Repository logo
 
Loading...
Profile Picture
Person

Sarreira Simões Horta Monteiro, Francisca

Search Results

Now showing 1 - 2 of 2
  • What Is the Impact of Antibiotic Resistance Determinants on the Bacterial Death Rate?
    Publication . Luz, Bruno T. S.; Rebelo, João S.; Monteiro, Francisca; Dionisio, Francisco
    Objectives: Antibiotic-resistant bacteria are widespread, with resistance arising from chromosomal mutations and resistance genes located in the chromosome or in mobile genetic elements. While resistance determinants often reduce bacterial growth rates, their influence on bacterial death under bactericidal antibiotics remains poorly understood. When bacteria are exposed to bactericidal antibiotics to which they are susceptible, they typically undergo a two-phase decline: a fast initial exponentially decaying phase, followed by a persistent slow-decaying phase. This study examined how resistance determinants affect death rates during both phases. Methods: We analyzed the death rates of ampicillin-exposed Escherichia coli populations of strains sensitive to ampicillin but resistant to nalidixic acid, rifampicin, or both, and bacteria carrying the conjugative plasmids RN3 or R702. Results: Single mutants resistant to nalidixic acid or rifampicin decayed faster than sensitive cells during the early phase, whereas the double-resistant mutant exhibited prolonged survival. These contrasting impacts suggest epistatic interactions between both chromosomal mutations. Persistent-phase death rates for chromosomal mutants did not differ significantly from wild-type cells. In contrast, plasmid-carrying bacteria displayed distinct dynamics: R702 plasmid-bearing cells showed higher persistent-phase death rates than plasmid-free cells, while RN3 plasmid-bearing cells exhibited lower rates. Conclusions: Bactericidal antibiotics may kill bacteria resistant to other antibiotics more effectively than wild-type cells. Moreover, epistasis may occur when different resistance determinants occur in the same cell, impacting the bactericidal potential of the antibiotic of choice. These results have significant implications for optimizing bacterial eradication protocols in clinical settings, as well as in animal health and industrial food safety management.
  • Bacterial persistence is essential for susceptible cell survival in indirect resistance, mainly for lower cell densities
    Publication . Rebelo, João; Domingues, Célia P. F.; Monteiro, Francisca; Nogueira, Teresa; Dionisio, Francisco
    Antibiotic-susceptible bacteria may survive bactericidal antibiotics if other co-inhabiting bacteria detoxify the medium through antibiotic degradation or modification, a phenomenon denominated as indirect resistance. However, it is unclear how susceptible cells survive while the medium is still toxic. One explanation relies on the speed of detoxification, and another, non-exclusive explanation, relies on persistence, a state of bacterial dormancy where cells with low metabolic activity and growth rates are phenotypically tolerant to antibiotics and other cytotoxic substances. Here we simulated the fate of susceptible cells in laboratory experiments in the context of indirect resistance to understand whether persistence is necessary to explain the survival of susceptible cells. Depending on the strain and experimental conditions, the decay of persister populations may follow an exponential or a power-law distribution. Therefore, we studied the impact of both distributions in the simulations. Moreover, we studied the impact of considering that persister cells have a mechanism to sense the presence of a toxic substance–a mechanism that would enable cells to leave the dormant state when the medium becomes nontoxic. The simulations show that surviving susceptible cells under indirect resistance may originate both from persister and non-persister populations if the density of detoxifying cells is high. However, persistence was necessary when the initial density of detoxifying cells was low, although persister cells remained in that dormancy state for just a few hours. Finally, the results of our simulations are consistent both with exponential and power-law decay of the persistence population. Whether indirect resistance involves persistence should impact antibiotic treatments.