Repository logo
 
Publication

Phytoplankton community-level bio-optical assessment in a naturally mercury contaminated Antarctic ecosystem (Deception Island)

dc.contributor.authorDuarte, Bernardo
dc.contributor.authorCabrita, Maria Teresa
dc.contributor.authorVidal, Tânia
dc.contributor.authorPereira, Joana Luísa
dc.contributor.authorPacheco, Mário
dc.contributor.authorPereira, Patrícia
dc.contributor.authorCanário, João
dc.contributor.authorGonçalves, Fernando J.M.
dc.contributor.authorMatos, Ana Rita
dc.contributor.authorRosa, Rui
dc.contributor.authorMarques, J. C.
dc.contributor.authorCaçador, Isabel
dc.contributor.authorGameiro, C.
dc.date.accessioned2019-06-25T10:27:57Z
dc.date.available2019-06-25T10:27:57Z
dc.date.issued2018
dc.description.abstractMercury naturally contaminated environments, like Deception Island (Antarctica), are field labs to study the physiological consequences of chronic Hg-exposure at the community level. Deception Island volcanic vents lead to a continuous chronic exposure of the phytoplanktonic communities to potentially toxic Hg concentrations. Comparing Hg-contaminated areas (Fumarolas Bay - FB, Gabriel de Castilla station - GdC station), no significant differences in chlorophyll a concentrations were detected, indicating that biomass production was not impaired by Hg-exposure despite the high Hg levels found in the cells. Moreover, the electron transport energy, responsible for energy production, also presented rather similar values in phytoplankton from both locations. Regarding FB communities, although the cells absorbed and trapped lower amounts of energy, the effect of Hg was not relevant in the photochemical work produced by the electronic transport chain. This might be due to the activation of alternative internal electron donors, as counteractive measure to the energy accumulated inside the cells. In fact, this alternative electron pathway, may have allowed FB communities to have similar electron transport energy fluxes without using respiration as photoprotective measure towards excessive energy. Hg-exposed cells also showed a shift from the energy flux towards the PS I (photosystem I), alleviating the excessive energy accumulation at the PS II (photosystem II) and preventing an oxidative burst. Our findings suggest a higher energy use efficiency in the communities exposed to volcanic Hg, which is not observable in cultured phytoplankton species grown under Hg exposure. This may constitute a metabolic adaptation, driven from chronic exposure allowing the maintenance of high levels of primary productivity under the assumingly unfavourable conditions of Deception Island.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.marenvres.2018.07.014pt_PT
dc.identifier.issn0141-1136
dc.identifier.urihttp://hdl.handle.net/10451/38806
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectAntarcticapt_PT
dc.subjectHg contaminationpt_PT
dc.subjectPhytoplanktonpt_PT
dc.subjectPhotochemistrypt_PT
dc.titlePhytoplankton community-level bio-optical assessment in a naturally mercury contaminated Antarctic ecosystem (Deception Island)pt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage421pt_PT
oaire.citation.startPage412pt_PT
oaire.citation.titleMarine Environmental Researchpt_PT
oaire.citation.volume140pt_PT
person.familyNameDuarte
person.familyNameRosa
person.familyNameMARQUES
person.familyNameCaçador
person.familyNameGameiro
person.givenNameBernardo
person.givenNameRui
person.givenNameJOÃO CARLOS
person.givenNameIsabel
person.givenNameCarla
person.identifier89449
person.identifier430759
person.identifier134821
person.identifier.ciencia-id731E-093F-D4C8
person.identifier.ciencia-id2B10-7D61-FF7A
person.identifier.ciencia-id9F11-7A1E-BEEC
person.identifier.ciencia-id631C-9FFE-CA81
person.identifier.ciencia-id771B-9D07-AB1A
person.identifier.orcid0000-0003-1914-7435
person.identifier.orcid0000-0003-2801-5178
person.identifier.orcid0000-0001-8865-8189
person.identifier.orcid0000-0002-4475-6091
person.identifier.orcid0000-0003-2396-3929
person.identifier.ridH-2001-2011
person.identifier.ridA-4580-2009
person.identifier.ridL-9478-2014
person.identifier.ridC-2618-2012
person.identifier.ridB-5462-2012
person.identifier.scopus-author-id20734149900
person.identifier.scopus-author-id7102610088
person.identifier.scopus-author-id7203032961
person.identifier.scopus-author-id6602533871
person.identifier.scopus-author-id20734253500
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa72f0f40-c224-49ad-ba21-ebb5f9aab09c
relation.isAuthorOfPublication395f77c0-ac42-4b7c-9b4a-07fdb75305cc
relation.isAuthorOfPublication97130a55-0383-4d1b-8d73-4a5ca889e529
relation.isAuthorOfPublication02ecb390-88b9-4e2f-8690-eba66c3b5311
relation.isAuthorOfPublication39490eaa-c76a-4478-9ff0-844df5fb91ca
relation.isAuthorOfPublication.latestForDiscovery39490eaa-c76a-4478-9ff0-844df5fb91ca

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MARE_ULisboa_MarineEnvironmentalResearch_140_2018_412-421.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.2 KB
Format:
Item-specific license agreed upon to submission
Description: