Publicação
Deep learning models for clinical assessment of prostate cancer
| datacite.subject.fos | Ciências Naturais::Ciências da Computação e da Informação | pt_PT |
| dc.contributor.advisor | Silva, Sara Guilherme Oliveira da | |
| dc.contributor.advisor | Papanikolaou, Nickolas | |
| dc.contributor.author | Rodrigues, Nuno M. | |
| dc.date.accessioned | 2025-03-18T18:04:12Z | |
| dc.date.available | 2025-03-18T18:04:12Z | |
| dc.date.issued | 2025-01-31 | |
| dc.date.submitted | 2024-07-22 | |
| dc.description.sponsorship | LASIGE Research Unit ref. UID/000408/2025 | pt_PT |
| dc.identifier.tid | 101766670 | pt_PT |
| dc.identifier.uri | http://hdl.handle.net/10400.5/99446 | |
| dc.language.iso | eng | pt_PT |
| dc.subject | Deep Learning | pt_PT |
| dc.subject | MRI | pt_PT |
| dc.subject | Prostate | pt_PT |
| dc.subject | Segmentation | pt_PT |
| dc.subject | Detection | pt_PT |
| dc.subject | Aprendizagem Profunda | pt_PT |
| dc.subject | Próstata | pt_PT |
| dc.subject | Segmentação | pt_PT |
| dc.subject | Detecção | pt_PT |
| dc.title | Deep learning models for clinical assessment of prostate cancer | pt_PT |
| dc.type | doctoral thesis | |
| dspace.entity.type | Publication | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT//2021.05322.BD/PT | |
| person.familyName | Vasconcelos Rodrigues | |
| person.givenName | Nuno Miguel | |
| person.identifier.ciencia-id | E310-81BB-F5FA | |
| person.identifier.orcid | 0000-0001-5312-8276 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | doctoralThesis | pt_PT |
| relation.isAuthorOfPublication | cf1fc66f-e0a6-4bf4-a13e-17b248632490 | |
| relation.isAuthorOfPublication.latestForDiscovery | cf1fc66f-e0a6-4bf4-a13e-17b248632490 | |
| relation.isProjectOfPublication | d981081a-d32b-4d28-80e5-d89b3d0d79d3 | |
| relation.isProjectOfPublication.latestForDiscovery | d981081a-d32b-4d28-80e5-d89b3d0d79d3 | |
| thesis.degree.name | Tese de doutoramento, Informática, Universidade de Lisboa, Faculdade de Ciências, 2025 | pt_PT |
