Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Estimating the age and mechanism of boulder transport related with extreme waves using lichenometryPublication . Oliveira, Maria Alexandra; Llop, Esteve; Andrade, C.; Branquinho, Cristina; Goble, Ronald; Queiroz, Sónia; Freitas, Maria da Conceição; Pinho, PedroTsunamis and storms cause considerable coastal flooding, numerous fatalities, destruction of structures, and erosion. The characterization of energy and frequency associated with each wave contribute to the risk assessment in coastal regions. Coastal boulder deposits represent a physical proof of extreme inundation and allow us to study the effects of marine floods further back in time than instrumental and historical records. Age estimation of these deposits is challenging due to lack of materials (such as sand, shells, corals, or organic matter) that retain information about the passage of time. Lichenometry, a simple age estimation method, which is cost-effective, quick to apply, and non-destructive, is here proposed as a solution. A lichen growth model for a calcium-tolerant lichen species was developed and used to estimate the age of a boulder deposit related to extreme marine inundation(s) in Portugal. Estimated ages indicate several very recent events (<700 years) for most of the boulders’ stabilization and agree with results obtained with optically stimulated luminescence of marine sands found beneath boulders. Frequent and recent boulder transport implies a storm-origin for this deposit. These conclusions contrast with other works describing identical deposits that are attributed to paleotsunamis. This study presents a methodology using lichenometry as a successful alternative for age estimation in rocky coastal settings. These results offer an alternative explanation for coastal boulder deposits found on the west coast of Portugal.
- Morphological controls and statistical modelling of boulder transport by extreme stormsPublication . Oliveira, Maria Alexandra; Scotto, Manuel; Barbosa, Susana; Andrade, C.; Freitas, Maria Da ConceiçãoThe study of coastal boulder accumulations generated by extreme marine events, and of the energy and frequency involved in boulder transport, is of paramount importance in understanding the risk associated with extreme marine inundations. One of the frequently asked questions is whether the deposits are storm or tsunami-related, both events being characterized by different return periods. Boulder transport by storms was monitored on the west coast of Portugal. Significant changes were detected in boulders' position as a result of extreme inundation by the 2013/2014 winter storms. Results presented in this work indicate that the wave power associated with the “Christina” and “Nadja” storms occur once every three years. However, this interval is not supported by field observations of boulder displacement, which suggests that wave power over-predicts boulder movement in the study area. Furthermore, wave parameters from the “Christina” and “Nadja” storms were very similar, but have generated different impacts in the boulder accumulation described herein. Differences include the magnitude and direction of boulder movement, and are most likely associated with distinct tidal levels during the events. Higher tide levels generated an increase in the sea surface level and thus in the reach of waves, which generated displacement of larger boulders and consequent cross-shore contribution in boulder transport. Regardless, the combination of monitoring campaigns, wave data, and statistical modelling of extreme values indicate that boulder transport by storms is more frequent than initially expected. Based on recorded boulder movements, we present a conceptual model for boulder ridge formation and development and identify significant control of incoming flow by local geomorphological/topographical features. Storm events, not less frequent tsunamis, are identified as the events responsible for modulating this rocky coastline. These results question a direct attribution of coastal boulder deposits to tsunamis in coastal regions with a high risk of tsunami inundation.