Repository logo
 
Publication

Quasi-maximum likelihood and the Kernel Block Bootstrap for nonlinear dynamic models

dc.contributor.authorParente, Paulo M.D.C.
dc.contributor.authorSmith, Richard J.
dc.date.accessioned2018-11-28T14:14:39Z
dc.date.available2018-11-28T14:14:39Z
dc.date.issued2018-11
dc.description.abstractThis paper applies a novel bootstrap method, the kernel block bootstrap, to quasi-maximum likelihood estimation of dynamic models with stationary strong mixing data. The method first kernel weights the components comprising the quasi-log likelihood function in an appropriate way and then samples the resultant transformed components using the standard “m out of n” bootstrap. We investigate the first order asymptotic properties of the KBB method for quasi-maximum likelihood demonstrating, in particular, its consistency and the first-order asymptotic validity of the bootstrap approximation to the distribution of the quasi-maximum likelihood estimator. A set of simulation experiments for the mean regression model illustrates the efficacy of the kernel block bootstrap for quasi-maximum likelihood estimation.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationParente, Paulo M.D.C. e Richard J. Smith (2018). "Quasi-maximum likelihood and the Kernel Block Bootstrap for nonlinear dynamic models". Instituto Superior de Economia e Gestão – REM Working paper nº 059 - 2018pt_PT
dc.identifier.issn2184-108X
dc.identifier.urihttp://hdl.handle.net/10400.5/16418
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherISEG - REM - Research in Economics and Mathematicspt_PT
dc.relation.ispartofseriesREM Working paper;nº 059 - 2018
dc.relation.publisherversionhttps://rem.rc.iseg.ulisboa.pt/wps/pdf/REM_WP_059_2018.pdfpt_PT
dc.subjectBootstrappt_PT
dc.subjectheteroskedastic and autocorrelation consistent inferencept_PT
dc.subjectquasi-maximum likelihood estimationpt_PT
dc.titleQuasi-maximum likelihood and the Kernel Block Bootstrap for nonlinear dynamic modelspt_PT
dc.typeworking paper
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typeworkingPaperpt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
REM_WP_059_2018.pdf
Size:
585.06 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: