Logo do repositório
 
Publicação

Finite Mixture Models based on Scale Mixtures of Skew-Normal distributions applied to serological data

datacite.subject.fosCiências Naturais::Ciências da Computação e da Informaçãopt_PT
dc.contributor.advisorSepúlveda, Nuno Henriques dos Santos de
dc.contributor.advisorNunes, Maria Helena Mouriño Silva
dc.contributor.authorDomingues, Tiago Dias
dc.date.accessioned2022-03-23T13:00:06Z
dc.date.available2022-03-23T13:00:06Z
dc.date.issued2021-10
dc.description.abstractSerological data can be described as a mixture of distributions, with each mixture component representing a serological population (e.g. seronegative and seropositive population). In seroepidemiological studies of infectious diseases, mixture models with Normal distribution are mostly used, which implies that the components that make up the mixture are approximately symmetric. However, it has been observed that, especially in seropositive populations, it is possible to observe skewness to the left, leading to the violation of the assumption of normality underlying the data. Thus, and in order to capture the possible skewness in serological data, the family of Scale Mixtures of Skew-Normal (SMSN) distributions is used, of which the Skew-Normal distribution and the Skew-t distribution are particular cases. In the case of the Skew-t distribution, being a heavy-tailed distribution, it allows capturing the possible existence of outliers. In addition to the models used to describe the behavior of the serological data, the issue of estimating the cutoff point for classifying an individual as seropositive is explored. In this sense, two perspectives on the problem are presented: one in which the true state of the disease is unknown; another in which this state is known a priori. The generalization of the use of a cutoff point without statistical methodology to support the estimation of this point may have consequences in the seroprevalence of a population, that is, in the proportion of seropositive individuals. Thus, three methods based on mixture models are proposed in this work for estimating the cutoff point when the true infection status is unknown.pt_PT
dc.identifier.tid101590130pt_PT
dc.identifier.urihttp://hdl.handle.net/10451/51921
dc.language.isoengpt_PT
dc.subjectserologiapt_PT
dc.subjectmodelos de mistura finitospt_PT
dc.subjectdistribuição normal-assimétricapt_PT
dc.subjectdistribuição t de Student assimétricapt_PT
dc.subjectponto de cortept_PT
dc.subjectserologypt_PT
dc.subjectfinite mixture modelspt_PT
dc.subjectskew-normal distributionpt_PT
dc.subjectskew-t distributionpt_PT
dc.subjectcutoff pointpt_PT
dc.titleFinite Mixture Models based on Scale Mixtures of Skew-Normal distributions applied to serological datapt_PT
dc.typedoctoral thesis
dspace.entity.typePublication
person.familyNameDomingues
person.givenNameTiago Miguel Dias
person.identifier.ciencia-idE513-DD75-AD5C
person.identifier.orcid0000-0002-4034-4276
person.identifier.scopus-author-id57206260370
rcaap.rightsopenAccesspt_PT
rcaap.typedoctoralThesispt_PT
relation.isAuthorOfPublication56bf27d5-99e0-4adc-9bc1-4ee52fedcc61
relation.isAuthorOfPublication.latestForDiscovery56bf27d5-99e0-4adc-9bc1-4ee52fedcc61
thesis.degree.nameTese de doutoramento, Estatística e Investigação Operacional (Bioestatística e Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2021pt_PT

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
scnd737671_td_Tiago_Domingues.pdf
Tamanho:
3.19 MB
Formato:
Adobe Portable Document Format