Repository logo
 
Publication

Electricity market price forecasting by grid computing optimizing artificial neural networks

dc.contributor.authorNiimura, T.
dc.contributor.authorOzawa, K.
dc.contributor.authorSakamoto, N.
dc.date.accessioned2015-11-03T11:21:07Z
dc.date.available2015-11-03T11:21:07Z
dc.date.issued2007
dc.description.abstractThis paper presents a grid computing approach to parallel-process a neural network time-series model for forecasting electricity market prices. A grid computing environment introduced in a university computing laboratory provides access to otherwise underused computing resources.The grid computing of the neural network model not only processes several times faster than a single iterative process, but also provides chances of improving forecasting accuracy. Results of numerical tests using real market data on twenty grid-connected PCs are reported.pt_PT
dc.identifier.citationNiimura, T., K. Ozawa e N. Sakamoto (2007). "Electricity market price forecasting by grid computing optimizing artificial neural networks". Portuguese Journal of Management Studies, XII(2):133-144pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.5/10011
dc.language.isoengpt_PT
dc.publisherInstituto Superior de Economia e Gestãopt_PT
dc.subjectGrid computingpt_PT
dc.subjectelectricity marketpt_PT
dc.subjectpricespt_PT
dc.subjectforecastingpt_PT
dc.subjectneural networkspt_PT
dc.titleElectricity market price forecasting by grid computing optimizing artificial neural networkspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceLisboapt_PT
oaire.citation.endPage144pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage133pt_PT
oaire.citation.titlePortuguese Journal of Management Studiespt_PT
oaire.citation.volumeXIIpt_PT
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pjms-tn-ko-ns-2007.pdf
Size:
188.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: