

The CORTEX Programming Model

G. Biegel, G. Blair, C. Brudna, V. Cahill, A. Casimiro,
S. Clarke, H. Duran-Limon, A. Fitzpatrick, A. Friday,

B. Hughes, J. Kaiser, R. Meier, V. Reynolds,
P. Veríssimo and M. Wu

 DI-FCUL TR–03–19

July 2003

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are
stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

Project IST-2000-26031

CO-operating Real-time sentient objects:

Architecture and Experimental evaluation

The CORTEX Programming Model

CORTEX deliverable D6

Version 1.0

April 24, 2003

 ii

Revisions

Rev. Date Comment

0.1 17/4/03 First draft circulated to partners

1.0 24/4/03 Final Version produced and submitted

Editor

Vinny Reynolds, Trinity College Dublin

Contributors

Greg Biegel, Trinity College Dublin

Gordon Blair, University of Lancaster

Cristiano Brudna, University of Ulm

Vinny Cahill, Trinity College Dublin

António Casimiro Costa, University of Lisbon

Siobhán Clarke, Trinity College Dublin

Hector Duran-Limon, University of Lancaster

Adrian Fitzpatrick, Trinity College Dublin

Adrian Friday, University of Lancaster

Barbara Hughes, Trinity College Dublin

Jörg Kaiser, University of Ulm

Rene Meier, Trinity College Dublin

Vinny Reynolds, Trinity College Dublin

Paulo Verissimo, University of Lisbon

Maomao Wu, University of Lancaster

Address

Dept of Computer Science,

Trinity College Dublin,

Ireland

Table Of Contents
Executive Summary

1 Overview………………………………………………………..……………………..… 1

2 The Sentient Object Model…………………………………………...……………….… 2

 2.1 Towards a Sentient Object Model……………………..…………………..…. 2

 2.1.1 Introduction………………………………………………………... 2

 2.1.2 Related Research…………………………………………………... 3

 2.1.3 A Sentient Object Model………………………………………...… 3

 2.1.4 Context Awareness in Sentient Objects…………………………… 6

 2.1.5 Coordination through the environment……………………………. 8

 2.1.6 Conclusions………………………………………………………... 8

 References……………………………………………………………….. 8

 2.2: Towards Middleware for Coping with Uncertainty in Context-Aware
 Applications……………………………………………………………………….

10

 2.2.1 Introduction………………………………………………………... 10

 2.2.2 Related Work………………………………………………………. 11

 2.2.3 The Sentient Object Model………………………………………… 12

 2.2.4 Context Uncertainty Management…………………………………. 15

 2.2.5 Conclusions and Future Work……………………………………... 20

 2.2.6 Acknowledgments…..……………………………………………... 20

 References……………………………………………………………….. 21

 2.3 Machine Learning…………………………………………………………….. 22

 2.3.1 Decision Tree Learning……………………………………………. 22

 2.3.2 Neural Network Learning………………………………………….. 23

 2.3.3 Bayesian Learning…………………………………………………. 23

 2.3.4 Design Consideration……………………………………………… 24

 References……………………………………………………………….. 24

3 Event Based Communication Model……………………………………………………. 25

 3.1: An Event Model for Real Time Systems in Mobile Environments………….. 25

 3.1.1 Introduction……………………………………………………....... 25

 3.1.2 System Architecture……………………………………………….. 26

 3.1.3 Real-Time and Mobility…………………………………………… 27

 3.1.4 The Programming Model…………………………………………... 28

 3.1.5 The Communications Architecture……………………………........ 29

 3.1.6 Conclusions……………………………………………………....... 31

 3.1.7 Acknowledgments…………………………………………………. 31

 3.1.8 References…………………………………………………………. 31

 iv

 3.2 Towards Real-Time Event-Based Communication in Mobile Ad-hoc
Wireless Networks…………………………………………………………………………

33

 3.2.1 Introductions……………………………………………………….. 33

 3.2.2 Assumptions in Fixed Infrastructure Networks……………………. 34

 3.2.3 Impact of Ad-Hoc Wireless Characteristics……………………….. 35

 3.2.4 Proposed Framework for Ad-Hoc Wireless Real-Time Event-
 Based Communications…………………………..………………………

36

 3.2.5 Conclusions………………………………………………………... 37

 References……………………………………………………………….. 37

4: Quality of Service Specification………………………………………………………... 40

 4.1 Introduction………………………………………………………………….... 40

 4.2 Timeliness in the CORTEX programming model. An Extended Model for
 QoS specification…...…………………………………………………….

41

 4.3: Timeliness issues in a Generic Events Architecture…………………………. 45

 References……………………………………………………………………........ 50

 4.4 A Description Language for the Task and Resource Models………………… 52

 4.4.1 Task Switch Description Language………………………………... 52

 4.4.2 Task Description Language………………………………………... 53

 4.4.3 Resource Description Language…………………………………… 55

 References…………………………..…………………………………… 56

5: Appendix……………………………………………………………………………….. 57

 5.1: Event Channel Classes and API……………………………………………... 57

 5.1.1 Hard real-time event channels……………………………………... 58

 5.1.2 Soft real-time event channels……………………………………… 59

 5.1.3 Non real-time event channels……………………………………… 60

 References……………………………………………………………….. 61

Executive Summary
This deliverable describes work that has been carried out during the second year of the project
for work package WP1. The objective of the work package as defined in the technical annex,
is ‘the design of a programming model that supports the development of proactive
applications constructed from mobile sentient objects’. The work is divided into four tasks,
with Task 1.1, application requirements, having been completed as deliverable D1 in month 6
of the project. This deliverable addresses the three remaining tasks. Task 1.2 deals with the
definition of a sentient object model in a language independent way. Task 1.3 defines an event
based communication model for sentient objects including mechanisms for controlling the
propagation of events in the system based on both physical proximity and event content. Task
1.4 defines mechanisms for the specification of Quality of Service (QoS) parameters that may
be mapped to the system level.

The deliverable starts by addressing Task 1.2 and firstly provides a definition of the sentient
object model. Concrete definitions of the primitives, sensor, actuator and sentient object are
provided and the internal structure of a sentient object with regard to sensory capture, context-
awareness and intelligent inference is examined. This chapter continues with an examination
of how the sentient object model deals with the uncertainties inherent in information sensed
from the physical environment. A probabilistic sensor fusion scheme based on Bayesian
networks is proposed as an approach to managing uncertainty in context-aware applications
based on the sentient object model. The chapter concludes with an examination of machine
learning techniques that may be incorporated into the sentient object model to provide service
adaptation according to interests, preferences, knowledge or goals.

Chapter 3 of the deliverable addresses Task 1.3 and describes the event based communication
model used by sentient objects. The chapter begins by describing the development of an event
model designed to address the predictability requirements of applications operating in mobile
environments based on the CORTEX WAN-of-CANs network. This event-based
programming model incorporates the topology of a heterogeneous communication
infrastructure as specified in CORTEX and an abstract network model, reflecting the different
levels of quality of service available from the different sub networks, is provided. The
programming model is then based on the concept of event channels with different temporal
and reliability guarantees that may be mapped to certain QoS zones. This chapter goes on to
describe a conceptual model designed to alleviate the impediments to real-time event-based
communication characteristic of wireless, mobile ad hoc environments as found in CORTEX
applications. The model is based on a predictive architecture combining mobility prediction
with partition anticipation to achieve predictive routing and resource reservation and thus
limits the unpredictability of wireless communication.

Finally, Chapter 4 of the deliverable addresses Task 1.4, that of Quality of Service (QoS)
specification. The model for timeliness QoS requirements specification based on the
specification of <bound, coverage> pairs is extended to a more general way of specifying
QoS requirements not limited to the observation of time bounds. The extended approach
permits for the integration of other application requirements into the QoS framework and
provides a more flexible and configurable approach to the specification of QoS requirements.

A description language for the specification of both the task model and the resource model of
sentient objects is presented as an extension of the resource configuration description
language (RCDL). This language provides the facility for programming of resource

 vi

requirements for sentient objects and is part of the QoS specification aspect of the CORTEX
programming model.

 1

Chapter 1: Overview

The objective of D6 is to design a programming model suitable for the development of
proactive applications constructed from mobile sentient objects. D6 embodies the final
deliverable and follows its predecessor deliverable D2, the preliminary definition of the
CORTEX programming model.

The programming model should support all aspects of the behaviour of sentient objects. This
includes acquiring information from the environment, being context aware in an uncertain
situation, reacting in an appropriate manner to that situation and thus modifying the state of
the environment. In the inherently mobile and dynamic WAN of CAN structure, the
programming model must also provide an event based communication model and associated
Quality of Service and timeliness guarantees.

D6, The Programming Model is presented as a collection of technical reports and an API,
some of which have been submitted fro publication. The deliverable is divided into three
major parts, each of which contains one or more technical reports or papers discussing the
corresponding objective.

1.1 Chapter Outline
Chapter 2 outlines our definition of the context aware sentient objects and specifies the
internal components of such an object. Chapter 2 then describes how an application developer
may program the sentient objects in a context aware manner using techniques such as
Bayesian networks to deal with uncertainty and Machine Learning to improve performance by
learning from past experiences

In Chapter 3, D6 describes the CORTEX event-based communication model made available
to the application programmer for defining inter-object communication. In particular, an event
model is described which addresses the predictability requirements of applications operating
in mobile environments. Furthermore, Chapter 3 describes the impediments imposed by ad
hoc wireless networks on real time event based communication and then proposes a high level
model to reduce their impact.

Chapter 4 presents our approach to specifying QoS parameters characterizing the level of
service supported by the underlying, heterogeneous infrastructure and for reserving the
resources required to enforce the specified QoS. Chapter 4 also provides a description
language which gives the specification of the task model and the resource model of sentient
objects by expressing the resource requirements of their components

In the Appendix, an API is presented for the Event Channel classes. Three Event Channel
classes are presented in the API: Hard Real Time, Soft Real Time and Non Real Time Event
channels

 2

Chapter 2: Sentient Object Model

2.1 Towards a Sentient Object Model
Adrian Fitzpatrick, Gregory Biegel, Siobhan Clarke, Vinny Cahill

Distributed Systems Group

Department of Computer Science

Trinity College

Dublin 2, Ireland

{firstname.lastname}@cs.tcd.ie

Abstract—A sentient object is a mobile, intelligent software component that is able to sense
its environment via sensors and react to sensed information via actuators. Sentient objects are
context-aware, aware of both their internal state and the state of their surrounding local
environment, and are cooperative, cooperating with other sentient objects both through
traditional communication channels and via the physical environment. In this paper we
describe a sentient object model and in doing so provide concrete definitions for the terms
sensor, actuator, and sentient object as used in our model.

Keywords— Sentient computing, mobile computing, context-aware, stigmergy

2.1.1 Introduction
The continued evolution of computing and communication technologies towards ever smaller
and more powerful devices has led to a new generation of applications where computing
power is widely deployed throughout the environment. The development of such pervasive
computing environments has also been driven by the availability of improved sensor
technology providing accurate and trustworthy sensing at affordable prices. Cheap, ubiquitous
sensors coupled with improved computing power and wireless data communications have
made a new class of decentralised and proactive applications possible. It is envisaged that this
class of applications will consist of a very large number of mobile software components
accepting input from the environment via a variety of sensors and autonomously acting upon
the environment via a variety of actuators. These components will contain intelligence to
allow them to act autonomously based upon acquisition of information from the environment,
and will cooperate with each other using a range of different networking technologies. It is
these mobile, intelligent software components that we term sentient objects and in this paper
we present a model for the development of such objects. We provide concrete definitions for
the terms sensor, actuator and sentient object. Context awareness [1] is a characteristic of
reactive sentient objects and this is dealt with in our model through the use of contextual
information gleaned from sensors to control the actions of a sentient object. Finally, our
model addresses the coordination of multiple objects, via the physical environment using
biologically inspired mechanisms.

The possible applications of sentient objects are numerous and diverse and include
such areas as intelligent vehicles, smart buildings and mobile robotics.

 3

Figure 1. Simple sentient object model

2.1.2 Related Research
[2] defines a sentient computing system as one where an application appears to share the
user’s perception of the environment. They have developed a sentient system that uses
wireless radio transceiver sensors to maintain a software model of the location of a set of
laboratory users and objects. This model is then used for a number of intelligent ’follow-me’
applications. Similarly, López de Ipina defines sentient systems as systems that respond to
stimuli provided by sensors distributed throughout the environment by triggering actions that
are adequate to the changing context of the user [3]. His TRIP system uses location,
identification and orientation information to provide context aware services to users. The
Sentient Information Framework, part of the TRIP system is a programming framework
designed to separate context capture and abstraction from application semantics and provide
efficient mechanisms for context communication [4]. Context Based Reasoning is a paradigm
introduced by Gonzalez [5] as a concise but rich representation paradigm that could be used
to model the intelligent behaviour of opponents in simulations. The hypothesis behind CxBR
is that the actions taken by an intelligent entity are highly dependent on the entity’s current
situation (context). Following this approach and limiting the number of actions permitted in a
certain context, the efficiency of rule-based inference may be increased substantially.

2.1.3 A Sentient Object Model

Essentially a sentient object is an encapsulated entity, with its interfaces being sensors and
actuators. The actuators are controlled according to sensor input, perhaps via a rule based
inference engine, as depicted in Figure 1.This simple view does not, however, answer many
questions about sentient objects. For example,

• What do we mean by sensors and actuators in this context? Are they hardware
devices, or software abstractions thereof?

• What is the granularity of a sentient object?

• How do sentient objects interact?

• What sorts of hierarchy/relationships can exist between

In addition to answering the questions above, one of the main challenges to be overcome in
defining a sentient object model was to constrain the definition. The simple definition above
can easily encompass a great many existing computer systems. For example, a desktop
computer could be said to sense user input via the mouse or keyboard and actuate on its
environment by moving a cursor or displaying a character on the monitor. To be useful, a

 4

more precise definition of a sentient object suited to the pervasive computing applications of
interest is need.

A. Event based communication

We expect sentient objects to interact using an anonymous, event-based inter-process
communication paradigm that supports loose coupling between sentient objects in order to
provide for object mobility and application evolution. We identify two distinct categories of
events: software events and real-world events. Software events are the main form of
interaction between entities in our model and provide anonymous, ad-hoc communication.
real-world events are anything that happens in the environment, either causing a change of
state in a sensor or caused by an actuator. We propose that, based on these two categories of
events, we can identity and distinguish the three major entities that may exist in our sentient
object model.

B. Classifications

The different possibilities for production and consumption of events lead to the different
classifications. Our initial investigation of the different possibilities for production and
consumption considered that an entity could produce only one category of event and consume
only one category of event. The resulting classification yields four distinct entity types,
through which we aim to provide a separation of the semantics of information acquisition,
application logic and environmental actuation.

• Real-world consumption, software production

This class of entity produces software events in response to real world events consumed. In
effect, it provides information about a physical occurrence in the external environment by
translating the information into the format of a software event, and by releasing that event into
the event-based middleware environment. This is classical sensor functionality; therefore all
entities in our model that conform to this classification will be termed sensors.

• Software consumption, software production

This class of entity both consumes and produces software events, implying the flow of
information to and from these entities is purely through the event-based middleware. It is in
this middleware domain that the application logic will reside, therefore these entities will
provide the logic building blocks for CORTEX applications. Entities fitting this classification
will be called sentient objects.

•Software consumption, real world production

These entities produce real world events in response to the consumption of software events.
They have the opposite consumption/production properties to the entities that we have
identified as sensors, and hence we designate these entities actuators

•Real-world consumption, real-world production

This class of entity produces real-world events in response to real-world events consumed.
This implies that it is a simply real-world system; in the context of our model, we propose to
term such entities sentient systems.

It is from these classifications according to event consumption and production that we derive
the definitions for the three major entities in our sentient object model.

B.1 Sensor

A sensor is defined in [6] as being a device that responds to a physical stimulus, such as
thermal energy, electromagnetic energy, acoustic energy, pressure, magnetism or motion, by
producing a signal, usually electrical. We refine this traditional definition of a sensor and in
our sentient object model define a sensor as

 5

An entity that produces software events in reaction to a real-world stimulus detected by some
world hardware device

Our definition of a sensor is illustrated in Figure 2.

Fig. 2. A sensor

The sensor processing task encapsulated in our definition of a sensor refers to the possible
abstraction of raw sensor data into more useful information by the sensor itself, before the
production of software events. An example of such abstraction may be the transformation of
raw GPS coordinates into more useful location information e.g. the conversion of coordinates
53 23’ N, 6 20’Wto the location ”Room G15, O’Reilly Institute, Dublin, Ireland”. Such
sensor processing is not necessarily carried out by a sensor but may potentially be.

Fig. 3. An actuator

B.2 Actuator

[7] defines an actuator as a mechanical device for moving or controlling something. Our
definition of an actuator in the sentient object model maintains that it is something that causes
a change in the physical environment, but narrows the definition in terms of what causes the
actuation to occur. We define an actuator in our sentient object model as

an entity that consumes software events, and reacts by attempting to change the state of the
real world in some way via some hardware device

 6

Our definition of an actuator is illustrated in Figure 3, where the actuator processing task
refers to potential transformation of incoming software events before the production of
hardware events.

B.3 Sentient Object

Following our definitions of sensor and actuator, we define a sentient object as

an entity that can both consume and produce software events, and lies in some control path
between at least one sensor and one actuator

Fig. 4. A sentient object

We have previously stated that sentient objects will be the building blocks of logic for
sentient object applications. Aside from our identification of sentient objects through the
classification of events consumed and produced, we introduce into our definition the
additional stipulation that a sentient object should exist in a control path between a sensor and
an actuator. We do this in order to constrain our definition somewhat, as we feel that to
provide a definition that simply specifies the consumption and production of software events
is too general, and that many currently existing software entities fall into that classification.

Up until this point, we have not discussed what form the control logic in the sentient object
takes. The internal control logic must exploit context-awareness and is discussed in the next
section.

2.1.4 Context Awareness in Sentient Objects
Essentially sentient objects sense and interact with their environment via sensors and
actuators. It is this awareness of, and interaction with the environment that makes context
awareness an important factor in sentient objects. Before examining the role of context in our
sentient object model, a clear definition of what we understand by context is required. There
are multiple definitions of context available in the literature [8], [1], [9].

For the purposes of the sentient object model, we propose a definition of context as

Any information sensed from the environment that may be used to describe the situation of a
sentient object. This includes information about the underlying infrastructure available to the

sentient object.

Our definition of context-aware then follows,

The use of context to provide information, to a sentient object, which may be used in its
interactions with other sentient objects, and/or the fulfillment of its goals.

We have identified three components necessary for context-awareness in a sentient object.

A. Context Acquisition

 7

A sentient object may receive input from an array of diverse sensors, for example a sentient
vehicle’s array of sensors could include proximity sensors, GPS, speed and direction sensors,
and pollution sensors. Signals from these sensors need to be integrated in order to determine
the overall environment and context of the sentient object. In addition to the problem of
fusing data from such diverse sensors, each data source has an error associated with it. The
major issues to be addressed in the area of sensory capture are data filtering and sensor fusion

B. Context Representation

Raw sensor data will usually need to be transformed in some way before it may be considered
useful contextual information. Such transformation may occur in the sensor itself as discussed
in Section III-B.1, or may be carried out within the sentient object itself. The context
representation component deals with the representation of context information in a way that is
useful to the sentient object and may be easily exchanged amongst sentient objects. We are
currently examining the use of XML in context representation for sentient objects.

Fig. 5. A sentient object showing the components of the internal control logic

C. Inference

Sentient objects are expected to act upon their environment, changing its state. This implies
some form of decision making ability or intelligence, on the part of the sentient object that is
captured in the inference engine component. An inference engine, in artificial intelligence
terms, refers to a program that reasons about a set of rules (a knowledge base) in order to
derive an output.

The knowledge base of an inference engine contains the knowledge required to solve a certain
problem, encoded as a set of production rules. The knowledge encoded in such rules is
generally captured from a human expert who is able to express his expertise in the form of
such rules.

The inference engine should be as generic as possible so that it may be applied to a number of
different knowledge bases in different domains with minimal changes to itself. For the
purposes of sentient objects, we can envisage a sentient object inference engine, with object
and domain specific knowledge bases in each object.

We are currently focusing on using rules specified in CLIPS (C Language Integrated
Production System) [10], a declarative language with a built in inference engine based upon

 8

the RETE net [11]. We incorporate the mechanism of Context Based Reasoning (CxBR) [5]
to limit the number of production rules to be considered and to increase the efficiency of the
inference process.

2.1.5 Coordination through the environment
Coordination of actions through the environment or stigmergy, was first observed in colonies
of insects [12] cited in [13], and describes coordination of the activities of individuals without
direct communication between them. Stigmergy is a highly decentralised method of
coordination where individual entities follow the same set of simple behavioural rules to yield
robust and adaptive coordination, without the need for expensive and unreliable
communication.

In stigmergy, coordinated behaviour arises from individuals sensing their physical
environment and reacting to the sensed information according to a simple set of rules. The
stimulus may come from the physical environment itself, in a type of stigmergy known as
sematectonic stigmergy, or may come from something that makes no direct contribution to the
task at hand and is used solely to influence behaviour in a form of stigmergy known as sign-
based stigmergy.

We propose stigmergy as a coordination mechanism for very large networks of sentient
objects. Sentient objects contain behaviours encoded as rules in the inference engine and
achieve coordinated behaviour through sampling and acting upon their environment.

2.1.6 Conclusions
We have presented a sentient object model that we hope will contribute towards the
development of context-aware applications. As part of our model we provide definitions for
the terms sensor, actuator and sentient object and describe the internal structure that enables
sentient objects to operate autonomously.

References
[1] Anind K. Dey and Gregory D. Abowd, Towards a Better Understanding of context and

context-awareness, Technical Report GIT-GVU-99-22, Georgia Institute of Technology,
College of Computing, June 1999

[2] Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete Steggles, Andy Ward
and Andy Hopper, Implementing a Sentient Computing System, IEEE Computer, Vol.34,
No. 8, Aug 2001.

[3] Diego Lopez de Ipina, An ECA Rule-Matching Service for Simpler Development of
Reactive Applications, In Proceedings of Middleware 2001, IEEE Distributed Systems
Online, Vol 2, No. 7, November 2001

[4] Diego Lopez de Ipina, Building Components for a Distributed Sentient Framework with
Python and CORBA, Proceedings of the 8th International Python Conference, Arlington,
VA, USA. 24-27 January, 2000

[5] Avelino J. Gonzalez, Robert H. Ahlers, Context-based Representation of Intelligent
Behavior in Training Simulations, Naval Air Warfare Center Training Systems Division,
1998

[6] United States Government, Federal Standard 1037C - Glossary of Telecommunications
Terms, August 7, 1996

[7] Merriam-Webster, Inc. Merriam-Webster Collegiate Dictionary, 10th Edition, 1998

 9

[8] Schilit, B., Adams, N. Want, R. Context-Aware Computing Applications 1st International
Workshop on Mobile Computing Systems and Applications. (1994) 85-90

[9] Guanling Chen and David Kotz A Survey of Context-Aware Mobile Computing Research,
Department of Computer Science, Dartmouth College Technical Report TR2000-381,
November 2000.

[10] NASA CLIPS: A Tool for Building Expert Systems

http://www.ghg.net/clips/CLIPS.html

[11] Forgy, C.L Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match
Problem Artificial Intelligence 19, 1982

[12] Grasse, P.-P., Le reconstruction du nid et les coordinations interindividuelles chez
Bellicositermes Natalensis et Cubitermes sp.. La theorie de la stigmergie: essai
d’interpretation du comportement des termites constructeurs, Insectes Sociaux, vol. 6, 41-
81 1959.

[13] Marco Dorigo, Eric Bonabeau, Guy Theraulaz Ant algorithms and stigmergy Future
Generation Computer Systems 16 (2000) 851-871.

 10

2.2 Towards Middleware for Coping with Uncertainty in
Context-Aware Applications

Gregory Biegel and Vinny Cahill

Distributed Systems Group

Trinity College Dublin

{Greg.Biegel, Vinny.Cahill}@cs.tcd.ie

Abstract
Uncertainty is a major problem in sensing the environment due to the inherent limitations of
sensors with respect to accuracy and precision. This has led to a crucial requirement for
middleware that provides uncertainty management for software components whose actions
are based on environmental perception. Sentient objects are context-aware, mobile, intelligent
software components able to sense the environment using a variety of sensors and make
changes to the environment by way of actuators, independently of human control. Sentient
objects rely on the fusion of outputs from a variety of sensors in order to determine their
context and perform actuation using the Context-Based Reasoning paradigm. In this paper we
propose a middleware architecture based on the sentient object model and incorporating a
probabilistic sensor fusion scheme combining Bayesian networks and Context-Based
Reasoning, for coping with uncertainty in context-aware applications.

2.2.1 Introduction

As applications continue to move away from the desktop and into the physical world, the
development of a new class of decentralised and proactive application that makes use of
computing power widely deployed throughout the environment has become possible. The
development of such pervasive computing applications has been driven by the continuing
evolution of computing and communication technologies coupled with the availability of a
range of cheap and diverse sensing technologies, enabling measurement of diverse aspects of
the environment. We envisage this class of application as consisting of a very large number of
mobile software components accepting input from the physical environment via a variety of
sensors and autonomously acting on the environment via a variety of actuators.
Environmental information gleaned from sensors allows these components to be context-
aware, that is to detect and make use of changing environmental conditions to influence
further actions. It is these software components that we term sentient objects and one of the
major problems faced in the development of such objects is how to deal with the uncertainty
associated with measurements of the physical environment made by sensors.

Sentient objects have a number of characteristics that are important in pervasive computing
environments

• Sentience - the ability to perceive the state of the environment via sensors

• Autonomy - the ability to operate independently of human control in a decentralised
manner

• Proactiveness - the ability to act in anticipation of future goals or problems

 11

In this paper we describe the development of middleware, based on the sentient object model
[1], which serves to insulate applications from the complexities of physical sensing
technologies and the fusion of multi modal sensor data. It is our aim to make context
acquisition and the uncertainty associated with this task, as transparent as possible to the
application programmer.

Because the information we receive from sensors is incomplete, uncertain and contains errors
we cannot rely on the output of a single sensor. In order to obtain sufficient correct
information from the environment to reliably determine the context of a sentient object, we
need to fuse the output of multiple disparate sensors. Although a significant body of work
exists in the area of context-aware computing, we feel the important area of sensor fusion for
dealing with uncertainty has not been adequately addressed in a way that may be applied to a
range of applications. Most sensor fusion systems described in the literature are application
specific and only address a specific set of sensors applied to a specific task [2, 3]. We propose
a generic means to develop context-aware applications based on the sentient object model
which incorporates Context-Based Reasoning (CxBR) [4], enhanced with a probabilistic
sensor fusion scheme, to achieve context-aware behaviour.

A probabilistic approach to sensor fusion allows quantification of uncertainty or data
reliability and is grounded in well-understood probability theory. Probabilistic models are
attractive as they allow formal definition of the likelihood and level of belief in conclusions
drawn from uncertain data. The derivation of context from multiple sensors is difficult and
prone to error, but probabilistic models provide us with the means to measure the
effectiveness of our derivations. We base our sensor fusion system for sentient objects on
Bayesian networks [5], which are a class of probabilistic model that encodes conditional
independence relationships between a set of random variables. The CxBR paradigm is
enhanced with the addition of Bayesian networks as a means of fusing sensor data and
managing uncertainty.

2.2.2 Related Work

The Context Toolkit [6] developed at the Georgia Institute of Technology provides a generic
approach to developing context-aware applications and addresses the separation of context
acquisition from the use of context information by applications through introduction of the
context widget, a sensor abstraction which hides the underlying details of the sensing
mechanism from the application. The Context Toolkit does not provide a mechanism for
dealing for the uncertainty of sensor data, nor does it address the fusion of multiple sensor
outputs in order to reduce such uncertainty. Applications subscribe to all pieces of context
information in which they are interested and it is the responsibility of the application to
perform any fusion of this information. The TEA project [7] aims to provide a similar
approach to context-awareness with the abstraction of physical sensors by way of cues, the
outputs of which are used to determine which context an object is in. The system makes use
of semantic nets to represent the set of possible contexts and each context defines what may
happen when entering, leaving or being in that context in a similar manner to Context-Based
Reasoning [4].

The Multimedia Systems Laboratory at UCLA has developed the Multi-Use Sensor
Environment (MUSE), which is a middleware architecture for sensor-rich smart spaces and
which employs Bayesian networks for sensor fusion [8], whilst Microsoft has incorporated
Bayesian networks into a number of its products, including the Office assistant [9] and the
spam filter in Outlook [10].

 12

2.2.3 The Sentient Object Model

A sentient object is an encapsulated entity, with its interfaces being sensors and actuators.
Actuators are controlled according to contextual information gleaned from sensor inputs via
an intelligent production rule-based inference engine. A sentient object and its internals are
illustrated in Figure 1.

Sensors in the sentient object model are defined as entities which produce software events in
reaction to a stimulus detected by some real-world hardware device. In this way, sensors in
the sentient object model are a software abstraction or type of virtual sensor, providing an
estimate of some environmental variable of interest which may in turn be used to derive the
overall context of the object. The term sensor thus encapsulates a physical device, as well as
software, which potentially provides a higher level symbolic interpretation of the output of the
physical transducer.

An actuator in the sentient object model is defined as an entity that consumes software events
and reacts by attempting to change the state of the real world in some way via some hardware
device. Actuators in the sentient object model are software abstractions of actual physical
devices, which consume events.

A sentient object is then defined as an entity that can both consume and produce software
events, and lies in some control path between at least one sensor and one actuator. Sentient
objects are cooperative and communicate with each other and with sensors and actuators via
an anonymous generative event based communication paradigm [11], permitting loose
coupling between objects which supports object mobility and application evolution.

2.2.3.1 Context-Awareness

Humans use an implicit understanding of their environment and "context" in order to readily
make complicated inferences and decisions. Such awareness is composed of many levels of
knowledge including information about actions and intentions, as well as knowledge of the
state of the environment. In the human domain it is clear that an accurate representation of
context information depends on a diverse set of sensors, each measuring different targets with
different resolutions and accuracies.

In terms of sentient objects, context is defined as any information sensed from the
environment that may be used to describe the situation of a sentient object. This includes
information about the underlying infrastructure available to the sentient object. Context-
awareness is then the use of contextual information by the sentient object in fulfillment of its
goals.

 13

Figure 1: Sentient Object Model

Whilst the problem of fusing the output of multi modal sensors for the purposes of
determining context has been solved in humans, this cannot be said for context-aware
computing applications where no generalised solution exists for the mapping of sensor output
to context representation. The way in which humans deal with large amounts of contextual
information is by doing so in a hierarchical manner and sentient objects follow a similar
model known as Context-Based Reasoning [4].

2.2.3.2 Context-Based Reasoning (CxBR)

The sentient object model embodies the concept of Context-Based Reasoning (CxBR). The
paradigm derives its name from the idea that the actions taken by an entity are highly
dependent on the entity’s current context [4], that is a recognized situation defines a set of
appropriate actions and the identification of a future situation is simplified if all possible
actions are limited by the current situation itself. Context-Based Reasoning is based on the
following hypotheses:

1. Small, but important portions of all available environmental inputs are used to
recognise and treat the key features of a situation

2. There are a limited number of things that can realistically take place in any situation

3. The presence of a new situation will generally require alteration of the present course
of action to some degree

CxBR encapsulates knowledge about actions to be taken and possible future situations into
contexts. By defining a hierarchy of contexts in which a sentient object may exist and by
associating specific actions to be undertaken in each context, a sentient object's behaviour
may be influenced by its context. Following this approach and limiting the number of actions
permitted in specific contexts, the efficiency of production rule-based inference may be
increased substantially.

CxBR defines a mission context, major contexts and sub contexts. The mission context is the
overall goal and objectives for a certain scenario. It is composed of major contexts, which are
tactical operations assisting in the achievement of the scenario. Each major context is in turn
composed of one or more sub contexts each of which is a lower level tactical procedure which
assists in the achievement of its associated major context. Autonomous behaviour in a CxBR-

 14

based entity is based upon the evaluation of a set of rules, and the alteration of the course of
behaviour based on the outcome of these rules. The influence of behaviour based upon a set
of continuously evaluated rules is a common Artificial Intelligence technique, but CxBR adds
to this the notion of an active context. Within each active context (be it mission, major or
sub), only a subset of the rules is applicable (this derives from the hypothesis that there are
only a limited number of things that can realistically take place in any situation) and this
increases the efficiency of a rules-based approach. Contexts are constantly being activated
and deactivated during the entities lifetime and each context regulates the behaviour of the
entity and provides an expectation for the future. A requirement of this approach is that
certain cues exist to indicate when transitions may be made between active contexts.

An example CxBR hierarchy for a sentient vehicle is illustrated in Figure 2. In this example it
is clear that in the two-lane highway mission context, whilst the changing lane major
context is active, the possible sub contexts that the vehicle may be in are accelerate and
decelerate, each of which has different actions associated with it.

Figure 2: A CxBR hierarchy for a sentient vehicle

2.2.3.3 Sentient Object Internals

The internals of a sentient object as illustrated in Figure 1 consist of three major components.
Each object has a sensory capture component that collects aspects of an objects context from
a set of sensors. Such context data may include location, activity, proximity and
infrastructural information. It is the sensory capture component that is responsible for the
fusion of multi modal sensor input prior to the mapping to the context representation.

The context representation component consists of an object specific context information
model [12] as well as a CxBR-type hierarchy of contexts in which the object may exist.
Representation of context information in a way which is useful to a sentient object, or indeed
any computing application, is a difficult problem which has not been extensively addressed in
the literature. Albrecht Schmidt et al. [13] propose a hierarchically organised feature space for
context classified broadly into human and environmental factors. For autonomous, software
components like sentient objects, human factors are not an important consideration in context
derivation, whereas environmental factors are more so. Anind Dey et al. classify four types of
context that they see as being more useful practically, these being location, identity, activity
and time [6]. In the sentient object model we treat sensor inputs as providing environmental
information that includes location, proximity, visual, infrastructural and temporal information.
These inputs are then used to determine the current context and consequently the position in
the CxBR hierarchy. Each object has a specific context information model which specifies

 15

what context information is important to the object. This context information model is
composed of an XML-schema, where context information is represented symbolically as
numbers and strings.

The inference engine component is a production-rule based inference engine and supporting
knowledge base, which gives sentient objects the ability to intelligently control their actions
based on their context. The inference engine is related to the CxBR hierarchy in that only a
subset of the rules are valid in a given context which follows from the hypotheses that there
are a limited number of things that can happen in any scenario.

2.2.4 Context Uncertainty Management

Uncertainty is an intrinsic factor in all sensing processes. In order to reason effectively in
terms of context, we need a means for specifying and managing the uncertainty inherent in
that context derivation.

2.2.4.1 Uncertainty of Sensor Data

Sensors that sense aspects of the physical environment, such as temperature, audio and
location sensors provide as output only approximations to the values, which they sense in the
real world. This uncertainty regarding the true value of what is being measured is inherent in
data resulting from a physical measurement and results from hardware limitations in the
manufacturing of the sensor and the fact that the physical operation of the sensor is too
complex to model.

In addition to errors in physical sensor measurements, uncertainty in sensor data may also
arise from the inability of a single sensor to sense all aspects of the environment of interest. A
human example is stereovision in which the brain fuses the output of two eyes in order to
provide depth perception, which is not available from the output of a single eye. In this way
sensor fusion provides additional information about the environment and thus reduces
uncertainty.

2.2.4.2 Sensor Fusion

When dealing with sentient objects, we are concerned with obtaining the most complete
representation of the current context and indeed the most accurate mapping of the actual
context to the active context in the CxBR hierarchy. By fusing the output of multiple sensors
measuring both the same and different parameters of the environment at a single point in time,
we may increase the probability of accurately identifying the context. Arnoud Visser [14]
defines three general types of sensor fusion

• Complementary fusion: refers to the fusion of the output of multiple disparate sensors
each giving partial information about the environment, and resolves incompleteness
of data.

• Competitive fusion: this is the fusion of uncertain data from a number of sensors and
aims to reduce the uncertainty of an individual sensor reading. A number of sensors
measure the same parameter and multiple measurements are fused to provide a more
accurate estimate.

 16

• Cooperative fusion: refers to the fusion of the output of different sensors in which one
sensor relies on the output of another sensor/s to make its own observations.

Fusion of data from multiple sensors may be performed at a number of levels from the
electronic signal level, to the fusion of sensor data, which has been interpreted to give a
higher semantic meaning. Sensors in the sentient object model process raw sensor data and
produce a higher-level interpretation and it is this symbolic output that we are interested in
fusing. Complementary and competitive fusion are most relevant to sentient objects, where
we are trying to both gain a more complete representation of context, and reduce the
uncertainty inherent in sensor readings.

Sensor fusion for context-aware sentient objects is different to classical sensor fusion, which
is primarily concerned with parameter estimation. With sentient objects, in addition to the use
of sensor fusion for the optimisation of measurements, we are also concerned with fusing
various seemingly unrelated pieces of information in order to determine context.

2.2.4.3 Bayesian Networks for Sensor Fusion

Sentient objects almost never have access to a completely correct view of their context due to
an incomplete or incorrect understanding of their environment for reasons discussed above. In
real-world domains, sentient objects can only provide a degree of belief in relevant contexts.

Bayesian theory provides the basis which allows us to reason under uncertainty in the form of
probabilities by calculating the probability that a hypothesis (H) is true, given observed
evidence (E), or P(H|E).

Any complete probabilistic model of a domain must, either explicitly or implicitly, represent
the joint distribution - the probability of every possible event as defined by the values of all
the variables [5]. Modelling a domain as a set of random variables X1,...,Xn, then P(X1,...,Xn)
denotes their joint probability distribution (jpd), or the probability of every possible
combination of values for X1,...,Xn. Such a jpd provides complete information about the
probabilities of its random variables, but quickly becomes very large. A jpd table for n
random variables, each ranging over k distinct values, has kn entries.

The majority of the time, the variables describing a domain are dependant on each other1 and
the joint probability of two variables may be defined in terms of conditional probabilities

P(X1 , X2) = P(X1 | X2) P(X2) = P(X2 | X1) P(X1)

This may be rewritten as Bayes' Rule for the conditional probability of two variables as
follows

P(X2 | X1) = P(X2 , X1) = P(X2)P(X1 | X2)

 P(X1) P(X1)

Bayes rule allows us to reason in terms of conditional probabilities. A Bayesian network is a
directed acyclic graph in which the nodes represent random variables, and the absence of arcs

1 Two random variables X1 and X2 are independent iff P(X1 | X2) = P(X1) or P(X1 , X2) = P(X1)P(X2).
Complete independence is a very strong and seldom met requirement

 17

represents conditional independence in that a node is independent of its non-descendants
given its parents [15]. Bayesian Networks achieve compactness when compared to jpd's, by
factoring the joint distribution into local, conditional distributions for each variable given its
parents [5]. For a variable Xi if we denote the parents of Xi as pa(Xi) then P(Xi | pa(Xi))
denotes the local conditional distribution for Xi given its parents. A Bayesian network allows
us to factor the joint distribution over all variables into the product of local terms, giving the
full joint distribution over all variables as

n

P(X1 ,…, Xn) = ? P(Xi | pa(Xi))
i=1

An example Bayesian network is illustrated in Figure 3 for five variables. For this example
network, P(A, B, C, D, E) = P(A) P(B) P(C|A) P(D|A, B) P(E|D). From this example, we can
see that provided the number of parents of each node is bounded, the number of parameters
required grows linearly with the size of the network, whereas the joint distribution grows
exponentially [5].

Figure 3: A Bayesian network representing causal inferences among five variables

The arcs in a Bayesian network then represent the conditional probability of the existence of
the node being pointed to, given the existence of the node from which the arc originates.

Bayesian networks capture relationships between variables in a system and the dependencies,
which exist between them. The networks operate by propagating evidence about variables
through the network, according to the relationships encoded therein. In this way, knowledge
of the value of a variable allows us to update our belief in the values of all variables in the
network.

A Bayesian network for sensor fusion may be constructed by representing the outputs of
sensors as inputs into a network, which also contains nodes representing variables, whose
value is influenced by the sensor outputs. The uncertainty associated with a sensor reading is
then modelled using conditional probabilities associated with causal relationships within the
network.

With respect to the sentient object model, we can create a Bayesian network where the leaf
nodes represent sensors contributing to the determination of the current context of an object.
Terminal nodes (those nodes without children) represent contexts, whilst intermediate nodes
represent the uncertainty values associated with sensors.

 18

Variable Parent Variable Values True False

Person In Room

(D)

Temp = 10 – 20

Temp = 20 – 30

Temp = 30+

PIR = On

PIR = Off

PIR = On

PIR = Off

PIR = On

PIR = Off

0.6

0.1

0.9

0.05

0.4

0.2

0.4

0.9

0.1

0.95

0.6

0.8

Door Closed

(E)

Reed Switch = Closed

Reed Switch = Open

 0.95

0.05

0.05

0.95

Working Hard

(F)

Person In Room

¬Person In Room

Door Closed

¬Door Closed

Door Closed

¬Door Closed

0.95

0.4

0.3

0.05

0.05

0.6

0.7

0.95

Table 1: Conditional probability tables for nodes in Figure 3

By way of an example, we consider the case of a sentient office that is equipped with a
number of sensors and actuators. The office may exist in any one of a set of contexts,
depending on what purpose the office is being used for at a point in time and sensor outputs
need to be fused together in order to determine this context. For the purposes of this example,
the office is equipped with three sensors and one actuator. The sensors consist of a Passive
Infrared (PIR) sensor mounted next to the desk, a reed switch mounted on the door and a
temperature sensor. The actuator controls whether the telephone answering machine is set to
automatically answer incoming calls. Given the output of the three sensors, we would like to
determine, with a bounded degree of certainty, what context the office is in. For instance if
there is a person in the office, and the door is closed the office is in the context of being used
for hard work and as a result the answering machine should be set to answer all incoming
calls so as not to disturb the worker.

We may easily construct a Bayesian network that fuses the output of the three sensors in the
sentient office as illustrated in Figure 4. The leaf nodes, shaded grey in the network represent
the sensors themselves, whilst the intermediate nodes represent the uncertainty associated
with the sensor readings as determined from experimental observation / operational
specifications. The probability that the sensor reading is correct is captured in conditional
probability tables (cpt) at each node. The cpt's for non-leaf nodes in the network are illustrated
in Table 12. Examining the entry for the node Person in Room, the table captures the
probability that there is actually somebody in the office given the output of the PIR and
temperature sensors and is constructed through experimental observation. The reason that we
fuse the output of the PIR and temperature sensors when determining if there is somebody in
the office is that PIR sensors work by sensing temperature variations and consequently their
accuracy is influenced by environmental temperature. Reed switches are not dependant on
temperature fluctuations and so there is no causal relationship between the temperature sensor
and the reed switch sensor.

2 These probabilities are for illustrative purposes only and are not derived from empirical
measurements.

 19

Figure 4: A Bayesian network for fusing the output of three sensors

2.2.4.4 Incorporating Probabilistic Sensor Fusion into the CxBR
hierarchy

CxBR is based upon the hypothesis that only a small portion of all available environmental
inputs are used to recognise and treat the key features of a situation and that within any given
situation, there are only a limited number of things that can realistically take place. The fact
that only a small portion of sensory input is relevant at any point in time is used to enhance
the effectiveness of the probabilistic sensor fusion scheme by limiting the number of nodes in
the Bayesian network in each context.

Sensors in the sentient object model are highly distributed, with changing configurations due
to the mobility of sentient objects. In addition, which of a set of sensors are consulted at a
particular point in time is highly dependant on the active context at that time. We perform
sensor fusion at the level of a context within the CxBR hierarchy. A context defines which
sensors are relevant to that context as well as those that must be monitored in order to detect
when transition to another context is indicated. A Bayesian network is constructed within
each context in order to fuse the fragments of context information obtained from the sensors.
The integration of Bayesian network fragments into the CxBR hierarchy is illustrated in
Figure 5. This figure shows how each context in the hierarchy is only interested in a subset of
the sensor input, and Bayesian network fragments within each context act to fuse the context
fragments obtained from the relevant sensors.

In this way the sensor fusion task is modularised and vastly reduced in complexity. For each
possible context in the CxBR hierarchy for a sentient object, a sensor fusion module is created
which supports the fusion of pieces of context information obtained from relevant sensors.
The fusion service is well separated from context acquisition as well as being separated from
the inference engine. Such separation permits for the fusion service implementation to be
easily replaced without affecting other components.

 20

Figure 5: Sensor fusion in the CxBR hierarchy

2.2.5 Conclusions and Future Work

We are developing middleware, based on the sentient object model, to support context-aware
applications. This middleware will permit the development of context-aware applications
based on environmental perception whilst insulating the programmer from the complexities of
physical sensors and their associated uncertainties. Programming such applications will
consist of intuitively specifying the CxBR hierarchy and associated Bayesian network
structure for fusion of context fragments. We are currently developing a large-scale sentient
traffic simulation based on the sentient object model. In addition we are extending existing
smart office infrastructure to make use of the sentient object model and its associated CxBR
hierarchy based fusion services.

Probabilistic models and particularly Bayesian networks provide us with a means to measure
the effectiveness of our derivations of context information within a sentient object given
inherently uncertain and noisy sensor data. The quantification of the reliability of a single
sensor is a difficult task, but by doing so we are able to provide bounds on the certainty of
information derived from the sensor.

2.2.6 Acknowledgements

The work described in this paper was partly supported by the Future and Emerging
Technologies programme of the Commission of the European Union under research contract
IST-2000-26031 (CORTEX - CO-operating Real-time senTient objects: architecture and
EXperimental evaluation). The authors are grateful to Raymond Cunningham for his valuable
input.

 21

References

[1] Adrian Fitzpatrick, Gregory Biegel, Siobhan Clarke, Vinny Cahill Towards a Sentient
Object Model Workshop on Engineering Context-Aware Object Oriented Systems
and Environments (ECOOSE), Seattle WA, USA November 2002.

[2] M.T. Smith SmartCards: Integrating for Portable Complexity IEEE Computer,
Volume 31, No. 8, pp. 110-112, August 1998.

[3] B. Clarkson, K. Mase and A. Pentland Recognizing User Context via Wearable
Sensors in Proceedings of the IEEE International Symposium on Wearable
Computing (ISWC’00), Atlanta, GA, USA, pp. 69-76, October 2000.

[4] Avelino J. Gonzalez, Robert Ahlers Context-Based Representation of Intelligent
Behaviour in Training Simulations Transactions of the Society for Computer
Simulation International, Vol. 15, No. 4, March 1999.

[5] Judea Pearl Bayesian Networks Handbook of Brain Theory and Neural Networks,
MIT Press, 2001.

[6] Anind K. Dey and Gregory D. Abowd The Context Toolkit: Aiding the Development
of Context-Aware Applications in Proceedings of Human Factors in Computing
Systems: CHI 99. Pittsburgh, PA: ACM Press. pp. 434-441, May 15-20 1999.

[7] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo Tuomela, Kristof Van
Laerhoven, and Walter Van de Velde. Advanced Interaction in Context in Handheld
and Ubiquitous Computing Springer-Verlag, pp. 89-101, 1999.

[8] Paul Castro and Richard Muntz, Managing Context Data for Smart Spaces IEEE
Personal Communications, Volume 7: Issue 5, October 2000.

[9] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, Koos Rommelse The
Lumiere Project: Bayesian User Modelling for Inferring the Goals and Needs of
Software Users in Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, Madison, WI, pp. 256-265, July 1998.

[10] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz A Bayesian
Approach to Filtering Junk E-Mail AAAI Workshop on Learning for Text
Categorization, Madison, Wisconsin. AAAI Technical Report WS-98-05, July1998.

[11] R. Meier and V. Cahill STEAM: Event-Based Middleware for Wireless Ad Hoc
Networks in Proceedings of the International Workshop on Distributed Event-Based
Systems (ICDCS/DEBS'02) Vienna, Austria, pp. 639-644, 2002.

[12] Huadong Wu, Mel Siegel and Sevim Ablay Sensor Fusion for Context Understanding
IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK,
USA, 21-23 May, 2002.

[13] A. Schmidt, M. Beigl and H-W Gellerson There is More to Context than Location
Computers and Graphics, Volume 23, No. 6, pp.893-901, 1999.

[14] Arnoud Visser Organisation and Design of Autonomous Systems Faculty of
Mathematics, Computer Science, Physics and Astronomy University of Amsterdam,
August 1999.

[15] James M. Rehg, Kevin P. Murphy, Paul W. Fieguth Vision-Based Speaker Detection
Using Bayesian Networks in Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition, Ft. Collins, CO, pp. 110--116, 1999.

 22

2.3 Machine Learning

The concern of the field of machine learning research is how to construct computer programs
that can learn with past experiences in order to automatically improve performance [Mitchell,
1997]. Machine learning is typically considered as a sub-topic of artificial intelligence and a
multi-disciplinary subject inspired by cognitive sciences, computer sciences, pattern
recognition, and statistics [Aha, 1995]. In the context of the sentient room demo, machine
learning can be actively investigated as a practical method to learn a user’s interest,
preference, knowledge, goal, habits, etc. in order to adapt the services to the user’s individual
characteristics [Pohl W. 1996]. The way how multiple people resolve conflicts in the sentient
room can also become the target function of the machine learning algorithms, so that the
sentient room can make autonomous decision on future conflicts. It is also plausible to apply
machine learning algorithms for inducing low-level contexts from sensory data, e.g., inducing
how many people in the room from environmental parameters.

The most popular and widely-used machine learning methods are the family of the inductive
learning methods, which is based on the following assumption: “Any hypothesis found to
approximate the target function well over a sufficiently large set of training examples will
also approximate the target function well over other unobserved examples” [Mitchell, 1997].
The member of the inductive machine learning family includes decision tree learning, neural
network learning, and Bayesian learning, etc.

2.3.1 Decision Tree Learning

Decision tree learning is a method for approximating discrete-valued target functions, and it is
robust to noisy data and capable of learning disjunctive expressions. The learned function is
represented in the form of a decision tree, which can also be described in some human
friendly if-then rules.

A decision tree is created from a training set of tuples, each of which is composed of an
instance (which can have several attributes) and a value (e.g., positive or negative) for the
target attribute. Most algorithms for the construction of decision trees are based on the
concept of a top-down and greedy search through the space of possible decision trees. The
famous decision tree algorithms based on the above approach, such as ID3 [Quinlan, J. R.
1986], ASSISTANT [Cestnik et al. 1987], C4.5 [Quinlan, J. R. 1993)] have already been
widely used both academically and commercially.

After being constructed, a decision tree can classify instances by sorting them down the tree
from the root to some leaf node, which provides the classification of the instance. Each node
in the tree specifies a test of some attribute of the instance, and each branch descending from
that node corresponds to one of the possible values for this attribute. A path from the root to a
leaf node corresponds to a rule learned from the training samples. An instance is classified by
starting the root node of the tree, testing the attribute specified by this node, then moving
down the tree branch corresponding to the value of the attribute in the given example. The
process is then repeated for the sub-tree rooted at the new node. In general, a decision tree can
be interpreted as a disjunction of conjunctions of constraints on the attribute values of
instances. Each path from the root to a leaf can be considered as a conjunction of attribute
tests, and the tree itself as a disjunction of these conjunctions [Mitchell, 1997].

 23

2.3.2 Neural Network Learning

Neural network learning methods provide a general approach to approximating real-valued,
discrete-valued, and vector-valued target functions [Mitchell, 1997]. It is robust to errors in
training data and has been successfully applied to many practical problems such as
interpreting visual scenes, speech recognition, and leaning robot control strategy.

An artificial neural network is an information-processing paradigm inspired by the way the
densely interconnected, parallel structure of the mammalian brain processes information. An
artificial neural network is built out of a densely interconnected set of simple units (or nodes),
where each unit takes a number of real-valued inputs (possibly outputs of other units) and
produces a single real-valued output (which may become the input to many other units). The
processing ability of the network is stored in the inter-unit connection strengths (or weights),
obtained by a process of learning from a set of training patterns.

The Backpropagation algorithm is the most influential and commonly used neural network
leaning technique. In this algorithm, the network consists of a fixed set of units, which are
normally organized into multiple layers: input layer, at least one intermediate hidden layer,
and output layer. Each unit in one layer is connected with all the units in the above layer, and
the algorithm learns the weights of each connection based on the training samples. It employs
gradient descent to attempt to minimize the squared error between the network output values
and the target values for these outputs. The weights learned by neural networks are often
difficult for humans to interpret.

2.3.3 Bayesian Learning

Bayesian learning is a straightforward learning algorithm that calculates the probability for
each candidate hypothesis and selects the most probable posterior hypothesis. It is based on
the assumption that the quantities of interest are governed by probability distributions and that
optimal decisions can be made by reasoning about these probabilities together with observed
data [Mitchell, 1997].

The basis of the Bayesian learning is Bayes theorem, which provides a direct method for
calculating the probability of a hypothesis based on its prior probability, the probabilities of
observing various data given the hypothesis, and the observed data itself [Mitchell, 1997]. A
highly practical Bayesian learning method is the naive Bayes classifier, where the training
data is a set of tuples composed of a conjunction of attribute values and the target function.
The target function can take on any value from a finite set. The leaner is asked to predict the
target value or classification for anew instance described by the tuple of attribute values. The
naive Bayes learning method selects the most probable hypothesis by estimating the various
prior probabilities and conditional probabilities, which can be calculated over the training
data. Instead of explicit searching through the space of possible hypothesis, the Bayesian
learning simply counts the frequency of various data combinations within the training
examples.

In the Naive Bayes classifier, the assumption that the attribute values are conditionally
independent given the target value might be overly restrictive. In some cases, the attributes in
a training data set can be dependent on each other. Bayesian Belief Networks describe the
dependence and independence between attributes using a graph. Using this networks can be
an intermediate approach between the overall assumption of conditional independence in the
naive Bayes classifier and avoiding conditional independence assumptions altogether. The
network structure can be defined from prior knowledge or can be learned from the training
data set itself [Heckerman, 1996].

 24

2.3.4 Design Consideration

When introducing machine learning methods into the sentient object paradigm, the following
issues need to be considered:

• Training Experience: The type of training experience is the first design choice we face. One
key attribute is to choose direct or indirect training examples, which provide direct or indirect
feedback regarding the choices made by the performance system [Mitchell, 1997]. The degree
of controlling over the sequence of the training example by the learning system is the second
important attributes. The third attribute is how well the training experience represents the
distribution of examples.

• Target Function: It is to determine what will be learned and how this will be used. In the
context of the sentient room demo, are we going to learn the high level personal preferences
or to infer how many people in the room from the low-level environmental parameters? Or
both?

• Representation: We must choose proper representations for the target function as well as the
training examples. Standardized representation improves portability and extensibility of the
system.

• Learning Algorithm: Now we can determine to use which machine learning algorithm for
the specific problem according to our selection criteria: some algorithms might be more
efficient for certain application domains; some might be easier for human to understand and
interpret; some might be more robust than other on dealing with the uncertainty of the input
data, etc. All these attributes could become the reason of choosing certain learning algorithm.

References
Aha D. W. (1995) Machine Learning, A tutorial presented at the 5th International Workshop
on Artificial Intelligence & Statistics.

B. Castaic, I. Koromiko, and I. Brake (1997), Assistant 86: a knowledge-elicitation tool for
sophisticated users. In I. Brake and N. Larva (eds.), Progress in Machine Learning --
Proceedings of the Second European Working Session on Learning (EWSL87), Wilson, UK:
Sigma Press, 31-45.

Heckerman D. (1996) A Tutorial on Learning With Bayesian Networks, Technical Report
MSR-TR-95-06, Microsoft Research, Advanced Technology Division.

Mitchell T. M. (1997) Machine Learning, McGraw-Hill, ISBN 0-07-115467-1.

Pohl W. (1996) Learning about the User – User Modeling and Machine Learning, Workshop
in ICML'96 on Machine Learning meets Human-Computer Interaction.

Quinlan, J. R. (1986), Induction of decision trees, Machine Learning, 1(1), 81-106.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, 2(3), 229-246.

 25

Chapter 3: Event-Based Communication Model

3.1 An Event Model for Real-Time Systems
in Mobile Environments

René Meier1, Jörg Kaiser2, Barbara Hughes1, Cristiano Brudna2, Vinny Cahill1
1Department of Computer Science, Trinity College Dublin, Ireland
2Department of Computer Structures, University of Ulm, Germany

{Rene. Meier, Barbara. Hughes, vinny.cahill}@cs.tcd.ie,

 {kaiser, Christiano.brudna}@informatik.uni-ulm.de

ABSTRACT
This paper describes an event model that has been
designed to address the predictability requirements of
applications operating in mobile environments based on
hierarchically structured WAN-of-CANs network. The
event model supports an event channel concept for
modeling the guarantees provided by the underlying,
heterogeneous communication infrastructure. The
networks that comprise such a WAN-of-CANs may
provide fundamentally different degrees of quality of
service and as a result can be viewed as zones within
which certain guarantees can be enforced. Event
channels operating in CAN-based subnetworks with
typically strong timing behavior may support hard
temporal and reliability attributes whereas channels
interconnecting these subnetworks using wireless
networks support weaker timing attributes.

Keywords

Event-based middleware, timely event delivery, mobile
computing, CAN networks, wireless networks.

3.1.1 INTRODUCTION
Advances in information technology encourage new
classes of applications that are based on a large number
of networked components acting autonomously in
response to a myriad of sensors and actuators to assess
and control aspects of the environment. Examples range
in telematics, traffic management or home automation to
name a few. To a large extent, such systems operate
proactively and independently of direct human control
driven by the perception of the environment and the
ability to organize respective computations dynamically.

The challenging characteristics of these applications
include sentience and autonomy of components, issues of
responsiveness and safety criticality, geographical
dispersion, mobility and evolution.

Such systems require a degree of co-operation,
adaptability, extensibility and reliability that is not
available today. The problem is to provide a
communication and interaction scheme that supports a
large-scale many-to-many communication relation
typical for these applications. Additionally, it should be
possible to seamlessly disseminate relevant information
generated by deeply embedded controllers to all
interested entities in the global network.

The contribution of the paper is a model for a real-time
event system on top of a heterogeneous communication
system. Such a system may be composed from networks
with largely different quality characteristics ranging from
highly predictable real-time buses to ad-hoc wireless
networks in which mobility of nodes result in frequent
link failures. The focus of the paper is on the quality
aspects of communication, explicitly providing a system
architecture that reflects a realistic network model in
large-scale cooperative applications. It presents
abstractions to encapsulate network properties and make
them assessable on the level of the event system. Related
work on event systems does not allow to explicitly
model quality properties resulting from heterogeneity [1-
3], or it deals with mechanisms that mask network
heterogeneity, thereby neglecting respective real-time
and quality issues.

3.1.1.1 Overview
The event-based communication model represents a
paradigm for middleware that asynchronously
interconnects the components that comprise distributed
applications [4]. Event-based middleware has been
recognized as being well suited to addressing the
requirements of mobile application [5-8] and to
connecting the components in control applications with
timeliness requirements [1-3]. However, to date event
models have not been designed to offer sufficient levels
of dependability for real-time systems while supporting
mobile application components.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific
permission and/or a fee.

Conference ’00, Month 1-2, 2000, City, State.

Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

 26

This paper presents an event model addressing the
predictability requirements of large-scale applications
operating in mobile environments based on
heterogeneous communication infrastructures. Our event
model defines an abstract network model and provides
mappings for the envisaged network types. These
networks may include Controller Area Networks (CAN),
Local Area Networks (LAN), and Wide Area Networks
(WAN), especially those based on wireless technology.
The underlying communication infrastructure typically
consists of a hierarchically structured WAN-of-CANs
network, an internetwork whose subnetworks will
typically be CANs that are interconnected by means of
wireless LANs and WANs. The networks that comprise
such a WAN-of-CANs typically provide fundamentally
different degrees of Quality of Service (QoS), ranging
from CAN networks with strong timing and reliability
behavior to wireless network supporting mobile
application components and as a result providing weaker
guarantees. We regard individual networks as QoS
containers, called zones, within which given degrees of
predictability in terms of timing and reliability can be
enforced.

Our event model provides a programming model based
on the concept of event channels. A number of event
channel classes with different temporal and reliability
attributes are supported for integrating the real-time
aspects into the event channel model. Depending on the
guarantees available from the underlying network, these
event channels can be mapped to certain QoS zones.
Generally, channels can be associated with zones
providing equal or stronger guarantees.

In order to address the requirements of real-time
systems, we support classes of hard, soft, and non real-
time event channels. Hard real-time event channels are
considered to meet all temporal requirements under the
specified fault assumptions. Soft real-time event
channels are scheduled according to deadlines.
Nevertheless, these deadlines are not guaranteed during
transient overload conditions. Non real-time event
channels are typically used for best-effort event delivery
without any specified timeliness requirements. In
general, any class of event channel may be mapped to
zones representing CAN-based subnetworks whereas
zones including wireless network can only support
guarantees sufficient for soft and non real-time event
channels. However, we envisaged using a predictable
medium access protocol, such as the Time-Bounded
Medium Access Control (TBMAC) [9] protocol, in order
to provide soft real-time deadlines with a high
probability for event channels propagating events in
wireless networks.

3.1.1.2 Paper Organization
The remainder of this paper is structured as follows:
Section 3.1.2 presents the system architecture including
the underlying network infrastructure and the classes of
event channels. In section 3.1.3, we discuss arising issues
when applying real-time to a WAN-of-CANs network,
especially those based on wireless technology. Section
3.1.4 focuses on the programming model supported by
our event model and section 0 outlines the
communications architecture. Section 0 concludes this
paper by summarising our work and outlining the issues
that remain open for future work.

3.1.2 SYSTEM
ARCHITECTURE

When striving for a real-time event system, the
communications architecture substantially affects the
temporal and reliability properties of event
dissemination. Thus, in quality terms the underlying
network is not transparent for the application using the
event system. The goal for our event system is to express
the quality requirements of event dissemination on the
abstraction level of events rather than to resort to lower
network details. The middleware then automatically
maps these requirements to the underlying network.
Hence, we will briefly introduce the general assumptions
about the network architecture.

3.1.2.1 General Network
Structure

From an application point of view, the event system
should support cooperating autonomous entities, such as
cars, robots, and people wearing computers and moving
through a smart environment. As an example consider
autonomous mobile robots which may be equipped with
all kinds of smart sensors, such as lasers, radars,
cameras, navigational sensors, and chemical sensors, to
achieve an adequate perception of their environment.
The necessary highly reactive behaviour of such an
individual robot has to be achieved by a tight
cooperation of the sensor / actuator system over some
special purpose network inside the robot, called a CAN
(Controller Area Network in a broad sense).
Additionally, the vehicles may communicate via a
wireless link carrying out joint tasks. At an abstract
layer, this is modelled as islands of tight control
cooperating via a WAN-of-CANs structure [10]. We
assume a certain guaranteed level of predictability as an
intrinsic property of a CAN. A CAN therefore
constitutes a zone of coherent QoS provision.

: Network Node

TCP/IP
network

GW

CAN

. . . .

GW

GW

CAN

CAN
TCP/IP
network

GW

CAN

. . . .

GW

GW

CAN

CAN : GW: Gateway
WAN

Figure 1. The WAN-of-CANs network
architecture.

The general structure depicted in Figure 1 is recursive in
a sense that a CAN may be composed from a hierarchy
of networks itself. This issue is not further discussed in
this paper. It should only be noted that each of the
interconnected subnets constitutes a zone in which a
certain QoS is defined. The gateways have multiple
functions. Firstly, they route events over network
boundaries by maintaining an event interface that is

 27

transparent with respect to functional properties
throughout the network. For non-functional quality
attributes they provide the needed awareness about the
network properties. Thus, they have to marshal events
depending on the underlying abstract network
infrastructure, which is described below. Secondly, they
constitute filters that allow to scope events according to
their context and their quality attributes as introduced in
section 3.1.4. A realisation of this structure for
cooperating mobile robots internally equipped with a
CAN-Bus, which is extended via gateways to a wireless
LAN for event dissemination between the robots is
presented in [11]. Furthermore, a middleware service
that has been designed for interconnecting mobile
application components using ad hoc wireless local area
networks has been described in [12].

3.1.2.2 Abstract Communication
Layers

There is a trade-off between the predictability of
communication and the needed resources. At the safe
end, all communication is statically planned and
resources have to be assigned anticipating worst-case
load and failure assumptions. However, this may only be
required for a small number of highly critical services. In
fact, critical system services as could use such highly
predictable links to meet its temporal and reliability
requirements, e.g. tight sensor / actuator control loops
e.g. for crash avoidance or motor and brake control. In
most cases less critical events have to be accommodated
by the communication system, which also allow more
dynamic system behaviour. However, also for these
events, temporal parameters may be needed, e.g. the
specification of when an event should be delivered or
how long the event is valid. The different requirements
are reflected by event channel classes with different
properties. On the architectural level, we distinguish
three layers roughly depicted in Figure 2.

On the event layer, the main abstractions are events and
different classes of event channels. As described in
section 3.1.4, this layer enables the application to specify
channels with different QoS properties. Mapping the
abstractions of the event layer directly to the underlying
network is a tough challenge because the usual
abstractions on the network layer are low-level
messages. Hence, this layer does not match the
requirements of group communication, subject-based
addressing or the QoS specifications defined for
channels.
Therefore, an abstract network layer is introduced
enriching the properties of the raw network (this may not
just be a physical network, but a specific MAC-layer or
even a higher OSI level) with additional properties and
communication services such as reliable broadcast,
group communication, and temporal guarantees for
message dissemination. This separation of concerns
supports modularity and allows for an easier adaptation
of the event layer to networks with widely differing
characteristics.

It should be noted that the QoS properties of the event
layer in general depend on what the abstract network
layer can provide. Thus, it may not always be possible to
support highly safety critical hard real-time event
channels if the abstract network layer cannot provide the

Abstract Network Layer

message classes
messages with temporal properties

network reliability properties

Event Layer

events with context and temporal properties
event channels with quality properties

Network Layer
network dependent best effort message transfer

Application Layer

Middleware

Functional
abstractions

QoS
assurance

Figure 2. Architectural layer.

required guarantees. Therefore, the event channels
supported by the event system are dependent on the
zones in which the respective protocols can be provided.
As an example, [13] describes the protocols and services
of the abstract network layer for a particular CAN-Bus.

3.1.3 REAL-TIME AND
MOBILITY

Previous research in real-time event-based
communication [1, 3] has focused on wired networks
assuming a static number of location fixed nodes and a
known fault hypothesis. Transmission schedules for
avoiding collisions are typically planned statically and
the correctness of these schedules regarding timing
conflicts and temporal overlaps are verified off-line.
However, such an approach would be inappropriate for
achieving real-time guarantees for wireless
environments, especially when using ad hoc networks.
The characteristics of wireless networks that render such
an approach unsuitable include highly dynamic
connections, location-dependent coverage and
contention, and its susceptibility to the physical
environment.

3.1.3.1 Dynamic Connections
Wireless network connections between mobile nodes are
typically established dynamically due to the
unpredictability of node movements. Maintaining
accurate network information in such an environment,
which is essential for enforcing delivery guarantees,
requires the propagation of updates reflecting the actual
network topology. The frequency for disseminating these
updates relates directly to the level of node mobility and
consequently results in additional, potentially
unpredictable communication and computational load.

Link failures are the norm rather that the exception in
wireless networks. Links may fail as a result of various
reasons including individual node failures, for example
due to low battery power, physical obstacles blocking a
transmission, and nodes moving out of transmission
range. Significantly, link failures may result in network
partitions where groups of node operate independently of
each other. Adapting to link failures relies on timely and
accurate topology updates, which may be affected by the
unpredictability of the network and by the presence of

 28

partitions. Updates may be confined to certain partitions,
which implies partial knowledge of the network
topology.

Timeliness guarantees for event delivery rely on a
transmission schedule that reflects the priorities and
deadlines associated with events and on the precision of
such a schedule, which derives from the accuracy of the
available typology information. Hence, providing
guarantees with a high probability is hard in wireless
environments as the required topology information is
likely to be out of date or even incomplete. Moreover, it
may be impossible to deliver an event to all subscribers
in the presence of partitions.

3.1.3.2 Location-Dependent
Coverage And
Contention

Coverage can be defined as the geographical area to
which a particular node can send messages using single-
hop or multi-hop communication. The area covered by
the wireless transmitters of mobile nodes typically
changes over time depending on the movements of
individual nodes. Consequently, coverage describes the
set of nodes, which is likely to change over time, to
which a specific node can propagate events at a given
time. Kanodia et al. [14] propose a protocol for ordered
event scheduling in ad hoc wireless networks. This work
focuses on topologies in which all nodes reside within
single-hop transmission range of each other and as a
result assumes that these nodes have the same
information describing the network topology. Tobagi and
Kleinrock [15] as well as Kanodia et al. [14] discuss
topologies where nodes use multi-hop communication
when propagating messages. Such nodes may have
different probabilities of accessing a wireless
communication channel and different throughput
capabilities, depending on properties such as spatial
reuse and contention degree. Unequal channel access is
detrimental to achieving distributed agreement and
results in unpredictable transmission delays, which leads
to unbound delivery latency.

Wireless transmissions in ad hoc networks are broadcast
through a physical communication channel shared by a
group of nodes. This implies that the contention level of
a specific channel depends on its location. In order to
avoid collisions at a certain location, nodes sense an
ongoing transmission and restrain from sending until the
channel becomes available. Hence, nodes must exploit a
means to arbitrate spatial contentions between the
transmissions in their spatial locality. Luo and Lu [16]
propose a fair channel access model that ensures
coordination among spatially contending transmissions.
However, this work assumes that individual
transmissions are decoupled from each other and that
scheduling can be performed independently for each
transmission. This cannot be assumed in applications
comprising highly mobile nodes. Moreover, neither
Tobagi and Kleinrock [15] nor Luo and Lu [16] address
temporal or reliability constraints, which are essential for
providing end-to-end delivery guarantees.

3.1.3.3 Susceptibility To The
Physical Environment

The physical environment has a critical impact on
wireless communication. Many physical objects such as
vehicles and building as well as people themselves may
represent obstacles that effect transmissions. Obstacles
impede wireless signals and result in a reduction of the
available signal strength. Consequently, they may lead to
packet loss as well as to unpredictable transmission
delays and jitter. The dynamic aspect of parts of the
physical environment causes unpredictable occurrences
and durations of such impeding effects. This results in
significant fluctuations between intervals of high and
low connectivity. Significantly, this unpredictable,
dynamic behavior of the physical environment causes
variations in the quality of service available from the
network.

3.1.4 THE PROGRAMMING
MODEL

As a consequence of the interaction with the physical
world, the pace of interactions and of the computational
progress in the distributed system is dictated by the
progression of real time and the properties of the
environment. To support coordination of actions,
cooperation between mobile entities and fusion of
elementary events in the sentient object model [17], the
events must be disseminated in a predictable way.

An event encapsulates the description of an observation
about the change in the environment or the system.
Hence, it is related to an occurrence in the real world,
e.g. observed by a sensor, or an in the control system
itself, e.g. generated by some control program. An event
is an instance of an event type, which is characterized by
subject, attributes, and content:

 event := <subject, attribute_list, content >.

The subject is attached to an event as a tag to explicitly
identify the event's type and enable basic filtering and
some form of type checking on event dissemination. An
event is further characterized by a set of functional and
non-functional attributes. Functional attributes are
related to the application relevant context in which an
event has been generated and may include information
like location, range of dissemination (relative location or
proximity) and time of occurrence, or system related
information like a mode of operation or a network zone
in a WAN-of-CANs architecture. Non-functional
attributes represent intrinsic properties and quality
aspects of an event. These may be deadlines necessary to
express temporal requirements of event dissemination or
a validity interval according to an aging function. A
deadline is used to schedule an event in the
communication system and define priority relations to
other events. The validity interval defines an application
related interval that may go beyond the deadline when
the usefulness of the event expires. It allows a certain
tolerance of transient overload when the event cannot be
delivered within the deadline but eventually to discard an
event and purge the system from outdated events. This is

 29

particularly important in a real time event system to
prevent the already outdated events to still compete for
resources with the actual events. Finally, the content of
an event carries the data that is represented as a
structured set of functional parameters. The content is
accessible by specific methods.

Predictability incorporates the timely delivery of events
under anticipated load and failure conditions. The nature
of events may range from a safety-critical event
signaling that a crash of a mobile vehicle with an
obstacle is about to happen to the dissemination of non-
critical events describing a room temperature or
illumination intensity that have less demanding
predictability requirements. As a matter of fact, there is a
trade-off between the resources expended and the degree
of predictability. Consequently, the respective
requirements for the underlying abstract network may
range from synchronous reliable broadcasts [11, 18] to
best effort communication.

To facilitate the specification of the particular
requirements for event dissemination the notion of event
channels is introduced. An event channel encapsulates
properties of the underlying communication system and
allows specifying quality attributes on an abstraction
level where it is assessable to an application
programmer. The benefits are twofold: Firstly, a check
can be performed whether the non-functional attributes
of an event match to the quality attributes defined for the
event channel. This allows early timing failure detection.
Secondly, predictability requires that resources are
available when they are needed. An event channel can be
established and the necessary resources can be assigned
by the middleware before an event has to be
disseminated. The general form of an event channel
representation is given by:

event_channel := <subject, attribute_list, handlers >

In contrast to the attributes of an event, which describes
the properties of a single individual occurrence of an
event, the attributes of the event channel abstract the
properties of the underlying communication network and
dissemination scheme. Therefore the attributes define
quality properties and include e.g. latency, dissemination
constraints and reliability parameters. The subject of the
event channel must match the subject of the event that is
disseminated through the channel. The "handlers"-field
allows specifying notification and exception handlers for
the event channel.

According to the need in most real-time systems,
particularly, if we assume the network architecture
introduced in section 3.1.2, event channels with different
timeliness and reliability properties must be supported.
We distinguish three event channel classes: Hard Real-
Time Event Channels (HRTEC), Soft Real-Time Event
Channels (SRTEC) and Non Real-Time Event Channels
(N7RTEC). A HRTEC offers rigorous guarantees for
discrete control based on sporadic events as well as for
continuous control requiring periodic events like sensor
readings and control feedback. For sporadic events a
maximum latency will be guaranteed while for periodic
events the goal is to achieve a low period- and latency-
jitter. The guarantees are maintained under an anticipated

number of omission failures. Events published to a
SRTEC are scheduled according to the Earliest Deadline
First (EDF) algorithm. As outlined below, deadlines may
be missed in situations of transient overload or due to the
arbitrary arrival times of messages. Finally, a NRTEC
disseminates events that have no timeliness
requirements.

The transport of events through a hard real-time event
channel (HRTEC) is synchronous and reliable. The
properties of a HRTEC are defined by: 1.) a known
upper bound for the transport latency, i.e. the interval
between the point in time when an event message
becomes ready and its delivery; 2.) a known upper bound
for the latency jitter, i.e. the variance of the transport
latency; 3.) a known upper bound of the period jitter for
periodic events, i.e. the variance on the period; 4.) a fault
assumption under which the properties 1.)- 3.) are valid.
In order to offer such properties, a HRTEC transparently
handles redundant transmissions of events and
guarantees that the respective publisher has a privileged
access to the communication network. A HRTC s is
based on a highly predictable abstract network, e.g.
enabling the reservation of network resources. Highly
predictable and reliable protocols such as [9, 18, 19] can
provide the respective quality of service in the abstract
network layer.

Soft real-time events have timeliness requirement that
are expressed by deadlines and validity intervals. Thus, a
SRTC has to reflect these properties. Soft real-time event
messages become ready at any time and are scheduled
according to their transmission deadlines. Different from
HRTCs, SRTECs do not use reservations. The
transmission deadline is defined as the latest point in
time when a message has to be transmitted and events
are scheduled according to an earliest deadline first
algorithm. However, because a message can not be
interrupted during its transmission and messages may
become ready at arbitrary points in time, EDF will not
always take the right scheduling decisions (only a
clairvoyant scheduler would be able to do so) and
situations of temporal conflicts and transient overload
may occur. In theses situations, messages will still be
transmitted at a later time in a best effort manner. An
SRT event message eventually will be discarded if its
transmission time is delayed beyond its temporal
validity. The expiration time is an application specific
parameter, which may be defined according to some
value function.

NRTCs are used for events that do not have timeliness
requirements. They are primarily intended for
configuration and maintenance purposes. While HRTC
and SRTC disseminate events of restricted length to meet
the responsiveness requirements of real-time systems,
NRTC may transfer bulk data.

3.1.5 THE
COMMUNICATIONS
ARCHITECTURE

The design of the communications architecture is
motivated by our approach to defining an abstract
network model describing the characteristics of the
underlying WAN-of-CANs architecture and by our
programming model based on our concept of event

 30

channels with different timeliness and reliability
properties. We employ a mechanism for enforcing hard
real-time event channel properties in CAN networks and
another mechanism based on bounding the propagation
range of events for providing soft real-time guarantees
with high probability in wireless networks.

3.1.5.1 Mapping Event Channels
To Zones

Applications may comprise numerous components
representing real-world objects that may be mobile and
distributed over a large geographical area. Such
components are typically location aware and depending
on their location may interact using different parts of the
underlying WAN-of-CANs network architecture. Our
abstract network model describes the characteristics of
such a network infrastructure dividing it into zones
reflecting the available quality of the network service.
Applications may define various event channels
disseminating events with different temporal and
reliability properties. Depending on the guarantees
available from the underlying network, these event
channels can be mapped to certain QoS zones. Generally,
event channels can be associated with zones providing
equal or stronger guarantees. For example, a traffic
management application may include vehicles
interacting trough wireless networks in order to
exchange information on the current traffic situation
thereby contributing to better driver awareness and
consequently to safer driving. Such information may
include an accident notification disseminated by a
broken-down car to approaching vehicles. Various
components representing intra vehicle objects, such as
breaks, accelerator, and speedometer, and lights, might
communicate using a CAN-based network. Such inter-
vehicle and intra-vehicle communication may use
different event channel classes for interconnecting their
respective components. Hard real-time event channels
may be mapped to a zone incorporating intra vehicle
components whereas event channels with weaker
delivery guarantees may be mapped to a zone comprising
components using wireless communication.

Multiple event channels may be mapped to a particular
zone sharing the available resources. Such event
channels typically disseminate events describing
different information and may support different
properties. For example, intra-vehicle communication
may include a hard real-time event channel
disseminating events on behalf of breaks and accelerator
and a non real-time event channel controlling the lights
of the vehicle.

Event channels may connect components across multiple
parts of the network architecture and as a result may be
mapped to multiple zones. The properties that can be
enforced by such an event channel depend on the level of
QoS provided by each of the zones involved. An event
channel can be associated with multiple zones if every
zone involved provides equal or stronger guarantees.
Moreover, an event channel may only operate across the
boundaries of multiple zones if the underlying networks
are connected through designated gateway components.
Such gateways act as producer and consumer of events
on either side of the networks they connect. Events
received on one side are disseminated on the other side
and vice versa. In addition, gateways allow applications

to specify network specific mapping of event data and
attributes and handle implicit attributes, such as location.
A gateway may use a location service to retrieve its own
location and may append this location information to
events generated by nearby nodes lacking direct access
to a location service. For example, a gateway located in a
vehicle may connect a CAN-based intra-vehicle network
and a wireless inter-vehicle network. It may attach its
own location to events generated by nodes on the CAN
network as these reside close to the gateway and
maintain their location relative to the gateway.

3.1.5.2 Mapping Event Channels
To CAN Networks

Event channels may support hard real-time guarantees in
zones represented by special CAN-networks. We
exploited the specific mechanisms of a CAN-Bus, which
is popular in the automotive industry, to design an
abstract network layer that can support different real-
time guarantees for the delivery of messages. The focus
of this work has been on using the hardware supported,
lower level priority mechanisms of the CAN-Bus to
schedule messages according to the suggested real-time
classes. The abstract network layer thus implements
reliable hard real-time message delivery and also the
weaker forms of guarantees. On top of this abstract
network layer a publisher/subscriber protocol has been
devised [3] for real-time control applications providing
all real-time event channel classes introduced earlier. For
a detailed description of mapping the real-time channels
to this different message classes the reader is referred to
[13].

3.1.5.3 Mapping Event Channels
To Wireless Networks

As we have discussed in section 3.1.3, enforcing hard
real-time guarantees in wireless environments in general
and in ad hoc networks in particular is problematical due
to the dynamic nature of these networks. However, we
argue that soft real-time event channels can be supported
in zones that contain wireless networks. Significantly,
we envisage using a set of techniques in order to provide
soft real-time guarantees with a high probability.

We propose to bound the propagation range of events in
wireless environments [12] by defining event channel
attributes that describe geographical areas within which
events are valid. Such proximity-based event
dissemination represents a natural way to limit the scope
of an event channel, thereby allowing entities to interact
based on their current location. An example scenario
illustrating such behavior might include a broken-down
car disseminating an accident notification to vehicles in
its vicinity.

Moreover, we envisaged using a predictable medium
access protocol, such as the light-weight, location-aware,
atomic multicast protocol for Time-Bounded Medium
Access Control (TBMAC) [9], when propagating event
notifications. The TBMAC protocol is based on time-
division multiple access with dynamic but predictable
slot allocation and has been designed for use in multi-
hop ad hoc networks. It provides, with high probability,
time-bounded access to the wireless medium that can be
exploited by event channels with guaranteed response
time requirements.

 31

3.1.6 CONCLUSIONS
We have presented an approach to incorporating the
topology of a heterogeneous communication
infrastructure into an event-based programming model.
We have described how an event model may address the
predictability requirements of applications operating in
mobile environments based on hierarchically structured
WAN-of-CANs network. An abstract network model
reflecting the fundamentally different levels of quality of
service available from the subnetworks that comprise
such a WAN-of-CANs network defines QoS containers
that can be viewed as zones within which certain
guarantees can be enforced. Our programming model is
based on a concept of event channels supporting a
number of event channel classes with different temporal
and reliability attributes. Depending on the guarantees
available from the underlying network, these event
channels can be mapped to certain QoS zones. Generally,
event channels can be associated with zones providing
equal or stronger guarantees.

We have introduced two prototype implementations of
our event model. The CAN version enforces hard-real
time guarantees in CAN-based subnetworks using lower
level mechanisms of the CAN-Bus. The LAN version
uses techniques, including geographical bounding of the
event propagation range and predictable medium access,
to provide soft real-time guarantees with a high
probability in wireless networks.

Although we have discussed and addressed some of the
fundamental issues arising when applying event-based
programming to real-time systems in mobile
environments, certain issues remain open for future
work. We are currently investigating means for
applications to program entities acting as gateway
components. Approaches, for example based on
exploiting rule-based programming models, have to be
provided for specifying network specific mappings of
event data and attributes. Furthermore, our QoS
framework needs to be extended in order to incorporate
an access control mechanism for proactively managing
the number of entities using a specific event channel.

3.1.7 ACKNOWLEDGMENT
S

The work described in this paper was partly supported by
the Irish Higher Education Authority's Programme for
Research in Third Level Institutions cycle 0 (1998-2001)
and by the FET programme of the Commission of the
EU under research contract IST-2000-26031 (CORTEX).

REFERENCES
[1] T. Harrison, D. Levine, and D. Schmidt,

"The Design and Performance of a Real-
Time CORBA Event Service," in
Proceedings of the 1997 Conference on
Object- Oriented Programming Systems,
Languages and Applications (OOPSLA).
Atlanta, Georgia, USA: ACM Press, 1997,
pp. 184-200.

[2] R. Rajkumar, M. Gagliardi, and L. Sha, "The
Real-Time Publisher/Subscriber Inter-
Process Communication Model for
Distributed Real-Time Systems: Design and
Implementation," in Proceedings of the IEEE
Real-time Technology and Applications
Symposium, 1995.

[3] J. Kaiser and M. Mock, "Implementing the
Real-Time Publisher/Subscriber Model on
the Controller Area Network (CAN)," in
Proceedings of the 2nd International
Symposium on Object-oriented Real-time
distributed Computing (ISORC99). Saint-
Malo, France, 1999.

[4] J. Bacon, K. Moody, J. Bates, R. Hayton, C.
Ma, A. McNeil, O. Seidel, and M. Spiteri,
"Generic Support for Distributed
Applications," IEEE Computer, vol. 33, pp.
68-76, 2000.

[5] G. Cugola, E. D. Nitto, and A. Fuggetta,
"The JEDI Event-Based Infrastructure and
its Application to the Development of the
OPSS WFMS," IEEE Transactions on
Software Engineering (TSE), vol. 27, pp.
827-850, 2001.

[6] Y. Huang and H. Garcia-Molina,
"Publish/Subscribe in a Mobile
Environment," in Proceedings of the Second
ACM International Workshop on Data
Engineering for Wireless and Mobile Access
(MobiDe'01). Santa Barbara, CA, USA,
2001, pp. 27-34.

[7] R. Meier, "Communication Paradigms for
Mobile Computing," ACM SIGMOBILE
Mobile Computing and Communications
Review (MC2R), vol. 6, 2002.

[8] H.-A. Jacobsen, "Middleware Services for
Selective and Location-based Information
Dissemination in Mobile Wireless
Networks," presented at Advanced Topic
Workshop on Middleware for Mobile
Computing (IFIP/ACM Middleware 2001),
Heidelberg, Germany, 2001.

[9] R. Cunningham and V. Cahill, "Time
Bounded Medium Access Control for Ad
Hoc Networks," in Proceedings of the
Second ACM International Workshop on
Principles of Mobile Computing
(POMC'02). Toulouse, France: ACM Press,
2002, pp. 1-8.

[10] P. Verissimo, V. Cahill, A. Casimiro, K.
Cheverst, A. Friday, and J. Kaiser,
"CORTEX: Towards Supporting
Autonomous and Cooperating Sentient
Entities," in Proceedings of the European
Wireless Conference. Florence, Italy, 2002.

 32

[11] J. Kaiser and C. Brudna, "A
Publisher/Subscriber Architecture
Supporting Interoperability of the CAN-bus
and the Internet," in Proceedings of the IEEE
International Workshop on Factory
Communication Systems (WFCS 2002).
Västeras, Sweden, 2002.

[12] R. Meier and V. Cahill, "STEAM: Event-
Based Middleware for Wireless Ad Hoc
Networks," in Proceedings of the
International Workshop on Distributed
Event-Based Systems (ICDCS/DEBS'02).
Vienna, Austria, 2002, pp. 639-644.

[13] J. Kaiser, C. Brudna, and C. Mitidieri, "A
Real-Time Event Channel Model for the
CAN Bus," in Proceedings of the Eleventh
International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS
2003). Nice, France, 2003.

[14] V. Kanodia, C. Li, A. Sabharwal, B.
Sadeghi, and E. Knightly, "Ordered Packet
Scheduling in Wireless Ad Hoc Networks:
Mechanisms and Performance Analysis," in
Proceedings of ACM MOBIHOC 2002.
Lausanne, Switzerland, 2002.

[15] F. A. Tobagi and L. Kleinrock, "Packet
Switching in Radio Channels: Part II - The
Hidden Terminal Problem in Carrier Sense
Multiple-Access and the Busy-Tone
Solution," IEEE Transactions on
Communications, vol. 23, pp. 1417-1433,
1975.

[16] H. Luo and S. Lu, "A Topology-Independent
Fair Queuing Model in Ad Hoc Wireless
Networks," in Proceedings of the IEEE
International Conference on Network
Protocols (ICNP 2000). Osaka, Japan, 2000.

[17] A. Fitzpatrick, G. Biegel, S. Clarke, and V.
Cahill, "Towards a Sentient Object Model,"
presented at Workshop on Engineering
Context-Aware Object Oriented Systems and
Environments (OOPSLA/ECOOSE'02),
Seattle, Washington, USA, 2002.

[18] F. Cristian, "Synchronous Atomic Broadcast
for Redundant Broadcast Channels," The
Journal of Real-Time Systems, vol. 2, pp.
195-212, 1990.

[19] J. Kaiser and M. A. Livani, "Achieving
Fault-Tolerant Ordered Broadcasts in CAN,"
in Proceedings of the Third European
Dependable Computing Conference (EDCC-
3). Prague, Czech Republic, 1999.

 33

3.2 Towards real-time event-based communication in mobile ad
hoc wireless networks

Barbara Hughes and Vinny Cahill
Department of Computer Science, Trinity College, Dublin, Ireland

{barbara.hughes, vinny.cahill}@cs.tcd.ie

ABSTRACT

 Most previous work on real-time event-based communication has assumed static, infrastructure-based
networks. The underlying assumption of this work is that application components are stationary and that a fixed
network infrastructure exists to facilitate communication [1]. Mobile ad hoc wireless networks comprise a number
of mobile nodes connected by wireless links forming arbitrary time-varying wireless network topologies without
using any infrastructure or administrative support. This highly mobile, dynamic network is not suitable to the static
design assumptions of infrastructure networks.

In this paper we propose a conceptual model based on predictive techniques. Our model is designed to alleviate the
impediments for real-time event-based communication that are characteristic in a mobile ad hoc wireless
environment.

 The model we propose is the first to directly address the issue of achieving timeliness and reliability
considerations for real-time event-based communication in dynamic mobile ad hoc wireless networks. In this paper
we describe the impediments imposed by ad hoc wireless networks on real-time event-based communication, and
propose a high-level model to reduce their impact.

3.2.1 INTRODUCTION
The heterogeneity and inherent loose coupling that characterizes applications in a wireless ad hoc network promote
event-based communication as a natural design abstraction for a growing class of software systems [1]. The event-
based communication model is well suited to addressing the requirements in the wireless mobile computing
domain [2]. In this domain the infrastructure or the ad hoc network model may be utilized for wireless
communication. Infrastructure wireless networks use access points to mediate communication between mobile
application components. Mobile ad hoc wireless networks comprise a number of mobile nodes connected by
wireless links forming arbitrary time-varying wireless network topologies without using any infrastructure or
administrative support. Ad hoc wireless networks are self-creating, self-organizing and self-administering [3].

The event-based communication model has lead to the development of several middleware services that use the
event paradigm as a high-level communication abstraction. The underlying assumption of these services is that
application components are stationary and that a fixed network infrastructure exists to facilitate communication
[1]. The complexities introduced by the mobile ad hoc wireless model, for example dynamic and instantaneous
topology changes, are not considered. For event-based communication to scale to mobile ad hoc wireless networks
it is important that their design is not based on many of the assumptions made for fixed infrastructure networks,
such as low latency, abundant bandwidth, homogeneous platforms, continuous and reliable connectivity and most
importantly centralized control [1].

With the increased research in ad hoc networks in recent years new application domains such as inter-vehicle
communication and communication between mobile robots have evolved. Timely communication is essential to
allow applications in these domains to be realized. The real-time event-based communication paradigm has been
recognized as an appropriate high-level communication scheme to connect autonomous components in large
distributed control systems [4], but can the existing models extend to real-time event communication between
mobile nodes in a dynamic wireless ad hoc environment?

In this paper we discuss the characteristics of ad hoc wireless networks. We identify how these characteristics
impede real-time event-based communication in the ad hoc wireless domain. We propose a conceptual model
based on predictive techniques to alleviate the impediments characteristic in a mobile ad hoc wireless environment.

In the next section we review the assumptions upon which existing real-time event-based communication models
rely. We pay particular attention to the extent to which these assumptions are applicable in the ad hoc wireless
domain. The following section describes the limitations on real-time event-based communication due to the
characteristics of mobile ad hoc wireless networks and is followed by a description of our conceptual model that
uses prediction to overcome these ad hoc wireless limitations. We finish the paper with some conclusions and a
discussion of future work.

 34

3.2.2 ASSUMPTIONS IN FIXED INFRASTRUCTURE
NETWORKS

For real-time event-based communication models to scale to mobile ad hoc wireless networks it is important for
their design not to be based on many of the assumptions made for infrastructure-based networks, both wired and
wireless. In this section we review the common assumptions of some real-time event-based communication models
for infrastructure networks and discuss their suitability in the mobile ad hoc wireless domain.

• Network-wide services and intermediary middleware components are available: The CORBA Event
Service [5], and its extension the CORBA Notification Service [6] allow application components to use
event-based communication, in addition to the core functionality of the Object Request Broker (ORB).
The CORBA Notification Service provides QoS capabilities such as event reliability, event priority and
timed event delivery. Both event models use a single mediator called an event channel, through which all
event data is disseminated. In the TAO Real-time Event Service [7],[8], the event channel plays the same
intermediary role. However the TAO real-time event channel is extended to include prioritized event
scheduling, event dispatching and event filtering. In these models accessibility to the event channel is
critical for all entities participating in event-based communication. In the Real-time Event Channel
Model for the CAN-Bus [9], three event channels are distinguished: hard real-time event channels
(HRTEC), soft real-time event-channels (SRTEC) and non real-time event channels (NRTEC). Each
event channel supports different timeliness and reliability properties.

In infrastructure networks intermediate components such as event channels or event dispatchers [1], [2]
are often run independently and remotely. This topology has limited practical implementation in ad hoc
wireless networks. A serious impediment of ad hoc wireless networks is the limited area that can be
covered by mobile application components using a wireless transmitter. Event-based communication
using an intermediary middleware component requires all entities in a system to be able to communicate
with it at any given time. In an ad hoc wireless network entities may be distributed over a potentially
large geographical area and thus are unlikely to be able to maintain a permanent communication link to
the intermediate [10]. This impediment of wireless ad hoc networks necessitates the omission of
intermediate components providing system-wide services.

• Known upper bound on participating nodes: Fixed infrastructure networks have a known maximum
number of nodes connected to the physical medium [9]. In contrast, ad hoc wireless networks have the
potential to serve as a ubiquitous wireless network capable of interconnecting many thousands of devices
[11]. There is potentially no upper bound on the number of nodes participating in an ad hoc wireless
network. Scalability with respect to unbounded network size becomes an issue due to the increased
computational load and difficulties of propagating network updates within given time bounds [12],
which increases the unpredictability of wireless connections and effects timely route and resource
reservation decisions.

• Static resource requirements: Both the TAO Real-time Event Service [7] and the Real-time Event
Channel Model for the CAN-Bus [9], use the assumption of a static or fixed number of participating
nodes with static resource requirements [9]. The assumption of a static network is used to perform real-
time scheduling off-line using a reservation-based scheme to avoid collisions by statically planning the
transmission schedule. An off-line admission test checks the correctness of the reservations for timing
conflicts and temporal overlap. Static scheduling implies that there is no mechanism for enforcing
cooperative component behaviour that would be critical in a dynamic mobile ad hoc environment.

Static resource reservation schemes for real-time event models assume a fixed upper bound on the
number of participating nodes. As previously discussed this assumption is not applicable in a mobile ad
hoc wireless domain. A dynamic resource reservation scheme is required to handle the effects of
dynamic mobility. To obtain mobility independent real-time guarantees, a mobile host would need to
make advance resource reservations at predicted locations they may visit during the lifetime of the
communication [13]. Accurate mobility and location prediction is critical for limiting the overhead of
excessive resource reservation.

The dynamic mobility of ad hoc wireless networks renders the assumptions of event-based communication for
infrastructure networks inappropriate. STEAM [10], is an event-based middleware service designed for the mobile
computing domain, specifically IEEE 802.11 LANs utilizing the ad hoc network model. STEAM addresses some
of the fundamental issues arising for event-based communication among mobile ad hoc wireless nodes. Open
issues relating to the characteristics of wireless networks and their impact on the timeliness and reliability of real-
time applications are not addressed. We will discuss these particular issues in the following section.

 35

3.2.3 IMPACT OF AD HOC WIRELESS CHARACTERISTICS

3.2.3.1 Mobility related link availability
The absence of fixed infrastructure means that nodes in an ad hoc network communicate directly with one another
in a peer-to-peer fashion. In wireless ad hoc networks, the topology changes dynamically and unpredictably due to
node mobility [14]. Mobile nodes constitute the communication infrastructure [14] – a node acts as both a packet
router and an end host. As nodes move in and out of range of other nodes, the network topology changes
dynamically. The topology changes must somehow be communicated to all other nodes as appropriate. Since
topology updates throughout the network cannot happen instantaneously, the global state information may never be
accurate [3]. Decisions based on inaccurate information have unpredictable consequences that may be critical for
real-time event-based communication.

 Unlike fixed infrastructure networks where link failures are comparatively rare events, the rate of link
failure due to node mobility is the primary obstacle to routing in ad hoc networks [15]. Since the rate of link failure
is directly related to node mobility, greater mobility increases both the volume of control traffic and the congestion
due to traffic backlogs. Link failures may result in network partitions. These observations suggest the need to
include node mobility in the path selection process [11]. We propose using a predictive architecture combining
mobility prediction with partition anticipation to achieve predictive routing and resource reservation. Changes in
the network topology can be predicted in advance and the impact on real-time event-based communication
minimized [16].

3.2.3.2 Location-Dependent Contention
Wireless transmissions in ad hoc networks are broadcast through a shared physical communication channel. Nodes
within range of an ongoing transmission must restrain from sending until the channel becomes available, to avoid
collisions. Hence, nodes arbitrate spatial contentions between the transmissions in their spatial locality. Luo and Lu
[17] propose a fair channel access model that ensures coordination among spatially contending transmissions.
However, this work assumes that individual transmissions are decoupled from each other and that scheduling can

be performed independently for each transmission, an assumption that cannot be made in networks comprising
highly mobile nodes. Also Luo and Lu, do not address temporal or reliability constraints, which are essential for
providing end-to-end delivery guarantees. For real-time event transmission each mobile node must have time-
bounded access to the wireless medium with a high probability. This is the focus of the TBMAC protocol [18],
which also provides time-bounded collision detection and recovery, all of which are essential for event
communication within bounded temporal constraints.

Wireless
characteristic

Impact on real-time event-based
communication

Benefit of prediction

Mobility related link
availability

1) Increased computational load and
unpredictability for topological
updates

2) Higher probability of link failures
and network partitions

3) Inaccurate global information

Mobility prediction, partition
anticipation and predictive routing
and resource reservation reduce
reaction time to topological change
by finding new routes in advance of
the failure of existing routes.

Location-dependent
contention

1) Unpredictable/unequal channel
access for event flows based on
inaccurate global information

2) Inadequate network coverage

Coverage estimation calculates the
probability of the accuracy of a
decision in the presence of
disconnected nodes, therefore
reducing the impact of incomplete
network knowledge on channel
access, routing and scheduling
decisions.

Physical environment Unpredictable variances in connectivity Anticipate partitions in advance and
proactively reroute to establish new
routes in advance of old routes
failing.

 36

The area covered by the wireless transmitters of mobile nodes typically changes over time depending on the
movements of individual nodes. Kanodia et al. [19] discuss achieving priority event scheduling in the presence of
incomplete information sharing. They present several scenarios where the performance of IEEE 802.11
significantly diverges from an ideal reference schedule and attribute this to asymmetric information and perceived
collisions. Accurate priority scheduling to reflect event class and event deadline is essential for real-time event-
based communication. Any divergence from the ideal schedule is critical and in the case of hard real-time events,
may even be life-threatening. Coverage estimation techniques[20], calculate the probability that there are
disconnected nodes due to lack of network coverage. Using coverage estimation we can predict the accuracy of a
decision in the presence of disconnected nodes. This can help to reduce the number of incorrect decisions and
communication unpredictability that is critical for real-time event-based communication.

3.2.3.3 Susceptibility To The Physical Environment
Communication between mobile nodes requires the received signal strength (RSS) to be adequate to connect to
another mobile node. The RSS is continually changing due to the dynamic movement of the communicating parties
and the intermediary nodes at individual hops. The RSS is also significantly affected by the terrain configuration
[21] for the duration of the communication too. Terrain configuration includes: hilly or mountainous areas, wooded
or forested rural areas, urban areas with multistory buildings or low-density suburban areas. The dynamic changes
in RSS leads to highly unpredictable connections between mobile nodes. In [20], the variance in RSS is used to
anticipate network partitions. If the future state of network topology can be predicted it is possible to perform route
reconstruction proactively in a timely manner [22], and find new paths prior to the failure of existing ones.

3.2.3.4 Summary
To achieve real-time event-based communication in a mobile ad hoc wireless environment the impact of the ad hoc
wireless network characteristics previously identified must be limited. We propose prediction as essential to limit
these wireless ad hoc characteristics. Table 1 introduces how predictive techniques limit the impediments of the
wireless ad hoc environment for real-time event-based communication.

3.2.4 PROPOSED FRAMEWORK FOR AD HOC WIRELESS
REAL-TIME EVENT-BASED COMMUNICATION

To achieve real-time event-based communication in a dynamic mobile ad hoc wireless network, the
unpredictability inherent in the environment must be reduced. In this section we outline a conceptual model based
on prediction for timely event-based communication between mobile nodes. The components and high-level
interactions among them are identified in Figure 1.

Adaptation model

Admission Control

Predictive Architecture Mobility
Prediction

Partition
Anticipation

Predictive
Routing

 Proactive

 Resource

 Reservation

Priorities

Location

Changes

 Additional Nodes

Event Deadline

Scheduler

Node Volume

Event Volume

QoS Bounds

Discarded SRT

Failed HRT

Failure
Detector

Figure 1: High-level conceptual model

 37

Bounding the area of interest in an ad hoc network makes a large network appear smaller, but more
importantly for real-time communication, it makes a highly dynamic topology appear less dynamic. Our approach
is to reduce the network into dynamically organized zones, similar to proximity groups [20], which bound the
number of participants, the area for maintaining topology information and the area within which event information
is valid. The components of the conceptual model cooperate to maintain the timeliness and reliability requirements
within a proximity-bounded zone.

The focus of our design is to reduce reaction to dynamic mobility and topological change by prediction. The
admission control and adaptation components interact with the predictive architecture to make proactive decisions
in advance of network change [13] .

§ Predictive Architecture: predictive techniques are used to reduce the impact of dynamic topological changes
within a zone. Location-awareness is key to determining the mobile nodes within a zone at a point in time. In
our opinion location-aware routing [23] is central to achieving real-time location-bounded communication in
a mobile network. We plan to extend this work to predict the future location of mobile nodes. Using this
information future node movement into a zone and the impact on routing and resource reservation and
timeliness and reliability guarantees for the zone can be predicted in advance.

The ability to predict node movement contributes to achieving probabilistic guarantees of path
availability due to link failure caused by node mobility. Other reasons why a link may fail, such as
environment conditions or battery usage, must also be considered to avoid or anticipate network partitions.
Using partition anticipation based on [20] coupled with proactive routing [24],[15] and resource reservation,
we aim to improve the re-routing process by attempting to find new paths prior to the failure of existing ones.

§ Admission Control: bounding the area of interest for real-time event-based communication implicitly limits
the number of participating nodes to those within the bounded area. We apply explicit admission control
policies within the zone to further reduce the number of participating nodes. The admission control policies
reflect the impact of the number of participating nodes in the zone on the timeliness and reliability guarantees
for a real-time event given the resources available when the real-time event is raised.

Using predictive techniques to detect future node movement is essential for deciding the admission
policy to use. For example, if resource usage is nearing maximum capacity what temporal and reliability
guarantees can be made for future nodes moving into the zone and what impact does the class of real-time
event have on admission control decisions?

§ Adaptation Model: an important aspect of achieving timeliness constraints is dependable QoS adaptation [25].
However in contrast to [25] , mobility is a critical consideration. The predictive architecture detects
topological changes and initiates proactive routing and resource reservation. QoS adaptation may be
necessary to reflect the new routes and resources available [3]. The speed of node movement and the class of
event for delivery impact the urgency of time-bounded delivery of a real-time event and impacts any QoS
adaptation. Information from the predictive architecture is essential for limiting the reactive QoS adaptation
required.

We propose a conceptual model to make the dynamic topology of mobile ad hoc networks less dynamic
and therefore more suitable to real-time event communication. We propose that prediction is essential to reduce the
reaction to dynamic node mobility and therefore essential for real-time event-based communication in wireless ad
hoc networks.

3.2.5 CONCLUSION
We have outlined an approach to the complex problem of achieving real-time event communication in
infrastructure-free wireless networks. We outlined the limitations of previous event-based and real-time event
communication models when extended to the ad hoc wireless domain. We proposed an outline of our event-based
communication model, which focuses on limiting the unpredictability of wireless communication by prediction.
We described a predictive architecture for predicting node mobility, link failure and for anticipating partitions.
Using this predictive architecture and QoS adaptation strategies relating to the criticality of the real-time event, we
have proposed a novel approach to achieving real-time event-based communication in ad hoc wireless networks.

REFERENCES

1. A. Carzaniga "Design and Evaluation of a Wide-Area Event Notification Service". ACM Transactions on
Computer Systems, 19 (3). 332-383.

 38

2. G.Cugola, E. D. Nitto and A. Fuggetta "The JEDI event-based infrastructure and its application to the
development of the OPSS WFMS". IEEE Transactions on Software Engineering, 27 (9). 827-858.

3. S. Chakrabarti and A. Mishra "QoS Issues in Ad Hoc Wireless Networks". IEEE Communications
Magazine, 39 (2). 142-148.

4. M. Gagliardi R. Rajkumar, "The Real-Time Publisher/Subscriber Inter-process communiction Model fro
Distributed Real-Time Systems: Design and Implementation". in IEEE Real-time Technology and
Applications Symposium, (May 1995).

5. Object Management Group. "CORBAservices:Common Object Services - Event Service Specification
v1.1, March 2001.

6. CORBAservices:Common Object Services Specification - Notification Service Specification v1.0.1,
Object Management Group, 2002.

7. A. Gokhale D. Schmidt, T. Harrison and G. Parulkar. "A High-Performance Endsystem Architecture for
Real-Time CORBA" IEEE Communications Magazine, February 1997.

8. D. Schmidt, "ACE: an Object-Oriented Framework for Developing Ddistributed Applications". in 6th
USENIX C++ Technical Conference, (Cambridge, Massachusetts, April 1994), USENIX Association.

9. M. Mock J Kaiser, "Implementing the Real-Time Publisher/Subscriber Model on the Controller Area
Network (CAN)". in 2nd IEEE International Symposium on Object-oriented Real-Time Distributed
Computing, (Saint-Malo, France, May 1999).

10. R. Meier and V. Cahill, "STEAM: Event-Based Middleware for Wireless Ad Hoc Networks". in ICDCS
Workshop, (2002).

11. R. Ramanathan and M. Steenstrup "Hierarchically-organized, multihop mobile wireless networks for
quality-of-service support." Mobile Networks and Applications, 3.

12. B. Li, "QOS-Aware Adaptive Services in Mobile Ad-hoc Networks". in Ninth IEEE International
Workshop on Quality of Service (IWQOS 2001), (Karlsruhe, Germany, June 6-8 2001), ACM-Springer-
Verlag, 251-268.

13. A. Talkudar, B. Badrinath and A. Acharya "MRSVP: A resource reservation protocol for an integrated
services network with mobile hosts". The Journal of Wireless Networks, 7 (1).

14. K. Wang and B. Li, "Efficient and Guaranteed Service Coverage in Partionable Mobile Ad-hoc
Networks". in IEEE INFOCOM 2002, (New York City, New York, June 23-27 2002), 1089-1098.

15. A. B. McDonald and T. Znati "A Mobility Based Framework for Adaptive Clustering in Wireless Ad-
Hoc Networks". IEEE JSAC, 17 (8). 1466-1487.

16. R. J. Punnoose, P. V. Nikitin, J. Broch and D. D. Stancil, "Optimizing Wireless Network Protocols Using
Real-time Predictive Propagation Model". in IEEE Radio and Wireless Conference (RAWCON),
(Denver, Colorado, USA, August , 1999).

17. Haiyun Luo and Songwu Lu. A Topology-Independent Fair Queuing Model in Ad Hoc Wireless
Networks. in Proceedings of the IEEE International Conference on Network Protocols (ICNP 2000),
Osaka, Japan, 2000.

18. R. Cunningham and V. Cahill, "Time bounded Medium Acces Control for Ad Hoc Networks". in
POMC, (Toulouse, France, October 30-31, 2002).

19. V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi and E. Knightly. Ordered Packet Scheduling in Wireless
Ad Hoc Networks: Mechanisms and Performance Analysis. in Proceedings of ACM MOBIHOC 2002,
Lausanne, Switzerland, 2002.

20. M. O. Killijian, R. Cunningham, R. Meier and V. Cahill, "Towards Group Communication for Mobile
Participants". in Principles of Mobile Computing (POMC'2001), (Newport, Rhode Island, USA, 2001),
75-82.

21. H. A. Karimi and P. Krishnamurthy, "Real-Time Routing in Mobile Networks Using GPS and GIS
Techniques". in 34th Hawaii International Conference on System Sciences, (Maui, Hawaii, January 3-6,
2001).

22. W. Su, S. Lee and M. Gerla "Mobility Prediction and Routing in Ad Hoc Networks". International
Journal of Network Management, 11 (1). 3-30.

23. Y. B. Ko and N. H. Vaidya, "Location-aided routing (LAR) in mobile ad hoc networks". in International
Conference on Mobile Computing and Networking (MobiCom'98), (Dallas, Texas, USA, 1998),
ACM/IEEE.

 39

24. M.R. Pearlman and Z.J. Haas "Determining the Optimal Configuration for the Zone Routing Protocol".
IEEE Journal on Selected Areas in Communication, 17 (8). 1395-1414.

25. A. Casimiro and P. Verissimo, "Using the Timely Computing Base for Dependable QoS Adaptation". in
20th IEEE Symposium on Reliable Distributed Systems, (New Orleans, USA, October 2001), 208-217.

 40

Chapter 4: Quality of Service Specification

4.1 Introduction

One of the challenges that we have proposed to address in CORTEX is the need to address
non-functional timeliness requirements of sentient applications in environments of uncertain
synchrony. To this end, considerable work has been done around the definition of an adequate
architectural solution to the problem, namely with the definition of a partially synchronous
model, the Timely Computing Base (TCB) model. The adoption of the TCB model as a base
for programming applications and addressing timeliness requirements has necessarily an
impact on the programming model.

In deliverable WP1-D2 we have described the fundamental issues related with the problem of
specifying application timeliness requirements on TCB based systems. In concrete, we
studied this problem from the perspective of ensuring a certain guaranteed Quality of Service
(QoS) to the application, in spite of the uncertainty of the environments. The proposed initial
approach consisted in specifying timeliness QoS requirements through <bound, coverage>
pairs, that is, specifying a certain time bound (relative to some timing variable of importance
for the application) and an associated probability of this bound to be satisfied during the
execution. Based on this approach for specifying timeliness requirements, we explained the
reasoning that must be followed to satisfy such specifications. More specifically, we
introduced two fundamental properties in systems of partial synchrony--- Coverage Stability
and No-Contamination--- that, when secured, guarantee correct operation of applications
despite timing failures. We then referred to the mechanisms underlying the programming of
applications of different classes (e.g. time-safe, time-elastic), which allow the
abovementioned properties to be secured for each of these classes.

In the present deliverable we extend the initial reasoning by proposing a more general way of
specifying QoS requirements not limited to the observation of time bounds, based on ideas
described in [1]. This extended approach is intended to address the following aspects: a) allow
the integration in the same QoS framework of other application requirements, not necessarily
related with timeliness requirements; b) provide the background for understanding how the
several time related parameters of importance in the application context can be handled and
mapped to the basic <bound, coverage> way of specifying requirements; c) provide a more
flexible and configurable approach to the specification of QoS requirements, with consequent
impact on the mechanisms related with adaptation.

This general framework for handling application QoS requirements, and timeliness ones in
particular, does not depend on a particular interaction or communication model. The approach
is sufficiently generic so that if a timing bound can be derived from some application
property, then this bound will constitute the parameter of interest, the one for which a certain
coverage will have to be guaranteed, in the proposed framework. However, it is important to
understand how can such timing parameters be specified under specific interaction models
and, in particular, when considering the event-based interaction model proposed in CORTEX.
In this deliverable we overview some fundamental aspects related with the definition of what
we call generic events, namely concerning the characterization of these events in the time
domain. This is essential to allow the formulation of adequate and clear correctness criteria

 41

from which one may derive the timing bounds that will need to be specified, observed and
secured during the execution of the interactions. The presented ideas are further elaborated
in [2], and will be reported in a forthcoming CORTEX deliverable dedicated to the CORTEX
interaction model.

4.2 Timeliness in the CORTEX programming model: An
extended model for QoS specification

In deliverable WP1-D2 we proposed a model for QoS specification in which QoS
requirements were specified through <bound, coverage> pairs. We discussed the fundamental
issues that must be addressed in order to build dependable applications with timeliness
requirements in uncertain environments, by analysing the effects of timing failures on the
application correctness. In fact, if bounds are violated during run-time, due to the occurrence
of timing failures, then this may have undesirable effects on the application correctness.

The idea is to find ways of avoiding these nasty effects and keep applications correct despite
timing failures. Among other things, such as the need to measure the duration of timed
interactions, it is may be necessary to construct mechanisms based on timing failure detection,
which will be used to detect the occurrence of timing failures and apply adequate fault
tolerance mechanisms depending on the application.

Many applications have adaptation capabilities, which means that they may adapt their
operational parameters in order to better adapt to the available resources and, in particular, to
adapt to the synchrony of the environment. For example, most applications that use timeout-
based communication can adapt the timeout bounds in order to avoid premature timeouts or
unnecessary long waited retransmissions.

Since the approach previously proposed in WP1-D2 is focused on the specification of
<bound, coverage> pairs, from the perspective of application programming this means that
QoS adaptation is exclusively triggered by variations of these QoS parameters. In fact, in
deliverable WP2-D3 we presented a middleware service for QoS adaptation as well as its
programming interface. Note that with this approach, in which the coverage of the bound and
not the bound itself is what counts for ensuring a certain QoS, it is possible to construct
mechanisms appropriate to deal with the occasional occurrence of timing failures due to the
uncertainty of the environment.

From a programming model point of view, we are talking about the different ways of adapting
an application based on the output of an underlying failure detection service. Classical crash
failure detection [3] is usually used for the purpose of system reconfiguration, for example, a
new view in the membership of a group-oriented system. However, when: (a) the criterion for
a detector to declare crash of a process or node is static; (b) the semantics of such detection is
poor, then chances are that the system: (a') will not be able to adapt to the changing
environment; (b') will suffer from the many mistakes of the detector.

Triggering reconfiguration in those conditions may cause instability problems in settings of
uncertain timeliness. The effect on applications such as collaborative or adaptive QoS would
be disastrous, with the system configuration bouncing back and forth at an unbearable rate.

 42

We can imagine participants doing nothing but coming in and out of collaboration groups,
servers joining and leaving replica sets, multimedia streams going back and forth from colour
to B&W, or high to low compression. These problems still affect designs based on pure crash
failure detectors, or based on rudimentary and implicit failure detection most of the times
embedded in the application.

We proposed a QoS coverage service that may be viewed as a detector of failed <bound,
coverage> specifications. This partially solves the problem of uncertainty, for all the cases in
which it is possible to isolate a timing parameter from the overall desired level of QoS.
Moreover, since the proposed approach is based on the existence timely timing failure
detection, this allows for timely detection of QoS variations and fulfils an essential
requirement for timely adaptation (which is of utmost importance in some applications,
specially those with some criticality attributes).

Now we further extend the approach for QoS specification and QoS failure detection, based
on some of the ideas presented in [1] and adapting these ideas to the partially synchronous
(TCB based) framework that we follow in CORTEX. The principle underpinning the
extended approach is that timing failure detectors should be rich and configurable. The
combination of these properties allows dealing with application QoS requirements, not
exclusively timeliness related ones, in a more flexible way and all under the same framework.

The idea is to apply the notion of a performability or quality-of-service failure detector. A
QoS-FD is designed to evaluate a number of relevant operational parameters (that is, a rich
semantics), in contrast with classical crash-FDs or with the basic TFD employed so far, which
evaluate single parameters. For example, the QoS-FD designed for NAVTECH was oriented to
assess connectivity, and thus measured [4]: roundtrip delay, throughput and omission error
rate. It is important to note that some of these parameters are meaningful in the time domain,
which implies that it is possible to derive timing parameters that may be observed (say, in a
lower level) in order to measure them. On the other hand, some other parameters like the
throughput also require the observation of non-time-related quantities, which makes the case
for the usefulness of this approach when compared with the basic one. The application can
configure the failure detector, by issuing a QoS specification. A QoS specification indicates
the conditions, the goals and the importance of each parameter P:

Sampling Period (TS)- the interval over which the value of the parameter is acquired. If
TS = ∞, it means continuous sampling. For any positive integer TS, it means the
interval over which samples of P, or of variables leading to the computation of P, are
collected. For example, if P is a round-trip time, a distribution function is computed
with the samples. If P is a bandwidth, it is computed with the amount of bits
exchanged during TS, divided by TS. If P is an omission rate, it means that we are
interested in the number of omissions over interval TS. Note that this attribute will in
practice force the detector to regularly produce some output, which can be understood
as a form of ensuring a certain freshness of the provided QoS failure information.
Although not necessary in all cases, this makes the approach more generic.

Threshold (TH)- the upper or lower acceptable bound on P. A typical upper bound is for a
round-trip duration. A typical lower bound is for a bandwidth. A plus or minus signal
is used to denote whether it is lower or upper, respectively. For example, TH = 10-
means the parameter is valid for 10 and below (upper bound). In fact, the Threshold is

 43

what we have simply referred to as a bound when reasoning in terms of <bound,
coverage> QoS specifications. Now we generalise the definition.

Weight (WT)- a measure of the relative importance of parameter P. A value of 0 would mean
that the parameter would not be taken into account. Comparing with the previous
approach, this attribute is obviously new since we now want to deal with several
parameters instead of a single one.

A test is invoked by an application, by issuing a QoS specification and a set of target
resources to the failure detector. We are interested in the distribution facet of the problem, that
of the QoS offered to a distributed computation through a set N = {p1,p2,...,pn} of processes in
different nodes that is, the end-to-end QoS seen from each pi to every other pj≠i. For
simplicity, in the ensuing discussion we consider one process in each node and use node and
process interchangeably.

Note that our objective is to design a QoS-FD based on the existence of underlying time
related services provided by a (distributed) TCB. Therefore, the resulting QoS-FD will inherit
some of the properties of these underlying services, in particular those of the TCB Timing
Failure Detection service. For example, given that the TCB TFD service guarantees complete
detection of timing failures and reports the results in a consistent way at all TFD instances (in
every node), it is possible to guarantee that each instance of the QoS-FD will be able to report
consistent information, provided it has been collected through the TCB and that the QoS-FD
is deterministic.

Each parameter of the QoS specification is evaluated by the QoS-FD at each node pi, for
every other node of the set. We note the variable V associated with parameter P kept at local
node i about some remote node j as Vi

j(P). For instance, Vi
j(Roundtrip) denotes the roundtrip delay

between nodes i and j as measured at i. The roundtrip delay could in practice be measured
using a composition of measured durations (obtained trough the TFD service, which
implicitly uses the TCB duration measurement service) from node i to j and from node j to i.
A test epoch is defined by the following global parameters:

QoS Spec - the specification containing the definitions for each parameter P (TS, TH, WT)

Target - the set of nodes pi ∈ N involved.

QoS Sampling Period - the interval of observation for a QoS specification. It is possible to
establish a correspondence between the QoS Sampling Period and the observation
interval defined in the context of the QoS coverage service (see WP2-D3), during
which observed timed actions are collected.

Value (V)- the parameter's value in the last sampling period.

Threshold Exceeded (TE)- percentage of the sampling periods of P where it fell beyond the
bound TH during TS (or since the start, for continuous sampling), for each pj as seen
from pi. For example, TE = 10 for bandwidth means that in 10% of the sampling

 44

periods, the bandwidth was below the threshold TH. For example, TE = 2 for round-
trip time in continuous sampling means that in 2% of the samples since the start the
round-trip time threshold was exceeded. In other words, over time, TE gives a
measure of the coverage of the TH assumption for P. In this last example, the round-
trip time assumption holds with a probability of 98%. Just like in the previously
proposed basic approach for QoS specification, this attribute is what allows the
employment of techniques to achieve coverage stability, fundamental to the
construction of dependable adaptable applications.

QoS Disturbance Index - a weighted average of the TE of all parameters P, for each pj as
seen from pi. That is:

∑ ∑∗=
P P

j
i

j
i PPP)(WT/)(TE)(WTDI

DI Threshold - the global acceptable upper bound on the Disturbance Index.

Local Suspicion Vector (LSV) - a vector of booleans with N positions, for each local node pi,
where position LSVi[j] = 1 iff the QoS Disturbance Index DI seen from pi to pj at that
position exceeded (was worse than) the DI Threshold.

DI is computed periodically for each process pi in N, as specified by the QoS sampling period.
After the computation of the DI, TE variables are reset, and incremented from zero until the
next computation of DI. A very low DI value means that the QoS in the current set is within
satisfactory thresholds. A value of DIi

j exceeding the DI threshold means a QoS failure of pj,
in the opinion of pi. At the end of each epoch, each process pi has thorough information
provided by the QoS-FD about the QoS for the interaction with other processes, namely the
Vi

j(P) and DIi
j for all j and all P. This information allows the application to fine-tune

parameters, for example by choosing which ones to relax when DI shows insufficient QoS.
Likewise, when a parameter P holds with 100% coverage, the application may tighten the
specification. This game of tightening some and loosening others aims at the final end-to-end
goal, that of obtaining the best possible QoS.

Note that depending on the specific parameters and on the means to measure them, it may be
possible to ensure that all Local Suspicion Vectors are consistent with each other. Would this
be the case, no other special measure would be necessary to enforce such consistency.
However, when this is not “automatically” achieved, it is necessary to test each other's
opinions, to assess the symmetry and transitivity of the node's view of QoS. Failure Detectors
exchange their LCV's to build a Global Suspicion Matrix, that includes all the information and
all views. Some additional refinements can still be introduced, as explained in [1].

In order to adapt the application based on the information of the QoS-FD, there are several
possible strategies. The actual adaptation mechanisms obviously depend on the kind of
application, but in special cases, where adaptation is performed by modifying the assumed
Threshold for the parameters, it would be possible to employ an extended version of the
correction balance factor defined in the coverage-stabilisation algorithm presented in [5], to
decide which parameter to adapt.

 45

The actual mechanisms and protocols that would be necessary to construct the described
framework are another issue that is being addressed in other CORTEX work packages,
namely in the context of the system architecture.

4.3 Timeliness issues in a Generic Events Architecture

In this section we briefly describe an architecture that provides a way to structure applications
around a component-based object model, allowing object composition to be influenced or
constrained by the component’s physical structure. The architecture postulates a generic
events model easing composition and structural (body-environment) awareness, further
enriching the basic CORTEX object-oriented programming model based on anonymous
event-based communication.

Although literature has classically studied the networking and sensing/actuating problems in
isolation, we propose the innovative concept of generic event, be it derived from the Boolean
indication of a door opening sensor, from the electrical signal embodying a network packet (at
the WLAN aerial) or from the arrival of a temperature event message.

In fact, what happens with classical event/object models is that they are software oriented. As
such, when transported to a real-time, embedded systems setting, their harmony is cluttered
by the conflict between, on the one side, send/receive of “software” events (message-based),
and on the other side, input/output of “hardware” or “real-world” events, register-based. In
fact, very often, the only “event” characteristic in “software” events is the arrival of the event-
message itself (e.g., when it merely carries the state of a variable or an information to another
object). If such classical desiderata of distributed systems such as distribution and location
transparency/independency are to be realized to a certain degree, this conflict must be solved.

Furthermore, sentient objects deal with real-time aspects involving the environment. It has
been shown that the hidden channels developing through the latter (e.g., feedback loops) may
hinder software-based algorithms ignoring them. Likewise, the programs running in sentient
objects have very often consistency requirements that derive, even if remotely, from what are
called real-time entities, in fact representations of state variables of the surrounding
environment. Some of these, referred to as time-value entities, have consistency conditions
based on the timeliness of the operations controlled by the computer, vis-a-vis their evolution
in the environment.

In order to address these issues, we require an event model that satisfies both functional and
non-functional requirements. That is, a model that treats the information flow through the
whole computer system and environment in a seamless way, handling “software” and
“hardware” events uniformly. On the other hand, one that allows defining global, end-to-end,
non-functional criteria in the time domain, such as temporal consistency, or QoS guarantees.

Here we provide just a brief description of an architecture to support such a model, which we
have called the Generic-Events Architecture (GEAR). This is sufficient for the purposes of
this deliverable, since the focus is on the impact of non-functional (timeliness and QoS)
requirements of sentient objects in the programming model, and therefore we provide a
detailed discussion of the representation and handling of generic events.

 46

The proposed architecture is depicted in Figure 1, which we describe in what follows. The L-
shaped structure is crucial to ensure some of the properties described.

Figure 1: Generic-Events Architecture

Environment The physical surroundings, remote and close, solid and etherial, of sentient
objects.

Body The physical embodiment of a sentient object (e.g., the hardware where a mechatronic
controller resides, the physical structure of a car). Note that due to the compositional approach
for sentient objects, part of what is 'environment' to a smaller object seen individually,
becomes 'body' for a larger, containing object. In fact, the body is the `internal environment'
of the object. This architecture layering allows composition to take place seamlessly, in what
concerns information flow.

Translation Layer The layer responsible for physical event transformation from/to their
native form to event channel dialect, between environment/body and an event channel.
Essentially one doing observation and actuation operations on the lower side, and doing
transactions of event descriptions on the other.

Event Layer The layer responsible for event propagation in the whole system, through
several Event Channels (EC). In concrete terms, this layer is a kind of middleware that
provides important event-processing services that are crucial for any realistic event-based
system. For example, some of the services that imply the processing of events may include
publishing, subscribing, discrimination (zoning, filtering, fusion, tracing), and queuing.

Communication Layer The layer responsible for 'wrapping' events (as a matter of fact, event
descriptions in EC dialect) into 'carrier' event-messages, to be transported to remote places.
For example, a sensing event generated by a smart sensor is wrapped in an event-message and

 47

disseminated, to be caught by whoever is concerned. The same with an actuation event
produced by a sentient object, to be delivered to a remote smart actuator. Likewise, this may
apply to an event-message from one sentient object to another.

Regular Network This is represented in the horizontal axis of the block diagram by the
Communication layer, which encompasses the usual LAN, TCP/IP, and real-time protocols,
desirably augmented with reliable and/or ordered broadcast and other protocols.

The Generic-Events Architecture (GEAR) introduces some innovative ideas in distributed
systems architecture:

• It serves an object model based on production and consumption of generic events.
• Events are produced by several sources– environment, body, objects– which are all

treated in a homogeneous way.
• There is a basic dialect for talking about events, used in all transactions by Event

Channels.
• The Translation layer performs the transformation between the physical

representation of a real-time entity and the EC compliant format, in either direction.
• The Event Channels propagate events through Regular Network infrastructures, via

regular message-passing protocols executing in the Event layer.

Now, the definition of 'event' must be given more precisely. A generic event is a happening
that takes place in the event layer at a given instant of the timeline, <E,TGE>. The happening
is internal to the system, has an event-channel compliant representation, and is not necessarily
(but also) related with physical events taking place in the environment. That is, the 'event' is
the happening as seen by the event layer, at a given instant in the timeline.

Generic events can have several origins: observation of the state or the state change of one or
more real-time entities (e.g., such as produced by a smart sensor); notification about the state
or the state change of one or more system variables (e.g., such as produced by a sentient
object); actuation on the state of one or more real-time entities (e.g., such as produced by a
sentient object for a smart actuator); action on the state of one or more system variables (e.g.,
such as produced by a sentient object for other sentient objects).

Further to this, event propagation is constrained to zones, a concept followed in CORTEX to
represent the need to limit or confine the propagation of event notifications in the system.
Objects can be organized into zones where a zone can be seen simply as a collection of
objects and where event notifications are only propagated within the zone of the object raising
the event. Objects are organized into zones at the discretion of the application programmer
based on functionality, geographical location or physical location on the network. On the
other hand, zones can also be seen as QoS containers, meaning that event channels within a
certain zone are able to deliver a specified level of QoS. Thus, the scope of a given event
channel flow can selectively be delimited to events of certain types (using filtering
mechanisms), and the event channel modules involved in that dissemination (see Figure 1)
can further be limited to those units circumscribed to a zone.

In order to deal with real-time sentient objects we need to understand the implications of
timeliness requirements in the context of the proposed generic-events architecture. This will

 48

be done by establishing fundamental correctness criteria for the operation of the system. The
system architecture, including the protocols and mechanisms materialising the event layer
middleware, must be built so that the strict observation of the established criteria is ensured.
Given the distributed nature of the problem, the correctness of operation does not depend
solely on the observation of timeliness constraints, but also on the consistency and
coordination among the distributed actors in the system. In this respect, note that the
information flow is defined in terms of events, and it is controlled at the event layer, where
everything passes. As such, and very importantly, all consistency criteria that must be secured
apply as well to regular messages, messages through operational network channels, and
input/output feedback paths through the environment. No hidden channel problems need
affect the operation of the system [6]. We illustrate the nature of generic events with a few
examples.

Examples of generic events

(1) door opened;
(2) door opened as observed at T;
(3) door is open;
(4) door is open as observed at T;
(5) temperature is X;
(6) temperature is X as observed at T;
(7) position of crankshaft is Y;
(8) position of crankshaft is Y as observed at T;
(9) crankshaft reached ignition point I;
(10) crankshaft reached ignition point I as observed at T;
(11) value of variable Z is 'entering-zone mode';
(12) set variable 'cruise speed' to S;
(13) set variable 'cruise speed' to S within T;

The difference between (1) and (2) is that in 1 we know at TGE that the door has opened in
some (near) past instant, whereas in (2) we know at TGE that it opened at T. The difference of
the former to (3) and (4) is that here we know the state of the door, without necessarily
knowing when it opened. In fact, note that generic events report state (3) as well as change of
state (1), what in other more classical models used to denote “state” and “events”, with regard
to the physical environment. This said, in GEAR nothing prevents the periphery of the
system (e.g., smart sensors) from being organized in the best suited way (e.g., state sampling,
event latching, etc.), for each generic-event flow to be produced.

Given that TGE establishes the event production instant, there is apparently redundant timing
information in some lines, e.g. (2) or (4). However, this is an important characteristic of
GEAR: TGE denotes the time at which E was produced on the event channel and serves any
generic type of event; T is part of E, thus invisible to the EC, but it denotes the time at which
a given real-time entity was observed to have a given state or to have changed its state. The
separation of concerns enforced by T and TGE is very important, as we detail ahead.

When we say in (11) that we know at TGE that “Z = 'entering-zone mode'”, this marks the
point at which this internal state change is relevant for the system, e.g., as alerted by the
platoon leader sentient object, in a cooperating cars scenario (see, for example, deliverable
WP4-D8). Likewise, in (12), when (e.g., the leader again) publishes the command to change
the state of the 'cruise speed' variable to S, the reference point is TGE. Alternatively, a finer

 49

synchronisation may be sought, with the within operator (implicitly from TGE), so that a set-up
delay of T is introduced. Even better tightness can be achieved by using at (an absolute clock
time).

However, when we say in (3) that we know at TGE that “the door is open”, or in (5) that “the
temperature is X”, we might as well try to know how trustworthy this information is, since the
temperature and door are time-value entities: there are actions on it whose time-domain and
value-domain correctness are inter-dependent. For example, by the time TGE when we learn
that “the temperature is X”, it might already be way higher than X! Even if, as we say in (4),
we know at TGE that “the door is open at T”, or as in (6), that “the temperature is X at T”, this
still may not solve our problem. There are important implications of the way we handle time-
value entities that we discuss below, using definitions in [6].

Firstly, saying, as in (6), that we know at TGE that “the temperature is X at T”, might seem to
provide a precise indication. However, what T portrays is the time at which the periphery of
the system observed the temperature. When observing the value of a continuous variable, it is
relevant to define the error. For an observation <r(Ei)(ti),Ti> of the value of an RTe Ei at ti
receiving timestamp Ti, the observation error in the value domain is given by νi=|Ei(Ti) -
r(Ei)(ti)|: we expect the value of Ei at Ti, but we get an approximation of the value (r(Ei)),
measured approximately (ti) at Ti. Alternatively, saying, as in (4), that we know at TGE that
“the door is open at T”, has the same constraints. Here, when observing the time at which a
given discrete value Ei occurs (e.g., opening of the door), we must define the observation
error (jitter) in the time domain, ζi=|Ti-ti|: Ei assumed a given value at ti, but the system logs it
as having happened at Ti.

So, we must establish a bound for the errors, in order for our measurement to be useful:

• Given a known Vo, we say that an observation is consistent in the value domain, if
and only if νi ≤ Vo

• Given a known To, we say that an observation is consistent in the time domain, if and
only if ζi ≤ To

But this is not enough. Secondly, we must ensure that this information is sufficiently fresh to
be useful. For example, when we say in (5) that we know at TGE that “the temperature is X”,
it is important that the interval between the time when it was measured and TGE, is known and
short enough to be useful, so that the temperature hasn’t drifted too much in the meantime.
I.e. for the information provided by this generic event to be meaningful for whatever the
system intends to do with it. This must be ensured by the infrastructure, and a practical way is
to define a fixed parameter, known at design time, based on estimates of the variable’s
dynamics. This interval has been called absolute validity interval for databases [7], or
temporal accuracy interval for control [8].

In GEAR we generalise this concept. The time of production of an event at the Event layer
(TGE), establishes an important timing checkpoint that harmonises the timing constraints of all
generic events circulating in GEAR, be them concerned with real-time entities or with internal
entities. The latter are “born” at TGE, the former have a past history since their observation in
the environment. However, note that the state of internal entities may result from previous
observation and processing of sensorial information (from real-time entities) by sentient
objects. The 'entering-zone mode' event in (11) is an excellent example. In that case, they

 50

must inherit the relevant consistency constraints. Note that if ta is the point at which actions
related with those events are exerted, the above-mentioned meaningfulness is relevant both in
the case of real-time entities and of internal entities. In general, this may be achieved by
defining for each a maximum value error that may occur due to the passing of time. Assume
bound Vs for the maximum acceptable error accumulated by a state variable S over time, since
a reference instant Ti. Assume S(Ti) as computed with the sensorial information available at
Ti, and S(ta) as the value it would have if computed with the sensorial information available at
ta.

• Given ta and a known Vs, we say that a state variable S is temporally consistent
at ta ≥ Ti if and only if |S(ta) - S(Ti)| ≤ Vs

As a particular case, temporal consistency can be secured if an interval Ts can be defined such
that the variation of the value of S within that interval is at most Vs. In consequence, S would
be temporally consistent within Ts from Ti, the temporal accuracy interval mentioned above.

Finally, the difference between (1,2) and (5,6) concerns the nature of the variable: called
discrete in the former, and continuous in the latter. Lines (7-10) illustrate how this distinction,
so much used in computer control, may turn out to be pretty much artificial. The position of
an engine’s crankshaft is a continuous variable: an angle that goes from 0 to 360 degrees (0
again) and so forth. So, there is apparently no difference between (5,6) and (7,8). However,
the crankshaft evolves so quickly that addressing it as a continuous variable may imply a very
high error. In consequence, if we fabricate a 'discrete variable' which is the arrival of the
crankshaft to the ignition point I, as in (9), note that this is equivalent to the kind of event in
(1). This ambiguity was addressed in [6] as the duality between value over time and time of a
value.

In conclusion, we have shown the fundamental consistency guarantees to be ensured by this
kind of architectures: value and time domain observation consistency; and temporal
consistency.

References

[1] P. Veríssimo and M. Raynal. Time in Distributed System Models and Algorithms. In Recent
Advances in Distributed Systems, S. Krakowiak and S. K. Shrivastava (editors), Springer Verlag
LNCS vol. 1752, 2000.

[2] P. Veríssimo and A. Casimiro. Event-Driven Support of Real-Time Sentient Objects. In
Proceedings of the 8th IEEE International Workshop on Object-oriented Real-time Dependable
Systems, Guadalajara, Mexico, January 2003.

[3] T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of
the ACM, 43(2):225-267. March 1996.

[4] F. Cosquer, L. Rodrigues and P. Veríssimo. Using Tailored Failure Suspectors to Support
Distributed Cooperative Applications. In Proceedings of the 7th International Conference on
Parallel and Distributed Computing and Systems, pp352-356, IASTED, October 1995.

[5] P. Veríssimo and A. Casimiro. The Timely Computing Base Model and Architecture. IEEE
Transactions on Computers - Special Section on Asynchronous Real-Time Systems, vol. 51, n. 8,
Aug 2002.

 51

[6] P. Veríssimo and L. Rodrigues. Distributed Systems for System Architects. Kluwer Academic
Publishers, 2001.

[7] K. Ramamritham. The origin of TCs. In Proceedings of the 1st ACM International Workshop on
Active and Real-Time Database Systems, pp50-62, Sweden, June 1995.

[8] H. Kopetz. Real-Time Systems. Kluwer Academic Publishers, 1997.

 52

4.4 A Description Language for the Task and Resource Models

Sentient objects are realised by both software and hardware components. Within the context
of CORTEX a component is basically “a unit of composition with contractually specified
interfaces and explicit dependencies only” [1]. The granularity of a component may be diverse
ranging from components that realise only a part of the machinery of a single sentient object
to components that encompass one or more sentient objects. The specification of both the task
model and the resource model of sentient objects is achieved by expressing the resource
requirements of their associated components.

An extension of the resource configuration description language (RCDL) presented in [2] is
used for the specification of both the task model and the resource model. That is, the
description language allows us to define a) the mapping between tasks and events, b) the
component interfaces in which a particular task is triggered or switched, c) the system
resources that are associated with each task and d) the resource requirements of a task for a
particular deployment platform. The two former are achieved by the task switch description
language (TSDL) whereas the last two are addressed by the task description language (TDL)
and the resource description language (RDL), respectively.

RCDL definitions are processed by an interpreter that is in charge of configuring the
middleware according to such definitions. In particular, the code generated by the interpreter
includes interceptors that are placed in the middleware to achieve task switching. Generated
code also allows for the creation of the defined resource pools (VTMs) at the system
initialisation time. The description languages are specified in extended BNF [3] and the
complete specification is included in Appendix A. It is worth mentioning that the RCDL is a
facility for programming resource requirements of sentient objects. Higher-level mechanisms
are also required to map down specific sentient object requirements to specific component
requirements.

4.4.1 Task Switch Description Language
There is a great variety of task configurations that can potentially exist whereby different
tasks may be interconnected. For instance, a component running one task may invoke another
component concerned with a different task. Such a method invocation represents a task
switching point. Thus, a task switching point corresponds to a change in the underlying
resource pool to support the execution of the task that has come into play. Task switching
points are denoted as triplets including a component, an interface, and an interface operation.
This approach is sufficient to specify where tasks start and where they finish.

The TSDL maps event types to tasks as shown in figure 1. Task switching points are specified
on a per interface type basis and can be valid within the scope of either all components
running in a node or a single component. In addition, switching points are defined for either
all the operations of an interface or a single interface operation. Finally, tasks are mapped to
one or more event types. “If” statements are optionally defined to determine whether a task
switch should be performed according to the current task. For instance, task f is selected if
task g is the current running task that invokes the method z.

 53

Figure 1. Specification of the TSDL

As an example consider the TSDL descriptions shown in figure 2. Two switching points are
defined for the component “MyPublisher” on the operation publish() of the interface type
IPublish. The task “carControl.critical” is mapped to the event type “emergencyStop”.
Similarly, the task “carControl.non-critical” is mapped to the event types “football”, “cricket”
and “weather”.

4.4.2 Task Description Language
 The specification of the associated resources of a task is defined by the TDL, also called task
template. Each of the defined tasks is related to a VTM. There is a different TDL specification
for each node in which the associated VTMs are defined. It should be noted that the
scheduling policy of the VTMs is specified within this template as shown in figure 3.
Furthermore, a task template specifies the associated tasks, the abstract resources with their
related management policies, and the importance of each VTM. A high importance value is
assigned to critical tasks whereas lower importance values are assigned to tasks where
resource contention does not have a drastic impact in the system. In addition, sub-tasks inherit
importance values from their super-tasks. There is also a default VTM that includes all those
activities that are not represented in the resource model. That is, such activities would use the
resources defined by the default VTM. The mapping of QoS values to resource parameter
values may be achieved by mathematical translation or trial-and-error estimations as
described in [4].

TSDL description = “Task Switching Points:”,

 {switching point}-;

switching point = [{global task mapping}-],

{component}-;

component = “component:”, component name id,

 {interface}-;

interface = “interface:” interface type, “:”,

 [{operation}], #if omitted, interceptor defined on all operations

 {interface task mapping};

operation= “operation:”, operation name;

global task mapping = “global task mapping:”, task mapping;

interface task mapping = “task mapping:”, task mapping;

task mapping = {task name,”:”, {event type}- }- | {task name,”:”, event type, “if”, task name}-

Publisher side

Task Switching Points:

component: MyPublisher:

interface: IPublish

operation: publish

task mapping:

 carControl.critical: emergencyStop

 carControl.non-critical : football, cricket, weather

 54

As an example of the definition of abstract processing resources, consider the particular
instantiation of the resource framework whereby VTMs encompass both a team and a buffer
abstraction, as shown in figure 4. The scheduling parameters of the VTM are defined which
include execution time, period and CPU usage. The team abstraction is then specified in terms
of a particular number of threads. Furthermore, the definition of threads include their
scheduling policy along with their thread priority. The amount of buffer allocated is also
defined together with its management policy. It should be noted, however, that the language is
not restricted to these types of resources or the abstraction levels and can be extended to cover
a different instantiation of the resource framework.

Figure 3. Specification of the TDL

Task description = “Def VTMs:”,

 “policy:”, scheduling policy

 {vtm}-,

 default vtm,

 {shared resources};

vtm= “Task:”, task name,

 “Abstract resources:”, abstract resources | other hierarchy,

 “Importance:”, digit;

default vtm = “Default VTM:”,

“Abstract resources:” abstract resources | other hierarchy,

 “Importance:”, digit;

shared resources = “Shared resources:”, name shared resources,

 “Abstract resources:”, abstract resources | other hierarchy,

 “Vtms:”, list vtms sharing these resources;

abstract resources = “Def VTM:”,

 “execTime:”, digit,

 “period:”, digit,

“usage:”, digit,

“Def Team:”,

 “num_threads:”, digit,

 “Def Thread:”,

 “policy:”, scheduling policy,

 “priority:”, digit,

 “Def Buffer:”,

 “policy:”, memory policy,

 “amount:”,digit;

 55

Figure 4. Example of the Specification of Abstract Resources

4.4.3 Resource Description Language
The RDL, also called the resource template, describes the platform-dependent resource
requirements for the execution of a task instance as shown in figure 5. Whereas the TDL
defines the resources provided for the execution of a task, the RDL defines the platform
specific requirements for the execution of one or more interface operations. Thus, a resource
template concerns the specification of aspects such as the worst-case-execution time, typical
execution time, execution period, amount of memory buffer and network resources. There is
also an RDL description per node as the information provided is platform specific. Thus,
whenever a service is required, an admission test is performed on the basis of the resource
requirements specified by the RDL. If successful, such resources are then reserved.

Abstract resources:

 Def VTM:

 execTime: 20

 period: 120

 usage: 20

 Def Team:

 num_threads: 5

 Def Thread:

 policy:
round_robin

priority: 2

 Def Buffer:

 policy: buddy_system

 amount: 2000

 . . .

. . .

Resource requirements = “Resource Template:”,

 {task requirements}-;

task requirements = “Task”, task name, “:”,

 {specific requirement}-;

specific requirement = [cpu], [buffer], [other resource type];

cpu = “CPU”:”,

 “worse case time:”, digit,

 “typical time:”, digit,

 “period:”, digit;

buffer = “Buffer:”, digit;

 56

Figure 5. Specification of the RDL

As an example of RDL descriptions, consider the specification of the resource
requirements for the execution of an instance of the task “carControl.receiveNews” as
depicted in figure 6. This task demands 10 ms of CPU time in the worse case whereas the
normal operation of the task requires only 5 ms. The task also requires to be executed every
120 ms and demands 200 KB of memory for the purposes of buffering (again, the
specification of resource requirements is not restricted to these two types of resources, thus,
other type of resources may be included such as network bandwidth, storage resources and
battery life).

Figure 6. Example of RDL Descriptions

References
[1] Szyperski, C. "Component Software: Beyond Object-Oriented Programming." Harlow,
England, Addison-Wesley. 1998.

[2] Duran-Limon, H. A. and G. S. Blair. “QoS Management Specification Support for
Multimedia Middleware.” Accepted for publication in The Journal of Systems and Software:
2003.

[3] ISO/IEC. "ISO/IEC 14977 Extended BNF(draft).". 1996.

[4] Nahrstedt, K., H.-h. Chu, et al. “QoS-Aware Resource Management for Distributed
Multimedia Applications.” Journal of High-Speed Networking, Special Issue on Multimedia
Networking 7: 227-255, 1998.

Resources Template:

 Task carControl.receiveNews:

 CPU:

 worse case time:
10

 typical time: 5

 Period: 120

 Buffer: 200

 . . .

. . .

 57

Chapter 5: APPENDIX

5.1 Event channel classes

Three event channel classes are distinguished : hard real-time event channels (HRTEC), soft
real-time event channels (SRTEC) and non real-time event channels (NRTEC). The event
channel classes support distinct application requirements and abstract an heterogeneous
communication infrastructure. A HRTEC offers rigorous guarantees for discrete control
based on sporadic events as well as for continuous control requiring periodic events
like sensor readings and control feedback. For sporadic events a maximum latency
will be guaranteed while for periodic events the goal is to achieve a low period- and
latency-jitter. The guarantees are maintained under an anticipated number of network
omission failures. Events published to a SRTEC are scheduled according to the
earliest deadline first (EDF) algorithm. As outlined below, deadlines may be missed
in situation of transient overload or due to the arbitrary arrival times of messages.
Finally, a NRTEC disseminates events that have no timeliness requirements.

The transport of events through a HRTEC is synchronous and reliable. The properties of a
HRTEC are defined by: 1.) a known upper bound for the transport latency, i.e. the interval
between the point in time when an event message becomes ready and its delivery; 2.) a known
upper bound for the latency jitter, i.e. the variance of the transport latency; 3.) a known upper
bound of the period jitter for periodic events, i.e. the variance on the period; 4.) a fault
assumption under which the properties 1.) - 3.) are valid. In order to offer such properties, a
HRTEC transparently handles redundant transmissions of events and guarantees a privileged
access to the communication network. Access is based on the reservation of network
resources according to a TDMA mechanism (TDMA: Time Division Multiple Access) similar
to the time-triggered protocol [KOP92]. However, in contrast to most TDMA schemes, the
reserved time slots that are not contended by the respective HRTEC can be effectively used
by weaker event channels [KAI03]. Such a flexible and efficient utilization of network
bandwidth is implemented by exploiting the priority-based arbitration mechanism of the
CAN-Bus.

The SRTECs support the transport of events whose temporal properties are expressed in terms
of deadlines and validity intervals (expiration time). Different from HRTECs, SRTECs do not
rely on reservations. Soft real-time event messages become ready at any time and are
scheduled according to the earliest deadline first (EDF) algorithm. The transmission deadline
is defined as the latest point in time when a message has to be transmitted. However, because
a message can not be interrupted during its transmission and messages may become ready at
arbitrary points in time, EDF will not always take the right scheduling decisions (only a
clairvoyant scheduler would be able to do so) and situations of temporal conflicts and
transient overload may occur. In theses situations, messages will still be transmitted at a later
time in a best effort manner. An SRT event message eventually will be discarded if its
transmission time is delayed beyond its temporal validity specified by the expiration time.
The expiration time is an application specific parameter, which may be defined according to
some value function.

NRTECs are used for events that do not have timeliness requirements. They are primarily
intended for configuration and maintenance purposes. While HRTEC and SRTEC

 58

disseminate events of restricted length to meet the responsiveness requirements of real-time
systems, NRTEC may transfer bulk data in a sequence of message fragments.

5.1.1 Hard real-time event channels

The API for a HRTEC is presented in Figure 1. A HRTEC must configure the infrastructure
according to a static schedule. An application initiates this process by calling the method:
channel.announce(subject, attribute_list, exception_handler).

The announce() method enables the local middleware components to set up the data structures
representing the respective event channel and to perform the binding of the event channel
subject to a network address. Three arguments are specified for the method: (i) the subject,
represented by the unique identifier of the event channel, (ii) the attribute_list, and (iii) an
exception handler. The attribute_list describes the specific attributes of the channel, e.g.
omission degree and transmission deadline. This information is used to allocate and reserve
the respective resources. When the HRTEC is configured, the application can publish events
to the channel using the method: channel.publish(event).

For a hard real-time channel it is not common to provide exception handling because it is
based on fault masking and worst-case assumptions about temporal properties. However, it
should be noted that in a distributed system, local exception handling may contribute to an
early detection of a fault and thus may increase the safety of the system. The lower levels of
the communication system may detect a failure, which cannot be handled by the fault masking
mechanism, and propagate this information through the middleware to the respective
subscribers of a channel.

class hrtec {

private:

subject subject_uid;

public:

// constructor and destructor of the class

hrtec(void);

~hrtec(void);

// methods used for publishing

int announce(subject, attribute_list, exception_handler);

int publish(event);

// methods used for subscribing

int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler);

int cancelSubscription(void);

}

 59

Figure 2. Declaration of a HRTEC class in C++.

On subscribers side, the subscribe() method establishes the necessary channel data structures
and creates the binding of the subject to a network address. It corresponds to the announce()
method for publishers. The attribute_list specifies a list of attributes used for allocating the
respective resources and for filtering. For instance, we generally assume that publishers and
subscribers are connected by a channel which spans multiple networks, e.g. a field bus, a
wireless network and a wired wide area network. An example is described in [KAI02]. In
such a scenario, a subscriber may be interested in receiving events only from publishers in the
same network, i.e. those connected to the same field bus. In such a case, the respective
attribute can be set accordingly and any event, which has been generated outside the field bus,
will be filtered out and will not trigger a local event notification. It should be noted, however,
that the HRT-channels are statically assigned to time-slots and have predefined temporal and
reliability attributes. These information can be exploited in order to filter events, because only
a particular type of event is allowed to be published in a certain time-slot. The known time of
transmission itself therefore will be exploited as a filter for a HRT-channel.

Because events can be sporadic, the event notification service of the middleware provides an
asynchronous notification mechanism for applications. When an event has passed the filters,
the middleware stores the event in some predefined memory area and calls the application's
notification handler. The notification handler retrieves the event from memory using the
getEvent() primitive and then performs the required operations. As for the publisher of a
HRTEC, an exception handler is also specified for the subscriber. Because a HRTEC is based
on reservations, the time when a message is expected is known and thus, the event channel
handler on the subscriber side can detect a missing message, rising an exception in such a
case.

Finally, the cancelSubscription() method removes a subscription. Canceling a subscription is
a strictly local operation and releases the resources in the local event handler. Only
subscribers can dynamically cancel subscription to a HRTEC.

5.1.2 Soft real-time event channels

SRTECs do not use reservations. In SRTECs transmission deadlines are used to dynamically
schedule the event traffic. Figure 2 depicts the declaration of the SRTEC class. Although the
structure looks similar to the HRTEC, the differences are substantial and primarily are
substantiated in the different attributes defined for SRTECs. Events published to a SRTEC
specify a transmission deadline and an expiration parameter in the attribute list of the event.
Events are scheduled by the EDF algorithm which may lead to missed deadlines because of
the non-preemptive nature of the message transmission and because of transient overloads.
This situation requires notifying the application for awareness reasons. Two exceptional
situations may occur: a missed deadline and an expired validity. In both cases, the local
exception handler is called. This local notification allows the application to react and adapt to
such situations. When the validity interval is expired, the event is completely removed from
the local send queue

 60

class srtec {

private:

subject subject_uid;

public:

// constructor and destructor of the class

srtec(void);

~srtec(void);

// methods used for publishing

int announce(subject, attribute_list, exception_handler);

int cancelPublication();

int publish(event);

// methods used for subscribing

int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler);

int cancelSubscription(void);

}

Figure 2. Declaration of a SRTEC class in C++.

5.1.3 Non real-time event channels

Non real-time event channels are used for events that do not have timeliness requirements. A
NRTEC has a fixed priority. The priority is specified by the application during the
announcement of the channel (see fig. 3). However, only priorities within a predefined range
are accepted by the middleware.

NRT-channels are particularly used to configure and maintain the smart networked devices of
the system. This may require to send a considerable amount of data over the network, like
memory images, electronic data sheets, or test patterns. Because message frames on the CAN-
Bus are limited to a payload of 8 data bytes, a mechanism to chain individual CAN messages
to a larger application specific message is needed. Such a "fragmentation" mechanism for
NRT channels which publishes long event messages in multiple fragments is provided by the
middleware. Fragmentation is an inherent attribute of a NRT-channel and therefore, on the
publisher side, fragmentation is defined during the announcement of the event channel as an
entry in the attribute_list.

 61

class nrtec {

private:

subject subject_uid;

fixed_priority fixedPriority;

boolean fragmentation;

public:

// constructor and destructor of the class

nrtec(void);

~nrtec(void);

// methods used for publishing

int announce(subject, attribute_list, fixed_priority);

int cancelPublication();

int publish(event);

// methods used for subscribing

int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler);

int cancelSubscription(void);

}

Figure 3. Declaration of a NRTEC class in C++.

REFERENCES

[KOP92] H. Kopetz and G. Grünsteidl, "TTP - A Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems", Research Report No. 12/92, Inst. für Techn.
Informatik, Techn. University of Vienna, 1992

[KAI02] J. Kaiser, C. Brudna: "A Publisher/Subscriber Architecture Supporting
Interoperability of CAN-Bus and the Internet", Proceedings of the 4th IEEE
International Workshop on Factory Communication Systems (WFCS'2002),
Västeras, Sweden, 2002.

 62

[KAI03] Kaiser, C. Brudna, and C. Mitidieri, "A Real-Time Event Channel Model for
the CAN Bus," in Proceedings of the Eleventh International Workshop on
Parallel and Distributed Real-Time Systems (WPDRTS 2003). Nice, France,
2003.

