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Abstract  

One of today’s most prominent issues is the environmental impact of industrial activities, with 

the manufacturing sector being a big contributor to greenhouse gas emissions, pollution, and 

waste. As industries face increasing pressure to adopt more sustainable practices, predictive 

maintenance has been presented as a part of the solution. This study, conducted at the 

biopharmaceutical company AstraZeneca, develops and evaluates a one-dimensional 

convolutional neural network (1D-CNN) and a combined one-dimensional convolutional 

neural network with bidirectional long short-term memory (1D-CNN-BiLSTM), for fault 

classification in complex industrial packaging machines. As part of predictive maintenance, 

fault classification can significantly reduce machine downtime by enabling early failure 

detection, improving productivity, and minimizing costs. Additionally, accurate fault diagnosis 

helps avoid unnecessary component replacements, reducing waste and supporting sustainable 

manufacturing. 

Fault classification in packaging machines is an overlooked area of research. While existing 

studies mainly focus on fault classification in larger industrial systems using vibration sensors 

on isolated motors and in simplified test rigs, little research has been conducted on fault 

classification within small packaging machinery. Packaging machines present unique 

challenges due to their intricate mechanical structures, multiple moving parts, and changing 

operational conditions, such as varying loads and speeds, all of which contribute to complex 

vibration patterns. This study evaluates model performance across different machine speeds 

and assesses its ability to generalize fault classification under varying operational conditions. 

It also examines whether integrating data from multiple vibration sensors and incorporating 

long-term temporal context improves classification accuracy compared to models processing 

single-sensor data without long-term dependencies.  

Key findings: Fault classification in small and complex packaging machines can be achieved 

with satisfying results using the proposed approach, which combines vibration sensors and 

deep learning models. This report also showcases the strengths of the 1D-CNN-BiLSTM model 

in accurately classifying faults under varying speeds, and in the presence of Gaussian noise. 

This study also highlights that adding a BiLSTM layer to the 1D-CNN structure is highly 

beneficial for fault classification on vibration data.  

Keywords: Deep learning, Fault classification, Segmented multivariate time series, 1D-CNN, 

Hybrid 1D-CNN-BiLSTM, Predictive maintenance 
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Chapter 1 

1. Introduction 

1.1 AstraZeneca 

AstraZeneca is a global pharmaceutical company with production sites all over the world. 

AstraZeneca’s campus in Södertälje, Sweden is one of the world's largest pharmaceutical 

manufacturing units, producing more than 30 different pharmaceuticals to over one hundred 

markets. Each year, Astras manufacturing site at Snäckviken produces over 12 billion tablets 

and 40% of AstraZeneca’s medicines are manufactured at this campus. AstraZeneca is one of 

Sweden's largest export companies and manages approximately 8% of the total Swedish 

merchandise exports. In 2022, the company exported pharmaceuticals from Sweden to a value 

of over 152 billion Swedish crowns (SEK). 

 

1.2 Background 

As a big manufacturing company AstraZeneca is driven by their responsibility and 

commitment to include sustainability in every aspect of their operations, with the intent of 

accelerating the transition toward sustainable, net-zero healthcare. In the area of maintenance, 

broad improvement work is underway through a total productive maintenance (TPM) project. 

This approach has been introduced to improve AstraZeneca’s maintenance procedures and to 

increase competence about industrial maintenance. TPM has also been introduced with the 

intent of gathering more knowledge about AstraZeneca's machines and their components to 

understand what factors affect the machines wear and tear. AstraZeneca also recognizes the 

opportunity of exploring modern technologies like data analysis and artificial intelligence, to 

help with predicting AstraZeneca's maintenance needs and replacing the preventive 

maintenance actions that are currently being employed in the production.  

 

Vibration sensors are currently used at AstraZeneca’s production sites Snäckviken and 

Gärtuna, where they monitor cooling water pumps and bearings of electric motors in the 

ventilation systems' fans. Although the method of condition monitoring using vibration sensors 

is new at AstraZeneca, it has already displayed good results. The sensors have been able to 

detect early signs of bearing damage by identifying abnormal vibration patterns.  
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This proactive approach has minimized unplanned downtime and allowed for more efficient 

scheduling of repairs and maintenance. Vibration sensors are also mounted on larger machines 

in production, for example, on filling machines. However, AstraZeneca needs to gain 

experience in using vibration sensors and measuring vibrations on smaller and more complex 

machines, like their packaging machines, leaving room for further research and exploration. 

Previous experiments concerning machine learning have been performed with promising 

results. This includes an experiment that used black-box models for predicting specific failure 

modes by finding different patterns in production data leading up to failures, but since the 

equipment very rarely runs to failure, the project had a restricted amount of data. A second 

project which involved developing a model to predict the probability of a successful outcome 

for the next batch, specifically focusing on a cleaning cycle has also been previously performed 

with promising results. Projects regarding anomaly detection in machines have also been and 

are currently being explored with promising results. 

 

1.3 Problem impact 

The manufacturing sector is a main contributor to the many challenges of sustainability and 

has a significant impact on the environment by producing greenhouse gasses, pollution, and 

waste. As stated by Patalas-Maliszewska and Łosyk [1], despite previous warnings from 

researchers, manufacturing industries are still faced with difficulties in making their 

manufacturing processes more sustainable. In response, a study performed by researchers 

Polese et al [2] emphasizes that strategies like predictive maintenance (PdM) can make it 

possible for manufacturers to improve both their profitability and sustainability at the same 

time. One particularly promising approach within PdM is fault classification and fault 

detection. Research presented by Rao et al [3] shows that fault classification paired with deep 

learning can make it possible to identify faults faster and more accurately in machinery, leading 

to reduced downtime and reduced waste. The reliability of the company can also be improved 

by reducing the downtime of the machinery, which is especially important in critical industries 

like healthcare, where a timely delivery of medications is crucial for the wellbeing of millions 

of patients. These developments not only improve the operational efficiency of the 

manufacturing companies but can also help them to become more sustainable and resilient long 

term.  
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1.4 Motivation  

Based on the identification of using artificial intelligence and data analysis for predictive 

maintenance, this study aims to explore the possibility of classifying faults in a packaging 

machine, by applying AZ’s current vibration measurement techniques together with deep 

learning algorithms. As an initial study, this research focuses on establishing a foundation in 

fault detection and classification for future research conducted at AZ. This study investigates 

whether the current vibration measurement methods can be effectively adapted to smaller, more 

complex machines, building on the success of previous studies involving vibration sensors and 

machine learning. 

 

This study also aims to compare the performance of the models under varying operating 

conditions and evaluate how well they can generalize fault classification under two different 

speeds and two different baselines. This study will also compare models with varying degrees 

of complexity and evaluate whether a model that processes data from multiple sensors and uses 

long-term temporal understanding improves fault classification, compared to a model that 

processes data from a single sensor without long-term temporal understanding. The following 

objectives have been identified:  

1. Develop two data-driven predictive models to perform fault classification on different 

machine faults, machine speeds and baselines. 

2. Explore if the currently used vibration measurement can be applied to smaller 

machines. 

3. Explore if a model that processes multiple sensor data and uses long-term temporal 

understanding improves fault classification, compared to a model that processes 

single-sensor data without long-term temporal understanding. 
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1.5 Research Contributions 

This study contributes to fault classification in packaging machines, which is an overlooked 

area in fault classification. A big part of the existing research focuses on vibration-based fault 

classification in larger industrial systems with the vibration sensors being directly placed on, 

for example, single motors and pumps in simplified test-rigs. There is also little research 

conducted where the vibration sensors are located inside a packaging machine. Much of the 

data in previous research studies are also being recurrently used, highlighting a lack of 

availability of original data. Packaging machines have unique operational characteristics which 

are very separate from simplified test rigs, since they often experience varying loads, speeds, 

and complex mechanical movements due to the many moving parts that can impact the 

vibration patterns.  

 

Another overlooked area in fault classification, especially for packaging machines, is cross-

speed generalization and combined-speed research, which ensures that fault classification 

models perform accurately across different operating speeds. By collecting data from a 

complex packaging machine, it is ensured that the data used in this study is original and tailored 

to the specific challenges of fault classification in packaging machines. This study fills a gap 

and provides a unique foundation for testing and validating deep learning models in this area, 

improving the reliability of fault classification in packaging machines. 

 

1.6 Delimitations 

This study is limited to a labeling machine that is set up in an isolated and controlled 

environment. The machine used in this research is placed outside of the real production and 

operates as a standalone unit. It is not part of a complete production process and did not interact 

with any upstream or downstream equipment during the experiments, hence the performance 

and functionality of the machine used in this experiment does not reflect the performance of a 

complete packaging line. The findings and results of this study may hence differ from 

performance in full-scale production settings. It should also be noted that the sensors used in 

this study have a frequency range of 10-1000 Hz. This range limits the detection of faults or 

behaviors that occur outside of this frequency spectrum. 
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Chapter 2 

2. Literature review 

2.1 Predictive maintenance 

PdM refers to a collection of data-driven strategies aimed at assessing the condition of 

equipment with the intent of accurately predicting when maintenance should be performed. 

Using smart scheduling, PdM helps to optimize maintenance activities, reduce the likelihood 

of unexpected equipment failures, and minimize downtime [4]. In the PdM approach, data is 

collected over time, to monitor the condition of equipment with the help of predictive analytics 

[5]. PdM aims to identify equipment failures before they become critical, allowing 

manufacturers to optimize their maintenance procedures [6]. PdM can also help to improve 

sustainability in the manufacturing industry by extending the lifetime of components and 

ensuring that all resources are used efficiently [5]. To identify and classify different machine 

faults, various machine and deep learning methods are often used in PdM, such as decision 

trees, support vector machines and neural networks. 

 

The use of classification algorithms can promote proactive decision-making by promoting 

actionable insights that can help companies prioritize maintenance actions based on the 

characteristics of the identified fault. Classification algorithms can also help companies to 

move from reactive maintenance to proactive maintenance. In fault classification within 

predictive maintenance, there are two primary methodologies, logical classification and 

algorithmic classification. The logical classification utilizes expert knowledge to organize 

faults following structured frameworks [7][8][9]. In algorithmic classification, machine 

learning algorithms are used to classify faults by analyzing patterns and features in the data. 

Both methods contribute with their own advantages to fault classification and should be utilized 

based on different needs within the area of maintenance strategies [7] [8]. 
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Chapter 2 

2. Literature review 

2.1 Predictive maintenance 

Predictive maintenance (PdM) refers to a collection of data-driven strategies aimed at assessing 

the condition of equipment with the intent of accurately predicting when maintenance should 

be performed. Using smart scheduling, PdM helps to optimize maintenance activities, reduce 

the likelihood of unexpected equipment failures, and minimize downtime [4]. In the PdM 

approach, data is collected over time, to monitor the condition of equipment with the help of 

predictive analytics [5]. PdM aims to identify equipment failures before they become critical, 

allowing manufacturers to optimize their maintenance procedures [6]. PdM can also help to 

improve sustainability in the manufacturing industry by extending the lifetime of components 

and ensuring that all resources are used efficiently [5]. To identify and classify different 

machine faults, various machine and deep learning methods are often used in PdM, such as 

decision trees, support vector machines and neural networks. 

 

The use classification algorithms can promote proactive decision-making by promoting 

actionable insights that can help companies prioritize maintenance actions based on the 

characteristics of the identified fault. Classification algorithms can also help companies to 

move from reactive maintenance to proactive maintenance. In fault classification within 

predictive maintenance, there are two primary methodologies, logical classification, and 

algorithmic classification. The logical classification uses expert knowledge to organize faults 

following structured frameworks [7][8][9]. In algorithmic classification, machine learning 

algorithms are used to classify faults by analyzing patterns and features in the data. Both 

methods contribute with their own advantages to fault classification and should be used based 

on different needs within the area of maintenance strategies [7] [8].  
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2.2 Supervised machine learning                         

Supervised machine learning algorithms are used in artificial intelligence to predict outcomes 

by learning from labeled data [10]. The primary objective of supervised learning is for the user 

or so-called supervisor to train a model using the labeled data, enabling the model to make 

predictions on unseen or future data [11]. The desired output signals, called labels, are already 

known in supervised learning. Supervised learning is applied when the supervisor aims to 

predict a specific outcome based on a given input, using examples of input-output pairs. The 

supervisor develops a machine-learning model from these pairs, which form the training set 

[12]. A data set is usually divided into training and testing sets for accuracy evaluation [13].  

 

Although building the data set typically requires human effort, the process of supervised 

learning automates and speeds up tasks that would otherwise be time-consuming or impractical 

[12]. Classification is a form of supervised learning technique aimed at predicting a class label 

selected from a predefined set of options [12]. Classification is an iterative process that 

identifies and organizes data objects into predefined categories or labels [14]. Classification 

can be applied to both structured and unstructured data. Its primary objective is to map an 

unknown pattern to a recognized class [14]. An example of this is classifying emails as "spam" 

or "not spam" [14] or, for example, classifying images of animals like cats or dogs, based on 

visual features. In this study, the predefined options correspond to the various machine faults 

that were created, making this a multiclass classification task.  

 

2.3 Convolutional neural networks 

CNNs are deep learning algorithms that are applied in various areas, including fault detection, 

image classification, and speech recognition [15]. A typical CNN is composed of four different 

layers. The convolutional layer, the pooling layer, the fully connected layer, and the activation 

layer [15]. Each layer has its distinct task. The convolutional layer employs kernel filters to 

compute the convolution of the input data, extracting features from it. The convolutional layers 

task is to create feature maps that capture patterns in the data. The pooling layer reduces spatial 

dimensions [15]. The third layer is the fully connected layer which links the extracted features 

to final output predictions [15]. The fourth layer contains the activation function.  
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The activation function's role is to determine the output of the neural network, which in the 

context of fault classification, classifies the data into specific fault categories. A few examples 

of the more commonly used activation functions are for example ReLU, Sigmoid, and Tanh 

[15]. 

 

2.4 1D Convolutional neural networks 

The 1D-CNN is similar to the regular CNN, also known as the 2D-CNN, and differs in the way 

that its filters move across the data [16]. 1D-CNNs are more commonly used for time series 

data, where each row represents the raw signals captured at a specific time, whilst each column 

typically corresponds to data from a different channel, for example, vibration signals in the X, 

Y, or Z directions [16]. Since the columns represent independent channels, the 1D filter slides 

only vertically along the time dimension. At any given moment, the filter spans all columns, 

and the filter’s height determines how many time steps are included in each convolution 

calculation [16]. A 2D-CNN on the other hand, manages data organized in a grid [12]. The 2D-

CNN filter moves across the grid both horizontally and vertically, unlike the 1D-CNN, and 

captures patterns in two dimensions [16]. The 2D-CNN and the 1D-CNN both use filters with 

shared weights that slide across the data, which allows the network to systematically detect 

patterns [16].  

 

Based on the approach of Chen et al [17] and Chao et al [16] this research proposes a 1D-CNN 

architecture designed to process raw vibration data without any prior denoising. Raw data 

preserves all the inherent patterns and features in the vibration signals, including subtle 

variations and noise that might indicate faults. Processing or filtering data can remove or alter 

these features. Raw data also allows CNN to discover features independently. Traditional fault 

detection typically requires artificial feature extraction, which can compromise accuracy and 

introduce bias, but the 1D-CNN enables automated feature extraction directly from the raw 

signal and can overcome this shortcoming [17]. By allowing the model to learn the most 

relevant features from the data itself, all useful information is preserved, which reduces the risk 

of bias introduced by human assumptions. This approach enables the 1D-CNN to identify 

complex relationships in the data that the traditional methods risk to overlook. The proposed 

approach builds on the work of Chen et al [17] who demonstrated high fault diagnosis accuracy 

without denoising the vibration data under various load conditions.  
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Additionally, Chao et al [16] introduced a multi-sensor technique using accelerometer data, 

showing that a 1D-CNN model can achieve accuracy above 98.87%, with strong robustness in 

the presence of noise. The validation approach was further enhanced through 10-fold cross-

validation. Applying 10-fold cross-validation on different load conditions ensures that the 

model’s performance is robust and consistent across various operational scenarios, enhancing 

the reliability of the results. The Adam optimizer was chosen, as used by Chen et al [17] and 

the SoftMax activation function was used in the output layer, as it is effective for multiclass 

classification tasks. The activation function ReLU was used in the hidden layers, based on 

Chao’s work [16]. ReLU outputs zero for negative values, but since batch normalization, which 

ensures that the activations have zero mean and unit variance was applied after each Conv1D 

layer, both negative and positive values were kept intact before they reached the ReLU 

activation. As a result, the negative values were not entirely discarded but instead transformed 

into a balanced range, ensuring they indirectly contributed to the gradient calculations during 

backpropagation. Leaky ReLU was also evaluated, but using ReLU with batch normalization 

gave the best results it was consequently decided to proceed with the pure ReLU-approach.   

 

2.5 1D Convolutional Neural Network-Bidirectional Long Short-Term Memory 

In the BiLSTM model the 1D-CNN part processes sequential data, such as time-series. It works 

by applying filters to the data to automatically detect patterns, both local, within small 

windows, and global, across larger windows [18]. The added BiLSTM layer is used to capture 

long-term temporal dependencies within the data and are particularly important when the order 

and timing of events matter. The bi-directional part of the BiLSTM allows the model to process 

data from both the past and the future, helping the model to understand the full context of the 

data. When combined, the 1D-CNN and BiLSTM layers enable the model to both recognize 

patterns in the data and understand how they change over time [18]. This study also proposes 

that a BiLSTM model should be explored based on the work of Choudakkanavar and Mangai 

[19], who demonstrated the effectiveness of this model in fault diagnosis of bearings using raw 

vibration data, achieving a classification accuracy of 99.84%. Their study displayed that 

combining the 1D-CNN for feature extraction, with the BiLSTM layer for capturing temporal 

dependencies can significantly improve the accuracy of fault classification tasks. This approach 

uses the 1D-CNN's ability to extract patterns from time-series sensor data, whilst the BiLSTM 

layer processes the sequence data in both forward and backward directions, allowing for a more 

comprehensive understanding of temporal dependencies.  



9 

 

2.6 Black-box models 

CNNs belong to a group of models referred to as ‘’black-box models’’. These models have a 

high level of complexity and a low level of explainability, meaning that there is a lack of insight 

into their decision-making process [20]. A black-box model processes data in such a way that 

it makes it difficult for humans to understand how the input variables are combined to create 

the predictions [21]. When it comes to CNNs, they have thousands of weighted connections 

that are tuned during training and that rely on combinations of features that are unknown to 

humans. Considering the nature of black-box models is crucial, especially in high-stakes 

industries like healthcare, where understanding the decision-making process is essential for 

validation.  

 

2.7 Summary 

In summary (see Appendix I, Table 17), the proposed 1D-CNN and 1D-CNN-BiLSTM models 

have demonstrated strong performance in fault classification, achieving accuracy rates between 

98.4% and 99.8% in previous studies. The prior research involving multiple sensors indicates 

that combining a diverse set of data sources can significantly enhance model performance. 

While these models have proven suitable for fault classification using complex vibration data, 

it is important to note some limitations of the previous research. None of the reviewed studies 

used sensor data collected from machinery that contains many moving parts. Additionally, two 

studies relied on the same dataset (CWRU) and used accelerometers, which differ from the 

vibration sensors used in this project. 
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Chapter 3 

3. Methodology 

3.1 Vibration sensors 

The sensors used in this research capture features such as RMS, peak, peak-to-peak, crest 

factor, kurtosis, and skewness. The sensors are triaxial and measure vibration along three axes, 

X, Y, and Z, to capture a 3D picture of the machine's movement. Capturing this 3D movement 

is crucial because machines vibrate in multiple directions due to factors like imbalances, 

misalignment, and wear. By monitoring data from the three axes, the sensors can enable 

accurate detection of various machine faults. The sensors measure within a range of 10-1000 

Hz, making them especially effective for detecting low-frequency faults, but less effective for 

high-frequency faults.  

 

3.2 Experimental System 

Three wireless vibration sensors were mounted inside the packaging machine and placed near 

its critical components. The sensors were installed with expert help from technicians and 

engineers, making sure that the sensors were strategically positioned to monitor vibrations 

where detection of anomalies is crucial. The first sensor, referred to as position 1, was installed 

on a front belt component. The second sensor, referred to as position 2, was installed next to 

the first roller component of the machine. These two sensors are located close to many moving 

parts, for example, the spacer component, the main belt, and horizontal belts. The third sensor, 

referred to as position 3, was installed on the other end of the machine, further away from 

sensor 1 and sensor 2. Sensor 3 was also positioned next to the second and last roller component 

and under a horizontal belt. The two roller components are connected to one conveyor each.  

 

Placing the vibration sensors on each end of the machine covers a broader range of the machine 

and can help track how the vibration propagates. The placements of the two sensors, positioned 

near the roller components (sensor 2 and sensor 3), were selected due to a recent breakdown 

involving ball bearings on a similar roller component from a similar packaging machine in the 

real production. The sensor placed on the front belt was chosen because this area is a complex 

part of the machine, interconnected with several other components. Additionally, there have 

also been prior faults near this position in the real production environment.  
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3.3 Data acquisition 

The vibration sensors were manually activated during data collection, which led to a few 

seconds delay in time between the sensors. The sampling frequency of the vibration sensors 

were 2560 samples/second, and the sampling intervals were ranging between two and five 

minutes. During the data acquisition, the vibration data is transferred wirelessly via Wi-Fi to 

an entity server, which acts as an intermediary between the vibration sensors and AstraZeneca's 

SQL database. The entity server facilitates tasks such as noise reduction, performing fast 

Fourier transformation, normalization, and converting acceleration measurements into 

vibration velocity. After processing, the data is transferred to the SQL database, which serves 

as the central repository for managing the collected information. Users have the option to 

access both the raw and processed data through a remote desktop (see Figure 1). However, this 

study only uses the raw data. The data is stored as text files in the remote desktop environment. 

Each text file corresponds to a single measurement segment and does not provide any exact 

timestamps. Each text-file contains approximately 20,000 individual data points. The text files 

were cleaned from information like the date and time of extraction. Once cleaned, the data 

points from each text file were systematically organized and transferred into Excel files.  

 

 

Figure 1. Data acquisition process 

 

 

3.3.1 Data acquisition phases 

The data acquisition process was conducted in two phases, to ensure complete data gathering. 

For the complete experimental log, see Appendix II, Table 18. In phase one old machine 

components were replaced with new components, but the machine was left with the original 

spacer component. Data was collected at two different speeds, 75 and 120 pz/min. Five 

different faults were introduced in addition to the baseline (see Table 1).  
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The two different speeds were chosen because packaging lines run at different speeds in the 

real production environment, and training a model on multiple speeds can help it learn to 

identify fault patterns that are speed-invariant and consistent across different operational 

conditions, resulting in the model being better at generalizing to other, untested speeds in 

future. 

 Fault  Description of faults (collected at 75 Pz/min & 120 pz/min speed) 

 BL  Baseline with new components & unstable spacer component 

 SGPI  Small gear, old and worn component with no extra damage, position 1 

 BBI  Ball bearing fault 1, impact on balls with induced clicking sound 

 BBII  Ball bearing fault 2, graveled bearing with less resistance in rolling 

 LBTPIII  Looseness in the belt, induced looseness in the belt, position 3 

 TB  Overtightened horizontal belt, position 1 

Table 1. Introduced faults - Phase 1 - Position indicates at what sensor fault was induced. 

 

In the second phase, a new and less noisy baseline was created by replacing the old spacer 

component in the machine. Three different faults were introduced in addition to the new 

baseline (see Table 2). The baseline data represents vibrations when the machine is operating 

under normal conditions without any introduced faults. In both phases faults of different 

severity levels were introduced. For example, looseness faults represent errors that may arise 

from incorrect handling during maintenance. More severe faults like component damage were 

also introduced in both phases, for example, various levels of damage to ball bearings. 

 

 Fault  Description of faults (collected at 75 pz/min & 120 pz/min speed) 

 BL  Baseline with exchange of spacer component from back to front  

 SPACER  Unstable spacer component 

 SGPI  Bearing fault on small gear, position 1 

 LBTPIII  Looseness in the belt, position 3 

Table 2. Introduced faults - Phase 2 - Position indicates at what sensor fault was induced. 
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3.4 Data description 

The extracted data were compiled into 12 CSV format data sets. These datasets include two 

sets each for the 75 and 120 pz/min speeds, with one set representing the baseline for each 

speed. Additional datasets were created for each individual sensor, as well as for three different 

sensor combinations. The datasets used with the 1D-CNN model consist of the X-axis, Y-axis, 

Z-axis. A fourth column named Class was also introduced, which is the abbreviated name of 

the machine fault. For the BiLSTM model, the datasets also include additional columns tailored 

to its ability to capture long-term temporal relationships. These datasets contain columns 

indicating the sensor, the axis and a segment-index column that provides time indexing. The 

time indexing was introduced as a solution to address the gaps caused by the time-series data 

being segmented. The segment-index ensures that the temporal order is preserved, allowing the 

BiLSTM layer to process and understand dependencies across segments. This index helps the 

BiLSTM layer to understand how patterns change over time, even when the data is presented 

as chunks, due to the segmentation.  

 

When it comes to introducing multiple sensors into the dataset, the BiLSTM model benefits 

more because it can learn not only the temporal development in the data within individual 

sensors, but also the relationships between sensors. This is not something that the 1D-CNN 

model is able to do, as it lacks the capability to model temporal dependencies between data 

from multiple sensors. The 1D-CNN can detect local patterns within each sensor's data but 

cannot process how signals from different sensors are related or how they change over time, in 

relation to one another. To improve the training of the models, two combined datasets were 

also created, one for each model. These combined datasets include data from both the 75 and 

120 pz/min speed, allowing the models to learn from a broader range of examples. The separate 

datasets allow the models to focus on speed-specific behaviors, while the combined datasets 

enable them to identify patterns that are consistent across speeds, as well as those unique to 

each speed. All the data are raw time-series signals, with the Y-axis representing acceleration 

(m/s²) and the X-axis representing time. For visualization of data, see Figure 2. 
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Figure 2. Example of data: Raw vibration data of ball bearing fault 2 (X, Y & Z-axis included) 

 

3.5 Model Development 

Initially, the data was prepared by being divided into sliding windows that create sequential 

samples for training. Each window has a fixed length of 400 time-steps, and the windows 

overlap with a stride of 100. This sliding-window approach generates multiple sequences of 

features from the data, where each sequence is associated with a corresponding class label. The 

class labels are first encoded into numerical values using Label Encoder and then transformed 

into one-hot encoded vectors, which represent the labels as binary vectors. The one-hot 

encoding enables the model to output probabilities for each fault class. Finally, the data set is 

split into training, validation, and test sets. The test set holds 20% of the data, while the 

remaining 80% is used for training and validation.  

 

For cross-speed generalization a whole data set (75 pz/min) was used as the test set, after 

training and validating at the 120 pz/min speed. To address any class imbalance in the data set, 

under sampling was applied to ensure that the test set contains an equal number of instances 

from each fault class. Stratified 10-fold cross-validation was used for evaluation of the model. 

This technique divides the data into multiple folds, maintaining the same class distribution 

across each fold. The model is trained and validated on different folds, ensuring that the 

evaluation is not biased by any data split. This process helps with obtaining a reliable estimate 

of the model's performance across different subsets of the data. For visualization of 

classification pipeline, see Figure 3. 
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Figure 3. Pipeline for the classification model 

 

3.6 Configuration of 1D-CNN & 1D-CNN-BiLSTM  

For the configuration of the models see Appendix III, Table 4, and for visualization see Figure 

4. The tuning of hyperparameters in this study was performed through a trial-and-error 

approach which involved initially selecting baseline values for each hyperparameter, and then 

systematically adjusting the values by increasing or decreasing them. If an increase or decrease 

in the parameter resulted in no improvement, the parameter was set to its previous setting. All 

model development and configuration were carried out in the Python environment. For 

comparison of the two models, each model was optimized separately.  

 

Figure 4. Visualization of model (BiLSTM Layer - only applicable for BiLSTM model) 
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Three Conv1D layers were used to extract features from the data. In the first layer, the 1D-CNN 

model uses 128 filters with a kernel size of 10, while the BiLSTM model uses a kernel size of 

15. Larger kernel sizes like these help the model capture broader patterns by considering a 

larger portion of the input data at once, which allows the model to identify broader features. 

Following layers with 64 filters (kernel size 5 and 10) and 32 filters (kernel size 3 and 8) were 

then added to progressively capture the more refined features. As seen in Equation 1, the 

convolution operation in the Conv1D layer calculates the output yt at position t, by taking a 

weighted sum of a segment of the input data x, which is determined by the kernel w, its size k, 

and the stride s. The bias term b is added to increase the flexibility which allows the model to 

capture the patterns. 

                                                                𝑦𝑡 = ∑ 𝑥𝑡 ∙  𝑠 + 𝑖 − 1 ∙  𝑤𝑖 + 𝑏                                                     (1) 

𝑘

𝑖=1

 

After each convolutional layer, a pooling layer was added to help reduce the dimensionality of 

the data. The first pooling layer uses a pool size of 4, and the second layer uses a pool size of 

2. The pooling is applied through max pooling, which identifies the highest value in each 

pooling region [22]. Batch normalization was added after every convolutional layer to 

standardize the outputs, this was done to allow faster convergence. This addition also enables 

the use of higher learning rates and reduces sensitivity to weight initialization, as noted by Ioffe 

and Szegedy [23]. As seen in Equation 2, the batch normalization standardizes the output of a 

layer to have zero mean and unit variance, making the learning process more stable. Epsilon is 

a small constant which is added to the denominator to prevent division by zero. The scaling 

parameter gamma and the shifting parameter beta are learnable variables that allow the network 

to adjust the normalized values as needed. 

                                                   𝑦̂𝑡 =  𝛾 ⋅
𝑦𝑡 − 𝜇

√𝜎2+𝜖
 +  𝛽                                                                      (2)                 

L2 regularization with a weight decay of 0.001 was applied to retain all information from each 

sensor axis. The regularization term adds a penalty to the loss function that is proportional to 

the sum of the squares of the model weights. This ensures that the weights remain small but are 

never driven all the way to zero, which results in that the model [24] is performing no feature 

selection. Since this approach allows the model to retain all information from each vibration 

sensor axis, it was applied to keep all the unique patterns and interdependencies from each axis 

that could be important for making accurate predictions.  
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The L2 regularization also preserves the contribution of all features, avoiding the risk of over-

simplification and ensures that the model captures the full complexity of the data without 

overfitting. As seen in Equation 3, L(w) is the original loss function, lambda is the 

regularization parameter, which controls the trade-off between the original loss and the penalty 

term.  

                                                      𝐿2 = 𝐿(𝑤)  +  𝜆 ∑ 𝑤𝑖
2                                                          (3) 

For optimization of the two models the Adam optimizer with a learning rate of 0.001 was 

applied to update the weights. As stated by Kingma and Ba [25], the Adam optimizer is 

computationally efficient and suited for the noisy gradients that vibration data displays. The 

Adam optimizer combines the benefits of the momentum technique that helps speed up training, 

and the adaptive learning rates technique that adjusts the learning rate based on the model's 

performance. This allows Adam to update the weights and help the model learn faster, while 

also avoiding issues like overshooting the optimal values. As seen in Equation 4, theta 

represents the model's weights at time step t, and theta +1 represents the updated weights. Alpha 

is the learning rate that controls the size of the step taken during optimization. 𝑚̂𝑡 and 𝑣𝑡 are 

bias corrected first and second moment estimates, which are derived from the gradient of the 

loss function with respect to the weights. Epsilon is a small constant added to the denominator 

to avoid division by zero.  

                                                      𝜃𝑡 + 1 =  𝜃𝑡 − 𝛼 ⋅  
𝑚̂𝑡

√𝜐̂𝑡 + 𝜖
                                                       (4) 

Lastly, the ReduceLROnPlateau callback with a patience setting of 5 was applied to decrease 

the learning rate if there is no improvement in validation loss for five epochs. This allows the 

model to use high learning rates in the early stages of training while at the same time ensuring 

more gradual updates as it approaches optimal values and hence prevents overshooting. When 

creating the BiLSTM model a bidirectional LSTM layer with 64 units and return_sequences = 

True was added. This configuration allows the model to retain the full temporal sequence output 

from the BiLSTM layer and to learn temporal dependencies in both directions, left to right and 

right to left. 
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3.7 Training & Validation 

The training and validation accuracy and loss were initially monitored to evaluate potential 

overfitting or underfitting, and to monitor the model’s learning behavior. The BiLSTM model 

is displaying strong performance during training and validation, as it achieves perfect accuracy 

and zero loss on both the training and validation sets. These behaviors indicate that the model 

is effectively capturing the underlying patterns in the data, allowing it to generalize well to 

unseen data. The decrease in validation loss over time, paired with the increase in validation 

accuracy, suggests that the model is gradually improving its learning. The stability of training 

accuracy and loss at 1 and 0 highlights that the model has successfully converged and achieved 

a balance in its ability to handle both the training and validation datasets. For visualization, see 

Figure 5. 

 

Figure 5. Training and validation Accuracy/Loss - 1D CNN-BiLSTM (baseline 2) 

 

Similarly, the 1D-CNN model achieves near-perfect accuracy and demonstrates strong 

performance in capturing the most significant features from the data. However, the 1D-CNN 

model does not stabilize as consistently as the BiLSTM model. As seen in Figure 6, the training 

loss steadily decreases during the training, but it never manages to reach zero. This behavior 

suggests that the model is continuing to adjust its parameters, and is potentially struggling, 

compared to the BiLSTM model. The training and validation accuracy of the 1D-CNN model 

is displaying strong performance, although it notably never manages to reach 1, which suggests 

that the model has not fully learned certain patterns in the data.  
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Figure 6. Training and validation Accuracy/Loss - 1D CNN (baseline 2) 

 

3.8 Evaluation 

3.8.1 Initial evaluation of sensor combinations 

During the initial evaluation of the BiLSTM model, three different sensor combinations were 

evaluated: sensor 1, sensor 1 & 3 and sensor 1, 2 & 3. This evaluation was performed to 

investigate whether adding more sensors leads to significant improvement in performance, or 

if the additional sensors contribute with noise and redundant information, leading to a decrease 

in performance. Sensor 1 was chosen as the single-sensor option since most faults were 

introduced near this sensor. Faults occurring near a sensor tend to produce stronger signals 

because the sensor is closer to the source of the fault, allowing it to detect the vibrations more 

clearly. As the distance between the sensor and the fault increases, the signal tends to weaken, 

as the sensor picks up less of the fault’s impact.  

 

The location of sensor 1 also has the highest chance of minimizing potential interference and 

noise that could come from environmental factors or signals from other components in the 

machine. A sensor located farther away, like sensor 3, could potentially pick up more of this 

unwanted noise, which in return could lead to degradation of the data quality and impact the 

result of the fault classification negatively. The evaluation of different sensor combinations 

was performed to optimize the sensor setup for the following tests which included combined 

speeds, separate speeds & baselines, and the cross-speed-generalization. The evaluation was 

performed with baseline 2 on the 120 Pz/min speed.  
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3.8.2 Initial evaluation of separate sensors 

The 1D-CNN was evaluated on the separate sensors 1, 2, and 3. This initial test was conducted 

to identify which sensor provides the most valuable information in fault classification and 

should be prioritized for further testing. Additionally, this evaluation investigated whether the 

placement of the sensors in the machine influenced their ability to detect relevant vibration 

patterns. Understanding how the physical positioning of each sensor impacts its data quality is 

crucial for optimizing sensor placement in future experiments or in a production environment. 

This evaluation also helped with identifying whether certain placements resulted in more 

qualitative and reliable data, or if they were more susceptible to noise and interference from 

other components in the machine, especially since there are many moving parts near the 

sensors. Furthermore, this initial evaluation is used as the foundation for determining the most 

optimal configuration of sensors, providing insights into whether a single, strategically placed 

sensor could be sufficient for accurate fault classification or if a combination of sensors would 

be required to achieve high accuracy. The results from this evaluation will help guide the sensor 

selection and placement strategy for further experiments.                                

 

3.8.3 Baseline performance on separate speeds & baselines 

The 1D-CNN model and the BiLSTM model were first evaluated on separate speeds and 

separate baselines. The test was performed to get a clear understanding of how each factor 

influences the model's performance, to get an initial feeling of the model’s performance, and 

to identify how each model behaves under different speeds and baselines. By evaluating the 

models at two different speeds and baselines, it can be identified how each model behaves 

separately, and initial performance benchmarks can be established. For example, baseline 1 has 

more noise introduced due to the unstable spacer component, and this extra noise can provide 

an early indication of which model is more robust and performs better under a higher level of 

noise. It can also be established if any model performs better at a certain speed.  

 

3.8.4 Introducing Gaussian noise 

The second step was to evaluate the robustness of the models with Gaussian noise, following 

the work of Sarkar et al [26] who proposed a method to evaluate model robustness by 

introducing unseen noise, such as Gaussian noise, with different levels of noise severity.  
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Gaussian noise is commonly used because it simulates real-world data issues, for example, 

sensor errors. Models that perform well under Gaussian noise can be considered more robust, 

as they can focus on underlying patterns rather than being distracted by random noise. Testing 

models on Gaussian noise is also a good approach to benchmark and compare different models' 

robustness against each other. In this study three different noise levels were introduced during 

testing; 2%, 5% and 10% noise. 2% is a low level of noise, 5% represents a moderate amount 

of noise and 10% represents a high level of noise in the data (see Appendix IV figures 22, 23 

& 24). The models were also evaluated without any added noise and only on the noise that is 

inherent to the data set. 

 

3.8.5 Cross-speed generalization 

In this part of the training and evaluation phase, the models were trained on data from the 120 

Pz/min speed and evaluated on unseen data from the 75 Pz/min speed. This test was performed 

to evaluate the two model's ability to generalize to different operational speeds. By training the 

model on 120 Pz/min data separately, a controlled environment was created to isolate the 

impact of speed variations on model performance. Testing on 75 Pz/min data challenges the 

model to adapt to an unseen speed condition, providing insights into its robustness and 

flexibility. A model that generalizes well across different speeds shows its ability to extract 

fundamental patterns and features that are invariant to the operational speed, for example, fault 

signatures or vibration patterns that persist despite changes in speed. This evaluation is 

beneficial for situations where machine operating speeds vary due to, for example, production 

demands or process requirements. The results help decide whether the model can classify faults 

effectively at speeds it has not been explicitly trained on, ensuring reliability in real-production 

scenarios. 

 

3.8.6 Combined speeds 

Based on the work of Ding et al [27], which emphasizes the importance of evaluating a model's 

ability to handle variability under fluctuating speed conditions, this study’s final step of the 

testing and evaluation phase involved training and testing the two models on a data set with the 

combined speeds of 75 and 120 Pz/min speed. Combining data from multiple speed conditions 

during training can enable the models to become more robust and adaptable to different speeds 

and fluctuating speeds. This is beneficial in the real production environment, where machines 

very rarely operate at a fixed speed, but instead can vary based on operational demands.  
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Training and assessing the models on combined speeds demonstrate how well they can 

generalize across varying speed conditions, which simulates the real-production environment 

where the systems are exposed to fluctuating speeds. Testing on a combination of speeds is 

also important because fault patterns can display different characteristics across speeds due to 

changes in vibration, load, or even thermal variations. Including the two speeds in training 

enables the models to capture speed-dependent fault characteristics, which improves its ability 

to accurately classify faults regardless of the operating state and ensures consistent 

performance in varying environments. 

 

3.9 Performance Evaluation Metrics 

A confusion matrix was used to evaluate the classification and model performance, together 

with F1-score, precision, recall & accuracy following Vakili et al [28]. 

1) Precision: Answers the question ‘’Out of all predicted positives, how many are 

positive?". This means that out of all the observations the model has predicted as 

positive, how many of them were truly positive? Precision tells us how accurate the 

model’s positive predictions are. As seen in Equation 5, precision is calculated by 

dividing the number of true positives by the sum of true positives and false negatives. 

            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                                   (5) 

2) Recall: Answers the question “Out of all actual positives, how many did the model 

correctly predict?” Recall measures the percentage of actual positive cases that the 

model successfully identifies. As seen in Equation 3.6, recall is calculated by dividing 

the number of true positives by the sum of true positives and false negatives. 

            𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                                                      (6) 

3) F1-score: Combines precision and recall into a single value. The F1-score provides a 

balanced measure of the model's performance, especially if there is an imbalance 

between precision and recall. The F1-score is extra useful when both false positives and 

false negatives carry significant cost. As seen in Equation 7, the F1 score is calculated 

as the harmonic mean of precision and recall, balancing the trade-off between precision 

and recall. 

            𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                (7) 
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4) Accuracy: Used to measure the overall performance of a model. It shows the 

percentage of correct predictions made by the model out of all predictions on the test 

set. Accuracy should be used carefully when dealing with unbalanced data sets and used 

together with precision and recall. As seen in Equation 8, accuracy is the proportion of 

correctly classified instances out of the total instances. 

            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
                                                                 (8) 

5) Confusion Matrix: Provides a detailed breakdown of how the model’s predictions 

compare to the actual labels, helping the user understand the model's errors. 
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Chapter 4 

4. Results & Discussion 

4.1 Accuracy for separate sensors with 1D-CNN 

When evaluating the separate sensors, sensor 1 and 3 both achieved an accuracy of 97%, and 

is providing data that is highly informative, with patterns or features that the 1D-CNN easily 

can learn and use effectively. In contrast, sensor 2 with a lower accuracy of 83% highlights that 

it might have noisier data, or less distinct patterns which makes the classification task more 

difficult and making it harder for the model to achieve strong accuracy. The varying accuracy 

across the sensors suggests that there are some differences in the quality and relevance of the 

data provided by each sensor. This indicates that the placement of sensor 2 was not as optimal 

as the other sensor placements, highlighting the importance of how the location of the sensor 

can affect the results and data quality. The weaker performance of sensor 2 could potentially 

be attributed to environmental factors unique to its location, such as electromagnetic 

interference or vibrations caused by nearby moving components. Factors like these could 

introduce greater variability in its readings compared to the other sensors. Based on the results 

it was decided to continue with sensor 1 only, for further classification tasks with the 1D-CNN 

model. 

 

4.2 Accuracy for different sensor combinations with 1D-CNN-BiLSTM 

The results from the sensor combination comparison highlight that the second highest accuracy 

of 97% was achieved with sensor 1 alone, indicating that sensor 1 is highly effective and 

capable of single-handedly providing the information necessary to perform fault classification 

alone. This suggests that sensor 1 is informative. When sensor 1 was combined with sensor 3, 

the accuracy slightly increased to 98%, indicating that sensor 3 adds some value to the model, 

but the improvement is marginal. This suggests that sensor 3 provides complementary 

information that enhances the model's performance when used with sensor 1. However, it is 

also possible that sensor 3, on its own, could be a strong candidate for fault classification. When 

sensors 1, 2, and 3 were combined the performance dropped significantly to 84%. This 

indicates that the inclusion of sensor 2 may be detrimental to the model’s performance. It is 

possible that sensor 2 introduces redundancy or noise to the data, which negatively impacts the 

model's ability to make accurate predictions.  
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Rather than enhancing the model, sensor 2 seems to damage its performance, suggesting that 

sensor 1 and sensor 3 are sufficient for achieving the best results, and that the inclusion of 

sensor 2 makes the prediction more difficult for the model. Due to these results, it was decided 

to proceed with the combination of sensor 1 and 3, and to not use the data from sensor 2. 

 

4.3 Separate baselines & speeds 

4.3.1 1D-CNN-BiLSTM  

Looking at the results from baseline 2 at the 120 Pz/min speed, the BiLSTM model displays 

strong performance, with perfect precision, recall, and F1-scores of 100% across every fault 

class as seen in Table 3. The overall accuracy of 100% demonstrates that the model is highly 

effective at this baseline and speed, with no apparent issues in classification. This is also 

presented in Figure 9, which highlights only a few misclassifications in total. With baseline 2 

at the 75 Pz/min speed, the model’s performance decreases, with the overall accuracy dropping 

to 95% as seen in Table 4. While some fault classes still maintain perfect recall, precision and 

F1-scores, other fault types like the loose belt indicate challenges with adapting to the lower 

speed. This can also be seen in Figure 10, where it is highlighted that the loose belt often is 

being confused with the baseline. 

 

As seen in Table 5, for baseline 1 at the 120 Pz/min speed, the model continues to show strong 

performance, with an accuracy of 98%. While the results for baseline 1 are slightly lower than 

those seen at baseline 2, the model still achieves high precision, recall, and F1-scores. Baseline 

1 has both a higher noise level and more faults to classify, indicating that the model is robust. 

This is also displayed in Figure 7, where there are very few misclassifications. At baseline 1 

with the 75 Pz/min speed, the model’s performance drops again, with accuracy decreasing to 

96% as seen in Table 6. There is noticeable decrease in recall and F1-scores for certain classes, 

for example, the baseline and the loose belt fault, which highlights the difficulties with 

generalizing to lower speeds and different baseline conditions. Figure 8 highlights that the 

small gear fault and is getting confused with the ball bearing 1 fault. Figure 8 also shows that 

the loose belt fault and the baseline is getting confused with the ball bearing 2 fault. 

 

 

 



26 

 

Classification Report CNN Bi-LSTM (120 Speed & baseline 2) 

Class Precision Recall F1-Score 
BL 1.00 1.00 1.00 

LBTPIII 1.00 1.00 1.00 

SGPI 1.00 1.00 1.00 

SPACER 1.00 1.00 1.00 

Accuracy 1.00 

Macro avg 1.00 1.00 1.00 

Weighted avg 1.00 1.00 1.00 

             Table 3. Classification report - 120 Speed & baseline 2 - 1D CNN-BiLSTM 

Classification Report CNN Bi-LSTM (75 Speed & Baseline 2) 

Class Precision Recall F1-Score 

BL 0.84 1.00 0.91 

LBTPIII 1.00 0.88 0.93 

SGPI 1.00 0.93 0.97 

SPACER 1.00 1.00 1.00 

Accuracy 0.95 

Macro avg 0.96 0.95 0.95 

Weighted avg 0.96 0.95 0.95 

            Table 4. Classification report - 75 Speed & baseline 2 - 1D CNN-BiLSTM 

Classification Report CNN Bi-LSTM (120 Speed & Baseline 1) 

Class Precision Recall F1-Score 

BBI 0.97 0.95 0.96 

BBII 0.97 0.97 0.97 

BL 0.99 1.00 0.99 

LBTPIII 1.00 1.00 1.00 

SGPI 0.98 1.00 0.99 

TB 1.00 1.00 1.00 

Accuracy 0.98 

Macro avg 0.98 0.98 0.98 

Weighted avg 0.98 0.98 0.98 

             Table 5. Classification report for unseen data (75 Speed) - Hybrid 1D CNN 

Classification Report CNN Bi-LSTM (75 Speed & Baseline 1) 

Class Precision Recall F1-Score 

BBI 0.91 1.00 0.95 

BBII 0.89 1.00 0.94 

BL 1.00 0.92 0.96 

LBTPIII 1.00 0.94 0.97 

SGPI 1.00 0.91 0.95 

Accuracy 0.96 

Macro avg 0.96 0.96 0.96 

Weighted avg 0.96 0.96 0.96 

            Table 6. Classification report for unseen data (75 Speed) - Hybrid CNN-BiLSTM 
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Figure 7. Confusion Matrix. 1D CNN-BiLSTM - Baseline 1 (120 Pz/min) & Figure 8. Confusion Matrix. 

1D CNN-BiLSTM - Baseline 1 (75 Pz/min) 

 

 

Figure 9. Confusion Matrix - 1D CNN-BiLSTM. Baseline 2 (120 Pz/min) & Figure 10. Confusion 

Matrix - 1D CNN-BiLSTM. Baseline 2 (75 Pz/min) 
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4.3.2 Summary 

The model's performance varies depending on the baseline and the speed conditions. At 

baseline 2 with the 120 Pz/min speed, the model performs exceptionally well. At baseline 2 

and baseline 1 with the 75 Pz/min speed, the accuracy drops to 95% and 96%, respectively.  

This indicates that the model has an easier time classifying faults at a higher speed, and that 

the nature of these faults is more prominent at higher speeds. At baseline 1 with the 120 Pz/min 

speed, the model still shows strong performance with a 98% accuracy, despite the added 

challenge of having more faults to classify, and more noise caused by the unstable spacer 

component. This demonstrates the model's robustness under more complex conditions. 

 

4.4 1D-CNN 

The 1D-CNN model shows strong performance at the 120 speed with baseline 2, achieving an 

accuracy of 91% as seen in Table 7. The spacer fault has a perfect precision, recall, and F1-

score of 100%, indicating strong performance. In contrast, the baseline has a lower precision 

of 78%, though the recall remains high at 98%. This suggests that the model struggles to 

achieve high precision but can detect most instances of the baseline. The loose belt fault has a 

high precision of 99%, but its recall drops to 75%, indicating that while the model is good at 

avoiding false positives, it misses a significant number of the total instances. As seen in Figure 

13, the performance varies across the different faults at the 120 speed and baseline 2. 

 

As seen in Table 8, at the 75 Pz/min speed with baseline 2, the 1D-CNN model's accuracy 

drops to 89%. The baseline shows a slight improvement in precision at 79%, but the recall 

decreases to 94%. The loose belt fault, on the other hand, shows an improvement in recall at 

98%, but the precision drops to 89%, indicating that the model detects more instances of the 

loose belt fault, but with a higher number of false positives. The small gear fault experiences a 

notable decrease in recall at 72%, while the precision remains high at 93%, showing a drop in 

its detection ability at the slower speed. As seen in Figure 14, the most misclassified fault is 

the small gear fault, which is getting confused with the baseline. As seen in Table 9, at baseline 

1 with the 120 Pz/min speed the model has an overall accuracy of 86%. The baseline highlights 

a precision of 100% and a recall at 95%, which is better than baseline 2’s result at the same 

speed. Overall, the model shows decent performance in most faults, but the recall for some 

faults, like the small gear, is notably lower compared to baseline 2, at the same speed.  
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Figure 11 highlights that it is the two ball bearing faults that have the biggest difficulty with 

being confused and misclassified for each other. At the 75 Pz/min speed with baseline 1, the 

1D-CNN model's performance is displaying a more significant decline, achieving an accuracy 

of 86% as seen in Table 10. The ball bearing 1 fault experiences a decrease in both precision 

at 86% and recall at 93%, compared to the 120 speed. The ball bearing 2 fault shows a notable 

drop in precision at 68%, although recall remains perfect at 100%, indicating a high rate of 

false positives. The baseline continues to show a decline in precision at 78% and a perfect recall 

of 100%. The loose belt fault highlights a significant decrease in recall at 72%, though its 

precision remains high at 97%. Similarly, the small gear fault shows a decrease in recall at 

89%, while precision remains at 98%. Overall, these changes contribute to the model’s reduced 

accuracy at the 75 Pz/min speed with baseline 1. As seen in Figure 12 it is the baseline and 

loose belt fault that is getting the most misclassified and confused with the ball bearing 2 fault. 

 

Classification Report 1D-CNN (120 Pz/min & baseline 2) 

Class Precision Recall F1-Score 
BL 0.78 0.98 0.87 

LBTPIII 0.99 0.75 0.85 

SGPI 0.92 0.92 0.92 

SPACER 1.00 1.00 1.00 

Accuracy 0.91 

Macro avg 0.92 0.91 0.91 

Weighted avg 0.92 0.91 0.91 

             Table 7. Classification report - 120 Pz/min & baseline 2 - 1D CNN 

Classification Report 1D-CNN (75 Pz/min & Baseline 2) 

Class Precision Recall F1-Score 

BL 0.79 0.94 0.86 

LBTPIII 0.89 0.98 0.93 

SGPI 0.93 0.72 0.81 

SPACER 1.00 0.93 0.97 

Accuracy 0.89 

Macro avg 0.90 0.89 0.89 

Weighted avg 0.90 0.89 0.89 

             Table 8. Classification report for unseen data (75 Pz/min) - 1D CNN 
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Classification Report 1D-CNN (120 Pz/min & Baseline 1) 

Class Precision Recall F1-Score 

BBI 0.68 0.80 0.74 

BBII 0.81 0.61 0.69 

BL 1.00 0.95 0.97 

LBTPIII 0.91 0.94 0.92 

SGPI 0.86 0.90 0.88 

TB 0.94 0.98 0.96 

Accuracy 0.86 

Macro avg 0.87 0.86 0.86 

Weighted avg 0.87 0.86 0.86 

             Table 9. Classification report - 120 Pz/min & baseline 1 - 1D CNN 

Classification Report 1D-CNN (75 Pz/min & Baseline 1) 

Class Precision Real F1-Score 

BBI 0.86 0.93 0.89 

BBII 0.68 1.00 0.81 

BL 1.00 0.78 0.88 

LBTPIII 0.97 0.72 0.83 

SGPI 0.98 0.89 0.93 

Acura 0.86 

Marco avg 0.90 0.86 0.87 

Weighted avg 0.90 0.86 0.87 

             Table 10. Classification report - 75 Pz/min & baseline 1 - 1D CNN 

 

 

                                                                    

Figure 11. Confusion matrix. 1D CNN - Baseline 1 (120 Pz/min) & Figure 12. Confusion matrix. 1D 

CNN - Baseline 1 (75 Pz/min)                                    



31 

 

 

 

Figure 13. Confusion Matrix - 1D CNN. Baseline 2 (120 Pz/min) & Figure 14. Confusion Matrix - 1D 

CNN. Baseline 2 (75 Pz/min) 

 

4.4.1 Summary 

The 1D-CNN model performs best with baseline 2 at the 120 Pz/min speed, achieving the 

highest accuracy of 91%. Its performance deteriorates at the 75 speed, with an accuracy 

decreasing to 89% for baseline 2, and 86% for baseline 1. This indicates that it is easier for the 

model to classify faults at a higher speed, most probably due to the nature of the fault itself and 

on a less noisy baseline. 

 

4.5 Robustness test with Gaussian noise  

Figure 15 displays how the Gaussian noise impacts the robustness of the 1D-CNN and the 

BiLSTM model differently. At 0% noise, both models are highlighting a strong performance, 

with the 1D-CNN achieving 97% accuracy, and the BiLSTM model slightly outperforming it 

at 100%. This indicates that both models are highly capable of extracting relevant features from 

the raw vibration data, though the BiLSTM model demonstrates a slightly better performance. 

As noise increases to 2%, the accuracy of the 1D-CNN drops significantly to 78%, while the 

BiLSTM model maintains a high accuracy of 99%. This suggests that the BiLSTM model is 

more resilient to moderate noise levels.  
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At 5% noise, the performance of both models decreases significantly, with the 1D-CNN model 

achieving a 25% accuracy and the BiLSTM model performing slightly better at 28%. At this 

noise-level both models struggle, and the noise is severely disrupting the data's underlying 

patterns. At 10% noise, the 1D-CNN model achieves 24% accuracy, while the BiLSTM model 

performs similarly at 23%. Both models perform close to a random guessing at the 10% noise 

level.  

  

Figure 15. Grouped barplot of accuracy comparison over noise levels. 1D CNN vs 1D CNN-BiLSTM 

 

4.6 Cross-Speed Generalization 

4.6.1 1D-CNN-Bi LSTM 

As seen in Table 12, the model achieves a moderate accuracy of 71% with baseline 2. For 

baseline 1 (see Table 14) which has slightly more noise in it, the model achieves a lower 

accuracy of 68%. When it comes to the different fault types at baseline 2, the spacer fault is 

detected and classified correctly at both baselines, showing a high precision of 94% and recall 

of 97% together with a F1-Score of 96% for baseline. One fault type that the model struggles 

to classify at baseline 2, but not at baseline 1 is the small gear fault that was induced close to 

sensor 1. Looking at Table 12, it is highlighted that the small gear fault has a precision of 83%, 

recall of 30% and a F1-score of 44%. As shown in Table 14, the small gear fault at baseline 1 

has a precision of 93%, a recall of 97% and a F1-score of 95%.  
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The baseline has a strong recall for both baseline 1 and baseline 2. However, precision is lower, 

indicating some misclassifications. As shown in Figure 17, the small gear fault is often getting 

mistaken for the baseline. When looking at the ball bearing fault 1 at baseline (Figure 16) it is 

highlighted that it has a relatively strong performance. It is also displayed that the model 

struggles with the ball bearing 2 fault, with a precision, recall, and F1-score of 0%, which 

suggests that the fault is difficult for the model to classify from one speed to another. Figure 

17 showcases that the loose belt fault is being mistaken for the baseline and that the ball bearing 

2 fault is the most misclassified fault, which is getting confused with the baseline and the loose 

belt fault. 

 

4.6.2 1D-CNN 

As seen in Tables 11 & 13, the 1D-CNN model achieved a low accuracy of 66% at baseline 1, 

and 63% with baseline 2, which is both lower than the BiLSTM model’s performances. Figures 

18 and 19 highlight a similar pattern to the BiLSTM model where the spacer fault is 

highlighting a strong precision at 98%, strong recall at 93% and an F1-score of  95% for 

baseline 2 (see Table 11). However, the model struggles to classify the small gear fault on 

baseline 2, a challenge that is not observed with baseline 1, highlighting a significant difference 

in performance between the two baselines. The metrics for the small gear fault at baseline 1 are 

88% precision, 100% recall and an F1-score of 93%. At baseline 2 the small gear fault has a 

performance of 91% precision, 6% recall and an F1-score of 12%. As seen in Figure 19, the 

most misclassified class is the small gear fault and the loose belt fault, which is getting confused 

with the baseline. As seen in Figure 18, the most confused fault is the ball bearing 2 fault that 

is getting confused with the baseline and the loose belt fault.  

 

 

 

 

 

 

 

 

 

 



34 

 

Classification Report - Cross-Speed-Generalization - 1D CNN (75 Pz/min & baseline 2) 

Class Precision Recall F1-Score 

BL 0.43 0.93 0.59 

LBTPIII 0.74 0.60 0.66 

SGPI 0.91 0.06 0.12 

SPACER 0.98 0.93 0.95 

Accuracy 0.63 

Macro avg 0.76 0.63 0.58 

Weighted avg 0.76 0.63 0.58 

             Table 11. Classification report - Cross-Speed Generalization- 1D CNN 

 

 

Classification Report - Cross-Speed-Generalization - Bi-LSTM (75 Pz/min & Baseline 2) 

Class Precision Recall F1-Score 

BL 0.51 0.92 0.66 

LBTPIII 0.79 0.65 0.71 

SGPI 0.83 0.30 0.44 

SPACER 0.94 0.97 0.96 

Accuracy 0.71 

Macro avg 0.77 0.71 0.69 

Weighted avg 0.77 0.71 0.69 

             Table 12. Classification report - Cross-Speed Generalization - 1D CNN-BiLSTM 

 

Classification Report - Cross-Speed-Generalization - 1D CNN (75 Pz/min & Baseline 1) 

Class Precision Recall F1-Score 

BBI 0.94 0.69 0.80 

BBII 0.00 0.00 0.00 

BL 0.59 0.85 0.70 

LBTPIII 0.46 0.75 0.57 

SGPI 0.88 1.00 0.93 

Accuracy 0.66 

Macro avg 0.57 0.66 0.60 

Weighted avg 0.57 0.66 0.60 

              Table 13. Classification report - Cross-Speed Generalization- 1D CNN 

 

Classification Report - Cross-Speed-Generalization - Bi-LSTM (75 Pz/min & Baseline 1) 

Class Precision Recall F1-Score 

BBI 0.95 0.72 0.82 

BBII 0.00 0.00 0.00 

BL 0.51 0.92 0.65 

LBTPIII 0.59 0.81 0.69 

SGPI 0.93 0.97 0.95 

Accuracy 0.68 

Macro avg 0.60 0.68 0.52 

Weighted avg 0.60 0.68 0.62 

             Table 14. Classification report - Cross-Speed Generalization - 1D CNN-BiLSTM 
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Figure 16. Confusion Matrix - 1D CNN-BiLSTM. Cross-Speed Generalization (Baseline 1) & Figure 

17. Confusion Matrix - 1D CNN-BiLSTM. Cross-Speed Generalization (Baseline 2) 

                                                                             

 

Figure 18. Confusion Matrix - 1D CNN for Cross-Speed Generalization (Baseline 1) & Figure 19. 

Cross-Speed Generalization (Baseline 2) 
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4.6.3 Summary 

The BiLSTM model outperforms the 1D-CNN in cross-speed generalization. It achieves 

accuracies of 71% on baseline 1 and, 66% on baseline 2, compared to the 1D-CNN's 63%, and 

66%, respectively. The BiLSTM model consistently demonstrates better fault detection and 

classification metrics compared to the 1D-CNN and it also shows a stronger performance on 

the noisier baseline 1. These results display the strength of the bidirectional layer which allows 

the model to process the input data both forwards and backwards in time, enabling it to capture 

long-term information. This has shown to be particularly useful for cross-speed generalization, 

where changes in patterns due to varying speeds can affect how faults manifest in the data. The 

BiLSTM model’s recurrent structure is allowing it to smooth out inconsistencies over time and 

detect patterns that persist across sequence, which is effective in scenarios like cross-speed 

generalization where noise and variability is introduced. In contrast, the 1D-CNN model is 

primarily focusing on extracting local features and lacks the ability to consider sequential 

dependencies as effectively as the BiLSTM model. This could be the reason for the weaker 

generalization across the different speed conditions, where the temporal development of the 

patterns is critical. The ability of some faults to generalize across speeds while others struggle 

could potentially depend on how distinct and speed-invariant the fault signals are at different 

speeds.  

 

Faults that generate clear, repetitive patterns, such as the spacer fault, tend to be easier for the 

model to classify at both the 120 and 75 speed. However, faults like the small gear fault could 

potentially display more complex or speed-dependent behaviors, which is making it harder for 

the model to recognize and classify when evaluated at a lower speed. The model could also 

potentially have overfitted to the features specific to the 120 speed, leading to a weak 

generalization ability at the 75 speed, for certain fault types. Finally, it can be stated that speed 

generalization remains a significant challenge, as none of the models demonstrate optimal 

performance across the two speeds, highlighting their limitations in adapting to changing 

operating conditions. 
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4.7 Combined Speeds 

4.7.1 1D-CNN 

The 1D-CNN model is highlighting weak performance on unseen data with combined speeds 

and has an accuracy of 60% as seen in Table 15. The precision, recall and F1-scores of the 

model indicates that there is variability between the faults. The fault that the models fail to 

classify the most is the ball bearing 1 fault, with an F1-score of 35%, and the loose belt fault 

with an F1-score of 54%. The small gear fault demonstrates a high recall of 100% and a lower 

precision of 49%, leading to an F1-score of 66%. The model classifies the baseline the most 

accurately, highlighting an F1-score of 85%. Overall, the macro and weighted averages of 

precision, recall, and F1-score display an accuracy of 60%, which reflects a lack of robustness 

across all faults. Figure 21 further displays that the ball bearing 2 fault is getting confused with 

the ball bearing 1 fault and the small gear fault. 

 

4.7.2 Summary 

The 1D-CNN model's performance decreases on combined speeds compared to the cross-

speed-generalization performance. This could be since when the model is trained on combined 

speeds, it is exposed to a wider range of data variability, making it harder for the model to 

capture consistent patterns. The increased complexity in the data could potentially be the reason 

for the reduced performance because the model must generalize across different speed 

conditions. Another reason for the decreased performance could be the model's difficulty in 

capturing speed-specific features, when each speed has unique fault characteristics or patterns, 

and training on combined speeds forces the model to learn features that work across all speeds. 

If these fault patterns do not generalize well between speeds, the model might struggle to 

capture the relevant features. Additionally, when training on a single speed, the temporal 

variations of the fault signals are more uniform, but combining speeds could introduce shifts 

in the timing of fault signatures.  

 

4.7.3 1D-CNN-BiLSTM 

The BiLSTM model is highlighting a robust performance with an accuracy of 96% on the 

combined speeds. As seen in Table 16, the precision, recall and F1-scores are consistently high 

across all faults with the lowest F1-score being 91% for the ball bearing 2 fault. 
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The faults that the model can classify the best are the baseline, loose belt fault and the small 

gear fault, which all achieve almost perfect metrics. The model displays a strong ability to 

manage more complex patterns and variability in the data. The macro and weighted averages 

for this model are 96% over all classes, which is a significant improvement in overall 

performance and reliability compared to the 1D-CNN model. Figure 20 highlights the robust 

performance of the model with very few misclassifications. 

 

4.7.4 Summary 

The results indicate that incorporating a BiLSTM layer into the 1D-CNN architecture, 

especially when processing data with varying speeds, results in a more robust model that 

outperforms the regular 1D-CNN significantly. The inclusion of the BiLSTM layer is allowing 

the model to capture sequential dependencies and temporal patterns. 

 

Classification Report - Combined Speeds - 1D CNN (Baseline 1) 

Class Precision Recall F1-Score 

BBI 0.35 0.35 0.35 

BBII 0.69 0.51 0.59 

BL 0.97 0.76 0.85 

LBTPIII 0.90 0.38 0.54 

SGPI 0.49 1.00 0.66 

Accuracy 0.60 

Macro avg 0.68 0.60 0.60 

Weighted avg 0.68 0.60 0.60 

             Table 15. Classification report - Combined Speeds - 1D CNN 

 

Classification Report - Combined Speeds - 1D CNN-BiLSTM (Baseline 1) 

Class Precision Recall F1-Score 

BBI 0.98 0.90 0.94 

BBII 0.86 0.98 0.91 

BL 0.98 0.96 0.97 

LBTPIII 0.99 0.94 0.96 

SGPI 0.99 1.00 0.99 

Accuracy 0.96 

Macro avg 0.96 0.96 0.96 

Weighted avg 0.96 0.96 0.96 

            Table 16. Classification report - Combined speeds - 1D CNN-BiLSTM 
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Figure 20. Confusion Matrix. 1D CNN-BiLSTM. Combined Speeds & baseline 1 & Figure 21. 

Confusion Matrix. 1D CNN. Combined Speeds & baseline 1. 
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Chapter 5 

5. Conclusions & Future Research 

This study demonstrates promising results for fault classification in small and complex 

packaging machines. The three sensors were positioned inside the machine, close to numerous 

moving parts, yet the approach proved to be highly effective. Furthermore, the findings suggest 

that the vibration measurements currently used by AstraZeneca are sufficient for this task. 

However, it is important to note that this study was conducted in an isolated environment and 

not within a full production setting. Therefore, it cannot be stated that the method used for fault 

classification will produce similar results in a production environment where upstream and 

downstream equipment are present. Additionally, the study did not account for disturbances 

typically found in real production settings, such as robots and operators performing tasks like 

refilling material. Despite these limitations, the study revealed that the machine faults could be 

classified using vibration sensors with a measurement range of 10-1000 Hz, which is an 

encouraging outcome.  

When it comes to cross-speed generalization it has proven challenging to achieve good 

accuracy and performance with both the 1D-CNN model and the BiLSTM model. However, 

the BiLSTM model achieves strong performance on combined speeds, and is showing 

promising results in this area, something that the 1D-CNN model failed to accomplish. It has 

been displayed that the BiLSTM model, which has a long-term temporal understanding, is the 

superior model in all categories explored, and has consistently shown the strongest 

performance and highest accuracy throughout this study. This suggests that the inclusion of the 

BiLSTM layer can effectively capture temporal patterns that are crucial for accurate 

predictions, which the 1D-CNN model fails to do. The stronger performance of the BiLSTM 

model indicates that the bidirectional LSTM layer provides the model with a better ability to 

identify subtle variations and trends in the input data. The model also showed strong 

performance, even if small time-delays were introduced due to the manual activation of the 

vibration sensors.  
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This suggests that the segment index and the BiLSTM layer together enable the model to 

maintain high accuracy despite challenges like minor time lags, highlighting the model's 

capacity for effective temporal reasoning. In this study, incorporating multiple sensors 

provided a minor increase in performance. However, it is important to note that sensor 

placement plays a crucial role in model performance, as evidenced by the significantly weaker 

results and performance observed from sensor 2. It should also be mentioned that even though 

the models had different kernel sizes which potentially have contributed to the different 

performances, the BiLSTM models temporal capabilities most likely played a more significant 

role in improving accuracy, since the kernel sizes are contributing to the feature extraction, but 

the BiLSTM's temporal memory is what really differentiates the two models, as well as the 

inclusion of multiple sensors. For future research, when it comes to advancing fault 

classification in packaging machines and using these techniques in a production setting, several 

things should be considered. First, every machine is like its own individual and they often have 

unique baselines, meaning that models trained on one baseline might not generalize to others 

without retraining.  

 

In future research it is proposed that cross-baseline-generalization is explored. Models should 

also account for variations in machine speeds and noise by training on a diverse set of data, 

and applying noise-robust techniques, hence it is suggested to explore even more noise-robust 

models that can manage variation in speeds better. It should also be noted that this study did 

not have data on precursor signals leading up to faults, but only on baselines with directly 

induced faults. For future experiments, collecting data on precursor signals would allow the 

model to learn patterns and trends that occur before a fault is introduced, enabling the model 

to predict failures before they happen, which offers a more proactive approach to maintenance. 

Being able to forecast a machine breakdown could potentially be the next step for AstraZeneca 

and exploring the prediction of the machine's RUL is also suggested as a future approach. 

Lastly, introducing high frequency faults and using sensors with a broader frequency range 

could also be beneficial for enhanced fault detection in future research. For future research it 

is also proposed that the isolated effect of multiple sensors and the BiLSTM layer is explored 

separately, as this research only compares overall performance of the two models.  

 

 

 

 



Appendix I - Literature Summary 

Authors Model Hyper-parameters Result Data Multisensor Sensor placement 

Choudakkanavar 
& Mangai 

(2022) 

1D-CNN-BiLSTM - Kernel Size: 3x1 
- Stride: 1  

- Pooling: Max Pooling, 2x2 (Stride 2) 
- Fully connected layer: 256 units 

- Softmax activation 
- Loss Function: Cross-entropy 

- Weight update: Gradient descent 
 

99.8 % Raw Vibration data 
No feature extraction 

Multi-channel 
(CWRU data set) 

Yes Rolling Bearing Test 
Platform 

 

Chao et al. 
(2019) 

1D-CNN - Kernel Size: 3 
- Stride: 1 

- Pooling: Max Pooling, 2x2 
- Fully connected layer: 128 units 

- Softmax activation in Output 
-ReLU activation in hidden layers 

98.6 % Raw vibration data 
Feature extraction 

Single-channel 
(Own data collection) 

No Accelerometer mounted 
on pump housing  

 

Chen et al 
(2024) 

1D-CNN - Kernel Size: 16x1 (Conv1) 
- Tanh activation 

- Max-pooling: 2x2 
- Dropout: 0.3, 0.25 

 

98.9 % Raw vibration data 
No Feature extraction 

Multi-channel 
(CWRU dataset) 

Yes Rolling Bearing Test 
Platform 

Table 17. Summary of reviewed literature’s proposed models & results 
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Appendix II - Experimental log 
 

​ Date of Experiment Start Time End Time Name Type Speed (Pz/min) Comment 

10/14/2024 10:53 11:35 Trials Trial 75 Trials with baseline after changing components 

10/14/2024 12:13 12:30 BL 1 Baseline 75 Baseline with new components 

10/14/2024 12:40 13:30 BL 1 Baseline 120 Baseline with new components 

10/14/2024 14:52 15:11 SGP1 Old component 120 Old component, no extra damage 

10/14/2024 15:11 15:20 SGP1 Old component 75 Old component, no extra damage 

10/14/2024 15:47 15:56 BB1 Damage 75 Impact on balls that is creating "clicking" when rotating 

10/14/2024 15:57 16:16 BB1 Damage 120 Impact on balls that is creating "clicking" when rotating 
10/14/2024 16:24 16:43 BB2 Damage 120 Graveled bearing with less resistance in rolling & bumps 

10/15/2024 08:46 09:06 BB2 Damage 75 Graveled bearing with less resistance in rolling & bumps 

10/15/2024 10:45 11:08 BTP3 Looseness 120 Looseness introduced to belt 

10/15/2024 11:35 11:44 BTP3 Looseness 75 Looseness introduced to belt 

10/18/2024 14:00 14:29 HBTP1 Tight belt 120 Overtightened with screwdriver 

10/22/2024 14:45 15:01 BL 2 Baseline 120 New baseline: Exchange of spacer from back to front 

10/22/2024 15:02 15:21 BL 2 Baseline 75 New baseline: Exchange of spacer from back to front 

11/6/2024 10:05 10:20 SGP1 Damage 75 Both bearings have been exposed to external force 

11/6/2024 10:22 10:46 SGP1 Damage 120 Both bearings have been exposed to external force 

11/6/2024 10:50 11:10 BTP3 Looseness 120 Damaged bearings still left in system, sensor 1 

11/6/2024 11:10 11:24 BTP3 Looseness 75 Damaged bearings still left in system, sensor 1 

Table 18. Experimental Log 
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Appendix III - Model Configuration 

Model Configuration  Hyper Parameters 

Window parameters Win_len = 400 & Stride = 100 

Convolutional Layers 

(1D-CNN) 

Conv1D Layer 1: 128 filters, kernel size = 10  

Conv1D Layer 2: 64 filters, kernel size = 5 

Conv1D Layer 3: 32 filters, kernel size = 3 

Convolutional Layers 

(1D CNN-BiLSTM) 

Conv1D Layer 1: 128 filters, kernel size = 15  

Conv1D Layer 2: 64 filters, kernel size = 10 

Conv1D Layer 3: 32 filters, kernel size = 8 

Pooling Layers MaxPooling1D with pool sizes of 4 and 2 

Batch Normalization Applied after each Conv1D layer 

Dropout Layers 
Dropout rate of 0.2 after Conv1D layers 

Dropout rate of 0.3 before the final dense layer 

Bidirectional LSTM Layer 

(1D CNN-BiLSTM) 

64 units, return_sequences=True  

                                                          

Dense & Hidden Layers 

Dense layer with 128 units and ReLU activation in hidden layers. 

Output layer with number of units equal to the number of classes, 

Softmax activation 

Regularization L2 regularization, weight decay = 0,001 

Optimizer Adam optimizer, learning rate = 0,001 

Callbacks ReduceLROnPlateau with patience = 5 

Cross-Validation Stratified K-Fold with 10 folds 

Epochs & Batch Size 30 epochs, batch size = 32 

Table 19. Model configuration for 1D CNN & 1D CNN-BiLSTM 
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Appendix IV - Gaussian Noise 

 

Figure 22. 2% Gaussian noise added to Baseline 2 (X-axis) 

 

 

 

Figure 23. 5% Gaussian noise added to Baseline 2 (X-axis) 

 

 

 

Figure 24. 10% Gaussian noise added to Baseline 2 (X-axis) 
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