ∧ d(m)

k =
∑

α(V
†
CKM)kαd

(w)
α , which is just a convenient choice. For ng = 3 generations of quarks,

the CKM (complex) matrix starts with 2n2g real parameters. Unitarity and re-phasing invariance impose

n2g and 2ng − 1 constraints, respectively, leaving 2n2g − n2g − (2ng − 1) = (ng − 1)2 = 4 independent

real parameters. A popular parametrization convention is [38]

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 . (2.86)

with cij ≡ cos θij , sij ≡ sin θij , and it is possible to show that invariance of the quark mixing CC weak

interaction terms (2.84) under charge conjugation× parity (CP) transformations would implie δ = 0. But

experimental measurements determine δ 6= 0, thus showing that the quark mixing CC weak interaction

is CP-violating (with phase parameter δ regulating the “amount” of CP violation).

2.3.4 Yukawa Interactions

Finally, the Yukawa interaction terms in Eq. (2.52) (at the time written in the weak basis), are now given

in the mass basis by

L(Yuk)int =− h`(m)
L

D(l)

v
`
(m)
R − hu(m)

L

D(u)

v
u
(m)
R − hd(m)

L

D(d)

v
d
(m)
R

− iG0`
(m)
L

D(l)

v
`
(m)
R + iG0u

(m)
L

D(u)

v
u
(m)
R − iG0d

(m)
L

D(d)

v
d
(m)
R

−G+ν ′L

√
2D(l)

v
`
(m)
R +G−d

(m)
L V †

CKM

√
2D(u)

v
u
(m)
R −G+u

(m)
L

√
2D(d)

v
VCKMd

(m)
R + h.c.

=−
∑
α

m`α

v
h`

(m)
α `(m)

α −
∑
α

muα

v
hu

(m)
α u(m)

α −
∑
α

mdα

v
hd

(m)
α d(m)

α

− i
∑
α

m`α

v
G0`

(m)
α γ5`(m)

α + i
∑
α

muα

v
G0u

(m)
α γ5u(m)

α − i
∑
α

mdα

v
G0d

(m)
α γ5dα
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−
∑
α

√
2m`α

v

(
G+ν ′αPR`

(m)
α +G−`

(m)
α PLν

′
α

)
+
∑
α,k

√
2muα

v

(
G−d

(m)
k V ∗

αkPRu
(m)
α +G+u

(m)
α PLVαkd

(m)
k

)

−
∑
α,k

√
2mdk

v

(
G+u

(m)
α PRVαkd

(m)
k +G−d

(m)
k V ∗

αkPLu
(m)
α

)
, (2.87)

where the last six terms (and respective h.c.) can be “gauged away” into the unitary gauge, as the would-

be Goldstone bosonsG0,G± do not correspond to physical particles. The remaining first three terms can

be written in a compact form:
∑

ψ L
(Yuk)
int [h, ψ] =

∑
ψ −

mψ
v hψ̄ψ.

2.4 Strong Interaction from SU(3)c Gauge Symmetry

The strong interaction arises from imposing an additional (and independent) local SU(3)c (or colour)

gauge symmetry, thus completing the SU(3)c × SU(2)L × U(1)Y gauge symmetry group of the SM.

Quark fields q = uα, dα are colour triplets, thus transforming under the fundamental 3 representation of

SU(3)c, so that q → q′ = e−i
∑8
a=1 ϑ

aT sa q with T sa 7→ λa/2 (Gell-Mann 3× 3 matrices). The remaining

(so far introduced) SM fields are SU(3)c singlets, thus transforming trivially under this colour group.

The local symmetry is obtained through the usual minimal coupling procedure ∂µ ↪→ Dµ, which can be

performed with the SU(3)c covariant derivative

Dµ = ∂µ + igs

8∑
a=1

T saG
a
µ (2.88)

in the quark kinetic terms, where gs is the strong coupling constant and G
a
µ(x) are the gluon fields (the

SU(3)c gauge bosons), components a = 1, . . . , 8 of a vector
(
G1
µ . . . G8

µ

)>
which transforms under

the adjoint 8 representation of SU(3)c, so that G
a
µ → G′a

µ = Gaµ +
∑8

b,c=1 fabcϑ
bGcµ + ∂µϑ

a/gs. Al-

ternatively, we could have directly imposed the full SU(3)c × SU(2)L × U(1)Y local symmetry in the

fermion kinetic terms (2.7) via the SM gauge symmetry group covariant derivative

Dµ = ∂µ + igs

8∑
a=1

T saG
a
µ + igw

3∑
i=1

TiW
i
µ + ig′Y Bµ (2.89)

= ∂µ + ieQAµ + i
gw

cos θw

(
T3 −Q sin2 θw

)
Zµ + igw

(
T+W+

µ + T−W−
µ

)
+ igs

8∑
a=1

T saG
a
µ .

Either way, the emergent strong interaction terms are given by15

L(QCD)int =
∑
q

−gs
8∑

a=1

Gaµq̄γ
µλa
2
q =

∑
q

−gs
3∑

j,k=1

8∑
a=1

Gaµq̄jγ
µ (λa)jk

2
qk , (2.90)

where j, k = 1, 2, 3 are colour indices. Additionally, the gluons Gaµ are not external/auxiliary, but rather

dynamical fields, thus requiring kinetic terms. The missing SU(3)c gauge invariant and renormalizable

15These interaction terms are (obviously) invariant under changes of basis (or rotations) in flavour space, thus taking this

form in both interaction and mass eigenstate basis.
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2.5. Lagrangian and Parameters of the Standard Model

terms are the usual “pure gauge” terms of any gauge theory, containing both kinetic and self-interaction

terms of the gauge bosons,

LSU(3)cgauge =− 1

4

8∑
a=1

GaµνG
aµν , Gaµν ≡ ∂µGaν − ∂νGaµ − gs

8∑
b,c=1

fabcG
b
µG

c
ν (2.91)

=− 1

2

8∑
a=1

[(∂µG
a
ν)∂

µGa ν − (∂µG
a
ν)∂

νGaµ]

+ gs

8∑
a,b,c=1

fabc(∂
µGa ν)GbµG

c
ν −

g2s
4

8∑
a,b,c,d,e=1

fabcfadeG
b
µG

c
νG

dµGe ν , (2.92)

where fabc (6= 0, in general) are the structure constants of the non-Abelian Lie group SU(3)c.

2.5 Lagrangian and Parameters of the Standard Model

Having completed the construction of the Standard Model from a local SU(3)c×SU(2)L×U(1)Y gauge

symmetry principle, it is time to assemble all the pieces together. The Lagrangian density of the SM,

expanded in the mass eigenstate basis of the physical fields (unless otherwise specified), is given by

LSM =

≡Lgauge

LSU(2)L×U(1)Ygauge + LSU(3)cgauge +

≡L(f)
kin+int

L(f)kin+(ew)int + L
(QCD)
int +

=(DµΦ)†DµΦ (2.35)

L(ew)gaugemass + L(H)
kin+(ew)int−V (|Φ|)

+ L(f)mass + L(Yuk)int

=LYuk (2.49)

, (2.93)

whereLSU(2)L×U(1)Ygauge is given in Eq. (2.23);LSU(3)cgauge is given in Eq. (2.92);L(f)kin+(ew)int is given in Eq. (2.14),

with the replacement of the quark CC weak interaction terms by the expression (2.85) written in the mass

basis;L(QCD)int is given in Eq. (2.90);L(ew)gaugemass is given in Eq. (2.42);L(H)
kin+(ew)int is given in Eqs. (2.44)–(2.46);

V (|Φ|) is given in Eq. (2.34); L(f)mass is given in Eq. (2.62); and L(Yuk)int is given in Eq. (2.87).

Finally, we must count the number of free (or independent) parameters of the theory:

• Three coupling constants: e, gw, gs.

• Mass of the Higgs boson and electroweak VEV:mh and v.

• Masses of the nine charged fermions: me,mµ,mτ ,mu,md,mc,ms,mt,mb (massless neutrinos).

• Four independent parameters of the CKM matrix: θ12, θ23, θ31 and δ.

Therefore, the Standard Model has 3 + 2 + 9 + 4 = 18 free parameters that require measurement.

The remaining parameters are internal, and their dependence on the free parameters was established

throughout this Chapter 2. The choice of free parameters is not unique (e.g., one can choose µH , λH

as the two parameters describing the Higgs potential, instead of mh, v), but the number of degrees of

freedom (18) remains unchanged. Consult the Particle Data Group review [38] for experimental values.

It should be noted that we are considering the most conservative version of the StandardModel. There

is an additional QCD term, related to the strong CP problem, that was not considered (more details in

Section 3.1), and increases the number of free parameters by 1 (18 → 19). Additionally, the inclusion

of Dirac neutrino masses and lepton mixing (more details in Section 3.1) increases the number by 3+4=7

(18→ 19→ 26); and Majorana neutrino masses can add an arbitrary number of extra parameters.
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Chapter 3

Particle DM and the Real Scalar Singlet

SM Extension

As we shall see, the Standard Model (SM) of particle physics has a few problems, or at the very least,

is incomplete. Now that we have constructed the SM (and understood how to build a model in particle

physics), we will dive in the area of Beyond the Standard Model (BSM) physics. Our work addresses

the dark matter (DM) problem, which strictly speaking, is not a problem of the SM itself, but a physical

mystery that could be solved under the framework of particle physics.

This chapter is devoted to understanding the particle physics approach to dark matter. Additionally,

we motivate the investigation of the following chapters by discussing a Standard Model extension with a

real scalar SU(3)c× SU(2)L×U(1)Y singlet field and an unbroken Z2 symmetry, which represents one

of the simplest DM particle models that can be constructed without breaking the SM gauge symmetry or

spoiling renormalizability [11, 12, 13, 15].

There are many reviews on the subject of particle dark matter, e.g. Refs. [8, 9, 39, 40, 41]. The recent

and comprehensive review by M. Cirelli et al. [10] and the lectures on Dark Matter, Phase Transitions

and Gravitational Waves by Rui Santos [42] were the most influential to this chapter.

3.1 Problems with the Standard Model of Particle Physics

The Standard Model of particle physics is a mathematically self-consistent renormalizable quantum field

theory which either predicts or agrees with almost all experimental observables. Despite its remarkable

success, there aremany reasons to believe that it is not a “final” fundamental theory, but rather an effective

field theory that is valid up to the electroweak scale. While some of these reasons may be subjective (to

the opinion of the particle physicist), others are undeniable issues that the SM has not been able to solve.

We present a few of the most prominent unsolved problems.

• Neutrino Masses: The recent discovery of neutrino flavour oscillations implies that neutrinos

have different masses, and hence, at least two of them are massive. As discussed in Section 2.3.2,

neutrinos are massless in the SM, which necessarily prevents flavour mixing in the lepton charged

current weak interaction. Neutrino masses opened the possibility of lepton mixing, which was

confirmed by the measurement of the parameters of the lepton mixing matrix UPMNS. In the

mass basis, the SM correction of the lepton CC weak interaction terms is LCC(w)int [ν, `,W±
µ ] =

− gw√
2

∑
α,k

(
W−
µ `αγ

µPL(UPMNS)αkνk + h.c.
)
, analogously to the quark mixing case. The prob-

lem arises in the neutrino mass terms. Neutrinos are the only electrically neutral fermions, thus
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3.1. Problems with the Standard Model of Particle Physics

allowing for the possibility of being a Majorana fermion ν = νL + νCL ≡ νL + CνL> (which is

its own antiparticle), instead of the standard Dirac fermion ν = νL + νR. Whether neutrinos are

Dirac or Majorana fermions is unknown, thus preventing us to determine the neutrino mass sector

with certainty. It is common practice to consider the most general neutrino mass sector, with both

Dirac and Majorana neutrino mass terms. Neutrino physics is an interesting BSM area of research

with many new physics applications (see textbooks [43, 44] for more details).

• StrongCP Problem: There is an additional SU(3)c gauge invariant termwhich was not previously

(in Section 2.4) considered,
θQCD
32π2 g

2
s
1
2ε
µνλρ

∑8
a=1G

a
µνG

a
λρ, that can (and should) be added to the

QCD (and thus, SM) Lagrangian density. This term is not invariant under parity (P), time reversal

(T) or charge conjugation × parity (CP) transformations. Moreover, for θQCD 6= 0, it induces an

electric dipole moment for the neutron, which has stringent experimental limits, thus leading to

an upper bound |θQCD| . 10−10. But why is (the magnitude of) θQCD so small? This fine-tuning

problem is known as the strong CP problem (see Refs. [45, 46] for more details). A popular solution

is the Peccei-Quinn mechanism [47, 48], which relies on the spontaneous breaking of a new global

U(1)PQ symmetry, resulting in the emergence of a pseudo-Goldstone boson – a light pseudo-scalar

new particle named axion [49, 50].

• Gravity: Gravitation is described by Einstein’s classical theory of general relativity (GR). If grav-

ity is an interaction, can it be unified with the other (strong, weak and electromagnetic) interactions

of the SM? A fundamental “final theory” should incorporate all known interactions of Nature. But

is it possible to quantize general relativity? In a quantum field theory of gravity, the gravitational

interaction is mediated by a massless spin-2 gauge boson, the graviton. However, many problems

arise. For example, unlike the dimensionless SM gauge coupling constants, the gravitational cou-

pling constant has mass dimensions of−2, i.e. [GN ] = [m]−2, leading to higher-mass-dimensional

operators, and thus, quantum gravity is not renormalizable. There are many theories of quantum

gravity, such as loop quantum gravity, string theory and supergravity (see didactic reviews [51, 52]

for more details).

• Baryon-Antibaryon Asymmetry: It is evident from observation that the Universe contains an

excessive amount of matter (protons, neutron and electrons) in comparison to the almost negligible

amount of antimatter. The measurement of today’s baryon to photon ratio η ≡ nB
nγ
≈ nB−nB̄

nγ
≈

6×10−10 (nB̄ � nB) corresponds to a small asymmetry of
nB−nB̄
nB

∼ 10−9 in the early Universe.

Assuming this matter-antimatter asymmetry is not due to an initial condition of the Big Bang (the

theorized period of cosmological inflation rules out this scenario), then it must have developed

during the expansion of the Universe, which is dynamically possible if the three Sakharov condi-

tions [53] are satisfied: 1) baryon number (B) violation; 2) C and CP violation; 3) a departure from

thermal equilibrium. The only CP violating terms of the SM are the quark mixing CC interaction

terms, where the “amount” of CP violation is regulated by the phase parameter δ 6= 0 of the CKM

matrix (Chapter 2), but the matter asymmetry they are able to produce is much lower than the ob-

served value (by several orders of magnitude). Hence, other sources of CP violation are needed.

Two popular solutions are leptogenesis, a right-handed neutrino mass mechanism sourcing CP vi-

olation, and electroweak baryogenesis, which relies on the occurrence of a strong first-order EW

phase transition by the nucleation of vacuum bubbles (see short review [54] for more details).

• DarkMatter: There is vast evidence (discussed below, in Section 3.1.1), e.g. from rotation curves

of spiral galaxies, motion of galaxies in clusters, weak gravitational lensing and cosmic microwave
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3. Particle DM and the Real Scalar Singlet SM Extension

background (CMB) measurements (in increasing order of (a wide) astronomical scale), for the

existence of a non-baryonic type of matter – a cold, weakly interacting (except gravitationally),

invisible, stable matter called dark matter (DM) – which presumably constitutes about 26.4% of

the total matter-energy density of today’s Universe, thus corresponding to about 84% of the total

(baryonic1 and dark) matter content. Unlike baryonic matter, DM cannot (be one of, or in general)

be made of SM particles, which means that we do not know the origin or nature of 84% of the

matter of the Universe. The most popular approach to this problem is to assume that DM is a

new (undetected) elementary particle (with specific properties, as we shall discuss in Section 3.2),

which requires extending the SM. However, there are other possible solutions based on primordial

black holes or modified gravity theories (e.g. modified Newtonian dynamics, known as MOND).

There are many other open questions in particle physics, as reviewed e.g. in Refs. [32, 55, 56]. We shall

focus on the dark matter problem, under the assumption of DM being an elementary particle (or particles)

that has (have) not been discovered yet.

3.1.1 Experimental Evidence for Dark Matter

Until now, all experimental evidence for the existence of dark matter has arisen solely from its gravita-

tional effects. These effects are observed in a wide range of astronomical scales, which can be catego-

rized into three main groups: the galactic scale, the galaxy cluster scale and the cosmological scale. In

turn, these scale categories are not of equal status: experimental evidence from smaller scales (galaxies)

are more intuitive and based on simple classical physics, but provide least useful or rigorous measure-

ments; conversely, experimental evidence from larger scales (cosmology) rely on the GR description of

an expanding Universe in the context of the ΛCDM model of cosmology, thus delivering preciser mea-

surements [10]. Let us now briefly summarize some experimental evidence for dark matter, categorized

by astronomical scale.

1. Galactic Scale: Spiral galaxies rotate around their vertical axis, and it is possible to measure the

circular velocity of stars and other tracers around them. Assuming a spherical symmetric galactic

mass distribution ρ(r), the average circular velocity of a test particle (at this scale, e.g. a star) of

massm at a fixed radial distance r of the galactic center is directly obtained from Newton’s second

law, giving v‖(r) =
√
GNM(r)/r, where M(r) =

∫
dΩ
∫ r
0 ρ(r

′) r′2dr′ is the galactic mass

contained within a distance r from the center. Most of the observed (visible) mass is concentrated

in a dense central bulge and in the arms of the disk, so that for sufficiently large r, all galactic visible

mass is contained within the orbit and we should obtainM(r) ≈Mgal ⇒ v‖(r) =
√
GNMgal/r ∝

1/
√
r. But observations show that rotation curves instead remain flat, which is only possible for

a mass distribution ρ(r) ∝ 1/r2 that leads to M(r) =
Mgalr
Rgal

∝ r ⇒ v‖(r) =
√
GN

Mgal

Rgal
∝ 1.

This implies the existence of an invisible (dark) matter halo that accounts for this galactic mass

distribution.

2. Galaxy Cluster Scale: Galaxy clusters are the largest gravitationally bound systems in the Uni-

verse. In 1933, Fritz Zwicky compared the observed velocity dispersion in the Coma galaxy cluster

with a simple prediction of the Virial theorem 〈T 〉 = (−1/2) 〈V 〉 of classical mechanics (which
yieldsMcluster ∝ v2gal), and concluded that the total mass in the cluster was larger than the visible

mass, thus implying the existence of an invisible (dark) mass. In the 1980s decade, X-ray observa-

tions emerged as a more efficient method of measuring the amount of ordinary (visible) and dark

1Here, baryonic matter means (ordinary) matter made of SM particles (a standard cosmology convention).
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matter within galaxy clusters (check section 1.2 of Ref. [10] for a description). Nowadays, perhaps

the most striking evidence for the presence of DM at the galaxy cluster scale comes from obser-

vations of a pair of colliding galaxy clusters known as the Bullet Cluster. Most of the baryonic

mass in the Bullet Cluster is in the form of hot gas whose distribution can be traced through its

X-ray emissions, and the DM distribution is inferred by comparing the gas mass distribution to an

independent measurement of the total (visible and dark) mass distribution via weak gravitational

lensing. The spatial separation between visible and dark matter implies that, in contrast to visi-

ble matter, dark matter experienced negligible collisions (with both itself and visible matter), thus

interacting weakly.

3. Cosmological Scale: Nowadays, the most precise evidence for the existence of dark matter come

from cosmological observations. The main point is that the Universe would not have evolved

to “our” observable Universe if not for dark matter, with the two main probes being large scale

structure formation andCMB temperature anisotropies (check section 1.3 of Ref. [10] or cosmology

textbooks [57, 58] for comprehensive descriptions). The primordial density inhomogeneities of the

(almost perfectly smooth) early Universe were tiny. However, unlike baryonic matter, dark matter

did not couple to radiation, enabling these density perturbations to grow in time and form the large

scale structures we observe today, such as galaxies, galaxy clusters, and the cosmic web. The

precise measurements of the CMB temperature anisotropies are typically described by the CMB

power spectrum, which presents peaks due to acoustic oscillations of the photon and baryon (but

not dark) matter fluid. These acoustic peaks’ positions depend on the abundance of DM (where less

DM implies a later radiation-matter equality), and their amplitudes depend on the relative amount

of DM with respect to baryonic matter (if the Universe contained baryonic matter only, the 3rd

acoustic peak would be suppressed). Global fits (consistent with the ΛCDMmodel of cosmology)

allow for a precise determination of cosmological parameters such as the abundance of DM, which

according to Planck [7] observations is given by Ωobs
DMh

2 = 0.120± 0.001.2

For other DM probes andmore detailed descriptions, we recommend the comprehensive review [10] (first

chapter) of M. Cirelli et al., which we closely followed in this section.

3.2 The Particle Physics Approach to Dark Matter

From now on, we will treat DM as an undiscovered elementary particle (or particles). Just like for any

other new physics topic, the particle physics approach to dark matter requires extending the SMwith new

fields and symmetries, without breaking the already existing SU(3)c×SU(2)L×U(1)Y gauge symmetry.

Moreover, the theory must be renormalizable, except for an effective field theory (EFT). In this particular

BSM problem, the model must contain (explicitly or implicitly, through any given mechanism) at least

one field that is associated to a DM particle candidate. A viable DM particle candidate must align with

the experimental evidence discussed in Section 3.1.1, and consequently, exhibit the following properties:

• DM must be a massive particle, in order to account for all the observed gravitational effects it

produces. There are practically no (a priori) limits for the DM mass.3

2This translates into a present abundance of ΩDM ≡ 8πGN

3H2
0
ρDM,0 = 0.264± 0.003 (i.e., DM constitutes about 26.4% of the

total matter-energy density of today’s Universe, which corresponds to about 84% of the total matter content), where the present

Hubble parameter isH0 ≡ h× 100 km s−1 Mpc−1, with h = 0.674± 0.005 (values from Ref. [7]).
3Only fermionic DM masses have a boundmDM & 1 keV, due to Pauli’s exclusion principle.
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3. Particle DM and the Real Scalar Singlet SM Extension

• DM must be cold (or not too hot), i.e., it must be non-relativistic (|~p| � mDM) in order to be

consistent with the cosmological probes.

• DM must be electrically neutral, i.e., it must have null (or virtual) electric charge Q ' 0 in order

to be invisible (dark) and consistent with the cosmological probes.4

• DM must be weakly interactive, in order to account for its collisionless behavior that is observed

in both galaxy cluster and cosmological probes.5

• DM must be stable (or have a lifetime Γ
(total)
DM much longer than the age of the Universe, Γ

(total)
DM �

13.8 Gyr = 4.35× 1017 s), in order to account for the time evolution (behavior) of its abundance

(as the Universe expanded) that is observed in cosmological probes.

Furthermore, there must be a productionmechanism that is able to reproduce the observed DM abundance

of Ωobs
DMh

2 = 0.120 ± 0.001 [7] (Section 3.2.1). The appropriate production mechanism depends on the

nature of the DM particle candidate (WIMP, axion, fuzzy, etc.). Finally, the DM model must not be

excluded by any of the other experimental constraints, namely from DM particle detection experiments

(Section 3.2.2).

3.2.1 Relic Density of Dark Matter

In this work we will consider the most popular class of DM particle candidates, the so called weakly

interactive massive particles (WIMPs), here defined by masses around [1 GeV, 10 TeV] and weak scale

interactions with the SM particles. Moreover, WIMPs are produced as a thermal relic via the freeze-out

mechanism, described as follows. In the earliest stages of the Universe there is a large abundance of

(WIMP) DM, which is able to annihilate into SM particles through DM DM→ SM SM collisions. DM

is in thermal equilibrium with the thermal bath, colliding (i.e., annihilating) faster than the expansion

of the Universe: R(T ) � H(T ), where R(T ) and H(T ) are the total DM annihilation rate and the

Hubble function, respectively, at temperature T . DM density is always dropping during this period. As

the Universe expands and cools (with time), DM eventually decouples from the thermal bath at some

decoupling temperature Td where R(Td) ' H(Td), after which it no longer collides: R(T ) < H(T )

∀T < Td ⇔ t > td. Having stopped annihilating, the DM number density (or equivalently, abundance)

asymptotically approaches a constant value – the thermal relic density, a “left-over” of a “frozen” process

– which is the value we observe today.6

This process is quantitatively described by a Boltzmann equation L̂[f ] = Ĉ[f ], which can be written

in terms of the number density of DM particles n(t), taking the form [39, 41]

ṅ(t) + 3H(t)n(t) = − <σvrel>
[
n2(t)− n2eq

]
, (3.1)

where σ ≡
∑

{f} σ(DMDM → {f}) is the total annihilation cross section, vrel ≡
√

(p1·p2)2−m2
1m

2
2

E1E2
is

the Lorentz invariant effective relative velocity between initial state particles 1 and 2 (known as Mφller

velocity) which allows one to write a Lorentz invariant interaction rateR = n1n2σvrel in a similar way to

4For a weak scale DM massmDM . 1 TeV, the experimental upper bound is |Q| . 10−10.
5Self-interaction cross sections must be smaller than a typical QCD cross section, σ � 1/m2

π formDM ∼ mπ (mπ = 135
MeV is the pion mass). In this context, “interactions” never includes gravity.

6Two important points: i) If DM had not decoupled from the thermal bath, it would continue to annihilate until it completely

vanished, instead of “freezing-out”. ii) An unstable particle would decay into lighter particles after decoupling, causing its

number density to drop to zero – that is why DM must be stable.
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3.2. The Particle Physics Approach to Dark Matter

the non-relativistic formula [39, 41]. Finally, the thermally averaged cross section (TAC) is given by [18]

<σvrel> ≡
∫
d3p1 d

3p2 feq(|~p1|)feq(|~p2|)σvvel∫
d3p1 d3p2 feq(|~p1|)feq(|~p2|)

=

∫∞
4m2

DM
ds
√
s(s− 4m2

DM)K1(
√
s/T )σ(s)

8m4
DMTK

2
2 (mDM/T )

, (3.2)

where s ≡ (p1 + p2)
2 is the squared total energy in the center-of-mass reference frame, K1,2 are the

modified Bessel functions of the second kind of orders 1, 2 and the equilibrium DM distribution was

taken as the Maxwell-Boltzmann distribution feq(|~pi|) = e−E~pi/T (i = 1, 2) in the second equality.

The Boltzmann equation (3.1) is challenging to solve analytically without approximations, and is

thus typically solved numerically. A DM particle model can influence the (predicted) DM relic density

through the TAC (3.2), and must be able to reproduce the precise measurement Ωobs
DMh

2 = 0.120± 0.001

from the Planck satellite [7], otherwise it is excluded.

3.2.2 Dark Matter (Particle) Detection

As discussed in Section 3.1.1, all experimental evidence for the existence of DM stems solely from its

gravitational effects. Nevertheless, these gravitational probes (alone) can establish a set of properties that

any DM particle candidate must satisfy, as well as the precisely measured DM relic density (a powerful

constraint on DM models), as we have just seen in this Section 3.2.

DM
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Indirect Detection

Collider Searches

D
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Figure 3.1: Diagrammatic “make it, shake it, break it” illustration of dark matter particle detection, with arrows

indicating the direction of the process and corresponding detection experiment.

But in order to understand the nature of DM (i.e., what it really is), we also need to observe it in-

teract (non-gravitationally) with ordinary (visible) matter (i.e., with SM particles). This leads us to the

experimental methods of DM detection, which are divided in three main categories, as diagrammatically

illustrated in Figure 3.1. Following Ref. [10], these are:

1. Direct Detection experiments, designed to detect the recoil events produced by passing (galactic)

DM particles that scatter off a nucleus or electron of the material of a shielded and monitored

underground detector (made of ultra-pure semiconductors, noble gasses, pristine crystals, etc.).

The relevant process are DM SM → DM SM (SM = N, e− (N = p, n)) elastic scatterings,

represented by the Feynman diagram in Figure 3.1 for the upward direction (↑).

2. Indirect Detection experiments, designed to detect DM annihilations in our galaxy (or other as-

trophysical systems) through searches for signatures in cosmic rays (stable SM particles arriving

at Earth: charged (anti)particles, photons, neutrinos, etc.). The relevant processes are DM DM→
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3. Particle DM and the Real Scalar Singlet SM Extension

SM SM annihilations, represented by the Feynman diagram in Figure 3.1 for the left-to-right di-

rection (→).

3. Collider Searches refer to the production of DMparticles in a controlled environment (the collider)

via collision of SM particles (e.g., proton-proton collisions at the LHC), in order to “detect” the

presence of DM through the missing energy-momentum in the final state of the process.7 The

relevant processes are SM SM → DM DM productions, represented by the Feynman diagram in

Figure 3.1 for the right-to-left direction (←).

To this day, DM has never been detected through any of these experiments. However, they still provide

important constraints that can be applied to our DM particle models, usually in the form of (in gen-

eral, model-independent) experimental upper limits to cross sections or other cross section dependent

observables (the only quantities a DM particle model can predict). This will later be explained for direct

detection and collider search experiments in Sections 4.4 and 4.5, respectively.

3.3 The SM+RSS DMModel with an Unbroken Z2 Symmetry

We consider an extension of the Standard Model with a real scalar SU(3)c × SU(2)L × U(1)Y singlet

field S(x) ∼ (1, 1, 0), and impose (in addition to the SM SU(3)c × SU(2)L × U(1)Y gauge invariance)

an additional symmetry with respect to the discrete group Z2, under which the fields transform as

Z2 : S(x)→ −S(x), SM→ +SM , (3.3)

i.e., only S(x) is Z2-odd, while the remaining fields are Z2-even and transform trivially under Z2. The

Z2 charge can be interpreted as a dark (intrinsic) parity quantum number. Therefore, the most general

renormalizable Lagrangian density invariant under SU(3)c × SU(2)L × U(1)Y ×Z2 transformations is

given by

LSM+RSS = LSM +
1

2
(∂µS)∂

µS − 1

2
µ2SS

2 − λS
4!
S4−κHS

2
S2Φ†Φ

=Lportal

⊃ −V (|Φ|, S) , (3.4)

where Φ(x) =
(
G+(x) φ0(x)

)>
∼ (1, 2,+1/2) is the Higgs doublet, and the scalar potential is now

given by

V (|Φ|, S) = µ2HΦ
†Φ+ λH(Φ

†Φ)2 +
1

2
µ2SS

2 +
λS
4!
S4 +

κHS
2
S2Φ†Φ . (3.5)

The singlet S(x) couples to the Higgs doublet Φ(x) (and no other field) through the portal term Lportal =
−κHSS2Φ†Φ/2, which links the dark sector with the SM sector.

The vacuum (or ground) state is obtained by the usual minimization procedure
∂V
∂Φ

∣∣
Φ=〈Φ〉0, S=〈S〉0

=
(
µ2H + 2λH 〈Φ〉†0 〈Φ〉0 +

κHS
2 〈S〉

2
0

)
〈Φ〉†0 = 0

∂V
∂Φ†

∣∣
Φ=〈Φ〉0, S=〈S〉0

=
(
µ2H + 2λH 〈Φ〉†0 〈Φ〉0 +

κHS
2 〈S〉

2
0

)
〈Φ〉0 = 0

∂V
∂S

∣∣
Φ=〈Φ〉0, S=〈S〉0

=
(
µ2S + λS

3! 〈S〉
2
0 + κHS 〈Φ〉†0 〈Φ〉0

)
〈S〉0 = 0

(3.6)

7The final state of the DM production process must include at least one visible (detectable) particle in addition to the invisible

(undetectable) DM particles, as this makes it possible to identify the occurrence of the event (and thus confirm the presence of

missing energy-momentum).

26



3.3. The SM+RSS DMModel with an Unbroken Z2 Symmetry

⇔

(
〈Φ〉0 = 0 ∨ 〈Φ〉†0 〈Φ〉0 = −

µ2H + κHS 〈S〉20 /2
2λH

)
∧

(
〈S〉0 = 0 ∨ 〈S〉20 = −

µ2S + κHS 〈Φ〉†0 〈Φ〉0
λS/3!

)
,

corresponding to four SU(3)c × SU(2)L × U(1)Y ×Z2 invariant stationary solution sets (which can be

minima by requiring the Hessian matrix to have positive eigenvalues)

〈Φ〉0 = 0 ∧ 〈S〉0 = 0 , (3.7)

〈Φ〉†0 〈Φ〉0 = −
µ2H
2λH

≡ v2

2
∧ 〈S〉0 = 0 , (3.8)

〈Φ〉0 = 0 ∧ 〈S〉20 = −
6µ2S
λS
≡ v2S , (3.9)

〈Φ〉†0 〈Φ〉0 = −
µ2H + κHSv

′2
S /2

2λH
≡ v′2

2
∧ 〈S〉20 = −

µ2S + κHSv
′2/2

λS/3!
≡ v′2S . (3.10)

Let us now analyse these vacuum configurations in more detail. Since the Φ(x) and S(x) fields are both

singlets of SU(3)c – i.e., they are not coloured and thus transform trivially under this gauge group – the

local SU(3)c symmetry cannot be spontaneously broken. Therefore, it is sufficient to consider only the

SU(2)L × U(1)Y ×Z2 symmetry for this discussion.

• For the minimum solution sets (3.7) and (3.9), the Higgs doublet does not acquire a VEV, i.e.

〈Φ〉0 = 0, and thus electroweak SU(2)L × U(1)Y → U(1)Q SSB does not occur. Consequently,

no mass terms for the electroweak gauge bosons and fermions are generated via the SM Higgs

mechanism, and therefore, these vacuum configurations do not correspond to what is physically

observed in Nature. This leaves us with vacuum configurations (3.8) and (3.10) left to consider,

where the Higgs doublet acquires a non-zero VEV 〈Φ〉0 6= 0 (out of the possible SU(2)L×U(1)Y
gauge invariant solution set), thus spontaneously breaking the SU(2)L × U(1)Y gauge symmetry

of the vacuum down to U(1)Q. Without loss of generality, we can take the conventional VEV

〈Φ〉0 =

(
0
v√
2

)
, so that Φ(x) =

(
G+(x)

v+h(x)+iG0(x)√
2

)
, (3.11)

where v ∈ R+ is determined by the choice of vacuum configuration (between (3.8) and (3.10)).

As usual, the fields G0(x) and G±(x) are would-be Goldstone bosons that can be “gauged away”

into the unitary gauge.

• For the minimum solution set (3.10), the singlet also acquires a non-zero VEV out of the possible

Z2 invariant (discrete) solution set 〈S〉0 = ±v′S (v′S ∈ R+), thus also spontaneously breaking the

Z2 symmetry of the vacuum. After SU(2)L × U(1)Y × Z2 → U(1)Q SSB, h(x) and the field

perturbation around the singlet’s VEV ξ(x) ≡ S(x) − 〈S〉0 mix in the hSS coupling (contained

in the portal term). Hence, h(x) and ξ(x) are interaction eigenstates, while the mass eigenstates

(physical fields) are given by an SO(2) rotation in flavour space(
h1(x)

h2(x)

)
= U>(α)

(
h(x)

ξ(x)

)
, where U(α) =

(
cosα + sinα

− sinα cosα

)
∈ SO(2) (3.12)

diagonalizes the scalar squared-mass matrixM2 from the interaction eigenstate basis to the mass

eigenstate basis, i.e.

U>(α)M2U(α) = diag(m2
h1 ,m

2
h2) ≡ D

2 , (3.13)
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so that the scalar mass terms are diagonal (without flavour mixing) in the mass basis,

L(scalar)mass = −1

2

(
h ξ

)
M2

(
h

ξ

)
= −1

2

(
h1 h2

)
D2

(
h1

h2

)
= −1

2
m2
h1h

2
1 −

1

2
m2
h2h

2
2 . (3.14)

In this scenario, h1 and h2 are Higgs-like particles (with one of them being the 125 GeV Higgs

boson discovered at the LHC), and therefore, both are able to decay (unstable particles). The

spontaneously (but not explicitly) broken Z2 symmetry

S → −S ⇔ ξ = − sinαh1 + cosαh2 → −2v′S − ξ = −2v′S + sinαh1 − cosαh2 (3.15)

is now hidden in the Lagrangian density. For the minimum solution set (3.10), the model does not

contain a DM particle candidate, and hence, this vacuum configuration does not hold any interest

in the context of this work.

We are left with minimum solution set (3.8), which is the vacuum configuration we will consider for this

model. The singlet does not acquire a VEV, i.e. 〈S〉0 = 0, so that the Z2 symmetry is not spontaneously

broken and there is no flavour mixing with h(x). Hence, h(x) and S(x) are mass eigenstates – i.e., these

fields correspond to physical particles – where h is the Higgs boson and S is a new spin 0massive particle.

Using the minimum condition in (3.8), v2 = −µ2H/λH ⇔ µ2H = −λHv2 (the same as that of the SM),

the (expanded) scalar potential, in the unitary gauge Φ(x)→ 1√
2

(
0 v + h(x)

)>
, is given by

V (|Φ|, S) =
1

2

=m2
h︷ ︸︸ ︷

(2λHv
2)h2 + λHvh

3 +
λH
4
h4 +

1

2

=m2
S︷ ︸︸ ︷

(µ2S +
κHSv

2

2
)S2 +

λS
4!
S4

+
κHSv

2
hS2 +

κHS
4
h2S2 , (3.16)

which written in terms of the scalar massesmh =
√
2λHv2 andmS =

√
µ2S + κHSv2/2, reads as

−LSM+RSS ⊃ V (|Φ|, S) = 1

2
m2
hh

2 +
m2
h

2v
h3 +

m2
h

8v2
h4 +

1

2
m2
SS

2 +
λS
4!
S4 +

κHSv

2
hS2 +

κHS
4
h2S2 .

(3.17)

The unbroken Z2 symmetry ensures that S does not decay (stable particle), thus being a DM candidate.

This is shown in Figure 3.2, which presents the Feynman rules for the new interaction vertices that emerge

in this SM extension.

h

S

S

= −iκHSv

h

S

S

h

= −iκHS

S

S

S

S

= −iλS S @

SM

SM

Figure 3.2: Feynman rules for the interaction vertices involving the S dark matter particle candidate. The decays

S → SM SM are forbidden by “dark parity” (or Z2 charge) conservation, as a consequence of the Z2 discrete

symmetry.

28



3.3. The SM+RSS DMModel with an Unbroken Z2 Symmetry

3.3.1 Parameter Space Scans and Numerical Analysis

The real scalar singlet extension of the SM has three (new) free parameters, but only two of them are

relevant at tree-level: the DM mass mS and the portal interaction coefficient κHS . The quartic self-

interaction coefficient λS is only relevant for loop level corrections in perturbation theory, which will

not be considered in this work. Hence, we scanned the 2-dimensional free parameter space (relevant

at tree-level) of this model with micrOMEGAs 6.0 [59], a numerical code written in C (C++) designed
to compute DM related observables within extensions of the SM. In particular, it solves the Boltzmann

equation (3.1) numerically (for a given free parameter space point of the model). We assumed that the

scalar DMparticleS is aWIMP (as we shall always do in this work), thus having been thermally produced

according to the freeze-out mechanism described in Section 3.2.1.

The scans were performed considering all DM experimental constraints described in Section 3.2. The

results are shown in Figure 3.3, which displays these constraints in the (mS , κHS) plane. The red region

represents free parameter space points that reproduce the observed DM relic density Ωobs
DMh

2 = 0.120±
0.001 from Planck [7] measurements. It forms the line pattern satisfyingΩS(mS , κHS)h

2 = Ωobs
DMh

2, i.e.,

displays themS 7→ κHS map that gives the correct abundance.
8 Conversely, the grey region reproduces

an over-density of DM, thus being excluded. The remaining coloured free parameter space regions are

all excluded by DM detection experiments: 1) The purple region is excluded by the XENON1T [60],

DarkSide-50 [61], PICO-60 [62], CRESST-III [63], PandaX-4T [64] and LUX-ZEPLIN (LZ) [2] direct

detection experiments. 2) The green region is experimentally excluded by indirect detection, with the

exclusion performed using MADHAT [65, 66], a numerical tool that implements a Fermi-LAT data-driven,
model-independent analysis of γ-ray emission from dwarf galaxies due to DM annihilation. 3) As for

collider searches, the orange region is experimentally excluded by the ATLAS [67] upper bound on the

branching ratio for the Higgs boson decay to “invisible” products, BR(h→ inv) < 0.107. Furthermore,

no region of the free parameter space was excluded by the mono-jet LHC search routine in micrOMEGAs
6.0. We will revisit collider searches in later stages of this work.

Figure 3.3: Experimental constraints on the SM+RSS model (3.4), obtained by scanning the free parameter space

with micrOMEGAs 6.0 for the freeze-out mechanism. The grey, purple, green and orange regions are respectively
excluded by DM relic (over-)density, direct detection, indirect detection and BR(h→inv); while the red region

corresponds to the observed DM relic density.

8This is a special feature of this model, due to only having two (relevant) free parameters: for a given DM massmS , only

one value for the portal coefficient κHS is able to reproduce the observed DM relic density. This will not happen for other DM

models, with a higher-dimensional free parameter space.
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As explicitly shown in Figure 3.3, nearly all of the free parameter space in the real scalar singlet SM

extension is experimentally excluded. Additionally, the combined constraints from the observed relic

density and direct detection fully account for all this exclusion (without the need for other experimental

constraints). We will not conduct a detailed numerical analysis, as this model is not the primary focus of

this work, but rather serves as a motivation for what follows. Nevertheless, we shall make a few relevant

observations about the behavior of the relic density, which will prove useful later on.

• For mS < mh/2, the relic density decreases with mS ; but for mS > mh/2, the relic density

increases with mS . Therefore, the relic density increases as |mS −mh/2| increases in the entire
DM mass range.

• When the mass of the DM reaches half the mass of the Higgs boson (from either lower and higher

values), the relic density sharply drops to (roughly) zero: ΩSh
2 → 0 (mS → mh/2).

• When the mass of the DM reaches the mass of a SM particle (from lower values) that can be

produced through DM annihilation, the relic density abruptly decreases before quickly resuming

its prior behavior.

All theoretical aspects of these observations will be discussed later in Sections 4.2 and 4.4. The important

thing to retain from this numerical analysis, aside from the previous remarks, is that this SM+RSS model

is excluded for DM masses below 3535 GeV (excluding the resonant scenario).
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Chapter 4

The Two-Real-Scalar-Singlet SM

Extension

As we just saw in Figure 3.3 of the previous Section 3.3.1, the real scalar singlet SM extension (3.4) with

an unbrokenZ2 discrete symmetry is highly constrained by the observed relic density and direct detection

experiments, which exclude this model for DM masses below 3535 GeV. Hence, this SM extension

cannot be probed at LHC collider searches targeted at its WIMP candidate (the reason for this will be

later explained in Section 4.5).

There are many interesting DMmodels worth studying (e.g., see Ref. [10] for a review), but we wish

to persist with SU(3)c × SU(2)L × U(1)Y singlet field extensions for their simplicity. In particular,

we are interested in exploring the possibility of extending the SM with a second real scalar singlet and

respective additional Z2 unbroken symmetry.

The S1, S2 two-real-scalar-singlet SM extension with a Z(1)
2 × Z(2)

2 discrete symmetry (where only

Sr transforms non-trivially under Z(r)
2 , r = 1, 2) is treated in Ref. [19], but for the scenario where

both symmetries are spontaneously broken, thus leading to two extra Higgs-like particles and zero DM

candidates. In contrast, our Z(1)
2 × Z(2)

2 symmetry shall remain unbroken, thus leading to two DM

candidates (and zero extra Higgs-like particles), as explained in this next Section 4.1. Like us, Ref. [20]

considers the SM+2RSS model with the same unbroken Z(1)
2 × Z(2)

2 vacuum configuration, but for the

alternative scenario where one of the two DM candidates is a FIMP (produced via freeze-in), rather than

a WIMP (produced via freeze-out), as we shall do.

Additionally, in Appendix C we consider imposing a single Z(1,2)
2 unbroken symmetry, under which

both singlet fields are odd. In this alternative scenario, the Z(1)
2 × Z(2)

2 invariant Lagrangian density is

extended by four soft-breaking terms, resulting in a distinct phenomenology.

4.1 The SM+2RSS DMModel with an Unbroken Z(1)
2 ×Z

(2)
2 Symmetry

We now consider an extension of the Standard Model with two real scalar SU(3)c × SU(2)L × U(1)Y

singlet fields S1(x), S2(x) ∼ (1, 1, 0), and impose (in addition to the SM gauge invariance) an additional

symmetry with respect to the discrete direct product group Z(1)
2 ×Z

(2)
2 , under which the fields transform

as

Z(1)
2 : S1(x)→ −S1(x), S2(x)→ +S2(x), SM→ +SM (4.1)

Z(2)
2 : S1(x)→ +S1(x), S2(x)→ −S2(x), SM→ +SM , (4.2)
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i.e., only Sr(x) is Z(r)
2 -odd, while the remaining fields are Z(r)

2 -even and transform trivially under Z(r)
2 ,

r = 1, 2. In other words, the non-trivial transformations under Z(1)
2 ×Z

(2)
2 are

Z(1)
2 ×Z

(2)
2 : Sr(x)→ −Sr(x) , r = 1 ∨ r = 2 ∨ r = 1, 2 . (4.3)

The Z(1)
2 ,Z(2)

2 charges can be interpreted as two independent dark (intrinsic) parity quantum numbers.

Therefore, the most general renormalizable Lagrangian density invariant under SU(3)c × SU(2)L ×
U(1)Y ×Z(1)

2 ×Z
(2)
2 transformations is given by

LSM+2RSS = LSM +
1

2
(∂µS1)∂

µS1 +
1

2
(∂µS2)∂

µS2 −
1

2
µ21S

2
1 −

1

2
µ22S

2
2 −

λ1
4!
S4
1 −

λ2
4!
S4
2

−κH1

2
S2
1Φ

†Φ

=Lportal(1)

−κH2

2
S2
2Φ

†Φ

=Lportal(2)

−λ12
4
S2
1S

2
2

=Lint(1,2)

⊃ −V (|Φ|, S1, S2) , (4.4)

where Φ(x) =
(
G+(x) φ0(x)

)>
∼ (1, 2,+1/2) is the Higgs doublet, and the scalar potential is now

given by

V (|Φ|, S1, S2) = µ2HΦ
†Φ+ λH(Φ

†Φ)2 +

2∑
r=1

[
1

2
µ2rS

2
r +

λr
4!
S4
r +

κHr
2
S2
rΦ

†Φ

]
+
λ12
4
S2
1S

2
2 . (4.5)

The singlets S1(x) and S2(x) couple to each other through Lint(1,2), which links both dark sectors to each
other, and to the Higgs doublet Φ(x) through the portal terms Lportal(1) and Lportal(2) (resp.), which link
both dark sectors to the SM sector.

The vacuum (or ground) state is obtained by the usual minimization procedure

∂V
∂Φ

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ2H + 2λH 〈Φ〉†0 〈Φ〉0 +

∑2
r=1

κHr
2 〈Sr〉

2
0

)
〈Φ〉†0 = 0

∂V
∂Φ†

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ2H + 2λH 〈Φ〉†0 〈Φ〉0 +

∑2
r=1

κHr
2 〈Sr〉

2
0

)
〈Φ〉0 = 0

∂V
∂S1

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ21 +

λ1
3! 〈S1〉

2
0 + κH1 〈Φ〉†0 〈Φ〉0 +

λ12
2 〈S2〉

2
0

)
〈S1〉0 = 0

∂V
∂S2

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ22 +

λ2
3! 〈S2〉

2
0 + κH2 〈Φ〉†0 〈Φ〉0 +

λ12
2 〈S1〉

2
0

)
〈S2〉0 = 0

(4.6)

⇔

(
〈Φ〉0 = 0 ∨ 〈Φ〉†0 〈Φ〉0 = −

µ2H +
∑2

r=1 κHr 〈Sr〉
2
0 /2

2λH

)

∧

(
〈S1〉0 = 0 ∨ 〈S1〉20 = −

µ21 + κH1 〈Φ〉†0 〈Φ〉0 + λ12 〈S2〉20 /2
λ1/3!

)

∧

(
〈S2〉0 = 0 ∨ 〈S2〉20 = −

µ22 + κH2 〈Φ〉†0 〈Φ〉0 + λ12 〈S1〉20 /2
λ2/3!

)
, (4.7)

corresponding to eight SU(3)c×SU(2)L×U(1)Y ×Z(1)
2 ×Z

(2)
2 invariant stationary solution sets (which

can be minima by requiring the Hessian matrix to have positive eigenvalues)

〈Φ〉0 = 0

2∧
r=1

〈Sr〉0 = 0 , (4.8)

〈Φ〉†0 〈Φ〉0 = −
µ2H
2λH

≡ v2

2

2∧
r=1

〈Sr〉0 = 0 , (4.9)
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4.1. The SM+2RSS DMModel with an Unbroken Z(1)
2 ×Z

(2)
2 Symmetry

〈Φ〉0 = 0 ∧ 〈Sr〉20 = −
6µ2r
λr
≡ v2r ∧ 〈Sr′〉0 = 0 , r = 1, 2 ∧ r′ 6= r , (4.10)

〈Φ〉†0 〈Φ〉0 = −
µ2H + κHrv

′2
r /2

2λH
≡ v′2

2
∧ 〈Sr〉20 = −

µ2r + κHrv
′2/2

λr/3!
≡ v′2r ∧ 〈Sr′〉0 = 0 ,

r = 1, 2 ∧ r′ 6= r , (4.11)

〈Φ〉0 = 0
2∧
r=1

〈Sr〉20 = −
µ2r + λ12v

′′2
r′ /2

λr/3!
≡ v′′2r , r′ 6= r , (4.12)

〈Φ〉†0 〈Φ〉0 = −
µ2H +

∑2
r=1 κHrv

′′′2
r /2

2λH
≡ v′′2

2

2∧
r=1

〈Sr〉20 = −
µ2r + κHrv

′′2/2 + λ12v
′′′2
r′ /2

λr/3!
≡ v′′′2r ,

r′ 6= r . (4.13)

Let us now analyse these vacuum configurations in more detail. Since the Φ(x), S1(x) and S2(x) fields

are SU(3)c singlets – i.e., they are not coloured and thus transform trivially under this gauge group – the

local SU(3)c symmetry cannot be spontaneously broken. Therefore, it is sufficient to consider only the

SU(2)L × U(1)Y ×Z(1)
2 ×Z

(2)
2 symmetry for this discussion.

• For the minimum solution sets (4.8), (4.10) and (4.12), the Higgs doublet does not acquire a VEV,

i.e. 〈Φ〉0 = 0, and thus electroweak SU(2)L × U(1)Y → U(1)Q SSB does not occur. Con-

sequently, no mass terms for the electroweak gauge bosons and fermions are generated via the

SM Higgs mechanism, and therefore, these vacuum configurations do not correspond to what is

physically observed in Nature. This leaves us with vacuum configurations (4.9), (4.11) and (4.13)

left to consider, where the Higgs doublet acquires a non-zero VEV 〈Φ〉0 6= 0 (out of the possible

SU(2)L ×U(1)Y gauge invariant solution set), thus spontaneously breaking the SU(2)L ×U(1)Y

gauge symmetry of the vacuum down to U(1)Q. Without loss of generality, we can take the con-

ventional VEV

〈Φ〉0 =

(
0
v√
2

)
, so that Φ(x) =

(
G+(x)

v+h(x)+iG0(x)√
2

)
, (4.14)

where v ∈ R+ is determined by the choice of vacuum configuration (between (4.9), (4.11) and (4.13)).

As usual, the fields G0(x) and G±(x) are would-be Goldstone bosons that can be “gauged away”

into the unitary gauge.

• For the minimum solution set (4.13), both singlets also acquire a non-zero VEV out of the possible

Z(r)
2 invariant (discrete) solution set 〈Sr〉0 = ±v′′′r (v′′′r ∈ R+), thus also spontaneously breaking

the Z(r)
2 symmetries of the vacuum (r = 1, 2). After SU(2)L × U(1)Y × Z(1)

2 × Z(2)
2 → U(1)Q

SSB, h(x) and the field perturbations ξr(x) ≡ Sr(x) − 〈Sr〉0 mix in the hSrSr (r = 1, 2) cou-

plings (contained in the portal terms) and in the S1S1S2S2 coupling. Hence, h(x), ξ1(x), ξ2(x)

are interaction eigenstates, while the mass eigenstates (physical fields) h′(x), hξ1(x), hξ2(x) are

given by a flavour space rotation of the interaction eigenstates, so that the scalar mass terms are

diagonal (without flavour mixing) in the mass basis. In this scenario, h′, hξ1 and hξ2 are Higgs-like

particles (one of them being the 125 GeV discovered Higgs boson), and therefore, are able to decay

(unstable particles). The spontaneously (but not explicitly) broken Z(1)
2 × Z(2)

2 symmetry is now

hidden in the Lagrangian density. For the minimum solution set (4.13), the model does not contain

a DM particle candidate, and hence, this vacuum configuration does not hold any interest in the

context of this work.
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4. The Two-Real-Scalar-Singlet SM Extension

• For the minimum solution set (4.11), one of the singlets also acquires a non-zero VEV out of the

possible Z(r)
2 invariant (discrete) solution set 〈Sr〉0 = ±v′r (v′r ∈ R+), thus also spontaneously

breaking the Z(r)
2 symmetry of the vacuum; while the other Z(r′)

2 symmetry remains unbroken

(r, r′ = 1, 2∧ r 6= r′). After SU(2)L×U(1)Y ×Z(1)
2 ×Z

(2)
2 → U(1)Q×Z(r′)

2 SSB, h(x) and the

field perturbation ξr(x) ≡ Sr(x)−〈Sr〉0 mix in the hSrSr coupling (contained in the portal term),
but Sr′(x) does not mix. Hence, while Sr′(x) is a mass eigenstate (physical field), h(x), ξr(x) are

interaction eigenstates. The two remaining mass eigenstates h′(x), hξr(x) are given by a flavour

space rotation of the two interaction eigenstates, so that the scalar mass terms are diagonal (without

flavour mixing) in the mass basis. In this scenario, h′ and hξr are Higgs-like particles (one of them

being the 125 GeV discovered Higgs boson), and therefore, are able to decay (unstable particles).

The spontaneously (but not explicitly) broken Z(r)
2 symmetry is now hidden in the Lagrangian

density. On the other hand, the unbroken Z(r′)
2 symmetry ensures that Sr′ does not decay (stable

particle), thus being a DM candidate. For the minimum solution set (4.13), the model contains an

extra Higgs-like particle and a DM particle candidate.

We will consider the vacuum configuration (4.9) of this model. For this minimum solution set, both

singlets do not acquire a VEV, i.e. 〈Sr〉0 = 0 (r = 1, 2), so that the Z(1)
2 × Z(1)

2 symmetry is not

spontaneously broken and there is no flavour mixing with h(x). Hence, h(x), S1(x) and S2(x) are

mass eigenstates – i.e., these fields correspond to physical particles – where h is the Higgs boson and Sr

(r = 1, 2) are new spin 0 massive particles. Using the minimum condition in (4.9), v2 = −µ2H/λH ⇔
µ2H = −λHv2 (the same as that of the SM), the (expanded) scalar potential, in the unitary gaugeΦ(x)→
1√
2

(
0 v + h(x)

)>
, is given by

V (|Φ|, S1, S2) =
1

2

=m2
h︷ ︸︸ ︷

(2λHv
2)h2 + λHvh

3 +
λH
4
h4 +

λ12
4
S2
1S

2
2

+

2∑
r=1

[
1

2
(µ2r +

κHrv
2

2
)︸ ︷︷ ︸

=m2
Sr

S2
r +

λr
4!
S4
r +

κHrv

2
hS2

r +
κHr
4
h2S2

r

]
, (4.15)

which written in terms of the scalar masses mh =
√
2λHv2 and mSr =

√
µ2r + κHrv2/2 (r = 1, 2),

reads as

−LSM+2RSS ⊃ V (|Φ|, S1, S2) =
1

2
m2
hh

2 +
m2
h

2v
h3 +

m2
h

8v2
h4 +

λ12
4
S2
1S

2
2

+
2∑
r=1

[
1

2
m2
SrS

2
r +

λr
4!
S4
r +

κHrv

2
hS2

r +
κHr
4
h2S2

r

]
. (4.16)

The unbroken Z(1)
2 × Z(2)

2 symmetry ensures that S1 and S2 do not decay (stable particles), thus being

DM candidates. This is shown in Figure 4.1, which presents the Feynman rules for the new interaction

vertices that emerge in this SM extension.

4.2 Cross Sections for Direct Detection and Relic Density of DM

Let us obtain analytical expressions for the cross sections that will be relevant to the analysis of our fu-

ture (numerical) results. As discussed in Section 3.3.1, direct detection is – together with the observed
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h

Sr

Sr

= −iκHrv

h

Sr

Sr

h

= −iκHr

Sr

Sr

Sr

Sr

= −iλr

S1

S2

S2

S1

= −iλ12 S1,2 @

SM, S2,1

SM, S2,1

r = 1, 2

Figure 4.1: Feynman rules for the interaction vertices involving the S1 and S2 dark matter particle candidates. The

decays S1,2 → SMSM and S1,2 → S2,1S2,1 are forbidden by “dark parity” (orZ(r)
2 charge, r = 1, 2) conservation,

as a consequence of the Z(1)
2 ×Z(2)

2 discrete symmetry.

DM relic density constraint – responsible for all the free parameter space experimental exclusion of the

(one) real scalar singlet SM extension, and hence, we should expect it to also play a crucial role in the

experimental exclusion of the two-real-scalar-singlet SM extension. For this reason, we start by comput-

ing the spin-independent (SI) cross section of DM-nucleon elastic scattering SrN → SrN , N = p, n

(r = 1, 2). Next, we compute SrSr → SM SM (r = 1, 2) DM annihilation cross sections, where

SM = h,W+, Z, ` (= e−, µ−, τ−), q (= u, d, c, s, t, b) are SM (final state) particles which are possible to

produce in DM annihilation processes of our SM+2RSS model, i.e., SM particles that couple to the Higgs

boson (mediator). These are not only relevant for indirect detection, but also to the DM density/abun-

dance, under the assumption of its time evolution being described by the freeze-out mechanism. We

also compute the cross sections for the inter-dark annihilation/creation processes S1,2S1,2 → S2,1S2,1,

because (as we shall see in Section 4.4) they are also impactful to the DM relic density.

4.2.1 Spin-Independent Cross Section of DM-Nucleon Elastic Scattering

The standard WIMP-nucleon scattering treatments rely on effective field theory methods, as in e.g.

Refs. [68, 69, 70, 71, 72, 73]. We start by constructing the most general effective theory of interac-

tions between DM particles Sr (r = 1, 2) and all possible nucleon constituent particles, i.e., the quarks

q = u, d, s, c, b, t and the gluon g. The corresponding effective Lagrangian density of interaction is given

by the following linear combination of higher-mass-dimensional (effective) operators [71],

L(eff)int [Sr, q, G
a
µ] =

∑
q

[
CSq mqS

2
r (x)q̄(x)q(x) + CT2q

1

m2
Sr

Sr(x)i∂µi∂νSr(x)Oµνq (x)

]
(4.17)

+ CSg
αs
π
S2
r (x)

8∑
a=1

Gaµν(x)G
aµν(x) + CT2g

1

m2
Sr

Sr(x)i∂µi∂νSr(x)Oµνg (x) ,

(4.18)

where Oqµν(x) and Ogµν(x) are the twist-2 operators of quarks and gluon, respectively defined by

Oµνq (x) ≡ i

2
q̄(x)

(
γµDν + γνDµ − 1

2
gµν /D

)
q(x) (4.19)
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Oµνg (x) ≡
8∑

a=1

(
Gaλµ(x)Ga ν

λ (x)− 1

4
gµνGaλρ(x)G

aλρ(x)

)
. (4.20)

One should notice that there is no spin-dependent effective interactions in the scalar DM case [71]. For the

elastic scattering SrN → SrN , the Lagrangian density describing the effective DM-nucleon interaction

is obtained by evaluating the matrix elements of the DM effective interaction terms with quarks (4.17)

and gluon (4.18) between nucleon states |N〉 with the same 4-momentum – i.e., in the zero transferred

momentum limit. Hence, all Wilson coefficients CS,T2q,g should also be evaluated in the low transferred

momentum regime, to any order of approximation in perturbation theory [71, 73].

We shall not consider loop corrections in the calculation of the Wilson coefficients CS,T2q,g . Hence,

at tree-level of approximation in perturbation theory, the only possible process is DM-quark scattering

Sr(~k) q(~p, s, j)→ Sr(~k
′) q(~p′, s′, j′), r = 1, 2, where s, s′ and j, j′ are spin and colour indices, respec-

tively. This process has a (reduced) transition amplitude given by

iMfi =

~k

~k − ~k′=~p′ − ~ph

~psj

~k′

~p′s′j′

Sr

q

Sr

q = c†j′u~p′s′
(
−imq

v

)
u~pscj

i

(k − k′)2 −m2
h

(−iκHrv)

= δj′ju~p′s′u~ps
−imqκHr

(k − k′)2 −m2
h

. (4.21)

In the low transferred momentum limit qµ ≡ kµ − k′µ = p′µ − pµ ≈ 0 (⇒ |q2| ≈ 0 � m2
h), the

expression for the transition amplitude is simplified to

iMfi
(k−k′)2�m2

h−−−−−−−−→

~k ~k′

~psj ~p′s′j′

Sr Sr

q q

= δj′ju~p′s′u~ps

(
+i
mqκHr
m2
h

)
, (4.22)

which corresponds to an effective quartic coupling SrSr q̄q represented by the interaction term

L(eff)int [Sr, q] =
∑
q

+
mqκHr
(2!)m2

h

S2
r q̄q =

∑
q

CS(LO)q mqS
2
r q̄q , where CS(LO)q ≡ +

κHr
2m2

h

(4.23)

is the Wilson coefficient describing the effective coupling between a DM particle Sr and a quark q in

the low transferred momentum regime at leading order (LO). Therefore, at tree-level, the effective La-

grangian density of interaction between a DM particle Sr and a nucleon N = p, n is given by

L(eff)int [Sr, N ] = 〈N(~p)| L(eff)int [Sr, q] |N(~p)〉 N̄N =
∑
q

CS(LO)q mq 〈N(~p)| q̄q |N(~p)〉S2
r N̄N (4.24)
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=

 ∑
q′=u,d,s

C
S(LO)
q′ f

(N)
Tq′

mN +
∑

Q=c,b,t

C
S(LO)
Q mQ 〈N(~p)| Q̄Q |N(~p)〉

S2
r N̄N , (4.25)

wheremN is the nucleon mass and

f
(N)
Tq′
≡
mq′ 〈N(~p)| q̄′q′ |N(~p)〉

mN
(4.26)

is the fraction of nucleon mass that is attributed to a light quark q′ = u, d, s.

The following results are essential for proceeding with our effective treatment, and are explained in

detail in Appendix B.

• As shown by M. A. Shifman, A. I. Vainshtein and V. I. Zakharov in Ref. [74], the heavy quark

contribution to the nucleon mass – under the heavy quark expansion – is given by

mQ 〈N(~p)| Q̄Q |N(~p)〉 = −2

3

αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉+O
(
1/(4m2

Q)
)
, (4.27)

∀Q = c, b, t and hence, the DM-nucleon effective interaction (4.25) can be simplified to

L(eff)int [Sr, N ] ≈

 ∑
q′=u,d,s

C
S(LO)
q′ f

(N)
Tq′

mN −
∑

Q=c,b,t

C
S(LO)
Q

2

3

αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉


× S2

r N̄N . (4.28)

Note that effective scalar operators for heavy quarks can be replaced by effective scalar operators

for the gluon (and vice-versa), which is why some references omit these heavy quark operators in

the effective interactions (4.17). For more details, see e.g. Ref. [70].

• It is possible to show from scale invariance breaking in QCD (see Appendix B for a detailed deriva-

tion, in particular Sections B.3 and B.4) that the trace of the QCD energy-momentum tensor1 is

given by2

(
∂µj

µ
scale =

)
Θµ

µ =
∑
q

mq q̄q +
β(αs)

4αs

8∑
a=1

GaµνG
aµν (4.29)

≈
∑
q

mq q̄q − β0
αs
8π

8∑
a=1

GaµνG
aµν , (4.30)

to any order in Eq.(4.29) and at 1-loop order of approximation β(αs) ≈ −β0 α
2
s

2π in Eq. (4.30), with

β0 = 11
3 Nc − 2

3N
(q)
f = 7. The first and second terms in the right-hand side (of both equations)

exhibit the scale invariance breaking in QCD at the classical and quantum loop levels, respectively.

If quarks were massless, this last term would break the classical scale invariance at the quantum

level, thus being called the QCD trace anomaly.

• The mass of a nucleonN is given by the matrix element of the trace of the QCD energy-momentum

tensor between (appropriately normalized) nucleon states |N〉 with the same 4-momentum (i.e., in

1We choose to work with the µ ↔ ν symmetric and SU(3)c gauge invariant Belinfante-Rosenfeld EMT (B.23) of QCD,

but there are other valid choices (e.g., see Ref. [75]).
2The non-conserved Noether current jµscale associated to scale transformations is given in Eq. (B.32).
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the limit of zero transferred momentum) [76, 73, 31], thus giving

mN = 〈N(~p)|Θµ
µ |N(~p)〉 =

∑
q

mq 〈N(~p)| q̄q |N(~p)〉+ β(αs)

4αs

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉

≈
∑
q

mq 〈N(~p)| q̄q |N(~p)〉 − β0︸︷︷︸
=7

αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉 (4.31)

≈
∑

q′=u,d,s

mq′ 〈N(~p)| q̄′q′ |N(~p)〉 − 9αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉 , (4.32)

where the second line (4.31) is the 1-loop approximation β(αs) ≈ −β0 α
2
s

2π and the third line (4.32)

is additionally approximated by the heavy quark contribution expression (4.27). Furthermore, with

definition (4.26), the nucleon mass (4.32) can be written as

mN =
∑

q′=u,d,s

f
(N)
Tq′

mN −
9αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉 =

 ∑
q′=u,d,s

f
(N)
Tq′

+ f
(N)
TG

mN ,

(4.33)

where

f
(N)
TG
≡
−9αs

8π

∑8
a=1 〈N(~p)|GaµνGaµν |N(~p)〉

mN
= 1−

∑
q′=u,d,s

f
(N)
Tq′

(4.34)

is the fraction of nucleon mass that is not attributed to light quarks – thus being attributed to the

heavy quarks Q = c, b, t and gluon. Finally, with definition (4.34), the DM-nucleon effective

interaction (4.28) can be written as

L(eff)int [Sr, N ] =

 ∑
q′=u,d,s

C
S(LO)
q′ f

(N)
Tq′

+
∑

Q=c,b,t

C
S(LO)
Q

2

27
f
(N)
TG

mNS
2
r N̄N , (4.35)

where the nucleon mass fractions f
(N)
Tq′

, q′ = u, d, s and f
(N)
TG

are obtained from lattice QCD sim-

ulations.

In our particular case, the Wilson coefficients C
S(LO)
q ≡ + κHr

2m2
h
do not depend on the quark flavour

q = u, d, s, c, b, t. Hence, we can factor them out in Eq. (4.35), thus obtaining

L(eff)int [Sr, N ] = +
κHr
2m2

h

 ∑
q′=u,d,s

f
(N)
Tq′

+
6

27
f
(N)
TG

mNS
2
r N̄N , f

(N)
TG

= 1−
∑

q′=u,d,s

f
(N)
Tq′

(4.36)

= f
(LO)
N S2

r N̄N , where f
(LO)
N ≡ +

κHr
2m2

h

21
27

∑
q′=u,d,s

f
(N)
Tq′

+
6

27

mN (4.37)

is the Wilson coefficient describing the effective DM-nucleon coupling, at leading order (LO), in the low

transferred momentum regime (i.e., for an elastic scattering SrN → SrN ).

Our final task is to compute the DM-nucleon elastic scattering cross section, σSI(SrN → SrN). The

transition amplitude for the Sr(~k)N(~p, s) → Sr(~k
′)N(~p′, s′) elastic scattering follows directly from
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the DM-nucleon effective interaction term (4.37), and is given by

iMfi =

~k ~k′

~ps ~p′s′

Sr Sr

N N

= u~p′s′u~ps

(
+i(2!)f

(LO)
N

)
, (4.38)

so that the spin-averaged squared (transition) amplitude is

|Mfi|2 =
1

2

∑
s,s′

M†
fiMfi =

1

2
× 4
∣∣f (LO)N

∣∣2 ×∑
s,s′

u~psu~p′s′u~p′s′u~ps (4.39)

=
1

2
× 4
∣∣f (LO)N

∣∣2 × Tr
[
(/p+mN1)(/p

′ +mN1)
]
= 4
∣∣f (LO)N

∣∣2(4m2
N − t) , (4.40)

where t = (p−p′)2 refers to theMandelstam variable. The cross section – computed in the center-of-mass

reference frame, without loss of generality – is given by the usual 1 2→ 3 4 formula,

σ(i→ f) =
1

s!

1

64π2
|~k3|
|~k1|s

∫
dΩk3 |Mfi|2 , (4.41)

where s = 0 is the number of identical final state particles and s ≡ (k1 + k2)
2 = (p + k)2 is the Man-

delstam variable which corresponds to the squared total energy in the center-of-mass reference frame.3

Total energy conservation implies |~k1| = |~k3| ⇔ |~p| = |~p′|, thus giving

σSI(SrN → SrN) =
1

64π2
1

s

∫
dΩp′ 4

∣∣f (LO)N

∣∣2(4m2
N − t) . (4.42)

The following low-energy approximations are valid in the non-relativistic regime,

4m2
N � 2~p2(1− cos θp′) = −t (> 0) ⇔ 4m2

N − t ≈ 4m2
N (4.43)

s = m2
N +m2

Sr + 2
√
m2
N + 2~p2

√
m2
Sr

+ 2~p2 + 2~p2 ≈ (mN +mSr)
2 , (4.44)

which inserted in Eq. (4.42), give the popular expression for the spin-independent (SI) cross section of

DM-nucleon elastic scattering

σSI(SrN → SrN) =
1

π

(
mN

mN +mSr

)2 ∣∣f (LO)N

∣∣2 , (4.45)

where the f
(LO)
N Wilson coefficient is given in Eq. (4.37).

3We are taking kµ1 = pµ, kµ2 = kµ, kµ3 = p′µ, kµ4 = k′µ without loss of generality.

39



4. The Two-Real-Scalar-Singlet SM Extension

4.2.2 Cross Section of Dark Matter Annihilation Processes

We start by computing the cross section for DM annihilation to a Higgs boson pair. At tree-level, the

(reduced) transition amplitude for the Sr(~k1)Sr(~k2)→ h(~k3)h(~k4) process is given by

iMfi =

~k1 ~k3

~k2 ~k4

Sr h

Sr h

+ ~k2

~k1 + ~k2

h

~k1 ~k3

~k4

Sr

Sr h

h

(4.46)

+

~k1

~k1 − ~k3Sr

~k2

~k3

~k4

Sr

Sr

h

h +

~k1

~k1 − ~k4 Sr

~k2

~k4

~k3

Sr

Sr

h

h (4.47)

= − iκHr

[
1 +

3m2
h

s−m2
h + imhΓh

+
κHrv

2

t−m2
Sr

+
κHrv

2

u−m2
Sr

]
, (4.48)

where s ≡ (k1+k2)
2, t ≡ (k1−k3)2, u ≡ (k1−k4)2 are theMandelstam variables, and the spin-averaged

squared (transition) amplitude gives

|Mfi|2 =M†
fiMfi = κ2Hr

[
1 +

9m4
h

(s−m2
h)

2 +m2
hΓ

2
h

+
κ2Hrv

4

(t−m2
Sr
)2

+
κ2Hrv

4

(u−m2
Sr
)2

(4.49)

+
6m2

h(s−m2
h)

(s−m2
h)

2 +m2
hΓ

2
h

+
2κHrv

2

t−m2
Sr

+
2κHrv

2

u−m2
Sr

+
2κ2Hrv

4

(t−m2
Sr
)(u−m2

Sr
)

(4.50)

6m2
hκHrv

2(s−m2
h)(t−m2

Sr
)

(s−m2
h)

2(t−m2
Sr
)2 +m2

h(t−m2
Sr
)2Γ2

h

+
6m2

hκHrv
2(s−m2

h)(u−m2
Sr
)

(s−m2
h)

2(u−m2
Sr
)2 +m2

h(u−m2
Sr
)2Γ2

h

]
, (4.51)

which depends on the 3-momentum polar angle θk3 through t, u = −~k21 − ~k23 ± 2|~k1||~k3| cos θk3 =

m2
Sr

+m2
h− s/2± 2(s/4−m2

Sr
)1/2(s/4−m2

h)
1/2 cos θk3 (but not s).

4 The cross section, computed in

the center-of-mass reference frame, is obtained by the usual 1 2→ 3 4 formula (4.41), thus giving

σ(SrSr → hh) =
1

2!

1

64π2
1

s

√
1− 4m2

h/s

1− 4m2
Sr
/s

∫
dΩk3 |Mfi|2 (4.52)

=

√
1− 4m2

h/s

1− 4m2
Sr
/s

κ2Hr/(32πs)

(s−m2
h)

2 +m2
hΓ

2
h

[
(s+ 2m2

h)
2 +m2

hΓ
2
h

4We choose to work in the center-of-mass reference frame, where ~ktotali(f) =
~k1(3) + ~k2(4) = 0.
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+
2κ2Hrv

4[(s−m2
h)

2 +m2
hΓ

2
h]

m4
h − 4m2

hm
2
Sr

+m2
Sr
s

+
8κHrv

2 tanh−1
(√

(s−4m2
h)(s−4m2

Sr
)

s−2m2
h

)
(s− 2m2

h)
√
(s− 4m2

h)(s− 4m2
Sr
)

×
{
κHrv

2[(s−m2
h)

2 +m2
hΓ

2
h]− (s− 2m2

h)(s
2 +m2

h[s− 2m2
h + Γ2

h])
}]

.

(4.53)

All remaining DM annihilation processes that produce SM particles (i.e., charged fermions ψ = `, q

and weak gauge bosons W±, Z) are s-channels mediated by a (virtual) Higgs boson. Let us consider

fermion anti-fermion pair production. At tree-level, the (reduced) transition amplitude for aSr(~k1)Sr(~k2)→
ψ(~k3, s, j) ψ̄(~k4, s

′, j′) annihilation process is given by

iMfi = ~k2

~k1 + ~k2

h

~k1 ~k3sj

~k4s
′j′

Sr

Sr ψ

ψ̄

= δjj′u~k3sv~k4s′
−imψκHr

s−m2
h + imhΓh

, (4.54)

so that the spin-averaged squared (transition) amplitude is

|Mfi|2 =
∑
j,j′

∑
s,s′

M†
fiMfi =

m2
ψκ

2
Hr

(s−m2
h)

2 +m2
hΓ

2
h

∑
j,j′

∑
s,s′

δjj′δjj′v~k4s′u~k3su~k3sv~k4s′ (4.55)

= Nc

m2
ψκ

2
Hr

(s−m2
h)

2 +m2
hΓ

2
h

Tr [(/k3 +mψ1)(/k4 −mψ1)] = Nc

2m2
ψκ

2
Hr(s− 4m2

ψ)

(s−m2
h)

2 +m2
hΓ

2
h

, (4.56)

whereNc is the number of colours, and the cross section (computed in the center-of-mass reference frame)

gives

σ(SrSr → ψψ̄) =
1

0!

1

64π2
1

s

√
1− 4m2

ψ/s

1− 4m2
Sr
/s

∫
dΩk3 |Mfi|2 (4.57)

=
Nc

8π

√
(1− 4m2

ψ/s)
3

1− 4m2
Sr
/s

m2
ψκ

2
Hr

(s−m2
h)

2 +m2
hΓ

2
h

, with Nc =

1, ψ = `

3, ψ = q
.

(4.58)

Now considering weak gauge boson pair production, the tree-level (reduced) transition amplitude for the

Sr(~k1)Sr(~k2)→W+(~k3, λ)W
−(~k4, λ

′) annihilation process is given by

iMfi = ~k2

~k1 + ~k2

h

~k1 ~k3λ

~k4λ
′

Sr

Sr W+

W−

= gµνε
∗µ
~k3λ

εν~k4λ′
+igwmWκHrv

s−m2
h + imhΓh

, (4.59)
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so that the spin-averaged squared (transition) amplitude is

|Mfi|2 =
∑
λ,λ′

M†
fiMfi =

g2wm
2
Wκ

2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

∑
λ,λ′

εα~k3λ

(
ε∗~k4λ′

)
α
ε∗µ~k3λ

(
ε~k4λ′

)
µ

(4.60)

=
g2wm

2
Wκ

2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

(
−gαµ + kα3 k

µ
3

m2
W

)(
−gµα +

k4µk4α
m2
W

)
(4.61)

=
g2wm

2
Wκ

2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

[
3 +

s2

4m4
W

(1− 4m2
W /s)

]
, (4.62)

and the cross section (computed in the center-of-mass reference frame) gives

σ(SrSr →W+W−) =
1

0!

1

64π2
1

s

√
1− 4m2

W /s

1− 4m2
Sr
/s

∫
dΩk3 |Mfi|2 (4.63)

=
1

16πs

√
1− 4m2

W /s

1− 4m2
Sr
/s

g2wm
2
Wκ

2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

[
3 +

s2

4m4
W

(1− 4m2
W /s)

]
.

(4.64)

The procedure for Sr(~k1)Sr(~k2)→ Z(~k3, λ)Z(~k4, λ
′) is almost identical, except for the coupling to the

Higgs boson and the two (instead of zero) identical final state particles. At tree-level, the corresponding

(reduced) transition amplitude is given by

iMfi = ~k2

~k1 + ~k2

h

~k1 ~k3λ

~k4λ
′

Sr

Sr Z

Z

= gµνε
∗µ
~k3λ

ε∗ν~k4λ′
+igw(mZ/ cos θw)κHrv

s−m2
h + imhΓh

, (4.65)

so that the spin-averaged squared (transition) amplitude is

|Mfi|2 =
∑
λ,λ′

M†
fiMfi =

g2w(m
2
Z/ cos

2 θw)κ
2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

∑
λ,λ′

εα~k3λ

(
ε~k4λ′

)
α
ε∗µ~k3λ

(
ε∗~k4λ′

)
µ

(4.66)

=
g2w(m

2
Z/ cos

2 θw)κ
2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

(
−gαµ + kα3 k

µ
3

m2
Z

)(
−gαµ +

k4αk4µ
m2
Z

)
(4.67)

=
g2w(m

2
Z/ cos

2 θw)κ
2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

[
3 +

s2

4m4
Z

(1− 4m2
Z/s)

]
, (4.68)

and the cross section (computed in the center-of-mass reference frame) gives

σ(SrSr → ZZ) =
1

2!

1

64π2
1

s

√
1− 4m2

Z/s

1− 4m2
Sr
/s

∫
dΩk3 |Mfi|2 (4.69)

=
1

32πs

√
1− 4m2

Z/s

1− 4m2
Sr
/s

g2w(m
2
Z/ cos

2 θw)κ
2
Hrv

2

(s−m2
h)

2 +m2
hΓ

2
h

[
3 +

s2

4m4
Z

(1− 4m2
Z/s)

]
. (4.70)

There are two final DM annihilation processes left to consider: the annihilation of a DM particle

Sr pair which produces a DM particle Sr′ pair from (the) other dark sector (r′ 6= r) and the inverse

process. These inter-dark annihilation/production channels S1,2S1,2 → S2,1S2,1 are the only ones that
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do not also exist in the (one) real scalar singlet extension of the SM, and they should have an impact

on the (total) density of DM in the Universe. At tree-level, the (reduced) transition amplitude for a

Sr(~k1)Sr(~k2)→ Sr′(~k3)Sr′(~k4) annihilation is given by

iMfi =

~k1 ~k3

~k2 ~k4

Sr Sr′

Sr Sr′

+ ~k2

~k1 + ~k2

h

~k1 ~k3

~k4

Sr

Sr Sr′

Sr′

(4.71)

= −i
[
λ12 +

κH1κH2v
2

s−m2
h + imhΓh

]
, (4.72)

which is independent of the i↔ f “direction” of the process. The same holds true for the spin-averaged

squared (transition) amplitude

|Mfi|2 =M†
fiMfi = λ212 + κH1κH2v

2 2λ12(s−m2
h) + κH1κH2v

2

(s−m2
h)

2 +m2
hΓ

2
h

, (4.73)

but not for the cross section (due to the phase space factor), which computed in the center-of-mass refer-

ence frame, gives

σ(SrSr → Sr′Sr′) =
1

2!

1

64π2
1

s

√√√√1− 4m2
Sr′

/s

1− 4m2
Sr
/s

∫
dΩk3 |Mfi|2 (4.74)

=
1

32πs

√√√√1− 4m2
Sr′

/s

1− 4m2
Sr
/s

[
λ212 + κH1κH2v

2 2λ12(s−m2
h) + κH1κH2v

2

(s−m2
h)

2 +m2
hΓ

2
h

]
, (4.75)

r, r′ = 1, 2 ∧ r′ 6= r. This expression (4.75) explicitly shows that for mS1 6= mS2 (especially in the

low-energy regime), one of the two inter-dark annihilation processes is dominant over the other: the

annihilation of the heavier DM particle pair into the lighter DM particle pair.

It should be noted that all (Sr pair) DM annihilation cross sections are either proportional or partially

proportional5 to κ2Hr/[(s−m2
h)

2+m2
hΓ

2
h], where the numerator and the denominator arise from the DM-

Higgs coupling and the (s-channel) Higgs boson propagator i/(s−m2
h + imhΓh), respectively. Hence,

the following conclusions are valid in the low-energy regime:

• In the non-relativistic limit s ≈ 4m2
Sr
, an annihilation process SrSr → XX̄ is kinematically

impossible formSr < mX , and the channel is said to be “closed” (this has nothing to do with the

Higgs propagator, but we still mentioned it for its importance).

• In the non-relativistic limit s ≈ 4m2
Sr
, the squared amplitude of the (s-channel) Higgs boson

propagator – and consequently, all (kinematically possible)Sr annihilation cross sections – increase

(decrease) as |mSr −mh/2| decreases (increases).6

5The Higgs boson pair production SrSr → hh (4.53) and inter-dark SrSr → Sr′Sr′ (4.75) annihilation cross sections both
contain one point-like interaction term that is not proportional.

6This always holds in the low-energy regime, even without taking the non-relativistic limit s→ 4m2
Sr

(but not too far from
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• In the non-relativistic limit s ≈ 4m2
Sr
, when the Sr mass actually reaches half of the Higgs bo-

son mass, we hit the resonance pole of the s-channel Higgs propagator, i/(s −m2
h + imhΓh) ≈

i/(4m2
Sr
−m2

h + imhΓh) → 1/(mhΓh) (mSr → mh/2). In this resonant scenario, the (virtual)

Higgs boson mediator is actually on-shell, since s ≈ m2
h. The squared amplitude of the (s-channel)

Higgs propagator – and hence, all Sr annihilation cross sections – are maximized.

4.3 Theoretical and Pre-Scan Experimental Constraints

Before conducting a numerical analysis for DM related experimental constraints on the free parameter

space of our model, we first must impose the usual theoretical and experimental constraints required of

any SM extension.

• Boundedness from Below Conditions: To ensure a stable vacuum, the scalar potential must be

bounded from below. The boundedness from below conditions are derived by imposing that the

potential does not tend to infinitely negative values for any infinite direction in the field space, and

are given by [19, 77, 78]:

λH , λr > 0 , r = 1, 2 , (4.76)

κ̄Hr/2 ≡ κHr/2 +
√
λHλr/6 > 0 , r = 1, 2 , (4.77)

λ̄12 ≡ λ12 +
√
λ1λ2/3 > 0 , (4.78)

κH1

√
λ2/6 + κH2

√
λ1/6 + λ12

√
λH +

√
λHλ1λ2/6 +

√
κ̄H1κ̄H2λ̄12 > 0 . (4.79)

• Perturbative Unitarity Conditions: The conditions for tree-level perturbative unitarity can be

obtained by imposing |Re(a0)| < 1/2 for all the relevant 2 → 2 scalar processes in the high-

energy regime s� m2
h,m

2
Sr
, where

a0(s) =
1

32π

∫ +1

−1
M(s, cos θk3) d cos θk3 =

1

16πs

∫ 0

−s
M(s, t) dt (4.80)

is the order l = 0 coefficient of the partial-wave expansion (in Legendre polynomials Pl) of a given

transition amplitude

M(s, cos θk3) = 16π
∞∑
l=0

(2l + 1)Pl(cos θk3)al(s) , (4.81)

with al(s) =
1

32π

∫ +1

−1
Pl(cos θk3)M(s, cos θk3) d cos θk3 . (4.82)

In the SM+2RSSmodel, there are six relevant initial/final scalar particle pair states: hh, hSr, S1S2,

SrSr (r = 1, 2). Since all the possible scalar processes have point-like interactions (single-vertex

diagrams), then assuming cos θ 6= ±1,M = (constant in s, θ) + O(1/s) will be independent of
cos θ (or equivalently, t) in the high-energy regime s � m2

h,m
2
Sr
, which implies al(s) → 0

(s � m2
h,m

2
Sr
) ∀l 6= 0.7 Hence, the tree-level perturbative unitarity conditions are directly

it either).
7This argument relies on the assumption that |t|, |u| ≈ s/2(1 ∓ cos θ) � m2

h,m
2
Sr

⇔ θ 6= 0, π when s � m2
h,m

2
Sr
. A

more rigorous demonstration is to compute a0(s) in Eq. (4.80) and conclude that only the point-like interaction terms “survive”
in the high-energy regime s� m2

h,m
2
Sr
, thus showing that 16π|a0| = |M|(θ 6= 0, π) < 8π (s� m2

h,m
2
Sr
).
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obtained by

16π
∣∣a0(hh→ hh)

∣∣
s�m2

h,m
2
Sr

=
∣∣M(hh→ hh)

∣∣(θ 6=0,π)

s�m2
h,m

2
Sr

=
∣∣3m2

h/v
2
∣∣ < 8π , (4.83)

16π
∣∣a0(SrSr → SrSr)

∣∣
s�m2

h,m
2
Sr

=
∣∣M(SrSr → SrSr)

∣∣(θ 6=0,π)

s�m2
h,m

2
Sr

= |λr| < 8π , (4.84)

16π
∣∣a0(i→ f)

∣∣
s�m2

h,m
2
Sr

=
∣∣M(i→ f)

∣∣(θ 6=0,π)

s�m2
h,m

2
Sr

= |κHr| < 8π , (4.85)

16π
∣∣a0(i′ → f ′)

∣∣
s�m2

h,m
2
Sr

=
∣∣M(i′ → f ′)

∣∣(θ 6=0,π)

s�m2
h,m

2
Sr

= |λ12| < 8π , (4.86)

∀ i→ f = hh→ SrSr, hSr → hSr, SrSr → hh ,

∀ i′ → f ′ = S1S1 → S2S2, S1S2 → S1S2, S2S2 → S1S1 ,

with r = 1, 2. Also, extra conditions can be derived through a coupled-channel analysis [79], by

requiring the eigenvalues of the scalar8 coupled-channel (symmetric) matrix (a0)2→2 in the high-

energy regime s� m2
h,m

2
Sr
to be smaller (in magnitude) than 1/2 (or impose a limit of 8π on the

magnitude of the eigenvalues ofM2→2). These extra tree-level perturbative unitarity conditions

are given in Ref. [19].

• Higgs Invisible Decay BR Upper Limit: The hSrSr coupling allows the Higgs boson to decay

to a DM particle pair, h → SrSr (r = 1, 2) for mSr < mh/2 (when it is kinematically possible),

and the corresponding (tree-level) decay rate is given by

Γ(h→ SrSr) =
1

2!

1

32π2
|~k|
m2
h

∫
dΩk |Mfi|2 =

κ2Hrv
2

32πmh

√
1− 4m2

Sr
/m2

h , (4.87)

which must agree with the ATLAS [67] upper bound on the branching ratio of the Higgs boson

decay to “invisible” products, BR(h→ inv) < 0.107. Hence, our model predictions must satisfy∑
r=1,2 Γ(h→ SrSr)

Γ
(total)
h

=

∑
r=1,2 Γ(h→ SrSr)∑

X∈SM Γ(h→ XX̄) +
∑

r=1,2 Γ(h→ SrSr)
< 0.107 . (4.88)

• Electroweak Precision Measurements: Any SM extension must agree with the precise measure-

ments of electroweak observables. Since we are considering the vacuum configuration (4.9), both

singlets do not acquire a VEV (the Z(1)
2 ×Z

(2)
2 symmetry remains unbroken) and there is no mix-

ing with the Higgs field. Hence, the electroweak sector remains unchanged relative to that of the

SM, and our DMmodel is therefore in agreement with all electroweak precision measurements. In

particular, the tree-level SM+2RSS model prediction for the

ρ ≡
m2
W

m2
Z cos

2 θw
=

∑
ϕ[I

(ϕ)
w (I

(ϕ)
w + 1)− (I

(ϕ)
w3 )

2]v2ϕ

2
∑

ϕ(I
(ϕ)
w3 )

2v2ϕ
(4.89)

parameter (where ϕ are SU(2)L scalar multiplets of isospin numbers I
(ϕ)
w and I

(ϕ)
w3 with VEV vϕ)

is ρSM+2RSS = ρSM = 1, in agreement with the experimental [38] value ρ0 = 1.00031± 0.00019.

Similarly, themodel predictions for theS, T andU oblique parameters [80] are (S, T, U)SM+2RSS =

(S, T, U)SM = (0, 0, 0), in agreement with the experimental [38] values (−0.04 ± 0.10, 0.01 ±
0.12,−0.01± 0.09).

8The weak gauge bosons (could have been included, but) are neither considered here nor in Ref. [19].
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4.4 Parameter Space Scans and Numerical Analysis

The two-real-scalar-singlet extension of the SM has seven (new) free parameters, but only five of them

are relevant at tree-level: the DM masses mS1 and mS2 , the portal coefficients κH1 and κH2, and the

λ12 interaction coefficient. The two quartic self-interaction coefficients λ1 and λ2 are only relevant for

loop corrections in perturbation theory. Hence, we scanned the 5-dimensional free parameter space (rel-

evant at tree-level) of this model with micrOMEGAs 6.0 [59], assuming both scalar DM particles were

thermally produced according to the freeze-out mechanism. The scans were performed considering the

DM relic density and direct detection exclusion, motivated by the fact that these experimental constraints

completely define the allowed free parameter space of the (one) real scalar singlet SM extension (Fig-

ure 3.3). The (relic density and direct detection) experimental constraints on the SM+2RSS model (4.4)

are shown in Figures 4.2 and 4.3, which only display allowed (i.e., not experimentally excluded) free pa-

rameter space points. In both figures, the left panel displays the scanned free parameter space points that

correspond to the observed DM relic density Ωobs
DMh

2 = 0.120 ± 0.001 from Planck [7] measurements,

and the right panel displays the free parameter space points which (in addition to giving the observed

relic density) are also not excluded by the XENON1T [60], DarkSide-50 [61], PICO-60 [62], CRESST-

III [63], PandaX-4T [64] and LUX-ZEPLIN (LZ) [2] direct detection experiments. Figure 4.2 presents

several projections withmS1 on the x-axis and the four remaining free parameters (relevant at tree-level)

mS2 , κH1, κH2 and λ12 on the y-axis and colour bars. Figure 4.3 presents (only) the projection in the

(mS1 ,mS2) plane, and the colour bar displays the relic density of S1.

Before proceeding to the numerical analysis, one should notice from Figures 4.2 and 4.3 that – as al-

ready expected from the Lagrangian density (4.4) describing our theory – the model is S1 ↔ S2 symmet-

ric. With that being said, we do not distinguish between cases that only differ by a S1 ↔ S2 re-naming,

and hence, there are only three (main) allowed free parameter space regions that can be identified from

Figures 4.2 and 4.3:

1. ThemS1,2 ∼ mS2,1 > 1 TeV case, where both DM particles (S1 and S2) are heavy. In this scenario,

the model cannot be probed at the LHC, since the phase space of final state particles in any DM

production process is highly suppressed, resulting in low cross sections, and thus, a negligible

number of DM production events. As shown in Figure 4.2, both portal coupling constants κH1 and

κH2 take high values, while λ12 can take the full range of values.

2. The mh/2 < mS1,2 < 1 TeV < mS2,1 case, where one DM particle (S2,1) is heavy, but the other

one (S1,2) is lighter. In this scenario, the model can be probed through LHC searches targeted at

the lighter DM particle. As shown in Figure 4.2, both portal coupling constants κH1 and κH2 take

high values, but the portal coupling of the lighter DM particle is always higher than that of the

heavier one.

3. The mh/2 ≈ mS1,2 < mS2,1 (resonant) case, where one of the DM particles (S1,2) has a mass that

– in the non-relativistic limit
√
s ≈ 2mS1,2 of two DM particles S1,2 annihilating – gives a center-

of-mass energy
√
s = mh in the resonance pole of the s-channel Higgs propagator, so that

i

s−m2
h + imhΓh

≈ i

4m2
S1,2
−m2

h + imhΓh
→ 1

mhΓh

(
mS1,2 →

mh

2

)
. (4.90)

In this resonant scenario, the (virtual) s-channel Higgs mediator with 4-momentum kµ1 + kµ2 is

actually on-shell, since (k1 + k2)
2 ≡ s ≈ 4m2

S1,2
:= m2

h, and the squared amplitude of the s-

channel Higgs propagator is maximized. This results in extremely high S1,2 annihilation cross
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DMh2 = 0.120 ± 0.001 (both left and right) not excluded by direct detection (only right)

Figure 4.2: Experimental constraints on the SM+2RSS model (4.4), obtained by scanning the free parameter

space with micrOMEGAs 6.0 for the freeze-out mechanism. The left panel shows parameter space points that

correspond to the observed DM relic density, and the right panel displays the points that are also not excluded by

direct detection. Columns share the x-axis, and rows share the y-axis and the colour bar.

47



4. The Two-Real-Scalar-Singlet SM Extension

100 101 102 103 104

mS1  [GeV]

100

101

102

103

104

m
S 2

 [G
eV

]

100 101 102 103 104

mS1  [GeV]

0.02

0.04

0.06

0.08

0.10

0.12

S 1
h2

DMh2 = 0.120 ± 0.001 (both left and right) not excluded by direct detection (only right)

Figure 4.3: Experimental constraints on the SM+2RSS model (4.4), obtained by scanning the free parameter

space with micrOMEGAs 6.0 for the freeze-out mechanism. The left panel shows parameter space points that

correspond to the observed DM relic density, and the right panel displays the points that are also not excluded by

direct detection. The y-axis and the colour bar are shared. The figure is similar to the first row of Figure 4.2, but

here the colour bar displays the relic density of the DM particle S1.

sections – since all S1,2 annihilation processes feature Higgs mediated s-channels, as shown in

Section 4.2.2 – which drastically decreases the relic density of S1,2. Therefore, in this mh/2 ≈
mS1,2 (< mS2,1) case, the remaining free parameters can take a wide range of values, as shown in

Figure 4.2.

In the first scenario, both DM particles are too heavy to be produced (in non-negligible numbers) at

the LHC, which is analogous to what happens in the (one) real scalar singlet SM extension. The third

scenario is also viable in the SM+RSSmodel, where a DMmass lies at the resonance pole of the s-channel

Higgs propagator, drastically reducing the corresponding DM relic density. Therefore, although all three

scenarios correspond to equally valid allowed regions, we are only interested in the second one – i.e., the

(mh/2 <)mS1,2 (< 1 TeV)< mS2,1 case – since it is the only one that is not also featured in the (one)

real scalar singlet SM extension, providing us a lighter DM particle that can be searched for at the LHC

(thus justifying the study of this two-real-scalar-singlet SM extension).

4.4.1 Analysis of the (mh/2 <) mS1 < mS2 Case

Let us now focus on the mS1 6= mS2 case, with both DM masses outside the resonance pole of the

s-channel Higgs propagator (in the non-relativistic limit, i.e., so that mS1,2 ≈
√
s/2 6= mh/2). From

now on, we will take S1 (S2) as the lighter (heavier) DM particle, without loss of generality (due to the

S1 ↔ S2 symmetry of our model). This mS1 < mS2 case (as we shall refer to it from now on, for the

sake of simplicity) is highlighted in Figure 4.4, which shows all the scanned points that are allowed by

relic density and direct detection – i.e., the same points that are present in the right panel of Figure 4.2 –

but where onlymS1 < mS2 case points are coloured, while the remaining allowed free parameter space

points are displayed in shades of grey. Additionally, all coupling constants are now taken to be positive

(without loss of generality), both in this figure and in the discussions that will follow.

For this (mh/2 <)mS1 < mS2 case (coloured points of Figure 4.4), the allowed mass ranges are

mS1 ∈ [124.8, 230.0] GeV andmS2 ∈ [4321.0, 9977.0] GeV – which considerably suppresses the phase

space of LHC events that produce the heavier DM particle S2 – and the allowed coupling constant ranges
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DMh2 = 0.120 ± 0.001 not excluded by direct detection

Figure 4.4: Scanned free parameter space points that correspond to the observed DM relic density and are not

excluded by direct detection, just like in the right panel of Figure 4.2 (except here all coupling constants are taken

as positive). The mS1
< mS2

case points are coloured, while the other allowed parameter space points are grey

(each colour bar has its grey version “twin”). Columns share the x-axis.

are κH1 ∈ [4.066, 9.986], κH2 ∈ [1.321, 3.074] and λ12 ∈ [2.940× 10−6, 0.7093] – the portal coupling

constant is larger (in magnitude) for the lighter DM particle S1 than for the heavier DM particle S2. Also,

as shown in Figure 4.3, the lighter DM particle S1 corresponds to a very small fraction of the observed

relic density ΩS1h
2 ∼ [10−8, 10−7], so that ΩDMh

2 = (ΩS1 +ΩS2)h
2 ≈ ΩS2h

2.

We nowwant to analyse this small allowed region of free parameter space inmore detail. In particular,

we aim to understand why it has so well-defined boundaries and allows for a lighter DM candidate. In

order to do so, we must comprehended how the relic density and direct detection exclusion are affected

by each one of the free parameters, i.e., the exclusion behaviour in the free parameter space. This cannot

be done based on Figures 4.2, 4.3 and 4.4 alone. Hence, several new scans were performed around

benchmark points of this mS1 < mS2 allowed region, in which we scanned one free parameter at a

time. Figure 4.5 shows mS1 scans on the (mS1 ,ΩS1h
2) (left panel) and (mS1 ,ΩDMh

2) (right panel)

planes, where in each row, one of the remaining parameters mS2 , κH1, κH2 or λ12 takes five different

fixed values. Additionally, each point that is not excluded by direct detection is displayed in green.

Figure 4.6, on the other hand, shows a (one) parameter scan per row, for all five (relevant at tree-level)

free parameters. Each row shows how ΩS1h
2 (left panel) and ΩDMh

2 (right panel) change with the

scanned parameter, with the remaining parameters fixed. Just like in Figure 4.5, only green points are

allowed by direct detection. Notice that, unlike previous Figures 4.2, 4.3 and 4.4, these ones (4.5 and 4.6)

do not “filter” out excluded points.

Let us start by analysing the relic density behaviour in this region. It is clear from Figures 4.5 and 4.6

that the total relic density ΩDMh
2 = (ΩS1 + ΩS2)h

2, although dependent on all five free parameters

mS1 , mS2 , κH1, κH2 and λ12, is only strongly affected by three of them: mS2 , κH2 and λ12. This was

already expected, since ΩDMh
2 ≈ ΩS2h

2 is determined by the relic density of the heavier DM particle

S2. In particular, ΩDMh
2 increases withmS2 and decreases with κH2 and λ12, which can be respectively
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4. The Two-Real-Scalar-Singlet SM Extension

explained by the following reasons:

• As shown in Section 4.2.2, all S2 annihilation cross sections are proportional or partially propor-

tional (both S2S2 → hh and S2S2 → S1S1 annihilation cross sections contain one point-like

interaction term that is not proportional) to the squared amplitude of the (s-channel) Higgs boson

propagator ∣∣∣∣ i

s−m2
h + imhΓh

∣∣∣∣2 =
1

(s−m2
h)

2 +m2
hΓ

2
h

, (4.91)

and hence, in the low-energy regime, all S2 annihilation cross sections decrease as |mS2 −mh/2|
increases – which in our case, corresponds tomS2 > mh/2 increasing. Therefore, for the freeze-

out mechanism, the S2 relic densityΩS2h
2 ≈ ΩDMh

2 increases withmS2 (formS2 > mh/2). This

was already shown for the SM+RSS model in Figure 3.3, where for mS2 > mh/2, the DM relic

density always increases with the DM particle mass, except when an annihilation channel opens

(i.e., becomes kinematically possible in the non-relativistic limit).

• Similarly (see Section 4.2.2), all S2 annihilation cross sections (but the S2S2 → S1S1 annihilation

cross section, which contains one proportional and one non-proportional term) are proportional to

κ2H2, thus increasing with |κH2|. Therefore, for the freeze-out mechanism, the S2 relic density
ΩS2h

2 ≈ ΩDMh
2 decreases with |κH2| (also shown for the SM+RSS model in Figure 3.3).

• The inter-dark S2,1S2,1 → S1,2S1,2 annihilation cross sections are given in Eq. (4.75), and ex-

plicitly increase with |λ12|. Since mS1 < mS2 , then S2S2 → S1S1 is dominant over the inverse

process, which means that the S2 relic density ΩS2h
2 ≈ ΩDMh

2 decreases with |λ12|.

All these arguments rely on the fact that ΩDMh
2 = (ΩS1 + ΩS2)h

2 ≈ ΩS2h
2. One should note that we

did not try to explain this feature, but rather took it as a result from our first scan in Figure 4.3.

We now turn our attention to the direct detection (DD) exclusion. Let us remember from Section 4.2.1

that, at leading order, the spin-independent (SI) cross section for the elastic scattering of a DM particle

Sr off a nucleon N = p, n is given by

σSI(SrN → SrN) =
1

π

(
mN

mN +mSr

)2 ∣∣f (LO)N

∣∣2 , r = 1, 2 , (4.92)

where

f
(LO)
N =

 ∑
q′=u,d,s

C
S(LO)
q′ f

(N)
Tq′

+
∑

Q=c,b,t

C
S(LO)
Q × 2

27
f
(N)
TG

mN , f
(N)
TG

= 1−
∑

q′=u,d,s

f
(N)
Tq′

= +
κHr
2m2

h

21
27

∑
q′=u,d,s

f
(N)
Tq′

+
6

27

mN (4.93)

is the DM-nucleon effective coupling and f
(N)
Tq′
≡ 〈N(~p)|mq′ q̄

′q′ |N(~p)〉 /mN represents the fraction of

nucleonmass attributed to a light quark q′ = u, d, s contribution (obtained from lattice QCD simulations).

Thus, σSI(SrN → SrN) decreases with mSr and increases with κHr (r = 1, 2). However, one must

avoid the mistake of assuming that high DM masses mS1,2 and low portal coupling constants κH1,2

promote direct detection non-exclusion – as shown in Figures 4.5 and 4.6, this is only partially true –

due to the fact that our model has two DM particles (instead of just one). Direct detection experiments

set an upper bound on the DM-nucleon elastic scattering cross section under the assumption of that DM
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Figure 4.5: Analysis of themS1
< mS2

case with all parameters butmS1
(light DMmass) fixed. Each row shows

one fixed parameter – betweenmS2
, κH1, κH2 and λ12 – taking five different fixed values. Only green points are

not excluded by direct detection. Columns share the x-axis.

particle being responsible for all the observed relic density Ωobs
DMh

2 = 0.120 ± 0.001 (thus responsible

for all the local DM number density). In other words, for a model with more than one DM candidate –

and assuming that the contribution of each DM particle to the local DM number density is the same as its

contribution to the observed DM relic density – DD experiments can only set upper bounds on

σSI(DMrN → DMrN)
Ωr
ΩDM

, with ΩDMh
2 =

∑
r

Ωrh
2 := 0.120± 0.001 . (4.94)

Hence, in a model with multiple DM particles, DD exclusion is not only determined by the cross sections
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Figure 4.6: Analysis of the mS1
< mS2

case with all parameters (but one) fixed. Each row scans one parameter

–mS1
,mS2

, κH1, κH2 and λ12, in this order – with all the remaining parameters fixed. Only green points are not
excluded by direct detection.
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σSI(DMrN → DMrN), but also by the corresponding fractions Ωr/ΩDM (r = 1, 2, . . . ).

For the heavier DM particle S2 – which is responsible for almost all the observed relic density, i.e.

ΩS2/ΩDM ≈ 1 – the respective DD exclusion is completely determined by σSI(S2N → S2N); which

must not surpass the upper bound set by DD experiments. This means that by increasing mS2 and de-

creasing κH2 we are promoting DD non-exclusion; however, we are also increasing ΩS2h
2 ≈ ΩDMh

2,

thus simultaneously promoting relic over-density. There is a “tension” between relic density and direct

detection, in the sense that mS2 and κH2 must be sufficiently high and low (respectively) so that the

points are not excluded by DD, but also sufficiently low and high (respectively) so that the points are not

excluded by relic over-density. It is therefore fully understood whymS2 and κH2 are together (i.e., inter-

dependently) constrained, exhibiting well-defined allowed ranges, both bounded from below and from

above, when the other parameter is fixed.9

The same assumptions are no longer valid for the lighter DM particle S1 – which (virtually) does not

contribute to the observed relic density, i.e. ΩS1h
2 � ΩDMh

2 – since the respective DD exclusion is not

(mainly) determined by σSI(S1N → S1N). This happens because (as explained above) DD experiments

can only set upper-bounds on σSI(SrN → SrN)×ΩSr/ΩDM (r = 1, 2), which for ΩS1/ΩDM � 1 will

result in an extremely high upper-bound on σSI(S1N → S1N). Hence, DD exclusion due to the lighter

DM particle S1 is mainly determined by ΩS1h
2 – as opposed to what happens with S2, for which it is

fully determined by the (respective) cross section – in the sense that it can only occur for parameter space

configurations that increaseΩS1h
2, which (formS1 > 125GeV) are characterized by highmS1 , low κH1

and high λ12 (Figures 4.5 and 4.6). Equivalently, by decreasingmS1 , increasing κH1 and decreasing λ12

we are promoting DD non-exclusion; which explains the well-defined upper, lower and upper bounds

exhibited by mS1 , κH1 and λ12, respectively. Furthermore, there is an important feature that is clearly

shown in Figures 4.5 and 4.6. For mS1 < mh = 125 GeV, the S1S1 → hh annihilation process is

kinematically impossible in the non-relativistic limit
√
s ≈ 2mS1 , i.e., the channel is closed. The relic

density of S1 is too high in this region, thus being excluded by DD. However, when mS1 reaches 125

GeV = mh (from lower values), the S1S1 → hh annihilation channel opens and ΩS1h
2 drastically

decreases to a local minimum, allowing for DD non-exclusion. This explains why, in addition to the

upper bound,mS1 also exhibits a well-defined lower bound at 125 GeV. DD non-exclusion is promoted

as mS1 decreases towards the Higgs boson mass (from higher values), i.e., as mS1 → mh
+ = 125+

GeV with mS1 > mh. Finally, it should be noted that the boundaries of the allowed ranges for mS1 ,

κH1, and λ12 are solely determined by DD exclusion related to S1. This makes sense formS1 and κH1,

as they (virtually) have no influence on the (total) relic density. However, decreasing λ12, in addition

to promoting DD non-exclusion – and hence the upper bound, as previously discussed – also increases

ΩS2h
2 ≈ ΩDMh

2, simultaneously promoting relic over-density. For this reason, one could argue that λ12

should also exhibit a well-defined lower bound – but this does not occur, as shown in Figures 4.4 and 4.6,

where λ12 can decrease to 0 without exclusion. The reason for this is clear from Figures 4.5 and 4.6:

mS2 and κH2 have a stronger influence on the (total) relic density than λ12. Hence, a small over-density

produced by decreasing λ12 can be countered by a slight variation inmS2 (decrease) and κH2 (increase)

which lowers ΩDMh
2 without DD exclusion related to S2.

Let us now summarize the conclusions of our analysis. mS2 and κH2 exhibited allowed ranges that

are both bounded from below and from above, due to the “tension” between relic over-density and direct

detection exclusion related to S2 (with the latter being determined by the corresponding cross section

9Notice thatmS2 does not exhibit an upper bound in Figures 4.2, 4.3 and 4.4, as the relic over-density can be counteracted

by increasing κH2, without it leading to DD exclusion because the upper limits on the WIMP-nucleon cross section are weak

(i.e., high) for large DM masses. Hence, κH2 only exhibits an upper limit because we did not scan formS2 above 10 TeV.
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Parameter
Constraint responsible

for lower bound

Constraint responsible

for upper bound

mS1

DD exclusion related to S1
(determined by ΩS1

/ΩDM)

DD exclusion related to S1
(determined by ΩS1

/ΩDM)

mS2

DD exclusion related to S2
(determined by σSI(S2N → S2N))

relic over-density

κH1
DD exclusion related to S1
(determined by ΩS1

/ΩDM)
—

κH2 relic over-density
DD exclusion related to S2

(determined by σSI(S2N → S2N))

λ12 —
DD exclusion related to S1
(determined by ΩS1/ΩDM)

Table 4.1: Experimental constraints responsible for each boundary of the free parameters’ allowed ranges in the

mS1 < mS2 case region. If a particular boundary does not exist, the corresponding table entry displays “—”. The

mS2 and κH2 parameters are interdependently constrained by the relic-DD “tension”, and the grey bounds onmS2

(κH2) are only exhibited for fixed κH2 (mS2
) values.

σSI(S2N → S2N)). On the other hand,mS1 , κH1 andλ12 exhibited allowed ranges that are, respectively,

bounded from both below and above, just bounded from below and just bounded from above; where all

this boundaries are solely due to direct detection exclusion related to S1 (which is determined by the

corresponding fraction ΩS1/ΩDM, or equivalently, by ΩS1h
2). Table 4.1 links each mentioned boundary

to the respective experimental constraint (relic over-density and DD exclusion related to S1, S2) that is

responsible for its existence.

4.4.2 LZ 2024 Results and Future Prospects for Direct Detection

During the course of this work (2024), new results [3] from the LUX-ZEPLIN experiment came out.

These LZ 2024 results [3] provide the most stringent (i.e., the lowest) upper limits on the WIMP-nucleon

elastic scattering spin-independent cross section of any direct detection experiment (so far), including the

previous (i.e., the first) LZ 2022 results [2]. However, the new LZ 2024 results are not (yet) included

in the micrOMEGAs 6.0 code, and consequently, are not taken into account in our previous numerical

analysis. This means that we need to perform the corresponding DD exclusion (for the LZ 2024 results)

separately.

As already explained in Section 4.4.1, for multi DM particle models, direct detection experiments can

only set upper limits on σSI(DMrN → DMrN)× Ωr/ΩDM, with ΩDMh
2 = 0.120± 0.001 (which for

a single DM particle model, simply corresponds to an upper limit on the SI cross section σSI(DMN →
DMN)). We computed the σSI(SrN → SrN) × ΩSr/ΩDM, r = 1, 2 quantities for all the mS1 <

mS2 case free parameter space points that were not experimentally excluded by relic density and direct

detection (without considering the LZ 2024 results) in the numerical analysis (i.e., the coloured points

of Figure 4.4). These results are shown – for both the lighter S1 (left panel) and heavier S2 (right panel)

DM particles – in Figure 4.7, which also displays the former 2022 (blue solid line) and new 2024 (green

solid line) LZ upper limits on the SI cross section of WIMP-nucleon elastic scattering. As expected, the

model-predicted σSI(SrN → SrN) × ΩSr/ΩDM (r = 1, 2) values for the mS1 < mS2 case points are

below the LZ 2022 upper limit for both DM particles. However, the same cannot be said regarding the

LZ 2024 upper limit, above which all model-predicted values fall for both DM particles. Nevertheless,

for a big part of themS1 < mS2 case points, the model predictions lay inside the experimental LZ 2024

uncertainty band (shaded green region) – to be precise, this happens for parameter space points featuring
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any S1 (lighter DM) mass (in the mS1 allowed range) and any S2 (heavier DM) mass above (roughly)

6700 GeV. Although formS1 < mS2 case points with a massmS1 around (roughly) 140 GeV and a high

portal coefficient κH1 (& 9), the predicted σSI(S1N → S1N) × ΩS1/ΩDM values fall in the actual LZ

2024 upper limit, the respective predicted σSI(S2N → S2N)× ΩS2/ΩDM ≈ σSI(S2N → S2N) values

fall above it. Naturally, it only takes one (of the two) prediction values σSI(SrN → SrN)× ΩSr/ΩDM

(r = 1, 2) to be above the LZ 2024 upper limit for the experimental DD exclusion of the corresponding

parameter space point.
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Figure 4.7: Spin-independent cross section of DM-nucleon elastic scattering SrN → SrN (N = p, n) multiplied
by the corresponding fraction of DM relic density ΩSr/ΩDM (r = 1, 2), for both the lighter S1 (left panel) and

the heavier S2 (right panel) DM particle candidates. The presented points correspond to the model’s theoretical

predictions for the mS1
< mS2

case points, for both proton (p) and neutron (n) elastic scattering. The blue and
green (solid) lines correspond to the LUX-ZEPLIN (LZ) experimental upper limits on the WIMP-nucleon elastic

scattering spin-independent cross section from 2022 [2] and 2024 [3] results, respectively. The (shaded green)

experimental uncertainty band from the LZ 2024 results is displayed. The legend is shared by both panels.

None of the mS1 < mS2 case points’ model predictions fall below the (new) LZ 2024 [3] upper

limit, but a big part of them lay inside the corresponding experimental uncertainty band – thus not being

definitely excluded (but almost). Nevertheless, one should note that if we take the LZ 2024 upper limit

(green solid line) as the definitive DD exclusion criteria, allmS1 < mS2 case free parameter space points

that were allowed by the numerical analysis are, in fact, experimentally excluded. In the remaining of

this Chapter 4, we shall continue to consider all the mS1 < mS2 case allowed points of our numerical

analysis (i.e., the coloured points of Figure 4.4); however, aware of the insights that were drawn from the

new LZ 2024 upper limit in this Section 4.4.2.

4.5 Searches for the Lighter DM Particle at the LHC

Arguably one of the most interesting features of this model, and in particular, of thismS1 < mS2 case we

are focusing on, is that although the heavier DM particle S2 is responsible for almost all the observed DM

relic density, only the lightest DM particle S1 can (in principle) be searched for at the LHC. This happens

because the LHC (does not and) will never run at a center-of-mass energy higher than
√
s = 14 TeV, and

sincemS2 ∈ [4321.0, 9977.0] GeV, the phase space of final state particles in S2 production processes at

the LHC is considerably suppressed – which results in very low cross sections, and hence, in a negligible

number of S2 production events. Therefore, until a collider that can operate at a center-of-mass energy

much higher than that of the LHC is built, we cannot search for a DM particle with a mass in the range
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of mS2 ∈ [4321.0, 9977.0] GeV. On the other hand, producing the lighter DM particle S1 at the LHC

should not present any problem, given its mass range ofmS1 ∈ [124.8, 230.0] GeV, which is well below

1 TeV. Therefore, as already stated in Section 4.4, this two-real-scalar-singlet extension of the SM can

be probed in LHC searches targeted at the lighter DM particle S1.
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Figure 4.8: Feynman diagrams contributing to mono-jet production processes pp → S1S1j at tree-level, where

j = q, q̄, b, b̄, g are jets and q = u, d, c, s are light quarks. The vertices for the ggh and gggh effective couplings
arise from top quark loops in gluon fusion processes (in the heavy top quark limit,m2

t � s).

We now must compare theoretical predictions of our model with LHC experiments to determine

whether the mS1 < mS2 case (allowed) points are experimentally excluded by collider searches. Since

DM particles cannot be directly detected at the LHC (or any other collider), we must consider processes

that, in addition to invisible/undetectable DM particle(s), also include visible/detectable SM particle(s) in

the final state. The collider events associated with such processes are the so-calledmissing energy events,

since their occurrence is observed through detection of final state (visible) SM particle(s), while the

final state’s energy-momentum that is “missing” for energy-momentum conservation signals the presence
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Figure 4.9: Feynman diagrams contributing to the mono-Higgs production process pp → S1S1h at tree-level,

where q = u, d, c, s are light quarks. The third and last diagrams each represent two distinct contributions, due to
the interchange of the external legs with coloured four-momenta kµ3,4 and k

µ
4,3. The vertex for the ggh effective

coupling (arising from the top quark loop in gluon fusion) is explicitly shown in Figure 4.8.
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Figure 4.10: Feynman diagrams contributing to the mono-Z production process pp→ S1S1Z at tree-level, where

q = u, d, c, s are light quarks.

of undetected final state particles (i.e., the 4-momentum of the initial and final states does not match,

pµi 6= pµf with Ei > Ef , because not all final state particles are detected/accounted for). At the LHC,

these processes are pp→ X+ /ET, whereX and /ET ≡ Emiss
T stand for SM (visible) particles and missing

transverse energy (MET), respectively. The MET – or equivalently, the missing transverse momentum

(pmissT ) – could be due to undetected DM particles, naturally.

It is now time to select the LHC searches to probe our model. In order to do this, we first need to

identify the S1 production processes predicted by the model and, more importantly, determine whether

the corresponding cross sections are sufficiently large to yield a significant number of events by the

end of the current and/or future LHC runs (or even throughout the entire LHC operation). We start by

computing the cross sections and event numbers of the so-called mono-X processes (whereX is a single

SM particle), for six benchmark mS1 < mS2 case points, with MadGraph5_aMC@NLO [81, 82]. The

computations were performed for center-of-mass energies (
√
s) of 13 TeV, 13.6 TeV and 14 TeV, with

corresponding integrated luminosities (L) of 190 fb−1, 450 fb−1 and 3000 fb−1. These three (
√
s,L)
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configurations correspond to the LHC’s setups at the end of the previous Run 2, the current Run 3 and

the future High-Luminosity (HL-LHC) stage, respectively [83]. We have considered themono-jet, mono-

Higgs and mono-Z processes

pp→ S1S1X , X = j, h, Z , (4.95)

where j = q, q̄, b, b̄, g are jets and q = u, d, c, s are light quarks. The corresponding tree-level Feynman

diagrams are presented in Figures 4.8, 4.9 and 4.10, respectively. Additionally, we also considered the

di-jet process of bottom/anti-bottom pair production pp → S1S1bb̄, for which the tree-level Feynman

diagrams are omitted due to their large number.

mS1 [GeV] κH1

√
s = 13 TeV

√
s = 13.6 TeV

√
s = 14 TeV

σ [fb] NE σ [fb] NE σ [fb] NE

124.8 8.821 346.800 65892 386.000 173700 412.100 1236300

140.0 5.700 82.800 15732 92.320 41544 99.090 297270

155.0 8.398 110.400 20976 123.500 55575 132.800 398400

170.4 8.191 66.460 12627 74.690 33610 80.310 240930

185.3 8.350 46.310 8799 52.070 23431 56.190 168570

201.9 9.548 40.030 7606 45.190 20335 48.840 146520

Table 4.2: Model predictions of the cross section σ(pp → S1S1j) and corresponding number of events (NE) for
six benchmark mS1 < mS2 case points, at three distinct center-of-mass energies. The NE’s were computed for

the following integrated luminosities: L = 190 fb−1 at
√
s = 13 TeV, L = 450 fb−1 at

√
s = 13.6 TeV and

L = 3000 fb−1 at
√
s = 14 TeV.

mS1 [GeV] κH1

√
s = 13 TeV

√
s = 13.6 TeV

√
s = 14 TeV

σ [fb] NE σ [fb] NE σ [fb] NE

124.8 8.821 18.500 3515 20.760 9342 22.340 67020

140.0 5.700 2.337 444 2.629 1183 2.835 8505

155.0 8.398 6.477 1231 7.318 3293 7.907 23721

170.4 8.191 3.958 752 4.477 2015 4.843 14529

185.3 8.350 2.950 560 3.348 1507 3.628 10884

201.9 9.548 3.317 630 3.774 1698 4.093 12279

Table 4.3: Model predictions of the cross section σ(pp → S1S1h) and corresponding number of events (NE) for
six benchmark mS1

< mS2
case points, at three distinct center-of-mass energies. The NE’s were computed for

the following integrated luminosities: L = 190 fb−1 at
√
s = 13 TeV, L = 450 fb−1 at

√
s = 13.6 TeV and

L = 3000 fb−1 at
√
s = 14 TeV.

mS1 [GeV] κH1

√
s = 13 TeV

√
s = 13.6 TeV

√
s = 14 TeV

σ [fb] NE σ [fb] NE σ [fb] NE

124.8 8.821 2.887 548 3.119 1403 3.270 1471

140.0 5.700 0.557 106 0.603 271 0.634 285

155.0 8.398 0.615 117 0.672 302 0.705 317

170.4 8.191 0.316 60 0.345 155 0.364 164

185.3 8.350 0.190 36 0.208 93 0.220 99

201.9 9.548 0.140 27 0.154 69 0.163 73

Table 4.4: Model predictions of the cross section σ(pp→ S1S1Z) and corresponding number of events (NE) for
six benchmark mS1

< mS2
case points, at three distinct center-of-mass energies. The NE’s were computed for

the following integrated luminosities: L = 190 fb−1 at
√
s = 13 TeV, L = 450 fb−1 at

√
s = 13.6 TeV and

L = 3000 fb−1 at
√
s = 14 TeV.
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mS1 [GeV] κH1

√
s = 13 TeV

√
s = 13.6 TeV

√
s = 14 TeV

σ [fb] NE σ [fb] NE σ [fb] NE

124.8 8.821 31.180 5924 34.940 15723 37.510 112530

140.0 5.700 4.834 918 5.414 2436 5.810 17430

155.0 8.398 9.951 1891 11.210 5044 12.070 36210

170.4 8.191 5.911 1123 6.672 3002 7.216 21648

185.3 8.350 4.258 809 4.825 2171 5.214 15642

201.9 9.548 4.474 850 5.086 2289 5.512 16536

Table 4.5: Model predictions of the cross section σ(pp → S1S1bb̄) and corresponding number of events (NE)
for six benchmark mS1 < mS2 case points, at three distinct center-of-mass energies. The NE’s were computed

for the following integrated luminosities: L = 190 fb−1 at
√
s = 13 TeV, L = 450 fb−1 at

√
s = 13.6 TeV and

L = 3000 fb−1 at
√
s = 14 TeV.

The results for the mono-jet, mono-Higgs, mono-Z and di-jet bb̄ pair production are presented in

Tables 4.2, 4.3, 4.4 and 4.5, respectively. Since these results were obtained for the same six benchmark

mS1 < mS2 case points and the same three (
√
s,L) LHC configurations, they offer a clear idea of which

S1 production processes are most relevant for DM searches at the LHC.

• The Feynman diagrams containing ggh effective vertices – which arise from top quark loops in

gluon fusion (see Fig. 4.8), the dominant Higgs production mechanism at the LHC [84, 85] – are

the main contributors to the cross sections of the mono-jet, mono-Higgs and di-jet processes. On

the other hand, all Feynman diagrams for the mono-Z process also feature a Higgs mediator, but

(at tree-level) do not contain the dominant ggh effective vertex. Hence, the mono-Z cross sections

(and numbers of events) are lower than for the previous processes, as shown in Tables 4.2–4.5.

• The past Run 2 of the LHCoperated at a center-of-mass energy of 13 TeV, and reached an integrated

luminosity of 190 fb−1. As shown in Table 4.4, the mono-Z numbers of events are still (low, i.e.)

of order 101–102, so the corresponding signal would be difficult to detect (by the end of Run 2).

Conversely, the remaining signals could already be detectable, since the mono-jet (see Table 4.2)

numbers of events are of order 103–104, and the mono-Higgs (see Table 4.3) and di-jet bb̄ (see

Table 4.5) numbers of events are of order 102–103.

• The current Run 3 of the LHC operates at a center-of-mass energy of 13.6 TeV and is expected to

reach an integrated luminosity of 450 fb−1, leading to a substantial increase (by at least a factor of 2)

in the number of events for all considered S1 production processes, as shown in Tables 4.2–4.5. In

particular, this (
√
s,L) LHC configuration is more promising for the detection of mono-Z signals

(especially for low S1 masses
10), as shown in Table 4.4.

• Finally, the future HL-LHC stage will operate at a center-of-mass energy of 14 TeV with an in-

tegrated luminosity of 3000 fb−1, further increasing the number of events for all S1 production

processes, and ensuring the possibility of detecting any of these signals (including the mono-Z in

the low S1 mass range, as previously discussed) by the end of the entire LHC operation.

In summary, all previously discussed S1 production processes are suitable for probing the two-real-

scalar-singlet extension of the SM in LHC searches. The next step is to identify the LHC experimental

results that meet our requirements and compare them with the theoretical predictions of this model. We

10But not any lower thanmh = 125GeV, which is the lower bound onmS1 due to the DD exclusion related toS1 (determined

by ΩS1/ΩDM), as discussed in Section 4.4.1 (see Table 4.1).
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focus on the ATLAS analyses [4, 5, 6], which provide model-independent upper limits, rather than the

similar – but exclusively model-dependent – CMS analyses [86, 87, 88].

4.5.1 Jet Searches

In Ref. [4], the ATLAS Collaboration established model-independent upper limits at the 95% confidence

level (CL) on the visible cross section of DM production processes with one to four (final state) jets

j = q, q̄, b, b̄, g, where q = u, d, c, s, at a center-of-mass energy of
√
s = 13 TeV. This visible cross

section is defined as

4∑
N=1

σvis(pp→ N j+ DM) ≡
4∑

N=1

σ(pp→ N j+ DM)×A× ε , (4.96)

where A (<1) is the kinematic acceptance and ε (<1) is the experimental (detection) efficiency. Since

both factors are positive and smaller than one, the visible cross section is lower than the cross section,

i.e., σvis ≡ σ × A× ε < σ. These upper limits are set as a function of the cut on the missing transverse

momentum, so that pmissT is larger than the considered pmissT cut (or lower bound).11 The cross sections are

lower with missing transverse momentum cuts – which suppress the phase space of final state particles –

compared to without them.

These limits were obtained from an analysis of data recorded by the ATLAS detector at the LHC

during (the 2015-2018 time period of) Run 2 – corresponding to an integrated luminosity of L = 139

fb−1 at a center-of-mass energy of
√
s = 13 TeV – and are part of a broader search for BSM new

physics phenomena in events with a final state containing (one to four) jets and large missing transverse

momentum in proton-proton collisions. The final states of selected events for this BSM phenomena

search [4] were required to meet the following criteria:

• large missing transverse momentum, pmissT > 200 GeV;

• a leading jet with transverse momentum pT > 150GeV and pseudorapidity12 |η| < 2.4, along with

none to three additional (non-leading) jets with transverse momenta pT > 30 GeV and pseudora-

pidities |η| < 2.8;

• azimuthal angle separations ∆φ(~pmissT , ~p ji) ≡ φ(~pmissT ) − φ(~p ji) between the missing transverse
3-momentum ~pmissT and the 3-momentum ~p ji of each jet ji, i = 1, . . . , N (with N ∈ {1, 2, 3, 4}),
satisfying

∆φ(~pmissT , ~p ji) >

0.4 rad , pmissT > 250 GeV

0.6 rad , 200 GeV < pmissT ≤ 250 GeV
. (4.97)

The above criteria correspond to additional 3-momentum cuts that must be considered when computing

the cross sections for the SM+2RSS model processes pp→ S1S1 +N j (N = 1, 2, 3, 4), in order to test

our theoretical model against the ATLAS experimental upper limits. However, one should remember the

following: 1) visible cross sections are necessarily lower than the corresponding (defining, i.e., without

cuts) cross sections; 2) momentum cuts necessarily lower cross sections. Hence, one can respectively

conclude that: 1) if the model-predicted cross section for a givenmS1 < mS2 case point does not exceed

the ATLAS upper limit on the visible cross section (4.96), then that point is necessarily not excluded by

11One should notice that, in the center-of-mass reference frame, the missing 3-momentum must be the symmetric of the sum

of the 3-momenta of the N ∈ {1, 2, 3, 4} jets, i.e., ~pmiss = −
∑N
i=1 ~p

ji , thus having the same magnitude.
12Pseudorapidity is defined as η ≡ − ln [tan (θ/2)], where θ is the 3-momentum polar angle.
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this bound; 2) following the same reasoning, if the model-predicted cross section without part (or all)

of the momentum cuts for a given mS1 < mS2 case point does not exceed the ATLAS upper limit on

the visible cross section, then that point is necessarily not excluded by this bound. Conversely, in both

1) and 2) cases, if the model-predicted cross section for a given mS1 < mS2 case point does exceed

the ATLAS upper limit on the visible cross section (4.96), nothing can be concluded unless the model

prediction refers specifically to the visible cross section, with all momentum cuts applied in accordance

with those used in the experimental upper bound.

Using MadGraph5_aMC@NLO [81, 82], we computed the cross section
∑4

N=1 σ(pp → S1S1 + N j)

of S1 pair plus (one to four) jet production processes in our SM+2RSS model at a center-of-mass energy

of
√
s = 13 TeV. The Feynman diagrams of the mono-jet production processes are (once again) shown

in Figure 4.8. The remaining N = 2, 3, 4 multi-jet diagrams are not displayed, for being too numerous.

Since Ref. [4] does not provide the acceptances A or efficiencies ε corresponding to the ATLAS upper

limits on the visible cross section – each determined for a distinct missing transverse momentum cut –

we are unable to convert these upper limits on the visible cross section into upper limits on the (defining)

cross section, nor can we convert our model-predicted cross sections into visible cross sections.
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Figure 4.11: Cross section of jet production processes pp → S1S1 + N j (N = 1, 2, 3, 4), where j = q, q̄, b, b̄, g
and q = u, d, c, s, at a center-of-mass energy of

√
s = 13 TeV. The presented points correspond to the model’s

theoretical predictions for the mS1
< mS2

case points, and the red (solid) line is the ATLAS (2021) [4] model-

independent experimental upper limit on the visible cross section (σvis) of pp → N j + DM (N = 1, 2, 3, 4)
processes. Left panel: model predictions of the cross section for all mS1 < mS2 case points without momentum

cuts. Right panel: model predictions of the cross section for six benchmarkmS1
< mS2

case points with different

missing transverse momentum (pmissT ) cuts, along with the corresponding ATLAS upper limits. The legend is shared

by both panels.

The results are shown in Figure 4.11, which displays the theoretical predictions of the cross section∑4
N=1 σ(pp→ S1S1+N j) for themS1 < mS2 case points of our model – represented as dots (left panel)

or crosses (right panel) – and the ATLAS upper limit on the visible cross section (4.96) for distinct missing

transverse momentum cuts, represented by a solid red line (right panel). The left panel shows the model

predictions for the cross section without any momentum cuts across allmS1 < mS2 case points, plotted

as a function of the massmS1 (x-axis) and the portal coupling constant κH1 (colour bar) of S1. The right

panel presents the ATLAS upper limits on the visible cross section (4.96) as a function of the missing

transverse momentum cut (x-axis), alongside the model predictions for six benchmarkmS1 < mS2 case

points of the cross section with the same momentum cuts – not only on the missing transverse momentum

but also on the jet momenta, as required by the event selection criteria – ensuring consistency with the
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4. The Two-Real-Scalar-Singlet SM Extension

ATLAS upper limits. One can easily conclude that allmS1 < mS2 case free parameter space points are

not experimentally excluded by this LHC search. In particular, the right panel alone shows that these

points are at least (because these model predictions refer to the cross section σ > σvis) roughly one (to

two) order(s) of magnitude away from exclusion.

4.5.2 Mono-Higgs Searches

In Ref. [5], the ATLAS Collaboration established model-independent upper limits at the 95% CL on the

visible cross section of DM production processes with a (final state) Higgs boson, at a center-of-mass

energy of
√
s = 13 TeV. This visible cross section is defined as

σvis(pp→ h+ DM) ≡ σ(pp→ h+ DM)×A× ε× BR(h→ bb̄) , (4.98)

where A is the acceptance, ε is the efficiency and the branching ratio for the hadronic Higgs boson decay

is (defined as, and) given by

BR(h→ bb̄) ≡ Γ(h→ bb̄)

Γ
(total)
h

≈ 0.58 , (4.99)

Since all three factors are positive and smaller than one, the visible cross section is lower than the cross

section, i.e., σvis ≡ σ×A× ε×BR(h→ bb̄) < σ. These upper limits are set as a function of the missing

transverse momentum range, where pmissT is both bounded from below and from above.13 The selected

pmissT ranges translate into (not only lower, but also upper) pmissT cuts in the cross section, which suppress

the phase space of final state particles, thus lowering the cross section value.

These limits were obtained from an analysis of data recorded by the ATLAS detector at the LHC

during (the 2015-2018 time period of) Run 2 – corresponding to an integrated luminosity of L = 139

fb−1 at a center-of-mass energy of
√
s = 13 TeV – and are part of a broader search for DM particles

produced in mono-Higgs events; in particular, events with a final state containing b-tagged jets consistent

with a (single) Higgs boson h and large missing transverse momentum in proton-proton collisions. The

event selection can be consulted in (section 5 of) Ref. [5].

Using MadGraph5_aMC@NLO [81, 82], we computed the cross section σ(pp→ S1S1h) of the S1 pair

plus mono-Higgs production process in our SM+2RSS model at a center-of-mass energy of
√
s = 13

TeV. The corresponding Feynman diagrams are (once again) shown in Figure 4.9. Analogously to what

happened in Section 4.5.1 with the jet search analysis [4], this mono-Higgs search analysis [5] does not

provide the acceptancesA or efficiencies ε corresponding to the ATLAS upper limits on the visible cross

section – each determined for a distinct missing transverse momentum range – and once again, we are

unable to convert these upper limits on the visible cross section into upper limits on the (defining) cross

section, nor can we convert our model-predicted cross sections into visible cross sections.

The results are shown in Figure 4.12, which displays the theoretical predictions of the cross section

σ(pp→ S1S1h) for themS1 < mS2 case points of our model – represented as dots (left panel) or crosses

(right panel) – and the ATLAS upper limit on σvis/BR(h→ bb̄) ≡ σ ×A× ε (< σ) for distinct missing

transverse momentum ranges, represented by a solid red line (right panel). The left panel shows the model

predictions for the cross section without any momentum cuts across allmS1 < mS2 case points, plotted

as a function of the massmS1 (x-axis) and the portal coupling constant κH1 (colour bar) of S1. The right

panel presents the ATLAS upper limits on σvis/BR(h → bb̄) ≡ σ × A × ε as a function of the missing
transverse momentum range (x-axis), alongside the model predictions for six benchmark mS1 < mS2

13In the center-of-mass reference frame, the missing 3-momentum is the symmetric of the Higgs boson 3-momentum, i.e.,

~pmiss = −~ph, thus having the same magnitude.
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Figure 4.12: Cross section of mono-Higgs production processes pp→ S1S1h at a center-of-mass energy of
√
s =

13 TeV. The presented points correspond to the model’s theoretical predictions for themS1
< mS2

case points, and

the red (solid) line is the ATLAS (2021) [5] model-independent experimental upper limit on σvis/BR(h → bb̄) ≡
σ×A× ε of pp→ Z +DM processes. Left panel: model predictions of the cross section for allmS1

< mS2
case

points without momentum cuts. Right panel: model predictions of the cross section for six benchmarkmS1 < mS2

case points with different missing transverse momentum (pmissT ) ranges, along with the corresponding ATLAS upper

limits. The legend is shared by both panels.

case points of the cross section with the same momentum cuts (ensuring consistency with the ATLAS

upper limits). One can easily conclude that all mS1 < mS2 case free parameter space points are not

experimentally excluded by this LHC search. In particular, the right panel alone shows that these points

are at least (because these model predictions refer to the cross section σ > σ×A× ε) roughly one order
of magnitude away from exclusion.

4.5.3 Mono-Z Searches

In Ref. [6], the ATLAS Collaboration established model-independent upper limits at the 95% CL on the

visible cross section of DM production processes with a (final state) Z boson, at a center-of-mass energy

of
√
s = 13 TeV. This visible cross section is defined as

σvis(pp→ Z + DM) ≡ σ(pp→ Z + DM)×A× ε×
∑
q

BR(Z → qq̄) , (4.100)

where A is the acceptance, ε is the efficiency and the branching ratio for the hadronic Z boson decay is

(defined as, and) given by

∑
q

BR(Z → qq̄) ≡
∑

q Γ(Z → qq̄)

Γ
(total)
Z

=
(1.664± 3.3× 10−5) GeV

(2.412± 3.5× 10−5) GeV
≈ 0.69 , (4.101)

where the sum is performed over all quarks q = u, d, c, s, t, b (although the top quark t does not contribute,

because the decay Z → tt̄ is kinematically impossible to occur). Since all three factors are positive and

smaller than one, the visible cross section is lower than the cross section, i.e., σvis ≡ σ × A × ε ×∑
q BR(Z → qq̄) < σ. These upper limits are set as a function of the missing transverse momentum

range, where pmissT is both bounded from below and from above.14 The selected pmissT ranges translate

14In the center-of-mass reference frame, the missing 3-momentum is the symmetric of theZ boson 3-momentum, i.e., ~pmiss =
−~pZ , thus having the same magnitude.
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4. The Two-Real-Scalar-Singlet SM Extension

into (not only lower, but also upper) pmissT cuts in the cross section, which suppress the phase space of

final state particles, thus lowering the cross section value.

These limits were obtained from an analysis of data recorded by the ATLAS detector at the LHC

during (a 2015-2016 time period of) Run 2 – corresponding to an integrated luminosity of L = 36.1

fb−1 at a center-of-mass energy of
√
s = 13 TeV – and are part of a broader search for DM particles

produced in mono-W±/Z events, i.e., events with a final state containing a (single) weak gauge boson

W± or Z and large missing transverse momentum in proton-proton collisions. The event selection can

be consulted in (section 6 of) Ref. [6].

Using MadGraph5_aMC@NLO [81, 82], we computed the cross section σ(pp → S1S1Z) of the S1

pair plus mono-Z production process in our SM+2RSS model at a center-of-mass energy of
√
s = 13

TeV. The corresponding Feynman diagrams are (once again) shown in Figure 4.10. In contrast to what

happened in Sections 4.5.1 and 4.5.2 with the jet and mono-Higgs search analyses [4, 5] (respectively),

this mono-W±/Z search analysis [6] provides both the acceptancesA and the efficiencies ε corresponding

to the ATLAS upper limits on the visible cross section – each determined for a distinct missing transverse

momentum range – thus enabling us to convert these upper limits on the visible cross section into upper

limits on the (defining) cross section through Eq. (4.100).
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Figure 4.13: Cross section of mono-Z production processes pp→ S1S1Z at a center-of-mass energy of
√
s = 13

TeV. The presented points correspond to the model’s theoretical predictions for the mS1 < mS2 case points, and

the red (solid) line is the ATLAS (2018) [6] model-independent experimental upper limit on the cross section (σ)
of pp → Z + DM processes. Left panel: model predictions of the cross section for all mS1

< mS2
case points

without momentum cuts. Right panel: model predictions of the cross section for six benchmarkmS1
< mS2

case

points with different missing transverse momentum (pmissT ) ranges, along with the corresponding ATLAS upper

limits. The legend is shared by both panels.

The results are shown in Figure 4.13, which displays the theoretical predictions of the cross section

σ(pp→ S1S1Z) for themS1 < mS2 case points of our model – represented as dots (left panel) or crosses

(right panel) – and the ATLAS upper limit on the cross section (4.100) for distinct missing transverse mo-

mentum ranges, represented by a solid red line (right panel). The left panel shows the model predictions

for the cross section without any momentum cuts across all mS1 < mS2 case points, plotted as a func-

tion of the mass mS1 (x-axis) and the portal coupling constant κH1 (colour bar) of S1. The right panel

presents the ATLAS upper limits on the cross section as a function of the missing transverse momentum

range (x-axis), alongside the model predictions for six benchmark mS1 < mS2 case points of the cross

section with the same momentum cuts (ensuring consistency with the ATLAS upper limits). One can

easily conclude that all mS1 < mS2 case free parameter space points are far from being experimentally
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excluded by this LHC search. In particular, the right panel alone shows that these points are roughly two

to five orders of magnitude away from exclusion. Furthermore, as shown in the left panel, the model

predictions of the cross section – even without any momentum cuts – are lower than the ATLAS upper

limits on the cross section for all missing transverse momentum ranges; for allmS1 < mS2 case points,

thereby ensuring that none of these points is excluded.
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Chapter 5

The Three-Real-Scalar-Singlet SM

Extension

The two-real-scalar-singlet SM extension (4.4) with an unbroken Z(1)
2 × Z(2)

2 discrete symmetry that

was studied in the previous Chapter 4 provided us an experimentally allowed free parameter space region

– the (one-light-one-heavy) mS1 < mS2 case allowed region – where the heavier DM particle S2 is

responsible for (virtually) all the observed DM relic density, but more importantly, the lighter DMparticle

S1 can be searched for at the LHC – something that was impossible for the (one) real scalar singlet

SM extension (3.4) with an unbroken Z2 discrete symmetry that was studied in Chapter 3, which is

experimentally excluded for DM masses below 3535 GeV.

However, as discussed in Section 4.4.2, the new LZ 2024 results [3] practically exclude all mS1 <

mS2 case free parameter space points, since the respective σ
SI(SrN → SrN) × ΩSr/ΩDM (r = 1, 2)

predicted values fall above the corresponding (LZ 2024) upper limit on the WIMP-nucleon elastic scat-

tering SI cross section, with part of them laying inside the experimental uncertainty band (for both DM

particles) – thus not being definitely excluded (but almost).

We shall now investigate what happens (i.e., which new features arise, if any) if we extend the SM

with a third real scalar singlet S3 (and respective Z(3)
2 discrete symmetry), in the same spirit of our

transition from one to two real scalar singlets in Chapter 4.

5.1 The SM+3RSS DMModel with an Unbroken Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 Sym-

metry

We now consider an extension of the Standard Model with three real scalar SU(3)c × SU(2)L × U(1)Y

singlet fields S1(x), S2(x), S3(x) ∼ (1, 1, 0), and impose (in addition to the SM gauge invariance) an

additional symmetry with respect to the discrete direct product group Z(1)
2 × Z(2)

2 × Z(3)
2 , under which

the fields transform as

Z(1)
2 : S1(x)→ −S1(x), S2(x)→ +S2(x), S3(x)→ +S3(x), SM→ +SM (5.1)

Z(2)
2 : S1(x)→ +S1(x), S2(x)→ −S2(x), S3(x)→ +S3(x), SM→ +SM (5.2)

Z(3)
2 : S1(x)→ +S1(x), S2(x)→ +S2(x), S3(x)→ −S3(x), SM→ +SM , (5.3)
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5.1. The SM+3RSS DMModel with an Unbroken Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 Symmetry

i.e., only Sr(x) is Z(r)
2 -odd, while the remaining fields are Z(r)

2 -even and transform trivially under Z(r)
2 ,

r = 1, 2, 3. In other words, the non-trivial transformations under Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 are

Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 : Sr(x)→ −Sr(x) , r = 1∨r = 2∨r = 3∨r = 1, 2∨r = 2, 3∨r = 3, 1∨r = 1, 2, 3 .

The Z(r)
2 (r = 1, 2, 3) charges can be interpreted as three independent dark (intrinsic) parity quan-

tum numbers. Therefore, the most general renormalizable Lagrangian density invariant under SU(3)c ×
SU(2)L × U(1)Y ×Z(1)

2 ×Z
(2)
2 ×Z

(3)
2 transformations is given by

LSM+3RSS = LSM +

3∑
r=1

[
1

2
(∂µSr)∂

µSr −
1

2
µ2rS

2
r −

λr
4!
S4
r −

κHr
2
S2
rΦ

†Φ

=Lportal(r)

]

−λ12
4
S2
1S

2
2

=Lint(1,2)

−λ23
4
S2
2S

2
3

=Lint(2,3)

−λ31
4
S2
3S

2
1

=Lint(3,1)

⊃ −V (|Φ|, S1, S2, S3) , (5.4)

where Φ(x) =
(
G+(x) φ0(x)

)>
∼ (1, 2,+1/2) is the Higgs doublet, and the scalar potential is now

given by

V (|Φ|, S1, S2, S3) = µ2HΦ
†Φ+ λH(Φ

†Φ)2 +
3∑
r=1

[
1

2
µ2rS

2
r +

λr
4!
S4
r +

κHr
2
S2
rΦ

†Φ

]
+
λ12
4
S2
1S

2
2 +

λ23
4
S2
2S

2
3 +

λ31
4
S2
3S

2
1 . (5.5)

The singlets Sr(x) couple to each other through the interaction termsLint(r,r′), which link the (three) dark
sectors between them, and to the Higgs doublet Φ(x) through the portal terms Lportal(r), which link the
dark sectors to the SM sector (r, r′ = 1, 2, 3 ∧ r 6= r′).

The vacuum (or ground) state is obtained by the usual minimization procedure

∂V
∂Φ

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ2H + 2λH 〈Φ〉†0 〈Φ〉0 +

∑3
r=1

κHr
2 〈Sr〉

2
0

)
〈Φ〉†0 = 0

∂V
∂Φ†

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ2H + 2λH 〈Φ〉†0 〈Φ〉0 +

∑3
r=1

κHr
2 〈Sr〉

2
0

)
〈Φ〉0 = 0

∂V
∂S1

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ21 +

λ1
3! 〈S1〉

2
0 + κH1 〈Φ〉†0 〈Φ〉0 +

λ12
2 〈S2〉

2
0 +

λ31
2 〈S3〉

2
0

)
〈S1〉0 = 0

∂V
∂S2

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ22 +

λ2
3! 〈S2〉

2
0 + κH2 〈Φ〉†0 〈Φ〉0 +

λ23
2 〈S3〉

2
0 +

λ12
2 〈S1〉

2
0

)
〈S2〉0 = 0

∂V
∂S3

∣∣
Φ=〈Φ〉0, Sr=〈Sr〉0

=
(
µ23 +

λ3
3! 〈S3〉

2
0 + κH3 〈Φ〉†0 〈Φ〉0 +

λ31
2 〈S1〉

2
0 +

λ23
2 〈S2〉

2
0

)
〈S2〉0 = 0

⇔

(
〈Φ〉0 = 0 ∨ 〈Φ〉†0 〈Φ〉0 = −

µ2H +
∑3

r=1 κHr 〈Sr〉
2
0 /2

2λH

)
3∧
r=1

(
〈Sr〉0 = 0 ∨ 〈Sr〉20 = −

µ2r + κHr 〈Φ〉†0 〈Φ〉0 +
∑

r′ 6=r λrr′ 〈Sr′〉
2
0 /2

λr/3!

)
, (5.6)

corresponding to sixteen SU(3)c × SU(2)L ×U(1)Y ×Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 invariant stationary solution

sets (which can be minima by requiring the Hessian matrix to have positive eigenvalues)

〈Φ〉0 = 0
3∧
r=1

〈Sr〉0 = 0 , (5.7)
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〈Φ〉†0 〈Φ〉0 = −
µ2H
2λH

≡ v2

2

3∧
r=1

〈Sr〉0 = 0 , (5.8)

〈Φ〉0 = 0 ∧ 〈Sr〉20 = −
6µ2r
λr
≡ v2r

∧
r′ 6=r

〈Sr′〉0 = 0 , r = 1, 2, 3 , (5.9)

〈Φ〉†0 〈Φ〉0 = −
µ2H + κHrv

′2
r /2

2λH
≡ v′2

2
∧ 〈Sr〉20 = −

µ2r + κHrv
′2/2

λr/3!
≡ v′2r

∧
r′ 6=r

〈Sr′〉0 = 0 ,

r = 1, 2, 3 , (5.10)

〈Φ〉0 = 0 ∧ 〈Sr〉0 = 0
∧
r′ 6=r

〈Sr′〉20 = −
µ2r′ + λr′mv

′′2
m /2

λr′/3!
≡ v′′2r′ ,

r = 1, 2, 3 ∧ m 6= r, r′ , (5.11)

〈Φ〉†0 〈Φ〉0 = −
µ2H +

∑
r′ 6=r κHr′v

′′′2
r′ /2

2λH
≡ v′′2

2
∧ 〈Sr〉0 = 0∧

r′ 6=r
〈Sr′〉20 = −

µ2r′ + κHr′v
′′2/2 + λr′mv

′′′2
m /2

λr′/3!
≡ v′′′2r′ , r = 1, 2, 3 ∧ m 6= r, r′ , (5.12)

〈Φ〉0 = 0

3∧
r=1

〈Sr〉0 = −
µ2r +

∑
r′ 6=r λrr′v

′′′′2
r′ /2

λr/3!
≡ v′′′′2r , (5.13)

〈Φ〉†0 〈Φ〉0 = −
µ2H +

∑3
r=1 κHrv

′′′′′2
r /2

2λH
≡ v′′′2

2
3∧
r=1

〈Sr〉20 = −
µ2r + κHrv

′′′2/2 +
∑

r′ 6=r λrr′v
′′′′′2
r′ /2

λr/3!
≡ v′′′′′2r . (5.14)

Once again, let us analyse these vacuum configurations in more detail. Since the Φ(x) and Sr(x) (r =

1, 2, 3) fields are SU(3)c singlets – i.e., they are not coloured and thus transform trivially under this gauge

group – the local SU(3)c symmetry cannot be spontaneously broken. Therefore, it is sufficient to consider

only the SU(2)L × U(1)Y ×Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 symmetry for this discussion.

• For the minimum solution sets (5.7), (5.9), (5.11) and (5.13) the Higgs doublet does not acquire a

VEV, i.e. 〈Φ〉0 = 0, and thus electroweak SU(2)L × U(1)Y → U(1)Q SSB does not occur. Con-

sequently, no mass terms for the electroweak gauge bosons and fermions are generated via the SM

Higgs mechanism, and therefore, these vacuum configurations do not correspond to what is phys-

ically observed in Nature. We are left with vacuum configurations (5.8), (5.10), (5.12) and (5.14),

where the Higgs doublet acquires a non-zero VEV 〈Φ〉0 6= 0 (out of the possible SU(2)L×U(1)Y
gauge invariant solution set), thus spontaneously breaking the SU(2)L × U(1)Y gauge symmetry

of the vacuum down to U(1)Q. Without loss of generality, we can take the conventional VEV

〈Φ〉0 =

(
0
v√
2

)
, so that Φ(x) =

(
G+(x)

v+h(x)+iG0(x)√
2

)
, (5.15)

where v ∈ R+ is determined by the choice of vacuum configuration (between (5.8), (5.10), (5.12)

and (5.14)). As usual, the fields G0(x) and G±(x) are would-be Goldstone bosons that can be

“gauged away” into the unitary gauge.

• For minimum solution sets (5.8), (5.10), (5.12), (5.14), n = 0, 1, 2, 3 (resp.) singlets Sr(x) also

acquire a non-zero VEV out of the possible Z(r)
2 invariant (discrete) solution set 〈Sr〉0 = ±vr
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2 ×Z

(2)
2 ×Z

(3)
2 Symmetry

(vr ∈ R+), thus also spontaneously breaking the Z(r)
2 symmetries of the vacuum; while the other

3 − n symmetries Z(r′)
2 remain unbroken. After SU(2)L × U(1)Y × Z(1)

2 × Z(2)
2 × Z(3)

2 →
U(1)Q×r′ Z

(r′)
2 SSB, h(x) and the n field perturbations ξr(x) ≡ Sr(x)−〈Sr〉0 mix in the hSrSr

couplings (contained in the portal terms) and in the SrSrSmSm couplings1 (contained in the inter-

dark sector terms), but the 3 − n fields Sr′(x) do not mix. Hence, while Sr′(x) are 3 − n mass

eigenstates (physical fields), h(x), ξr(x) are 1+n interaction eigenstates. The 1+n remainingmass

eigenstates h′(x), hξr(x) are given by a flavour space rotation of the 1+n interaction eigenstates, so

that the scalar mass terms are diagonal (without flavour mixing) in the mass basis. In this scenario,

h′, hξr are Higgs-like particles (one of them being the 125 GeV discovered Higgs boson), and

therefore, are able to decay (unstable particles). The n spontaneously (but not explicitly) broken

Z(r)
2 symmetries are now hidden in the Lagrangian density. On the other hand, the 3−n unbroken
Z(r′)
2 symmetries ensure that Sr′ do not decay (stable particles), thus being DM candidates. In

summary, for minimum solution sets (5.8), (5.10), (5.12), (5.14), the model contains n = 0, 1, 2, 3

extra Higgs-like particles and 3− n DM particle candidates, respectively.

We will consider the vacuum configuration (5.8) of this model. For this minimum solution set, the (three)

singlets do not acquire a VEV, i.e. 〈Sr〉0 = 0 (r = 1, 2, 3), so that the Z(1)
2 × Z(1)

2 × Z(3)
2 symmetry is

not spontaneously broken and there is no flavour mixing with h(x). Hence, h(x) and Sr(x) (r = 1, 2, 3)

are mass eigenstates – i.e., these fields correspond to physical particles – where h is the Higgs boson

and Sr (r = 1, 2, 3) are new spin 0 massive particles. Using the minimum condition in (5.8), v2 =

−µ2H/λH ⇔ µ2H = −λHv2 (the same as that of the SM), the (expanded) scalar potential, in the unitary

gauge Φ(x)→ 1√
2

(
0 v + h(x)

)>
, is given by

V (|Φ|, S1, S2, S3) =
1

2

=m2
h︷ ︸︸ ︷

(2λHv
2)h2 + λHvh

3 +
λH
4
h4 +

λ12
4
S2
1S

2
2 +

λ23
4
S2
2S

2
3 +

λ31
4
S2
3S

2
1

+
3∑
r=1

[
1

2
(µ2r +

κHrv
2

2
)︸ ︷︷ ︸

=m2
Sr

S2
r +

λr
4!
S4
r +

κHrv

2
hS2

r +
κHr
4
h2S2

r

]
, (5.16)

which written in terms of the scalar massesmh =
√
2λHv2 andmSr =

√
µ2r + κHrv2/2 (r = 1, 2, 3),

reads as

−LSM+3RSS ⊃ V (|Φ|, S1, S2, S3) =
1

2
m2
hh

2 +
m2
h

2v
h3 +

m2
h

8v2
h4 +

λ12
4
S2
1S

2
2 +

λ23
4
S2
2S

2
3 +

λ31
4
S2
3S

2
1

+
3∑
r=1

[
1

2
m2
SrS

2
r +

λr
4!
S4
r +

κHrv

2
hS2

r +
κHr
4
h2S2

r

]
. (5.17)

The unbroken Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 symmetry ensures that Sr (r = 1, 2, 3) do not decay (stable particles),

thus being DM candidates. This is shown in Figure 5.1, which presents the Feynman rules for the new

interaction vertices that emerge in this SM extension.

1Here, in addition to Z(r)
2 (as already established), Z(m)

2 must also be one of the n spontaneously broken symmetries. On

the other hand, Z(r′)
2 always refers to one of the 3− n unbroken symmetries (in this item/point).
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Figure 5.1: Feynman rules for the interaction vertices involving the Sr (r = 1, 2, 3) dark matter particle candidates.

The decays Sr → SMSM and Sr → Sr′Sr′ (r
′ 6= r) are forbidden by “dark parity” (or Z(r)

2 charge) conservation,

as a consequence of the Z(1)
2 ×Z(2)

2 ×Z(3)
2 discrete symmetry.

5.2 Cross Sections for Direct Detection and Relic Density of DM

The analytical expressions of the relevant cross sections were already obtained in Section 4.2 for the

SM+2RSS model. The only difference is that the SM+3RSS model contains three singlet DM particles

Sr (r = 1, 2, 3) instead of two, but the generalizations are straightforward. The spin-independent cross

section of DM-nucleon elastic scattering SrN → SrN , with N = p, n is given in Eq. (4.45). Similarly,

the cross sections of all DM annihilation processes which create SM particles SrSr → SM SM, with

SM = h,W+, Z, ψ (= `, q) are given in Section 4.2.2; and the cross section of inter-dark annihilation

processes is the trivial generalization of Eq. (4.75), i.e.

σ(SrSr → Sr′Sr′) =
1

32πs

√√√√1− 4m2
Sr′

/s

1− 4m2
Sr
/s

[
λ2rr′ + κHrκHr′v

2 2λrr′(s−m2
h) + κHrκHr′v

2

(s−m2
h)

2 +m2
hΓ

2
h

]
,

(5.18)

r, r′ = 1, 2, 3 ∧ r′ 6= r. Once again, the annihilation of a heavier DM particle pair into a lighter DM

particle pair is dominant over the inverse process.

5.3 Theoretical and Pre-Scan Experimental Constraints

Once again, the theoretical and experimental constraints (from particle physics) are already derived in

Section 4.3 for the SM+2RSSmodel, and can be generalized for the SM+3RSSmodel. The generalization

of the boundedness from below conditions can be obtained by following the (same) procedure based on

the copositivity criteria that is described in Refs. [77, 78]. For the perturbative unitary conditions, the

generalization from six to ten scalar particle pair states hh, hSr, SrSr′ , SrSr (r, r
′ = 1, 2, 3 ∧ r′ 6= r) is

straightforward. In particular, the inter-dark annihilations give

16π
∣∣a0(i→ f)

∣∣
s�m2

h,m
2
Sr

=
∣∣M(i→ f)

∣∣(θ 6=0,π)

s�m2
h,m

2
Sr

= |λrr′ | < 8π , (5.19)

∀ i → f = SrSr → Sr′Sr′ , SrSr′ → SrSr′ , with r, r
′ = 1, 2, 3 ∧ r′ 6= r. If additionally, one performs

a complementary coupled-channel analysis, one obtains ten (instead of six) conditions, one for each

eigenvalue of the scalar coupled-channel matrix (a0)2→2. Now moving from theoretical to experimental

70



5.4. Parameter Space Scans and Numerical Analysis

constraints, the decay rate of h → SrSr (r = 1, 2, 3) is given in Eq. (4.87), and the generalization of

the condition (4.88) associated to the experimental limit BR(h → inv) < 0.107 is trivial. Finally, the

Z(1)
2 ×Z

(2)
2 ×Z

(3)
2 symmetry remains unbroken, so that all three singlets do not acquire VEVs and there

is no mixing with the Higgs field. Once more, the electroweak sector remains unchanged relative to that

of the SM, and therefore, the SM+3RSS agrees with all electroweak precision measurements (such as the

parameters ρ and S, T, U ).

5.4 Parameter Space Scans and Numerical Analysis

The three-real-scalar-singlet extension of the SM has twelve (new) free parameters (i.e., five more than

the two-real-scalar-singlet extension), but only nine of them are relevant at tree-level: the DM masses

mS1 , mS2 and mS3 , the portal coefficients κH1, κH2 and κH3, and the inter-dark coefficients λ12, λ23

and λ31. The three quartic self-interaction coefficients λ1, λ2 and λ3 are only relevant at the loop level in

perturbation theory. Hence, we scanned the 9-dimensional free parameter space (relevant at tree-level) of

this model with micrOMEGAs 6.1 [59], assuming all (three) scalar DMparticles were thermally produced

according to the freeze-out mechanism during the expansion of the Universe. Once again, the scans were

performed considering the DM relic density and direct detection exclusion, but in a different manner from

the ones of Section 4.4 for the SM+2RSS model.

The scans of the two-real-scalar-singlet SM extension in Section 4.4 are global, covering the entire

5-dimensional free parameter space (relevant at tree-level) of the model. Moreover, at a preliminary

phase, the full domain was scanned exhaustively and uniformly (for an appropriate choice of scales,

either taken as linear or logarithmic), which (in principle) allowed us to identify all (DD and relic density)

non-excluded free parameter space regions. However, this was not the methodology used (here) for the

three-real-scalar-singlet SM extension. The first reason for this is the SM+3RSS model having nine

free parameters that are relevant at tree-level, thus requiring a considerably larger computational effort

and time to perform global scans (in the 9-dimensional parameter space of the SM+3RSS model, in

comparison to scanning the 5-dimensional parameter space of the SM+2RSS model, which was already

computationally demanding). The second reason is that we are particularly interested in extending the

(one heavy and one light) mS1 < mS2 case of the SM+2RSS model – which is almost excluded by the

new LZ 2024 results, hence our motivation for doing it – with a third scalar singlet DM particle S3 that

is either light or heavy, ensuring we end up with similar cases where two or one (respectively) light DM

particles can be searched for at colliders. Hence, (after some unfruitful global scans) we locally scanned

over two distinct free parameter space regions of the SM+3RSS model:

• the two light (masses below 1 TeV) and one heavy (mass above 1 TeV) case region, where S3 is

the additional light DM particle;

• the one light (mass below 1 TeV) and two heavy (masses above 1 TeV) case region, where S3 is

the additional heavy DM particle.

We imposedmS3 < mS1 < mS2 for the two-light-one-heavy case andmS1 < mS2 < mS3 for the one-

light-two-heavy case regions prior to the local scans, so that (the SM+2RSS “pre-existing” S1/S2 take the

usual light/heavy roles, and) S3 is respectively taken as the lighter and heavier DM particle (out of the

three).2 The coupling constants can take the usual values, but we focused on parameter configurations

2Due to the Sr ↔ Sr′ (r, r
′ = 1, 2, 3 ∧ r′ 6= r) symmetry of our model, the choice of mass hierarchy is arbitrary.
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DMh2 = 0.120 ± 0.001 not excluded by direct detection

Figure 5.2: Experimental constraints on the SM+3RSS model (5.4), obtained by scanning the free parameter

space with micrOMEGAs 6.1 for the freeze-out mechanism. Both panels show free parameter space points that

correspond to the observed DM relic density and are not excluded by direct detection. Columns share the x-axis,
and rows share the colour bar.

that could potentially be allowed by the observed relic density and DD experiments (inspired by our

previous numerical analysis in Section 4.4.1).

The (relic density and direct detection) experimental constraints on the SM+3RSS model (5.4) are

shown in Figures 5.2 and 5.3, which only display allowed (i.e., not experimentally excluded) free param-

eter space points. Both figures display the scanned free parameter space points that correspond to the

observed DM relic density Ωobs
DMh

2 = 0.120± 0.001 from Planck [7] measurements and are also not ex-

cluded by the XENON1T [60], DarkSide-50 [61], PICO-60 [62], CRESST-III [63], PandaX-4T [64] and

LUX-ZEPLIN (LZ) [2] direct detection experiments.3 Figure 5.2 presents several projections withmS1

3It should be noted that this LZ constraint refers to the former 2022 results [2]. The new LZ 2024 results [3] are not (yet)

included in micrOMEGAs 6.1, thus not being taken into account in this numerical analysis – once again, we will have to perform
the corresponding DD exclusion separately, later in Section 5.4.1.
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Figure 5.3: Experimental constraints on the SM+3RSS model (5.4), obtained by scanning the free parameter space

with micrOMEGAs 6.1 for the freeze-out mechanism. All panels show free parameter space points that correspond

to the observed DM relic density and are not excluded by direct detection. Each colour bar displays the relic density

of one of the DM particles Sr (r = 1, 2, 3).

andmS2 on the x-axis of the left and right panels, respectively; and the seven remaining free parameters

(relevant at tree-level) mS3 , κH1, κH2, κH3, λ12, λ23 and λ31 on the y-axis and colour bars. Figure 5.3

presents the projections in the (mS1 ,mS2), (mS2 ,mS3) and (mS3 ,mS1) planes, with the colour bars

displaying the relic density of S1, S2 and S3, respectively. One should notice that, for all plots of both

Figures 5.2 and 5.3, the free parameter space points of the two-light-one-heavymS3 < mS1 < mS2 and

one-light-two-heavymS1 < mS2 < mS3 case allowed regions can be easily distinguished.

Let us now proceed to the analysis of the results that were obtained in our local free parameter space

scans. We shall treat both (two-light-one-heavy mS3 < mS1 < mS2 and one-light-two-heavy mS1 <

mS2 < mS3) case allowed regions separately.

• The two-light-one-heavymS3 < mS1 < mS2 case allowed region closely resembles the SM+2RSS

(one-light-one-heavy)mS1 < mS2 case allowed region, except for the additional lighter DM par-

ticle S3. As expected (from the SM+2RSS numerical analysis of Section 4.4) for a lighter DM

particle, the S3 relic density – just like for the S1 “pre-existing” (in the context of the SM+2RSS

model) lighter DM particle – is negligible, ΩS3h
2 ∼ 10−7 (∼ ΩS1h

2), as shown in Figure 5.3,

and the (single) heavier DM particle S2 is (once again) responsible for all the observed DM relic

density, i.e. ΩDMh
2 =

∑3
r=1ΩSrh

2 ≈ ΩS2h
2. The consequences to this are analogous to the ones

of the SM+2RSS (one-light-one-heavy)mS1 < mS2 case, as shown in Figure 5.2. The lighter DM

particle S3,1 related DD exclusion is determined by the corresponding S3,1 relic density fractions

in σSI(S3,1N → S3,1N)×ΩS3,1/ΩDM, which must be sufficiently low for DD non-exclusion, thus

constraining mS3,1 (> mh = 125 GeV) from above, κH3,1 from below and λ23, λ12 from above.

On the other hand, mS2 and κH2 are highly constrained
4 (from both below and above) due to the

“tension” between relic over-density and DD exclusion related to S2, the latter being now deter-

mined by the corresponding SI cross section σSI(S2N → S2N)×ΩS2/ΩDM ≈ σSI(S2N → S2N).

The detailed explanations for these last two statements can be re-consulted in Section 4.4.1 (or sim-

ply check Table 4.1 for a brief summary).

• The one-light-two-heavy mS1 < mS2 < mS3 case allowed region, in contrast, exhibits differences

4To be more precise, for a fixed mS2 allowed value, the (very short) κH2 allowed range is bounded from both below and

above; and vice-versa (see Figure 5.2, second row of second column).
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from the SM+2RSS (one-light-one-heavy)mS1 < mS2 case allowed region beyond the inclusion

of an additional (this time, heavier) DM particle S3. As expected, the relic density of the (now,

single) “pre-existing” (in the context of the SM+2RSS model) lighter DM particle S1 is negligi-

ble (ΩS1h
2 ∼ 10−7), as shown in Figure 5.3; but the two heavier DM particles S2 and S3 are

(simultaneously) responsible for the observed DM relic density, i.e.

(0.120± 0.001 =) ΩDMh
2 =

3∑
r=1

ΩSrh
2 ≈ (ΩS2 +ΩS3)h

2 , with ΩS2h
2 ∼ ΩS3h

2 . (5.20)

In addition to the shared responsibility between the two heavier DM particles S2,3 for the total

DM relic density, the DD exclusion related to the heavy DM particles S2,3 is now determined

not only by the SI cross sections, but also by the DM relic density fractions in σSI(S2,3N →
S2,3N)× ΩS2,3/ΩDM. Consequently, the “tension” between relic over-density and DD exclusion

related to the heavy DM particles S2,3 is “alleviated”, which translates into the weakening of the

(up until now, extremely stringent) constraints on the heavier DM particle massesmS2,3 and portal

coefficients κH2,3 allowed values (see Figure 5.2, second row of second column for a comparison).

Finally, it should be noted that since our SM+3RSS numerical scans were performed locally, i.e., within

targeted free parameter space regions, one must not focus (or draw any invalid conclusions) on the

boundaries of the (relic density and DD) allowed free parameter space regions. Nevertheless, the con-

clusions that were drawn from the SM+2RSS global scans in Section 4.4 (in particular, with respect to

the mS1 < mS2 case allowed region in Section 4.4.1, summarized in Table 4.1) still provided valuable

insights on both (mS3 < mS1 < mS2 and mS1 < mS2 < mS3) case allowed regions of this SM+3RSS

model.

5.4.1 LZ 2024 Results and Future Prospects for Direct Detection

As already stated, the new LZ 2024 results [3] (unlike the former LZ 2022 results [2]) are not (yet)

included in the micrOMEGAs 6.1 code, and consequently, are not taken into account in our previous

numerical analysis. Just like we did in Section 4.4.2 for the two-real-scalar-singlet SM extension, we

need to perform the corresponding DD exclusion (for the LZ 2024 results) of the three-real-scalar-singlet

SM extension separately.

We computed the σSI(SrN → SrN)× ΩSr/ΩDM, r = 1, 2, 3 quantities (ΩDMh
2 = 0.120± 0.001)

for all the free parameter space points that were not experimentally excluded by relic density and direct

detection (without considering the LZ 2024 results) in the numerical analysis (i.e., all points of Figure 5.2).

The results for the (two-light-one-heavy)mS3 < mS1 < mS2 and (one-light-two-heavy)mS1 < mS2 <

mS3 cases are respectively shown – for all three DM particles, lighter one(s) at the top panel and heavier

one(s) at the bottom panel – in Figures 5.4 and 5.5, which also display the former 2022 (blue solid line) and

new 2024 (green solid line) LZ upper limits on the SI cross section of WIMP-nucleon elastic scattering.

As expected, the model-predicted σSI(SrN → SrN) × ΩSr/ΩDM (r = 1, 2, 3) values for the points of

both (mS3 < mS1 < mS2 and mS1 < mS2 < mS3) cases are below the LZ 2022 upper limit for all

(three) DM particles. However, the same cannot be said regarding the LZ 2024 upper limit. One should

remember that if one, two or three (out of the three) prediction values σSI(SrN → SrN) × ΩSr/ΩDM

(r = 1, 2, 3) is above the LZ 2024 upper limit, the corresponding parameter space point is experimentally

DD excluded. We shall analyse both (mS3 < mS1 < mS2 and mS1 < mS2 < mS3) cases separately,

since they yield (apparently similar, yet) different results.
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Figure 5.4: Spin-independent cross section of DM-nucleon elastic scattering SrN → SrN (N = p, n) multiplied
by the corresponding fraction of DM relic density ΩSr/ΩDM (r = 1, 2, 3). The presented points correspond to the
model’s theoretical predictions for the mS3

< mS1
< mS2

(two light one two heavy) case points of Figure 5.2,

for both proton (p) and neutron (n) elastic scattering. The blue and green (solid) lines correspond to the LUX-
ZEPLIN (LZ) experimental upper limits on the WIMP-nucleon elastic scattering spin-independent cross section

from 2022 [2] and 2024 [3] results, respectively. The (shaded green) experimental uncertainty band from the LZ

2024 results is displayed. The legend is shared by both panels.

• The two-light-one-heavy mS3 < mS1 < mS2 case results are shown in Figure 5.4, for the lighter

S3, S1 (top panel) and heavier S2 (bottom panel) DM particles. One should note that, just like

in the (one-light-one-heavy) mS1 < mS2 case of the SM+2RSS model, the (single) heavier DM

particle S2 is responsible for (virtually) all DM relic density, i.e. σSI(S2N → S2N)×ΩS2/ΩDM ≈
σSI(S2N → S2N), with the (now, two) lighter DM particles S3,1 having negligible relic densities

of ΩS3,1h
2 ∼ 10−7. Once again, the σSI(SrN → SrN)×ΩSr/ΩDM (r = 1, 2, 3) predicted values

(and corresponding parameter space points’ DD exclusion) are solely determined by the SI cross

section σSI(S2N → S2N) of the heavier DM particle S2 and fraction ΩS3,1/ΩDM of the lighter

DM particles S3,1. Furthermore, the allowed mass and portal coefficient values are similar to the

ones of the SM+2RSSmodel’smS1 < mS2 case, for both heavier and lighter DM particles. Hence,

it is no surprise that the (two-light-one-heavy) mS3 < mS1 < mS2 case results of the SM+3RSS

model – despite having two lighter DM particles, instead of just one – are similar to the (one-light-

one-heavy) mS1 < mS2 case results of the SM+2RSS model, as one can check by comparing

Figures 5.4 and 4.7 (respectively). For (two-light-one-heavy)mS3 < mS1 < mS2 case points with

lighter DM particle masses mS3,1 ∼ [135, 140] GeV and high portal coefficients κH3,1 (& 9), the
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Figure 5.5: Spin-independent cross section of DM-nucleon elastic scattering SrN → SrN (N = p, n) multiplied
by the corresponding fraction of DM relic density ΩSr/ΩDM (r = 1, 2, 3). The presented points correspond to
the model’s theoretical predictions for the mS1 < mS2 < mS3 (one-light-two-heavy) case points of Figure 5.2,

for both proton (p) and neutron (n) elastic scattering. The blue and green (solid) lines correspond to the LUX-
ZEPLIN (LZ) experimental upper limits on the WIMP-nucleon elastic scattering spin-independent cross section

from 2022 [2] and 2024 [3] results, respectively. The (shaded green) experimental uncertainty band from the LZ

2024 results is displayed. The legend is shared by all panels.

σSI(S3,1N → S3,1N) × ΩS3,1/ΩDM predicted values fall in the actual LZ 2024 upper limit, but

the respective σSI(S2N → S2N)×ΩS2/ΩDM ≈ σSI(S2N → S2N) predicted values fall above it

– nevertheless, inside the (LZ 2024) experimental uncertainty band.

• The one-light-two-heavy mS1 < mS2 < mS3 case results are shown in Figure 5.5, for the lighter

S1 (top panel) and heavier S2, S3 (bottom panel) DM particles. Similarly to what happens in

the two-light-one-heavy mS3 < mS1 < mS2 case (and the one-light-one-heavy mS1 < mS2

case of the SM+2RSS model), the (single) lighter DM particle S1 has a negligible relic density

of ΩS1h
2 ∼ 10−7, and hence, the σSI(S1N → S1N) × ΩS1/ΩDM predicted values are solely

determined by the ΩS1/ΩDM fraction. Once more, for (one-light-two-heavy)mS1 < mS2 < mS3

case points with lighter DM particle massmS1 ∼ [135, 140] GeV and high portal coefficient κH1

(& 9), the predicted σSI(S1N → S1N) × ΩS1/ΩDM values fall in the actual LZ 2024 upper

limit. However, this allowed free parameter space region has the distinguishing feature of having

(not one, but) two heavier DM particles S2 and S3 which share the “responsability” for all DM

relic density, i.e., ΩDM =
∑3

r=1ΩSr ≈ ΩS2 + ΩS3 with ΩS2 ∼ ΩS3 . Consequently, for the

first time (in comparison to the previously discussed allowed parameter space regions), the pre-
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dicted σSI(S2,3N → S2,3N)×ΩS2,3/ΩDM values for the heavier DM particles S2,3 are not solely

determined by the SI cross sections σSI(S2,3N → S2,3N), but also by the respective fractions

ΩS2,3/ΩDM 6= 1. These ΩS2,3/ΩDM < 1 fractions (now also relevant for DD exclusion related

to the heavier DM particles) are able to lower the σSI(S2,3N → S2,3N) × ΩS2,3/ΩDM values

down to the point where they can fall below the LZ 2024 upper limit. In particular, this happens

with part of the (one-light-two-heavy) mS1 < mS2 < mS3 case points with lighter DM parti-

cle mass mS1 ∼ [135, 140] GeV and high portal coefficient κH1 (& 9), which not only have the

σSI(S1N → S1N)×ΩS1/ΩDM predicted values falling in the actual LZ 2024 upper limit, but also

have the respective σSI(S2,3N → S2,3N)×ΩS2,3/ΩDM predicted values (simultaneously) falling

below it.

The SM+3RSS model predictions for both the (two-light-one-heavy) mS3 < mS1 < mS2 and the

(one-light-two-heavy) mS1 < mS2 < mS3 case allowed points are, for the lighter DM particles, simi-

lar to the SM+2RSS model predictions for the (one-light-one-heavy) mS1 < mS2 case allowed points

(see Figures 5.4 (top panel), 5.5 (top panel) and 4.7 (left panel), respectively), which for masses around

(roughly) 135-140 GeV and high portal coefficients (& 9) of the lighter DM particle(s), fall exactly in

the LZ 2024 upper limit. The same holds true for the SM+3RSS model predictions of the (two-light-

one-heavy) mS3 < mS1 < mS2 case allowed points for the heavy DM particle, since they fall above

the LZ 2024 upper limit, even if inside the experimental uncertainty band. However, the SM+3RSS

model predictions of some of the (one-light-two-heavy)mS1 < mS2 < mS3 case allowed points for both

heavy DM particles (simultaneously) fall below the LZ 2024 upper limit – contrary to what happens with

the (two-light-one-heavy) mS3 < mS1 < mS2 case SM+3RSS model predictions and the (one-light-

one-heavy)mS1 < mS2 case SM+2RSS model predictions (see Figures 5.5 (bottom panel), 5.4 (bottom

panel) and 4.7 (right panel), respectively) – because there are two heavier DM particles contributing to

the (total) DM relic density, instead of just one (as previously explained).

In conclusion, the three-real-scalar-singlet SM extension (5.4) provides an allowed free parameter

space region – the (one-light-two-heavy) mS1 < mS2 < mS3 case allowed region – which for some of

its points, the σSI(SrN → SrN) × ΩSr/ΩDM model predictions (simultaneously) do not fall above the

LZ 2024 upper limit for all three DM particles Sr (r = 1, 2, 3), thus (definitely) not being DD excluded by

this new LZ 2024 results. This could not be achieved with the (two-light-one-heavy)mS3 < mS1 < mS2

case allowed region, which – besides the unnecessary extra lighter DM particle – does not offer any new

feature over the two-real-scalar-singlet SM extension (4.4).

5.5 Searches for the Lighter DM Particle(s) at the LHC

Same as the two-real-scalar-singlet SM extension, the three-real-scalar-singlet SM extension can also

be probed at the LHC. The allowed free parameter space regions for both (mS3 < mS1 < mS2 and

mS1 < mS2 < mS3) cases provide one and two (respectively) heavier DM particles that are responsible

for (virtually) all the observed DM relic density, but more importantly, two and one (respectively) lighter

DM particles that can be searched for at the LHC.5

In analogy to our treatment in Section 4.5 for the SM+2RSSmodel, we nowmust compare theoretical

predictions of the SM+3RSS model with LHC experiments to determine whether the (mS3 < mS1 <

mS2 and mS1 < mS2 < mS3) case allowed points are experimentally excluded by collider searches.

The appropriate LHC experimental results were already identified as Refs. [4, 5, 6], where the ATLAS

5The reason for this was already explained in Section 4.5 for the SM+2RSS model (and the generalization is trivial).
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Collaboration establishedmodel-independent upper limits at the 95% confidence level on the visible cross

section of DM production processes with: one to four final state jets j = q, q̄, b, b̄, g, with q = u, d, c, s

(Section 4.5.1), a (single) final state Higgs boson (Section 4.5.2) and a (single) final state Z gauge boson

(Section 4.5.3), respectively; at a center-of-mass energy of
√
s = 13 TeV.

This comparative analysis does not require the re-computation of the SM+3RSS model-predicted

cross sections for all the allowed points. Instead, we can simply use the results that were obtained in

Section 4.5 for the SM+2RSS model. The cross section of all (lighter) DM production processes at the

LHC are maximized for: 1) low lighter DM particle masses (→ 125+ GeV, which is the Higgs boson

mass, the minimum value for these allowed case regions); 2) high lighter DM particle portal coefficients

(→ 10−, which is the maximum value that was considered in the numerical analyses). However, even for

free parameter space points with this (maximizing) features, the corresponding cross sections are at least

(roughly) one order of magnitude away from being excluded by the upper limits set by the experimental

analyses [4, 5, 6], as respectively shown in Figures 4.11–4.13. Therefore, it is safe to conclude that

LHC (collider) searches are not able to experimentally exclude a single free parameter space point of the

SM+3RSS model.
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Chapter 6

Conclusions

In this work, we have studiedn = 1, 2, 3multi-real-scalar-singlet SMextensionswith unbroken×n
r=1Z

(r)
2

≡ Z(1)
2 ×· · ·×Z

(n)
2 discrete symmetries, which provided n = 1, 2, 3 stable DM particle candidates (and

zero extra Higgs-like particles). Our starting point was the n = 1 real scalar singlet SM extension, a

well-known DM model that had already been extensively studied. Nevertheless, by imposing the most

recent DM related experimental constraints on the SM+RSS model’s free parameter space, we were able

to conclude that this model is experimentally excluded for DM masses below 3535 GeV. This makes it

impossible to probe through collider searches at the LHC, which operates at a center-of-mass energy of
√
s = 13.6 TeV (Run 3), and will never surpass a maximum value of

√
s = 14 TeV (Run 4). This was

the main motivation behind the following investigation.

We then proceeded to study the two-real-scalar-singlet SM extension (n = 2). The combined con-

straints from the observed relic density and direct detection experiments fully accounted for all the ex-

cluded free parameter space of the SM+RSS model. Hence, after imposing the particle physics related

(theoretical and experimental) limits, we scanned the free parameter space with micrOMEGAs 6.0 for

this two DM related (relic density and DD) constraints. Taking S1 (S2) as the lighter (heavier) WIMP,

we found three main allowed regions: 1) the mS1 ∼ mS2 > 1 TeV case, where both DM particles are

heavy; 2) themh/2 < mS1 < 1 TeV < mS2 case, where one of the DM particles is lighter (than 1 TeV);

3) the mh/2 ≈ mS1 < mS2 resonant case. Among these, only the mh/2 < mS1 < 1 TeV < mS2 case

allowed region was not already (analogously) present in the SM+RSS model. Moreover, by providing a

lighter DM particle that can be searched for at the LHC, this parameter space region became our focus

of interest. Our numerical analysis showed that, in this allowed region, the heavier DM particle S2 is

responsible for (almost) all the observed DM relic density, and consequently, its massmS2 and portal co-

efficient κH2 are (together) highly constrained (from both below and above) due to the “tension” between

relic over-density and DD exclusion related to S2, the latter being determined by the SI cross section in

σSI(S2N → S2N) × ΩS2/ΩDM ≈ σSI(S2N → S2N). In contrast, the lighter DM particle S1 makes

a negligible contribution of ΩS1h
2 ∼ 10−7 to the total DM relic density, so that mS1 and κH1 are only

constrained (from below and above, and from below, respectively) due to DD exclusion related to S1,

which is determined by the abundance fraction in σSI(S1N → S1N) × ΩS1/ΩDM. We also concluded

that the inter-dark coefficient λ12 regulating the S2S2 → S1S1 annihilation does not influence the total

DM relic density as significantly as mS2 and κH2, and is therefore not constrained by it. But since it

affects the S1 fraction ΩS1/ΩDM, it is bounded from above due to DD exclusion related to S1.

However, this one-light-one-heavymS1 < mS2 case allowed region turned out to be almost excluded

by the new LUX-ZEPLIN results of 2024. This recent constraints are not incorporated in micrOMEGAs
6.0, and we had to perform the corresponding DD exclusion separately from the numerical analysis. The
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6. Conclusions

σSI(SrN → SrN)× ΩSr/ΩDM (r = 1, 2) model predictions of themS1 < mS2 case points exceed the

LZ 2024 upper limit on the WIMP-nucleon elastic scattering SI cross section, with part of them falling

inside the experimental uncertainty band for both particles.

This led us to study the three-real-scalar-singlet SM extension (n = 3). By performing a similar

analysis (but through local scans on targeted parameter space regions), we found two allowed regions

of interest: 1) the two-light-one-heavy mS3 < mS1 < 1 TeV < mS2 case, where S3 takes the role of

an additional light DM particle; 2) the one-light-two-heavy mS1 < 1 TeV < mS2 < mS3 case, where

S3 takes the role of an additional heavy DM particle. The first case is identical to the SM+2RSS (one-

light-one-heavy) mS1 < mS2 case, except for the unnecessary extra light DM particle (with identical

characteristics to the “pre-existing” one). The second case, however, has the key feature of having two

heavy DM particles simultaneously accounting for the observed relic density, so that
∑3

r=1ΩSr ≈ ΩS2+

ΩS3 , with ΩS2 ∼ ΩS3 . Additionally, the DD exclusion related to the heavy DM particles S2,3 in now

determined also by the abundance fractionsΩS2,3/ΩDM 6= 1, and not just the SI cross sections. Therefore,

the “tension” between relic over-density and DD exclusion related to the heavy DM particles S2,3 is

“alleviated”, weakening the usually stringent constraints on the heavy DM particle masses mS2,3 and

portal coefficients κH2,3 allowed values. As a result, this one-light-two-heavymS1 < mS2 < mS3 case

region contains free parameter space points that are able to predict σSI(SrN → SrN)×ΩSr/ΩDM values

which do not fall above the LZ 2024 upper limit for all three DM particles (r = 1, 2, 3).

Finally, we selected the most relevant LHC experiments to determine whether our (relic density and

direct detection) allowed points were experimentally excluded by collider searches. These included jet,

mono-Higgs and mono-Z searches performed with the ATLAS detector during Run 2, which established

model-independent upper limits on the visible cross section for the corresponding DM production pro-

cesses. However, our model predictions for the visible cross sections are at least (roughly) one order

of magnitude away from being excluded by any of these three experimental analyses, across all allowed

parameter space points for both (n = 2, 3) extension models. Nevertheless, the cross sections for some

allowed points are within one order of magnitude (or less) of being excluded by the jet and mono-Higgs

searches (both conducted during Run 2). This suggests that a scalar WIMP of this type could be detected

during the remainder of the LHC operation, particularly in the HL-LHC stage.

In conclusion, we have shown that the n = 2, 3 multi-real-scalar-singlet SM extensions with unbro-

ken×n
r=1Z

(r)
2 ≡ Z(1)

2 × · · · × Z(n)
2 discrete symmetries, unlike the n = 1 case, can provide exper-

imentally allowed free parameter space regions (by relic density and direct detection) where a lighter

DM particle (with mass . 200 GeV) may be searched for at the LHC or future colliders. However, the

exclusion of these multi-real-scalar-singlet SM extensions will most likely be determined by upcoming

direct detection experiments, rather than collider DM searches.
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Appendix A

Principles in Field Theory

This appendix provides a didactic theoretical background to the main principles that govern field theory,

namely the variational principle of least action, which leads to the Euler-Lagrange equations of motion,

and the local gauge symmetry principle, which formulates our theories of interactions. Hence, it serves

not only as a theoretical complement to Chapter 2, but also to the rest of this work.

A.1 The Variational Principle of Least Action

The transition from non-relativistic classical mechanics to relativistic classical field theory is achieved

by replacing the generalized coordinates qj(t), which are functions of time, by fields ϕr(x
µ) ≡ ϕr(t, ~x),

which are functions of space-time. The action is then defined by

S ≡
∫ t2

t1

dtL(t) ≡
∫
V4

d4xL(ϕr, ∂µϕr) , (A.1)

where L(t) ≡
∫
V3
d3xL(ϕr, ∂µϕr) is the Lagrangian and L(ϕr, ∂µϕr) is the Lagrangian density, which

is a functional of the fields ϕr(x) and their space-time partial derivatives ∂µϕr ≡ ∂ϕr
∂xµ = (∂ϕr∂t ,

~∇ϕr).
The variational principle of least action states that the space-time evolution of the fields, which have

fixed values (and thus, null variation) on the boundary surface Σ3 = ∂V4 of the 4-dimensional space-

time volume V4, is determined by the requirement that the action be an extremum (a minimum), i.e.,

δS[L(ϕr, ∂µϕr)] = 0︸ ︷︷ ︸
stationary action

, with δϕr(x) = 0, ∀xµ ∈ Σ3 = ∂V4︸ ︷︷ ︸
boundary condition (BC)

. (A.2)

Computing the variation of the action, this variational principle leads to

0 = δS = δ

∫
V4

d4xL(ϕr, ∂µϕr) =
∫
V4

d4x δL(ϕr, ∂µϕr) (A.3)

=
∑
ϕr

∫
V4

d4x

[
∂L
∂ϕr

δϕr +
∂L

∂(∂µϕr)
δ(∂µϕr)

]
, δ(∂µϕr) = ∂µ(δϕr) (A.4)

=
∑
ϕr

∫
V4

d4x

[
∂L
∂ϕr

δϕr + ∂µ

[
∂L

∂(∂µϕr)
δϕr

]
−
[
∂µ

∂L
∂(∂µϕr)

]
δϕr

]
(A.5)

=
∑
ϕr

∫
V4

d4x

[
∂L
∂ϕr
− ∂µ

∂L
∂(∂µϕr)

]
δϕr +

∑
ϕr

∮
Σ3=∂V4

dS nµ
∂L

∂(∂µϕr)
δϕr︸︷︷︸

=0 (BC)

(A.6)
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=
∑
ϕr

∫
V4

d4x

[
∂L
∂ϕr
− ∂µ

∂L
∂(∂µϕr)

]
δϕr , (A.7)

which implies the so-called Euler-Lagrange equations of motion,

⇒ ∂µ
∂L

∂(∂µϕr)
− ∂L
∂ϕr

= 0 , ∀ϕr . (A.8)

It should be noted that the Lagrangian density is not uniquely defined. One can define alternative

Lagrangian densities of the form L′ = L+∂µFµ(ϕr, ∂µϕr), i.e., by adding a total 4-divergence term, so
that the action S′ =

∫
V4
d4xL+

∫
V4
d4x ∂µF

µ = S +
∮
Σ3=∂V4

dS nµF
µ is only changed by a constant

boundary term that does not affect the Euler-Lagrange equations of motion (since its variation is null),

thus leaving the theory unchanged. Furthermore, for an infinite 4-dimensional space-time volume V4, the

boundary term vanishes under the assumption of the field configurations going to zero sufficiently fast

at infinity [22]. For example, the (hermitian) Dirac Lagrangian density

LD(ψ, ψ̄, ∂µψ, ∂µψ̄) =
i

2
ψ̄γµ∂µψ −

i

2
(∂µψ̄)γ

µψ −mψ̄ψ ≡ ψ̄

(
i

2
γµ
←→
∂µ −m

)
ψ , (A.9)

with
←→
∂µ ≡

−→
∂µ −

←−
∂µ, describes a free spinor field ψ(x), and the corresponding Euler-Lagrange equation

of motion is the (free) Dirac equation,∂µ
∂LD

∂(∂µψ)
− ∂LD

∂ψ = 0 ⇔ i(∂µψ̄)γ
µ +mψ̄ ≡ ψ̄(iγµ

←−
∂µ +m) = 0

∂µ
∂LD

∂(∂µψ̄)
− ∂LD

∂ψ̄
= 0 ⇔ (iγµ∂µ −m)ψ = 0

. (A.10)

Since LD = ψ̄(iγµ∂µ −m)ψ + ∂µ(− i
2 ψ̄γ

µψ), one can consider the (popular) alternative non-hermitian

Lagrangian density L′D = LD+∂µ(+ i
2 ψ̄γ

µψ) = ψ̄(iγµ∂µ−m)ψ (or equivalently, the alternative action

S′
D = SD+

∮
Σ3=∂V4

dS nµ
i
2 ψ̄γ

µψ), which leads to the same Euler-Lagrange (Dirac) equation of motion.

A.2 The Gauge Symmetry Principle and Non-Abelian Gauge Theories

Consider a fermion ñ-dimensional multiplet field Ψ(x) =
(
ψ1(x) . . . ψñ(x)

)>
∼ ñ which trans-

forms under the ñ-dimensional representation U(~α) = e−i
∑dG
a=1 α

aTa 7→ Ũ(~α) = e−i
∑dG
a=1 α

aT̃a , with

T̃a ∈ Cñ×ñ, of a non-Abelian dG-dimensional Lie group of algebra [Ta, Tb] = i
∑dG

c=1 fabcTc, where Ta

are the generators and fabc are the structure constants, a, b, c = 1, . . . , dG, so that

Ψ→ Ψ′ = Ũ(~α)Ψ = e−i
∑dG
a=1 α

aT̃aΨ ≈

(
1− i

dG∑
a=1

αaT̃a

)
Ψ , (A.11)

or equivalently, ψi → ψ′
i =

∑ñ
j=1 Ũij(~α)ψj ≈

∑ñ
j=1(1 − i

∑dG
a=1 α

aT̃a)ijψj in component form. The

Lagrangian density of the free massive fermion multiplet field Ψ(x) ∼ ñ,

L(Ψ)
D = Ψ̄(iγµ∂µ −m)Ψ =

ñ∑
i=1

ψ̄i(iγ
µ∂µ −m)ψi (A.12)

global−−−→ L′(Ψ)
D = Ψ̄Ũ †(~α)(iγµ∂µ −m)Ũ(~α)Ψ =

ñ∑
i,j,k=1

ψ̄jŨ
∗
ij(~α)(iγ

µ∂µ −m)Ũik(~α)ψk , (A.13)
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is invariant under global transformations of the group, provided these are unitary.1 However, under local

transformationsΨ→ Ψ′ = Ũ [~α(x)]Ψ = e−i
∑dG
a=1 α

a(x)T̃aΨ, where ~α = ~α(x) depends on the space-time

coordinates, one has

L(Ψ)
D

local−−→ L′(Ψ)
D = Ψ̄Ũ †[~α(x)](iγµ∂µ −m)Ũ [~α(x)]Ψ = Ψ̄(iγµ[∂µ + Ũ †∂µŨ ]−m)Ψ (A.14)

6= L(Ψ)
D , ∀ ~α(x) 6= space-time constant , (A.15)

where Ũ = Ũ [~α(x)]. Imposing invariance under local transformations of this group requires replacing

the partial derivative ∂µ, in the Lagrangian density,
2 with another differential operator Dµ of the form

Dµ = ∂µ + igG̃µ(x) , with G̃µ(x) ∈ Cñ×ñ , (A.16)

where g is an arbitrary real constant. This replacement procedure ∂µ ↪→ Dµ is called minimal coupling,

and the “new” Lagrangian density L(Ψ)
D+int = Ψ̄(iγµDµ −m)Ψ now locally transforms as

L(Ψ)
D+int

local−−→ L′(Ψ)
D+int = Ψ̄Ũ †[~α(x)](iγµD′

µ −m)Ũ [~α(x)]Ψ , D′
µ = ∂µ + igG̃′

µ(x) (A.17)

= Ψ̄(iγµ[∂µ + Ũ †(∂µ + igG̃′
µ)Ũ ]−m)Ψ , (A.18)

thus being invariant under local transformations if Ũ †(∂µ+ igG̃
′
µ)Ũ = +igG̃µ, i.e., provided that G̃µ(x)

transforms as

G̃µ
local−−→ G̃′

µ = ŨG̃µŨ
† +

i

g
(∂µŨ)Ũ † = ŨG̃µŨ

† − i

g
Ũ∂µŨ

† (A.19)

= ŨG̃µŨ
† +

dG∑
a=1

∂µα
a(x)

g
T̃a . (A.20)

One can directly check, by applying two consecutive transformations G̃µ
U1−→ G̃′

µ
U2−→ G̃′′

µ, that this

transformation constitutes a representation of the group. It is possible to show that G̃µ(x) = ~Gµ(x) · ~̃T =∑dG
a=1G

a
µ(x)T̃a, where G

a
µ(x), a = 1, . . . , dG globally transform as components of a dG-dimensional

multiplet ~Gµ(x) =
(
G1
µ(x) . . . GdG

µ (x)
)>
∼ dG which transforms under the adjoint representation

of the group, Ta 7→ T̂a with (T̂a)bc ≡ −ifabc, so that

Gaµ
global−−−→ G′a

µ =

dG∑
c=1

(
e−i

∑dG
b=1 α

bT̂b
)
ac
Gcµ ≈

dG∑
c=1

(
1− i

dG∑
b=1

αbT̂b

)
ac

Gcµ =

dG∑
c=1

[
δac − i

dG∑
b=1

αb(T̂b)ac

]
Gcµ

=

dG∑
c=1

[
δac −

dG∑
b=1

αbfbac

]
Gcµ = Gaµ +

dG∑
b,c=1

fabcα
bGcµ . (A.21)

This can be verified by inserting G̃µ(x) =
∑dG

a=1G
a
µ(x)T̃a in Eq. (A.20), leading to

dG∑
a=1

GaµT̃a
local−−→ Ũ

dG∑
a=1

GaµT̃a Ũ
† +

dG∑
a=1

∂µα
a(x)

g
T̃a (A.22)

1By definition, fabc = −fbac. One can show that: unitary transformations U† = U−1 ⇔ hermitian generators T †
a = Ta

⇔ real structure constants fabc ∈ R⇒ fully anti-symmetric structure constants fabc = −fbac = +fbca = −fcba = . . .
2Or equivalently, it requires the introduction of an interaction term of the form−gΨ̄γµG̃µΨ = −g

∑ñ
i,j=1 ψ̄iγ

µ(G̃µ)ijψj ,

with G̃µ ∈ Cñ×ñ, as we shall later see in Eq. (A.28).
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= e−i
∑dG
b=1 α

b(x)T̃b

dG∑
a=1

GaµT̃a e
+i

∑dG
c=1 α

c(x)T̃c +

dG∑
a=1

∂µα
a(x)

g
T̃a (A.23)

≈

(
1− i

dG∑
b=1

αb(x)T̃b

)
dG∑
a=1

GaµT̃a

(
1+ i

dG∑
c=1

αc(x)T̃c

)
+

dG∑
a=1

∂µα
a(x)

g
T̃a (A.24)

=

dG∑
a=1

GaµT̃a − i
dG∑

a,b=1

αb(x)Gaµ[T̃b, T̃a] +

dG∑
a,b,c=1

αb(x)αc(x)GaµT̃bT̃aT̃c +

dG∑
a=1

∂µα
a(x)

g
T̃a

=

dG∑
a=1

Gaµ + dG∑
b,c=1

fbcaα
b(x)Gcµ +O(~α2) +

∂µα
a(x)

g

 T̃a , (A.25)

which implies that, under infinitesimal local transformations of the group,

Gaµ
local−−→ G′a

µ ≈ Gaµ +
dG∑

b,c=1

fbcaα
b(x)Gcµ +

∂µα
a(x)

g
. (A.26)

Notice that, unlike G̃µ(x) =
∑dG

a=1G
a
µ(x)T̃a, the transformation of G

a
µ(x) is independent of the repre-

sentation ñ of the fermion multiplet field Ψ(x) ∼ ñ to which the covariant derivative is applied – it only

depends on the Lie algebra of the group. Hence, provided that Gaµ(x) transforms as in Eq. (A.26), the

(minimally coupled) Lagrangian density

L(Ψ)
D+int = Ψ̄(iγµDµ −m)Ψ , Dµ = ∂µ + ig

dG∑
a=1

Gaµ(x)T̃a (A.27)

= Ψ̄(iγµ∂µ −m)Ψ− g
dG∑
a=1

GaµΨ̄γ
µT̃aΨ (A.28)

is invariant under local (or gauge) transformations of the group. A gauge interaction term emerged,

−g
∑dG

a=1G
a
µΨ̄γ

µT̃aΨ = −g
∑ñ

i,j=1

∑dG
a=1G

a
µψ̄iγ

µ(T̃a)ijψj , mediated by the dG gauge bosons Gaµ(x),

a = 1, . . . , dG associated to the local (or gauge) symmetry with respect to the dG-dimensional Lie group.

Additionally, the gauge boson fields Gaµ(x) are not external/auxiliary, but rather dynamical fields,

thus requiring kinetic terms. If our theory is constructed based on a gauge symmetry criteria, all local

gauge invariant terms must be introduced. One can show that G̃µν → ŨG̃µνŨ
†, with

G̃µν ≡ ∂µG̃ν − ∂νG̃µ + ig[G̃µ, G̃ν ] =

dG∑
a=1

Gaµν T̃a , (A.29)

where Gaµν ≡ ∂µGaν − ∂νGaµ − g
dG∑

b,c=1

fbcaG
b
µG

c
ν (A.30)

are the so-called field strength tensors. Therefore, the kinetic terms ofGaµ(x)must be contained in a term

that is proportional the gauge invariant quantity

Tr(G̃µνG̃
µν) =

dG∑
a,b=1

GaµνG
b µν Tr(T̃aT̃b)︸ ︷︷ ︸

= k̃δab

= k̃

dG∑
a=1

GaµνG
aµν (A.31)

→ Tr(ŨG̃µνŨ
†ŨG̃µνŨ †) = Tr(G̃µνG̃

µνŨ †Ũ) = Tr(G̃µνG̃
µν) , (A.32)

91



A. Principles in Field Theory

where the cyclic property of traces was used, and Tr(T̃aT̃b) = k̃δab depends on the representation (e.g.,

k = 1/2 for the fundamental representation). We choose a factor of −1/4, like in the U(1)Q Abelian

case of electromagnetism, in order to obtain the correct equations of motion. Hence, the so-called “pure

gauge” terms are given by

Lgauge =−
1

4

dG∑
a=1

GaµνG
aµν , Gaµν ≡ ∂µGaν − ∂νGaµ − g

dG∑
b,c=1

fbcaG
b
µG

c
ν (A.33)

=− 1

2

dG∑
a=1

[(∂µG
a
ν)∂

µGa ν − (∂µG
a
ν)∂

νGaµ] (A.34)

+ g

dG∑
a,b,c=1

fbca(∂
µGa ν)GbµG

c
ν −

g2

4

dG∑
a,b,c,d,e=1

fbcafdeaG
b
µG

c
νG

dµGe ν , (A.35)

where (A.34) are the usual real vector field kinetic terms, and (A.35) are the gauge boson self-interaction

terms (for the special case of an Abelian group, fabc = 0 and the gauge bosons do not self-interact).

Finally, there are nomore local gauge invariant (and renormalizable) terms, and the final gauge theory

is described by the Lagrangian density

L = L(Ψ)
D+int + Lgauge = Ψ̄(iγµDµ −m)Ψ− 1

4

dG∑
a=1

GaµνG
aµν (A.36)

= Ψ̄(iγµ∂µ −m)Ψ− g
dG∑
a=1

GaµΨ̄γ
µT̃aΨ−

1

2

dG∑
a=1

[(∂µG
a
ν)∂

µGa ν − (∂µG
a
ν)∂

νGaµ]

+ g

dG∑
a,b,c=1

fbca(∂
µGa ν)GbµG

c
ν −

g2

4

dG∑
a,b,c,d,e=1

fbcafdeaG
b
µG

c
νG

dµGe ν . (A.37)

One should note that gauge boson mass terms+1
2m

2
GG

a
µG

aµ explicitly break the gauge symmetry of the

Lagrangian density, thus not being allowed (by themselves) in a gauge theory. Our findings can be sum-

marized as follows: 1) Imposing local (or gauge) invariance under transformations of a dG-dimensional

Lie group on a theory that is globally invariant leads to the emergence of an interaction, mediated by dG

introduced (real vector) gauge bosons. 2) Requiring the introduction of all gauge invariant terms leads to

the dynamics (i.e., kinetic terms) and self-interactions of the introduced gauge bosons, and also forbids

gauge boson mass terms. This is the local gauge symmetry principle, which describes interactions as be-

ing deeply connected to gauge symmetries. Additionally, for L =
∑

i ciÔi(x) with [Ôi(x)] = [m]D≤4

(operators with D ≤ 4 mass dimensions), a gauge theory is renormalizable.

CONVENTION Ψ→ Ψ′ = e−i
∑

a αaT̃aΨ (active) Ψ→ Ψ′ = e+i
∑

a αaT̃aΨ (passive)

Dµ = ∂µ+ig
∑
aG

a
µT̃a

Gaµ → G′a
µ = Gaµ +

∑
b,c fbcaα

bGcµ +
∂µα

a

g

Gaµν ≡ ∂µG
a
ν − ∂νG

a
µ − g

∑
b,c fbcaG

b
µG

c
ν

Gaµ → G′a
µ = Gaµ −

∑
b,c fbcaα

bGcµ − ∂µα
a

g

Gaµν ≡ ∂µG
a
ν − ∂νG

a
µ − g

∑
b,c fbcaG

b
µG

c
ν

Dµ = ∂µ−ig
∑
aG

a
µT̃a

Gaµ → G′a
µ = Gaµ +

∑
b,c fbcaα

bGcµ − ∂µα
a

g

Gaµν ≡ ∂µG
a
ν − ∂νG

a
µ + g

∑
b,c fbcaG

b
µG

c
ν

Gaµ → G′a
µ = Gaµ −

∑
b,c fbcaα

bGcµ +
∂µα

a

g

Gaµν ≡ ∂µG
a
ν − ∂νG

a
µ + g

∑
b,c fbcaG

b
µG

c
ν

Table A.1: Summary of the different gauge theory conventions found in the literature, both for active/passive

transformations (which are inverse to each other, with their correspondence obtained through a change of sign in

the ~α parameters) and for the sign of the gauge coupling constant in the covariant derivative.

In general, a gauge theory of real scalar multipletsϕr(x) ∼ nr, complex scalar multipletsΦs(x) ∼ ns
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and fermion multiplets Ψt(x) ∼ nt is described by the Lagrangian density

L =
∑
ϕr

[
1

2
(Dµϕr)

†Dµϕr −
1

2
m2

ϕr
ϕ>
r ϕr

]
+
∑
Φs

[
(DµΦs)

†DµΦs −m2
ΦsΦ

†
sΦs

]
(A.38)

+
∑
Ψt

Ψt(iγ
µDµ −mΨt)Ψt −

1

4

dG∑
a=1

GaµνG
aµν , (A.39)

where the covariant derivative Dµ ≡ ∂µ + ig
∑dG

a=1G
a
µ(x)Ta sits in the representation of the multiplet

field to which it is applied,

Dµϕr = [∂µ+ig

dG∑
a=1

GaµT
(nr)
a ]ϕr , DµΦs = [∂µ+ig

dG∑
a=1

GaµT
(ns)
a ]Φs , DµΨt = [∂µ+ig

dG∑
a=1

GaµT
(nt)
a ]Ψt .

Example: Quantum Electrodynamics is a gauge theory with respect to the Abelian 1-dimensional Lie

group U(1)Q, generated by the electric charge Q (in units of the positron electric charge e = |e|),

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν , Dµ = ∂µ + ieQAµ (A.40)

= ψ̄(iγµ∂µ −m)ψ − eQ(ψ)Aµψ̄γ
µψ − 1

2
[(∂µAν)∂

µAν − (∂µAν)∂
νAµ] , (A.41)

where e is the electromagnetic coupling constant, Fµν = ∂µAν − ∂νAµ is the field strength tensor, Aµ
is the photon field and ψ are fermion fields with electric charge Q(ψ).

Example: Quantum Chromodynamics is a gauge theory with respect to the non-Abelian 32 − 1 = 8

dimensional Lie group SU(3)c, generated by T
s
a , a = 1, . . . , 8,

LQCD = q̄(iγµDµ −m)q − 1

4

8∑
a=1

GaµνG
aµν , Dµ = ∂µ + igs

8∑
a=1

GaµT
s
a (A.42)

= q̄(iγµ∂µ −m)q − gs
8∑

a=1

Gaµq̄γ
µλa
2
q − 1

2

8∑
a=1

[(∂µG
a
ν)∂

µGa ν − (∂µG
a
ν)∂

νGaµ]

+ gs

8∑
a,b,c=1

fbca(∂
µGa ν)GbµG

c
ν −

g2s
4

8∑
a,b,c,d,e=1

fbcafdeaG
b
µG

c
νG

dµGe ν , (A.43)

where gs is the strong coupling constant, G
a
µν = ∂µG

a
ν − ∂νG

a
µ − gs

∑8
b,c=1 fbcaG

b
µG

c
ν are the field

strength tensors, Gaµ are the gluon fields, and q ∼ 3 are the quark (triplet) fields, which transform under

the fundamental 3 representation T sa 7→ λa/2 of SU(3)c.
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Appendix B

Scale Invariance Breaking and the Trace

Anomaly in QCD

This appendix provides a didactic theoretical background to many of the concepts and results that are

used in effective field theory methods to compute WIMP-nucleon elastic scattering cross sections, which

are relevant for direct detection. Hence, it constitutes a theoretical complement to Section 4.2.1.

B.1 A Generalization of Noether’s Theorem

The variation of the Lagrangian density L(ϕr, ∂µϕr) of a general theory of fields ϕr(x) is given by

δL(ϕr, ∂µϕr) =
∑
ϕr

[
∂L
∂ϕr

δϕr +
∂L

∂(∂µϕr)
δ(∂µϕr)

]
=
∑
ϕr

[
∂L
∂ϕr

δϕr +
∂L

∂(∂µϕr)
∂µ(δϕr)

]
(B.1)

=
∑
ϕr

[
∂L
∂ϕr

δϕr + ∂µ

[
∂L

∂(∂µϕr)
δϕr

]
−
[
∂µ

∂L
∂(∂µϕr)

]
δϕr

]
(B.2)

=
∑
ϕr

([
∂L
∂ϕr
− ∂µ

∂L
∂(∂µϕr)︸ ︷︷ ︸

=0

]
δϕr + ∂µ

[
∂L

∂(∂µϕr)
δϕr

])
, (B.3)

where from the variational principle of least action (i.e., using the Euler-Lagrange equations of motion),

the first term in Eq. (B.3) is null, thus giving

⇒ δL(ϕr, ∂µϕr) =
∑
ϕr

∂µ

[
∂L

∂(∂µϕr)
δϕr

]
. (B.4)

A generalization of Noether’s Theorem I [89] for (both symmetric and) non-symmetric theories under a

given continuous transformation follows directly from this result (B.4).

Theorem 2 (Generalization of Noether’s Theorem I) Consider an arbitrary continuous transforma-

tion, under which the Lagrangian density L(ϕr, ∂µϕr) of a general field theory transforms (infinitesi-

mally) as L → L′ ≈ L+ δL, with

δL(ϕr, ∂µϕr) = ∂µF
µ(ϕr, ∂µϕr) + ∆(ϕr, ∂µϕr) , (B.5)

where ∆(ϕr, ∂µϕr) 6= ∂µG
µ(ϕr, ∂µϕr) is not a total 4-divergence. Then, the Noether 4-current associ-
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ated to this continuous transformation, defined by

jµ ≡
∑
ϕr

∂L
∂(∂µϕr)

δϕr − Fµ , (B.6)

satisfies the following non-homogeneous continuity equation: ∂µj
µ = ∆.

Proof. Using Eq. (B.4), one directly obtains

∑
ϕr

∂µ

[
∂L

∂(∂µϕr)
δϕr

]
= δL(ϕr, ∂µϕr) := ∂µF

µ +∆ ⇔ ∂µ

(∑
ϕr

∂L
∂(∂µϕr)

δϕr − Fµ
)

:= ∆ . �

Noether’s Theorem I [89] is the particular case of Theorem 2 where the theory is invariant under

this continuous transformation,1 i.e. ∆ = 0 ⇔ δL = ∂µF
µ (symmetry), so that the corresponding

Noether current (B.6) satisfies the homogeneous continuity equation ∂µj
µ = 0 (conservation law), and

is said to be conserved. Furthermore, defining the corresponding Noether charge as Q(t) ≡
∫
d3x j0,

the homogeneous continuity equation directly implies that its time variation is given by

∂Q

∂t
≡
∫
V3

d3x
∂j0

∂t
= −

∫
V3

d3x ~∇ ·~j = −
∮
Σ2=∂V3

dS ~n ·~j , (B.7)

i.e., by a (constant) boundary term representing a (constant) net flux, which – under the assumption of

the field configurations going to zero sufficiently fast at infinity – vanishes for an infinite 3-dimensional

space volume V3, so that Q(t) is conserved in time [22].

Remark. If the continuous transformation is parametrized by d constant parameters αa, a = 1, . . . , d

(e.g., a d-dimensional Lie group transformation), then the Noether 4-current (B.6) is actually given by a

sum jµ =
∑d

a=1 j
aµδαa, where δαa are the infinitesimal constant parameters and

jaµ =
jµ

δαa
≡
∑
ϕr

∂L
∂(∂µϕr)

δϕr
δαa
− Fµ

δαa
, a = 1, . . . , d (B.8)

are the d independent Noether 4-currents associated to the transformation (one for each parameter, or

direction), each satisfying the non-homogeneous continuity equation ∂µj
aµ = ∆/δαa. Naturally, for a

theory that is invariant under these transformations (∆ = 0 ⇔ δL = ∂µF
µ), each Noether 4-current

satisfies the homogeneous continuity equation ∂µj
aµ = 0 and has a corresponding Noether charge

Qa(t) = Q(t)/δαa ≡
∫
d3x j0/δαa =

∫
d3x ja 0 (a = 1, . . . , d) that is conserved in time (∂tQ

a(t) = 0).

1If δL = ∂µF
µ, the Lagrangian density itself is (in general, i.e. for Fµ 6= 0) not invariant under the continuous transforma-

tion, but the action transforms as S → S′ ≈ S+δS, where δS =
∫
V4
d4x ∂µF

µ =
∮
Σ3=∂V4

dS nµF
µ is a (constant) boundary

term that does not affect the Euler-Lagrange equations of motion (since its variation is null), and the theory is therefore said to be

invariant (or symmetric) under this continuous transformation. Furthermore, for an infinite 4-dimensional space-time volume

V4, the boundary term vanishes under the assumption of the field configurations going to zero sufficiently fast at infinity [22].
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B. Scale Invariance Breaking and the Trace Anomaly in QCD

B.2 Canonical EMT and the Belinfante Symmetrization Procedure

Under an infinitesimal space-time translation xµ → x′µ = xµ + εµ (|ε| � 1), a field (of any spin) ϕr(x)

(actively) transforms as2

ϕ′
r(x

′ = x+ ε) = ϕr(x) ⇔ ϕr(x)→ ϕ′
r(x) = ϕr(x− ε) ≈ ϕr(x)−εµ∂µϕr(x)︸ ︷︷ ︸

= δϕr(x)

. (B.9)

If a Lagrangian density L(ϕr, ∂µϕr) does not explicitly depend on the space-time coordinates (but only
implicitly, through its dependence on the fields), then it transforms like a regular scalar field under space-

time translations, i.e.

L(x)→ L′(x) = L(x− ε) ≈ L(x)−εµ∂µL(x)︸ ︷︷ ︸
= δL(x)

. (B.10)

Since δL = −εµ∂µL := ∂µF
µ, with Fµ := −εµL, then Noether’s Theorem ensures that the Noether

current (B.6) associated to the invariance under space-time translations,

jµtranslation =
∑
ϕr

∂L
∂(∂µϕr)

δϕr − Fµ =
∑
ϕr

∂L
∂(∂µϕr)

(−εν∂νϕr)− (−εµL) (B.11)

= −εν

[∑
ϕr

∂L
∂(∂µϕr)

∂νϕr − gµνL

]
, (B.12)

is a conserved current, i.e. ∂µj
µ
translation = 0. Since εν (ν = 0, 1, 2, 3) are four arbitrary constant parame-

ters, this result implies four conserved currents

(jνtranslation)
µ =

∑
ϕr

∂L
∂(∂µϕr)

∂νϕr − gµνL ≡ Tµν , ν = 0, 1, 2, 3 , (B.13)

so that ∂µ(j
ν
translation)

µ = ∂µT
µν = 0, ∀ν = 0, 1, 2, 3. The quantity Tµν defined in Eq. (B.13) is the

canonical energy-momentum tensor (EMT), and (by definition) is the componentµ of the Noether current

ν = 0, 1, 2, 3 associated to the xν → xν + εν space-time translational symmetry. Furthermore, the four

corresponding Noether charges

Qνtranslation =

∫
d3xT 0ν ≡ P ν = (E, ~P )ν , ν = 0, 1, 2, 3 (B.14)

are conserved in time, and represent the total 4-momentum components of the field configuration.

However, the energy-momentum tensor is not uniquely defined. One can define alternative energy-

momentum tensors – other than the canonical EMT of Eq. (B.13) – of the form

Θµν = Tµν +
1

2
∂λX

λµν , where Xλµν = −Xµλν (B.15)

is anti-symmetric in λ ↔ µ, so that ∂µ∂λX
λµν = 0, and hence ∂µT

µν = ∂µΘ
µν . This way, Tµν and

Θµν satisfy the same balance equation, which for a theory that is invariant under space-time translations,

is simply ∂µT
µν = ∂µΘ

µν = 0. Choosing the new EMT to be symmetric in µ ↔ ν (i.e., imposing

2One should recall that a finite transformation can be obtained by applying N → +∞ successive infinitesimal transforma-

tions. Under finite space-time translations, ϕr(x) → ϕ′
r(x) = limN→+∞

(
1− εµ

N
∂µ

)N
ϕr(x) = e−ε

µ∂µϕr(x).

96



B.2. Canonical EMT and the Belinfante Symmetrization Procedure

Θµν = Θνµ) leads to the necessary condition [90, 91]

Xλµν = Sλµν − Sµλν − Sνλµ , with Sλµν ≡ −i
∑
ϕr

∂L
∂(∂λϕr)

Sµνϕr = −Sλνµ , (B.16)

where Sµν = −Sνµ are the internal SO(3, 1) Lorentz group generators.3 This method is known as the

Belinfante-Rosenfeld symmetrization procedure [92, 93]. Directly inserting Eq. (B.16) in Eq. (B.15), and

then using Tµν − T νµ = −∂λSλµν , the Belinfante-Rosenfeld energy-momentum tensor can be written

as

Θµν = Tµν +
1

2
∂λ (Sλµν − Sµλν − Sνλµ)︸ ︷︷ ︸

=Xλµν

=
1

2
(Tµν + T νµ)− 1

2
∂λ(Sµλν + Sνλµ) . (B.17)

For future applications, let us consider the theory of Quantum Chromodynamics (QCD), whose La-

grangian density is given by

LQCD =
∑
q

q̄(iγµDµ −mq)q −
1

4

8∑
a=1

GaµνG
aµν , (B.18)

where Dµ ≡ ∂µ + igs
∑8

a=1
λa
2 G

a
µ and G

a
µν ≡ ∂µG

a
ν − ∂νGaµ − gs

∑8
b,c=1 fabcG

b
µG

c
ν are the SU(3)c

covariant derivative (in its fundamental 3 representation) and strength tensor field of QCD, respectively.

The canonical energy-momentum tensor (B.13) of QCD is then given by

TµνQCD ≡
∑
q

[
∂LQCD
∂(∂µq)

∂νq + (∂ν q̄)
∂LQCD
∂(∂µq̄)

]
+

8∑
a=1

∂LQCD
∂(∂µGaλ)

∂νGaλ − gµνLQCD (B.19)

=
∑
q

iq̄γµ∂νq −
8∑

a=1

Gaµλ∂νGaλ − gµνLQCD , (B.20)

which is not symmetric in µ ↔ ν (and also not SU(3)c gauge invariant). Since QCD is a space-time

translational invariant theory, ∂µT
µν
QCD = 0. Now computing

Sλµν ≡ −i
∑
q

[
∂LQCD
∂(∂λq)

Sµν(s=1/2)q + q̄Sµν(s=1/2)

∂LQCD
∂(∂λq̄)

]
− i

8∑
a=1

∂LQCD
∂(∂λGaγ)

(
Sµν(s=1)

) ρ
γ
Gaρ (B.21)

= +
∑
q

q̄γλ
i

4
[γµ, γν ]q −

8∑
a=1

(GaλµGa ν −GaλνGaµ) , (B.22)

the Belinfante-Rosenfeld energy-momentum tensor of QCD (which satisfies the same balance equation,

∂µΘ
µν = 0) follows directly from Eq. (B.17),

Θµν =TµνQCD + ∂λ

(
+

1

2

∑
q

q̄
i

2
(γλγµγν + gµνγλ − gλνγµ − gλµγν)︸ ︷︷ ︸

= 1
2
(γλ[γµ,γν ]−γµ[γλ,γν ]−γν [γλ,γµ])

q −
8∑

a=1

GaλµGa ν

)
(B.23)

3A field ϕr(x) transforms as ϕ
′
r(x

′ = Λx) = S(Λ)ϕr(x) ⇔ ϕr(x) → ϕ′
r(x) = S(Λ)ϕr(Λ

−1x) under SO(3, 1) Lorentz

transformations xµ → x′µ = Λµνx
ν , where Λµν = eω

µ
ν and S(Λ) = e−

i
2
ωµνSµν . The spin s = 0, 1/2, 1 representations

Sµν 7→ S(s)
µν are S(s=0)

µν = 0, S(s=1/2)
µν = i

4
[γµ, γν ] ≡ σµν

2
and

(
S(s=1)
µν

)α
β
= i(gαµgνβ − gανgµβ), respectively.
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=
1

2
(TµνQCD + T νµQCD)−

1

2
∂λ

(
+
∑
q

q̄
i

2
(gλνγµ + gλµγν − 2gµνγλ)︸ ︷︷ ︸

= 1
2
(γµ[γλ,γν ]+γν [γλ,γµ])

q −
8∑

a=1

(GaµλGa ν +Ga νλGaµ)

)

= − gµνLQCD +
1

2

∑
q

iq̄(γµDν + γνDµ)q −
8∑

a=1

GaλµGa ν
λ −

i

4

∑
q

[∂ν(q̄γµq) + ∂µ(q̄γνq)] .

The last (i.e., third) equality was obtained from the previous (i.e., second) one with the aid of the Euler-

Lagrange equations of motion, and explicitly shows that the Belinfante-Rosenfeld EMT of QCD is sym-

metric in µ↔ ν (as expected). Additionally, it is also SU(3)c gauge invariant.

B.3 Dilatations and Scale Invariance in QCD

Under an infinitesimal scale transformation (or dilatation) xµ → x′µ = λxµ ≡ eρxµ ≈ xµ + ρxµ

(|λ − 1| � 1 ⇔ |ρ| � 1),4 a field ϕr(x) with Dϕ mass dimensions (i.e., so that [ϕr(x)] = [m]Dϕ)

(actively) transforms as5

ϕ′
r(x

′ = eρx) = e−Dϕρϕr(x)

⇔ ϕr(x)→ ϕ′
r(x) = e−Dϕρϕr(e

−ρx) ≈ ϕr(x)−ρ(Dϕ + xµ∂µ)ϕr(x)︸ ︷︷ ︸
= δϕr(x)

. (B.24)

A field theory is scale invariant if and only if the Lagrangian density transforms like a regular field with

Dϕ = 4 mass dimensions (would) under scale transformations, i.e.

L(x)→ L′(x) = e−4ρL(e−ρx) ≈ L(x)− ρ(4 + xµ∂µ)L(x) = L(x)− ρ(gµµ + xµ∂µ)L(x) (B.25)

= L(x)− ρ([∂µxµ] + xµ∂µ)L(x) = L(x)−ρ∂µ(xµL(x))︸ ︷︷ ︸
= δL(x)

, (B.26)

so that δL = ∂µF
µ, with Fµ = −ρxµL. Let us now see if QCD is a scale invariant theory. Under scale

transformations, the QCD Lagrangian density (B.18) transforms as

LQCD(x)→ L′QCD(x) = e−4ρ

[∑
q

iq̄(e−ρx)γµDµq(e
−ρx)− 1

4

8∑
a=1

Gaµν(e
−ρx)Gaµν(e−ρx)

]
− e−3ρ

∑
q

mq q̄(e
−ρx)q(e−ρx) (B.27)

≈LQCD(x)− ρ(4 + xµ∂µ)

[∑
q

iq̄(x)γµDµq(x)−
1

4

8∑
a=1

Gaµν(x)G
aµν(x)

]
+ ρ(3 + xµ∂µ)

∑
q

mq q̄(x)q(x) (B.28)

=LQCD(x)−ρ∂µ(xµLQCD(x))− ρ
∑
q

mq q̄(x)q(x)︸ ︷︷ ︸
= δL(x)

. (B.29)

4The choice of (the single) parameter λ ≡ eρ ≈ 1 + ρ⇔ ρ ≡ lnλ ≈ λ− 1 to parametrize dilatations is arbitrary.
5We recall that the finite transformation is obtained by applyingN → +∞ successive infinitesimal transformations. Under

finite scale translations, ϕr(x) → ϕ′
r(x) = limN→+∞

[
1− ρ

N
(Dϕ + xµ∂µ)

]N
ϕr(x) = e−ρ(Dϕ+xµ∂µ)ϕr(x).
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Since δLQCD = ∂µF
µ + ∆, with Fµ = −ρxµLQCD and ∆ = −ρ

∑
qmq q̄q, QCD is not scale in-

variant due to the quark mass terms, and (the generalization of Noether’s) Theorem 2 states that the

non-homogeneous continuity equation ∂µj
µ = ∆ is satisfied by the non-conserved Noether current

jµ =
∑
q

[
∂LQCD
∂(∂µq)

δq + δq̄
∂LQCD
∂(∂µq̄)

]
+

8∑
a=1

∂LQCD
∂(∂µGaλ)

δGaλ − Fµ (B.30)

= − ρ
∑
q

[
∂LQCD
∂(∂µq)

(
3

2
+ xν∂ν)q + (

3

2
+ xν∂ν)q̄

∂LQCD
∂(∂µq̄)

]
− ρ

8∑
a=1

∂LQCD
∂(∂µGaλ)

(1 + xν∂ν)G
a
λ + ρxµLQCD

= − ρ

(
xν

{∑
q

[
∂LQCD
∂(∂µq)

∂νq + (∂ν q̄)
∂LQCD
∂(∂µq̄)

]
+

8∑
a=1

∂LQCD
∂(∂µGaλ)

∂νGaλ − gµνLQCD

}

+
3

2

∑
q

[
∂LQCD
∂(∂µq)

q + q̄
∂LQCD
∂(∂µq̄)

]
+

8∑
a=1

∂LQCD
∂(∂µGaλ)

Gaλ

)
(B.31)

= − ρ

(
xνT

µν
QCD +

3

2

∑
q

iq̄γµq −
8∑

a=1

GaµλGaλ

)
≡ −ρjµscale , (B.32)

where TµνQCD is the QCD canonical EMT (B.20). Since ρ is an arbitrary constant parameter, jµscale ≡
jµ/(−ρ) is an equally valid (non-conserved) Noether current associated to scale transformations, satis-
fying an equivalent (non-homogeneous) continuity equation ∂µj

µ
scale = ∆/(−ρ). By direct computation

(and using the balance equation, ∂µT
µν
QCD = 0), one obtains ∂µj

µ
scale = (TQCD)

µ
µ + 3

2∂µ
∑

q iq̄γ
µq −

∂µ
∑8

a=1G
aµλGaλ = Θµ

µ, where Θµν is the QCD Belinfante-Rosenfeld EMT (B.23). Hence, the non-

homogeneous continuity equation can be simply written as

∂µj
µ
scale = Θµ

µ =
∑
q

mq q̄q . (B.33)

If quarks were massless, QCD would be invariant under scale transformations and the corresponding

Noether current (B.32) would be conserved, so that ∂µj
µ
scale = Θµ

µ → 0 (mq → 0). However, as we just

saw, the quark mass terms explicitly break the scale invariance in QCD (at the classical level), and the

corresponding Noether current is not conserved.

B.4 The Trace Anomaly of QCD

In perturbation theory, loop corrections can be incorporated into effective coupling constants – known

as running couplings – which depend on the energy scale. The Renormalization Group Equation (RGE)

of QCD, β(αs) = µdαsdµ = dαs
d(lnµ) , describes the running strong coupling αs ≡

g2s
4π dependence on the

energy scale µ. At the 1-loop order of approximation, the QCD beta function is β(αs) ≈ −β0 α
2
s

2π , and

the RGE yields the solution

αs(µ) =
1

β0
2π ln (

µ
ΛQCD

)
, with β0 =

11

3
Nc −

2

3
N

(q)
f , (B.34)

where Nc = 3 and N
(q)
f = 6 are the quark number of colours and flavours (respectively), and ΛQCD is

the QCD scale parameter (energy scale below which QCD becomes non-perturbative, so that αs(µ ≤
ΛQCD)→ +∞), also known as Landau pole [24].
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B. Scale Invariance Breaking and the Trace Anomaly in QCD

Since the energy scale µ transforms as µ → µ′ = e−ρµ under scale transformations, when quantum

loop corrections are taken into account, the (energy scale dependent) running strong coupling transforms

(infinitesimally) as

αs → α′
s ≈ αs + δαs , with δαs = ρ

[
∂α′

s

∂ρ

]
ρ=0

= ρ

[
∂µ′

∂ρ

∂α′
s

∂µ′

]
ρ=0

= −ρβ(αs) (B.35)

to any order in perturbation theory, and hence, quantum loop corrections will affect scale transforma-

tions in QCD. The simplest way to see this [23, 31] (although not as rigorous as loop level perturbative

computation or path integral treatments) is by rescaling the gluon (vector) field, i.e. Gaµ ≡ gsG
a
µ and

Gaµν ≡ gsGaµν , so that the QCD Lagrangian density (B.18) can be written as

LQCD =
∑
q

(
iq̄γµ∂µq −

8∑
a=1

Gaµq̄γ
µλa
2
q

)
− 1

16παs

8∑
a=1

GaµνG
aµν . (B.36)

It was shown in Eq. (B.29) that, at the classical level, δLQCD = −ρ∂µ(xµLQCD) − ρ
∑

qmq q̄q. Then,

taking into account (loop corrections in perturbation theory, and consequentially) the scale dependence

of the running strong coupling, the variation is quantum loop corrected to

δLQCD = −ρ∂µ(xµLQCD)− ρ
∑
q

mq q̄q + δαs
∂LQCD
∂αs

(B.37)

= −ρ∂µ(xµLQCD)− ρ
∑
q

mq q̄q − ρβ(αs)
1

16πα2
s

8∑
a=1

GaµνG
aµν (B.38)

= −ρ∂µ(xµLQCD)︸ ︷︷ ︸
= ∂µFµ

−ρ
∑
q

mq q̄q − ρ
β(αs)

4αs

8∑
a=1

GaµνG
aµν

︸ ︷︷ ︸
=∆

, (B.39)

and hence – performing the same derivation of the previous section – the (non-conserved) Noether current

associated to scale transformations is still given by Eq. (B.32), and satisfies the same (non-homogeneous)

continuity equation ∂µj
µ
scale = ∆/(−ρ), but with a quantum loop correction in the non-homogeneous

term, i.e. ∆ = ∆classical − ρβ(αs)4αs

∑8
a=1G

a
µνG

aµν . In summary, the non-homogeneous continuity equa-

tion (B.33) is quantum loop corrected to

∂µj
µ
scale = Θµ

µ =
∑
q

mq q̄q +
β(αs)

4αs

8∑
a=1

GaµνG
aµν (B.40)

≈
∑
q

mq q̄q − β0
αs
8π

8∑
a=1

GaµνG
aµν , (B.41)

to any order in Eq.(B.40) and at 1-loop order β(αs) ≈ −β0 α
2
s

2π in Eq. (B.41). The first and second terms

in the right-hand side (of both equations) exhibit the scale invariance breaking in QCD at the classical

and quantum loop levels, respectively. If quarks were massless, this last term would break the classical

scale invariance at the quantum level, thus being called the QCD trace anomaly.
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B.5 Nucleon Mass and the Heavy Quark Contribution

The mass of a nucleon N is given by the matrix element of the trace of the QCD energy-momentum

tensor6 between (appropriately normalized) nucleon states |N〉 with the same 4-momentum (i.e., in the

limit of zero transferred momentum) [76, 73, 31], thus giving

mN = 〈N(~p)|Θµ
µ |N(~p)〉 =

∑
q

mq 〈N(~p)| q̄q |N(~p)〉+ β(αs)

4αs

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉 (B.42)

≈
∑
q

mq 〈N(~p)| q̄q |N(~p)〉 − β0
αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉 ,

(B.43)

to any order in Eq.(B.42) and at 1-loop order of approximation β(αs) ≈ −β0 α
2
s

2π in Eq. (B.43), with

β0 =
11
3 Nc − 2

3N
(q)
f = 7.

As shown by M. A. Shifman, A. I. Vainshtein and V. I. Zakharov in Ref. [74], the heavy quark

contribution to the nucleon mass – under the heavy quark expansion – is given by

mQ 〈N(~p)| Q̄Q |N(~p)〉 = −2

3

αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉+O
(
1/(4m2

Q)
)
, ∀Q = c, b, t

(B.44)

and hence, the nucleon mass (B.43) can be further simplified to

mN = 〈N(~p)|Θµ
µ |N(~p)〉 ≈

∑
q′=u,d,s

mq′ 〈N(~p)| q̄′q′ |N(~p)〉 − 9αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉 .

(B.45)

Denoting f
(N)
Tq′
≡ mq′ 〈N(~p)|q̄′q′|N(~p)〉

mN
as the fraction of nucleon mass that is attributed to a light quark

q′ = u, d, s, the nucleon mass (B.45) can be written as

mN =
∑

q′=u,d,s

f
(N)
Tq′

mN −
9αs
8π

8∑
a=1

〈N(~p)|GaµνGaµν |N(~p)〉 =

 ∑
q′=u,d,s

f
(N)
Tq′

+ f
(N)
TG

mN , (B.46)

where f
(N)
TG
≡ − 9αs

8π

∑8
a=1〈N(~p)|GaµνGaµν |N(~p)〉

mN
= 1−

∑
q′=u,d,s f

(N)
Tq′

is the fraction of nucleon mass that

is not attributed to light quarks (thus being attributed to the heavy quarks Q = c, b, t and gluon).

6We choose to work with the µ ↔ ν symmetric and SU(3)c gauge invariant Belinfante-Rosenfeld EMT (B.23) of QCD,

but there are other valid choices (e.g., see Ref. [75]).
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Appendix C

Explicit Z(1)
2 ×Z

(2)
2 → Z

(1,2)
2 Symmetry

Breaking in the Two-Real-Scalar-Singlet

Chapter 4 is devoted to the study of the two-real-scalar-singlet SM extensionwith an unbrokenZ(1)
2 ×Z

(2)
2

discrete symmetry, which provides two stable DM particle candidates. However, besides considering

another vacuum configuration (as explained in Section 4.1), one may also impose a different symmetry.

In this appendix, we explicitly break theZ(1)
2 ×Z

(2)
2 symmetry down toZ(1,2)

2 , which leads to a different

phenomenology.

C.1 The SM+2RSS DMModel with an Unbroken Z(1,2)
2 Symmetry

We now discuss the two-real-scalar-singlet SM extension with a single Z(1,2)
2 symmetry, under which

both singlet fields S′
1, S

′
2 ∼ (1, 1, 0) are odd: S′

1 → −S′
1, S

′
2 → −S′

2, SM → +SM. The most general

renormalizable and SU(3)c × SU(2)L × U(1)Y ×Z(1,2)
2 invariant Lagrangian density is given by

L′SM+2RSS = LSM +
1

2
(∂µS

′
1)∂

µS′
1 −

1

2
µ21S

′2
1 +

1

2
(∂µS

′
2)∂

µS′
2 −

1

2
µ22S

′2
2 −

λ1
4!
S′4
1 −

λ2
4!
S′4
2

− κH1

2
S′2
1 Φ

†Φ− κH2

2
S′2
2 Φ

†Φ− λ12
4
S′2
1 S

′2
2

− µ212S′
1S

′
2 −

λ3
3!
S′3
1 S

′
2 −

λ4
3!
S′
1S

′3
2 − κH12S

′
1S

′
2Φ

†Φ , (C.1)

i.e., the previous SU(3)c×SU(2)L×U(1)Y ×Z(1)
2 ×Z

(2)
2 invariant SM+2RSS Lagrangian density (4.4) is

extended by the last fourZ(1)
2 ×Z

(2)
2 soft-breaking terms in (C.1). We consider the vacuum configuration

〈Φ〉†0 〈Φ〉0 = −
µ2H
2λH

≡ v2

2

2∧
r=1

〈Sr〉0 = 0 , (C.2)

and take 〈Φ〉0 =
(
0 v/

√
2
)>

as the Higgs doublet VEV, so that Φ =
(
G+ (v + h+ iG0)/

√
2
)>

.

Hence, the SU(2)L × U(1)Y gauge symmetry is spontaneously broken dow to U(1)Q, while the Z(1,2)
2

discrete symmetry remains unbroken (preventing S′
rh flavour mixing). However, expanding the scalar

mass terms reveals that the new Z(1)
2 ×Z

(2)
2 soft-breaking terms induce S′

1S
′
2 flavour mixing,

L′SM+2RSS ⊃ L
(S′
r)

mass = −
1

2

(
µ21 +

κH1v
2

2

)
S′2
1 −

(
µ212 +

κH12v
2

2

)
S′
1S

′
2 −

1

2

(
µ22 +

κH2v
2

2

)
S′2
2 (C.3)
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2 Symmetry

= −1

2

(
S′
1 S′

2

)( µ21 +
κH1v

2

2 µ212 +
κH12v

2

2

µ212 +
κH12v

2

2 µ22 +
κH2v

2

2

)
︸ ︷︷ ︸

=M2

(
S′
1

S′
2

)
, (C.4)

implying that S′
1, S

′
2 are interaction eigenstates (non-physical fields). The symmetric non-diagonal scalar

squared-mass matrixM2 ∈ R2×2 can be diagonalized by a single matrix

U(α) =

(
cosα + sinα

− sinα cosα

)
∈ SO(2) , with tan (2α) =

2
(
µ212 +

κH12v
2

2

)
(µ22 − µ21) +

(κH2−κH1)v2

2

(C.5)

through a change of basis (or rotation) in flavour space, from the interaction eigenstate basis to the mass

eigenstate basis, so that U>(α)M2U(α) = diag(m2
χ1
,m2

χ2
) ≡ D2 is diagonal with real positive ele-

ments. The scalar mass terms are diagonal (without flavour mixing) in the mass eigenstate basis,

L(S
′
r)

mass = −
1

2

(
S′
1 S′

2

)
M2

(
S′
1

S′
2

)
= −1

2

(
S′
1 S′

2

)
U(α)U>(α)M2U(α)U>(α)

(
S′
1

S′
2

)
(C.6)

= −1

2

(
χ1 χ2

)
D2

(
χ1

χ2

)
= −1

2
m2
χ1
χ2
1 −

1

2
m2
χ2
χ2
2 , (C.7)

where
(
χ1 χ2

)>
= U>(α)

(
S′
1 S′

2

)>
⇔ χr =

∑
r′ U

>
rr′(α)S

′
r′ are the so-called mass eigenstates

(physical fields), and the masses of the corresponding particles are given by

m2
χ1,2

=

∑2
r=1

(
µ2r +

κHrv
2

2

)
∓
√(

µ22 − µ21 +
(κH2−κH1)v2

2

)2
+ 4
(
µ212 +

κH12v2

2

)2
2

. (C.8)

Finally, in the mass eigenstate basis, the (expanded) Lagrangian density in the unitary gauge reads

L′SM+2RSS = LSM +

2∑
r=1

[
1

2
(∂µχr)∂

µχr −
1

2
m2
χrχ

2
r −

λr
4!
χ4
r

]
− λ12

4
χ2
1χ

2
2 −

λ3
3!
χ3
1χ2 −

λ4
3!
χ1χ

3
2

−
2∑
r=1

[
κHrv

2
hχ2

r +
κHr
4
h2χ2

r

]
− κH12vhχ1χ2 −

κH12

2
h2χ1χ2 , (C.9)

where the redefined coupling constants for the physical fields are given by

λ1 =λ1c
4
α + λ2s

4
α + 6λ12s

2
αc

2
α − 4(λ3c

2
α + λ4s

2
α)sαcα (C.10)

λ2 =λ1s
4
α + λ2c

4
α + 6λ12s

2
αc

2
α + 4(λ3s

2
α + λ4c

2
α)sαcα (C.11)

λ12 =(λ1 + λ2)s
2
αc

2
α + λ12(1− 6s2αc

2
α) + 2(λ3 − λ4)sαcα(1− 2s2α) (C.12)

λ3 =(λ1c
2
α − λ2s2α)sαcα + 3λ12sαcα(1− 2c2α) + λ3c

2
α(1− 4s2α) + λ4s

2
α(4c

2
α − 1) (C.13)

λ4 =(λ1s
2
α − λ2c2α)sαcα − 3λ12sαcα(1− 2c2α) + λ3s

2
α(4c

2
α − 1) + λ4c

2
α(1− 4s2α) (C.14)

κH1 =κH1c
2
α + κH2s

2
α − 2κH12sαcα (C.15)

κH2 =κH1s
2
α + κH2c

2
α + 2κH12sαcα (C.16)

κH12 =(κH1 − κH2)sαcα + κH12(1− 2s2α) , (C.17)

with sα ≡ sinα, cα ≡ cosα. Figure C.1 presents the Feynman rules for the new interaction vertices

of this SM extension, including the hχ1χ2 trilinear vertex that emerges upon Z(1)
2 × Z(2)

2 → Z(1,2)
2
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2 Symmetry Breaking in the Two-Real-Scalar-Singlet

explicit symmetry breaking. Taking χ1 (χ2) as the lighter (heavier) scalar particle – without loss of

generality, due to the χ1 ↔ χ2 symmetry of the model – the heavier scalar χ2 is unstable, as it decays via

χ2 → χ1h (→ χ1 SM SM). On the other hand, the decays χ1 → χ2h (→ χ2 SM SM) are kinematically

forbidden, since mχ1 < mχ2 . Therefore, only the lighter scalar χ1 is stable, thus being the sole DM

particle candidate of this model.

χr

χr

χr

χr

= −iλr

χ1

χ2

χ2

χ1

= −iλ12

χ1

χ1

χ2

χ1

= −iλ3

χ2

χ2

χ1

χ2

= −iλ4 h

χr

χr

= −iκHrv

h

χr

χr

h

= −iκHr

h

χ1

χ2

= −iκH12v

h

χ2

χ1

h

= −iκH12 r = 1, 2

Figure C.1: Feynman rules of the SM+2RSSmodel for the interaction vertices involving theχ1, χ2 scalar particles.

The coloured vertices emerge upon Z(1)
2 ×Z(2)

2 → Z(1,2)
2 explicit symmetry breaking.

C.2 Parameter Space Scans and Numerical Analysis

The Z(1,2)
2 invariant two-real-scalar-singlet extension of the SM has now eleven (new) free parameters1:

the physical scalar massesmχ1 andmχ2 , the coupling constants λ1, λ2, λ12, λ3, λ4, κH1, κH2 and κH12,

and the scalar mixing angle α. The former (original) eight coupling constants can be replaced by the re-

defined interaction coefficients of the physical fields (C.10)–(C.17). We scanned the 11-dimensional free

parameter space of this model with micrOMEGAs 6.1 [59], assuming both scalar particles were thermally
produced according to the freeze-out mechanism. The scans were performed considering the DM relic

density and direct detection exclusion. The (relic density and direct detection) experimental constraints

on this model (C.1) are shown in Figure C.2, which only displays experimentally allowed free parameter

space points, through several projections with mχ1 on the x-axis and other free parameters (relevant at

tree-level) on the y-axis and colour bars. This figure displays the scanned free parameter space points

that correspond to the observed DM relic densityΩobs
DMh

2 = 0.120±0.001 from Planck [7] measurements

and are also not excluded by the XENON1T [60], DarkSide-50 [61], PICO-60 [62], CRESST-III [63],

PandaX-4T [64] and LUX-ZEPLIN (LZ) [2] direct detection experiments.2

What is new in thisZ(1,2)
2 invariant model (compared to theZ(1)

2 ×Z
(2)
2 invariant model of Chapter 4)

1Four of which emerge upon Z(1)
2 ×Z(2)

2 → Z(1,2)
2 explicit symmetry breaking: κH12, λ3, λ4 and α.

2This LZ constraint refers to the former 2022 results [2]. The new LZ 2024 constraint [3] is not considered in Figure C.2 (it

is not included in micrOMEGAs 6.1), and we will have to perform the corresponding DD exclusion separately (Figure C.3).
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Figure C.2: Experimental constraints on the Z(1,2)
2 invariant SM+2RSS model (C.1), obtained by scanning the

free parameter space with micrOMEGAs 6.1 for the freeze-out mechanism. All panels show the parameter space

points that correspond to the observed DM relic density and are not excluded by direct detection.

is that (for a fixed DM massmχ1), while κH1 is the only coupling regulating the DD exclusion, the DM

relic density is determined by nearly all couplings, namely κH1, κH2 and κH12 (most relevant). Hence,

κH1 remains bounded from above due to DD exclusion (upper bound that increases withmχ1), but con-

trary to the Z(1)
2 ×Z

(2)
2 invariant scenario, κH1 can now take low values (respecting the DD constraints)

and avoid DM relic over-density through sufficiently high values of the other relevant couplings κH2 and

κH12. This behaviour is shown in Figure C.2, where parameter space points with low values of κH1, in

order to reproduce the observed relic density, also feature high enough values of κH2 or κH12 (or both).
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Figure C.3: Spin-independent cross section of DM-nucleon elastic scattering χ1N → χ1N (N = p, n). The
presented points correspond to the model’s theoretical predictions for the points of Figure C.2, for both proton

(p) and neutron (n) elastic scattering. The blue and green (solid) lines correspond to the LUX-ZEPLIN (LZ)

experimental upper limits on the WIMP-nucleon elastic scattering spin-independent cross section from 2022 [2]

and 2024 [3] results, respectively. The (shaded green) experimental uncertainty band from the LZ 2024 results is

displayed. The legend is shared by all panels, which differ only in the colour bar.
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As already stated, the new LZ 2024 results [3] are not (yet) included in the micrOMEGAs 6.1 code

(not taken into account in Figure C.2), and we need to separately apply this DD constraint in our model.

We computed the SI cross section of DM-nucleon elastic scattering σSI(χ1N → χ1N) for all parameter

space points (of Figure C.2, i.e.) that were not excluded by the observed relic density and direct detection

experiments (excluding the LZ 2024). The results are shown in Figure C.3, which also displays the former

2022 (blue solid line) and new 2024 (green solid line) LZ upper limits on the SI cross section. Each of

the three panels shows the same plot with a different colour bar – between κH1, κH2 and κH12 – thus

confirming that κH1 is the only coupling relevant for DD exclusion. Since κH1 can take low values (still

reproducing the observed relic density), which results in low SI cross sections, there are parameter space

points that are not excluded by the LZ 2024 upper limit (or any other DD experimental result) for any

DM massmχ1 (& 100 GeV).
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