Repository logo
 
Publication

Towards better selection and characterisation criteria for high-redshift radio galaxies using machine-assisted pattern recognition

datacite.subject.fosCiências Naturais::Ciências Físicaspt_PT
dc.contributor.advisorAfonso, José
dc.contributor.advisorMatute, Israel
dc.contributor.advisorMessias, Hugo G.
dc.contributor.authorCarvajal, Rodrigo
dc.date.accessioned2025-03-18T17:38:16Z
dc.date.available2025-03-18T17:38:16Z
dc.date.issued2024-12-19
dc.date.submitted2024-06-07
dc.description.abstractUnderstanding how galaxies and their constituents, like active galactic nuclei (AGN), evolve and interact across cosmic timescales remains a key challenge in astrophysics, especially during the epoch of reionisation (EoR), when the early Universe transitioned from a neutral to an ionised state. Even though star formation (SF) is considered to be its main contributor, the impact of AGN remains elusive. Recently, huge efforts have been put into the determination of the AGN bolometric radiation output via their search using a multi-wavelength approach. To address such challenge, this thesis presents a novel machine learning (ML) tool –a pipeline of models– for the efficient selection and redshift characterisation of radio-detectable AGN by using multi-wavelength photometry of sources detected in the infrared (IR). By analysing sources in a wide range of redshift values, this tool enables the exploration of theAGN-galaxy co-evolution across cosmic times. Applied to millions of sources in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Spring and the Stripe 82 (S82) fields, our pipeline has identified almost 100 thousand radio-AGN candidates, with predicted redshift values up to 4.4. Beyond classification, we can extract the key parameters that most significantly impact candidate selection in our pipeline. This investigation has led to the design of a new AGN colour-colour selection criterion, offering a useful, ML-based, tool for the community. Furthermore, by extracting radio-AGN candidates from the Evolutionary Map of the Universe Pilot Survey (EMU-PS), we can generate radio luminosity functions (RLFs) with highly constrained uncertainties. Our results are compatible with current knowledge and hint at the existence of a distinct population of bright sources. Finally, this thesis explores the potential application of our tool to future surveys like the Square Kilometre Array (SKA), that is expected to generate immense radio datasets. Our rapid and reliable method will be instrumental in separating AGN from star-forming galaxies (SFGs) while helping to unveil their interplay across the history of the Universe.pt_PT
dc.identifier.tid101770413pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.5/99439
dc.language.isoengpt_PT
dc.relationThe first Radio Galaxies in the Universe
dc.relationInstitute of Astrophysics and Space Sciences
dc.subjectActive Galactic Nucleipt_PT
dc.subjectRadio Galaxiespt_PT
dc.subjectGalaxy classificationpt_PT
dc.subjectRedshift Determinationpt_PT
dc.subjectMachine Learningpt_PT
dc.subjectNúcleo Galáctico Ativopt_PT
dc.subjectRadio Galáxiaspt_PT
dc.subjectClassificação de Galáxiaspt_PT
dc.subjectDeterminação do Desvio para o Vermelhopt_PT
dc.subjectAprendizagem Automáticapt_PT
dc.titleTowards better selection and characterisation criteria for high-redshift radio galaxies using machine-assisted pattern recognitionpt_PT
dc.typedoctoral thesis
dspace.entity.typePublication
oaire.awardTitleThe first Radio Galaxies in the Universe
oaire.awardTitleInstitute of Astrophysics and Space Sciences
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//PD%2FBD%2F150455%2F2019/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/EXPL%2FFIS-AST%2F1085%2F2021/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04434%2F2020/PT
oaire.fundingStream3599-PPCDT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameCarvajal Pizarro
person.givenNameRodrigo Alonso
person.identifierq5m-RLkAAAAJ&hl
person.identifier.ciencia-idBD1C-B20D-18E8
person.identifier.orcid0000-0002-0545-1113
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typedoctoralThesispt_PT
relation.isAuthorOfPublication4b508747-bf64-44cd-a126-c8a56e29f66f
relation.isAuthorOfPublication.latestForDiscovery4b508747-bf64-44cd-a126-c8a56e29f66f
relation.isProjectOfPublication3f25f4da-5011-4f08-9c1d-990220271040
relation.isProjectOfPublicationb223c6d9-c640-4f47-9e8d-3295dcf942f2
relation.isProjectOfPublication5d7cb0ad-0ea2-4da9-8885-2ab8a1822c7e
relation.isProjectOfPublication.latestForDiscovery3f25f4da-5011-4f08-9c1d-990220271040
thesis.degree.nameTese de doutoramento, Física e Astrofísica, Universidade de Lisboa, Faculdade de Ciências, 2024pt_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
scnd990026354742420_td_Rodrigo_Pizarro.pdf
Size:
14.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.2 KB
Format:
Item-specific license agreed upon to submission
Description: