Repository logo
 
Publication

A simple deconvolving Kernel density estimator when noise is Gaussian

dc.contributor.authorProença, Isabel
dc.date.accessioned2023-09-06T09:03:07Z
dc.date.available2023-09-06T09:03:07Z
dc.date.issued2006
dc.description.abstractDeconvolving kernel estimators when noise is Gaussian entail heavy calculations. In order to obtain the density estimates numerical evaluation of a specific integral is needed. This work proposes an approximation to the deconvolving kernel which simplifies considerably calculations by avoiding the typical numerical integration. Simulations included indicate that the lost in performance relatively to the true deconvolving kernel, is almost negligible in finite samplespt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationProença, Isabel .(2006). “A simple deconvolving Kernel density estimator when noise is Gaussian” in The Art of Semiparametrics , Contributions to Statistics Series, Physica-Verlag. S. Sperlich, W. Härdle and G. Aydinli (eds). Physica-Verlag: pp. 22-31 . (Search in 2023).pt_PT
dc.identifier.isbn978-3-7908-1700
dc.identifier.urihttp://hdl.handle.net/10400.5/28427
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.subjectDeconvolutionpt_PT
dc.subjectDensity Estimationpt_PT
dc.subjectErrors-In-Variablespt_PT
dc.subjectKernelpt_PT
dc.subjectSimulationspt_PT
dc.titleA simple deconvolving Kernel density estimator when noise is Gaussianpt_PT
dc.typebook part
dspace.entity.typePublication
rcaap.rightsclosedAccesspt_PT
rcaap.typebookPartpt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
I. Proença. Capitt. de Livro .2006..pdf
Size:
187.86 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: