Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- A micro-scale look into pedestrian thermophysiological comfort in an urban environmentPublication . Silva, Tiago; Lopes, António; Vasconcelos, JoãoDiferent spatial scales enable the analysis of thermophysiological conditions of pedestrians in an urban environment. A higher resolution hotspot analysis was conceived using GIS technology in some areas of Lisbon with diferent morphological conditions. Eleven hotspots were found across six study areas, located in high to moderate urban density conditions and in diferent types of urban spaces. So, six hotspots were found in avenues (high urban density conditions), three in streets, and two in general open spaces (moderate urban density conditions). These spaces are characterized by being busy areas with high anthropogenic infuence, with high-absorbing and refective materials, and with very poor green infrastructure. Environmental conditions, namely, radiation, mean radiant temperature, and air temperature, were the main cause of hotspot existence, and the main propellers for UTCI intensifcation. The urban density variable was also found to be important, especially in avenues and open spaces. In these areas, the adjusted component for environmental and urban density conditions can increase 0.60 to 1.35 °C in open spaces and 0.30 to 0.60 °C in avenues, each time there is a one-unit increase in the component. Trees, either in the street or in parks, have generally been found to decrease the UTCI.
- A micro-scale look into pedestrian thermophysiological comfort in an urban environmentPublication . Silva, Tiago; Lopes, António; Vasconcelos, JoãoDifferent spatial scales enable the analysis of thermophysiological conditions of pedestrians in an urban environment. A higher resolution hotspot analysis was conceived using GIS technology in some areas of Lisbon with different morphological conditions. Eleven hotspots were found across six study areas, located in high to moderate urban density conditions and in different types of urban spaces. So, six hotspots were found in avenues (high urban density conditions), three in streets, and two in general open spaces (moderate urban density conditions). These spaces are characterized by being busy areas with high anthropogenic influence, with high-absorbing and reflective materials, and with very poor green infrastructure. Environmental conditions, namely, radiation, mean radiant temperature, and air temperature, were the main cause of hotspot existence, and the main propellers for UTCI intensification. The urban density variable was also found to be important, especially in avenues and open spaces. In these areas, the adjusted component for environmental and urban density conditions can increase 0.60 to 1.35 °C in open spaces and 0.30 to 0.60 °C in avenues, each time there is a one-unit increase in the component. Trees, either in the street or in parks, have generally been found to decrease the UTCI.
- Climate walking and linear mixed model statistics for the seasonal outdoor thermophysiological comfort assessment in LisbonPublication . Silva, Tiago; Reis, Cláudia; Braz, Diogo; Vasconcelos, João; Lopes, AntónioTo measure urban outdoor pedestrian thermophysiological comfort mobile roving missions were conducted in all seasons of the year during the day and at night. Six routes were chosen, representing areas of the city with varying urban morphological layouts. The thermal comfort conditions were analysed using the Local Climate Zone spatial scale. This enabled the identification of typologies of areas where pedestrians might feel (un)comfortable. To achieve the proposed objectives, quantitative and qualitative analysis were run, namely a Linear Mixed-Effect Model. This model was useful to understand the thermal behaviour of the roved areas by comparison to a reference area. The city was found to be generally cooler, except at night when it can have a 44% increased UTCI. Most collected values throughout the year had ‘no thermal stress’, except in the summer when ‘moderate’ and ‘strong heat stress’ was predominant. Compact and large low rise urban areas were found to be the most uncomfortable. Significant amplitudes were found in some LCZs, reaching as high as 7 ◦C in some scenarios. Sparsely wooded areas exhibited higher values in all seasons and at night, except in the summer. This showed that for a local heat stress analysis a higher resolution scale is needed.