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Executive Summary 
This deliverable describes work that has been carried out during the second year of the project 
for work package WP1. The objective of the work package as defined in the technical annex, 
is ‘the design of a programming model that supports the development of proactive 
applications constructed from mobile sentient objects’. The work is divided into four tasks, 
with Task 1.1, application requirements, having been completed as deliverable D1 in month 6 
of the project. This deliverable addresses the three remaining tasks. Task 1.2 deals with the 
definition of a sentient object model in a language independent way. Task 1.3 defines an event 
based communication model for sentient objects including mechanisms for controlling the 
propagation of events in the system based on both physical proximity and event content. Task 
1.4 defines mechanisms for the specification of Quality of Service (QoS) parameters that may 
be mapped to the system level. 

 

The deliverable starts by addressing Task 1.2 and firstly provides a definition of the sentient 
object model. Concrete definitions of the primitives, sensor, actuator and sentient object are 
provided and the internal structure of a sentient object with regard to sensory capture, context-
awareness and intelligent inference is examined. This chapter continues with an examination 
of how the sentient object model deals with the uncertainties inherent in information sensed 
from the physical environment. A probabilistic sensor fusion scheme based on Bayesian 
networks is proposed as an approach to managing uncertainty in context-aware applications 
based on the sentient object model. The chapter concludes with an examination of machine 
learning techniques that may be incorporated into the sentient object model to provide service 
adaptation according to interests, preferences, knowledge or goals. 

 

Chapter 3 of the deliverable addresses Task 1.3 and describes the event based communication 
model used by sentient objects. The chapter begins by describing the development of an event 
model designed to address the predictability requirements of applications operating in mobile 
environments based on the CORTEX WAN-of-CANs network. This event-based 
programming model incorporates the topology of a heterogeneous communication 
infrastructure as specified in CORTEX and an abstract network model, reflecting the different 
levels of quality of service available from the different sub networks, is provided. The 
programming model is then based on the concept of event channels with different temporal 
and reliability guarantees that may be mapped to certain QoS zones. This chapter goes on to 
describe a conceptual model designed to alleviate the impediments to real-time event-based 
communication characteristic of wireless, mobile ad hoc environments as found in CORTEX 
applications. The model is based on a predictive architecture combining mobility prediction 
with partition anticipation to achieve predictive routing and resource reservation and thus 
limits the unpredictability of wireless communication.  

 

Finally, Chapter 4 of the deliverable addresses Task 1.4, that of Quality of Service (QoS) 
specification. The model for timeliness QoS requirements specification based on the 
specification of <bound, coverage> pairs is extended to a more general way of specifying 
QoS requirements not limited to the observation of time bounds. The extended approach 
permits for the integration of other application requirements into the QoS framework and 
provides a more flexible and configurable approach to the specification of QoS requirements.  

 

A description language for the specification of both the task model and the resource model of 
sentient objects is presented as an extension of the resource configuration description 
language (RCDL). This language provides the facility for programming of resource 



 vi 

requirements for sentient objects and is part of the QoS specification aspect of the CORTEX 
programming model.  
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Chapter 1:  Overview 

The objective of D6 is to design a programming model suitable for the development of 
proactive applications constructed from mobile sentient objects. D6 embodies the final 
deliverable and follows its predecessor deliverable D2, the preliminary definition of the 
CORTEX programming model.  

The programming model should support all aspects of the behaviour of sentient objects. This 
includes acquiring information from the environment, being context aware in an uncertain 
situation, reacting in an appropriate manner to that situation and thus modifying the state of 
the environment. In the inherently mobile and dynamic WAN of CAN structure, the 
programming model must also provide an event based communication model and associated 
Quality of Service and timeliness guarantees. 

D6, The Programming Model is presented as a collection of technical reports and an API, 
some of which have been submitted fro publication. The deliverable is divided into three 
major parts, each of which contains one or more technical reports or papers discussing the 
corresponding objective. 

1.1 Chapter Outline 
Chapter 2 outlines our definition of the context aware sentient objects and specifies the 
internal components of such an object. Chapter 2 then describes how an application developer 
may program the sentient objects in a context aware manner using techniques such as 
Bayesian networks to deal with uncertainty and Machine Learning to improve performance by 
learning from past experiences 

In Chapter 3, D6 describes the CORTEX event-based communication model made available 
to the application programmer for defining inter-object communication. In particular, an event 
model is described which addresses the predictability requirements of applications operating 
in mobile environments. Furthermore, Chapter 3 describes the impediments imposed by ad 
hoc wireless networks on real time event based communication and then proposes a high level 
model to reduce their impact. 

Chapter 4 presents our approach to specifying QoS parameters characterizing the level of 
service supported by the underlying, heterogeneous infrastructure and for reserving the 
resources required to enforce the specified QoS. Chapter 4 also provides a description 
language which gives the specification of the task model and the resource model of sentient 
objects by expressing the resource requirements of their components 

In the Appendix, an API is presented for the Event Channel classes. Three Event Channel 
classes are presented in the API: Hard Real Time, Soft Real Time and Non Real Time Event 
channels 
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Chapter 2:  Sentient Object Model 

2.1 Towards a Sentient Object Model 
Adrian Fitzpatrick, Gregory Biegel, Siobhan Clarke, Vinny Cahill 

Distributed Systems Group  

Department of Computer Science 

Trinity College  

Dublin 2, Ireland 

{firstname.lastname}@cs.tcd.ie 

 

 

Abstract—A sentient object is a mobile, intelligent software component that is able to sense 
its environment via sensors and react to sensed information via actuators. Sentient objects are 
context-aware, aware of both their internal state and the state of their surrounding local 
environment, and are cooperative, cooperating with other sentient objects both through 
traditional communication channels and via the physical environment. In this paper we 
describe a sentient object model and in doing so provide concrete definitions for the terms 
sensor, actuator, and sentient object as used in our model. 

 

Keywords— Sentient computing, mobile computing, context-aware, stigmergy 

 

2.1.1 Introduction  
The continued evolution of computing and communication technologies towards ever smaller 
and more powerful devices has led to a new generation of applications where computing 
power is widely deployed throughout the environment. The development of such pervasive 
computing environments has also been driven by the availability of improved sensor 
technology providing accurate and trustworthy sensing at affordable prices. Cheap, ubiquitous 
sensors coupled with improved computing power and wireless data communications have 
made a new class of decentralised and proactive applications possible. It is envisaged that this 
class of applications will consist of a very large number of mobile software components 
accepting input from the environment via a variety of sensors and autonomously acting upon 
the environment via a variety of actuators. These components will contain intelligence to 
allow them to act autonomously based upon acquisition of information from the environment, 
and will cooperate with each other using a range of different networking technologies. It is 
these mobile, intelligent software components that we term sentient objects and in this paper 
we present a model for the development of such objects. We provide concrete definitions for 
the terms sensor, actuator and sentient object. Context awareness [1] is a characteristic of 
reactive sentient objects and this is dealt with in our model through the use of contextual 
information gleaned from sensors to control the actions of a sentient object. Finally, our 
model addresses the coordination of multiple objects, via the physical environment using 
biologically inspired mechanisms. 

The possible applications of sentient objects are numerous and diverse and include 
such areas as intelligent vehicles, smart buildings and mobile robotics. 
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Figure 1. Simple sentient object model 

 

2.1.2 Related Research 
[2] defines a sentient computing system as one where an application appears to share the 
user’s perception of the environment. They have developed a sentient system that uses 
wireless radio transceiver sensors to maintain a software model of the location of a set of 
laboratory users and objects. This model is then used for a number of intelligent ’follow-me’ 
applications. Similarly, López de Ipina defines sentient systems as systems that respond to 
stimuli provided by sensors distributed throughout the environment by triggering actions that 
are adequate to the changing context of the user [3]. His TRIP system uses location, 
identification and orientation information to provide context aware services to users. The 
Sentient Information Framework, part of the TRIP system is a programming framework 
designed to separate context capture and abstraction from application semantics and provide 
efficient mechanisms for context communication [4]. Context Based Reasoning is a paradigm 
introduced by Gonzalez [5] as a concise but rich representation paradigm that could be used 
to model the intelligent behaviour of opponents in simulations. The hypothesis behind CxBR 
is that the actions taken by an intelligent entity are highly dependent on the entity’s current 
situation (context). Following this approach and limiting the number of actions permitted in a 
certain context, the efficiency of rule-based inference may be increased substantially. 

 

2.1.3 A Sentient Object Model 
 

Essentially a sentient object is an encapsulated entity, with its interfaces being sensors and 
actuators. The actuators are controlled according to sensor input, perhaps via a rule based 
inference engine, as depicted in Figure 1.This simple view does not, however, answer many 
questions about sentient objects. For example, 

• What do we mean by sensors and actuators in this context? Are they hardware 
devices, or software abstractions thereof?  

• What is the granularity of a sentient object?  

• How do sentient objects interact?  

• What sorts of hierarchy/relationships can exist between 

 

In addition to answering the questions above, one of the main challenges to be overcome in 
defining a sentient object model was to constrain the definition. The simple definition above 
can easily encompass a great many existing computer systems. For example, a desktop 
computer could be said to sense user input via the mouse or keyboard and actuate on its 
environment by moving a cursor or displaying a character on the monitor. To be useful, a 
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more precise definition of a sentient object suited to the pervasive computing applications of 
interest is need.  

A. Event based communication  

We expect sentient objects to interact using an anonymous, event-based inter-process 
communication paradigm that supports loose coupling between sentient objects in order to 
provide for object mobility and application evolution. We identify two distinct categories of 
events: software events and real-world events. Software events are the main form of 
interaction between entities in our model and provide anonymous, ad-hoc communication. 
real-world events are anything that happens in the environment, either causing a change of 
state in a sensor or caused by an actuator. We propose that, based on these two categories of 
events, we can identity and distinguish the three major entities that may exist in our sentient 
object model.  

B. Classifications  

The different possibilities for production and consumption of events lead to the different 
classifications. Our initial investigation of the different possibilities for production and 
consumption considered that an entity could produce only one category of event and consume 
only one category of event. The resulting classification yields four distinct entity types, 
through which we aim to provide a separation of the semantics of information acquisition, 
application logic and environmental actuation.  

• Real-world consumption, software production 

This class of entity produces software events in response to real world events consumed. In 
effect, it provides information about a physical occurrence in the external environment by 
translating the information into the format of a software event, and by releasing that event into 
the event-based middleware environment. This is classical sensor functionality; therefore all 
entities in our model that conform to this classification will be termed sensors.  

• Software consumption, software production  

This class of entity both consumes and produces software events, implying the flow of 
information to and from these entities is purely through the event-based middleware. It is in 
this middleware domain that the application logic will reside, therefore these entities will 
provide the logic building blocks for CORTEX applications. Entities fitting this classification 
will be called sentient objects.  

•Software consumption, real world production  

These entities produce real world events in response to the consumption of software events. 
They have the opposite consumption/production properties to the entities that we have 
identified as sensors, and hence we designate these entities actuators  

•Real-world consumption, real-world production  

This class of entity produces real-world events in response to real-world events consumed. 
This implies that it is a simply real-world system; in the context of our model, we propose to 
term such entities sentient systems.  

It is from these classifications according to event consumption and production that we derive 
the definitions for the three major entities in our sentient object model.  

B.1 Sensor  

A sensor is defined in [6] as being a device that responds to a physical stimulus, such as 
thermal energy, electromagnetic energy, acoustic energy, pressure, magnetism or motion, by 
producing a signal, usually electrical. We refine this traditional definition of a sensor and in 
our sentient object model define a sensor as  
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An entity that produces software events in reaction to a real-world stimulus detected by some 
world hardware device 

 

 

Our definition of a sensor is illustrated in Figure 2. 

 
Fig. 2. A sensor 

The sensor processing task encapsulated in our definition of a sensor refers to the possible 
abstraction of raw sensor data into more useful information by the sensor itself, before the 
production of software events. An example of such abstraction may be the transformation of 
raw GPS coordinates into more useful location information e.g. the conversion of coordinates 
53 23’ N, 6 20’Wto the location ”Room G15, O’Reilly Institute, Dublin, Ireland”. Such 
sensor processing is not necessarily carried out by a sensor but may potentially be. 

 
Fig. 3. An actuator 

B.2 Actuator  

[7] defines an actuator as a mechanical device for moving or controlling something. Our 
definition of an actuator in the sentient object model maintains that it is something that causes 
a change in the physical environment, but narrows the definition in terms of what causes the 
actuation to occur. We define an actuator in our sentient object model as 

an entity that consumes software events, and reacts by attempting to change the state of the 
real world in some way via some hardware device 
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Our definition of an actuator is illustrated in Figure 3, where the actuator processing task 
refers to potential transformation of incoming software events before the production of 
hardware events. 

 

B.3 Sentient Object  

Following our definitions of sensor and actuator, we define a sentient object as 

an entity that can both consume and produce software events, and lies in some control path 
between at least one sensor and one actuator 

 
Fig. 4. A sentient object 

We have previously stated that sentient objects will be the building blocks of logic for 
sentient object applications. Aside from our identification of sentient objects through the 
classification of events consumed and produced, we introduce into our definition the 
additional stipulation that a sentient object should exist in a control path between a sensor and 
an actuator. We do this in order to constrain our definition somewhat, as we feel that to 
provide a definition that simply specifies the consumption and production of software events 
is too general, and that many currently existing software entities fall into that classification.  

Up until this point, we have not discussed what form the control logic in the sentient object 
takes. The internal control logic must exploit context-awareness and is discussed in the next 
section.  

2.1.4 Context Awareness in Sentient Objects  
Essentially sentient objects sense and interact with their environment via sensors and 
actuators. It is this awareness of, and interaction with the environment that makes context 
awareness an important factor in sentient objects. Before examining the role of context in our 
sentient object model, a clear definition of what we understand by context is required. There 
are multiple definitions of context available in the literature [8], [1], [9]. 

For the purposes of the sentient object model, we propose a definition of context as  

Any information sensed from the environment that may be used to describe the situation of a 
sentient object. This includes information about the underlying infrastructure available to the 

sentient object. 

Our definition of context-aware then follows,  

The use of context to provide information, to a sentient object, which may be used in its 
interactions with other sentient objects, and/or the fulfillment of its goals. 

We have identified three components necessary for context-awareness in a sentient object.  

A. Context Acquisition  



 

  7

A sentient object may receive input from an array of diverse sensors, for example a sentient 
vehicle’s array of sensors could include proximity sensors, GPS, speed and direction sensors, 
and pollution sensors. Signals from these sensors need to be integrated in order to determine 
the overall environment and context of the sentient object. In addition to the problem of 
fusing data from such diverse sensors, each data source has an error associated with it. The 
major issues to be addressed in the area of sensory capture are data filtering and sensor fusion  

B. Context Representation  

Raw sensor data will usually need to be transformed in some way before it may be considered 
useful contextual information. Such transformation may occur in the sensor itself as discussed 
in Section III-B.1, or may be carried out within the sentient object itself. The context 
representation component deals with the representation of context information in a way that is 
useful to the sentient object and may be easily exchanged amongst sentient objects. We are 
currently examining the use of XML in context representation for sentient objects. 

 
Fig. 5. A sentient object showing the components of the internal control logic 

 

C. Inference  

Sentient objects are expected to act upon their environment, changing its state. This implies 
some form of decision making ability or intelligence, on the part of the sentient object that is 
captured in the inference engine component. An inference engine, in artificial intelligence 
terms, refers to a program that reasons about a set of rules (a knowledge base) in order to 
derive an output.  

The knowledge base of an inference engine contains the knowledge required to solve a certain 
problem, encoded as a set of production rules. The knowledge encoded in such rules is 
generally captured from a human expert who is able to express his expertise in the form of 
such rules.  

The inference engine should be as generic as possible so that it may be applied to a number of 
different knowledge bases in different domains with minimal changes to itself. For the 
purposes of sentient objects, we can envisage a sentient object inference engine, with object 
and domain specific knowledge bases in each object.  

We are currently focusing on using rules specified in CLIPS (C Language Integrated 
Production System) [10], a declarative language with a built in inference engine based upon 
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the RETE net [11]. We incorporate the mechanism of Context Based Reasoning (CxBR) [5] 
to limit the number of production rules to be considered and to increase the efficiency of the 
inference process. 

2.1.5 Coordination through the environment  
Coordination of actions through the environment or stigmergy, was first observed in colonies 
of insects [12] cited in [13], and describes coordination of the activities of individuals without 
direct communication between them. Stigmergy is a highly decentralised method of 
coordination where individual entities follow the same set of simple behavioural rules to yield 
robust and adaptive coordination, without the need for expensive and unreliable 
communication.  

In stigmergy, coordinated behaviour arises from individuals sensing their physical 
environment and reacting to the sensed information according to a simple set of rules. The 
stimulus may come from the physical environment itself, in a type of stigmergy known as 
sematectonic stigmergy, or may come from something that makes no direct contribution to the 
task at hand and is used solely to influence behaviour in a form of stigmergy known as sign-
based stigmergy.  

We propose stigmergy as a coordination mechanism for very large networks of sentient 
objects. Sentient objects contain behaviours encoded as rules in the inference engine and 
achieve coordinated behaviour through sampling and acting upon their environment. 

2.1.6 Conclusions  
We have presented a sentient object model that we hope will contribute towards the 
development of context-aware applications. As part of our model we provide definitions for 
the terms sensor, actuator and sentient object and describe the internal structure that enables 
sentient objects to operate autonomously. 
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2.2 Towards Middleware for Coping with Uncertainty in 
Context-Aware Applications 

 

Gregory Biegel and Vinny Cahill 

Distributed Systems Group 

Trinity College Dublin 

{Greg.Biegel, Vinny.Cahill}@cs.tcd.ie 

 

Abstract 
Uncertainty is a major problem in sensing the environment due to the inherent limitations of 
sensors with respect to accuracy and precision. This has led to a crucial requirement for 
middleware that provides uncertainty management for software components whose actions 
are based on environmental perception. Sentient objects are context-aware, mobile, intelligent 
software components able to sense the environment using a variety of sensors and make 
changes to the environment by way of actuators, independently of human control. Sentient 
objects rely on the fusion of outputs from a variety of sensors in order to determine their 
context and perform actuation using the Context-Based Reasoning paradigm. In this paper we 
propose a middleware architecture based on the sentient object model and incorporating a 
probabilistic sensor fusion scheme combining Bayesian networks and Context-Based 
Reasoning, for coping with uncertainty in context-aware applications. 

 

2.2.1 Introduction 
 

As applications continue to move away from the desktop and into the physical world, the 
development of a new class of decentralised and proactive application that makes use of 
computing power widely deployed throughout the environment has become possible. The 
development of such pervasive computing applications has been driven by the continuing 
evolution of computing and communication technologies coupled with the availability of a 
range of cheap and diverse sensing technologies, enabling measurement of diverse aspects of 
the environment. We envisage this class of application as consisting of a very large number of 
mobile software components accepting input from the physical environment via a variety of 
sensors and autonomously acting on the environment via a variety of actuators. 
Environmental information gleaned from sensors allows these components to be context-
aware, that is to detect and make use of changing environmental conditions to influence 
further actions. It is these software components that we term sentient objects and one of the 
major problems faced in the development of such objects is how to deal with the uncertainty 
associated with measurements of the physical environment made by sensors. 

 

Sentient objects have a number of characteristics that are important in pervasive computing 
environments 

• Sentience - the ability to perceive the state of the environment via sensors 

• Autonomy - the ability to operate independently of human control in a decentralised 
manner 

• Proactiveness - the ability to act in anticipation of future goals or problems 
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In this paper we describe the development of middleware, based on the sentient object model 
[1], which serves to insulate applications from the complexities of physical sensing 
technologies and the fusion of multi modal sensor data. It is our aim to make context 
acquisition and the uncertainty associated with this task, as transparent as possible to the 
application programmer. 

Because the information we receive from sensors is incomplete, uncertain and contains errors 
we cannot rely on the output of a single sensor. In order to obtain sufficient correct 
information from the environment to reliably determine the context of a sentient object, we 
need to fuse the output of multiple disparate sensors. Although a significant body of work 
exists in the area of context-aware computing, we feel the important area of sensor fusion for 
dealing with uncertainty has not been adequately addressed in a way that may be applied to a 
range of applications. Most sensor fusion systems described in the literature are application 
specific and only address a specific set of sensors applied to a specific task [2, 3]. We propose 
a generic means to develop context-aware applications based on the sentient object model 
which incorporates Context-Based Reasoning (CxBR) [4], enhanced with a probabilistic 
sensor fusion scheme, to achieve context-aware behaviour. 

A probabilistic approach to sensor fusion allows quantification of uncertainty or data 
reliability and is grounded in well-understood probability theory. Probabilistic models are 
attractive as they allow formal definition of the likelihood and level of belief in conclusions 
drawn from uncertain data. The derivation of context from multiple sensors is difficult and 
prone to error, but probabilistic models provide us with the means to measure the 
effectiveness of our derivations. We base our sensor fusion system for sentient objects on 
Bayesian networks [5], which are a class of probabilistic model that encodes conditional 
independence relationships between a set of random variables. The CxBR paradigm is 
enhanced with the addition of Bayesian networks as a means of fusing sensor data and 
managing uncertainty. 

 

2.2.2 Related Work 
 

The Context Toolkit [6] developed at the Georgia Institute of Technology provides a generic 
approach to developing context-aware applications and addresses the separation of context 
acquisition from the use of context information by applications through introduction of the 
context widget, a sensor abstraction which hides the underlying details of the sensing 
mechanism from the application. The Context Toolkit does not provide a mechanism for 
dealing for the uncertainty of sensor data, nor does it address the fusion of multiple sensor 
outputs in order to reduce such uncertainty. Applications subscribe to all pieces of context 
information in which they are interested and it is the responsibility of the application to 
perform any fusion of this information. The TEA project [7] aims to provide a similar 
approach to context-awareness with the abstraction of physical sensors by way of cues, the 
outputs of which are used to determine which context an object is in. The system makes use 
of semantic nets to represent the set of possible contexts and each context defines what may 
happen when entering, leaving or being in that context in a similar manner to Context-Based 
Reasoning [4]. 

 

The Multimedia Systems Laboratory at UCLA has developed the Multi-Use Sensor 
Environment (MUSE), which is a middleware architecture for sensor-rich smart spaces and 
which employs Bayesian networks for sensor fusion [8], whilst Microsoft has incorporated 
Bayesian networks into a number of its products, including the Office assistant [9] and the 
spam filter in Outlook [10]. 
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2.2.3 The Sentient Object Model 
 

A sentient object is an encapsulated entity, with its interfaces being sensors and actuators. 
Actuators are controlled according to contextual information gleaned from sensor inputs via 
an intelligent production rule-based inference engine. A sentient object and its internals are 
illustrated in Figure 1. 

Sensors in the sentient object model are defined as entities which produce software events in 
reaction to a stimulus detected by some real-world hardware device. In this way, sensors in 
the sentient object model are a software abstraction or type of virtual sensor, providing an 
estimate of some environmental variable of interest which may in turn be used to derive the 
overall context of the object. The term sensor thus encapsulates a physical device, as well as 
software, which potentially provides a higher level symbolic interpretation of the output of the 
physical transducer. 

An actuator in the sentient object model is defined as an entity that consumes software events 
and reacts by attempting to change the state of the real world in some way via some hardware 
device. Actuators in the sentient object model are software abstractions of actual physical 
devices, which consume events. 

A sentient object is then defined as an entity that can both consume and produce software 
events, and lies in some control path between at least one sensor and one actuator. Sentient 
objects are cooperative and communicate with each other and with sensors and actuators via 
an anonymous generative event based communication paradigm [11], permitting loose 
coupling between objects which supports object mobility and application evolution. 

 

2.2.3.1 Context-Awareness 
 
Humans use an implicit understanding of their environment and "context" in order to readily 
make complicated inferences and decisions. Such awareness is composed of many levels of 
knowledge including information about actions and intentions, as well as knowledge of the 
state of the environment. In the human domain it is clear that an accurate representation of 
context information depends on a diverse set of sensors, each measuring different targets with 
different resolutions and accuracies. 

In terms of sentient objects, context is defined as any information sensed from the 
environment that may be used to describe the situation of a sentient object. This includes 
information about the underlying infrastructure available to the sentient object. Context-
awareness is then the use of contextual information by the sentient object in fulfillment of its 
goals. 
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Figure 1: Sentient Object Model 

 

Whilst the problem of fusing the output of multi modal sensors for the purposes of 
determining context has been solved in humans, this cannot be said for context-aware 
computing applications where no generalised solution exists for the mapping of sensor output 
to context representation. The way in which humans deal with large amounts of contextual 
information is by doing so in a hierarchical manner and sentient objects follow a similar 
model known as Context-Based Reasoning [4]. 

 

2.2.3.2 Context-Based Reasoning (CxBR) 
 

The sentient object model embodies the concept of Context-Based Reasoning (CxBR). The 
paradigm derives its name from the idea that the actions taken by an entity are highly 
dependent on the entity’s current context [4], that is a recognized situation defines a set of 
appropriate actions and the identification of a future situation is simplified if all possible 
actions are limited by the current situation itself. Context-Based Reasoning is based on the 
following hypotheses: 

1. Small, but important portions of all available environmental inputs are used to 
recognise and treat the key features of a situation 

2. There are a limited number of things that can realistically take place in any situation  

3. The presence of a new situation will generally require alteration of the present course 
of action to some degree  

CxBR encapsulates knowledge about actions to be taken and possible future situations into 
contexts. By defining a hierarchy of contexts in which a sentient object may exist and by 
associating specific actions to be undertaken in each context, a sentient object's behaviour 
may be influenced by its context. Following this approach and limiting the number of actions 
permitted in specific contexts, the efficiency of production rule-based inference may be 
increased substantially. 

CxBR defines a mission context, major contexts and sub contexts. The mission context is the 
overall goal and objectives for a certain scenario. It is composed of major contexts, which are 
tactical operations assisting in the achievement of the scenario. Each major context is in turn 
composed of one or more sub contexts each of which is a lower level tactical procedure which 
assists in the achievement of its associated major context. Autonomous behaviour in a CxBR-
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based entity is based upon the evaluation of a set of rules, and the alteration of the course of 
behaviour based on the outcome of these rules. The influence of behaviour based upon a set 
of continuously evaluated rules is a common Artificial Intelligence technique, but CxBR adds 
to this the notion of an active context. Within each active context (be it mission, major or 
sub), only a subset of the rules is applicable (this derives from the hypothesis that there are 
only a limited number of things that can realistically take place in any situation) and this 
increases the efficiency of a rules-based approach. Contexts are constantly being activated 
and deactivated during the entities lifetime and each context regulates the behaviour of the 
entity and provides an expectation for the future. A requirement of this approach is that 
certain cues exist to indicate when transitions may be made between active contexts. 

An example CxBR hierarchy for a sentient vehicle is illustrated in Figure 2. In this example it 
is clear that in the two-lane highway mission context, whilst the changing lane major 
context is active, the possible sub contexts that the vehicle may be in are accelerate and 
decelerate, each of which has different actions associated with it. 

 

 
Figure 2: A CxBR hierarchy for a sentient vehicle 

 

2.2.3.3 Sentient Object Internals 
 

The internals of a sentient object as illustrated in Figure 1 consist of three major components. 
Each object has a sensory capture component that collects aspects of an objects context from 
a set of sensors. Such context data may include location, activity, proximity and 
infrastructural information. It is the sensory capture component that is responsible for the 
fusion of multi modal sensor input prior to the mapping to the context representation. 

The context representation component consists of an object specific context information 
model [12] as well as a CxBR-type hierarchy of contexts in which the object may exist. 
Representation of context information in a way which is useful to a sentient object, or indeed 
any computing application, is a difficult problem which has not been extensively addressed in 
the literature. Albrecht Schmidt et al. [13] propose a hierarchically organised feature space for 
context classified broadly into human and environmental factors. For autonomous, software 
components like sentient objects, human factors are not an important consideration in context 
derivation, whereas environmental factors are more so. Anind Dey et al. classify four types of 
context that they see as being more useful practically, these being location, identity, activity 
and time [6]. In the sentient object model we treat sensor inputs as providing environmental 
information that includes location, proximity, visual, infrastructural and temporal information. 
These inputs are then used to determine the current context and consequently the position in 
the CxBR hierarchy. Each object has a specific context information model which specifies 
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what context information is important to the object. This context information model is 
composed of an XML-schema, where context information is represented symbolically as 
numbers and strings. 

The inference engine component is a production-rule based inference engine and supporting 
knowledge base, which gives sentient objects the ability to intelligently control their actions 
based on their context. The inference engine is related to the CxBR hierarchy in that only a 
subset of the rules are valid in a given context which follows from the hypotheses that there 
are a limited number of things that can happen in any scenario.  

 

2.2.4 Context Uncertainty Management 
 

Uncertainty is an intrinsic factor in all sensing processes. In order to reason effectively in 
terms of context, we need a means for specifying and managing the uncertainty inherent in 
that context derivation. 

 

2.2.4.1 Uncertainty of Sensor Data 
 

Sensors that sense aspects of the physical environment, such as temperature, audio and 
location sensors provide as output only approximations to the values, which they sense in the 
real world. This uncertainty regarding the true value of what is being measured is inherent in 
data resulting from a physical measurement and results from hardware limitations in the 
manufacturing of the sensor and the fact that the physical operation of the sensor is too 
complex to model. 

In addition to errors in physical sensor measurements, uncertainty in sensor data may also 
arise from the inability of a single sensor to sense all aspects of the environment of interest. A 
human example is stereovision in which the brain fuses the output of two eyes in order to 
provide depth perception, which is not available from the output of a single eye. In this way 
sensor fusion provides additional information about the environment and thus reduces 
uncertainty. 

 

2.2.4.2 Sensor Fusion 
 

When dealing with sentient objects, we are concerned with obtaining the most complete 
representation of the current context and indeed the most accurate mapping of the actual 
context to the active context in the CxBR hierarchy. By fusing the output of multiple sensors 
measuring both the same and different parameters of the environment at a single point in time, 
we may increase the probability of accurately identifying the context. Arnoud Visser [14] 
defines three general types of sensor fusion 

• Complementary fusion: refers to the fusion of the output of multiple disparate sensors 
each giving partial information about the environment, and resolves incompleteness 
of data. 

• Competitive fusion: this is the fusion of uncertain data from a number of sensors and 
aims to reduce the uncertainty of an individual sensor reading. A number of sensors 
measure the same parameter and multiple measurements are fused to provide a more 
accurate estimate. 
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• Cooperative fusion: refers to the fusion of the output of different sensors in which one 
sensor relies on the output of another sensor/s to make its own observations. 

Fusion of data from multiple sensors may be performed at a number of levels from the 
electronic signal level, to the fusion of sensor data, which has been interpreted to give a 
higher semantic meaning. Sensors in the sentient object model process raw sensor data and 
produce a higher-level interpretation and it is this symbolic output that we are interested in 
fusing. Complementary and competitive fusion are most relevant to sentient objects, where 
we are trying to both gain a more complete representation of context, and reduce the 
uncertainty inherent in sensor readings. 

Sensor fusion for context-aware sentient objects is different to classical sensor fusion, which 
is primarily concerned with parameter estimation. With sentient objects, in addition to the use 
of sensor fusion for the optimisation of measurements, we are also concerned with fusing 
various seemingly unrelated pieces of information in order to determine context. 

 

2.2.4.3 Bayesian Networks for Sensor Fusion 
 

Sentient objects almost never have access to a completely correct view of their context due to 
an incomplete or incorrect understanding of their environment for reasons discussed above. In 
real-world domains, sentient objects can only provide a degree of belief in relevant contexts. 

Bayesian theory provides the basis which allows us to reason under uncertainty in the form of 
probabilities by calculating the probability that a hypothesis (H) is true, given observed 
evidence (E), or P(H|E). 

Any complete probabilistic model of a domain must, either explicitly or implicitly, represent 
the joint distribution - the probability of every possible event as defined by the values of all 
the variables [5]. Modelling a domain as a set of random variables X1,...,Xn, then P(X1,...,Xn ) 
denotes their joint probability distribution (jpd), or the probability of every possible 
combination of values for X1,...,Xn. Such a jpd provides complete information about the 
probabilities of its random variables, but quickly becomes very large. A jpd table for n 
random variables, each ranging over k distinct values, has kn entries. 

The majority of the time, the variables describing a domain are dependant on each other1 and 
the joint probability of two variables may be defined in terms of conditional probabilities 

 

P(X1 , X2) = P(X1 | X2) P(X2) = P(X2 | X1) P(X1) 

 

This may be rewritten as Bayes' Rule for the conditional probability of two variables as 
follows 

 

P(X2 | X1) = P(X2 , X1) =  P(X2 )P(X1 | X2 ) 

     P(X1 )  P(X1 ) 

 

Bayes rule allows us to reason in terms of conditional probabilities. A Bayesian network is a 
directed acyclic graph in which the nodes represent random variables, and the absence of arcs 

                                                      
1 Two random variables X1 and X2 are independent iff  P(X1 | X2) = P(X1 ) or P(X1 , X2) = P(X1 )P(X2 ). 
Complete independence is a very strong and seldom met requirement 
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represents conditional independence in that a node is independent of its non-descendants 
given its parents [15]. Bayesian Networks achieve compactness when compared to jpd's, by 
factoring the joint distribution into local, conditional distributions for each variable given its 
parents [5]. For a variable Xi if we denote the parents of Xi as pa(Xi ) then P(Xi | pa(Xi )) 
denotes the local conditional distribution for Xi given its parents. A Bayesian network allows 
us to factor the joint distribution over all variables into the product of local terms, giving the 
full joint distribution over all variables as 

n 

P(X1 ,…, Xn) = ?  P(Xi | pa(Xi )) 
i=1 

An example Bayesian network is illustrated in Figure 3 for five variables. For this example 
network, P(A, B, C, D, E) = P(A) P(B) P(C|A) P(D|A, B) P(E|D). From this example, we can 
see that provided the number of parents of each node is bounded, the number of parameters 
required grows linearly with the size of the network, whereas the joint distribution grows 
exponentially [5]. 

 
Figure 3: A Bayesian network representing causal inferences among five variables 

 

The arcs in a Bayesian network then represent the conditional probability of the existence of 
the node being pointed to, given the existence of the node from which the arc originates. 

Bayesian networks capture relationships between variables in a system and the dependencies, 
which exist between them. The networks operate by propagating evidence about variables 
through the network, according to the relationships encoded therein. In this way, knowledge 
of the value of a variable allows us to update our belief in the values of all variables in the 
network. 

A Bayesian network for sensor fusion may be constructed by representing the outputs of 
sensors as inputs into a network, which also contains nodes representing variables, whose 
value is influenced by the sensor outputs. The uncertainty associated with a sensor reading is 
then modelled using conditional probabilities associated with causal relationships within the 
network. 

With respect to the sentient object model, we can create a Bayesian network where the leaf 
nodes represent sensors contributing to the determination of the current context of an object. 
Terminal nodes (those nodes without children) represent contexts, whilst intermediate nodes 
represent the uncertainty values associated with sensors. 
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Variable Parent Variable Values True False 

Person In Room 

(D) 

Temp = 10 – 20 

 

Temp = 20 – 30 

 

Temp = 30+ 

 

PIR = On 

PIR = Off 

PIR = On 

PIR = Off 

PIR = On 

PIR = Off 

0.6 

0.1 

0.9 

0.05 

0.4 

0.2 

0.4 

0.9 

0.1 

0.95 

0.6 

0.8 

Door Closed 

(E) 

Reed Switch = Closed 

Reed Switch = Open 

 0.95 

0.05 

0.05 

0.95 

Working Hard 

(F) 

Person In Room 

 

¬Person In Room 

Door Closed 

¬Door Closed 

Door Closed 

¬Door Closed 

0.95 

0.4 

0.3 

0.05 

0.05 

0.6 

0.7 

0.95 

 

Table 1: Conditional probability tables for nodes in Figure 3 

 

By way of an example, we consider the case of a sentient office that is equipped with a 
number of sensors and actuators. The office may exist in any one of a set of contexts, 
depending on what purpose the office is being used for at a point in time and sensor outputs 
need to be fused together in order to determine this context. For the purposes of this example, 
the office is equipped with three sensors and one actuator. The sensors consist of a Passive 
Infrared (PIR) sensor mounted next to the desk, a reed switch mounted on the door and a 
temperature sensor. The actuator controls whether the telephone answering machine is set to 
automatically answer incoming calls. Given the output of the three sensors, we would like to 
determine, with a bounded degree of certainty, what context the office is in. For instance if 
there is a person in the office, and the door is closed the office is in the context of being used 
for hard work and as a result the answering machine should be set to answer all incoming 
calls so as not to disturb the worker. 

We may easily construct a Bayesian network that fuses the output of the three sensors in the 
sentient office as illustrated in Figure 4. The leaf nodes, shaded grey in the network represent 
the sensors themselves, whilst the intermediate nodes represent the uncertainty associated 
with the sensor readings as determined from experimental observation / operational 
specifications. The probability that the sensor reading is correct is captured in conditional 
probability tables (cpt) at each node. The cpt's for non-leaf nodes in the network are illustrated 
in Table 12. Examining the entry for the node Person in Room, the table captures the 
probability that there is actually somebody in the office given the output of the PIR and 
temperature sensors and is constructed through experimental observation. The reason that we 
fuse the output of the PIR and temperature sensors when determining if there is somebody in 
the office is that PIR sensors work by sensing temperature variations and consequently their 
accuracy is influenced by environmental temperature. Reed switches are not dependant on 
temperature fluctuations and so there is no causal relationship between the temperature sensor 
and the reed switch sensor. 

                                                      
2 These probabilities are for illustrative purposes only and are not derived from empirical 
measurements. 
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Figure 4: A Bayesian network for fusing the output of three sensors 

 

2.2.4.4 Incorporating Probabilistic Sensor Fusion into the CxBR 
hierarchy 

 

CxBR is based upon the hypothesis that only a small portion of all available environmental 
inputs are used to recognise and treat the key features of a situation and that within any given 
situation, there are only a limited number of things that can realistically take place. The fact 
that only a small portion of sensory input is relevant at any point in time is used to enhance 
the effectiveness of the probabilistic sensor fusion scheme by limiting the number of nodes in 
the Bayesian network in each context. 

 

Sensors in the sentient object model are highly distributed, with changing configurations due 
to the mobility of sentient objects. In addition, which of a set of sensors are consulted at a 
particular point in time is highly dependant on the active context at that time. We perform 
sensor fusion at the level of a context within the CxBR hierarchy. A context defines which 
sensors are relevant to that context as well as those that must be monitored in order to detect 
when transition to another context is indicated. A Bayesian network is constructed within 
each context in order to fuse the fragments of context information obtained from the sensors. 
The integration of Bayesian network fragments into the CxBR hierarchy is illustrated in 
Figure 5. This figure shows how each context in the hierarchy is only interested in a subset of 
the sensor input, and Bayesian network fragments within each context act to fuse the context 
fragments obtained from the relevant sensors. 

 

In this way the sensor fusion task is modularised and vastly reduced in complexity. For each 
possible context in the CxBR hierarchy for a sentient object, a sensor fusion module is created 
which supports the fusion of pieces of context information obtained from relevant sensors. 
The fusion service is well separated from context acquisition as well as being separated from 
the inference engine. Such separation permits for the fusion service implementation to be 
easily replaced without affecting other components. 
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Figure 5: Sensor fusion in the CxBR hierarchy 

 

2.2.5 Conclusions and Future Work 
 

We are developing middleware, based on the sentient object model, to support context-aware 
applications. This middleware will permit the development of context-aware applications 
based on environmental perception whilst insulating the programmer from the complexities of 
physical sensors and their associated uncertainties. Programming such applications will 
consist of intuitively specifying the CxBR hierarchy and associated Bayesian network 
structure for fusion of context fragments. We are currently developing a large-scale sentient 
traffic simulation based on the sentient object model. In addition we are extending existing 
smart office infrastructure to make use of the sentient object model and its associated CxBR 
hierarchy based fusion services. 

 

Probabilistic models and particularly Bayesian networks provide us with a means to measure 
the effectiveness of our derivations of context information within a sentient object given 
inherently uncertain and noisy sensor data. The quantification of the reliability of a single 
sensor is a difficult task, but by doing so we are able to provide bounds on the certainty of 
information derived from the sensor. 
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2.3 Machine Learning 
 

The concern of the field of machine learning research is how to construct computer programs 
that can learn with past experiences in order to automatically improve performance [Mitchell, 
1997]. Machine learning is typically considered as a sub-topic of artificial intelligence and a 
multi-disciplinary subject inspired by cognitive sciences, computer sciences, pattern 
recognition, and statistics [Aha, 1995]. In the context of the sentient room demo, machine 
learning can be actively investigated as a practical method to learn a user’s interest, 
preference, knowledge, goal, habits, etc. in order to adapt the services to the user’s individual 
characteristics [Pohl W. 1996]. The way how multiple people resolve conflicts in the sentient 
room can also become the target function of the machine learning algorithms, so that the 
sentient room can make autonomous decision on future conflicts. It is also plausible to apply 
machine learning algorithms for inducing low-level contexts from sensory data, e.g., inducing 
how many people in the room from environmental parameters. 

The most popular and widely-used machine learning methods are the family of the inductive 
learning methods, which is based on the following assumption: “Any hypothesis found to 
approximate the target function well over a sufficiently large set of training examples will 
also approximate the target function well over other unobserved examples” [Mitchell, 1997]. 
The member of the inductive machine learning family includes decision tree learning, neural 
network learning, and Bayesian learning, etc.  

 

2.3.1 Decision Tree Learning  
 

Decision tree learning is a method for approximating discrete-valued target functions, and it is 
robust to noisy data and capable of learning disjunctive expressions. The learned function is 
represented in the form of a decision tree, which can also be described in some human 
friendly if-then rules. 

A decision tree is created from a training set of tuples, each of which is composed of an 
instance (which can have several attributes) and a value (e.g., positive or negative) for the 
target attribute. Most algorithms for the construction of decision trees are based on the 
concept of a top-down and greedy search through the space of possible decision trees. The 
famous decision tree algorithms based on the above approach, such as ID3 [Quinlan, J. R. 
1986], ASSISTANT [Cestnik et al. 1987], C4.5 [Quinlan, J. R. 1993)] have already been 
widely used both academically and commercially.  

After being constructed, a decision tree can classify instances by sorting them down the tree 
from the root to some leaf node, which provides the classification of the instance. Each node 
in the tree specifies a test of some attribute of the instance, and each branch descending from 
that node corresponds to one of the possible values for this attribute. A path from the root to a 
leaf node corresponds to a rule learned from the training samples. An instance is classified by 
starting the root node of the tree, testing the attribute specified by this node, then moving 
down the tree branch corresponding to the value of the attribute in the given example. The 
process is then repeated for the sub-tree rooted at the new node. In general, a decision tree can 
be interpreted as a disjunction of conjunctions of constraints on the attribute values of 
instances. Each path from the root to a leaf can be considered as a conjunction of attribute 
tests, and the tree itself as a disjunction of these conjunctions [Mitchell, 1997]. 
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2.3.2 Neural Network Learning  
 

Neural network learning methods provide a general approach to approximating real-valued, 
discrete-valued, and vector-valued target functions [Mitchell, 1997]. It is robust to errors in 
training data and has been successfully applied to many practical problems such as 
interpreting visual scenes, speech recognition, and leaning robot control strategy.  

An artificial neural network is an information-processing paradigm inspired by the way the 
densely interconnected, parallel structure of the mammalian brain processes information. An 
artificial neural network is built out of a densely interconnected set of simple units (or nodes), 
where each unit takes a number of real-valued inputs (possibly outputs of other units) and 
produces a single real-valued output (which may become the input to many other units). The 
processing ability of the network is stored in the inter-unit connection strengths (or weights), 
obtained by a process of learning from a set of training patterns.  

The Backpropagation algorithm is the most influential and commonly used neural network 
leaning technique. In this algorithm, the network consists of a fixed set of units, which are 
normally organized into multiple layers: input layer, at least one intermediate hidden layer, 
and output layer. Each unit in one layer is connected with all the units in the above layer, and 
the algorithm learns the weights of each connection based on the training samples. It employs 
gradient descent to attempt to minimize the squared error between the network output values 
and the target values for these outputs. The weights learned by neural networks are often 
difficult for humans to interpret.  

 

2.3.3 Bayesian Learning  
 

Bayesian learning is a straightforward learning algorithm that calculates the probability for 
each candidate hypothesis and selects the most probable posterior hypothesis. It is based on 
the assumption that the quantities of interest are governed by probability distributions and that 
optimal decisions can be made by reasoning about these probabilities together with observed 
data [Mitchell, 1997].  

The basis of the Bayesian learning is Bayes theorem, which provides a direct method for 
calculating the probability of a hypothesis based on its prior probability, the probabilities of 
observing various data given the hypothesis, and the observed data itself [Mitchell, 1997]. A 
highly practical Bayesian learning method is the naive Bayes classifier, where the training 
data is a set of tuples composed of a conjunction of attribute values and the target function. 
The target function can take on any value from a finite set. The leaner is asked to predict the 
target value or classification for anew instance described by the tuple of attribute values. The 
naive Bayes learning method selects the most probable hypothesis by estimating the various 
prior probabilities and conditional probabilities, which can be calculated over the training 
data. Instead of explicit searching through the space of possible hypothesis, the Bayesian 
learning simply counts the frequency of various data combinations within the training 
examples.  

In the Naive Bayes classifier, the assumption that the attribute values are conditionally 
independent given the target value might be overly restrictive. In some cases, the attributes in 
a training data set can be dependent on each other. Bayesian Belief Networks describe the 
dependence and independence between attributes using a graph. Using this networks can be 
an intermediate approach between the overall assumption of conditional independence in the 
naive Bayes classifier and avoiding conditional independence assumptions altogether. The 
network structure can be defined from prior knowledge or can be learned from the training 
data set itself [Heckerman, 1996].  
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2.3.4 Design Consideration  
 

When introducing machine learning methods into the sentient object paradigm, the following 
issues need to be considered:  

• Training Experience: The type of training experience is the first design choice we face. One 
key attribute is to choose direct or indirect training examples, which provide direct or indirect 
feedback regarding the choices made by the performance system [Mitchell, 1997]. The degree 
of controlling over the sequence of the training example by the learning system is the second 
important attributes. The third attribute is how well the training experience represents the 
distribution of examples.  

• Target Function: It is to determine what will be learned and how this will be used. In the 
context of the sentient room demo, are we going to learn the high level personal preferences 
or to infer how many people in the room from the low-level environmental parameters? Or 
both?  

• Representation: We must choose proper representations for the target function as well as the 
training examples. Standardized representation improves portability and extensibility of the 
system.  

• Learning Algorithm: Now we can determine to use which machine learning algorithm for 
the specific problem according to our selection criteria: some algorithms might be more 
efficient for certain application domains; some might be easier for human to understand and 
interpret; some might be more robust than other on dealing with the uncertainty of the input 
data, etc. All these attributes could become the reason of choosing certain learning algorithm. 
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ABSTRACT 
This paper describes an event model that has been 
designed to address the predictability requirements of 
applications operating in mobile environments based on 
hierarchically structured WAN-of-CANs network. The 
event model supports an event channel concept for 
modeling the guarantees provided by the underlying, 
heterogeneous communication infrastructure. The 
networks that comprise such a WAN-of-CANs may 
provide fundamentally different degrees of quality of 
service and as a result can be viewed as zones within 
which certain guarantees can be enforced. Event 
channels operating in CAN-based subnetworks with 
typically strong timing behavior may support hard 
temporal and reliability attributes whereas channels 
interconnecting these subnetworks using wireless 
networks support weaker timing attributes. 
 

Keywords 

Event-based middleware, timely event delivery, mobile 
computing, CAN networks, wireless networks. 

3.1.1 INTRODUCTION 
Advances in information technology encourage new 
classes of applications that are based on a large number 
of networked components acting autonomously in 
response to a myriad of sensors and actuators to assess 
and control aspects of the environment. Examples range 
in telematics, traffic management or home automation to 
name a few. To a large extent, such systems operate 
proactively and independently of direct human control 
driven by the perception of the environment and the 
ability to organize respective computations dynamically.  

 

 

 

 

 

 

 

 

The challenging characteristics of these applications 
include sentience and autonomy of components, issues of 
responsiveness and safety criticality, geographical 
dispersion, mobility and evolution. 

Such systems require a degree of co-operation, 
adaptability, extensibility and reliability that is not 
available today. The problem is to provide a 
communication and interaction scheme that supports a 
large-scale many-to-many communication relation 
typical for these applications. Additionally, it should be 
possible to seamlessly disseminate relevant information 
generated by deeply embedded controllers to all 
interested entities in the global network. 

The contribution of the paper is a model for a real-time 
event system on top of a heterogeneous communication 
system. Such a system may be composed from networks 
with largely different quality characteristics ranging from 
highly predictable real-time buses to ad-hoc wireless 
networks in which mobility of nodes result in frequent 
link failures. The focus of the paper is on the quality 
aspects of communication, explicitly providing a system 
architecture that reflects a realistic network model in 
large-scale cooperative applications. It presents 
abstractions to encapsulate network properties and make 
them assessable on the level of the event system. Related 
work on event systems does not allow to explicitly 
model quality properties resulting from heterogeneity [1-
3], or it deals with mechanisms that mask network 
heterogeneity, thereby neglecting respective real-time 
and quality issues. 

3.1.1.1 Overview 
The event-based communication model represents a 
paradigm for middleware that asynchronously 
interconnects the components that comprise distributed 
applications [4]. Event-based middleware has been 
recognized as being well suited to addressing the 
requirements of mobile application [5-8] and to 
connecting the components in control applications with 
timeliness requirements [1-3]. However, to date event 
models have not been designed to offer sufficient levels 
of dependability for real-time systems while supporting 
mobile application components. 
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This paper presents an event model addressing the 
predictability requirements of large-scale applications 
operating in mobile environments based on 
heterogeneous communication infrastructures. Our event 
model defines an abstract network model and provides 
mappings for the envisaged network types. These 
networks may include Controller Area Networks (CAN), 
Local Area Networks (LAN), and Wide Area Networks 
(WAN), especially those based on wireless technology. 
The underlying communication infrastructure typically 
consists of a hierarchically structured WAN-of-CANs 
network, an internetwork whose subnetworks will 
typically be CANs that are interconnected by means of 
wireless LANs and WANs. The networks that comprise 
such a WAN-of-CANs typically provide fundamentally 
different degrees of Quality of Service (QoS), ranging 
from CAN networks with strong timing and reliability 
behavior to wireless network supporting mobile 
application components and as a result providing weaker 
guarantees. We regard individual networks as QoS 
containers, called zones, within which given degrees of 
predictability in terms of timing and reliability can be 
enforced. 

Our event model provides a programming model based 
on the concept of event channels. A number of event 
channel classes with different temporal and reliability 
attributes are supported for integrating the real-time 
aspects into the event channel model. Depending on the 
guarantees available from the underlying network, these 
event channels can be mapped to certain QoS zones. 
Generally, channels can be associated with zones 
providing equal or stronger guarantees. 

In order to address the requirements of real-time 
systems, we support classes of hard, soft, and non real-
time event channels. Hard real-time event channels are 
considered to meet all temporal requirements under the 
specified fault assumptions. Soft real-time event 
channels are scheduled according to deadlines. 
Nevertheless, these deadlines are not guaranteed during 
transient overload conditions. Non real-time event 
channels are typically used for best-effort event delivery 
without any specified timeliness requirements. In 
general, any class of event channel may be mapped to 
zones representing CAN-based subnetworks whereas 
zones including wireless network can only support 
guarantees sufficient for soft and non real-time event 
channels. However, we envisaged using a predictable 
medium access protocol, such as the Time-Bounded 
Medium Access Control (TBMAC) [9] protocol, in order 
to provide soft real-time deadlines with a high 
probability for event channels propagating events in 
wireless networks. 

3.1.1.2 Paper Organization 
The remainder of this paper is structured as follows: 
Section 3.1.2 presents the system architecture including 
the underlying network infrastructure and the classes of 
event channels. In section 3.1.3, we discuss arising issues 
when applying real-time to a WAN-of-CANs network, 
especially those based on wireless technology. Section 
3.1.4 focuses on the programming model supported by 
our event model and section 0 outlines the 
communications architecture. Section 0 concludes this 
paper by summarising our work and outlining the issues 
that remain open for future work. 

3.1.2 SYSTEM 
ARCHITECTURE 

When striving for a real-time event system, the 
communications architecture substantially affects the 
temporal and reliability properties of event 
dissemination. Thus, in quality terms the underlying 
network is not transparent for the application using the 
event system. The goal for our event system is to express 
the quality requirements of event dissemination on the 
abstraction level of events rather than to resort to lower 
network details. The middleware then automatically 
maps these requirements to the underlying network. 
Hence, we will briefly introduce the general assumptions 
about the network architecture. 

3.1.2.1 General Network 
Structure 

From an application point of view, the event system 
should support cooperating autonomous entities, such as 
cars, robots, and people wearing computers and moving 
through a smart environment. As an example consider 
autonomous mobile robots which may be equipped with 
all kinds of smart sensors, such as lasers, radars, 
cameras, navigational sensors, and chemical sensors, to 
achieve an adequate perception of their environment. 
The necessary highly reactive behaviour of such an 
individual robot has to be achieved by a tight 
cooperation of the sensor / actuator system over some 
special purpose network inside the robot, called a CAN 
(Controller Area Network in a broad sense). 
Additionally, the vehicles may communicate via a 
wireless link carrying out joint tasks. At an abstract 
layer, this is modelled as islands of tight control 
cooperating via a WAN-of-CANs structure [10]. We 
assume a certain guaranteed level of predictability as an 
intrinsic property of a CAN. A CAN therefore 
constitutes a zone of coherent QoS provision. 
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Figure 1. The WAN-of-CANs network 
architecture. 

The general structure depicted in Figure 1 is recursive in 
a sense that a CAN may be composed from a hierarchy 
of networks itself. This issue is not further discussed in 
this paper. It should only be noted that each of the 
interconnected subnets constitutes a zone in which a 
certain QoS is defined. The gateways have multiple 
functions. Firstly, they route events over network 
boundaries by maintaining an event interface that is 
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transparent with respect to functional properties 
throughout the network. For non-functional quality 
attributes they provide the needed awareness about the 
network properties. Thus, they have to marshal events 
depending on the underlying abstract network 
infrastructure, which is described below. Secondly, they 
constitute filters that allow to scope events according to 
their context and their quality attributes as introduced in 
section 3.1.4. A realisation of this structure for 
cooperating mobile robots internally equipped with a 
CAN-Bus, which is extended via gateways to a wireless 
LAN for event dissemination between the robots is 
presented in [11]. Furthermore, a middleware service 
that has been designed for interconnecting mobile 
application components using ad hoc wireless local area 
networks has been described in [12]. 

3.1.2.2 Abstract Communication 
Layers 

There is a trade-off between the predictability of 
communication and the needed resources. At the safe 
end, all communication is statically planned and 
resources have to be assigned anticipating worst-case 
load and failure assumptions. However, this may only be 
required for a small number of highly critical services. In 
fact, critical system services as could use such highly 
predictable links to meet its temporal and reliability 
requirements, e.g. tight sensor / actuator control loops 
e.g. for crash avoidance or motor and brake control. In 
most cases less critical events have to be accommodated 
by the communication system, which also allow more 
dynamic system behaviour. However, also for these 
events, temporal parameters may be needed, e.g. the 
specification of when an event should be delivered or 
how long the event is valid. The different requirements 
are reflected by event channel classes with different 
properties. On the architectural level, we distinguish 
three layers roughly depicted in Figure 2. 

On the event layer, the main abstractions are events and 
different classes of event channels. As described in 
section 3.1.4, this layer enables the application to specify 
channels with different QoS properties. Mapping the 
abstractions of the event layer directly to the underlying 
network is a tough challenge because the usual 
abstractions on the network layer are low-level 
messages. Hence, this layer does not match the 
requirements of group communication, subject-based 
addressing or the QoS specifications defined for 
channels.  
Therefore, an abstract network layer is introduced 
enriching the properties of the raw network (this may not 
just be a physical network, but a specific MAC-layer or 
even a higher OSI level) with additional properties and 
communication services such as reliable broadcast, 
group communication, and temporal guarantees for 
message dissemination. This separation of concerns 
supports modularity and allows for an easier adaptation 
of the event layer to networks with widely differing 
characteristics. 

It should be noted that the QoS properties of the event 
layer in general depend on what the abstract network 
layer can provide. Thus, it may not always be possible to 
support highly safety critical hard real-time event 
channels if the abstract network layer cannot provide the 
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Figure 2. Architectural layer. 

required guarantees. Therefore, the event channels 
supported by the event system are dependent on the 
zones in which the respective protocols can be provided. 
As an example, [13] describes the protocols and services 
of the abstract network layer for a particular CAN-Bus. 

3.1.3 REAL-TIME AND 
MOBILITY 

Previous research in real-time event-based 
communication [1, 3] has focused on wired networks 
assuming a static number of location fixed nodes and a 
known fault hypothesis. Transmission schedules for 
avoiding collisions are typically planned statically and 
the correctness of these schedules regarding timing 
conflicts and temporal overlaps are verified off-line. 
However, such an approach would be inappropriate for 
achieving real-time guarantees for wireless 
environments, especially when using ad hoc networks. 
The characteristics of wireless networks that render such 
an approach unsuitable include highly dynamic 
connections, location-dependent coverage and 
contention, and its susceptibility to the physical 
environment. 

3.1.3.1 Dynamic Connections 
Wireless network connections between mobile nodes are 
typically established dynamically due to the 
unpredictability of node movements. Maintaining 
accurate network information in such an environment, 
which is essential for enforcing delivery guarantees, 
requires the propagation of updates reflecting the actual 
network topology. The frequency for disseminating these 
updates relates directly to the level of node mobility and 
consequently results in additional, potentially 
unpredictable communication and computational load. 

Link failures are the norm rather that the exception in 
wireless networks. Links may fail as a result of various 
reasons including individual node failures, for example 
due to low battery power, physical obstacles blocking a 
transmission, and nodes moving out of transmission 
range. Significantly, link failures may result in network 
partitions where groups of node operate independently of 
each other. Adapting to link failures relies on timely and 
accurate topology updates, which may be affected by the 
unpredictability of the network and by the presence of 
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partitions. Updates may be confined to certain partitions, 
which implies partial knowledge of the network 
topology. 

Timeliness guarantees for event delivery rely on a 
transmission schedule that reflects the priorities and 
deadlines associated with events and on the precision of 
such a schedule, which derives from the accuracy of the 
available typology information. Hence, providing 
guarantees with a high probability is hard in wireless 
environments as the required topology information is 
likely to be out of date or even incomplete. Moreover, it 
may be impossible to deliver an event to all subscribers 
in the presence of partitions. 

 

3.1.3.2 Location-Dependent 
Coverage And 
Contention 

Coverage can be defined as the geographical area to 
which a particular node can send messages using single-
hop or multi-hop communication. The area covered by 
the wireless transmitters of mobile nodes typically 
changes over time depending on the movements of 
individual nodes. Consequently, coverage describes the 
set of nodes, which is likely to change over time, to 
which a specific node can propagate events at a given 
time. Kanodia et al. [14] propose a protocol for ordered 
event scheduling in ad hoc wireless networks. This work 
focuses on topologies in which all nodes reside within 
single-hop transmission range of each other and as a 
result assumes that these nodes have the same 
information describing the network topology. Tobagi and 
Kleinrock [15] as well as Kanodia et al. [14] discuss 
topologies where nodes use multi-hop communication 
when propagating messages. Such nodes may have 
different probabilities of accessing a wireless 
communication channel and different throughput 
capabilities, depending on properties such as spatial 
reuse and contention degree. Unequal channel access is 
detrimental to achieving distributed agreement and 
results in unpredictable transmission delays, which leads 
to unbound delivery latency. 

Wireless transmissions in ad hoc networks are broadcast 
through a physical communication channel shared by a 
group of nodes. This implies that the contention level of 
a specific channel depends on its location. In order to 
avoid collisions at a certain location, nodes sense an 
ongoing transmission and restrain from sending until the 
channel becomes available. Hence, nodes must exploit a 
means to arbitrate spatial contentions between the 
transmissions in their spatial locality. Luo and Lu [16] 
propose a fair channel access model that ensures 
coordination among spatially contending transmissions. 
However, this work assumes that individual 
transmissions are decoupled from each other and that 
scheduling can be performed independently for each 
transmission. This cannot be assumed in applications 
comprising highly mobile nodes. Moreover, neither 
Tobagi and Kleinrock [15] nor Luo and Lu [16] address 
temporal or reliability constraints, which are essential for 
providing end-to-end delivery guarantees. 

3.1.3.3 Susceptibility To The 
Physical Environment 

The physical environment has a critical impact on 
wireless communication. Many physical objects such as 
vehicles and building as well as people themselves may 
represent obstacles that effect transmissions. Obstacles 
impede wireless signals and result in a reduction of the 
available signal strength. Consequently, they may lead to 
packet loss as well as to unpredictable transmission 
delays and jitter. The dynamic aspect of parts of the 
physical environment causes unpredictable occurrences 
and durations of such impeding effects. This results in 
significant fluctuations between intervals of high and 
low connectivity. Significantly, this unpredictable, 
dynamic behavior of the physical environment causes 
variations in the quality of service available from the 
network. 

3.1.4 THE PROGRAMMING 
MODEL 

As a consequence of the interaction with the physical 
world, the pace of interactions and of the computational 
progress in the distributed system is dictated by the 
progression of real time and the properties of the 
environment. To support coordination of actions, 
cooperation between mobile entities and fusion of 
elementary events in the sentient object model [17], the 
events must be disseminated in a predictable way. 

An event encapsulates the description of an observation 
about the change in the environment or the system. 
Hence, it is related to an occurrence in the real world, 
e.g. observed by a sensor, or an in the control system 
itself, e.g. generated by some control program. An event 
is an instance of an event type, which is characterized by 
subject, attributes, and content:  

 

 event := <subject, attribute_list, content >. 

 

The subject is attached to an event as a tag to explicitly 
identify the event's type and enable basic filtering and 
some form of type checking on event dissemination. An 
event is further characterized by a set of functional and 
non-functional attributes. Functional attributes are 
related to the application relevant context in which an 
event has been generated and may include information 
like location, range of dissemination (relative location or 
proximity) and time of occurrence, or system related 
information like a mode of operation or a network zone 
in a WAN-of-CANs architecture. Non-functional 
attributes represent intrinsic properties and quality 
aspects of an event. These may be deadlines necessary to 
express temporal requirements of event dissemination or 
a validity interval according to an aging function. A 
deadline is used to schedule an event in the 
communication system and define priority relations to 
other events. The validity interval defines an application 
related interval that may go beyond the deadline when 
the usefulness of the event expires. It allows a certain 
tolerance of transient overload when the event cannot be 
delivered within the deadline but eventually to discard an 
event and purge the system from outdated events. This is 
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particularly important in a real time event system to 
prevent the already outdated events to still compete for 
resources with the actual events. Finally, the content of 
an event carries the data that is represented as a 
structured set of functional parameters. The content is 
accessible by specific methods. 

Predictability incorporates the timely delivery of events 
under anticipated load and failure conditions. The nature 
of events may range from a safety-critical event 
signaling that a crash of a mobile vehicle with an 
obstacle is about to happen to the dissemination of non-
critical events describing a room temperature or 
illumination intensity that have less demanding 
predictability requirements. As a matter of fact, there is a 
trade-off between the resources expended and the degree 
of predictability. Consequently, the respective 
requirements for the underlying abstract network may 
range from synchronous reliable broadcasts [11, 18] to 
best effort communication. 

To facilitate the specification of the particular 
requirements for event dissemination the notion of event 
channels is introduced. An event channel encapsulates 
properties of the underlying communication system and 
allows specifying quality attributes on an abstraction 
level where it is assessable to an application 
programmer. The benefits are twofold: Firstly, a check 
can be performed whether the non-functional attributes 
of an event match to the quality attributes defined for the 
event channel. This allows early timing failure detection. 
Secondly, predictability requires that resources are 
available when they are needed. An event channel can be 
established and the necessary resources can be assigned 
by the middleware before an event has to be 
disseminated. The general form of an event channel 
representation is given by: 

 

event_channel := <subject, attribute_list, handlers > 

 

In contrast to the attributes of an event, which describes 
the properties of a single individual occurrence of an 
event, the attributes of the event channel abstract the 
properties of the underlying communication network and 
dissemination scheme. Therefore the attributes define 
quality properties and include e.g. latency, dissemination 
constraints and reliability parameters. The subject of the 
event channel must match the subject of the event that is 
disseminated through the channel. The "handlers"-field 
allows specifying notification and exception handlers for 
the event channel. 

According to the need in most real-time systems, 
particularly, if we assume the network architecture 
introduced in section 3.1.2, event channels with different 
timeliness and reliability properties must be supported. 
We distinguish three event channel classes: Hard Real-
Time Event Channels (HRTEC), Soft Real-Time Event 
Channels (SRTEC) and Non Real-Time Event Channels 
(N7RTEC). A HRTEC offers rigorous guarantees for 
discrete control based on sporadic events as well as for 
continuous control requiring periodic events like sensor 
readings and control feedback. For sporadic events a 
maximum latency will be guaranteed while for periodic 
events the goal is to achieve a low period- and latency-
jitter. The guarantees are maintained under an anticipated 

number of omission failures. Events published to a 
SRTEC are scheduled according to the Earliest Deadline 
First (EDF) algorithm. As outlined below, deadlines may 
be missed in situations of transient overload or due to the 
arbitrary arrival times of messages. Finally, a NRTEC 
disseminates events that have no timeliness 
requirements. 

The transport of events through a hard real-time event 
channel (HRTEC) is synchronous and reliable. The 
properties of a HRTEC are defined by: 1.) a known 
upper bound for the transport latency, i.e. the interval 
between the point in time when an event message 
becomes ready and its delivery; 2.) a known upper bound 
for the latency jitter, i.e. the variance of the transport 
latency; 3.) a known upper bound of the period jitter for 
periodic events, i.e. the variance on the period; 4.) a fault 
assumption under which the properties 1.)- 3.) are valid. 
In order to offer such properties, a HRTEC transparently 
handles redundant transmissions of events and 
guarantees that the respective publisher has a privileged 
access to the communication network. A HRTC s is 
based on a highly predictable abstract network, e.g. 
enabling the reservation of network resources. Highly 
predictable and reliable protocols such as [9, 18, 19] can 
provide the respective quality of service in the abstract 
network layer. 

Soft real-time events have timeliness requirement that 
are expressed by deadlines and validity intervals. Thus, a 
SRTC has to reflect these properties. Soft real-time event 
messages become ready at any time and are scheduled 
according to their transmission deadlines. Different from 
HRTCs, SRTECs do not use reservations. The 
transmission deadline is defined as the latest point in 
time when a message has to be transmitted and events 
are scheduled according to an earliest deadline first 
algorithm. However, because a message can not be 
interrupted during its transmission and messages may 
become ready at arbitrary points in time, EDF will not 
always take the right scheduling decisions (only a 
clairvoyant scheduler would be able to do so) and 
situations of temporal conflicts and transient overload 
may occur. In theses situations, messages will still be 
transmitted at a later time in a best effort manner. An 
SRT event message eventually will be discarded if its 
transmission time is delayed beyond its temporal 
validity. The expiration time is an application specific 
parameter, which may be defined according to some 
value function. 

NRTCs are used for events that do not have timeliness 
requirements. They are primarily intended for 
configuration and maintenance purposes. While HRTC 
and SRTC disseminate events of restricted length to meet 
the responsiveness requirements of real-time systems, 
NRTC may transfer bulk data.  

3.1.5 THE 
COMMUNICATIONS 
ARCHITECTURE 

The design of the communications architecture is 
motivated by our approach to defining an abstract 
network model describing the characteristics of the 
underlying WAN-of-CANs architecture and by our 
programming model based on our concept of event 
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channels with different timeliness and reliability 
properties. We employ a mechanism for enforcing hard 
real-time event channel properties in CAN networks and 
another mechanism based on bounding the propagation 
range of events for providing soft real-time guarantees 
with high probability in wireless networks. 

3.1.5.1 Mapping Event Channels 
To Zones 

Applications may comprise numerous components 
representing real-world objects that may be mobile and 
distributed over a large geographical area. Such 
components are typically location aware and depending 
on their location may interact using different parts of the 
underlying WAN-of-CANs network architecture. Our 
abstract network model describes the characteristics of 
such a network infrastructure dividing it into zones 
reflecting the available quality of the network service. 
Applications may define various event channels 
disseminating events with different temporal and 
reliability properties. Depending on the guarantees 
available from the underlying network, these event 
channels can be mapped to certain QoS zones. Generally, 
event channels can be associated with zones providing 
equal or stronger guarantees. For example, a traffic 
management application may include vehicles 
interacting trough wireless networks in order to 
exchange information on the current traffic situation 
thereby contributing to better driver awareness and 
consequently to safer driving. Such information may 
include an accident notification disseminated by a 
broken-down car to approaching vehicles. Various 
components representing intra vehicle objects, such as 
breaks, accelerator, and speedometer, and lights, might 
communicate using a CAN-based network. Such inter-
vehicle and intra-vehicle communication may use 
different event channel classes for interconnecting their 
respective components. Hard real-time event channels 
may be mapped to a zone incorporating intra vehicle 
components whereas event channels with weaker 
delivery guarantees may be mapped to a zone comprising 
components using wireless communication. 

Multiple event channels may be mapped to a particular 
zone sharing the available resources. Such event 
channels typically disseminate events describing 
different information and may support different 
properties. For example, intra-vehicle communication 
may include a hard real-time event channel 
disseminating events on behalf of breaks and accelerator 
and a non real-time event channel controlling the lights 
of the vehicle. 

Event channels may connect components across multiple 
parts of the network architecture and as a result may be 
mapped to multiple zones. The properties that can be 
enforced by such an event channel depend on the level of 
QoS provided by each of the zones involved. An event 
channel can be associated with multiple zones if every 
zone involved provides equal or stronger guarantees. 
Moreover, an event channel may only operate across the 
boundaries of multiple zones if the underlying networks 
are connected through designated gateway components. 
Such gateways act as producer and consumer of events 
on either side of the networks they connect. Events 
received on one side are disseminated on the other side 
and vice versa. In addition, gateways allow applications 

to specify network specific mapping of event data and 
attributes and handle implicit attributes, such as location. 
A gateway may use a location service to retrieve its own 
location and may append this location information to 
events generated by nearby nodes lacking direct access 
to a location service. For example, a gateway located in a 
vehicle may connect a CAN-based intra-vehicle network 
and a wireless inter-vehicle network. It may attach its 
own location to events generated by nodes on the CAN 
network as these reside close to the gateway and 
maintain their location relative to the gateway. 

3.1.5.2 Mapping Event Channels 
To CAN Networks 

Event channels may support hard real-time guarantees in 
zones represented by special CAN-networks. We 
exploited the specific mechanisms of a CAN-Bus, which 
is popular in the automotive industry, to design an 
abstract network layer that can support different real-
time guarantees for the delivery of messages. The focus 
of this work has been on using the hardware supported, 
lower level priority mechanisms of the CAN-Bus to 
schedule messages according to the suggested real-time 
classes. The abstract network layer thus implements 
reliable hard real-time message delivery and also the 
weaker forms of guarantees. On top of this abstract 
network layer a publisher/subscriber protocol has been 
devised [3] for real-time control applications providing 
all real-time event channel classes introduced earlier. For 
a detailed description of mapping the real-time channels 
to this different message classes the reader is referred to 
[13]. 

3.1.5.3 Mapping Event Channels 
To Wireless Networks 

As we have discussed in section 3.1.3, enforcing hard 
real-time guarantees in wireless environments in general 
and in ad hoc networks in particular is problematical due 
to the dynamic nature of these networks. However, we 
argue that soft real-time event channels can be supported 
in zones that contain wireless networks. Significantly, 
we envisage using a set of techniques in order to provide 
soft real-time guarantees with a high probability. 

We propose to bound the propagation range of events in 
wireless environments [12] by defining event channel 
attributes that describe geographical areas within which 
events are valid. Such proximity-based event 
dissemination represents a natural way to limit the scope 
of an event channel, thereby allowing entities to interact 
based on their current location. An example scenario 
illustrating such behavior might include a broken-down 
car disseminating an accident notification to vehicles in 
its vicinity. 

Moreover, we envisaged using a predictable medium 
access protocol, such as the light-weight, location-aware, 
atomic multicast protocol for Time-Bounded Medium 
Access Control (TBMAC) [9], when propagating event 
notifications. The TBMAC protocol is based on time-
division multiple access with dynamic but predictable 
slot allocation and has been designed for use in multi-
hop ad hoc networks. It provides, with high probability, 
time-bounded access to the wireless medium that can be 
exploited by event channels with guaranteed response 
time requirements. 
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3.1.6 CONCLUSIONS 
We have presented an approach to incorporating the 
topology of a heterogeneous communication 
infrastructure into an event-based programming model. 
We have described how an event model may address the 
predictability requirements of applications operating in 
mobile environments based on hierarchically structured 
WAN-of-CANs network. An abstract network model 
reflecting the fundamentally different levels of quality of 
service available from the subnetworks that comprise 
such a WAN-of-CANs network defines QoS containers 
that can be viewed as zones within which certain 
guarantees can be enforced. Our programming model is 
based on a concept of event channels supporting a 
number of event channel classes with different temporal 
and reliability attributes. Depending on the guarantees 
available from the underlying network, these event 
channels can be mapped to certain QoS zones. Generally, 
event channels can be associated with zones providing 
equal or stronger guarantees. 

We have introduced two prototype implementations of 
our event model. The CAN version enforces hard-real 
time guarantees in CAN-based subnetworks using lower 
level mechanisms of the CAN-Bus. The LAN version 
uses techniques, including geographical bounding of the 
event propagation range and predictable medium access, 
to provide soft real-time guarantees with a high 
probability in wireless networks. 

Although we have discussed and addressed some of the 
fundamental issues arising when applying event-based 
programming to real-time systems in mobile 
environments, certain issues remain open for future 
work. We are currently investigating means for 
applications to program entities acting as gateway 
components. Approaches, for example based on 
exploiting rule-based programming models, have to be 
provided for specifying network specific mappings of 
event data and attributes. Furthermore, our QoS 
framework needs to be extended in order to incorporate 
an access control mechanism for proactively managing 
the number of entities using a specific event channel. 
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ABSTRACT  

 Most previous work on real-time event-based communication has assumed static, infrastructure-based 
networks. The underlying assumption of this work is that application components are stationary and that a fixed 
network infrastructure exists to facilitate communication [1]. Mobile ad hoc wireless networks comprise a number 
of mobile nodes connected by wireless links forming arbitrary time-varying wireless network topologies without 
using any infrastructure or administrative support. This highly mobile, dynamic network is not suitable to the static 
design assumptions of infrastructure networks. 

In this paper we propose a conceptual model based on predictive techniques. Our model is designed to alleviate the 
impediments for real-time event-based communication that are characteristic in a mobile ad hoc wireless 
environment.  

 The model we propose is the first to directly address the issue of achieving timeliness and reliability 
considerations for real-time event-based communication in dynamic mobile ad hoc wireless networks. In this paper 
we describe the impediments imposed by ad hoc wireless networks on real-time event-based communication, and 
propose a high-level model to reduce their impact. 

 

3.2.1 INTRODUCTION 
The heterogeneity and inherent loose coupling that characterizes applications in a wireless ad hoc network promote 
event-based communication as a natural design abstraction for a growing class of software systems [1]. The event-
based communication model is well suited to addressing the requirements in the wireless mobile computing 
domain [2]. In this domain the infrastructure or the ad hoc network model may be utilized for wireless 
communication. Infrastructure wireless networks use access points to mediate communication between mobile 
application components. Mobile ad hoc wireless networks comprise a number of mobile nodes connected by 
wireless links forming arbitrary time-varying wireless network topologies without using any infrastructure or 
administrative support. Ad hoc wireless networks are self-creating, self-organizing and self-administering [3].  

The event-based communication model has lead to the development of several middleware services that use the 
event paradigm as a high-level communication abstraction. The underlying assumption of these services is that 
application components are stationary and that a fixed network infrastructure exists to facilitate communication 
[1]. The complexities introduced by the mobile ad hoc wireless model, for example dynamic and instantaneous 
topology changes, are not considered. For event-based communication to scale to mobile ad hoc wireless networks 
it is important that their design is not based on many of the assumptions made for fixed infrastructure networks, 
such as low latency, abundant bandwidth, homogeneous platforms, continuous and reliable connectivity and most 
importantly centralized control [1].  

With the increased research in ad hoc networks in recent years new application domains such as inter-vehicle 
communication and communication between mobile robots have evolved. Timely communication is essential to 
allow applications in these domains to be realized. The real-time event-based communication paradigm has been 
recognized as an appropriate high-level communication scheme to connect autonomous components in large 
distributed control systems [4], but can the existing models extend to real-time event communication between 
mobile nodes in a dynamic wireless ad hoc environment?   

In this paper we discuss the characteristics of ad hoc wireless networks. We identify how these characteristics 
impede real-time event-based communication in the ad hoc wireless domain. We propose a conceptual model 
based on predictive techniques to alleviate the impediments characteristic in a mobile ad hoc wireless environment.   

In the next section we review the assumptions upon which existing real-time event-based communication models 
rely. We pay particular attention to the extent to which these assumptions are applicable in the ad hoc wireless 
domain. The following section describes the limitations on real-time event-based communication due to the 
characteristics of mobile ad hoc wireless networks and is followed by a description of our conceptual model that 
uses prediction to overcome these ad hoc wireless limitations. We finish the paper with some conclusions and a 
discussion of future work. 
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3.2.2 ASSUMPTIONS IN FIXED INFRASTRUCTURE 
NETWORKS 

For real-time event-based communication models to scale to mobile ad hoc wireless networks it is important for 
their design not to be based on many of the assumptions made for infrastructure-based networks, both wired and 
wireless. In this section we review the common assumptions of some real-time event-based communication models 
for infrastructure networks and discuss their suitability in the mobile ad hoc wireless domain.  

 

• Network-wide services and intermediary middleware components are available:  The CORBA Event 
Service [5], and its extension the CORBA Notification Service [6] allow application components to use 
event-based communication, in addition to the core functionality of the Object Request Broker (ORB). 
The CORBA Notification Service provides QoS capabilities such as event reliability, event priority and 
timed event delivery. Both event models use a single mediator called an event channel, through which all 
event data is disseminated. In the TAO Real-time Event Service [7],[8], the event channel plays the same 
intermediary role. However the TAO real-time event channel is extended to include prioritized event 
scheduling, event dispatching and event filtering. In these models accessibility to the event channel is 
critical for all entities participating in event-based communication. In the Real-time Event Channel 
Model for the CAN-Bus [9], three event channels are distinguished: hard real-time event channels 
(HRTEC), soft real-time event-channels (SRTEC) and non real-time event channels (NRTEC). Each 
event channel supports different timeliness and reliability properties.  

In infrastructure networks intermediate components such as event channels or event dispatchers [1], [2] 
are often run independently and remotely. This topology has limited practical implementation in ad hoc 
wireless networks. A serious impediment of ad hoc wireless networks is the limited area that can be 
covered by mobile application components using a wireless transmitter. Event-based communication 
using an intermediary middleware component requires all entities in a system to be able to communicate 
with it at any given time. In an ad hoc wireless network entities may be distributed over a potentially 
large geographical area and thus are unlikely to be able to maintain a permanent communication link to 
the intermediate [10]. This impediment of wireless ad hoc networks necessitates the omission of 
intermediate components providing system-wide services. 

 

• Known upper bound on participating nodes: Fixed infrastructure networks have a known maximum 
number of nodes connected to the physical medium [9]. In contrast, ad hoc wireless networks have the 
potential to serve as a ubiquitous wireless network capable of interconnecting many thousands of devices 
[11]. There is potentially no upper bound on the number of nodes participating in an ad hoc wireless 
network. Scalability with respect to unbounded network size becomes an issue due to the increased 
computational load and difficulties of propagating network updates within given time bounds [12], 
which increases the unpredictability of wireless connections and effects timely route and resource 
reservation decisions. 

 

• Static resource requirements: Both the TAO Real-time Event Service [7] and the Real-time Event 
Channel Model for the CAN-Bus [9], use the assumption of a static or fixed number of participating 
nodes with static resource requirements [9].  The assumption of a static network is used to perform real-
time scheduling off-line using a reservation-based scheme to avoid collisions by statically planning the 
transmission schedule. An off-line admission test checks the correctness of the reservations for timing 
conflicts and temporal overlap. Static scheduling implies that there is no mechanism for enforcing 
cooperative component behaviour that would be critical in a dynamic mobile ad hoc environment. 

Static resource reservation schemes for real-time event models assume a fixed upper bound on the 
number of participating nodes. As previously discussed this assumption is not applicable in a mobile ad 
hoc wireless domain. A dynamic resource reservation scheme is required to handle the effects of 
dynamic mobility. To obtain mobility independent real-time guarantees, a mobile host would need to 
make advance resource reservations at predicted locations they may visit during the lifetime of the 
communication [13]. Accurate mobility and location prediction is critical for limiting the overhead of 
excessive resource reservation. 

 

The dynamic mobility of ad hoc wireless networks renders the assumptions of event-based communication for 
infrastructure networks inappropriate. STEAM [10], is an event-based middleware service designed for the mobile 
computing domain, specifically IEEE 802.11 LANs utilizing the ad hoc network model. STEAM addresses some 
of the fundamental issues arising for event-based communication among mobile ad hoc wireless nodes. Open 
issues relating to the characteristics of wireless networks and their impact on the timeliness and reliability of real-
time applications are not addressed. We will discuss these particular issues in the following section. 
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3.2.3 IMPACT OF AD HOC WIRELESS CHARACTERISTICS  
 

3.2.3.1 Mobility related link availability 
The absence of fixed infrastructure means that nodes in an ad hoc network communicate directly with one another 
in a peer-to-peer fashion. In wireless ad hoc networks, the topology changes dynamically and unpredictably due to 
node mobility [14]. Mobile nodes constitute the communication infrastructure [14] – a node acts as both a packet 
router and an end host. As nodes move in and out of range of other nodes, the network topology changes 
dynamically. The topology changes must somehow be communicated to all other nodes as appropriate. Since 
topology updates throughout the network cannot happen instantaneously, the global state information may never be 
accurate [3]. Decisions based on inaccurate information have unpredictable consequences that may be critical for 
real-time event-based communication.  

 Unlike fixed infrastructure networks where link failures are comparatively rare events, the rate of link 
failure due to node mobility is the primary obstacle to routing in ad hoc networks [15]. Since the rate of link failure 
is directly related to node mobility, greater mobility increases both the volume of control traffic and the congestion 
due to traffic backlogs. Link failures may result in network partitions. These observations suggest the need to 
include node mobility in the path selection process [11]. We propose using a predictive architecture combining 
mobility prediction with partition anticipation to achieve predictive routing and resource reservation. Changes in 
the network topology can be predicted in advance and the impact on real-time event-based communication 
minimized [16]. 

 

3.2.3.2 Location-Dependent Contention 
Wireless transmissions in ad hoc networks are broadcast through a shared physical communication channel. Nodes 
within range of an ongoing transmission must restrain from sending until the channel becomes available, to avoid 
collisions. Hence, nodes arbitrate spatial contentions between the transmissions in their spatial locality. Luo and Lu 
[17] propose a fair channel access model that ensures coordination among spatially contending transmissions. 
However, this work assumes that individual transmissions are decoupled from each other and that scheduling can 

 

be performed independently for each transmission, an assumption that cannot be made in networks comprising 
highly mobile nodes. Also Luo and Lu, do not address temporal or reliability constraints, which are essential for 
providing end-to-end delivery guarantees. For real-time event transmission each mobile node must have time-
bounded access to the wireless medium with a high probability. This is the focus of the TBMAC protocol [18], 
which also provides time-bounded collision detection and recovery, all of which are essential for event 
communication within bounded temporal constraints. 

Wireless 
characteristic 

Impact on real-time event-based 
communication 

Benefit of prediction 

Mobility related link 
availability 

1) Increased computational load and 
unpredictability for topological 
updates  

2) Higher probability of link failures 
and network partitions 

3) Inaccurate global information 

Mobility prediction, partition 
anticipation and predictive routing 
and resource reservation reduce 
reaction time to topological change 
by finding new routes in advance of 
the failure of existing routes.  

Location-dependent 
contention 

1) Unpredictable/unequal channel 
access for event flows based on 
inaccurate global information 

2) Inadequate network coverage  

Coverage estimation calculates the 
probability of the accuracy of a 
decision in the presence of 
disconnected nodes, therefore 
reducing the impact of incomplete 
network knowledge on channel 
access, routing and scheduling 
decisions. 

Physical environment Unpredictable variances in connectivity Anticipate partitions in advance and 
proactively reroute to establish new 
routes in advance of old routes 
failing.  
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The area covered by the wireless transmitters of mobile nodes typically changes over time depending on the 
movements of individual nodes. Kanodia et al. [19] discuss achieving priority event scheduling in the presence of 
incomplete information sharing. They present several scenarios where the performance of IEEE 802.11 
significantly diverges from an ideal reference schedule and attribute this to asymmetric information and perceived 
collisions. Accurate priority scheduling to reflect event class and event deadline is essential for real-time event-
based communication. Any divergence from the ideal schedule is critical and in the case of hard real-time events, 
may even be life-threatening. Coverage estimation techniques[20], calculate the probability that there are 
disconnected nodes due to lack of network coverage. Using coverage estimation we can predict the accuracy of a 
decision in the presence of disconnected nodes. This can help to reduce the number of incorrect decisions and 
communication unpredictability that is critical for real-time event-based communication. 

3.2.3.3 Susceptibility To The Physical Environment 
Communication between mobile nodes requires the received signal strength (RSS) to be adequate to connect to 
another mobile node. The RSS is continually changing due to the dynamic movement of the communicating parties 
and the intermediary nodes at individual hops. The RSS is also significantly affected by the terrain configuration 
[21] for the duration of the communication too. Terrain configuration includes: hilly or mountainous areas, wooded 
or forested rural areas, urban areas with multistory buildings or low-density suburban areas. The dynamic changes 
in RSS leads to highly unpredictable connections between mobile nodes. In [20], the variance in RSS is used to 
anticipate network partitions. If the future state of network topology can be predicted it is possible to perform route 
reconstruction proactively in a timely manner [22], and find new paths prior to the failure of existing ones. 

 

3.2.3.4 Summary 
To achieve real-time event-based communication in a mobile ad hoc wireless environment the impact of the ad hoc 
wireless network characteristics previously identified must be limited. We propose prediction as essential to limit 
these wireless ad hoc characteristics. Table 1 introduces how predictive techniques limit the impediments of the 
wireless ad hoc environment for real-time event-based communication.  

 

3.2.4 PROPOSED FRAMEWORK FOR AD HOC WIRELESS 
REAL-TIME EVENT-BASED COMMUNICATION 

To achieve real-time event-based communication in a dynamic mobile ad hoc wireless network, the 
unpredictability inherent in the environment must be reduced. In this section we outline a conceptual model based 
on prediction for timely event-based communication between mobile nodes. The components and high-level 
interactions among them are identified in Figure 1.  
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Figure 1: High-level conceptual model 
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Bounding the area of interest in an ad hoc network makes a large network appear smaller, but more 
importantly for real-time communication, it makes a highly dynamic topology appear less dynamic. Our approach 
is to reduce the network into dynamically organized zones, similar to proximity groups [20], which bound the 
number of participants, the area for maintaining topology information and the area within which event information 
is valid. The components of the conceptual model cooperate to maintain the timeliness and reliability requirements 
within a proximity-bounded zone. 

The focus of our design is to reduce reaction to dynamic mobility and topological change by prediction. The 
admission control and adaptation components interact with the predictive architecture to make proactive decisions 
in advance of network change [13] . 

 

§ Predictive Architecture: predictive techniques are used to reduce the impact of dynamic topological changes 
within a zone. Location-awareness is key to determining the mobile nodes within a zone at a point in time. In 
our opinion location-aware routing [23] is central to achieving real-time location-bounded communication in 
a mobile network. We plan to extend this work to predict the future location of mobile nodes. Using this 
information future node movement into a zone and the impact on routing and resource reservation and 
timeliness and reliability guarantees for the zone can be predicted in advance.  

The ability to predict node movement contributes to achieving probabilistic guarantees of path 
availability due to link failure caused by node mobility. Other reasons why a link may fail, such as 
environment conditions or battery usage, must also be considered to avoid or anticipate network partitions. 
Using partition anticipation based on [20] coupled with proactive routing [24],[15] and resource reservation, 
we aim to improve the re-routing process by attempting to find new paths prior to the failure of existing ones. 

 

§ Admission Control: bounding the area of interest for real-time event-based communication implicitly limits 
the number of participating nodes to those within the bounded area. We apply explicit admission control 
policies within the zone to further reduce the number of participating nodes. The admission control policies 
reflect the impact of the number of participating nodes in the zone on the timeliness and reliability guarantees 
for a real-time event given the resources available when the real-time event is raised.  

Using predictive techniques to detect future node movement is essential for deciding the admission 
policy to use. For example, if resource usage is nearing maximum capacity what temporal and reliability 
guarantees can be made for future nodes moving into the zone and what impact does the class of real-time 
event have on admission control decisions?  

 

§ Adaptation Model: an important aspect of achieving timeliness constraints is dependable QoS adaptation [25].  
However in contrast to [25] , mobility is a critical consideration. The predictive architecture detects 
topological changes and initiates proactive routing and resource reservation. QoS adaptation may be 
necessary to reflect the new routes and resources available [3]. The speed of node movement and the class of 
event for delivery impact the urgency of time-bounded delivery of a real-time event and impacts any QoS 
adaptation.  Information from the predictive architecture is essential for limiting the reactive QoS adaptation 
required. 

 

We propose a conceptual model to make the dynamic topology of mobile ad hoc networks less dynamic 
and therefore more suitable to real-time event communication. We propose that prediction is essential to reduce the 
reaction to dynamic node mobility and therefore essential for real-time event-based communication in wireless ad 
hoc networks. 

 

3.2.5 CONCLUSION 
We have outlined an approach to the complex problem of achieving real-time event communication in 
infrastructure-free wireless networks. We outlined the limitations of previous event-based and real-time event 
communication models when extended to the ad hoc wireless domain. We proposed an outline of our event-based 
communication model, which focuses on limiting the unpredictability of wireless communication by prediction. 
We described a predictive architecture for predicting node mobility, link failure and for anticipating partitions. 
Using this predictive architecture and QoS adaptation strategies relating to the criticality of the real-time event, we 
have proposed a novel approach to achieving real-time event-based communication in ad hoc wireless networks. 
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Chapter 4:  Quality of Service Specification 

 

4.1 Introduction 
 

One of the challenges that we have proposed to address in CORTEX is the need to address 
non-functional timeliness requirements of sentient applications in environments of uncertain 
synchrony. To this end, considerable work has been done around the definition of an adequate 
architectural solution to the problem, namely with the definition of a partially synchronous 
model, the Timely Computing Base (TCB) model. The adoption of the TCB model as a base 
for programming applications and addressing timeliness requirements has necessarily an 
impact on the programming model.  

 

In deliverable WP1-D2 we have described the fundamental issues related with the problem of 
specifying application timeliness requirements on TCB based systems. In concrete, we 
studied this problem from the perspective of ensuring a certain guaranteed Quality of Service 
(QoS) to the application, in spite of the uncertainty of the environments. The proposed initial 
approach consisted in specifying timeliness QoS requirements through <bound, coverage> 
pairs, that is, specifying a certain time bound (relative to some timing variable of importance 
for the application) and an associated probability of this bound to be satisfied during the 
execution. Based on this approach for specifying timeliness requirements, we explained the 
reasoning that must be followed to satisfy such specifications. More specifically, we 
introduced two fundamental properties in systems of partial synchrony--- Coverage Stability 
and No-Contamination--- that, when secured, guarantee correct operation of applications 
despite timing failures. We then referred to the mechanisms underlying the programming of 
applications of different classes (e.g. time-safe, time-elastic), which allow the 
abovementioned properties to be secured for each of these classes. 

  

In the present deliverable we extend the initial reasoning by proposing a more general way of 
specifying QoS requirements not limited to the observation of time bounds, based on ideas 
described in [1]. This extended approach is intended to address the following aspects: a) allow 
the integration in the same QoS framework of other application requirements, not necessarily 
related with timeliness requirements; b) provide the background for understanding how the 
several time related parameters of importance in the application context can be handled and 
mapped to the basic <bound, coverage> way of specifying requirements; c) provide a more 
flexible and configurable approach to the specification of QoS requirements, with consequent 
impact on the mechanisms related with adaptation. 

 

This general framework for handling application QoS requirements, and timeliness ones in 
particular, does not depend on a particular interaction or communication model. The approach 
is sufficiently generic so that if a timing bound can be derived from some application 
property, then this bound will constitute the parameter of interest, the one for which a certain 
coverage will have to be guaranteed, in the proposed framework. However, it is important to 
understand how can such timing parameters be specified under specific interaction models 
and, in particular, when considering the event-based interaction model proposed in CORTEX. 
In this deliverable we overview some fundamental aspects related with the definition of what 
we call generic events, namely concerning the characterization of these events in the time 
domain. This is essential to allow the formulation of adequate and clear correctness criteria 



 

  41

from which one may derive the timing bounds that will need to be specified, observed and 
secured during the execution of the interactions. The presented ideas are further elaborated 
in [2], and will be reported in a forthcoming CORTEX deliverable dedicated to the CORTEX 
interaction model. 

 

4.2 Timeliness in the CORTEX programming model: An 
extended model for QoS specification 

 

In deliverable WP1-D2 we proposed a model for QoS specification in which QoS 
requirements were specified through <bound, coverage> pairs. We discussed the fundamental 
issues that must be addressed in order to build dependable applications with timeliness 
requirements in uncertain environments, by analysing the effects of timing failures on the 
application correctness. In fact, if bounds are violated during run-time, due to the occurrence 
of timing failures, then this may have undesirable effects on the application correctness. 

 

The idea is to find ways of avoiding these nasty effects and keep applications correct despite 
timing failures. Among other things, such as the need to measure the duration of timed 
interactions, it is may be necessary to construct mechanisms based on timing failure detection, 
which will be used to detect the occurrence of timing failures and apply adequate fault 
tolerance mechanisms depending on the application.  

 

Many applications have adaptation capabilities, which means that they may adapt their 
operational parameters in order to better adapt to the available resources and, in particular, to 
adapt to the synchrony of the environment. For example, most applications that use timeout-
based communication can adapt the timeout bounds in order to avoid premature timeouts or 
unnecessary long waited retransmissions. 

 

Since the approach previously proposed in WP1-D2 is focused on the specification of 
<bound, coverage> pairs, from the perspective of application programming this means that 
QoS adaptation is exclusively triggered by variations of these QoS parameters. In fact, in 
deliverable WP2-D3 we presented a middleware service for QoS adaptation as well as its 
programming interface. Note that with this approach, in which the coverage of the bound and 
not the bound itself is what counts for ensuring a certain QoS, it is possible to construct 
mechanisms appropriate to deal with the occasional occurrence of timing failures due to the 
uncertainty of the environment. 

 

From a programming model point of view, we are talking about the different ways of adapting 
an application based on the output of an underlying failure detection service. Classical crash 
failure detection [3] is usually used for the purpose of system reconfiguration, for example, a 
new view in the membership of a group-oriented system. However, when: (a) the criterion for 
a detector to declare crash of a process or node is static; (b) the semantics of such detection is 
poor, then chances are that the system: (a') will not be able to adapt to the changing 
environment; (b') will suffer from the many mistakes of the detector. 

 

Triggering reconfiguration in those conditions may cause instability problems in settings of 
uncertain timeliness. The effect on applications such as collaborative or adaptive QoS would 
be disastrous, with the system configuration bouncing back and forth at an unbearable rate. 
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We can imagine participants doing nothing but coming in and out of collaboration groups, 
servers joining and leaving replica sets, multimedia streams going back and forth from colour 
to B&W, or high to low compression. These problems still affect designs based on pure crash 
failure detectors, or based on rudimentary and implicit failure detection most of the times 
embedded in the application. 

 

We proposed a QoS coverage service that may be viewed as a detector of failed <bound, 
coverage> specifications. This partially solves the problem of uncertainty, for all the cases in 
which it is possible to isolate a timing parameter from the overall desired level of QoS. 
Moreover, since the proposed approach is based on the existence timely timing failure 
detection, this allows for timely detection of QoS variations and fulfils an essential 
requirement for timely adaptation (which is of utmost importance in some applications, 
specially those with some criticality attributes). 

 

Now we further extend the approach for QoS specification and QoS failure detection, based 
on some of the ideas presented in [1] and adapting these ideas to the partially synchronous 
(TCB based) framework that we follow in CORTEX. The principle underpinning the 
extended approach is that timing failure detectors should be rich and configurable. The 
combination of these properties allows dealing with application QoS requirements, not 
exclusively timeliness related ones, in a more flexible way and all under the same framework. 

 

The idea is to apply the notion of a performability or quality-of-service failure detector. A 
QoS-FD is designed to evaluate a number of relevant operational parameters (that is, a rich 
semantics), in contrast with classical crash-FDs or with the basic TFD employed so far, which 
evaluate single parameters. For example, the QoS-FD designed for NAVTECH was oriented to 
assess connectivity, and thus measured [4]: roundtrip delay, throughput and omission error 
rate. It is important to note that some of these parameters are meaningful in the time domain, 
which implies that it is possible to derive timing parameters that may be observed (say, in a 
lower level) in order to measure them. On the other hand, some other parameters like the 
throughput also require the observation of non-time-related quantities, which makes the case 
for the usefulness of this approach when compared with the basic one. The application can 
configure the failure detector, by issuing a QoS specification. A QoS specification indicates 
the conditions, the goals and the importance of each parameter P: 

 

Sampling Period (TS)- the interval over which the value of the parameter is acquired. If 
TS = ∞, it means continuous sampling. For any positive integer TS, it means the 
interval over which samples of P, or of variables leading to the computation of P, are 
collected. For example, if P is a round-trip time, a distribution function is computed 
with the samples. If P is a bandwidth, it is computed with the amount of bits 
exchanged during TS, divided by TS. If P is an omission rate, it means that we are 
interested in the number of omissions over interval TS. Note that this attribute will in 
practice force the detector to regularly produce some output, which can be understood 
as a form of ensuring a certain freshness of the provided QoS failure information. 
Although not necessary in all cases, this makes the approach more generic. 

 

Threshold (TH)- the upper or lower acceptable bound on P. A typical upper bound is for a 
round-trip duration. A typical lower bound is for a bandwidth. A plus or minus signal 
is used to denote whether it is lower or upper, respectively. For example, TH = 10- 
means the parameter is valid for 10 and below (upper bound). In fact, the Threshold is 
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what we have simply referred to as a bound when reasoning in terms of  <bound, 
coverage> QoS specifications. Now we generalise the definition. 

 

Weight (WT)- a measure of the relative importance of parameter P. A value of 0 would mean 
that the parameter would not be taken into account. Comparing with the previous 
approach, this attribute is obviously new since we now want to deal with several 
parameters instead of a single one. 

 

A test is invoked by an application, by issuing a QoS specification and a set of target 
resources to the failure detector. We are interested in the distribution facet of the problem, that 
of the QoS offered to a distributed computation through a set N = {p1,p2,...,pn} of processes in 
different nodes that is, the end-to-end QoS seen from each pi to every other pj≠i. For 
simplicity, in the ensuing discussion we consider one process in each node and use node and 
process interchangeably. 

 

Note that our objective is to design a QoS-FD based on the existence of underlying time 
related services provided by a (distributed) TCB. Therefore, the resulting QoS-FD will inherit 
some of the properties of these underlying services, in particular those of the TCB Timing 
Failure Detection service. For example, given that the TCB TFD service guarantees complete 
detection of timing failures and reports the results in a consistent way at all TFD instances (in 
every node), it is possible to guarantee that each instance of the QoS-FD will be able to report 
consistent information, provided it has been collected through the TCB and that the QoS-FD 
is deterministic. 

 

Each parameter of the QoS specification is evaluated by the QoS-FD at each node pi, for 
every other node of the set. We note the variable V associated with parameter P kept at local 
node i about some remote node j as Vi

j(P). For instance, Vi
j(Roundtrip) denotes the roundtrip delay 

between nodes i and j as measured at i.  The roundtrip delay could in practice be measured 
using a composition of measured durations (obtained trough the TFD service, which 
implicitly uses the TCB duration measurement service) from node i to j and from node j to i. 
A test epoch is defined by the following global parameters: 

 

QoS Spec - the specification containing the definitions for each parameter P (TS, TH, WT) 

 

Target - the set of nodes pi ∈ N involved.  

 

QoS Sampling Period - the interval of observation for a QoS specification. It is possible to 
establish a correspondence between the QoS Sampling Period and the observation 
interval defined in the context of the QoS coverage service (see WP2-D3), during 
which observed timed actions are collected. 

 

Value (V)- the parameter's value in the last sampling period. 

 

Threshold Exceeded (TE)- percentage of the sampling periods of P where it fell beyond the 
bound TH during TS (or since the start, for continuous sampling), for each pj as seen 
from pi. For example, TE = 10 for bandwidth means that in 10% of the sampling 
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periods, the bandwidth was below the threshold TH. For example, TE = 2 for round-
trip time in continuous sampling means that in 2% of the samples since the start the 
round-trip time threshold was exceeded. In other words, over time, TE gives a 
measure of the coverage of the TH assumption for P. In this last example, the round- 
trip time assumption holds with a probability of 98%. Just like in the previously 
proposed basic approach for QoS specification, this attribute is what allows the 
employment of techniques to achieve coverage stability, fundamental to the 
construction of dependable adaptable applications. 

  

QoS Disturbance Index - a weighted average of the TE of all parameters P, for each pj as 
seen from pi. That is:  

 

∑ ∑∗=
P P

j
i

j
i PPP )(WT/)(TE)(WTDI  

 

DI Threshold - the global acceptable upper bound on the Disturbance Index. 

 

Local Suspicion Vector (LSV) - a vector of booleans with N positions, for each local node pi, 
where position LSVi[j] = 1 iff the QoS Disturbance Index DI seen from pi to pj at that 
position exceeded (was worse than) the DI Threshold. 

 

DI is computed periodically for each process pi in N, as specified by the QoS sampling period. 
After the computation of the DI, TE variables are reset, and incremented from zero until the 
next computation of DI. A very low DI value means that the QoS in the current set is within 
satisfactory thresholds. A value of DIi

j exceeding the DI threshold means a QoS failure of pj, 
in the opinion of pi. At the end of each epoch, each process pi has thorough information 
provided by the QoS-FD about the QoS for the interaction with other processes, namely the 
Vi

j(P) and DIi
j for all j and all P. This information allows the application to fine-tune 

parameters, for example by choosing which ones to relax when DI shows insufficient QoS. 
Likewise, when a parameter P holds with 100% coverage, the application may tighten the 
specification. This game of tightening some and loosening others aims at the final end-to-end 
goal, that of obtaining the best possible QoS. 

 

Note that depending on the specific parameters and on the means to measure them, it may be 
possible to ensure that all Local Suspicion Vectors are consistent with each other. Would this 
be the case, no other special measure would be necessary to enforce such consistency. 
However, when this is not “automatically” achieved, it is necessary to test each other's 
opinions, to assess the symmetry and transitivity of the node's view of QoS. Failure Detectors 
exchange their LCV's to build a Global Suspicion Matrix, that includes all the information and 
all views. Some additional refinements can still be introduced, as explained in [1]. 

 

In order to adapt the application based on the information of the QoS-FD, there are several 
possible strategies. The actual adaptation mechanisms obviously depend on the kind of 
application, but in special cases, where adaptation is performed by modifying the assumed 
Threshold for the parameters, it would be possible to employ an extended version of the 
correction balance factor defined in the coverage-stabilisation algorithm presented in [5], to 
decide which parameter to adapt. 
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The actual mechanisms and protocols that would be necessary to construct the described 
framework are another issue that is being addressed in other CORTEX work packages, 
namely in the context of the system architecture. 

4.3 Timeliness issues in a Generic Events Architecture 
 

In this section we briefly describe an architecture that provides a way to structure applications 
around a component-based object model, allowing object composition to be influenced or 
constrained by the component’s physical structure. The architecture postulates a generic 
events model easing composition and structural (body-environment) awareness, further 
enriching the basic CORTEX object-oriented programming model based on anonymous 
event-based communication. 

 

Although literature has classically studied the networking and sensing/actuating problems in 
isolation, we propose the innovative concept of generic event, be it derived from the Boolean 
indication of a door opening sensor, from the electrical signal embodying a network packet (at 
the WLAN aerial) or from the arrival of a temperature event message. 

 

In fact, what happens with classical event/object models is that they are software oriented. As 
such, when transported to a real-time, embedded systems setting, their harmony is cluttered 
by the conflict between, on the one side, send/receive of “software” events (message-based), 
and on the other side, input/output of “hardware” or “real-world” events, register-based. In 
fact, very often, the only “event” characteristic in “software” events is the arrival of the event-
message itself (e.g., when it merely carries the state of a variable or an information to another 
object).  If such classical desiderata of distributed systems such as distribution and location 
transparency/independency are to be realized to a certain degree, this conflict must be solved.  

 

Furthermore, sentient objects deal with real-time aspects involving the environment. It has 
been shown that the hidden channels developing through the latter (e.g., feedback loops) may 
hinder software-based algorithms ignoring them. Likewise, the programs running in sentient 
objects have very often consistency requirements that derive, even if remotely, from what are 
called real-time entities, in fact representations of state variables of the surrounding 
environment. Some of these, referred to as time-value entities, have consistency conditions 
based on the timeliness of the operations controlled by the computer, vis-a-vis their evolution 
in the environment. 

 

In order to address these issues, we require an event model that satisfies both functional and 
non-functional requirements. That is, a model that treats the information flow through the 
whole computer system and environment in a seamless way, handling “software” and 
“hardware” events uniformly. On the other hand, one that allows defining global, end-to-end, 
non-functional criteria in the time domain, such as temporal consistency, or QoS guarantees. 

 

Here we provide just a brief description of an architecture to support such a model, which we 
have called the Generic-Events Architecture (GEAR). This is sufficient for the purposes of 
this deliverable, since the focus is on the impact of non-functional (timeliness and QoS) 
requirements of sentient objects in the programming model, and therefore we provide a 
detailed discussion of the representation and handling of generic events. 
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The proposed architecture is depicted in Figure 1, which we describe in what follows. The L-
shaped structure is crucial to ensure some of the properties described. 

 

 
 

Figure 1: Generic-Events Architecture 

 

Environment The physical surroundings, remote and close, solid and etherial, of sentient 
objects. 

 

Body The physical embodiment of a sentient object (e.g., the hardware where a mechatronic 
controller resides, the physical structure of a car). Note that due to the compositional approach 
for sentient objects, part of what is 'environment' to a smaller object seen individually, 
becomes 'body' for a larger, containing object. In fact, the body is the `internal environment' 
of the object. This architecture layering allows composition to take place seamlessly, in what 
concerns information flow. 

 

Translation Layer The layer responsible for physical event transformation from/to their 
native form to event channel dialect, between environment/body and an event channel. 
Essentially one doing observation and actuation operations on the lower side, and doing 
transactions of event descriptions on the other. 

 

Event Layer The layer responsible for event propagation in the whole system, through 
several Event Channels (EC). In concrete terms, this layer is a kind of middleware that 
provides important event-processing services that are crucial for any realistic event-based 
system. For example, some of the services that imply the processing of events may include 
publishing, subscribing, discrimination (zoning, filtering, fusion, tracing), and queuing. 

 

Communication Layer The layer responsible for 'wrapping' events (as a matter of fact, event 
descriptions in EC dialect) into 'carrier' event-messages, to be transported to remote places. 
For example, a sensing event generated by a smart sensor is wrapped in an event-message and 
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disseminated, to be caught by whoever is concerned. The same with an actuation event 
produced by a sentient object, to be delivered to a remote smart actuator. Likewise, this may 
apply to an event-message from one sentient object to another. 

 

Regular Network This is represented in the horizontal axis of the block diagram by the 
Communication layer, which encompasses the usual LAN, TCP/IP, and real-time protocols, 
desirably augmented with reliable and/or ordered broadcast and other protocols. 

 

The Generic-Events Architecture (GEAR) introduces some innovative ideas in distributed 
systems architecture: 

 

• It serves an object model based on production and consumption of generic events. 
• Events are produced by several sources– environment, body, objects– which are all 

treated in a homogeneous way. 
• There is a basic dialect for talking about events, used in all transactions by Event 

Channels. 
• The Translation layer performs the transformation between the physical 

representation of a real-time entity and the EC compliant format, in either direction. 
• The Event Channels propagate events through Regular Network infrastructures, via 

regular message-passing protocols executing in the Event layer. 
 

Now, the definition of 'event' must be given more precisely. A generic event is a happening 
that takes place in the event layer at a given instant of the timeline, <E,TGE>. The happening 
is internal to the system, has an event-channel compliant representation, and is not necessarily 
(but also) related with physical events taking place in the environment. That is, the 'event' is 
the happening as seen by the event layer, at a given instant in the timeline. 

 

Generic events can have several origins: observation of the state or the state change of one or 
more real-time entities (e.g., such as produced by a smart sensor); notification about the state 
or the state change of one or more system variables (e.g., such as produced by a sentient 
object); actuation on the state of one or more real-time entities (e.g., such as produced by a 
sentient object for a smart actuator); action on the state of one or more system variables (e.g., 
such as produced by a sentient object for other sentient objects). 

 

Further to this, event propagation is constrained to zones, a concept followed in CORTEX to 
represent the need to limit or confine the propagation of event notifications in the system. 
Objects can be organized into zones where a zone can be seen simply as a collection of 
objects and where event notifications are only propagated within the zone of the object raising 
the event. Objects are organized into zones at the discretion of the application programmer 
based on functionality, geographical location or physical location on the network. On the 
other hand, zones can also be seen as QoS containers, meaning that event channels within a 
certain zone are able to deliver a specified level of QoS. Thus, the scope of a given event 
channel flow can selectively be delimited to events of certain types (using filtering 
mechanisms), and the event channel modules involved in that dissemination (see Figure 1) 
can further be limited to those units circumscribed to a zone. 

 

In order to deal with real-time sentient objects we need to understand the implications of 
timeliness requirements in the context of the proposed generic-events architecture. This will 
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be done by establishing fundamental correctness criteria for the operation of the system. The 
system architecture, including the protocols and mechanisms materialising the event layer 
middleware, must be built so that the strict observation of the established criteria is ensured. 
Given the distributed nature of the problem, the correctness of operation does not depend 
solely on the observation of timeliness constraints, but also on the consistency and 
coordination among the distributed actors in the system. In this respect, note that the 
information flow is defined in terms of events, and it is controlled at the event layer, where 
everything passes. As such, and very importantly, all consistency criteria that must be secured 
apply as well to regular messages, messages through operational network channels, and 
input/output feedback paths through the environment. No hidden channel problems need 
affect the operation of the system [6]. We illustrate the nature of generic events with a few 
examples. 

 

Examples of generic events 

 

(1) door opened;  
(2) door opened as observed at T; 
(3) door is open; 
(4) door is open as observed at T; 
(5) temperature is X;  
(6) temperature is X as observed at T;  
(7) position of crankshaft is Y;  
(8) position of crankshaft is Y as observed at T;  
(9) crankshaft reached ignition point I;  
(10) crankshaft reached ignition point I as observed at T;  
(11) value of variable Z is 'entering-zone mode';  
(12) set variable 'cruise speed' to S;  
(13) set variable 'cruise speed' to S within T;  

 

The difference between (1) and (2) is that in 1 we know at TGE that the door has opened in 
some (near) past instant, whereas in (2) we know at TGE that it opened at T.  The difference of 
the former to (3) and (4) is that here we know the state of the door, without necessarily 
knowing when it opened. In fact, note that generic events report state (3) as well as change of 
state (1), what in other more classical models used to denote “state” and “events”, with regard 
to the physical environment.  This said, in GEAR nothing prevents the periphery of the 
system (e.g., smart sensors) from being organized in the best suited way (e.g., state sampling, 
event latching, etc.), for each generic-event flow to be produced. 

 

Given that TGE establishes the event production instant, there is apparently redundant timing 
information in some lines, e.g. (2) or (4). However, this is an important characteristic of 
GEAR: TGE denotes the time at which E was produced on the event channel and serves any 
generic type of event; T is part of E, thus invisible to the EC, but it denotes the time at which 
a given real-time entity was observed to have a given state or to have changed its state.  The 
separation of concerns enforced by T and TGE is very important, as we detail ahead. 

 

When we say in (11) that we know at TGE that “Z = 'entering-zone mode'”, this marks the 
point at which this internal state change is relevant for the system, e.g., as alerted by the 
platoon leader sentient object, in a cooperating cars scenario (see, for example, deliverable 
WP4-D8). Likewise, in (12), when (e.g., the leader again) publishes the command to change 
the state of the 'cruise speed' variable to S, the reference point is TGE. Alternatively, a finer 
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synchronisation may be sought, with the within operator (implicitly from TGE), so that a set-up 
delay of T is introduced. Even better tightness can be achieved by using at (an absolute clock 
time). 

 

However, when we say in (3) that we know at TGE that “the door is open”, or in (5) that “the 
temperature is X”, we might as well try to know how trustworthy this information is, since the 
temperature and door are time-value entities: there are actions on it whose time-domain and 
value-domain correctness are inter-dependent. For example, by the time TGE when we learn 
that “the temperature is X”, it might already be way higher than X!  Even if, as we say in (4), 
we know at TGE that “the door is open at T”, or as in (6), that “the temperature is X at T”, this 
still may not solve our problem. There are important implications of the way we handle time-
value entities that we discuss below, using definitions in [6]. 

 

Firstly, saying, as in (6), that we know at TGE that “the temperature is X at T”, might seem to 
provide a precise indication.  However, what T portrays is the time at which the periphery of 
the system observed the temperature. When observing the value of a continuous variable, it is 
relevant to define the error.  For an observation <r(Ei)(ti),Ti> of the value of an RTe Ei at ti 
receiving timestamp Ti, the observation error in the value domain is given by νi=|Ei(Ti) - 
r(Ei)(ti)|: we expect the value of Ei at Ti, but we get an approximation of the value (r(Ei)), 
measured approximately (ti) at Ti. Alternatively, saying, as in (4), that we know at TGE that 
“the door is open at T”, has the same constraints. Here, when observing the time at which a 
given discrete value Ei occurs (e.g., opening of the door), we must define the observation 
error (jitter) in the time domain, ζi=|Ti-ti|: Ei assumed a given value at ti, but the system logs it 
as having happened at Ti. 

 

So, we must establish a bound for the errors, in order for our measurement to be useful:  

 

• Given a known Vo, we say that an observation is consistent in the value domain, if 
and only if νi ≤ Vo 

• Given a known To, we say that an observation is consistent in the time domain, if and 
only if ζi ≤ To 

 

But this is not enough. Secondly, we must ensure that this information is sufficiently fresh to 
be useful.  For example, when we say in (5) that we know at TGE that “the temperature is X”, 
it is important that the interval between the time when it was measured and TGE, is known and 
short enough to be useful, so that the temperature hasn’t drifted too much in the meantime.  
I.e. for the information provided by this generic event to be meaningful for whatever the 
system intends to do with it. This must be ensured by the infrastructure, and a practical way is 
to define a fixed parameter, known at design time, based on estimates of the variable’s 
dynamics.  This interval has been called absolute validity interval for databases [7], or 
temporal accuracy interval for control [8]. 

 

In GEAR we generalise this concept.  The time of production of an event at the Event layer 
(TGE), establishes an important timing checkpoint that harmonises the timing constraints of all 
generic events circulating in GEAR, be them concerned with real-time entities or with internal 
entities. The latter are “born” at TGE, the former have a past history since their observation in 
the environment. However, note that the state of internal entities may result from previous 
observation and processing of sensorial information (from real-time entities) by sentient 
objects. The 'entering-zone mode' event in (11) is an excellent example. In that case, they 
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must inherit the relevant consistency constraints. Note that if ta is the point at which actions 
related with those events are exerted, the above-mentioned meaningfulness is relevant both in 
the case of real-time entities and of internal entities. In general, this may be achieved by 
defining for each a maximum value error that may occur due to the passing of time. Assume 
bound Vs for the maximum acceptable error accumulated by a state variable S over time, since 
a reference instant Ti. Assume S(Ti) as computed with the sensorial information available at 
Ti, and S(ta) as the value it would have if computed with the sensorial information available at 
ta. 

 

• Given ta and a known Vs, we say that a state variable S is temporally consistent 
at ta ≥ Ti if and only if |S(ta) - S(Ti)| ≤ Vs 

 

As a particular case, temporal consistency can be secured if an interval Ts can be defined such 
that the variation of the value of S within that interval is at most Vs.  In consequence, S would 
be temporally consistent within Ts from Ti, the temporal accuracy interval mentioned above. 

  

Finally, the difference between (1,2) and (5,6) concerns the nature of the variable: called 
discrete in the former, and continuous in the latter. Lines (7-10) illustrate how this distinction, 
so much used in computer control, may turn out to be pretty much artificial. The position of 
an engine’s crankshaft is a continuous variable: an angle that goes from 0 to 360 degrees (0 
again) and so forth. So, there is apparently no difference between (5,6) and (7,8). However, 
the crankshaft evolves so quickly that addressing it as a continuous variable may imply a very 
high error.  In consequence, if we fabricate a 'discrete variable' which is the arrival of the 
crankshaft to the ignition point I, as in (9), note that this is equivalent to the kind of event in 
(1). This ambiguity was addressed in [6] as the duality between value over time and time of a 
value. 

  

In conclusion, we have shown the fundamental consistency guarantees to be ensured by this 
kind of architectures: value and time domain observation consistency; and temporal 
consistency. 

 

References 
 

[1] P. Veríssimo and M. Raynal. Time in Distributed System Models and Algorithms. In Recent 
Advances in Distributed Systems, S. Krakowiak and S. K. Shrivastava (editors), Springer Verlag 
LNCS vol. 1752, 2000. 

[2] P. Veríssimo and A. Casimiro. Event-Driven Support of Real-Time Sentient Objects. In 
Proceedings of the 8th IEEE International Workshop on Object-oriented Real-time Dependable 
Systems, Guadalajara, Mexico, January 2003. 

[3] T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of 
the ACM, 43(2):225-267. March 1996. 

[4] F. Cosquer, L. Rodrigues and P. Veríssimo. Using Tailored Failure Suspectors to Support 
Distributed Cooperative Applications. In Proceedings of the 7th International Conference on 
Parallel and Distributed Computing and Systems, pp352-356, IASTED, October 1995. 

[5] P. Veríssimo and A. Casimiro. The Timely Computing Base Model and Architecture. IEEE 
Transactions on Computers - Special Section on Asynchronous Real-Time Systems, vol. 51, n. 8, 
Aug 2002. 



 

  51

[6] P. Veríssimo and L. Rodrigues. Distributed Systems for System Architects. Kluwer Academic 
Publishers, 2001. 

[7] K. Ramamritham. The origin of TCs. In Proceedings of the 1st ACM International Workshop on 
Active and Real-Time Database Systems, pp50-62, Sweden, June 1995. 

[8] H. Kopetz. Real-Time Systems. Kluwer Academic Publishers, 1997. 



 

  52

4.4 A Description Language for the Task and Resource Models 
 

Sentient objects are realised by both software and hardware components. Within the context 
of CORTEX a component is basically “a unit of composition with contractually specified 
interfaces and explicit dependencies only” [1]. The granularity of a component may be diverse 
ranging from components that realise only a part of the machinery of a single sentient object 
to components that encompass one or more sentient objects. The specification of both the task 
model and the resource model of sentient objects is achieved by expressing the resource 
requirements of their associated components.  

 

An extension of the resource configuration description language (RCDL) presented in [2] is 
used for the specification of both the task model and the resource model. That is, the 
description language allows us to define a) the mapping between tasks and events, b) the 
component interfaces in which a particular task is triggered or switched, c) the system 
resources that are associated with each task and d) the resource requirements of a task for a 
particular deployment platform. The two former are achieved by the task switch description 
language (TSDL) whereas the last two are addressed by the task description language (TDL) 
and the resource description language (RDL), respectively.  

 

RCDL definitions are processed by an interpreter that is in charge of configuring the 
middleware according to such definitions. In particular, the code generated by the interpreter 
includes interceptors that are placed in the middleware to achieve task switching. Generated 
code also allows for the creation of the defined resource pools (VTMs) at the system 
initialisation time. The description languages are specified in extended BNF [3] and the 
complete specification is included in Appendix A. It is worth mentioning that the RCDL is a 
facility for programming resource requirements of sentient objects. Higher-level mechanisms 
are also required to map down specific sentient object requirements to specific component 
requirements. 

 

4.4.1 Task Switch Description Language 
There is a great variety of task configurations that can potentially exist whereby different 
tasks may be interconnected. For instance, a component running one task may invoke another 
component concerned with a different task. Such a method invocation represents a task 
switching point. Thus, a task switching point corresponds to a change in the underlying 
resource pool to support the execution of the task that has come into play. Task switching 
points are denoted as triplets including a component, an interface, and an interface operation. 
This approach is sufficient to specify where tasks start and where they finish.  

 

The TSDL maps event types to tasks as shown in figure 1. Task switching points are specified 
on a per interface type basis and can be valid within the scope of either all components 
running in a node or a single component. In addition, switching points are defined for either 
all the operations of an interface or a single interface operation. Finally, tasks are mapped to 
one or more event types. “If” statements are optionally defined to determine whether a task 
switch should be performed according to the current task. For instance, task f is selected if 
task g is the current running task that invokes the method z. 
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Figure 1.  Specification of the TSDL  

As an example consider the TSDL descriptions shown in figure 2. Two switching points are 
defined for the component “MyPublisher” on the operation publish() of the interface type 
IPublish. The task “carControl.critical” is mapped to the event type “emergencyStop”. 
Similarly, the task “carControl.non-critical” is mapped to the event types “football”, “cricket” 
and “weather”. 

 

 

 

 

 

 

 

 

 

4.4.2 Task Description Language 
 The specification of the associated resources of a task is defined by the TDL, also called task 
template. Each of the defined tasks is related to a VTM. There is a different TDL specification 
for each node in which the associated VTMs are defined. It should be noted that the 
scheduling policy of the VTMs is specified within this template as shown in figure 3. 
Furthermore, a task template specifies the associated tasks, the abstract resources with their 
related management policies, and the importance of each VTM. A high importance value is 
assigned to critical tasks whereas lower importance values are assigned to tasks where 
resource contention does not have a drastic impact in the system. In addition, sub-tasks inherit 
importance values from their super-tasks. There is also a default VTM that includes all those 
activities that are not represented in the resource model. That is, such activities would use the 
resources defined by the default VTM. The mapping of QoS values to resource parameter 
values may be achieved by mathematical translation or trial-and-error estimations as 
described in [4].   

TSDL description = “Task Switching Points:”, 

    {switching point}-; 

switching point =    [{global task mapping}-], 

{component}-; 

component =  “component:”, component name id, 

    {interface}-; 

interface =  “interface:” interface type, “:”, 

    [{operation}],       #if omitted, interceptor defined on all operations 

    {interface task mapping}; 

operation=   “operation:”, operation name; 

global task mapping =  “global task mapping:”, task mapping; 

interface task mapping =  “task mapping:”, task mapping; 

task mapping =   {task name,”:”, {event type}- }-  | {task name,”:”, event type, “if”, task name}- 

 

# Publisher side 

Task Switching Points: 

component: MyPublisher: 

interface: IPublish 

operation: publish 

task mapping:  

 carControl.critical: emergencyStop 

 carControl.non-critical : football, cricket, weather 
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As an example of the definition of abstract processing resources, consider the particular 
instantiation of the resource framework whereby VTMs encompass both a team and a buffer 
abstraction, as shown in figure 4. The scheduling parameters of the VTM are defined which 
include execution time, period and CPU usage. The team abstraction is then specified in terms 
of a particular number of threads. Furthermore, the definition of threads include their 
scheduling policy along with their thread priority. The amount of buffer allocated is also 
defined together with its management policy. It should be noted, however, that the language is 
not restricted to these types of resources or the abstraction levels and can be extended to cover 
a different instantiation of the resource framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Specification of the TDL  

 

 

 

Task description =   “Def VTMs:”, 

    “policy:”, scheduling policy 

    {vtm}-, 

    default vtm, 

    {shared resources}; 

 

vtm=  “Task:”, task name, 

  “Abstract resources:”, abstract resources | other hierarchy, 

   “Importance:”, digit; 

 

default vtm =  “Default VTM:”, 

“Abstract resources:” abstract resources | other hierarchy, 

   “Importance:”, digit; 

 

shared resources = “Shared resources:”, name shared resources, 

   “Abstract resources:”, abstract resources | other hierarchy, 

   “Vtms:”, list vtms sharing these resources; 

 

abstract resources =  “Def VTM:”, 

    “execTime:”, digit, 

    “period:”, digit, 

“usage:”, digit, 

“Def Team:”, 

     “num_threads:”, digit, 

     “Def Thread:”, 

      “policy:”, scheduling policy, 

      “priority:”, digit, 

    “Def Buffer:”, 

     “policy:”, memory policy, 

     “amount:”,digit; 
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Figure 4. Example of the Specification of Abstract Resources 

 

4.4.3 Resource Description Language 
The RDL, also called the resource template, describes the platform-dependent resource 
requirements for the execution of a task instance as shown in figure 5. Whereas the TDL 
defines the resources provided for the execution of a task, the RDL defines the platform 
specific requirements for the execution of one or more interface operations. Thus, a resource 
template concerns the specification of aspects such as the worst-case-execution time, typical 
execution time, execution period, amount of memory buffer and network resources. There is 
also an RDL description per node as the information provided is platform specific. Thus, 
whenever a service is required, an admission test is performed on the basis of the resource 
requirements specified by the RDL. If successful, such resources are then reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract resources: 

 Def VTM: 

  execTime: 20 

  period: 120 

  usage: 20 

  Def Team:  

     num_threads: 5 

     Def Thread: 

      policy: 
round_robin 

priority: 2 

  Def Buffer:  

   policy: buddy_system 

   amount: 2000 

  . . . 

. . . 

Resource requirements = “Resource Template:”, 

    {task requirements}-; 

 

task requirements =  “Task”, task name, “:”, 

    {specific requirement}-; 

 

specific requirement =  [cpu], [buffer], [other resource type]; 

 

cpu =   “CPU”:”, 

    “worse case time:”, digit, 

    “typical time:”, digit, 

    “period:”, digit; 

 

buffer =    “Buffer:”, digit; 
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Figure 5. Specification of the RDL  

As an example of RDL descriptions, consider the specification of the resource 
requirements for the execution of an instance of the task “carControl.receiveNews” as 
depicted in figure 6. This task demands 10 ms of CPU time in the worse case whereas the 
normal operation of the task requires only 5 ms. The task also requires to be executed every 
120 ms and demands 200 KB of memory for the purposes of buffering (again, the 
specification of resource requirements is not restricted to these two types of resources, thus, 
other type of resources may be included such as network bandwidth, storage resources and 
battery life). 

 

 

 

 

 

 

 

 

 

 

Figure 6. Example of RDL Descriptions   
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Resources Template: 

 Task carControl.receiveNews: 

  CPU:  

     worse case time: 
10 

     typical time: 5 

     Period: 120 

  Buffer: 200 

  . . . 

. . . 
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Chapter 5:  APPENDIX 

5.1 Event channel classes 
 

Three event channel classes are distinguished : hard real-time event channels (HRTEC), soft 
real-time event channels (SRTEC) and non real-time event channels (NRTEC). The event 
channel classes support distinct application requirements and abstract an heterogeneous 
communication infrastructure. A HRTEC offers rigorous guarantees for discrete control 
based on sporadic events as well as for continuous control requiring periodic events 
like sensor readings and control feedback. For sporadic events a maximum latency 
will be guaranteed while for periodic events the goal is to achieve a low period- and 
latency-jitter. The guarantees are maintained under an anticipated number of network 
omission failures. Events published to a SRTEC are scheduled according to the 
earliest deadline first (EDF) algorithm. As outlined below, deadlines may be missed 
in situation of transient overload or due to the arbitrary arrival times of messages. 
Finally, a NRTEC disseminates events that have no timeliness requirements. 

 

The transport of events through a HRTEC is synchronous and reliable. The properties of a 
HRTEC are defined by: 1.) a known upper bound for the transport latency, i.e. the interval 
between the point in time when an event message becomes ready and its delivery; 2.) a known 
upper bound for the latency jitter, i.e. the variance of the transport latency; 3.) a known upper 
bound of the period jitter for periodic events, i.e. the variance on the period; 4.) a fault 
assumption under which the properties 1.) - 3.) are valid. In order to offer such properties, a 
HRTEC transparently handles redundant transmissions of events and guarantees a privileged 
access to the communication network. Access is based on the reservation of network 
resources according to a TDMA mechanism (TDMA: Time Division Multiple Access) similar 
to the time-triggered protocol [KOP92]. However, in contrast to most TDMA schemes, the 
reserved time slots that are not contended by the respective HRTEC can be effectively used 
by weaker event channels [KAI03]. Such a flexible and efficient utilization of  network 
bandwidth is implemented by exploiting the priority-based arbitration mechanism of the 
CAN-Bus. 

 

The SRTECs support the transport of events whose temporal properties are expressed in terms 
of deadlines and validity intervals (expiration time). Different from HRTECs, SRTECs do not 
rely on reservations. Soft real-time event messages become ready at any time and are 
scheduled according to the earliest deadline first (EDF) algorithm. The transmission deadline 
is defined as the latest point in time when a message has to be transmitted. However, because 
a message can not be interrupted during its transmission and messages may become ready at 
arbitrary points in time, EDF will not always take the right scheduling decisions (only a 
clairvoyant scheduler would be able to do so) and situations of temporal conflicts and 
transient overload may occur. In theses situations, messages will still be transmitted at a later 
time in a best effort manner. An SRT event message eventually will be discarded if its 
transmission time is delayed beyond its temporal validity specified by the expiration time. 
The expiration time is an application specific parameter, which may be defined according to 
some value function. 

 

NRTECs are used for events that do not have timeliness requirements. They are primarily 
intended for configuration and maintenance purposes. While HRTEC and SRTEC 
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disseminate events of restricted length to meet the responsiveness requirements of real-time 
systems, NRTEC may transfer bulk data in a sequence of message fragments.  

5.1.1 Hard real-time event channels 
 

The API for a HRTEC is presented in Figure 1. A HRTEC must configure the infrastructure 
according to a static schedule. An application initiates this process by calling the method: 
channel.announce(subject, attribute_list, exception_handler). 

 

The announce() method enables the local middleware components to set up the data structures 
representing the respective event channel and to perform the binding of the event channel 
subject to a network address. Three arguments are specified for the method: (i) the subject, 
represented by the unique identifier of the event channel, (ii) the attribute_list, and (iii) an 
exception handler. The attribute_list describes the specific attributes of the channel, e.g. 
omission degree and transmission deadline. This information is used to allocate and reserve 
the respective resources. When the HRTEC is configured, the application can publish events 
to the channel using the method: channel.publish(event).  

 

For a hard real-time channel it is not common to provide exception handling because it is 
based on fault masking and worst-case assumptions about temporal properties. However, it 
should be noted that in a distributed system, local exception handling may contribute to an 
early detection of a fault and thus may increase the safety of the system. The lower levels of 
the communication system may detect a failure, which cannot be handled by the fault masking 
mechanism, and propagate this information through the middleware to the respective 
subscribers of a channel.  

class hrtec { 

 

private: 

subject subject_uid; 

 

public: 

// constructor and destructor of the class   

hrtec(void); 

~hrtec(void); 

 

// methods used for publishing 

int announce(subject, attribute_list, exception_handler); 

int publish(event); 

 

// methods used for subscribing 

int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler); 

int cancelSubscription(void); 

} 
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Figure 2. Declaration of a HRTEC class in C++. 

 

On subscribers side, the subscribe() method establishes the necessary channel data structures 
and creates the binding of the subject to a network address. It corresponds to the announce() 
method for publishers. The attribute_list specifies a list of attributes used for allocating the 
respective resources and for filtering. For instance, we generally assume that publishers and 
subscribers are connected by a channel which spans multiple networks, e.g. a field bus, a 
wireless network and a wired wide area network. An example is described in [KAI02]. In 
such a scenario, a subscriber may be interested in receiving events only from publishers in the 
same network, i.e. those connected to the same field bus. In such a case, the respective 
attribute can be set accordingly and any event, which has been generated outside the field bus, 
will be filtered out and will not trigger a local event notification. It should be noted, however, 
that the HRT-channels are statically assigned to time-slots and have predefined temporal and 
reliability attributes. These information can be exploited in order to filter events, because only 
a particular type of event is allowed to be published in a certain time-slot. The known time of 
transmission itself therefore will be exploited as a filter for a HRT-channel.  

 

Because events can be sporadic, the event notification service of the middleware provides an 
asynchronous notification mechanism for applications. When an event has passed the filters, 
the middleware stores the event in some predefined memory area and calls the application's 
notification handler. The notification handler retrieves the event from memory using the 
getEvent() primitive and then performs the required operations. As for the publisher of a 
HRTEC, an exception handler is also specified for the subscriber. Because a HRTEC is based 
on reservations, the time when a message is expected is known and thus, the event channel 
handler on the subscriber side can detect a missing message, rising an exception in such a 
case. 

 

Finally, the cancelSubscription() method removes a subscription. Canceling a subscription is 
a strictly local operation and releases the resources in the local event handler. Only 
subscribers can dynamically cancel subscription to a HRTEC.  

 

5.1.2 Soft real-time event channels 
 

SRTECs do not use reservations. In SRTECs transmission deadlines are used to dynamically 
schedule the event traffic. Figure 2 depicts the declaration of the SRTEC class. Although the 
structure looks similar to the HRTEC, the differences are substantial and primarily are 
substantiated in the different attributes defined for SRTECs. Events published to a SRTEC 
specify a transmission deadline and an expiration parameter in the attribute list of the event. 
Events are scheduled by the EDF algorithm which may lead to missed deadlines because of 
the non-preemptive nature of the message transmission and because of transient overloads. 
This situation requires notifying the application for awareness reasons. Two exceptional 
situations may occur: a missed deadline and an expired validity. In both cases, the local 
exception handler is called. This local notification allows the application to react and adapt to 
such situations. When the validity interval is expired, the event is completely removed from 
the local send queue 
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class srtec { 

 

private: 

subject subject_uid; 

 

public: 

// constructor and destructor of the class   

srtec(void); 

~srtec(void); 

 

// methods used for publishing 

int announce(subject, attribute_list, exception_handler); 

int cancelPublication(); 

int publish(event); 

 

// methods used for subscribing 

int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler); 

int cancelSubscription(void); 

} 

Figure 2. Declaration of a SRTEC class in C++. 

 

5.1.3 Non real-time event channels 
 

Non real-time event channels are used for events that do not have timeliness requirements. A 
NRTEC has a fixed priority. The priority is specified by the application during the 
announcement of the channel (see fig. 3). However, only priorities within a predefined range 
are accepted by the middleware. 

 

NRT-channels are particularly used to configure and maintain the smart networked devices of 
the system. This may require to send a considerable amount of data over the network, like 
memory images, electronic data sheets, or test patterns. Because message frames on the CAN-
Bus are limited to a payload of 8 data bytes, a mechanism to chain individual CAN messages 
to a larger application specific message is needed. Such a "fragmentation" mechanism for 
NRT channels which publishes long event messages in multiple fragments is provided by the 
middleware. Fragmentation is an inherent attribute of a NRT-channel and therefore, on the 
publisher side, fragmentation is defined during the announcement of the event channel as an 
entry in the attribute_list.  
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class nrtec { 

 

private: 

subject subject_uid; 

fixed_priority fixedPriority; 

boolean fragmentation; 

 

public: 

// constructor and destructor of the class   

nrtec(void); 

~nrtec(void); 

 

// methods used for publishing 

int announce(subject, attribute_list, fixed_priority); 

int cancelPublication(); 

int publish(event); 

 

// methods used for subscribing 

int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler); 

int cancelSubscription(void); 

} 

 

Figure 3. Declaration of a NRTEC class in C++. 
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