Publicação
ATP modulates acute inflammation In Vivo through Dual Oxidase 1–derived H2O2 production and NF-κB activation
| dc.contributor.author | De Oliveira, Sofia | |
| dc.contributor.author | López-Muñoz, Azucena | |
| dc.contributor.author | Candel, Sergio | |
| dc.contributor.author | Pelegrín, Pablo | |
| dc.contributor.author | Calado, Ângelo | |
| dc.contributor.author | Mulero, Victoriano | |
| dc.date.accessioned | 2022-02-10T17:15:31Z | |
| dc.date.available | 2022-02-10T17:15:31Z | |
| dc.date.issued | 2014 | |
| dc.description | Copyright © 2014 by The American Association of Immunologists, Inc. | pt_PT |
| dc.description.abstract | Dual oxidase 1 (Duox1) is the NADPH oxidase responsible for the H2O2 gradient formed in tissues after injury to trigger the early recruitment of leukocytes. Little is known about the signals that modulate H2O2 release from DUOX1 and whether the H2O2 gradient can orchestrate the inflammatory response in vivo. In this study, we report on a dominant-negative form of zebrafish Duox1 that is able to inhibit endogenous Duox1 activity, H2O2 release and leukocyte recruitment after tissue injury, with none of the side effects associated with morpholino-mediated Duox1 knockdown. Using this specific tool, we found that ATP release following tissue injury activates purinergic P2Y receptors, and modulates Duox1 activity through phospholipase C (PLC) and intracellular calcium signaling in vivo. Furthermore, Duox1-derived H2O2 is able to trigger the NF-κB inflammatory signaling pathway. These data reveal that extracellular ATP acting as an early danger signal is responsible for the activation of Duox1 via a P2YR/PLC/Ca(2+) signaling pathway and the production of H2O2, which, in turn, is able to modulate in vivo not only the early recruitment of leukocytes to the wound but also the inflammatory response through activation of the NF-κB signaling pathway. | pt_PT |
| dc.description.sponsorship | This work was supported by Fundação para a Ciência e Tecnologia Ph.D. Fellowship Grant SFRH/BD/62674/2009 (to S.d.O.) and Spanish Ministry of Economy and Competitiveness Grant BIO2011-23400 (to V.M.), cofunded with Fondos Europeos de Desarrollo Regional/European Regional Development funds. S.C. was a recipient of a Ph.D. fellowship from the Spanish Ministry of Economy and Competitiveness. This work was also funded by Fundación Séneca-Murcia Grant 04538/GERM/06 (to V.M.). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | J Immunol 2014; 192:5710-5719 | pt_PT |
| dc.identifier.doi | 10.4049/jimmunol.1302902 | pt_PT |
| dc.identifier.eissn | 1550-6606 | |
| dc.identifier.issn | 0022-1767 | |
| dc.identifier.uri | http://hdl.handle.net/10451/51218 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | The American Association of Immunologists, Inc. | pt_PT |
| dc.relation | IN VIVO IMAGING OF INFLAMMATION IN ZEBRAFISH: THE ROLE OF CHEMOKINE SYSTEM IN NEUTROPHIL AND MACROPHAGE MIGRATION | |
| dc.relation.publisherversion | https://www.jimmunol.org/ | pt_PT |
| dc.title | ATP modulates acute inflammation In Vivo through Dual Oxidase 1–derived H2O2 production and NF-κB activation | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | IN VIVO IMAGING OF INFLAMMATION IN ZEBRAFISH: THE ROLE OF CHEMOKINE SYSTEM IN NEUTROPHIL AND MACROPHAGE MIGRATION | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F62674%2F2009/PT | |
| oaire.citation.endPage | 5719 | pt_PT |
| oaire.citation.issue | 12 | pt_PT |
| oaire.citation.startPage | 5710 | pt_PT |
| oaire.citation.title | The Journal of Immunology | pt_PT |
| oaire.citation.volume | 192 | pt_PT |
| person.familyName | De Oliveira | |
| person.familyName | Calado | |
| person.givenName | Sofia | |
| person.givenName | Ângelo | |
| person.identifier | 1026730 | |
| person.identifier.ciencia-id | 7011-768C-81B6 | |
| person.identifier.ciencia-id | 6214-D18D-843F | |
| person.identifier.orcid | 0000-0003-0893-111X | |
| person.identifier.orcid | 0000-0003-0182-2615 | |
| person.identifier.rid | Y-2296-2019 | |
| person.identifier.scopus-author-id | 24476411300 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isAuthorOfPublication | 007f8d3b-8acf-47bd-8eb8-b8f33d6b9d2b | |
| relation.isAuthorOfPublication | ab22c763-5ad6-4837-a6db-a959b1dbb675 | |
| relation.isAuthorOfPublication.latestForDiscovery | ab22c763-5ad6-4837-a6db-a959b1dbb675 | |
| relation.isProjectOfPublication | 66b32d6f-6829-43b7-a33d-4c39801b18a1 | |
| relation.isProjectOfPublication.latestForDiscovery | 66b32d6f-6829-43b7-a33d-4c39801b18a1 |
Ficheiros
Principais
1 - 1 de 1
Miniatura indisponível
- Nome:
- ATP_modulates.pdf
- Tamanho:
- 2.39 MB
- Formato:
- Adobe Portable Document Format
