Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 1 of 1
  • Recommender system to support comprehensive exploration of large scale scientific datasets
    Publication . Barros, Márcia; Couto, Francisco José Moreira; Almeida, André Moitinho de
    Bases de dados de entidades científicas, como compostos químicos, doenças e objetos astronómicos, têm crescido em tamanho e complexidade, chegando a milhares de milhões de itens por base de dados. Os investigadores precisam de ferramentas novas e inovadoras para auxiliar na escolha desses itens. Este trabalho propõe o uso de Sistemas de Recomendação para auxiliar os investigadores a encontrar itens de interesse. Identificamos como um dos maiores desafios para a aplicação de sistemas de recomendação em áreas científicas a falta de conjuntos de dados padronizados e de acesso aberto com informações sobre as preferências dos utilizadores. Para superar esse desafio, desenvolvemos uma metodologia denominada LIBRETTI - Recomendação Baseada em Literatura de Itens Científicos, cujo objetivo é a criação de conjuntos de dados , relacionados com campos científicos. Estes conjuntos de dados são criados com base no principal recurso de conhecimento que a Ciência possui: a literatura científica. A metodologia LIBRETTI permitiu o desenvolvimento de novos algoritmos de recomendação específicos para vários campos científicos. Além do LIBRETTI, as principais contribuições desta tese são conjuntos de dados de recomendação padronizados nas áreas de Astronomia, Química e Saúde (relacionado com a doença COVID-19), um sistema de recomendação semântica híbrido para compostos químicos em conjuntos de dados de grande escala, uma abordagem híbrida baseada no enriquecimento sequencial (SeEn) para recomendações sequenciais, um pipeline baseado em semântica de vários campos para recomendar entidades biomédicas relacionadas com a doença COVID-19.