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“Ever tried. Ever failed. No matter.

Try again. Fail again. Fail better.”

- Samuel Beckett
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Resumo

A neurogénese adulta é o processo pelo qual novos neurónios são formados no cérebro, sendo

essencial para o desenvolvimento saudável e manutenção do sistema nervoso central. Este

fenómeno, que antes se pensava ocorrer apenas durante as fases pré-natal e precoce de vida,

foi demonstrado ocorrer também durante a vida adulta. Esta descoberta tem facilitado a

compreensão de vários componentes patológicos, a plasticidade cerebral e a função cognitiva.

É possível estabelecer uma correlação entre a atividade saudável de tecidos neuronais

específicos e o efeito de certos elementos dietéticos essenciais. Em termos celulares, há

evidências de que a oscilação nos níveis de nutrientes afeta o correto funcionamento de

organelas como mitocôndrias, retículo endoplasmático e lisossomas, cruciais para todas as

funções cerebrais. Também esclarece novas possibilidades terapêuticas para ajudar nos

transtornos de humor, doenças neurodegenerativas e lesões neurais. Intrinsecamente, é

fundamental compreender quais os fatores que regulam e influenciam esse processo. Esta

monografia pretende, assim, elucidar sobre os efeitos da nutrição na neurogénese adulta,

fazendo a correlação com a neuroplasticidade, explorando o impacto das escolhas alimentares

no estado de saúde das células neuronais. Vários alimentos têm sido associados à inibição ou

à promoção da neurogénese. Em particular, nutrientes como as vitaminas D e C, minerais

como o zinco e o lítio, os ácidos gordos ómega-3, e até a ingestão calórica total, têm sido

associados a este problema. De facto, a dieta ocidental moderna tem sido associada à

diminuição da saúde cerebral e ao aumento de doenças neurológicas, sendo caracterizada pelo

elevado consumo de açúcares e gorduras pouco saudáveis, e pelo fraco consumo de nutrientes

essenciais. Este conhecimento pode revelar-se crucial não só na melhoria da saúde cognitiva e

da longevidade, mas também na melhoria de condições como a depressão, a doença de

Parkinson e a doença de Huntington. O controlo das principais vias moleculares geridas pelo

consumo de nutrientes específicos pode, em última análise, resultar numa melhoria da

qualidade de vida global e na melhoria da esperança de vida.

Palavras-chave: Dieta; Metabolismo; Neurogénese Adulta; Nutrientes
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Abstract

Neurogenesis is the process by which new neurons are formed in the brain, essential

for healthy development and maintenance of the central nervous system. This phenomenon,

once believed to occur during the prenatal and early life phases, has now been confirmed to

also exist in adulthood. It also aids in the understanding of several pathologies related to

components such as brain plasticity and cognitive function. Curiously, a correlation can be

established between the healthy function of specific neuronal tissues and the neuronal tissues

and the impact of certain essential dietary components. More specifically, in cellular terms,

there is evidence that the oscillation in nutrient levels affects the correct function of diverse

organelles, such as the mitochondria, endoplasmic reticulum and lysosomes, crucial for all

brain functions. The link between neurogenesis and diet also helps to hypothesize new

therapeutic possibilities for mood disorders, neurodegenerative diseases and neural injuries.

Intrinsically, it is paramount to understand which factors regulate and influence this process.

This work aims to shed some light on the effects of nutrition on adult neurogenesis, correlated

with neuroplasticity, exploring the impact of dietary choices on the health status of neuronal

cells. Several foods have been linked to either the inhibition or promotion of neurogenesis.

Nutrients such as vitamin D and C, minerals like zinc and lithium, omega-3 fatty acids and

even total caloric intake have been linked to this problem. In fact, the modern Western diet

characterized by high consumption of sugars and unhealthy fats and poor consumption of

essential nutrients, has been associated with decreased brain health and an increase in

neurological diseases. This knowledge may prove relevant not only for the betterment of

cognitive health and longevity but also for the improvement of conditions such as depression,

Parkinson’s disease and Huntington’s disease. The control of key molecular pathways

managed by the consumption of specific nutrients might ultimately result in an improvement

of overall quality of life and improved lifespan.

Keywords: Adult Neurogenesis; Diet; Metabolism; Nutrients
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1. Introduction
The process by which new neurons are generated in the adult brain is called adult

neurogenesis. Previously, researchers believed this process did not occur after the embryonic

and early life stages (1,2). However, over the years, studies have demonstrated that

neurogenesis occurs across all stages of life. This constitutes a great possible target in the

treatment of neurologic pathologies, such as Parkinson’s disease (PD) and Alzheimer’s

disease (AD), as well as some mood disorders like depression. In fact, studies conducted since

the beginning of the century have demonstrated the correlation between several neurogenic

facets. Neuroplasticity, for example, has been proven to aid in the neurogenic process, being

promoted by antioxidants and anti-inflammatory components (3). Adult neurogenesis is a

complex process that encompasses mechanisms such as the proliferation of neuronal

stem/precursor cells (NSCs/NPCs), the correct balance between apoptosis and cell survival,

neuroblast migration, neuron differentiation and the integration of these cells in the

preexisting neuronal network (4,5). This process occurs in specific niches, namely the

subgranular zone (SGZ) of the hippocampus, and the subventricular zone (SVZ) of the lateral

ventricles. However, recent literature points out new neurogenic niches that have been

observed to also sustain the proper conditions to allow for neurogenesis in adults (4,6,7).

These include the hypothalamus, the substantia nigra, the striatum, the amygdala, the

habenula and the cerebellum (8).

Several factors influence the process of adult neurogenesis. Aging, exercise habits,

sleep quality and dietary choices (9). This work will comprise an intelligible list of some diet

factors that have been observed to directly influence adult neurogenesis, namely omega-3

Fatty Acids (FAs), vitamins, minerals, polyphenols, caloric intake, tauroursodeoxycholic acid

(TUDCA) and the relationship between the gut microbiome and the brain.

The modern diet is characterized by high consumption of red meats, candy, refined

grains, fried foods, high-fat dairy and high-fructose products (10). The problem with this diet

relies on the fact it only arose in recent decades, replacing the largely unprocessed and

nutrient-rich foods previously available (11,12). Nowadays, as a consequence of the Industrial

Revolution (13), food is readily available for consumption and its quality has significantly

declined to be mass-produced. This food is low on essential nutrients, and high on unhealthy

products such as grease and sugar (10). This change occurred rapidly over the past few

decades, leaving our bodies little time to adapt. However, our organism still needs the same
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crucial nutrients to develop and maintain the necessary mechanisms of life, leading to a

growing number of pathologies observed in the Western world, namely neurological diseases

(14,15).

To counteract this fact, the supplementation of these essential nutrients might

constitute the answer to treat or alleviate some of the notable consequences of this diet. It may

even constitute a viable component for the treatment of neurological diseases such as AD,

among many others (16,17). Therefore, understanding the mechanisms of adult neurogenesis

and the role of nutrients in this process is essential.

2. Neural Stem Cells and Adult Neurogenic Niches
2.1 Neural Stem Cells

During the embryonic and early postnatal periods in mammals, most cells experience a

rapid division stage, after which most cell proliferation is confined to long-lived tissue stem

cells and their progenies (18). Therefore, these adult stem cells, found in many specific niches

(regions where these cells reside after early life development), are subject to various complex

signals that guide the cells into remaining in a quiescent state (18,19), a state of reversible cell

cycle arrest, normally in the G0 phase of the cell cycle but also G2 - or suffering

differentiation.

Neural stem cells (NSCs) give rise to all neurons and almost all glial cells in the brain and

spinal cord. In adult mammals, these cells are mainly found in the central nervous system

(CNS) in two niches: the SVZ, of the lateral ventricles (LVs), and the SGZ, in the dentate

gyrus (DG) of the hippocampus (20–22). Throughout life, NSCs have the ability to contribute

to brain plasticity. However, most of these remain inactive unless triggered by certain

physiological signals. (18,23,24) (Figure 1).

Figure 1. From deep quiescence to mature neuronal cells in the subgranular and

subventricular zones. NSCs start by transitioning between a deep quiescence and a shallow
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quiescence state. From here, NSCs can suffer activation, converting to an active state. From

which they may return to quiescence. Due to internal and external factors, the active cells may

start proliferating and self-renewing, suffering differentiation. This process originates

intermediate precursor cells, which eventually will develop into neuroblasts. Through the

integration of these cells in the preexisting neuronal circuits, some neuroblasts mature and

integrate the network, while others suffer apoptosis. Adapted from: Quiescence of Adult

Mammalian Neural Stem Cells: A Highly Regulated Rest (18).

2.2 Adult Neurogenic Niches

2.2.1 Subgranular Zone of the Hippocampus
The first major neurogenic zone in the adult mammalian brain is the SGZ of the

hippocampal dentate gyrus (7,25). This region is responsible for the production, maturation

and integration of adult-born granule cells (abGCs) (7,26). These cells have the capacity for

self-renewal and multipotency, recognized by their astrocyte-like molecular characteristics

and radial glia-like morphology (type 1 cells). During adult neurogenesis, abGCs go through

five individual developmental stages: activation of quiescent type 1 cells in the SGZ;

amplification of non-radial precursor and intermediate progenitors; creation of neuroblasts

through lineage selection; migration of immature neurons; and integration and maturation of

abGCs. Type 1 NSCs exist mostly in a dormant state. However, these suffer asymmetrical

division after activation, generating type 2 cells - non-RGL (Radial glia-like) progenitor cells.

Moreover, type 2 cells can be further differentiated into type 2a and 2b, based on the

expression of different proteins (7,26). These cells divide symmetrically and asymmetrically,

creating type 3 cells through the second process. Both type 2 and type 3 cells commit in part

to the neuronal lineage (7,27,28). Three weeks following this division, most of the

aforementioned cells will die through both apoptosis as well as lack of glutamatergic-

N-methyl-D-aspartate (NMDA) type input (7,29). The surviving neurons are later integrated

into the existing network (7,30,31).

The new abGCs generated are excitatory neurons with the capacity to increase

neuroplasticity (7,32). In fact, the newly formed abGCs compete with the pre-existing ones

for the available axonal boutons, leading to new synaptic formations. This phenomenon

happens once the cell body of the developing neuron is in the granular zone and its dendrites

enter the molecular zone (7,33). The process of synaptogenesis occurs following the increase

in dendrite length. As the axons move into the CA3 region, the dendrites reach the molecular

layer (7,34). The completion of this process has been observed to happen only after 8 weeks,
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although studies showed that it may take longer in higher mammals, being thought to take

over 6 months in humans (7,35).

2.2.2 Subventricular Zone of the Lateral Ventricles
The SVZ of the LVs is the second of the two major regions involved in the process of

adult neurogenesis. The transition from dormant NSCs to immature neurons involves multiple

stages, including proliferation, lineage selection, migration, survival, integration, and

functional maturation, which are interdependent and often overlap (7).

Resident NSCs are labeled type B cells. They predominantly exist in a quiescent state

exhibiting a radial-glial-like morphology and the ability to form vascular connections with

blood vessels in this region. Here, NSCs also have an apical end, extended throughout the

ependymal layer and reaching the lateral ventricles, contacting with the cerebrospinal fluid

(CSF) (7). Type B cells can generate three distinct neural cells – neurons, astrocytes and

oligodendrocytes (7,36). In these conditions, the process of neurogenesis starts with type B

cells’ asymmetric division, originating transit-amplifying type C cells. Type C cells then

create neuronal progenitor cells – neuroblasts, type A cells. These newly formed cells then

migrate along the rostral migratory stream (RMS) toward the olfactory bulb (OB) (7,37). This

relocation takes up to 5 days to complete. There, type A cells differentiate into olfactory

granule cells and periglomerular cells. During the migration process, these cells are encased

by astrocytes in an organized chain containing 30 to 40 cells, aligned closely together. After

reaching the OB, the cells start settling into their final positions, reaching either the granule

cell layer (GCL) or the glomerular layer (GL) (7,38).

One of the fundamental aspects of this process is the regulation of newly formed cells'

survival. This mechanism is essential to secure a sufficient number of new OB neurons and

uses processes such as programmed cell death as a means to maintain adequate migration

through the RMS (7,39). Afterward, the remaining neuroblasts differentiate into one of the

OB interneuron subtypes. The neurons integrated in the OB are assigned specific functions,

being displayed in an organized manner. An example of these specialized cells is hair cells,

which reside in the olfactory epithelium and whose axons reach the GL. Each cell has a

glomerulus assigned to it, representing an individual scent receptor. The hair cells pickup on

stimuli and transmit information to the mitral and tufted cells, whose cell somata resides in

the mitral/tufted cell layer, through their interaction with neurotransmitters such as

gamma-amino-butyric acid (GABA) or dopamine, secreted by neighbouring periglomerular

interneurons (7,40,41). The concluding stage in the integration of new neurons is the synaptic
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merging into the already available neuronal network. This process occurs through the

principle “use them or lose them”, where neurons not well integrated in the neuronal network

of the OB perish. In the case of hair cells, an odorant rich biome would positively influence

the number of cells integrated (7,42–44) (Figure 2).

Figure 2. SGZ and SVZ niches. Coronal cross-section of the adult brain shows SGZ and

SVZ niches, where the process of neurogenesis occurs. NSCs develop into mature neurons;

the schematic shows blood vessels (BV), astrocytes and cilia. SGZ (a) and SVZ (b) are also

detailed. In (b) it is also shown the migration of neurons from the SVZ to the OB through the

RMS. Adapted from: Factors that influence adult neurogenesis as potential therapy (9).

2.2.3 Newly Discovered Neurogenic Niches
While most research on adult neurogenesis suggests that this process occurs almost

exclusicely in the SGZ and SVZ, recent studies have indicated that other niches may also

have the necessary properties to support it (45). These newly discovered neurogenic niches

include the hypothalamus, the substantia nigra, the striatum, the amygdala, the habenula and

the cerebellum, although the last two are still controversial and need further research to

confirm (46).

2.2.3.1 Hypothalammus
The hypothalamic neurogenic niche is located in the subependymal zone of the third

ventricle. Mouse and rat models showed that the hypothalamic niche is distinct from the SGZ
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and SVZ, namely because in the first cell proliferation does not occur solely in the cell layers.

In fact, the proliferation and generation of new neurons occur throughout the hypothalamic

parenchyma (46–48). The precursor cells in the hypothalamus are named “tanycytes” and

have been characterized as radial glial cells (RGCs) (46,49). The hypothalamic niche is

formed by various cell subsets, located throughout the third ventricle (46,50). Different

populations of tanycytes were named α and β, which in turn are also subdivided into α1 and

α2, and β1 and β2. The α1 cells are located in the ventromedial nuclei in the third ventricle,

while the α2 can be found by the arcuate nuclei. Contrastingly, β1 cells reside in the lateral

part of the infundibular recess, while β2 forms in the median eminence, known as the

hypothalamic proliferative zone (46,50). The recognition of the hypothalamus as an active

neurogenic site occurred when researchers found that hypothalamic cells express markers

associated with NSCs and progenitor genes, such as SRY-box transcription factors 9 and 2

(Sox9 and Sox2), Notch 1 and 2, hairy and enhancer-of-split 1 and 5 proteins, cluster

differentiation 63, frizzled 5 protein, neurotrophic tropomyosin kinase protein (NTrk-2T1),

and thyroid hormone responsive protein (46,51,52). Moreover, studies focusing on the

detection of markers of progenitor cells like bromodeoxyuridine (BrdU) and Hu+ turned in

positive results (46,50). BrdU and Hu+ are detected by immunostaining of tissue containing

specific antibodies anti-BrdU and anti-Hu. These substances get incorporated into newly

formed DNA, marking new cell differentiation sites. Furthermore, an experiment conducted

on mouse models, with microdoses of insulin-like growth factor 1 (IGF-1) delivered with a

cannula implanted into the right lateral cerebral ventricle, demonstrated that local

neurogenesis enhanced proliferation, suggesting that the process of neurogenesis in this niche

is influenced by IGF-1 (46,53). Immunofluorescence also highlighted that tanycytes express

proteins associated with neural precursor cell features, such as the intermediate filament

protein nestin (46,54), vimentin, a marker of precursor cells (46,55), and neuronal migration

protein doublecortin (DCX), a marker of young neurons (46,56)

2.2.3.2 Substantia Nigra
The substantia nigra (SN) is located in the mesencephalon, and structurally divided

into two parts, the pars compacta and the pars reticulata (46,50). It contains a large number of

melanized neurons, which give it a darker appearance and justify its name (46). This region

has been the subject of many studies throughout the years, which revealed that despite

neurogenesis occurring at much lower levels here compared to other well-known neurogenic

zones, the generation of new neuronal cells does take place, especially in the substantia nigra
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pars compacta (SNpc). The SN is mainly involved in movement control, namely in motor

planning and eye movement, and the SNpc is primarily responsible for originating

dopamine-producing neurons. This explains the fact that this structure has been observed as

one of the most affected in cases of PD. Furthermore, the SN has recently been associated

with the regulation of sleep (46)

To confirm the existence of adult neurogenesis in the SN, Zhao et al. administered BrdU

and used immunostaining techniques to follow new neurons in the SNpc (46,57). After 2 days

of BrdU administration, no immunostaining was observed. However, 10 to 21 days after the

administration new neurons were observed, leading the authors to theorize that this later

immunostaining happened due to the formation of brand-new cells (46,57). Furthermore, the

authors administered a peripheral dose of 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine, a

known toxin, to destroy a large number of the nigral dopaminergic cell population.

Researchers observed that neurogenesis increased exponentially. It was also theorized that

lesions in this structure enhance neurogenesis (46,57).

2.2.3.3 Striatum
The striatum is anatomically divided into the ventral striatum (the nucleus accumbens

and olfactory tubercle) and the dorsal striatum (the caudate nucleus and putamen) (46,58).

This region receives both GABAergic and glutamatergic inputs and it is responsible for motor

behavior and influences the reward system in the brain (46,58). In normal physiological

conditions, neurogenesis in the striatum remains dormant, being increased only in response to

certain stimuli such as a stroke/ischemia or injury, and pharmacological stimuli, such as some

growth factors and neurotrophins (46).

Several studies have highlighted the existence of two distinct cell types capable of

neurogenesis in this structure: precursors from the SVZ, whose newly formed neurons

migrate to the striatum afterward; and local neuronal precursors in the striatal parenchyma

(46,59,60). These latter might encompass a mechanism through which the brain tries to repair

itself after considerable trauma. These findings were corroborated through studies carried out

on animal models, including adult rats, rabbits, monkeys, and humans (46). In humans, in

turn, a technique that retrospectively dates cell birth was used to confirm the existence of

neurogenesis in the striatum (46,61). This study used the oscillations in the levels of

carbon-14 isotope in the DNA of proliferating cells, followed by accelerator mass

spectrometry, leading to the discovery of postnatal cell proliferation in the striatum (46,61).
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Moreover, the transcriptome of many human individuals was studied which led to the

discovery that DCX was mainly found in the striatum, rather than the hippocampus (46,62).

2.2.3.4 Amygdala
The amygdala integrates the limbic system, being responsible for the processing of

emotions, such as fear, and participating in the processes of learning and memory retention

(46). Experiences carried out in nine adult squirrel monkeys and four adult cynomolgus

monkeys revealed that this structure does possess the capacity to generate new neurons

throughout life. Firstly, the subjects were injected intravenously with BrdU twice a day for 3

days and sacrificed at different intervals. Then, a different group of animals was injected in

the left lateral ventricle with the dye 1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine,

used for molecular imaging and neural cell fate tracing, and later sacrificed after 3 weeks

(46,63). After analyzing the results, the authors reported newly differentiated cells at 21 and

28 weeks postinjection. Other studies utilized methods such as the removal of the OB, in

8-week-old male Wistar rats, which showed a decrease in hippocampal neurogenesis but an

increase in amygdalar neural cell proliferation (46,64); and the administration of hormones

like testosterone, which also revealed an increase in newly generated amygdalar cells,

observed through the Tuj1 marker, expressed by these (46,65). This research led to great

breakthroughs in the next few years, namely in topics like the effect of social stress or the

relationship between hippocampal and amygdalar neurogenesis in the overall regulation of

emotions.

2.2.3.5 Habenula
The habenula is a bilateral brain structure responsible for linking several brainstem

regions to the forebrain. In mammals, this structure is often divided into three parts, the lateral

habenula (LHb), the medial habenula (46,66), and the habenular commissure (46,67). The

LHb receives stimuli from various sources, like the basal ganglia, hypothalamus, and limbic

regions. These inputs will then travel up ascending projections leading to behavioral

modulation (46,68). The presence of neurogenesis in the habenula has been observed in

various animal models, from teleost fish (46,69,70) to rodents (46,71,72). For instance,

experiments carried out on zebrafish revealed proliferation zones in several structures

including the habenula (46,73). In addition, studies focused on the quantification of diverse

transcription factors associated with the creation of new neurons took place. These utilized

proteins such as prothymosin alpha, an acidic nuclear protein that affects many cellular

functions including cell cycle progression, proliferation and survival (46,74). This protein is
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expressed in various regions where neurogenesis has been heavily observed, namely the SVZ,

the granular cell layer of the DG, and the GCL of the OB. Another molecule is the

transcription factor NeuroD1, which is a member of the proneural gene family, playing an

important role as a neuronal differentiation factor. This substance has been found in the

epithalamus and the dorsal and ventral nuclei of the habenula, in African aquatic frogs

(46,75).

In mammals, research showed that neurogenesis in this area can occur if mediated by

substances such as antidepressants or brain-derived neurotrophic factor (BDNF) infusions

(46,76). Despite these advances, spontaneous adult neurogenesis in mammals is yet to be

observed. The fact that the habenula is responsible for the processing of stress responses and

learning may suggest that the occurrence of neurogenesis in this region is an adaptive

mechanism, only activated in response to trauma stimuli (46,77).

2.2.3.6 Cerebellum
The cerebellum is organized as a trilaminar structure, consisting of a molecular layer, a

middle Purkinje cell layer, and an inner granular cell layer, each one with distinct cells like

granular cells, Purkinje cells and various interneurons (46,78). In the granular layer exist

different cell types such as granule cells and unipolar brush cells, which have excitatory

properties (46,79), as well as Golgi and Lugaro cells, which are inhibitory (46,80). In the

molecular layer basket and stellate cells can be found, as well as inhibitory interneurons

(46,81). Lastly, in the Purkinje layer exist homonymous GABAergic cells, constituting the

cerebellar cortex (46,79).

Previously, cerebellar neurogenesis was thought to take place solely in the embryonic and

early postnatal stages (46,82). However, emerging research points to the possibility of

neurogenic capacity in the cerebellum, under specific circumstances. In fact, studies carried

out on transgenic mice models showed that following cerebellar damage the granular layer

showed signs of regeneration (46,83). This suggests the cerebellum possesses the capacity to

perform injury-induced neurogenesis. Moreover, another experiment involved the

transplantation of cerebellar granule neuron precursors from humans into the Harlequin

mouse cerebellum, which triggered the proliferation of nestin-positive precursors in the

mouse’s cerebellum (46,84). Alongside these findings, it was noted that NSCs can create both

neurons and glial cells, a process that is controlled by a transcription factor family named Sox

genes, in particular SRY-box transcription factor 1 (Sox) Sox1, Sox2, and Sox9. It was

observed that the transcription factor Sox2 is involved in Bergmann Glia (Golgi cells)
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development during the embryonic, postnatal, and adult neurogenesis phases. Sottile et al.

(2006) determined that Sox1 and Sox2-positive Bergmann glia established a distinct pattern

when intercalated with calbindin-positive Purkinje cells (46,84,85). This led the authors to

conclude that the expression of these three Sox genes results in a different kind of Bergmann

glial cell, yet to have been identified. Additionally, studies revealed that the expression of

Sox2 was detected in the Purkinje cell layer following physical activity, which might indicate

an increased glial population genesis following motor activity (46,86). Finally, research

utilizing adult rabbit models revealed that the Purkinje cell layer of these animals

incorporated BrdU at 1 to 5 days postinjection, being also detected in some Bergmann glial

cells (46,87). A double staining technique for BrdU with polysialic acid neural cell adhesion

molecule and Microtubule-associated protein 5 (Map5) showed that in the peripubertal rabbit

cerebellar cortex, the newly generated cells expressed these same markers. The authors also

observed the presence of DCX+ or Map5+ and BrdU+ cells 15 days after the injections,

suggesting that both cell populations originated during the study. The genesis of GABA+ cells

immunoreactive for paired box gene two was also reported, leading to the conclusion that the

molecular layer of the peripubertal rabbit cerebellum possesses the ability to generate

GABAergic interneurons (46,87).

Regarding the experiments described above, it is evident that neurogenic events do occur

in the cerebellum, after early mammalian life stages. Nevertheless, these neurogenic events

were observed after specific controlled stimuli, which proposed the necessity for further study

to focus on the possibilities of naturally occurring neurogenesis.

3. Role of Cellular Organelles in Adult Neurogenesis
3.1 Mitochondria

The mitochondria are well known for their part in energy production, cell signaling

and calcium homeostasis. This organelle is continuously subject to remodeling, through

mitochondrial dynamics, namely fission and fusion processes (88,89). This last process has

been observed to play a role in adult neurogenesis, influencing stem cell renewal and

differentiation. This occurs partially via the direct or indirect production of metabolites that

regulate maturation pathways. (88,90,91).

Several studies have shown that RGCs in the developing brain present fused

mitochondria, while the progenitor cells possess fragmented mitochondria (88,92,93).
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Additionally, newly born neurons exhibit mitochondria of even smaller size. This led several

investigators to conclude that mitochondria must suffer a higher fission rate while in the

neurogenic transition, followed by an increase in size during neuronal maturation (88,92,93).

Further studies carried out in mouse models revealed that disrupting genes such as optic

atrophy 1 and mitofusin 1 and 2, responsible for mitochondrial fusion, resulted in a decrease

of RGCs self-renewal as well as an increased neuronal differentiation. Contrastingly, the

disruption of Drp1 (dynamin-related protein 1), which controls fission, precipitates the

increase in self-renewal and decreases neurogenesis (88,92,93).

During the cell cycle, mitochondrial fusion spikes in the G1 and S phases, suffering

fission during G2 and mitosis (88,94). This dynamic secures the correct distribution of

mitochondria between the daughter cells in the division process. Considering its postmitotic

nature, researchers aimed to understand how mitochondrial dynamics influence neurogenesis.

One study employed a novel in vitro tracking technique to monitor mitochondrial behavior in

cortical NSCs/NPCs during self-renewal and neuronal differentiation processes (88,93).

While previously stated facts about mitochondrial behavior during cell division were

observed, a new observation was made: the daughter cells suffered different fates. In fact,

cells that continued as NSCs/NPCs presented enhanced mitochondrial fusion levels, while

cells fated to become neurons showed higher levels of mitochondrial fission. This was

confirmed through the experimental induction of mitochondrial fusion in cells after mitosis,

with either fusion-promoting or fission-inhibiting molecules. In fact, this resulted in the

majority of the cells suffering self-renewal instead of differentiating into neurons (88,93).

To assess the relevance of these findings, it is pivotal to establish a comparison

between mouse brain development and the human adult brain. In humans, cortical progenitor

cells are capable of self-renewing, resulting in an increase in cortical size in humans (88,95).

Indeed, researchers used the already mentioned methods to track mitochondria and cell fate in

human cortical progenitors, derived from pluripotent stem cells (PSCs). This study concluded

the existence of a positive correlation between mitochondrial behavior in neurogenesis in

mice and humans (88,93). Strikingly, it was observed that mitochondrial dynamics in human

progenitors can influence cell fate for about twice as long when compared to mouse cells

(88,93). Nevertheless, further experiments are needed to expand upon this possibility, though

this greater period flexibility may be linked to a higher self-renewal capacity in human

progenitor cells.
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The processes of mitochondrial fission and fusion are closely related to mitochondrial

activity, in big part through the maintenance of the mitochondria cristae, in which oxidative

phosphorylation (OXPHOS) molecular effectors and the electron transport chain (ETC) are

found (88,96). In fact, adenosine triphosphate (ATP) is generated within cells’ mitochondria

through processes such as glycolysis in the cytosol and OXPHOS. The amount of ATP

generated through glycolysis is smaller than that of OXPHOS, but kinetically the first process

is much faster overall. This justifies the fact that most highly proliferative cells tend to

generate their energy through glycolysis (88,96). Nevertheless, it is also true that

mitochondrial respiration through OXPHOS is the most efficient for a cell to generate energy,

being a process practiced by cells such as neurons (88,92,97–99). As expected, NSCs/NPCs

rely mostly on glycolysis over OXPHOS, while already differentiated neurons operate

contrastingly. A particular study revealed that these metabolic changes are likely to drive

neuronal differentiation, rather than being a result of it. They have used Drosophila models

and modulated the genetic disruption of OXPHOS-related genes (88,97) to reduce the size of

NSCs/NPCs and promote their transition into their neuronal fate. However, when the

disruption of these genes occurred in Drosophila neuroblasts, proliferation slowed down

significantly, inhibiting the process of cell cycle exit (88,100). Furthermore, research

developed in humans accessed the role of OXPHOS in mitochondrial disease modeling, in

PSC-derived NSCs. These possessed the pathogenic mutations in the SURF1 gene

(responsible for Leigh syndrome), presenting a reduced ability to differentiate into neurons

and mature (88,101). Glycolysis was shown to play a role in mouse cortical neurogenesis,

namely through the metabolite methylglyoxal (MGO) (88,102). This molecule influences

NSC self-renewal, regulating its glycolytic activity. Indeed, increased MGO levels hinder the

capacity for NSCs self-renewal, leading to an increase in neurogenesis. This occurs due to the

binding of MGO to the key glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase,

which then acts as a ribonucleic acid (RNA)-binding protein (88,103). This affects Notch1

messenger RNA (mRNA), reducing its translation and resulting in a down regulation of the

process of cell self-renewal (88,102).

Cellular reactive oxygen species (ROS) are produced by both mitochondrial OXPHOS

via ETC activity and Nox enzymes at the plasma membrane (88,104). These have been linked

to increased NSCs/NPCs self-renewal and proliferation (88,105), although recent research

suggests this effect may be context-dependent (88,106). Interestingly, data collected using

adult mouse models highlighted that high levels of ROS may lead to NSCs/NPCs quiescence
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while in the embryonic cortex, ROS increases during the conversion from NSCs/NPCs to

neurons (88,92). This last process seems to occur due to the upregulation of the BOTCH gene

(a gene that expresses a gamma-glutamyl cyclotransferase), a Notch inhibitor, through the

nuclear factor erythroid 2-related factor 2 (Nrf2), favoring the transition towards neuronal fate

(88,92).

Lastly, another crucial role of OXPHOS activity is the regulation of the

reduction-oxidation balance. This process occurs through the pair formed by the oxidized and

reduced form of nicotinamide adenine dinucleotide (NAD) (NAD+ and NADH). The ratio

between these substances is regulated by the glycolysis-OXPHOS balance and has been

observed to influence many aspects of neuronal fate acquisition and differentiation (88,107).

This influence stems mainly from the activity of the NAD+-dependent deacetylase sirtuin

family, particularly from sirtuin-1 (SIRT1) (88,108–110). SIRT1 is necessary for the

determination of NSCs/NPCs fate during embryonic development, interacting with the

repressor B cell lymphoma 6 and repressing pathways such as Notch, Wingless-related

integration site (Wnt), sonic hedgehog protein and fibroblast growth factor, that keep

NSCs/NPCsin the self-renewal phase, thus promoting neuronal differentiation (88,110).

3.2 Endoplasmic reticulum
The endoplasmic reticulum (ER) is one of the largest organelles present in eukaryotic

cells. It is constituted by a series of tubules and flattened sacs branching through an enclosed

space, the ER lumen. The lumen is envaulted by the ER membrane, a single intracellular lipid

bilayer, which regulates the passage of molecules from the cellular cytosol into the ER

(111,112). This organelle is crucial for the correct synthesis, folding and structural maturation

of most cellular proteins (111,113). When in the ER lumen, these proteins are folded into very

specific three-dimensional shapes and experience multiple biochemical modifications such as

glycosylation and disulfide bond formation. These processes are facilitated by ER-resident

enzymes, namely chaperones, glycosylating enzymes, and oxidoreductases (111,114,115).

However, despite ER efforts, only under 20% of these proteins suffer the correct folding to

undergo translation and complete their designated functions. Because of this, the ER develops

a process designated ER-associated degradation, where unproperly folded proteins (UFP) are

removed to the cytosol and later suffer ubiquitylation and degradation by the 26S proteasome

(111,116–118). Certain factors may lead to a higher number of UFP, such as genetic

mutations, low cellular energy levels and aging. When the ER cannot keep up with the

cellular requests, a phenomenon called “ER stress” may occur (111,119). This process tries to

27



restore homeostasis after the accumulation of UFP since the persistent production of these

may increase overall cellular stress and result in death.

Curiously, a study was conducted to assess the relevance of ER stress in cognitive

function using adult male mice models (120). The experiment explored the link between

spinal cord injuries (SCI) and mechanisms such as adult neurogenesis. Individuals suffering

from SCI were reported to present cognitive defects (40 to 60%) (120–123) and depression

(25 to 47%) (120,124–128), encompassing issues regarding memory and attention deficits. In

this regard, the study separated the mice into different groups ranging in severity levels of SCI

– mild, moderate and severe. These groups were then tested on cognitive performance and

depressive behavior tasks, independent of motor function. The researchers used tests such as

the placement of the animals in a Y-maze (129), object recognition (129,130), and a

step-down passive avoidance (129), as well as a sucrose preference test, a tail suspension test

and a forced swim test (120). Curiously, the results showed that mice suffering from moderate

to severe SCI presented marked cognitive impairments, as well as depression-like behaviors

(120). To explain this phenomenon, it has been theorized that an injury in the spinal cord

leads to the disruption of neurogenesis in the hippocampus, most noticeably in the dentate

gyrus. There is a steep decline in the generation of new neurons as well as an increased level

of ER stress in the affected regions (120). This organelle reaction is thought to be one of the

reasons for the decrease in neurogenesis, besides neuroinflammation.

3.3 Lysosomes
Studies were performed to establish the relevance of lysosome’s role in adult

neurogenesis. Specifically, it centered on the assessment of the role of phospholysine

phosphohistidine inorganic pyrophosphate phosphatase (LHPP), an enzyme found in the

lysosomal membranes of astrocytes (131). This enzyme is responsible for the regulation of

lysosomal acidification, facilitated by its relationship with ATPase (131). This is essential for

lysosomal degradative activity. An experiment was carried out using mice models, both LHPP

knockout (KO) and LHPP wild type. It was observed that the KO group had significant

resilience to stress-induced depression-like behaviors, resulting in the increase of certain

chemokines (like chemokine ligand 5, CXC motif chemokine ligands 2 and 16) responsible

for proliferation and NSC differentiation, leading to greater hippocampal neurogenesis rates.

In fact, under stressful conditions, LHPP facilitates the hydrolysis of inorganic

pyrophosphate, leading to the acidification of lysosomes. When this process is suppressed, the

degradation of proteins such as CCAAT/enhancer binding protein β is compromised,
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increasing chemokine release (131). This is why it has been theorized that LHPP may

constitute a valuable therapeutic target for stress-related brain pathologies, as its deficiency

may protect against stress-induced neurogenesis inhibition. In 2015 a large-scale

genome-wide association study was conducted in the Han Chinese population, which revealed

that when the single-nucleotide polymorphism associated with the LHPP gene was inactive,

the individuals showed a reduced risk of developing depression (131,132).

4. Nutritional Factors and Adult Neurogenesis
4.1 Omega-3 Fatty Acids and Adult Neurogenesis

FAs are carboxylic acids containing a long un-branched aliphatic tail chain, and can be

subdivided into saturated, monounsaturated and polyunsaturated (133). Omega-3

polyunsaturated fatty acids (PUFA) are important nutrients present in large quantities in the

brain that produce anti-oxidative effects, as well as anti-inflammatory and anti-apoptotic

effects (133,134). Three of the most relevant PUFA are α-linolenic acid, eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA) (133). Given their great involvement in several

physiological processes and apparent neuronal protective effects, it is theorized that they may

play a large role in the development and progression of various pathologies, namely

neurodegenerative diseases.

Unfortunately for animals, it is impossible for them to naturally produce omega-3 FA,

having to acquire these through their diet (133,135,136). For the correct apport of these

nutrients, the average person should be consuming a ratio of 2:1 to 4:1, with omega-6 to

omega-3 (133,137,138). However, thanks to the Western diet, today’s ratio is closer to 15 to

20:1. This change is due in part to the decrease in fish consumption, as well as the industrial

production of animal feeds, rich in grains containing mostly omega-6 (133,137,138). Indeed,

there has been a shift in individuals’ diets, with the reduction in the number of products like

salmon, mackerel, halibut, sardines, tuna, and herring, as well as flaxseeds, pumpkin seeds,

purslane, soybeans, canola oil, and walnuts (133).

Remarkably, these nutrients possess the capacity to impact neurotrophin levels,

promoting neuronal survival and development. Beyond just that, the brain is also capable of

secreting a molecule, BDNF, which increases upon the consumption of these nutrients,

responsible for alterations in neurogenesis and neuronal survival (133,139). Therefore, there

is a growing amount of evidence that suggests that the depletion of omega-3 FA may result in
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an increase in mood disorders, such as schizophrenia and dementia (140). It is thought that

omega-3 PUFA deficiency has been indicated as a risk factor for many pathologies, including

cardiovascular, autoimmune, and developmental disorders (133,141).

Focusing, for instance, on AD. The most common form of dementia in the elderly is

characterized by the formation of extracellular amyloid β peptide (Aβ) deposits, as well as

intracellular neurofibrillary tangles in the brain. This disease is associated with a decrease in

omega-3 PUFA levels in both the hippocampus and cortex (133,142,143). Remarkably, it

appears as though there is a link between a higher omega-3 PUFA intake and a comparably

lower risk of cognitive decline and dementia in old age. In fact, studies showed in animal

models that a diet rich in DHA significantly reduces the number of Aβ deposits and plaques

(133,144,145). Furthermore, the role of EPA has also been described as protective, limiting

the number of plaques formed (133,146,147).

PD it is characterized by the loss of a high number of dopaminergic neurons in the

substantia nigra, as well as by the presence of Lewy bodies (protein αSyn inclusions) (133).

Although studies have been contradictory when it comes to omega-3 FA’s role in PD

prevention or treatment, some studies show that these might help reduce bradykinesia

associated with the disease (148).

Acute Neuronal Injury is one of the main complications associated with

neuroinflammation. There is an exacerbated and prolonged inflammatory response that results

in extensive neuronal damage and loss (133). Therefore, studies have been conducted to find

modulators of neuroinflammation and discover new therapy pathways. In this way, it has been

uncovered that omega-3 PUFA promotes a neuroprotective response following this pathology

(133,149). This was expected given that neurodegeneration and acute neurological injury

share many pathological mechanisms, such as excitotoxicity, oxidative stress and

inflammation.

When it comes to spinal cord injuries, the damage caused is a result of the

combination of an initial physical trauma followed by a secondary degenerative process. In

this pathology, there is the destruction of ascending and descending axonal tracts (133). These

are responsible for motor, sensory and autonomic functions. Depending on the level at which

the injury occurred, there can be drastically different, devastating and lifelong consequences

for the injured (133,150). In this disease, recovery is complicated since the axons of the CNS

have a deficient regeneration capacity. In this matter, the initial injury together with the
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subsequent significant inflammatory response will lead to a chronic disease state (133,151).

Finally, studies showed that after the SCI, the administration of DHA in a rat model reduced

the effect of the injury when administered 30 minutes after the occurrence (133,152).

4.2 Vitamins and Adult Neurogenesis

4.2.1 Vitamin D
Vitamins are critical nutrients necessary to ensure a healthy and balanced human diet.

Among these, vitamin D has been shown to play a crucial role in controlling many cell

activities, such as autophagy, acting by removing dysfunctional mitochondria and, as well as

moderating oxidative stress, calcium signaling, inflammation, DNA disorders such as

telomere shortening, among others (153–157). Due to these properties, this vitamin is

commonly linked to the aging process and the regulation of its underlying causes.

Vitamin D is a fat-soluble vitamin, synthesized from 7-dehydrocholesterol (provitamin

D3) present in the skin, when exposed to ultraviolet-B radiation, namely from sun exposure

(153). The exact amount produced by each individual is dependent on many factors such as

skin pigmentation, season, and age, as well as personal habits such as exposure to sunlight,

time spent outdoors and sunscreen usage (158). When individuals live in geographic locations

where sunlight is scarce, or when a skin condition is involved, supplementation must be

considered (153,159). Vitamin D deficiency is defined as a concentration of

25-dihydroxyvitamin D [25(OH)D] below 50 nmol/L (153,160).

In animals, the production of vitamin D starts with the conversion of

7-dehydrocholesterol to vitamin D3; contrastingly, in plants, yeast and fungi, it is the

conversion of ergosterol that originates vitamin D2 (ergocalciferol) (153). Both vitamin D3

and D2 can be acquired through diet, and both are essential for homeostasis. After acquiring

vitamin D3 and D2, these are converted into calcidiol (25(OH)D), in the liver. Subsequently,

this molecule is further converted in the kidneys, originating calcitriol (1,25(OH)2D3), the

active vitamin D form (153). The vitamin D receptor (VDR), an intracellular transcription

factor, interacts with the 1,25(OH)2D3 and binds to DNA sequences, regulating gene

transcription involved in various cellular functions(153,161,162).

Several studies state that vitamin D deficiency is intimately linked to accelerated

aging. As humans age, the capability of synthesizing 1,25(OH)2D3 suffers a great decline

(153,163). In fact, by the time humans reach 70 years old, their capacity to produce the active

form of vitamin D is less than 50% when compared to that of 20-year-old individuals
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(153,164). The process of aging is largely associated with the loss of neuronal plasticity,

resulting in phenomena such as loss of hearing and balance (153,165,166). In fact, studies

using mice models have shown that when vitamin D is incapable of binding to the VDR, such

as in the case of mice phenotypes incapable of presenting VDR, faster aging occurs. They

have also observed many health problems also experienced by humans when aging: muscle

atrophy, immune deficiency, and a higher predisposition for cancer formation (153,167–169).

Furthermore, it has been proven that vitamin D also plays a crucial role in cellular

differentiation and proliferation, calcium signaling in the brain, and is associated with

neurotrophic and neuroprotective actions (153–157). This vitamin is essential for the correct

calcium maintenance and reabsorption in the bones (153,170). In individuals with low levels

of vitamin D, the blood calcium levels start to rise, leading to excess calcium in the tissues,

namely in the brain. This may lead to calcium deposits that pose a threat to normal brain

functions (171). Given this fact, it can be inferred that vitamin D deficiency is directly linked

to neural degradation, therefore, vitamin D supplementation must be incentivized, especially

in the elderly. In fact, recent literature suggests that lower-than-necessary vitamin D levels

negatively impact NSCs health. Vitamin D is crucial for maintaining neurogenic activity,

particularly through the modulation of the Wnt/ β-caterin pathway. The disruption of this

signaling pathway results in disturbances in cognitive activity, since this mechanism

influences neurogenesis, preventing NSCs premature differentiation into other cell types,

namely astroglia. This leads to reduced activation of NSCs, and increased quiescence levels

(Figure 3) (153).
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Figure 3. The perceived role of vitamin D in the activation of quiescent NSCs in the

adult brain. The decrease in vitamin D may lead to lower NSC activation rates, resulting in

decreased neurogenesis levels. This occurs through an increase in inflammation and Wnt

antagonists, and a decrease in the Wnt/ β-caterin pathway activity. Meanwhile, an increase in

the uptake of vitamin D has the opposite effect, resulting in increased levels of neurogenesis

through higher activation rates. This process counteracts the cognitive decline characteristic

of aging. Adapted from: Vitamin D deficiency as a potential risk factor for accelerated aging,

impaired hippocampal neurogenesis and cognitive decline: a role for Wnt/β-catenin signaling

(153).

4.2.2 Vitamin C
Another undoubtedly relevant vitamin when it comes to healthy adult neurogenesis is

vitamin C. This vitamin, also known as ascorbic acid, is a water-soluble hexose (172) that can

be found in many foods such as red peppers, citrus fruits, strawberries, and most leafy greens,

to list a few (173). Vitamin C is not only a powerful antioxidant that protects against the

accumulation of ROS and reactive nitrogen species (RNS), byproducts of certain cellular

metabolic processes, but it also serves as a cofactor in various enzymatic reactions, including

the synthesis of catecholamines, carnitine, cholesterol, amino acids, and several peptide

hormones (172,176).

Vitamin C presents two isoforms and, naturally, two distinct sodium-dependent

vitamin C transporters – SVCT1 and SVCT2 (176,179,180). SVCT1 is mostly confined to the
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surface of epithelial cells, assisting in the transportation of vitamin C in the intestine, liver,

kidneys, lungs, and other organs (172,180–182); contrastingly, SVCT2 is mostly present in

specific tissues, namely the brain, adrenal and pituitary glands, muscles, bones, and lymphoid

tissue (176,180). High levels of SCVT2 have also been found in pyramidal neurons,

throughout the inner region of the cerebral cortex, in the adult brain (176,183,184). This

transporter is also observed in microglia cells, ependymal cells and tanycytes (176,185), and

Schwann cells (176,186). Due to the transporters’ proximity to the neurogenic niches in the

brain, these structures have direct access to vitamin C, present in high concentrations in the

brain (172).

For neurogenesis to be successful, the presence of βIII-tubulin is imperative (172,184).

This molecule is a microtubule, encoded by the TUBB3 gene, a beta-tubulin gene that

endorses the tubulin family of proteins, found almost exclusively in the neuronal tissue (187).

In light of these observations, a recent study has demonstrated that vitamin C, when in

isolated neurospheres, induced an increase in the differentiation rates related to βIII-tubulin

and in SVCT2 expression (172,188). This study used adult rat models, immunofluorescence

microscopy and in situ hybridization analysis, specifically in proliferating BrdU + C-type

cells, isolated from adult rat’s SVZ. Contrastingly, after the long incubation period that takes

to oxidize ascorbic acid to dehydroascorbic acid (DHDA), a general loss in the formation of

neurites was observed (172,189). Susprisingly, it was also observed that astrocytes have the

capacity to recycle DHDA, stimulating the maintenance of neurites (172,190). This proves

that the recycling of vitamin C in vitro aids in the regulation of the morphology of immature

neurons, through the differentiation and maturation processes. Moreover, another study

illustrated that vitamin C-deficient guinea pigs presented impaired neurogenesis in the SVZ.

Indeed, the number of neuroblasts in the SVZ and SVL decreased progressively when being

fed a diet deficient in vitamin C for 14 to 21 days. This finding was analyzed through BrdU

labeling (172,191).

4.3 Minerals and Adult Neurogenesis

4.3.1 Zinc
Minerals consist of inorganic substances with a defined chemical composition and

crystalline structure. They are implicated in most biological functions, being vital for

processes of bodily functions such as bone maintenance, oxygen transport in the blood and, of

course, CNS homeostasis. In the following sections, we will take a closer look at a few

specific minerals. Zinc is an essential catalyst of more than 80 mammalian enzymes (192).
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These enzymes include DNA and RNA polymerases, histone deacetylases (193), and DNA

ligases (194), crucial for DNA replication and cellular proliferation. Moreover, zinc

constitutes an essential component in a family of DNA-binding transcription factors, the

zinc-finger proteins (192,195,196). Furthermore, most nuclear receptors in the brain are

zinc-finger proteins, namely those that modulate the transcriptional roles of vitamin D,

retinoic acid, glucocorticoids, thyroid hormone and estrogen (197). These receptors play

indispensable roles in the process of neurogenesis.

The positive effects of zinc consumption on adult neurogenesis have been

demonstrated in multiple studies. In fact, it has been shown that zinc intervenes in three

distinct phases of neurogenesis: cell proliferation, stem cell survival, and neuronal

differentiation. In 2008 a study was carried out on adult rat models. These were provided with

a zinc-deficient diet for 3 weeks. This depletion resulted in a 50% decrease in the number of

marker Ki67+ cells, in the rat’s rat dentate SGZ (198). These rats also showed increased

apoptosis in the SGZ of the dentate, and an increase in terminal deoxynucleotidyl

transferase-mediated deoxyUTP-biotin nick end labeling cells (198). The apoptotic effect of

zinc depletion appears to be related to mitochondria since it induces an increase in ROS

generation, the translocation of the pro-apoptotic factor B cell lymphoma 2 (Bcl-2)-associated

death promoter (BAD) protein to the mitochondria, the release of cytochrome c into the

cytosol, activation of caspase-3, and poly (ADP-ribose) polymerase cleavage (192,198,199).

Further research used weanling mice which were fed a zinc deficient diet for 5 weeks.

This trial concluded that this diet decreased the number of BrdU-labeled cells in the dentate

(200). When fed this diet for 6 weeks, the number of BrdU-labeled cells decreased even

further, as well as marker Ki67+ cells (201). These effects seemed to be reversed once an

adequate quantity of zinc was reintroduced to the diet (201). In vitro trials also took place to

expand the understanding of zinc’s action on neurogenesis. This research solidified that zinc

deficiency decreased BrdU labeling of human NT-2 cells (198). Finally, zinc deficiency has

been associated with the reduction of hippocampal DCX levels (200,201). This decrease

might be explained simply by a reduction in the overall number of proliferating cells. Still,

lower zinc levels have been linked to a shortening in neuronal branching of DCX+ cells,

suggesting that this depletion damages neurogenesis directly (200).

4.3.2 Calcium
Another essential mineral when it comes to the development of the CNS, from neural

induction to cellular differentiation, is calcium. Highly selective Orai1 to 3 calcium channels,
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present in the plasma membrane, are crucial for the influx of calcium into the cell (202–205).

These channels interact with calcium sensors, the stromal interaction molecules, located in the

ER (202,206–208). Upon the decrease of calcium levels in the ER, these structures influence

the entrance of calcium into the cytoplasm from the extracellular space. This process is named

store-operated calcium entry (SOCE) (202). This process has been observed in both

non-excitable calls and neurons (209). In fact, recent literature points out SOCE has been

crucial in NSC proliferation and neurogenesis (210,211). In NSCs found in embryonic and

adult mouse, SOCE is mediated by stromal interaction molecule 1 (STIM1) and Orai1, both

calcium release-activated channel (CRAC) proteins (202). Furthermore, the ablation of either

of these proteins resulted in a severe decrease of SOCE, hindering the proliferation of NPCs

in both in vitro and in vivo scenarios. This fact points to a role of CRACs in the process of

neurogenesis. Moreover, these channels regulate gene expression through the

calcineurin/nuclear factor of activated T cell protein pathway, an essential process for cell

proliferation (202) (Figure 4).

Figure 4. The role of SOCE in the regulation of neurogenesis. SOCE and the molecular

components associated promote the differentiation of embryonic stem cells (ESCs) as well as

the proliferation of NSCs/NPCs. This fosters neurogenesis both in the embryonic state and in

adulthood. Adapted from: Molecular Components of Store-Operated Calcium Channels in the

Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington’s

Disease (HD) (202).

A study out on human NPCs reinforced that knocking down STIM1 reduced SOCE,

inhibiting DNA replication, correct gene expression and neural differentiation (212). In fact,

this experiment resulted in smaller and fewer neurospheres, and led to the spontaneous
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differentiation of NSCs into a neuronal lineage. Furthermore, transient receptor potential

canonical channels were shown to regulate SOCE in NSCs, especially tyrosinase-related

protein 1(213). Therefore, the suppression of these channels leads to disturbances in the

process of neurogenesis, revealing the importance of calcium signaling in the development of

neuronal niches. Finally, calcium is crucial for the correct synaptic processing, namely

observed on medium spiny neurons (MSNs) in the striatum (214,215). If the SOCE is

occurring abnormally, this will lead to synaptic loss in MSNs (216,217).

4.3.3 Selenium
Another noteworthy mineral is selenium. It is known that exercise increases

neurogenesis rates in the hippocampus, and curiously, in 2022, a study reported that this

increase is mediated by an elevation in systemic selenium transport (218). Taking this

evidence, the study sought to evaluate if dietary selenium supplementation provided similar

therapeutic benefits. Firstly, the study used mice models and employed a proteomic screening

technique to monitor variations in protein concentration (219). This, in turn, revealed that

selenoprotein P suffered the biggest concentration change, reaching more than twice its

control levels (218). Subsequent discoveries showed that selenium is, indeed, responsible for

NPC proliferation in both ex vivo and in vivo. The results showed significantly more

neurospheres generated in the assays containing selenium, in comparison with the ones where

the substance had been removed. This branch of the study also showed great proliferative

improvement when using selenium supplementation (218).

Selenium has also been shown to decrease intracellular ROS levels. Earlier studies

outlined the change in ROS levels following exercise, and selenoproteins were theorized to

pay a role in this process (218,221). To test this theory, the researchers performed an in vitro

experiment, where primary DG cells were treated with sodium selenite (218). Flow cytometry

performed after 16 hours of treatment revealed a significant reduction in DG cells classified

as “ROS high” (218). Subsequent tests using live animal models were performed, using mini

osmotic pumps to directly infuse selenium into the hippocampus. Three days after this

procedure, primary DG cells presented a marked decrease in intracellular ROS levels,

corroborating the previous findings (218). Both these studies also showed that most of this

decrease was observed in precursor cells. It is also important to note that this reduction

occurred in the cytoplasm, not affecting mitochondrial ROS levels (218). Thus, it is

hypothesized that exercise does not affect selenium-induced changes in mitochondrial ROS
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levels, which confirms the existence of a selective antioxidant role of selenium in

neurogenesis homeostasis (219).

4.3.4 Lithium
Another mineral associated with neuronal homeostasis is lithium (222). Lithium is a

well-established therapeutic option for both major depression and bipolar disorder (222–224).

Throughout the last decade however, studies focusing on the potential usage of this substance

in the treatment of AD and PD, as well as other neurodegenerative diseases like amyotrophic

lateral sclerosis (ALS), have gained traction (225). These studies have demonstrated that not

only does lithium possess great mood-stabilizing properties, but it also acts as a

neuroprotective agent in the neuronal biome. This neuroprotective property is based on a few

characteristics, namely its capacity to inhibit glycogen synthase kinase-3 β, an enzyme related

to tau phosphorylation, which is responsible for maintaining microtubule stability and is

implicated in AD (226,227). This mineral is also capable of inhibiting inositol

monophosphatase, reducing inositol levels and interfering with the phosphoinositol cycle,

supporting neuronal survival through autophagy and intracellular signaling modulating (228).

This clears damaged proteins and organelles that could otherwise contribute to an

inflammatory response. Additionally, lithium has also been observed to possess a

mitochondrial protection capability, preventing neuron energy failure and reducing oxidative

stress (229–232). These findings were corroborated through both preclinical and clinical

studies. In fact, long-term lithium treatments in bipolar disorder showed an increase in

hippocampal volume, as well as higher levels of BDNF, implicated in synaptic plasticity

improvement and higher neurogenic rates (222,233). However, its use in AD, PD and ALS

treatments is yet to be fully established since studies are still needed to confirm long-term

neuroprotective effects.

4.3.5 Magnesium
Finally, another mineral worth discussing is magnesium (234). Being the second most

abundant in mammalian cells, it is essential for a vast number of cellular processes, such as

ion channel function, DNA and RNA stability, enzymatic reactions and metabolic cycles

(235–237). These characteristics make it essential for the correct cellular upkeep of the CNS.

It has also been observed to play a crucial role in neuronal development and brain function,

being also implicated in neuropathologies such as PD, AD and demyelination (235–239).

Studies showed that magnesium deficiency is linked to PD, which is based on a lack of

cellular stress response regulation and autophagy, resulting in oxidative stress (240,241),
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mitochondrial dysfunction, and protein aggregation (242,243). Magnesium levels are also

reduced in AD patients, causing inflammation and resulting in Aβ plaques and tau protein

aggregation (244–247). This results in impaired cognitive function and decreased synaptic

plasticity. Fortunately, keeping magnesium levels regulated has shown signs of improving the

outcome of neurodegenerative diseases, making specialists think supplementation might be

part of a possible treatment approach (248–251).

4.4 Polyphenols and Neuroplasticity

Polyphenols are naturally occurring substances present in plant-derived foods and

beverages, such as fruits (i.e., berries, grapes, apples), vegetables (i.e., onions), coffee and tea,

olive oil and curcumin (252,253). Depending on their chemical composition, polyphenols can

be subdivided into different families and subfamilies, namely flavonoids, like flavan-3-ols,

anthocyanidins, flavones, flavanones, isoflavones, and chalcones, and “non-flavonoids”, such

as phenolic acids, stilbenes, tyrosol, curcuminoids, lignans, saponin, and tannins (252,254). In

recent years there have been several clinical studies related to the potential neuroprotective

properties of polyphenols and their subsequent impact in the treatment of neurodegenerative

diseases (Figure 5).

Figure 5. The role of polyphenols in neuroprotection. Phenolic acids provide a

combination of benefits such as antioxidant properties, anti-apoptotic and anti-inflammatory

effects, and act as an anti-aggregant. This provides crucial neuroprotective qualities to the

neuronal tissue. For instance, the consumption of polyphenols results in the decrease in
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pro-inflammatory molecules such as IL-6 and IFN-γ, and the increase of substances such as

BDNF, NGF and IL-10. These acids also scavenge species like DPPH, ABTS, DMPD, ROS

and RNS, and increase molecules such as SOD and CAT. Aβ: amyloid beta; ABTS:

2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); AChE: acetylcholinesterase; AMPK: 5’

AMP-activated protein kinase; AP1: activator protein 1; BACE1: beta-secretase 1; BAD:

BCL2 associated agonist of cell death; BAX: BCL2-associated X protein; BChE:

butyrylcholinesterase; Bcl-2: B-cell lymphoma 2; BDNF: brain-derived neurotrophic factor;

CAT: catalase; COX2: cyclooxygenase 2; DMPD: N,N-dimethyl-p-phenylenediamine

dihydrochloride; DPPH: 1,1-diphenyl-2-picryl-hydrazyl free radical; ERK: extracellular

signal-regulated kinase; GPx-1: glutathione peroxidase 1; HO-1: heme oxygenase-1; IL-1:

interleukin-1; IL-1β: interleukin-1β; Il-6: interleukin-6; Il-10: interleukin-10; iNOS: inducible

nitric oxide synthase; IFN-γ: interferon-γ; JAK: Janus kinase; JNK: C-jun N-terminal kinase;

MAPK: mitogen-activated protein kinase; MDA: alondialdehyde; NF-κB:nuclear factor

kappa-light-chain-enhancer of activated B cells; NGF: nerve growth factor; NOX2: NADPH

oxidase 2; Nrf2: nuclear factor erythroid 2–related factor 2; NO: nitric oxide; PI3-K:

phosphoinositide 3-kinase; PPARγ: proliferator-activated receptor gamma; RNS: reactive

nitrogen species; ROS: reactive oxygen species; SIRT1: sirtuin 1; SOD: superoxide

dismutase; TGF-β1: transforming growth factor-beta 1; TNF-α: tumor necrosis factor-alpha;

Trk: tropomyosin-related kinase; αSyn: α-synuclein. Adapted from: Polyphenols and

neuroprotection: Therapeutic implications for cognitive decline (252).

4.4.1 Anthocyanins
Anthocyanins are a class of flavonoids usually found in blue and red fruits, like

pomegranates (255). Recent studies have shown that this subfamily might have the capacity to

mitigate cognitive decline, after being metabolized into other compounds such as

protocatechuic acid (256).

Clinical trials involving adults suffering from age-related diseases like AD have

reported memory improvement, increased brain activity, and increased cerebral blood flow

following anthocyanin-rich foods (252,257). These neuroprotective finds have been attributed

to their antioxidant and anti-inflammatory properties (258). Anthocyanins’ structure makes it

possible for these substances to cross the blood-brain barrier (BBB) (259), making it possible

to inhibit inflammatory mediators such as TNF- α, IL-1β, and COX2, as well as playing a role

in the reduction of oxidative stress in the neuronal biome (252,260). These clinical studies

confirmed the addition of red and blue fruits, as well as anthocyanin-rich supplementation,
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results in a greater neuroprotection factor through neuroimaging techniques such as functional

magnetic resonance imaging and positron emission tomography scans (252,257,261).

Preclinical studies also showed promising neuroinflammatory reduction and cognitive

impairment prevention when using animal models treated with lipopolysaccharides (LPS) or

amyloid-β (Aβ). These studies proposed the idea that these substances were responsible for

the inhibition of pathways such as the MAPK pathway, directly involved in Aβ formation,

linked to AD (252,262).

Emerging research also suggests the possible impact of anthocyanins in the

gut-brain axis, mainly through the increased production of kynurenic acid, which is known to

have neuroprotective characteristics and may be linked to the regulation of the gut microbiota

in aging (263).

4.4.2 Flavanols
Flavanols are a subgroup of flavans, bioactive compounds commonly found in

cocoa and green tea, which include molecules like epigallocatechin-3-gallate (EGCG),

catechin and proanthocyanidins (252,264). These compounds are recognized as promoting

cognitive health through their antioxidant and anti-inflammatory capacities. Clinical studies

have shown that the consumption of cocoa flavanols improves memory, cognitive flexibility,

and processing speed (265,266). These studies included elderly patients suffering from mild

cognitive impairment (MCI) (267). The consumption of cocoa has been associated with

increased blood flow and vascular function, and increased secretion of BDNF (268). Similar

studies have been conducted on the benefits of green tea flavanol consumption, particularly of

EGCG. This consumption resulted in an inhibition of the dual-specificity

tyrosine-(Y)-phosphorylation regulated kinase 1A gene, which has been linked to AD as well

as Down-syndrome’s cognitive decline (252,269). EGCG was observed to possess the ability

to modulate oxidative stress, maintain normal mitochondrial function, and inhibit Aβ

aggregation (270,271). However, further investigation is needed to confirm these findings,

since other studies have shown disagreeing results, indicating significant improvement upon

consumption (272,273). Therefore, it is necessary to consider factors such as dosage and

bioavailability.

4.4.3 Flavones
Flavones constitute the most commonly found type of flavonoid, being present in

most higher plants (252,274). Quercetin represents the most common flavone found in nature

(275). This molecule has been shown to possess both direct antioxidant properties as well as
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indirect antioxidant activity - modulation of antioxidant pathways, such as the

Nrf2/hemeoxygenase-1 pathway (276,277). In fact, quercetin can act as a scavenger of ROS

and RNS (252,278). Furthermore, studies carried out in animal and human models revealed

that quercetin can impact gene expression. This may result in an increase of BDNF levels as

well as NGF (252,279,280). The neuroprotective properties of this flavone reside in various

other mechanisms, such as its ability to modulate autophagy and prevention of Tau

phosphorylation. It is also implicated in the downregulation of iNOS, COX2, TNF-α, IL-6,

IL-1β, and IFN-γ, in both microglia and macrophages (252,281–283). Additionally, it can

influence the activation of SIRT1, which leads to the inhibition of various pro-apoptotic

transcription factors (252,284).

Research conducted on the effects of quercetin on neuronal health showed

promising results in vitro and animal models (285,286). However, further testing is needed to

solidify the acknowledgment of these benefits in humans. In this line, a double-blind

randomized study was carried out on 100 Japanese participants, half of which suffered from

MCI. These individuals were aged 65 to 84 years old and were divided into two groups. One

of these was given quercetin in the form of onion powder daily while the other was given a

placebo. This trial occurred for 24 weeks, and the impact of quercetin on the participants was

evaluated both at week 12 and week 24. The results showed that only the younger participants

had improved cognitive abilities (287). Later, the same research group repeated the study on

70 healthy Japanese men and women. These participants, aged 60 to 80 years old, were

divided into two groups. One of these was given quercetin in the form of onion powder daily

while the other was given a placebo. By the end of the trial, it was revealed that the

consumption of quercetin had improved the participants’ cognitive function, temporal

orientation, and emotional function (288). Since these studies translated contrasting results

and given that the understanding of its use in therapeutic plans is still limited, it is necessary

to conduct further studies on this subject.

4.4.4 Isoflavones
Isoflavones are polyphenolic non-steroidal molecules found in plants, especially in

fava beans, leafy greens and soybeans (252,289). When ingested, isoflavones undergo a

transformation prompted by the intestinal microflora, converting its glycosylated form into

the aglycone form, increasing its bioactivity (252,290). Isoflavones have been linked to

various neuroprotective effects, stemming from mainly two mechanisms: possessing the

ability to mimic estrogens at transcriptional and transcription-independent levels; and acting
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as antioxidant agents (252,289). The first characteristic results in an increase in both BDNF

and NGF mRNAs levels, observed in rat models (291–293). They also influence the

up-regulation of antiapoptotic proteins, such as Bcl-2 (294,295), as well as of growth-factor

receptors, TrkA and TrkB, in the cortex (291,293). In 2017, Li et al. showed that it also

modulates the autophagy pathway, inducing brain-expressed x-linked 2-dependent autophagy.

In a study conducted by this team, this resulted in the prevention of atrazine-induced

neurotoxicity, in SHSY5Y lineage neural-like cells (296).

4.4.5 Phenolic acids
Most of the studies regarding the role of phenolic acids on cognitive outcomes

focused on the effects of hydroxycinnamic acids, namely chlorogenic and caffeic acids

(252,297). These substances are most commonly found in coffee and have shown evidence of

having neuroprotective and cognition-enhancing properties. These possess the capacity for

natural anti-amyloidogenic and anti-aggregant activities, particularly the capacity to inhibit

the aggregation of proteins implicated in pathologies such as AD, PD, dementia with Lewy

bodies, and multiple system atrophy (252,298–300). Data collected using AD transgenic

mouse models revealed that rosmarinic acid was able to inhibit the transition from Aβ

monomers to oligomers, and from oligomers to Aβ plaque deposition (252,300). In the cases

of PD, dementia with Lewy bodies, and multiple system atrophy, several studies characterize

phenolic compounds as potent inhibitors of α-syn aggregation, a key pathogenic event in

these neurological disorders. In light of this, Ardah et al. showed how gallic acid leads to the

inhibition of α-syn fibrillation and toxicity, as well as the disaggregation of preformed α-syn

Aβ fibrils in vitro (252,298). These observations were endorsed in various studies. These

included a randomly assigned test carried out on thirty-eight healthy participants, aged 50 to

69 years old. The participants were given either a placebo or chlorogenic acid-enriched

beverage for 16 weeks daily. By the end of the 16 weeks the chlorogenic acid group exhibited

improved cognitive functions such as attention and motor speed when compared to the control

group. Moreover, the chlorogenic acid group showed signs of increased blood concentrations

of early-stage cognitive decline markers, namely apolipoprotein A1 and transthyretin. These

tend to decrease in the CSF in early AD patients (252,301). The same research group also

developed an experiment to observe the impact of chlorogenic acid-enriched beverages in

patients with MCI. A randomized controlled crossover trial was conducted on thirty-four

individuals who were given either a placebo or 553.6 mg/bottle of chlorogenic acid, twice
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daily for 12 weeks. Once again, the chlorogenic acid group revealed improved attention

maintenance and global attention levels (252,301).

4.4.6 Resveratrol
One of the most studied SIRT1 activators is resveratrol, which is part of a class III

histone deacetylase that plays a crucial role in various cellular processes such as apoptotic

regulation, stress response management and mitochondrial function (302,303). The

neuroprotective and plasticity modulation capacities of resveratrol reside in its ability to

induce and activate SIRT1 (252,304). One of the mechanisms integrated in this interaction is

the deacetylation of p53 (305), which counteracts DNA damage-induced cell apoptosis. Other

relevant mechanisms include substances such as AMPK, PI3-K, Ak strain transforming (Akt),

caspase-3/12, apoptotic regulator BAX, and cytochrome c (252,306). Resveratrol has also

been observed to possess a potent antioxidant activity, resulting in neuron protection and

attenuation of intracellular ROS accumulation, associated with cognitive dysfunction. It can

also inhibit NF-Κb activation and p38 MAPK phosphorylation (252,306), which are related to

the suppression of astrocytes and microglia activation (252,307). It also inhibits the

expression of COX2, iNOS, TNF-α, IL-1β, and IL-6 (308,309). This reduces

neuroinflammatory processes. Resveratrol also modulates the estrogen-NMDA-BDNF

pathway (310), which results in the improvement of cognitive functions in postmenopausal

women (311). It is also capable of enhancing the transcriptional activity of both ER-alpha and

ER-beta (252,312). This results in the activation of the MAPK pathways, which in turn lead to

an increased endothelial NOS activity and NO bioavailability (252,313). This ultimately

results in enhanced cerebral vasodilatation, leading to improved cognitive function (252).

Resveratrol also showed potential in the treatment of AD, namely at an in vivo level (314).

This experiment was carried out using Tg6799 mice models, and revealed a decrease in Aβ

plaque formation, inhibition of Aβ-mediated microglial activation in AD model APP/PS1

mice and decrease in the levels of insoluble Aβ in the hippocampus (315), protecting the

integrity of the BBB in AD rats (316).

Further testing consisted of a variety of preclinical trials. These included a

double-blind placebo-controlled study involving 46 healthy older participants and examined

the ramifications of resveratrol supplementation at 26 weeks. The experimental group was

given (200 mg plus 320 mg of resveratrol per day. The results showed that the intake of

resveratrol improved memory performance and neuroimaging, after analyzing the ameliorated

functional connectivity of hippocampus as shown by an MRI (252,317). Another example
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resorted to similar conditions, constituting a double-blind placebo-controlled study, conducted

in postmenopausal women aged between 45 and 85 years old. The study lasted 14 weeks and

by the end the results showed better mood states and global cognitive performance,

particularly memory function. Additionally, this substance provoked an effect on cerebral

responsiveness both during hypercapnic provocation and neuronal activity, which proposes

that it may modulate cerebral blood flow (252,318).

4.4.7 Tyrosol and secoiridoid
Tyrosol is a derivative of phenethyl alcohol found mainly in olive oils, in addition

to hydroxytyrosol and glucosides and aglycones, such as oleuropein (a non-toxic secoiridoid)

(252,319). These components have been associated with antioxidant and anti-inflammatory

effects, promoting better cognitive function. A glucoside derived from tyrosol, salidroside,

displays properties regarding neuroprotection, mitochondrial biogenesis, and cognitive

improvement. This occurs due to the synergistic activation of SIRT1 and insulin receptor

subunit A (252,320). Research states that tyrosol may reduce synaptic impairment and

cognitive deficits by preventing the reduction of a post-synaptic scaffold protein named

spinophilin (321). This results in the regulation of the cytoarchitecture of dendritic spines.

Another vastly interesting olive oil polyphenol is 3-hydroxytyrosol (3-HDT). This

substance has been linked to neuroprotective, antioxidant, and anti-inflammatory effects,

having been the subject of both in vitro and ex vivo studies (252). These properties derive

from 3-HDT’s ability of reversing dysregulated signalling pathways, such as ERK-MAPK/

ribosomal S6 kinase 2, PI3-kinase/Akt1, JAK 2/signal transducer and activator of

transcription 3, and NF-κB (252,322). The consumption of 3-HDT boosts the activity of CAT,

resulting in a protective effect in dopaminergic neurons from oxidative stress-induced cell

damage (252,323). This polyphenol also provides protection from glutamate-induced toxicity

in cortical neurons (323). Researchers also theorized that these neuroprotective properties

may also stem from anti-aggregant effects. In fact, Romanucci et al. synthesized new

tyrosol-based phosphodiester derivatives which contained a catechol moiety able to inhibit Aβ

aggregation and to chelate copper and zinc biometals (252,324). Another study by the same

group revealed that 3-HDT is a potent inhibitor of Aβ growth, since it possesses a hydroxyl

group crucial in stabilizing its interactions with Aβ. This occurs through the formation of a

hydrogen bond network in the proximity of glutamic amino acid 22 residue (252,325).

These findings were corroborated in clinical trials carried out in older individuals

using olive oil-derived polyphenols. A study tested the supplementation of 1 liter of
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extra-virgin olive oil or the addition of 30 g/day of mixed nuts to a Mediterranean diet versus

a low-fat control diet in 285 adults aged 55 to 80 years old. These individuals suffered high

cardiovascular risk and were separated into three study groups. The study occurred for 6,5

years, by the end of which participants in the extra-virgin olive oil-rich Mediterranean diet

group showed lower risk of developing MCI compared to the control group, as well as better

overall cognition specialty regarding memory tasks and fluency (252,326).

4.4.8 Curcumin
Curcumin is characterized as an active compound derived from the rhizome of

Curcuma longa, which has been linked to properties such as antifungal, antiviral and

antibacterial effects, as well as neuroprotective and pro-cognitive activities (252,327,328).

These properties stem from its ability to cross the BBB, granting it great therapeutic value in

the treatment of pathologies such as AD, PD, and HD (252,328). This substance has also been

observed to inhibit AP-1 and NF-κB, chelate metals, induce antioxidant enzymes and enhance

neurogenesis. It also reduces the formation of Aβ oligomers and fibrils, binding plaques and

supressing Aβ in vivo (252,328,329). Importantly, this substance has been linked to the

increase of several growth factor levels, namely NGF, BDNF, glial cell derived neurotrophic

factor, and platelet-derived growth factor, aiding in the processes of neurogenesis,

synaptogenesis and improved cognitive abilities (252,330). Moreover, curcumin is a

non-enzymatic phenolic antioxidant vastly stronger than vitamin E in neutralizing ROS – it’s

a free radical scavenger (331). It is also defined as a chain-breaking antioxidant. It possesses

the ability to modulate enzymes with great antioxidant activities such as CAT, SOD, and GPx

(252,332). This compound confers strong neuroprotective properties, namely through its

anti-inflammatory effect. In fact, it has been noted to downregulate inflammatory biomarkers

such lipid peroxidation, ROS, NO and glutathione (252,333–335). It also acts through the

JNK pathway and reduces the activation of caspase-3 cleavage, resulting in an

anti-inflammatory and anti-apoptotic effect (252,336). Furthermore, it inhibits LPS-dependent

activation of microglia, as well as the subsequent increase of iNOS and nicotinamide adenine

dinucleotide phosphate oxidase (252,337). Curcumin also inhibits the cytosolic A2

phosphorylation, resulting in a decrease in arachidonic acid production, a precursor for

prostaglandins (338). Its neuroprotective effects also stem from the activation of several

molecular chaperones such as heat shock proteins 40, 60, 70 and 90. (339).

Several studies have been carried out to assess the impact of curcumin

consumption. One of these trials consisted of a double-blind placebo-controlled study
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involving 60 healthy adults aged 60 to 85 years old. These individuals were separated into

two groups, one of which was given curcumin supplementation. This trial explored the acute

as well as chronic (4 weeks) effects of curcumin consumption. Subsequent testing revealed

enhanced working attention and memory, improved calmness, contentedness and fatigue

(340). Another group developed another double-blind trial to assess the relevance of oral

curcumin consumption in the prevention of cognitive decline. In this experiment, 40 healthy

individuals aged 50 to 90 years old. These participants were divided into two groups, one of

which received a supplement containing 90 mg of curcumin twice a day, for 18 months. By

the end of the study, it was revealed that the ingestion of curcumin orally enhanced memory

performance and resulted in diminished Aβ and tau protein accumulation in the amygdala and

hypothalamus (341).

4.5 Tauroursodeoxycholic Acid and Adult Neurogenesis
TUDCA is the taurine-conjugated form of ursodeoxycholic acid, an endogenous bile

acid used in the treatment of cholestatic liver diseases (342–346). The act of conjugating

TUDCA enables it to penetrate the CNS, after oral administration (342,347). TUDCA has

been observed to help lessen the cognitive impact of neurodegenerative diseases. This bile

acid plays a role in mechanisms such as fatty-acid (FA) metabolism in rat hepatocytes. It also

helps modulate energy levels, reducing ER stress and improving insulin signaling (348–350).

This proved useful in obese and diabetic mice models, reimposing correct glucose levels.

Additionally, it is known that TUDCA acts in mitochondrial regulation, resulting in increased

neurogenesis and neuroprotection. Recently, its ability to enhance the number of NSC and

increase neuronal differentiation was reinforced by Soares et al. (351).

A study was performed to understand the impact of TUDCA on the modulation of

NCS proliferation and subsequent relevance in adult neurogenesis (342). The trial was carried

out on 6-weeks old male Wistar rats, which were administered an intraventricular infusion of

TUDCA (342). This study revealed that TUDCA triggers the downregulation of long-chain

acyl-coenzyme A dehydrogenase levels in early differentiating NSCs (342,352,353). This

enzyme is responsible for catalyzing FA’s beta-oxidation, forming C3 trans-double bond in the

FAs. TUDCA also promotes fatty acid oxidation, acting as an antioxidant at the mitochondrial

level, reducing the generation of hydrogen peroxide-induced ROS (354,355) (Figure 6).

Another benefit that aids in NSC proliferation is the metabolic shift from FA degradation to

lipid biosynthesis. This occurs via the regulation of proteins like sterol regulatory

element-binding protein-1 and acetyl-Coenzyme A carboxylase 1 (342,356). Lipid synthesis
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provides crucial components for the formation of new cell membranes in highly proliferating

NSCs, being vital for this process. The study also proposes that TUDCA lowers palmitic acid

levels, a long-chain fatty acid, that hinders proliferation when elevated, due to toxic effects

(342,357,358). Furthermore, TUDCA was shown to increase pyruvate dehydrogenase E1

subunit alpha activity (359). This molecule has been shown to counteract FA and glucose

metabolism, providing an energy supply for adult neurogenesis. Finally, the consumption of

TUDCA was linked to the promotion of histone acetylation, through the regulation of nuclear

pyruvate dehydrogenase complex activity (342,360), promoting cellular differentiation.

Figure 6. The role of TUDCA in adult neurogenesis. TUDCA interacts with

mitochondria-cell cycle retrograde signals, modulating NSC fate. This bile acid inhibits

mitochondrial apoptotic events resulting from the differentiation process. This, in turn,

decreases astrogliogenesis and increases neurogenesis. TUDCA’s effects have been observed

to be mitochondrial reactive oxygen species-dependent and rely on stable ATP levels.

Adapted from: Tauroursodeoxycholic acid increases neural stem cell pool and neuronal

conversion by regulating mitochondria-cell cycle retrograde signaling (361).

Considering this study, as well as many others, TUDCA is now a Food and Drug

Administration-approved treatment component for liver diseases (342). It is also being

considered for the treatment of ALS (362).

4.6 Caloric Intake, Dietary Restrictions and Adult Neurogenesis
Recent literature suggests that caloric restriction (CR) and intermittent fasting (IF)

provide beneficial neurotrophic effects in the brain, improving adult neurogenesis (363).

These effects have been associated with a switch from glucose to ketone bodies, as an energy

source, during a low glucose phase felt after a period of calorie ingestion depletion (364).
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This switch causes a metabolic shift, leading to the activation of several signaling pathways

related to energy regulation and increasing adult neurogenesis (365–367). The benefits of CR

are inherently related to the influence of the hunger hormone ghrelin on glucose homeostasis

and the activity of the insulin receptor, influencing neuroprotective and neurogenic pathways

(363,368,369). Furthermore, other molecules such as polyphenols, sirtuin (SIRT) activators,

and NAD+ precursors are labelled calorie restriction mimetics (CRMs), since these

substances can mimic the effects of CR without glucose depletion (363,370–372). Research

has suggested the positive impact of CRMs in the regulation of energy metabolism, oxidative

stress and inflammation reduction, and as well as in adult neurogenic and cognitive functions

(373–376). Although Handschin (2016) (377) raised questions about these studies in terms of

overall physiological parameters, there is a consensus in the literature that consuming CRMs

offers benefits, including the prevention and treatment of neurodegenerative disorders. In fact,

CR, IF and CRMs have been shown to help control epigenetic changes associated with aging,

presenting a new window of possible treatments to fight neurodegeneration (363,375,378).

However, further clinical trials are needed to confirm this possibility.

Overconsumption and overeating are common habits in our society, stemming from

the constant readily available food. According to Mattson (2019) (363,379), nutritional

practices that re-establish “adaptive cellular signaling”, like IF or CR, have been shown to

mitigate the negative effects such as cognitive decline felt in individuals who suffer from food

overconsumption. Erbaba et al. (2021) described IF as a “regimen in which there are repeating

cycles of ad libitum eating and fasting” (363,380). Four forms of IF have been studied, in

addition to other religious fasting practices: alternate day fasting, which consists of

significantly lowering energy intake every two days; whole day fasting, involving one to two

days of food abstinence a week; time-restricted feeding, where food intake is limited to a time

window varying from eight to twelve hours, generally; and period fasting, where after five

days of ad libitum diet there are two days of fasting (381–383). These forms of dieting,

including fasting-mimicking diets, have been observed to generate benefits like those of CR,

such as improved neurogenesis (384). Fast mimicking diets consist of cycles of reduced

caloric and protein intake for a few days to a week, aiming to provide the benefits of fasting

without complete abstinence from food (383). Chen J. et al. (2022) (385) provide a

bibliometric analysis of IF, while Li et al. (2023) (381) provide a balanced view of IF, relating

this diet to the circadian rhythm and discussing potential downsides.
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Mattson (2019) states CR requires limiting the daily caloric intake to roughly 1800 to

2200 kcals/day for men and 1600 to 2000 kcals/day for women. This reduction must be

maintained over a prolonged period (379). The quantity of nutrients available, indicated by

ratios such as adenosine monophosphate over ATP, is responsible for the maintenance of

several signaling pathways, relevant for adult neurogenesis (386). CR, in turn, influences

many mechanisms that can delay some cognitive effects of aging (387), namely through the

reduction of oxidative stress (375,388), promoting the proliferation of new neurons (389,390),

and the promotion of the process of autophagy. This diet regime also influences other

processes, such as the increase in the production of anti-inflammatory hormones, the decrease

of chronic inflammation, as well as the modulation of cell survival, e.g. through apoptosis

(372,391).

CRMs are compounds that mimic the benefits of CR, such as improved

neuroprotection, synaptic plasticity, and reduction of oxidative stress and neurotoxicity,

without the need to significantly reduce caloric intake (392). In this regard, Bonkowski &

Sinclair (2016) discussed the increase in the use of NAD+ precursors and SIRT activators in

clinical trials, to promote longevity in the context of neurodegenerative disease treatment

(393). NAD+ is a key coenzyme in cellular metabolism and energy production, while SIRTs

have been explored for their capacity to promote neuronal longevity. These findings would

benefit from further research.

4.7 Gut-brain Axis and Adult Neurogenesis
During the last decade, studies have shown evidence of a symbiotic relationship

between the gut microbiota and the brain, particularly the hippocampus (394). This research

points to the existence of a cause-and-effect relation between these two regions, where a

healthy microbiota positively impacts neural well-being, being a potential route in the

management of certain illnesses, particularly stress-related psychopathologies such as

depression and anxiety. A growing mountain of evidence points to the benefits of probiotic

consumption, as these are responsible for maintaining normal and healthy gut microbiota.

Many factors influence the gut microbiome, and therefore its effects on neurogenesis

(394,395) (Figure 7). Today four direct neuroanatomical routes have been discovered that

establish the link between the gut and brain: the vagus nerve, which establishes a direct

channel of communication between the gut and the brain (394,396); the

hypothalamus-pituitary-adrenal axis, which mediates the stress response (394,397–399); the
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neuroactive substance metabolism, since microbiota influence the production of substances

such as neurotransmitters (394,400); and inflammatory modulation, since the gut can regulate

inflammation, affecting neuronal function (394,401). Moreover, age, physical activity,

antibiotics and diet all are responsible for creating changes in the microbiota (394).

Figure 7. Factors that influence adult hippocampal neurogenesis. A healthy lifestyle

consisting of regular physical activity, antidepressant drug consumption, a healthy and

complete diet and a subsequent healthy gut microbiome result in increased neurogenic levels

in the hippocampus. Meanwhile, factors such as aging, unmanaged stress and an unhealthy

diet led to a decrease in hippocampal neurogenesis. Adapted from: Microbiota-Gut-Brain Axis

Regulation of Adult Hippocampal Neurogenesis (394).

Focusing on the dietary aspect, preclinical studies have shown it plays a crucial role in

the regulation and maintenance of adult hippocampal neurogenesis. In fact, diets containing

large quantities of fat and sugar trigger a decrease in hippocampal cell proliferation, a

reduction in the number of newly born neurons, and a decrease in overall hippocampal

function in mice and rats, leading to behavioral changes (402,403). These changes might have

been a consequence of neuronal mitochondrial biogenesis (394,402), and/or increased

circulating corticosterone (394,404). These nefarious effects are counteracted through

long-term running exercises (405). In contrast, dietary patterns like CR and intermittent

fasting IF showed signs of leading to improved longevity and memory function

(394,406–408), mainly through a mechanism resulting in upregulated brain-derived

neurotrophic factors (409).

Prebiotics are compounds such as fermentable fibers and phenolics that get this

designation by being selectively used by the gut microbiome. They can be converted into
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short-chain fatty acids, such as acetate, butyrate and propionate (394,410,411). Their

consumption translates into beneficial effects such as a lesser cognitive decline and mitigation

of age-related neuronal complications, namely immune deficits. Certain prebiotic polyphenols

have been observed to promote hippocampal neuronal proliferation and survival (412).

Recently, oral administration of sodium butyrate has been observed to impact neurogenesis,

increasing the number of new neurons and the volume of the hippocampal granular cell layer

in pig models (413). It also reduces neuroinflammation and cognitive deficits in stressed or

aging rats (414,415). Although these findings point to the beneficial properties of maintaining

a balanced gut microbiota, further investigating is required to confirm this hypothesis,

evaluating the translation of this information from rodent models to humans, and looking for

mechanisms and biomarkers to optimize and standardize supplementation and consumption of

probiotics in the context of treatment.

Other foods like fruits and vegetables contain prebiotic polyphenols (416) and have

already been shown to improve depressive symptoms and possess antidepressant (417) and

antioxidant properties (418–420) in studies with animal models. In addition, diets rich in fish

oils and omega-3 FAs, such as the Mediterranean diet, have also been observed to enhance

cognitive performance and provide benefits that counteract the mental health problems

characteristic of aging individuals (421). For example, studies performed in mice and lobster

models showed the positive influence of omega-3s in hippocampal neurogenesis

(394,422,423). This ability seems to stem from omega-3s capacity to modulate the gut

microbiota.

Soluble dietary fibers such as fructo-oligosaccharides and galacto-oligosaccharides

have been shown to regulate BDNF and synaptic protein expression in rodents (394,424,425).

However, further investigation is required to fully assess the direct impact of these substances

on adult neurogenesis.

Flavonoids have been observed to play a role in the enhancement of learning and

memory formation, promoting the proliferation and survival of NSCs. Substances such as

quercetin, Citrus kawachiensis fruit (3,5,6,7,8,3’,4’-Heptamethoxyflavone), spinosyn and

oroxylin A contribute to neural homeostasis by increasing BDNF levels and the number of

DCX+ cells, preventing hippocampal microglia activation, and improving cognitive

performance in mice, respectively (426–429). These properties have been suggested to stem
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from their interactions with the gut microbiome, although future studies are needed to confirm

this theory and design future therapeutic routes.

5. Conclusion and Future Perspectives
The discovery that neurogenesis continues to take place after the embryonic and early

life stages opened new avenues to explore this process in the context of neurological

pathology treatment. The progression of adult neurogenesis has been confirmed to occur in

specific niches, namely the SGZ of the hippocampus, and the SVZ of the lateral ventricles.

The generation of new neurons takes place following the proliferation and differentiation of

NSCs/NPCs. These suffer processes such as migration, selective apoptosis, cell survival, and

integration in the preexisting network.

Adult neurogenesis is influenced by many external and internal factors, namely aging,

exercise regime and dietary habits. This last factor has been revealed to be of extreme

importance since the correct amount of nutrients consumed directly impacts the necessary

mechanisms to generate new neurons. The decrease in nutrients such as omega-3 FAs,

minerals and vitamins, has been shown to negatively impact the process of neurogenesis. This

leads to an increased number of neurological pathology cases derived from the depletion of

these essential building blocks for the creation of new neuronal connections. These

pathologies include diseases such as AD, PD and HD, as well as mood disorders such as

depression and bipolar disorder. The hindering of new neuron production worsens the state of

preexisting neuronal dysfunction and increases the risk of their development.

To counteract these consequences, studies have sought to understand the benefits of

nutrient supplementation in the treatment or reduction of symptoms derived from neurological

diseases. Indeed, the research highlighted how increasing the consumption of specific

nutrients improved neuronal conditions significantly. However, the impact of nutrition in

adult neurogenesis still benefits from further investigation, as the study of the human brain in

vivo poses several ethical and practical barriers. Therefore, advanced techniques such as

neuroimaging, life-cell and tissue experiments, and new animal models might be the way to

achieve new findings in this exciting area of research.
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