Repository logo
 
Publication

Training data in satellite image classification for land cover mapping: a review

dc.contributor.authorMoraes, Daniel
dc.contributor.authorCampagnolo, Manuel
dc.contributor.authorCaetano, Mário
dc.date.accessioned2025-08-01T09:15:17Z
dc.date.available2025-08-01T09:15:17Z
dc.date.issued2024-04
dc.description.abstractThe current land cover (LC) mapping paradigm relies on automatic satellite imagery classifica- tion, predominantly through supervised methods, which depend on training data to calibrate classification algorithms. Hence, training data have a critical influence on classification accu- racy. Although research on specific aspects of training data in the LC classification context exists, a study that organizes and synthetizes the multiplicity of aspects and findings of these researches is needed. In this article, we review the training data used for LC classification of satellite imagery. A protocol of identification and selection of relevant documents was fol- lowed, resulting in 114 peer-reviewed studies included. Main research topics were identified and documents were characterized according to their contribution to each topic, which allowed uncovering subtopics and categories and synthetizing the main findings regarding different aspects of the training dataset. The analysis found four research topics, namely construction of the training dataset, sample quality, sampling design and advanced learning techniques. Subtopics included sample collection method, sample cleaning procedures, sam- ple size, sampling method, class balance and distribution, among others. A summary of the main findings and approaches provided an overview of the research in this area, which may serve as a starting point for new LC mapping initiatives.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationDaniel Moraes, Manuel L. Campagnolo & Mário Caetano (2024) Training data in satellite image classification for land cover mapping: a review, European Journal of Remote Sensing, 57:1, 2341414, DOI: https://doi.org/10.1080/22797254.2024.2341414pt_PT
dc.identifier.doi10.1080/22797254.2024.2341414pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.5/102604
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherTaylor & Francispt_PT
dc.relationForest Research Centre
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLand coverpt_PT
dc.subjectsatellite imagespt_PT
dc.subjectsupervised classificationpt_PT
dc.subjecttraining datapt_PT
dc.subjectsampling designpt_PT
dc.subjectsample qualitypt_PT
dc.titleTraining data in satellite image classification for land cover mapping: a reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleForest Research Centre
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/PRT%2FBD%2F153517%2F2021/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00239%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F04152%2F2020/PT
oaire.citation.issue1pt_PT
oaire.citation.startPage2341414pt_PT
oaire.citation.titleEuropean Journal of Remote Sensingpt_PT
oaire.citation.volume57pt_PT
oaire.fundingStreamOE
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamConcurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017/2018) - Financiamento Base
person.familyNameCampagnolo
person.givenNameManuel
person.identifier115564
person.identifier.ciencia-id7F18-3B3C-06BB
person.identifier.orcid0000-0002-9634-3061
person.identifier.ridD-2743-2013
person.identifier.scopus-author-id6602240045
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbe1b9661-b29f-4d2f-bfba-1c2cc5796fd8
relation.isAuthorOfPublication.latestForDiscoverybe1b9661-b29f-4d2f-bfba-1c2cc5796fd8
relation.isProjectOfPublicationed99b8d6-38d7-4e8f-9332-ef752c2add0e
relation.isProjectOfPublication56bd0ae9-f8da-4344-b9a2-f633d4f68b89
relation.isProjectOfPublicationd0edfad1-30f1-4c0a-89a9-fed2f4ece98f
relation.isProjectOfPublication.latestForDiscoveryd0edfad1-30f1-4c0a-89a9-fed2f4ece98f

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Training data in satellite image classification for land cover mapping a review-1.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.2 KB
Format:
Item-specific license agreed upon to submission
Description: