A carregar...
Projeto de investigação
Epigenetic and metabolic regulation of endothelial heterogeneity
Financiador
Autores
Publicações
Control of endothelial quiescence by FOXO-regulated metabolites
Publication . Andrade, Jorge; Shi, Chenyue; Costa, Ana S. H.; Choi, Jeongwoon; Kim, Jaeryung; Doddaballapur, Anuradha; Sugino, Toshiya; Ong, Yu Ting; Castro, Marco; Zimmermann, Barbara; Kaulich, Manuel; Guenther, Stefan; Wilhelm, Kerstin; Kubota, Yoshiaki; Braun, Thomas; Koh, Gou Young; Grosso, Ana Rita; Frezza, Christian; Potente, Michael
Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.
Unidades organizacionais
Descrição
Palavras-chave
Contribuidores
Financiadores
Entidade financiadora
European Commission
Programa de financiamento
H2020
Número da atribuição
773047
