
Compiling the π-calculus into a
Multithreaded Typed Assembly

Language

Tiago Cogumbreiro
Francisco Martins

Vasco T. Vasconcelos

DI–FCUL TR–08–13

May 2008

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The
files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

Compiling the π-calculus into a Multithreaded
Typed Assembly Language

Tiago Cogumbreiro Francisco Martins
Vasco T. Vasconcelos

May 2008

Abstract

Current trends in hardware made available multi-core CPU systems to ordi-
nary users, challenging researchers to devise new techniques to bring software
into the multi-core world. However, shaping software for multi-cores is more
envolving than simply balancing workload among cores. In a near future
(in less than a decade) Intel prepares to manufacture and ship 80-core pro-
cessors [8]; programmers must perform a paradigm shift from sequential to
concurrent programming and produce software adapted for multi-core plat-
forms.

In the last decade, proposals have been made to compile formal concur-
rent and functional languages, notably the π-calculus [21], typed concurrent
objects [12], and the λ-calculus [18], into assembly languages. The last work
goes a step further and presents a series of type-preserving compilation steps
leading from System F [6] to a typed assembly language. Nevertheless, all
theses works are targeted at sequential architectures.

This paper proposes a type-preserving translation from the π-calculus
into MIL, a multithreaded typed assembly language for multi-core/multi-
processor architectures [26]. We start from a simple asynchronous typed
version of the π-calculus [2, 9, 17] and translate it into MIL code that is
then linked to a run-time library (written in MIL) that provides support
for implementation of the π-calculus primitives (e.g., queuing messages and
processes). In short, we implement a message-passing paradigm in a shared-
memory architecture.

Contents

1 Introduction 2

2 The π-Calculus 4
2.1 Syntax . 5
2.2 Semantics . 6

3 MIL: Multithreaded TAL 10
3.1 Architecture . 10
3.2 Syntax . 11
3.3 Operational Semantics . 12
3.4 Type Discipline . 15
3.5 Examples . 18

4 The π-Calculus Run-time 26
4.1 Channels Queues . 27
4.2 Communication . 32
4.3 Channels . 42

5 Translating the π-calculus into MIL 46

6 Conclusion 54

A Queues 56

1

Chapter 1

Introduction

Physical and electrical constrains are limiting the increase of frequency of
each processing unit of a processor, thus the top speed of each processing unit
is not expected to increase much more in near future. Instead manufactures
are augmenting the number of processing units in each processor (multi-
core processors) to continue delivering performance gains. The industry is
making big investments in projects, such as RAMP [23] and BEE2 [1], that
enable emulation of multi-core architectures, showing interest in supporting
the foundations for software research that targets these architectures.

To take advantage of multi-core architectures, parallel and concurrent
programming needs to be mastered [20]. With the advent of major avail-
ability of parallel facilities (from embedded systems, to super computers),
programmers must do a paradigm shift from sequential to parallel program-
ming and produce, from scratch, software adapted for multi-core platforms.

The MDA (Model-Driven Architecture) / MDE (Model-Driven Engi-
neering) methodologies are being widely used for software system develop-
ment [19, 10]. However, these methodologies have informal specification lan-
guages and lack semantic foundations. The concurrency theory results (e.g.
operational semantics, or axiomatic semantics) might enhance these method-
ologies [5].

In the last decade, some proposals have been made to compile concur-
rent and functional languages, notably the π-calculus [25], typed concurrent
objects [12], and the λ-calculus [18], into assembly languages. The last work
goes a step further and presents a series of type preserving compilation steps
leading from System F [6] to a typed assembly language [18]. Yet, all the
works are targeted for systems with a single core CPU architecture.

2

We propose a typed preserving translation from the π-calculus into MIL, a
multithreaded typed assembly language aiming at multi-core/multi-processor
architectures. We depart from a simple asynchronous typed version of the
π-calculus [2, 9, 17] and translate it into MIL, based on a run-time library
(written in MIL) that provides support (e.g. queueing of messages and pro-
cesses) for implementation the π-calculus primitives.

The run-time library defines channels and operations on channels to send
and to receive messages. Messages are buffered in the channel they are sent
to, until a process request for a message in the channel. The reverse is
also true to processes: a process requesting for a message gets blocked until
another one sends a message, by storing their state and their code in the
channel.

The run-time library and the translation function have an intertwined
design, although there is a clear separation of concerns between them. The
concept of a process is traversal and defined at different levels of abstraction
in both parts.

The concurrency is also preserved to a certain extent (limited only by
the number of available processors): π processes are represented by MIL
threads of execution. The concurrent architecture of the target language is,
therefore, extensively explored, resulting in highly parallel programs free of
race-conditions.

This paper is divided into seven chapters. Chapter 2 describes the π-
calculus, the source language. Chapter 3 presents our target language, MIL.
Chapter 4 and Chapter 5 discusses the translation from the π-calculus into
MIL. Finally, in Chapter 6, we summarize our work and hint at future direc-
tions.

3

Chapter 2

The π-Calculus

The π-calculus, developed by Robin Milner, Joachim Parrow, and David
Walker [17], is a process algebra for describing mobility. The π-calculus is
used to model a network of interconnected processes interacting through con-
nection links (ports) by sending and receiving references to other processes,
thus allowing the dynamic reconfiguration of the network.

As an example, consider a process that bounces every message received
in a port. Figure 2.1 depicts such an interaction. The client sends message
msg and a reply channel, where the server should echo the message to the
client. Afterwards, the server sends the message msg back to the client.

In this chapter we present an overview of the π-calculus syntax and se-
mantics.

Echo ServerEcho Client

msg,reply

msg

Figure 2.1: The server echoing the received message back to the client. The
dashed line represents communication from the client to the server. The full
line represents communication from the server to the client.

4

Processes Values

P,Q : := 0 nil v : := x, y name

| x〈~v〉 output | basval basic value

| x(~y).P input

| P | Q parallel

| (ν x : (~T))P restriction

| !P replication

The syntax of T is illustrated in Figure 2.3

Figure 2.2: Process syntax

2.1 Syntax

Processes. The adopted π-calculus syntax is based on [16] with extensions
presented in [24]: asynchronous, polyadic, and typed.

The syntax, depicted in Figure 2.2, is divided into two categories: names
and processes. Names are ranged over by lower case letters x and y. Val-
ues, v, symbolise either names or primitive values. A vector above a symbol
abbreviates a possibly empty sequence of these symbols. For example ~x
stands for the sequence of names x0 . . . xn with n ≥ 0. Processes, denoted
by upper case letters P and Q, comprise the nil process, 0, corresponding to
the inactive process; the output process, x〈~v〉, outlines the action of sending
data, ~v, through a channel x; the input process, x(~y).P , that receives a se-
quence of values via channel x and continues as P , with the received names
substituted for the received values; the parallel composition process, P | Q,
represents two active processes running concurrently; the restriction process,
(ν x : (~T))P , that creates a new channel definition local to process P ; and
finally the replicated process, !P , that represents an infinite number of active
processes running in parallel.

The following example is a possible implementation of the echo server
depicted in Figure 2.1.

!echo(msg, reply).reply〈msg〉 (2.1)

This process is ready to receive a message msg and a communication channel

5

Types Basic value types

T, S : := B basic value type B : := int integer type

| (~T) link type | str string type

Figure 2.3: Type syntax

reply trough channel echo. After receiving the values, it outputs the message
through channel reply. The process is replicated because is must be able to
communicate with multiple clients.

Types. Types are assigned to channels and to basic values. A basic value
type is either a string, str, or an integer, int; the channel type (~T) describes

the types of the communicated value ~T through the channel. For example,
a possible type for the echo channel from Process 2.1 is (str, (str)).

2.2 Semantics

The semantics of the π-calculus expresses formally the behaviour of pro-
cesses. With a rigorous semantics we can identify if two processes have the
same structural behaviour, observe how a process evolves as it interacts, and
analyse how links move from one process to another.

For the sake of clarity, we omit the type from the restriction operator.

Structural Congruence. The structural congruence relation, ≡, is the
smallest congruence relation on processes closed under rules given in Fig-
ure 2.4. Structural congruence identifies processes that represent the same
behaviour structure and can be used to reshape process structure to enable re-
duction. The rules are straightforward. Rule S1 allows for alpha-conversion;
Rules S2, S3, and S4 are the standard commutative monoid laws regarding
parallel composition, having 0 as neutral element; Rule S5 allows for scope
extrusion; Rule S6 garbage collects unused names; Rule S7 states that re-
striction order is of no importance; and finally Rule S8 allows replication to
unfold.

6

(S1) change of bound names

(S2) P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R

(S3) (ν x : (~T)) (P | Q) ≡ P | (ν x : (~T))Q if x /∈ fn(P)

(S4) (ν x : (~T)) 0 ≡ 0

(S5) (ν x : (~T)) (ν y : (~S))P ≡ (ν y : (~S)) (ν x : (~T))P, if x 6= y

(S6) !P ≡ P | !P

Figure 2.4: Structural congruence rules

React
x(~y).P | x〈~v〉 | Q→ P{~v/~a} | Q

P → P ′

Par
P | Q→ P ′ | Q

P → P ′

Res
(ν x : (~T))P → (ν x : (~T))P ′

Q ≡ P P → P ′ P ′ ≡ Q′

Struct
Q→ Q′

Figure 2.5: Reaction Rules

Bound and free names are defined as usual in the π-calculus, so we omit
their formal definitions.

Reduction. The reduction relation→ defined over processes, in Figure 2.5,
establishes how a computational step transforms a process [15]. The formula
P → Q means that process P can interact and evolve (reduce) to process Q.

The axiom React is the gist of the reaction rules, representing the com-
munication along a channel [14]. An output process, x〈~v〉, can interact with
an input process, x(~y).P , if they have the same channel’s name, x. The out-
put message, ~v, moves along channel x to process P and replaces the entry
points, ~y, resulting P{~v/~y}. The term P{~v/~y} means that the names ~y, in
process P , are to be replaced by the values ~v.

7

baseval ∈ B
Tv-Base

Γ ` baseval : B
Tv-Name

Γ, x : T ` x : T

Tv-Nil
Γ ` 0

Γ ` P
Tv-Rep

Γ `!P

Γ ` x : (T0 . . . Ti) Γ, y0 : T0, . . . , yi : Ti ` P
Tv-In

Γ ` x(~y).P

Γ ` x : (~T) Γ ` vi : Ti ∀i ∈ I
Tv-Out

Γ ` x〈~v〉

Γ ` P Γ ` Q
Tv-Par

Γ ` P | Q
Γ, x : (~T) ` P

Tv-Res
Γ ` (ν x : (~T))P

Figure 2.6: Typing rules for the π-calculus

Rule Par expresses that reduction can appear on the right side of a paral-
lel composition. Res governs reduction inside the restriction operator. Rule
Struct brings congruence rules to the reduction relation.

Process

!echo(msg, reply).reply〈msg〉 | (ν r) echo〈′hello world!′, r〉

represents, respectively, the echo server being run concurrently with a client
that creates a new name r and sends it, along with a message, through
channel echo, to the server. The following steps describe the reaction between
both processes:

!echo(msg, reply).reply〈msg〉 | (ν r) r〈′hello world!′〉

Type system. Figure 2.6 presents a standard type system for the π-
calculus.

Rule Tv-Base states that primitive values (strings and numbers) are well
typed. Rule Tv-Name sets forth that a name is well typed if it is defined in
the type environment and the type used matches the name’s declaration. The
inactive process 0 is always well typed, rule Tv-Nil. The process (ν x : (~T))P

8

is well typed if, by adding the association between name x and type (~T) to Γ,
the contained process P is well typed, rule Tv-Res. Tv-In rules that the
input process, x(~y).P , is well typed if the name of the input channel, x, is
a link type and if, by mapping each name of the input channel’s arguments
to the corresponding type of x, the contained process, P , is well typed. The
output process, x〈~v〉, is well typed if its name, x, is declared as link type
and if its arguments are correctly typed, rule Tv-Out. The consistency
of the replicated process depends on the consistency of the process being
replicated, rule Tv-Rep. The parallel process is well typed if each of the
composing processes are well typed, rule Tv-Par.

Now, we show that process

(ν echo : (str, (str))) echo(msg, reply).reply〈msg〉

is well typed. Using rule Tv-Res we derive

∅, echo : (str, (str)) ` echo(msg, reply).reply〈msg〉
Tv-Res

∅ ` (ν echo : (str, (str))) echo(msg, reply).reply〈msg〉

Let Γ′ def
= ∅, echo : (str, (str)). We need to prove that the new typing

environment, Γ′, typifies process

echo(msg, reply).reply〈msg〉

Applying rule Tv-In:

Γ′,msg : str, reply : (str) ` reply〈msg〉 Γ′ ` echo : (str, (str))
Tv-In

Γ′ ` echo(msg, reply).reply〈msg〉

Rule Tv-Name ensures that Γ′ ` echo : (str, (str)) holds. Now, let

Γ′′ def
= Γ′,msg : str, reply : (str)

We are left with the second sequent, that also holds

Tv-Name
Γ′′ ` reply : (str)

Tv-Name
Γ′′ ` msg : str

Tv-Out
Γ′′ ` reply〈msg〉

9

Chapter 3

MIL: Multithreaded Typed
Assembly Language

MIL [26] combines a typed assembly language (TAL) with multithreaded
programming, providing the possibility for “executing trusted code safely
and efficiently” [18]. Types ensure that pointers cannot be fabricated or
forged and that jumps can only be done to checked code, allowing untrusted
compilers to generate a typed assembly language that can be compiled with
a single trusted compiler.

Multithreaded programming at assembly level helps structuring inter-
thread synchronisation. The type system we provide for the language enforces
the absence of race conditions.

3.1 Architecture

MIL envisages an abstract multi-processor with a shared main memory. Each
processor consists of registers and of an instruction cache. The main memory
is divided into a heap (for storing data and code blocks) and a run pool.
Data blocks are represented by tuples and are protected by locks. Code
blocks declare the needed registers (including the type for each register), the
required locks, and an instruction set. The run pool contains suspended
threads waiting for execution. It may happen that there are more threads
to be run than the number of processors. Figure 3.1 summarizes the MIL
architecture.

10

run pool heap

CPU core 1

registers

instruction
cache

CPU core N

registers

instruction
cache

Figure 3.1: The MIL architecture.

3.2 Syntax

The syntax of our language is generated by the grammar in Figures 3.2, 3.3,
and 3.9. We postpone the exposure of types to Section 3.4. We rely on a set
of heap labels ranged over by l, and a disjoint set of type variables ranged
over by α and β.

Most of the proposed instructions, represented in Figure 3.2, are standard
in assembly languages. Instructions are organised in sequences, ending in a
jump or in a yield. Instruction yield frees the processor to execute another
thread from the thread pool. Our threads are cooperative, meaning that each
thread must explicitly release the processor (using the yield instruction).

The abstract machine, depicted in Figure 3.3, is parametric in the number
of processors available (N) and in the number of registers (R).

An abstract machine can be in two possible states: halted or running. A
running machine comprises a heap, a thread pool, and an array of processors.
Heaps are maps from labels into heap values that may be tuples or code
blocks. Tuples are vectors of values protected by some lock. Code blocks
comprise a signature and a body. The signature of a code block describes
the type of each register used in the body, and the locks held by the processor
when jumping to the code block. The body is a sequence of instructions to
be executed by a processor.

11

registers r ::= r1 | . . . | rR

integer values n ::= . . . | -1 | 0 | 1 | . . .
lock values b ::= -1 | 0 | 1 | . . .
values v ::= r | n | b | l | pack τ, v as τ | packL α, v as τ |

v[τ] | ?τ
instructions ι ::=

control flow r := v | r := r + v | if r = v jump v |
memory r := malloc [~τ] guarded by α |

r := v[n] | r[n] := v |
unpack α, r := unpack v |
lock α, r := newLock b | α := newLockLinear

r := tslE v | r := tslS v | unlockE v | unlockS v |
fork fork v

inst. sequences I ::= ι; I | jump v | yield

Figure 3.2: Instructions

A thread pool is a multiset of pairs, each of which contains a pointer
(i.e. a label) to a code block and a register file. A processor array contains N
processors, where each is composed of a register file, a set of locks, and a
sequence of instructions.

3.3 Operational Semantics

Thread pools are managed by the rules illustrated in Figure 3.4. Rule R-
halt stops the machine when it finds an empty thread pool and, at the same
time, all processors are idle, changing the machine state to halt. Otherwise,
if there is an idle processor and a thread waiting in the pool, then by Rule
R-schedule the thread is assigned to the idle processor. Rule R-fork
places a new thread in the pool, taking the ownership of locks required by

12

states S ::= 〈H;T ;P 〉 | halt

heaps H ::= {l1 : h1, . . . , ln : hn}
heap values h ::= 〈v1 . . . vn〉α | τ{I}
thread pool T ::= {〈l1, R1〉, . . . , 〈ln, Rn〉}
processors array P ::= {1: p1, . . . ,N : pN}
processor p ::= 〈R; Λ; I〉
register files R ::= {r1 : v1, . . . , rR : vR}
permissions Λ ::= (λ, λ, λ)

lock sets λ ::= α1, . . . , αn

Figure 3.3: Abstract machine

the forked code block.
Operational semantics regarding locks are depicted in Figure 3.5 and in

Figure 3.6. The instruction newLock creates a new lock in three possible
states, according to its parameter: locked exclusively (when the parameter
is -1), locked shared (when the parameter is 1), and unlocked (when the
parameter is 0). The scope of α is the rest of the code block. A tuple
with the value of the parameter of the newLock is allocated in the heap and
register r is made to point it. For example, a new lock in the unlocked state
allocates the tuple 〈0〉β. When the lock is created in the exclusive lock state,
the new lock variable β is added to the set of exclusive locks held by the
processor. Similarly, when the lock is created in the shared lock state, the
new lock variable β is added to the set of shared locks held by the processor,
allowing just one reader.

Linear locks are created by newLockLinear. The new lock variable β is
added to the set of linear locks.

The Test and Set Lock, presented in many machines designed with mul-
tiple processes in mind, is an atomic operation that loads the contents of
a word into a register and then stores another value in that word. There
are two variations of the Test and Set Lock in our language: tslE and tslS.
When a tslE is applied to an unlocked state, the type variable α is added to
the set of exclusive locks and the value becomes 〈-1〉α. Various threads may

13

∀i.P (i) = 〈 ; ; yield〉
〈 ; ∅;P 〉 → halt

(R-halt)

H(l) = ∀[] requires Λ{I}
〈H;T] {〈l, R〉};P{i : 〈 ; ; yield〉}〉 → 〈H;T ;P{i : 〈R; Λ; I〉}〉

(R-schedule)

R̂(v) = l H(l) = ∀[] requires Λ{ }
〈H;T ; {i : 〈R; Λ] Λ′; (fork v; I)〉}〉 → 〈H;T ∪ {〈l, R〉};P{i : 〈R; Λ′; I〉}〉

(R-fork)

Figure 3.4: Operational semantics (thread pool)

read values from a tuple locked in shared state, hence when tslS is applied
to a shared or to an unlocked lock the value contained in the tuple repre-
senting the lock is incremented, reflecting the number of readers holding the
shared lock, and then the type variable α is added to the set of hold shared
locks. When tslS is applied to a lock in the exclusive state, it places a −1
in the target register and the lock is not acquired by the thread issuing the
operation.

Shared locks are unlocked with unlockS and the number of readers is
decremented. The running processor must hold the shared lock. Exclusive
locks are unlocked with unlockE, while the running processor holds the ex-
clusive lock.

Rules related to memory instructions are illustrated in Figure 3.7. Values
can be stored in a tuple, when the lock that guards the tuple is hold by the
processor in the set of exclusive locks or in the set of linear locks. A value
can be loaded from a tuple if the lock guarded by it is hold by the processor
in any set of locks. The rule for malloc allocates a new tuple in the heap and
makes r point to it. The size of the tuple is that of sequence of types [~τ], its
values are uninitialised values.

The transition rules for the control flow instructions, illustrated in Fig-
ure 3.8, are straightforward [22]. They rely on function R̂ that works on
registers or on values, by looking for values in registers, in packs, and in
universal concretions.

14

P (i) = 〈R; Λ; (α, r := newLock 0; I)〉 l 6∈ dom(H) β 6∈ Λ

〈H;T ;P 〉 → 〈H{l : 〈0〉β};T ;P{i : 〈R{r : l}; Λ; I[β/α]〉}〉
(R-new-lock 0)

P (i) = 〈R; Λ; (α, r := newLock 1; I)〉 l 6∈ dom(H) β 6∈ Λ

〈H;T ;P 〉 → 〈H{l : 〈1〉β};T ;P{i : 〈R{r : l}; (λE, λS] {β}, λL); I[β/α]〉}〉
(R-new-lock 1)

P (i) = 〈R; Λ; (α, r := newLock -1; I)〉 l 6∈ dom(H) β 6∈ Λ

〈H;T ;P 〉 → 〈H{l : 〈-1〉β};T ;P{i : 〈R{r : l}; (λE] {β}, λS, λL); I[β/α]〉}〉
(R-new-lock -1)

P (i) = 〈R; Λ; (α := newLockLinear; I)〉 β 6∈ Λ

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R; (λE, λS, λL] {β}); I[β/α]〉}〉
(R-new-lockL)

Figure 3.5: Operational semantics (lock creation)

R̂(v) =



R(v) if v is a register

pack τ, R̂(v′) as τ ′ if v is pack τ, v′ as τ ′

packL α, R̂(v′) as τ if v is packL α, v′ as τ

R̂(v′)[τ] if v is v′[τ]

v otherwise

3.4 Type Discipline

The syntax of types is exposed in Figure 3.9. A type of the form 〈~σ〉α de-
scribes a tuple that is protected by lock α. Each type ~σ is either initialised (τ)
or uninitialised (?τ). A type of form ∀[~α]Γ requires Λ describes a code block;
a thread jumping into such a block must instantiate all the universal vari-
ables ~α; it must also hold a register file type Γ as well as the locks in Λ. The
singleton lock type, lock(α), is used to represent the type of a lock value in
the heap. The types ∃α.τ defines conventional existential type. With type
∃lα.τ we are able to use the existential quantification over lock types, by
following [4]. The recursive type, where the type may itself be present in the

15

P (i) = 〈R; Λ; (r := tslS v; I)〉 R̂(v) = l H(l) = 〈b〉α b ≥ 0

〈H;T ;P 〉 → 〈H{l : 〈b+ 1〉α};T ;P{i : 〈R{r : 0}; (λE, λS] {α}, λL); I〉}〉
(R-tslS-acq)

P (i) = 〈R; Λ; (r := tslS v; I)〉 H(R̂(v)) = 〈-1〉α

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : -1}; Λ; I〉}〉
(R-tslS-fail)

P (i) = 〈R; Λ; (r := tslE v; I)〉 R̂(v) = l H(l) = 〈0〉α

〈H;T ;P 〉 → 〈H{l : 〈-1〉α};T ;P{i : 〈R{r : 0}; (λE] {α}, λS, λL); I〉}〉
(R-tslE-acq)

P (i) = 〈R; Λ; (r := tslE v; I)〉 H(R̂(v)) = 〈b〉α b 6= 0

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : b}; Λ; I〉}〉
(R-tslE-fail)

P (i) = 〈R; (λE, λS] {α}, λL); (unlockS v; I)〉 R̂(v) = l H(l) = 〈b〉α

〈H;T ;P 〉 → 〈H{l : 〈b− 1〉α};T ;P{i : 〈R; (λE, λS, λL); I〉}〉
(R-unlockS)

P (i) = 〈R; (λE] {α}, λS, λL); (unlockE v; I)〉 R̂(v) = l H(l) = 〈 〉α

〈H;T ;P 〉 → 〈H{l : 〈0〉α};T ;P{i : 〈R; (λE, λS, λL); I〉}〉
(R-unlockE)

Figure 3.6: Operational semantics (lock manipulation)

types it is composed by, is defined by µα.τ .
The type system is presented in Figures 3.10 to 3.13. Typing for values is

illustrated in Figure 3.10. Heap values are distinguished from operands (that
include registers as well) by the form of the sequent. Uninitialised value ?τ
has type ?τ ; we use the same syntax for a uninitialised value (at the left of
the colon) and its type (at the right of the colon). A formula σ <: σ′ allows
to “forget” initialisations.

Instructions are checked against a typing environment Ψ (mapping labels
to types, and type variables to the kind Lock: the kind of singleton lock
types), a register file type Γ holding the current types of the registers, and
a triple Λ that comprises sets of lock variables (the permission of the code

16

P (i) = 〈R; Λ; (r := malloc [~τ] guarded by α; I)〉 l 6∈ dom(H)

〈H;T ;P 〉 → 〈H{l : 〈 ~?τ〉α};T ;P{i : 〈R{r : l}; Λ; I〉}〉
(R-malloc)

P (i) = 〈R; Λ; (r := v[n]; I)〉 H(R̂(v)) = 〈v1..vn..vn+m〉α

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : vn}; Λ; I〉}〉
(R-load)

P (i) = 〈R; Λ; (r[n] := v; I)〉
R(r) = l H(l) = 〈v1..vn..vn+m〉α

〈H;T ;P 〉 → 〈H{l : 〈v1.. R̂(v)..vn+m〉α};T ;P{i : 〈R; Λ; I〉}〉
(R-store)

Figure 3.7: Operational semantics (memory)

block), that are, respectively, the exclusive, the shared, and the linear.
Rule T-yield requires that shared and exclusive locks must have been

released prior to the ending of the thread. Rule T-fork splits the permission
into the two tuples Λ and Λ′: the former is transferred to the forked thread,
the latter remains with the current thread, according to the permissions
required by the target code block.

Rules T-new-lock1, T-new-lock-1, and T-new-lockL each adds
the type variable into the respective set of locks. Rules T-new-lock0,
T-new-lock1, and T-new-lock-1 assign a lock type to the register. Rules
T-tslE and T-tslS require that the value under test holds a lock, disal-
lowing testing a lock already held by the thread. Rules T-unlockE and
T-unlockS make sure that only held locks are unlocked. Finally, the rules
T-criticalE and T-criticalS ensure that the current thread holds the
exact number of locks required by the target code block. Each of these rules
also adds the lock under test to the respective set of locks of the thread. A
thread is guaranteed to hold the lock only after (conditionally) jumping to a
critical region. A previous test and set lock instructions may have obtained
the lock, but as far as the type system goes, the thread holds the lock after
the conditional jump.

The typing rules for memory and control flow are depicted in Figure 3.12.
The rule for malloc ensures that allocated memory is protected by a lock (α)
present in the scope. The lock that guards a tuple defines the permissions
that affect how the loading and the storing operations work. Holding a lock

17

P (i) = 〈R; Λ; jump v〉 H(R̂(v)) = {I}
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R; Λ; I〉}〉

(R-jump)

P (i) = 〈R; Λ; (r := v; I)〉
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : R̂(v)}; Λ; I〉}〉

(R-move)

P (i) = 〈R; Λ; (r := r′ + v; I)〉
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : R(r′) + R̂(v)}; Λ; I〉}〉

(R-arith)

P (i) = 〈R; Λ; (if r = v jump v′;)〉
R(r) = v H(R̂(v′)) = {I}

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R; Λ; I〉}〉
(R-branchT)

P (i) = 〈R; Λ; (if r = v jump ; I)〉 R(r) 6= v

〈H;T ;P 〉 → 〈H;T ; {i : 〈R; Λ; I〉}〉
(R-branchF)

P (i) = 〈R; Λ; (α, r := unpack v; I)〉 R̂(v) = pack τ, v′ as

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : v′}; Λ; I[τ/α]〉}〉
(R-unpack)

P (i) = 〈R; Λ; (α, r := unpack v; I)〉 R̂(v) = packL β, v′ as

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : v′}; Λ; I[β/α]〉}〉
(R-unpackL)

Figure 3.8: Operational semantics (control flow)

of any kind enables permission to load a value from a tuple. Only exclusive
and linear locks permit storing a value into a tuple.

The rules for typing machine states are illustrated in Figure 3.13. They
should be easy to follow. The only remark goes to heap tuples, where we
make sure that all locks protecting the tuples are in the domain of the typing
environment.

3.5 Examples

We select a case in point of inter-process communication: mutual exclusion.
We create a tuple and then start two threads that try to write in the tuple
concurrently. A reference for lock α is transferred to each new thread, by

18

types τ ::= int | 〈~σ〉α | ∀[~α]Γ requires Λ | lock(α) |
lockE(α) | lockS(α) | ∃α.τ | ∃lα.τ | µα.τ | α

init types σ ::= τ | ?τ
register file types Γ ::= r1 : τ1, . . . , rn : τn

typing environment Ψ ::= ∅ | Ψ, l : τ | Ψ, α : : Lock

Figure 3.9: Types

instantiating the universal value, since it is not in the scope of the forked
threads.

main() {
α, r1:= newLock −1
r2:= malloc [int] guarded by α
r2[0] := 0
unlockE r1
fork thread1[α]
fork thread2[α]
yield
}

Each thread competes in acquiring lock α using different strategies. In
the first thread (thread1) we use a technique called spin lock, where we loop
actively, not releasing the processor, until we eventually grab the lock exclu-
sively. After that we jump to the critical region.

thread1 ∀[α](r1: 〈lock(α)〉α, r2: 〈?int〉α) {
r3:= tslE r1−− exclusive because we want to write
if r3= 0 jump criticalRegion [α]
jump thread1[α]
}

In the critical region, the value contained in the tuple is incremented.

criticalRegion ∀[α](r1: 〈lock(α)〉α, r2: 〈?int〉α) requires(α ;;) {
r3:= r2[0]
r3:= r3+ 1
r2[0] := r3

19

` 〈σ1, . . . , τn, . . . , σn+m〉α <: 〈σ1, . . . , ?τn, . . . , σn+m〉α (S-uninit)

n ≤ m

` r0 : τ0, . . . , rm : τm <: r0 : τ0, . . . , rn : τn
(S-reg-file)

` σ <: σ
` σ <: σ′ ` σ′ <: σ′′

` σ <: σ′′ (S-ref, S-trans)

` τ ′ <: τ

Ψ, l : τ ′ ` l : τ
Ψ ` n : int Ψ ` b : lock(α) Ψ `?τ : ?τ

(T-label,T-int,T-lock,T-uninit)

Ψ ` v : τ ′[τ/α] α /∈ τ,Ψ
Ψ ` pack τ, v as ∃α.τ ′ : ∃α.τ ′

Ψ ` v : τ [β/α] α /∈ β,Ψ
Ψ ` packL β, v as ∃lα.τ : ∃lα.τ

(T-pack,T-packL)

Ψ; Γ ` r : Γ(r)
Ψ ` v : τ

Ψ; Γ ` v : τ
(T-reg,T-val)

Ψ; Γ ` v : ∀[α~β]Γ′ requires Λ

Ψ; Γ ` v[τ] : ∀[~β]Γ′[τ/α] requires Λ[τ/α]
(T-val-app)

Figure 3.10: Typing rules for values Ψ ` v : σ and for operands Ψ; Γ ` v : σ

unlockE r1
yield
}

In the second thread (thread2), we opt for a different technique called sleep
lock. This strategy is cooperative towards other threads, since the control of
the processor is not held exclusively until the lock’s permission is granted.
We try to acquire the lock exclusively. When we do, we jump to the critical
region. If we do not acquire the lock, we fork a copy of this thread that will
try again later.

thread2 ∀[α](r1: 〈lock(α)〉α, r2: 〈 int〉α) {
r3:= tslE r1−− exclusive because we want to write
if r3= 0 jump criticalRegion [α]
fork thread2[α]
yield
}

20

These two techniques have advantages over each other. A spin lock is
faster. A sleep lock is fairest to other threads. When there is a reasonable
expectation that the lock will be available (with exclusive access) in a short
period of time it is more appropriate to use a spin lock. The sleep lock
technique, however, does context switching, which is an expensive operation
(i.e. degrades performance). A short coming of the spin lock in machines
with only one processor is demonstrated in this example:

main () {
α, r1:= newLock −1
fork release [α]
jump spinLock[α]
}
release ∀[α] (r1: 〈lock(α)〉α) requires (α ;;) {
unlockE r1
yield
}
spinLock ∀[α] (r1: 〈lock(α)〉α) {
r2:= tslE r1
if r2= 0

jump someComputation[α] −− will never happen
jump spinLock[α]
}

The permission of lock α is given to the forked process that will execute
the code block release — when a processor is available. Afterwards, a spin
lock is performed to obtain lock α. But because the sole processor is busy
trying to acquire lock α, the scheduled thread that can release it will never
be executed.

The continuation passing style [7] suits programs written in MIL, since
they are executed by a stack-less machine. In this programming model the
user passes a continuation (a label) to a code block that proceeds in the
continuation label after it is executed (either by forking or by jumping).
It may be useful to pass user data to the continuation code (as one of its
parameters). Existential types enable abstracting the type of the user data.
Let UserContinuation stands for

∀[α](r1 : 〈?int〉α) requires (; ;α)

Let PackedUserData stands for

∃β.〈∀[γ](r1 : β) requires (; ; γ), β〉α

21

The type PackedUserData is a pair that is divided into the continuation of
type

∀[γ](r1 : β) requires (; ; γ)

and the user data of type β, respectively. The type of the user data and the
type of register r1, present in the continuation, is the same.

The pattern of usage for a value of type PackedUSerData is to unpack
the continuation and the user data, and “apply” the former to the latter — by
moving the user data into register r1, and then jumping to the continuation.
The user data is an opaque value to the block of code manipulating the pair.
The advantages of an opaque user data is twofold. Firstly, the user data is
unaltered by the manipulator. Secondly, the code using the pair is not bound
to the type of the user data.

Next is an example of how to make a call to a code block that uses the
continuation passing style:

main() {
α := newLockLinear
r2:= malloc[int] guarded by α
r1:= malloc[ContinuationType, 〈?int〉α] guarded by α
r1[0] := continuation
r1[1] := r2
r1:= pack r1, 〈?int〉α as PackedUserData
jump library [α]
}
library [α](r1: PackedUserData) requires (;;α) {
−− do some computation...
x, r1:= unpack r1−− we do not need the packed type here
r2:= r1[0] −− the continuation
r1:= r1[1] −− the user data
jump r2[α]
}
continuation ContinuationType {
−− do some work
}

The code block main allocates the user data of type 〈?int〉α. Afterwards,
the user data is stored into a tuple, along with the label pointing to the
continuation. The tuple is then packed and passed to the library, which
eventually calls the continuation by unpacking the packed data and jumping
to the stored label.

22

Ψ; Γ; (∅, ∅, λL) ` yield (T-yield)

Ψ; Γ ` v : ∀[]Γ′ requires Λ Ψ; Γ; Λ′ ` I ` Γ <: Γ′

Ψ; Γ; Λ] Λ′ ` fork v; I
(T-fork)

Ψ, α : : Lock; Γ{r : 〈lock(α)〉α}; Λ ` I α 6∈ Ψ,Γ,Λ

Ψ; Γ; Λ ` α, r := newLock 0; I
(T-new-lock 0)

Ψ, α : : Lock; Γ{r : 〈lock(α)〉α}; (λE, λS] {α}, λL) ` I α 6∈ Ψ,Γ,Λ

Ψ; Γ; Λ ` α, r := newLock 1; I
(T-new-lock 1)

Ψ, α : : Lock; Γ{r : 〈lock(α)〉α}; (λE] {α}, λS, λL) ` I α 6∈ Ψ,Γ,Λ

Ψ; Γ; Λ ` α, r := newLock -1; I
(T-new-lock -1)

Ψ, α : : Lock; Γ; (λE, λS, λL] {α}) ` I α 6∈ Ψ,Γ,Λ

Ψ; Γ; Λ ` α := newLockLinear; I
(T-new-lockL)

Ψ; Γ ` v : 〈lock(α)〉α Ψ; Γ{r : lockS(α)}; Λ ` I α 6∈ Λ

Ψ; Γ; Λ ` r := tslS v; I
(T-tslS)

Ψ; Γ ` v : 〈lock(α)〉α Ψ; Γ{r : lockE(α)}; Λ ` I α 6∈ Λ

Ψ; Γ; Λ ` r := tslE v; I
(T-tslE)

Ψ; Γ ` v : 〈lock(α)〉α α ∈ λS Ψ; Γ; (λS \ {α}, λE, λL) ` I
Ψ; Γ; (λS, λE, λL) ` unlockS v; I

(T-unlockS)

Ψ; Γ ` v : 〈lock(α)〉α α ∈ λE Ψ; Γ; (λS, λE \ {α}, λL) ` I
Ψ; Γ; (λS, λE, λL) ` unlockE v; I

(T-unlockE)

Ψ; Γ ` r : lockS(α) Ψ; Γ ` v : ∀[]Γ′ requires (λE, λS] {α}, λ′
L)

Ψ; Γ; Λ ` I ` Γ <: Γ′ λ′
L ⊆ λL

Ψ; Γ; (λE, λS, λL) ` if r = 0 jump v; I
(T-criticalS)

Ψ; Γ ` r : lockE(α) Ψ; Γ ` v : ∀[]Γ′ requires (λE] {α}, λS, λ′
L)

Ψ; Γ; Λ ` I ` Γ <: Γ′ λ′
L ⊆ λL

Ψ; Γ; Λ ` if r = 0 jump v; I
(T-criticalE)

Figure 3.11: Typing rules for instructions (thread pool and locks)

Ψ; Γ; Λ ` I

23

Ψ, α : : Lock; Γ{r : 〈 ~?τ〉α}; Λ ` I ~τ 6= lock(), lockS(), lockE()

Ψ, α : : Lock; Γ; Λ ` r := malloc [~τ] guarded by α; I
(T-malloc)

Ψ; Γ ` v : 〈σ1..τn..σn+m〉α Ψ; Γ{r : τn}; Λ ` I τn 6= lock() α ∈ Λ

Ψ; Γ; Λ ` r := v[n]; I
(T-load)

Ψ; Γ ` v : τn Ψ; Γ ` r : 〈σ1..σn..σn+m〉α τn 6= lock()
Ψ; Γ{r : 〈σ1.. type(σn)..σn+m〉α}; Λ ` I α ∈ λE ∪ λL

Ψ; Γ; Λ ` r[n] := v; I
(T-store)

Ψ; Γ ` v : τ Ψ; Γ{r : τ}; Λ ` I
Ψ; Γ; Λ ` r := v; I

(T-move)

Ψ; Γ ` r′ : int Ψ; Γ ` v : int Ψ; Γ{r : int}; Λ ` I
Ψ; Γ; Λ ` r := r′ + v; I

(T-arith)

Ψ; Γ ` v : ∃α.τ Ψ; Γ{r : τ}; Λ ` I α 6∈ Ψ,Γ,Λ

Ψ; Γ; Λ ` α, r := unpack v; I
(T-unpack)

Ψ; Γ ` v : ∃lα.τ Ψ, β : : Lock; Γ{r : τ}; Λ ` I α 6∈ Ψ,Γ,Λ

Ψ; Γ; Λ ` α, r := unpack v; I
(T-unpackL)

Ψ; Γ ` r : int Ψ; Γ ` v : ∀[]Γ′ requires (λE, λS, λ
′
L)

Ψ; Γ; Λ ` I ` Γ <: Γ′ λ′
L ⊆ λL

Ψ; Γ; Λ ` if r = 0 jump v; I
(T-branch)

Ψ; Γ ` v : ∀[]Γ′ requires (λE, λS, λ
′
L) ` Γ <: Γ′ λ′

L ⊆ λL
Ψ; Γ; Λ ` jump v

(T-jump)

where type(τ) = type(?τ) = τ .

Figure 3.12: Typing rules for instructions (memory and control flow)

Ψ; Γ; Λ ` I

24

∀i.Ψ ` R(ri) : Γ(ri)

Ψ ` R : Γ
(reg file, Ψ ` R : Γ)

∀i.Ψ ` P (i)

Ψ ` P
Ψ ` R : Γ Ψ; Γ; Λ ` I

Ψ ` 〈R; Λ; I〉
(processors, Ψ ` P)

∀i.Ψ ` li : ∀[~αi]Γi requires { } Ψ ` Ri : Γi[~βi/~αi]

Ψ ` {〈l1, R1〉, . . . , 〈ln, Rn〉}
(thread pool, Ψ ` T)

Ψ, ~α : : Lock; Γ; Λ ` I
Ψ ` ∀[~α]Γ requires Λ{I} : ∀[~α]Γ requires Λ

∀i.Ψ, α : : Lock ` vi : σi
Ψ, α : : Lock ` 〈~v〉α : 〈~σ〉α

(heap value, Ψ ` h : τ)

∀l.Ψ ` H(l) : Ψ(l)

Ψ ` H
(heap, Ψ ` H)

` halt
Ψ ` H Ψ ` T Ψ ` P

` 〈H;T ;P 〉
(state, ` S)

Figure 3.13: Typing rules for machine states

25

Chapter 4

The π-Calculus Run-time

In this chapter we describe a library, written in MIL, that implements the
primitives of the π-calculus used to support the generated code, following
the design of Lopes et al. [13].

We implement a message passing paradigm in a shared memory archi-
tecture. Because communication in the π-calculus version we select is asyn-
chronous, the output process may be represented (in this run-time) by the
message being transmitted itself, which is buffered until delivery in the rep-
resentation of the transmitting channel. We also define a mechanism to
schedule a process waiting for a message to be delivered, by blocking its ex-
ecution, and then resuming it, when a message arrives. This mechanism is
used to represent the input process and the replicated input process.

The closure of a process consists of an environment (the variables known
by the process itself) and a continuation (a pointer to a code block that em-
bodies the process). We store the closure of processes waiting for a message to
be delivered in the target channel. When messages are delivered, we recover
the state of the process — by applying the message and the environment into
the continuation — and resume its execution.

We present a set of macros used to abstract the definition of types and
of operations. For each introduced data structure, we define macros for
describing its type, for allocating it, and for accessing the values that compose
it. We build our library on top of queues defined in the Appendix A. On
Section 4.1, we implement channels. Next we describe operations to send
through, and to receive from, a channel. Lastly, we extend the definition of
channels, associating a channel with its lock in a tuple (Section 4.3).

26

cont env lock∃ τe.

α

ContType(τ, τe)

τe

PLock

Figure 4.1: The closure of a process

4.1 Channels Queues

In this section, we define the type of a process and the type of a channel
queue. A channel queue is used for asynchronous message passing between
processes, which consists of two pools, one for storing messages and another
for storing processes. The continuation of a process is the code block that
represents a process, expecting the message being delivered, the environment
of the process, and a lock protecting the environment. A process is, therefore,
composed by the continuation, the environment, and the environment’s lock.

The continuation of a process may be defined by the parametrised type:

ContType(τm,τe)
def= [α](r1: τm, r2: τe, r3: 〈lock(α)〉α) requires (;α;)

Register r1 (of type τm) holds the received message, register r2 holds the
environment of the process (of type τe), and register r3 holds the lock (of
type 〈lock(α)〉α) that may protect the environment. Lock α is abstracted by
the universal operator. Notice that the code block only has permission to
read values from the environment, because the environment of a process is a
immutable structure, as can be observed in Chapter 5.

The type of the closure of a process, sketched by Figure 4.1, may be
defined by:

ClosureType(τ ,α)
def= ∃ τe.〈ContType(τ ,τe), τe, PLock〉α

The existential value that abstracts the environment (of type τe) of the
process (allowing environments of different types) holds a tuple that consists
of the continuation, the environment, and the lock type that protects the
environment. The continuation process is of type ContType(τ ,τe), communi-
cating messages of type τ and holding an environment of type τe. The lock
of the environment is defined by:

27

closr keep

α

ClosureType(τ, α)

int

Figure 4.2: A process

PLock
def= ∃lβ.〈lock(β)〉β

and is an existential lock value abstracting lock β. Observe that we have
extended the definition of closure, by adding the lock of the environment.
This extension grants access to data stored inside the environment. The
macros for handling closures are:

ClosureAlloc (τm,τe,α)
def= malloc[ContType(τm,τe), τe, PLock] guarded by α

ClosureCont(r)
def= r[0]

ClosureEnv(r)
def= r[1]

ClosureLock(r)
def= r[2]

We may define a process (illustrated by Figure 4.2) as a pair containing
the closure and the keep in channel flag (of type int):

ProcType(τ ,α)
def= 〈ClosureType(τ ,α), int〉α

The flag is necessary for replicated input processes: after reduction, these
processes remain in the channel queue, waiting for more messages. Macros
to manipulate processes are:

ProcAlloc(τ ,α)
def= malloc[ClosureType(τ ,α), int] guarded by α

ProcClosure(r)
def= r[0]

ProcKeep(r)
def= r[1]

The creation of a process is illustrated in the following example, where c

has type ContType(int,〈〉β) and r1 has type 〈lock(β)〉β:

r3:= malloc [] guarded by β −− an empty environment is created

r2:= ClosureAlloc(int , 〈〉β , α) −− alloc the closure of a process
ClosureCont(r2) := c −− set the continuation to ’c’

28

ClosureEnv(r2) := r3 −− set the environment to the one in r3
ClosureLock(r2) := r1 −− set the lock of the environment as β

r2:= pack 〈〉β, r2 as ClosureType(int ,α) −− abstract the environment’s type
r1:= ProcAlloc(int ,α) −− alloc the process itself
ProcClosure(r1) := r2 −− set the closure as the one we created
ProcKeep(r1) := 0 −− do not keep this process in the channel

In order to create a queue of processes, we need to define a sentinel
process. Consider sink:

sink [α,τm,τe](r1:τm, r2:τe, r3:〈lock(α)〉α) requires (;α;) {
unlockS r3
yield
}

Instantiating the universal value sink with τm and τe (sink [τm][τe]) results in
a value of type ContType(τe,τm). We may use this continuation in sentinel
processes.

The creation of a sentinel process may be defined by macro ProcCreate-
Sentinel(r ,rt,τ ,α), where:

• r is the register that will refer the process of type ProcType(τ ,α);

• rs is the register that will refer the closure of type ClosureType(τ ,α);

• τ is the type of the messages being transmitted;

• α is the lock protecting the channel.

Defined by:

ProcCreateSentinel(r ,rs,τ ,α)
def=

δ ,r := newLock 0 −− create a dummy lock
r := packL δ,r as PLock −− abstract the lock
rs := ClosureAlloc(τ , int ,α) −− alloc the closure of the process
ClosureCont(rs) := sink[int][τ] −− set the continuation to ’ sink ’
ClosureEnv(rs) := 0 −− set value 0 as the environment
ClosureLock(rs) := r −− set the lock of the environment as r
rs := pack int,rs as ClosureType(τ ,α) −− abstract the environment
r := ProcAlloc(τ ,α) −− alloc the sentinel process
ProcClosure(r) := rs −− set the closure as the one in rs
ProcKeep(r) := 0 −− do not keep this process in the queue

Channel queues (Figure 4.3) may be defined by:

29

state msgs procs

P1
. . . Pn

m1 . . . mn

Figure 4.3: A channel queue

ChannelQueueType(τ ,α)
def= 〈int, QueueType(τ ,α), QueueType(ProcType(τ ,α),α)〉α

representing a tuple, protected by lock α, that holds a flag (of type int)
marking the kind of contents of the channel queue, a queue of messages (of
type QueueType(τ ,α)), and a queue of processes (of type QueueType(ProcType

(τ ,α),α)). The flag can assume one of three different values: 0 indicates
the channel queue is empty; 1 indicates at least one message enqueued; and
2 represents at least one enqueued process. The macros for manipulating
channel queues are:

ChannelQueueAlloc(τ ,α)
def= malloc[int, QueueType(τ ,α),

QueueType(ProcType(τ ,α), α)]
guarded by α

ChannelQueueState(r)
def= r[0]

ChannelQueueMsgs(r)
def= r[1]

ChannelQueueProcs(r)
def= r[2]

CHANNEL QUEUE EMPTY
def= 0

CHANNEL QUEUE WITH MSGS
def= 1

CHANNEL QUEUE WITH PROCS
def= 2

The creation of a channel queue, having register r1 type ProcType(int ,α)

(as in the result of the previous example), is:

30

r4:= r1 −− we want to use r1 afterwards
r1:= ChannelQueueAlloc(int, α) −− alloc the channel
−− mark the channel as empty:
ChannelQueueState(r1) := CHANNEL QUEUE EMPTY
QueueCreateEmpty(r2, r3, 0, int, α) −− create an empty queue of integers
ChannelQueueMsgs(r1) := r2 −− set the queue of messages as r2
−− create an empty queue of processes; the sentinel is r4:
QueueCreateEmpty(r2, r3, r4, ProcType(int,α), α)
ChannelQueueProcs(r1) := r2 −− set the queue of processes as r2

The last definition in this section, ChannelQueueCreate(r ,rm,rt,τ ,α), is the
creation of a channel queue, where:

• r is the register that will refer the new empty channel of type Channel-
QueueType(τ ,α);

• rq is the register that will hold the queue of processes of type Queue-
Type(ProcType(τ ,α),α);

• re is the register that will point to the sentinel element of the queue of
processes;

• v is a sentinel message of type τ ;

• τ is the type of the transmitted messages;

• α is the lock protecting the channel.

ChannelQueueCreate(r,rq,re,v,τ ,α)
def=

r := ChannelQueueAlloc(τ ,α) −− create the new channel
−− flag it as empty:
ChannelQueueState(r) := CHANNEL QUEUE EMPTY
−− create an empty queue of messages, where v is the sentinel :
QueueCreateEmpty(rq,re,v,τ ,α)
ChannelQueueMsgs(r) := rq −− set the channel of messages
ProcCreateSentinel(rq,re,τ ,α) −− create a dummy process
−− create a queue of processes , where the sentinel is in rq:
QueueCreateEmpty(rq,re,rq,ProcType(τ ,α),α)
ChannelQueueProcs(r) := rq −− set the queue of processes

Notice that value v is unaltered in this macro. Furthermore, the value v may
only be register rq.

31

4.2 Communication

In this section we list the two operations responsible for communications us-
ing channels: sendMessage and receiveMessage. The former sends a message
through a channel. The latter expects a continuation, where the message will
be received, and an environment (user data that is available in the continu-
ation). In either case, when a thread jumps to any of these operations, it is
not guaranteed that the processor will be yield, or continue executing. Both
operations require exclusive access to the lock of the channel, since they alter
its internal state, thus representing a point of contention (in regards to the
protecting lock).

Send message. We define an operation to send a message through a chan-
nel queue (depicted in Figure 4.4):

1 sendMessage [α,τ] −− the protecting lock and the message’s type are abstracted
2 (r1: τ , −− the message being sent
3 r2: ChannelQueueType(τ ,α), −− the target channel
4 r3: 〈lock(α)〉α) −− the channel’s lock
5 requires (α ;;) { −− exclusive access to the

channel
6 r4:= ChannelQueueState(r2) −− get the state of the channel
7 −− verify if there are process waiting for a message
8 if r4= CHANNEL QUEUE WITH PROCS
9 −− when there are, deliver the message:

10 jump sendMessageReduce[τ][α]
11 −− else no processes in the channel. enqueue the message
12 −−
13 −− flag the channel as containing messages:
14 ChannelQueueState(r2) := CHANNEL QUEUE WITH MSGS
15 r2:= ChannelQueueMsgs(r2) −− get the queue of messages
16 QueueAdd(r2,r1,r4,r1,τ ,α) −− put the message (r1) in the queue
17 unlockE r3 −− unlock the channel’s lock
18 yield −− release control of the processor
19 }

This operation either jumps to the code block sendMessageReduce, when there
are processes waiting for a message to arrive, or yields the processor’s control,
after placing the message in the channel.

32

sendMessage

Channel has
processes?

sendMessageReduce

Keep process
in channel?

Mark channel
with messages

execProc

Dequeue
process

Enqueue
message

Enqueue
process

execProcCheckEmpty

no

yes

no

yes

Figure 4.4: The activity diagram outlines the execution of sendMessage, where
activities in italic represent code blocks (identified by their labels).

33

In the following, we list the code block sendMessageReduce. This code
block assumes that there is at least one processes waiting for a message to
arrive.

1 sendMessageReduce[α,τ] −− the protecting lock and the message’s type are
abstracted

2 (r1: τ , −− the message being sent
3 r2: ChannelQueueType(τ ,α), −− the target channel
4 r3: 〈lock(α)〉α) −− the channel’s lock
5 requires (α ;;) { −− exclusive access to α
6 r6:= ChannelQueueProcs(r2) −− moves the queue of processes to r6
7 −− remove a process from the queue, and move it into r4
8 −− r5 holds the number of processes in the queue:
9 QueueRemove(r6,r5,r4)

10 r7:= ProcKeep(r4) −− check if the process is to be kept
11 if r7= 0
12 −− do not keep it in channel, then deliver the message
13 jump execProcCheckEmpty[τ][α]
14 −− keep the process in the channel after delivery
15 r7:= r4 −− move the message into r7
16 −− add process the back into the queue:
17 QueueAdd(r6,r7,r8,r4,ProcType(τ ,α),α)
18 −− deliver the message to the process (in r4)
19 −− we are certain that the state of the channel is unaltered (with processes)
20 unlockE r3 −− no exclusive access needed
21 jump execProc[τ][α] −− deliver the process
22 }

We begin by removing the process from the channel. After that, we verify
if we need to put the process back in the channel, by verifying its keep in
channel flag. We then jump to execProcCheckEmpty.

Next, is the code block execProcCheckEmpty:

1 execProcCheckEmpty [α,τ] −− the protecting lock and the message’s type are
abstracted

2 (r1: τ , −− the message being sent
3 r2: ChannelQueueType(τ ,α), −− the target channel
4 r3: 〈lock(α)〉α, −− the channel’s lock
5 r4: ProcType(τ ,α), −− the receiving process
6 r5: int) −− the remaining processes
7 requires (α ;;) { −− exclusive access to α
8

34

9 −− verify if the channel became empty:
10 if r5= 0
11 −− the channel became empty, mark and then reduce:
12 jump execProcFirstEmpty[τ][α] −− mark it as empty and continue delivery
13 −− no need to change the channel’s state , continue with the reduction
14 −−
15 −− we don’t need access to the channel to deliver the message
16 unlockE r3
17 jump execProc[τ][α]
18 }

The code block checks if the channel needs to be marked as empty, before
delivering the message to the process (in code block code block execProc).

We depict code block execProcFirstEmpty:

1 execProcFirstEmpty [α,τ] −− the protecting lock and the message’s type are
abstracted

2 (r1: τ , −− the message being sent
3 r2: ChannelQueueType(τ ,α), −− the target channel
4 r3: 〈lock(α)〉α, −− the channel’s lock
5 r4: ProcType(τ ,α)) −− the receiving process
6 requires (α ;;) { −− exclusive access to the

channel
7 −− mark the channel as empty:
8 ChannelQueueState(r2) := CHANNEL QUEUE EMPTY
9 unlockE r3 −− we don’t need access to the channel to deliver the message

10 jump execProc[τ][α]
11 }

where the state of the channel is marked as empty and then continues the
delivery.

We present code block

1 execProc [α,τ] −− the protecting lock and the message’s type are abstracted
2 (r1: τ , −− the message being sent
3 r2: ChannelQueueType(τ ,α), −− the target channel
4 r3: 〈lock(α)〉α, −− the channel’s lock
5 r4: ProcType(τ ,α)){ −− the receiving process
6 −− spin lock to acquire the channel’ s lock :
7 r5:= tslS r3 −− we only need read access to the channel
8 if r5= 0
9 −− we have access, continue with the delivery :

35

10 jump execContinue[τ][α]
11 −− try again:
12 jump execProc[τ][α]
13 }

The code block spins to get shared access to the channel’s lock. Upon success
it jumps to execContinue.

Following is a list of code block execContinue:

1 execContinue[α,τ] −− the protecting lock and the message’s type are abstracted
2 (r1: τ , −− the message being sent
3 r2: ChannelQueueType(τ ,α), −− the target channel
4 r3: 〈lock(α)〉α, −− the channel’s lock
5 r4: ProcType(τ ,α)) −− the receiving process
6 requires (;α;) { −− shared access to the channel
7 r4:= ProcClosure(r4) −− get the closure of the process
8 τe, r4:= unpack r4 −− unpack it and get the type of the environment (τe)
9 r5:= r3 −− move channel’s lock into r5

10 r3:= ClosureLock(r4) −− get the packed lock of the environment
11 β, r3:= unpack r3 −− unpack the lock of the environment
12 r2:= ClosureEnv(r4) −− move the environment into r2
13 r4:= ClosureCont(r4) −− move the continuation into r4
14 unlockS r5 −− we don’t need more access to the channel’s lock
15 −− try to get the lock of the environment, then continue delivery :
16 jump execProcGrabLock[τe][τ][β]
17 }

The closure is unpacked, as well as the associated lock, and the lock of the
channel released. After that, it jumps to execProcGrabLock, to get the lock of
the environment.

We show the code block

1 execProcGrabLock [α,τm,τe] −− the protecting lock, the message’s type, and the
type of the environment are abstracted

2 (r1: τm, −− the message
3 r2: τe, −− the environment
4 r3: 〈lock(α)〉α, −− the environment’s lock
5 r4: ContType(τm,τe)) { −− the continuation
6 −− spin lock to get the shared access :
7 r5:= tslS r3
8 if r5= 0
9

36

10 −− we have shared access, jump to continuation :
11 jump r4[α]
12 −− try again:
13 jump execProcGrabLock[τe][τm][α]
14 }

which is a spin lock (for a shared lock) that jumps to the continuation when
it is successful.

Receive a message. We describe receiveMessage, another core operation,
where we schedule a process to receive a message. The outline of the algo-
rithm, depicted by Figure 4.5, is to place the process in the buffer, if there
are no messages to be delivered. Otherwise, we execute the process. When
a process has the flag to keep in the channel queue set, all the messages in
the channel queue are consumed by that process.

1 receiveMessage [α, −− the lock of the channel,
2 β, −− the lock of the environment,
3 τm, −− the type of the message,
4 τe] −− and the type of the environment, are abstracted
5 (r1: ContType(τm,τe), −− the continuation
6 r2: ChannelQueueType(τm,α), −− the target channel
7 r3: 〈lock(α)〉α, −− the channel’s lock
8 r4: τe, −− the environment
9 −− the environment’s lock:

10 r5: 〈lock(β)〉β,
11 −− the keep in channel flag :
12 r6:int)
13 requires (α ;;) {
14 r5:= packL β,r5 as PLock −− pack the environment’s lock
15 r7:= ClosureAlloc(τm,τe,α) −− alloc the closure
16 ClosureCont(r7) := r1−− set the continuation
17 ClosureEnv(r7) := r4 −− set the environment
18 ClosureLock(r7) := r5−− set the packed lock
19 r7:= pack τe,r7 as ClosureType(τm,α) −− abstract the environment of closure
20 r4:= ProcAlloc(τm,α) −− alloc a process
21 ProcClosure(r4) := r7−− set the packed closure of the process
22 ProcKeep(r4) := r6 −− set the keep on channel flag
23 −− test the state of the channel:
24 r1:= ChannelQueueState(r2)

37

receiveMessage

Create a scheduled
process

Channel has
messages?

receiveMessageReduce

Keep process
in channel?

Mark channel
with processes

receiveMessageConsume

Enqueue
process

Dequeue
message

execProcCheckEmpty

no

yes

yes

no

Figure 4.5: The activity diagram outlines the execution of receiveMessage,
where activities in italic represent code blocks (identified by their labels).

38

25 if r1= CHANNEL QUEUE WITH MSGS
26 −− when there are messages, consume the message:
27 jump receiveMessageReduce[τm][α]
28 −− otherwise enqueue the process
29 −− mark the channel with procs:
30 ChannelQueueState(r2) := CHANNEL QUEUE WITH PROCS
31 r1:= ChannelQueueProcs(r2) −− get the queue of processes
32 −− place the process in the queue:
33 QueueAdd(r1,r4,r5,r4,ProcType(τm,α),α)
34 unlockE r3 −− we don’t need to alter the channel anymore
35 yield −− give the control of the processor back
36 }

Next, we present the code block receiveMessageReduce. In Figure 4.6 we
show a flow-chart that depicts the execution of the following block of code.

1 receiveMessageReduce [α,τ] −− the protecting lock and the message’s type are
abstracted

2 (r2: ChannelQueueType(τ ,α), −− the target channel
3 r3: 〈lock(α)〉α, −− the channel’s lock
4 r4: ProcType(τ ,α)) −− the receiving process
5 requires (α ;;) { −− exclusive access
6 −− first , we check if the process stays in the channel after delivery :
7 r1:= ProcKeep(r4)
8 if r1= 1
9 −− if so consume all messages in the channel:

10 jump receiveMessageConsume[τ][α]
11 −− otherwise remove a message from the channel and proceed with delivery
12 −− get the queue of messages:
13 r6:= ChannelQueueMsgs(r2)
14 −− remove one message from the queue, keeping it in r1
15 QueueRemove(r6,r5,r1)
16 −− verify if the channel is empty and then reduce:
17 jump execProcCheckEmpty[τ][α]
18 }

Next, we depict the code block receiveMessageConsume. This code block
just prepares the registers for code block receiveAllMessages .

1 receiveMessageConsume[α,τ] −− the protecting lock and the message’s type are
abstracted

39

receiveMessageConsume

Get the queue
of messages

receiveAllMessages

Dequeue
message

Channel
empty? execProc

receiveAllMessagesFinish

Mark channel
with processes

Enqueue
process

no

yes

Figure 4.6: The activity diagram outlines the execution of receiveMessage-
Consume, where activities in italic represent code blocks (identified by their
labels).

40

2 (r2: ChannelQueueType(τ ,α), −− the target channel
3 r3: 〈lock(α)〉α, −− the channel’s lock
4 r4: ProcType(τ ,α)) −− the receiving process
5 requires (α ;;) { −− exclusive access
6 r5:= ChannelQueueMsgs(r2) −− move the queue of messages into r5
7 −− start the consuming loop:
8 jump receiveAllMessages[τ][α]
9 }

Following, we show the code block receiveAllMessages , which consumes all
messages that exist in the queue, while forking the deliveries.

1 receiveAllMessages [α,τ] −− the protecting lock and the message’s type are
abstracted

2 (r2: ChannelQueueType(τ ,α), −− the target channel
3 r3: 〈lock(α)〉α, −− the channel’s lock
4 r4: ProcType(τ ,α), −− the receiving process
5 r5: QueueType(τ ,α)) −− the queue of messages
6 requires (α ;;) { −− exclusive access
7 QueueRemove(r5,r6,r1) −− remove one message, moving it to r1
8 −− deliver the removed message:
9 fork execProc[τ][α] −− start the process in a different thread

10 if r6= 0 −− check if the channel is empty
11 −− channel is empty, finish loop:
12 jump receiveAllMessagesFinish [τ][α]
13 −− continue looping:
14 jump receiveAllMessages[τ][α]
15 }

Finally, we describe the code block receiveAllMessagesFinish that places
the process in the channel and updates its state.

1 receiveAllMessagesFinish [α,τ](−− the target channel:
2 r2: ChannelQueueType(τ ,α),
3 r3: 〈lock(α)〉α, −− the channel’s lock
4 r4: ProcType(τ ,α) −− the replicated process
5) requires (α ;;) { −− exclusive access
6 −− mark the channel with processes:
7 ChannelQueueState(r2) := CHANNEL QUEUE WITH PROCS
8 r1:= ChannelQueueProcs(r2) −− get the queue of processes
9 QueueAdd(r1,r4,r2,r4,ProcType(τ ,α),α) −− add the process to the queue

10

41

11 unlockE r3 −− unlock the channel’s lock
12 yield −− stop execution
13 }

4.3 Channels

We extend our run-time to include support for channels with private locks
(i.e. one lock per channel). We define one more type that embodies this
concept. We also define two operations analogous to sendMessage and to
receiveMessage, but operate on channels with a private lock. The idea is to
store a channel queue and the protecting channel in a tuple, while abstracting
the lock name with the existential lock value. Every channel in the system
is then protected by the same global lock, which protects these new data
structures.

We distinguish channel queues from channels with private locks: code
that targets the former must know the lock that protects it, whereas code
that targets the latter is not aware of the lock that protects the channel, but
knows the global lock instead. Channel queues may share a lock amongst
each other. Channels, however, do not; each channel has a private lock, thus
reducing contention.

We may define a channel type as

ChannelType(τ ,α)
def= ∃lβ.〈ChannelQueueType(τ ,β),〈lock(β)〉β〉α

a tuple that includes a channel and the lock that protects it. Parameter τ is
the type of the messages being transmitted. Parameter α is the global lock
that protects the tuple holding the channel queue and its lock.

We define macros for handling packed channels:

ChannelAlloc(τ ,β,α)
def= malloc[ChannelQueueType(τ ,β),〈lock(β)〉β]

guarded by α

ChannelChannelQueue(r)
def= r[0]

ChannelLock(r)
def= r[1]

The initialisation of this structure may be defined by macro Channel-
CreateEmpty(r ,rl,rc,rq,re,v,τ ,α), where:

• r is the register that will refer the channel of type ChannelType(τ , α);

42

• rl is the register that will refer the abstracted lock protecting the chan-
nel queue of type ∃lβ. 〈lock(β)〉β;

• rc is the register that will point to the channel queue of type Channel-
QueueType(τ , β);

• rq is the register that will hold the queue of processes of type Queue-
Type(ProcType(τ , β), β);

• re is the register that will point to the sentinel of the queue of processes;

• v is the sentinel message of type τ ;

• τ is the type of the transmitted messages;

• α is the global lock.

ChannelCreateEmpty(r,rl,rc,rq,re,v,τ ,α)
def=

β, rl := newLock −1 −− create the channel’s lock
ChannelQueueCreate(rc,rq,re,v,τ ,β) −− create the channel queue, protected

by β
unlockE rl −− we don’t need access to the channel
r := ChannelAlloc(τ ,β,α) −− alloc the channel
ChannelChannelQueue(r) := rc −− set the channel queue
ChannelLock(r) := rl −− set the private lock
−− abstract the private lock :
r := packL β, r as ChannelType(τ ,α)

Keep in mind that we need exclusive access to the global lock α in order to
use this macro. Also that v is unaltered after the expansion of this macro.
Notice that v may only be registers r and rq.

We extend the two operations sendMessage and receiveMessage, by acquiring
the global lock with shared access in order to unpack the channel, and then
acquiring exclusive access to the channel queue. Finally, the code block
jumps to the actual operation. We only list the extension of the operation to
send a message, because the extension of receiveMessage is very similar (only
changing the register used for temporary operations and the labels of the
code blocks).

We list the code block send that tries to acquire the global lock and then
jumps to sendUnpack:

43

1 send [α,τ] −− the global lock and the type of the message are abstracted
2 (r1: τ , −− the message being sent
3 r4: ChannelType(τ ,α), −− the target channel
4 r5: 〈lock(α)〉α) { −− the global lock
5 −− spin lock to acquire the global lock α
6 r2:= tslS r5
7 if r2= 0
8 −− acquired the lock, unpack the channel
9 jump sendUnpack[τ][α]

10 −− try again
11 jump send[τ][α]
12 }

Next, we show code block sendUnpack that unpacks the channel and loads
the channel queue and its lock and then jumps to sendMessageGrabLock:

1 sendUnpack [α,τ] −− the global lock and the type of the message are abstracted
2 (r1: τ , −− the message being sent
3 r4: ChannelType(τ ,α), −− the target channel
4 r5: 〈lock(α)〉α) −− the global lock
5 requires (;α;) { −− shared access to the global lock
6 β, r4:= unpack r4 −− unpack the channel
7 r2:= ChannelChannelQueue(r4) −− move the channel queue to r2
8 r3:= ChannelLock(r4) −− move the channel queue’s lock to r3
9 unlockS r5 −− unlock the global lock

10 jump sendMessageGrabLock[τ][β] −− acquire the channel’s lock
11 }

Finally, we depict the code block sendMessageGrabLock that spin locks to
get exclusive access to the lock protecting the channel and then jumps to
sendMessage (after acquiring the lock):

1 sendMessageGrabLock [α,τ] −− the lock and the type of the message are
abstracted

2 (r1: τ , −− the message
3 r2: ChannelQueueType(τ ,α), −− the channel queue
4 r3: 〈lock(α)〉α) { −− the channel’s lock
5 −− spin lock for exclusive access :
6 r4:= tslE r3
7 if r4= 0
8 −− send the message:
9 jump sendMessage[τ][α]

44

10 −− try again:
11 jump sendMessageGrabLock[τ][α]
12 }

Concerning the extension of the operation to receive a message, we show
the type of the code block receive :

receive [α, −− the global lock ,
β, −− the environment’s lock,
τm, −− the type of the message,
τe] −− and the type of the environment are abstracted

(r1: ContType(τm,τe), −− the continuation
r2: τe, −− the environment

r3: 〈lock(β)〉β, −− the environment’s lock
r4: ChannelType(τm,α), −− the target channel
r5: 〈lock(α)〉α, −− the global lock
r6: int) −− the flag keep in channel

For convention’s sake, the label of the code block that unpacks the channel
is receiveUnpack; the label of the code block that grabs the lock of the channel
queue is named receiveMessageGrabLock. The implementation of the three
code blocks is straight forward.

45

Chapter 5

Translating the π-calculus into
MIL

The translation from the π-calculus into MIL comprises three parts: the
translation of types with function T [[·]](γ), the translation of values with
function V [[·]](~x, r), and the translation of processes with function P [[·]](Γ).
Our translation functions are conditioned by the π-calculus run-time (Chap-
ter 4).

We begin by defining the function that translates types:

T [[int]](γ)
def
= int T [[(T)]](γ)

def
= ChannelType(T [[T]](γ), γ)

Parameter γ is the global lock for pairing a channel with its protective lock.
Recall that γ is protecting the structure that holds the channel queues, not
affecting the operations on channels themselves.

Notwithstanding, two processes running in parallel that are creating each
a channel at the same time are serialised because of the global lock. As are
two processes wanting to read values from different channels at the same
time. Contention is not critical, however, since the creation of channels is
less usual than other operations on channels.

For simplicity we create a new environment whenever a new name is
defined. The motivation is twofold. First, immutable environments may be
shared among threads without contention. Second, processors may increase
performance, by exploiting the locality of frames [3]. This is the motivation,
in the run-time library, for continuations of processes requiring shared access
to environments (reflecting its usage in the translation). When we create a

46

· · · w · · · z · · · x(y).P

fn(P) = {w, z, y}

w z y P

Figure 5.1: Example of the creation of a new environment, based on a old
one.

new environment, we only copy the free names of that process (Figure 5.1),
therefore attaining an optimised memory usage (in what concerns to possible
values to copy).

The macro related to environments may be defined as:

EnvType(~x,Γ, γ, α)
def
= 〈T [[Γ(x0)]](γ), · · · , T [[Γ(xn)]](γ)〉α

EnvAlloc(~x,Γ, γ, α)
def
= malloc [T [[Γ(x0)]](γ), · · · , T [[Γ(xn)]](γ)] guarded by α

The type of each name is translated into MIL.
The translation of values is straightforward:

V [[v]](~x, r)
def
=

{
v if v is of type baseval

r[i] if v = xi where ~x = x0 · · ·xi · · ·xn

Since there exists a one-to-one relation of literals between source and target
languages, if it is a literal value, then we use it. If it is a variable, then we
must get it from the environment (held in r).

We are now ready to define the translation of processes. The translation
becomes simpler because the run-time library supports the channel commu-
nication. Yet, we must still maintain the environments of processes.

We start by defining the top-level translation function that defines code

47

block main and code block grabLock and further translates process P :

P [[P]](Γ)
def
=

ChannelsLock = 〈0〉γ : 〈lock(γ)〉γ

continuationType : ∀[α, τ](r2 : τ, r3 : 〈lock(α)〉α) requires (;α;)

grabLock ∀[α, τ](

r2 : τ,

r3 : 〈lock(α)〉α,
r4 : continuationType){

r1 := tslS r3

if r1 = 0

jump r4[τ][α]

jump grabLock[τ][α]

}

main () requires (γ; ;) {
α, r3 := newLock 1

r2 := [] guarded by α

jump l

}

P [[P]](~x, l,Γ,ChannelsLock, γ)

where τe = EnvType(~x,Γ, γ, α), l is fresh

Code block main creates the base (empty) environment and jumps to the
translated process pointed by l. Code block (grabLock) is a helper primitive
that is used to acquire shared access to the environment. We then begin the
actual translation, by providing a fresh label l to the subsequent translation
function of processes.

All translated processes share the same type, parametrised by the typing
environment Γ, the environment (~x) of the translated process, and by the
global lock γ. The register file of the code blocks comprise the environment
in r1 and the lock of the environment in r3:

ProcBlock(Γ, ~x, γ)
def
= ∀[α](r2 : EnvType(~x,Γ, γ, α),

r3 : 〈lock(α)〉α) requires (;α;)
(5.1)

The translation of the inactive process is predictable, we just yield the

48

processor’s control.

P [[0]](~x, l,Γ, g, γ)
def
=

l ProcBlock(Γ, ~x, γ) {
unlockS r3

yield

}

When translating the output process, we use:

P [[xi〈v〉]](~x, l,Γ, g, γ)
def
=

l ProcBlock(Γ, ~x, γ) {
r1 := V [[v]](~x, r2)

r4 := r2[i]

unlockS r3

r5 := g

jump send[τ][γ]

}
where τ = T [[Γ(v)]](γ), ~x = x0 · · ·xi · · ·xn

We prepare the registers according to the code block send, by moving the
translated message into register r1 and fetching the channel from the envi-
ronment into register r4.

The input is translated by preparing the registers of the code block receive,
where we send the environment of the translated process. In the continuation
we create a new environment (for P) and copy the free names (like x) that
are used in P , if variable x is used at all; otherwise we reuse the environment
of the translated process. Finally, we create the new environment and then
we proceed with the translation of P . (We list this macro in further detail

49

later in Macro 5.2.)

P [[x(y).P]](~x, l,Γ, g, γ)
def
=

l ProcBlock(Γ, ~x, γ) {
r4 := r2[i]

unlockS r3

r5 := g

r1 := l1

r6 := 0

jump receive[τe][τ][α][γ]

}

l1 ContType(τ, τe) {
jump l2[α]

}
CreateEnvAndTranslate(P, y, τ, τe, ~x, l2,Γ, g, γ)

where τ = T [[Γ(y)]](γ), τe = EnvType(~x,Γ, γ, α), l1 and l2 are fresh

~x = x0 · · ·xi · · ·xn

When translating the parallel process, we fork the execution of the trans-
lated process on the left, and, because we loose the permission of the envi-
ronment, we try to acquire it and continue executing the translated process
on the right. No contention exists in acquiring the lock of the environment,
since all threads have share access.

P [[P | Q]](~x, l,Γ, g, γ)
def
=

l ProcBlock(Γ, ~x, γ) {
fork l1[α]

r4 := l2

fork grabLock[τ][α]

yield

P [[P]](~x, l1,Γ, g, γ)

P [[Q]](~x, l2,Γ, g, γ)

}
where τ = EnvType(~x,Γ, γ, α), l1 and l2 are fresh

The translation of the restriction is similar to the input, since there is
an environment creation. We begin by creating the new channel, if it is
used. After that, we create a new environment, continuing the translation of

50

process P .

P [[(ν x : (T))P]](~x, l,Γ, g, γ)
def
=

If x ∈ fn(P):

l ProcBlock(Γ, ~x, γ) {
r1 := tslE g

if r1 = 0

jump l1[α]

jump l[α]

}

l1 ProcBlockCont(τe, γ) {
ValueInit(r1, (T), {r2, r3})
r2[i] := r1

unlockE ChannelsLock

jump l1[α]

}
CreateEnvAndTranslate(P, x, τ, τe, ~x, l1,Γ, g, γ)

where τ = T [[Γ(x)]](γ), τe = EnvType(~x,Γ, γ, α), l1 and l2 are fresh

Otherwise:

P [[P]](~x, l1,Γ, g, γ)

Where ProcBlockCont is defined by:

ProcBlockCont(τ, γ)
def
= ∀[α](r2 : τ, r3 : 〈lock(α)〉α) requires (γ;α;)

The translation of the replicated input process is almost the same as the
input, but the flag to keep the process in the channel is turned on.

P [[!x(y).P]](~x, l,Γ, g, γ)
def
=

l ProcBlock(Γ, ~x, γ) {
r4 := r2[i]

unlockS r3

r5 := g

r1 := l1

r6 := 1

jump receive[τe][τ][α][γ]

}

l1 ContType(τ, τe) {
jump l2[α]

}
CreateEnvAndTranslate(P, y, τ, τe, ~x, l2,Γ, g, γ)

where τ = T [[Γ(y)]](γ), τe = EnvType(~x,Γ, γ, α), l1 and l2 are fresh

~x = x0 · · ·xi · · ·xn

51

We present the macro to create new environments and then translate a
given process:

CreateEnvAndTranslate(P, xi, τ, τe, ~x, l,Γ, g, γ)
def
=

If xi ∈ ~y:

l ContType(τ, τe) {
β, r5 := newLock -1

r4 := EnvAlloc(P,Γ, γ, β)

∀yj ∈ ~y \ {xi}

{
r6 := r2[j]

r4[k] := r6, where yj = xk and xk ∈ ~x
unlockS r3

r3 := r5

r2 := r4

r2[i] := r1

unlockE r3

r4 := l1

jump grabLock[τ ′
e][β]

}
where τ ′

e = EnvType(~y,Γ, γ, β)

P [[P]](~y, l1,Γ, g, γ)

Otherwise:

P [[P]](~x, l,Γ, g, γ)

where ~y = fn(P), l1 is fresh

(5.2)

There are two possible expansions for macro CreateEnvAndTranslate. One
expansion is chosen when the name is not used, in which case we skip envi-
ronment creation and use the provided label as a parameter of the translation.
The other expansion is chosen when xi is a free name, in which case we need
to create a new environment, and then translate P .

To create the new environment we allocate a tuple and copy each value
from the old environment ~x into the new one ~y. The new environment is
protected by a new lock in order to make access to environments always
unblocked. Translation then proceeds with the fresh environment.

52

The initialisation of values is recursively defined by:

ValueInit(r, T,R)
def
=

If T is int:

r := 0

Otherwise, considering that T is (T ′):

ri /∈ R
rj /∈ R ∪ {ri}
ValueInit(ri, T

′, R ∪ {ri})
ChannelCreateEmpty(r, ri, rj, T [[T ′]](γ), γ)

If it is an integer, we move the value 0 to the target register. Otherwise, we
create an empty channel and move it to the target register.

53

Chapter 6

Conclusion

In our work we show a type-preserving compiler that translates the π-calculus
into MIL. The translation process also tries to preserve the semantics, by
taking advantage of the multithreaded architecture of the target language.
In MIL we have a finite number of processors, where each executes a π
process, thus reduction between an active (in a processor) and an inactive
(in the thread pool) process is not possible.

As related work, we take in analysis Pict, a compiler that translates from
the π-calculus into C; a compiler that targets a typed assembly language;
and TyCo, a framework for compiling process calculi. Pict [25] is a com-
piler from the π-calculus into C. The main difference between Pict and our
compiler is the target architecture: the former targets a sequential machine,
whereas the latter targets a multithreaded machine. Thus, there are no con-
cerns about concurrency on Pict. Variable binding is also very different:
Pict uses the variable binding of C — since there is no support for closures
in C, the environment of a process must be manually created. MIL has bind
variables to registers. On Pict there is no run-time library. The full code
of communication is expanded each time it is used, resulting in more code
being generated. The π-calculus version of Pict is richer than the one we
use, having support for recursive types, polymorphism, and type inference.
In Pict there is concerns about memory usage; MIL abstracts these concerns.

The compiler from Greg Morrisett et al. [18] translates from System-F into
TAL (a typed assembly language) in 5 compilation stages. The first com-
pilation stage is conversion to CPS. This does not apply to the π-calculus,
since it is a CPS-friendly message. The second compilation step makes en-
vironments of functions explicit. Both compilers use the existential value

54

to abstract environment. In their work, packing the environment is done
in the translation stage. We pack the environments in the run-time library
(less code is generated). The third compilation step, hoisting, defines heap
values that consist in code blocks (much like MIL’s code blocks). The forth
compilation step makes memory allocation explicit. The final translation
step is not relevant, since it is a mostly a syntactic translation to TAL. The
main difference between works is that our source and target languages are
concurrent.

The work [11] presents a framework for compilation of process-calculi.
The abstract machine that runs the target language is sequential, thus suffers
from the same limitations found in Pict. Contrary to MIL, there are no typing
rules for the target language of this work.

Further work includes extending MIL and simplifying the run-time li-
brary. We are adding support for read-only tuples (in MIL), thus reducing
contention and removing locks from the translation of processes. We are also
working on simplifying the run-time library, by enabling the channel queue
to hold messages and processes in the same data structure (instead of using
two queues). Furthermore, we are pursuing a wait-free implementation of
the π-calculus, by instrumenting MIL with compare and swap rather than
locks.

55

Appendix A

Queues

We use a double-ended queue instead of a pool to store messages and sched-
uled processes in channels. The implementation uses a linearly-linked list,
composed by elements (nodes) that are connected sequentially. Notice that
the FIFO order ensures fairness. Also the queue being double-ended enables
fast adds and fast removes.

The type of an element (Figure A.1) may be parametrised by:

ElementType(τ ,α)
def= µ β.〈τ ,β〉α

An element is a tuple, protected by lock α, that holds three values: the
contents of the element (of type τ), a reference to the previous element (of
the recursive type β), and a reference to the next element (also of type of
the element, β). The macros for accessing this data structure:

ElementAlloc(τ ,α)
def= malloc[τ , ElementType(τ ,α)] guarded by α

ElementValue(r)
def= r[0]

ElementNext(r)
def= r[1]

We show an example of the creation of two elements connected:

τ β

α

Figure A.1: An element.

56

3

α

r1

0

α

r2

Figure A.2: Two elements connected.

v1

α

vn+1

α

n

α

. . .

Figure A.3: A queue with n elements.

1 r1:= ElementAlloc(int ,α) −− alloc element 1
2 r2:= ElementAlloc(int ,α) −− alloc element 2
3 ElementValue(r1) := 3 −− set the value of element 1 as 3
4 ElementNext(r1) := r2 −− link element 1 to element 2
5 ElementValue(r2) := 0 −− set the value of element 2 as 0
6 ElementNext(r2) := r2 −− link element 2 to itself

Figure A.2 shows the two new elements, which are pointed by registers r1
and r2.

We define a queue as

QueueType(τ ,α)
def= 〈int, ElementType(τ ,α), ElementType(τ ,α)〉α

The tuple comprises the number of elements in the queue, the first element
in the queue, and the last element in the queue, as portrayed by Figure A.3.
The associated macros are:

QueueAlloc(τ , α)
def= malloc [int, ElementType(τ , α),

ElementType(τ , α)] guarded by α

57

3

α

r1

0

α

r2

1

α

r3

Figure A.4: A queue with one element.

QueueLen(r)
def= r[0]

QueueFirst(r)
def= r[1]

QueueLast(r)
def= r[2]

Consider the elements of the previous example, stored referred by regis-
ters r1 and r2. The following example, illustrated by Figure A.4, shows the
creation of a queue, holding the number 3:

1 r3:= QueueAlloc(int,α) −− alloc the queue
2 QueueLen(r3) := 1 −− set the number of valid elements in the queue
3 QueueFirst(r3) := r1 −− point to the first element (the head of the queue)
4 QueueuLast(r3) := r2 −− point to the sentinel (the tail of the queue)

Our queues have a sentinel element, ensuring that every element has a next
value. Thus, even though we have two elements, the second one, pointed by
the tail of the queue, does not count as valid.

The initialisation of empty queues (with a sentinel), depicted by Fig-
ure A.5 is so common that we also define macro QueueCreateEmpty(r,re,v,τ ,α),
where:

• r is the register that will refer the new queue;

• re is the register that will point to the sentinel element;

• v is the value held by the sentinel element (of type τ);

• τ is the type of the contents of the queue (consequently of v as well);

58

0

α

r

v

α

re

Figure A.5: An empty queue.

• α is the lock protecting the queue.

Defined by:

QueueCreateEmpty(r,re,v,τ ,α)
def=

re := ElementAlloc(τ , α) −− alloc the sentinel
ElementValue(re) := v −− set the dummy value
ElementNext(re) := re −− link to itself
r := QueueAlloc(τ , α) −− alloc the queue
QueueLen(r) := 0 −− this queue is empty
QueueFirst(r) := re −− point the head to the sentinel
QueueLast(r) := re −− point the queue to the sentinel

Notice that because of the order of the instructions, v can be the same
register as r, but not the same as re. It is also important to realise that v is
not altered after the expansion of this macro.

We define macro QueueAdd(r,rl,re,v,τ ,α) to add an element to the queue
(delineated by Figure A.6), where:

• r is the register that refers the queue;

• rl is the register that will store the number of elements of the queue;

• re is the register that will refer the sentinel element;

• v is the value to be added to the queue (of type τ);

• τ is the type of the contents of the queue (consequently of v as well);

59

v

α

v1

α

v

α

. . .

n

α

rrl
re

Figure A.6: Adding the n-th value to a queue.

• α is the lock protecting the queue.

Defined by:

QueueAdd(r,rl,re,v,τ ,α)
def=

re := QueueLast(r) −− the sentinel will become the last valid element
ElementValue(re) := v −− set the value of the last element
re := ElementAlloc(τ ,α) −− create the new sentinel
ElementValue(re) := v −− copy the value to the sentinel as well
ElementNext(re) := re −− link new element to itself
rl := QueueLast(r) −− get the last element again
ElementNext(rl) := re −− link it to the sentinel
QueueLast(r) := re −− point the tail of the queue to the sentinel
rl := QueueLen(r)
rl := rl+ 1
QueueLen(r) := rl −− increment the count of elements

Notice that, because of the order of the instructions in the macro, the value v
may be register rl but it may not be registers r and re.

We now define macro QueueRemove(r,rl,rv), illustrated by Figure A.7, to
remove a value from a queue, while retaining it in a register. The interface
is:

• r is the register that refers the queue;

• rl is the register that will store the length of the queue;

• rv is the register that will refer the removed value;

The macro is defined by:

60

v1

α

vn+1

α

n

α

r

. . .v

α
rv

rl

Figure A.7: Removing the first element of a queue.

QueueRemove(r,rl,rv)
def=

rl := QueueFirst(r) −− get the first element
rv:= ElementValue(rl) −− move removed value to rv
rl := ElementNext(rl) −− get the second element
QueueFirst(r) := rl −− update the first element of the queue
rl := QueueLen(r)
rl := rl− 1
QueueLen(r) := rl −− increment the count of elements

61

Bibliography

[1] BEE2 (Berkeley Emulation Engine 2). http://bee2.eecs.berkeley.

edu/.

[2] Gérard Boudol. Asynchrony and the π-calculus (note). Rapport de
Recherche 1702, INRIA Sophia-Antipolis, 1992.

[3] Peter J. Denning and Stuart C. Schwartz. Properties of the working-set
model. Commun. ACM, 15(3):191–198, 1972.

[4] Cormac Flanagan and Mart́ın Abadi. Types for Safe Locking. In Pro-
ceedings of ESOP ’99, volume 1576 of LNCS, pages 91–108. Springer,
1999.

[5] Hubert Garavel. Reflections on the Future of Concurrency Theory in
General and Process Calculi in Particular. Electronic Notes in Theoret-
ical Computer Science, 209:149–164, 2008.

[6] Jean-Yves Girard. The system F of variable types, fifteen years later.
Theoretical Computer Science, 45(2):159–192, 1986.

[7] Jr. Guy Lewis Steele. RABBIT: A Compiler for SCHEME. Master’s
thesis, MIT AI Lab, 1978.

[8] Jim Held, Jerry Bautista, and Sean Koehl. From a few cores to many:
A tera-scale computing research overview. White paper, 2006.

[9] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In Pièrre America, editor, Proceedings of ECOOP ’91,
volume 512 of LNCS, pages 133–147. Springer, 1991.

[10] Stuart Kent. Model Driven Engineering. In Proceedings of IFM ’02,
pages 286–298. Springer, 2002.

62

http://bee2.eecs.berkeley.edu/
http://bee2.eecs.berkeley.edu/

[11] Lúıs Lopes, Fernando Silva, and Vasco Vasconcelos. Compiling Object
Calculi. Technical Report DCC-98-3, University of Oporto, 1998.

[12] Lúıs Lopes, Fernando Silva, and Vasco T. Vasconcelos. A Virtual Ma-
chine for the TyCO Process Calculus. In Proceedings of PPDP ’99,
volume 1702 of LNCS, pages 244–260. Springer, 1999.

[13] Lúıs Lopes, Vasco T. Vasconcelos, and Fernando Silva. Fine Grained
Multithreading with Process Calculi. IEEE Transactions on Computers,
50(9):229–233, 2001.

[14] Francisco Martins. Controlling Security Policies in a Distributed Envi-
ronment. PhD thesis, Faculty of Sciences, University of Lisbon, 2005.

[15] Robin Milner. The polyadic π-calculus: A tutorial. In Friedrich L.
Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and
Algebra of Specification, volume 94 of Series F. NATO ASI, Springer,
1993. Available as Technical Report ECS-LFCS-91-180, University of
Edinburgh, 1991.

[16] Robin Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[17] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/II. Journal of Information and Computation, 100:1–77,
1992.

[18] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System
F to Typed Assembly Language. ACM Transactions on Programing
Language and Systems, 21(3):527–568, 1999.

[19] Jishnu Mukerji and Joaquin Miller eds. Model Driven Architecture. Ob-
ject Management Group, 2001. http://www.omg.org/cgi-bin/doc?

ormsc/2001-07-01.

[20] Kunle Olukotun and Lance Hammond. The future of microprocessors.
Queue, 3(7):26–29, 2005.

[21] Benjamin Pierce and David Turner. Pict: A Programming Language
Based on the Pi-Calculus. In Gordon Plotkin, Colin Stirling, and Mads
Tofte, editors, Proof, Language and Interaction: Essays in Honour of
Robin Milner, Foundations of Computing. MIT Press, May 2000.

63

http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

[22] Benjamin C. Pierce. Advanced Topics In Types And Programming Lan-
guages. MIT Press, 2004.

[23] The RAMP (Research Accelerator for Multiprocessors) project. http:

//ramp.eecs.berkeley.edu/.

[24] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[25] David Turner. The Polymorphic Pi-Calculus: Theory and Implementa-
tion. PhD thesis, LFCS, University of Edinburgh, 1996. CST-126-96
(also published as ECS-LFCS-96-345).

[26] Vasco T. Vasconcelos and Francisco Martins. A multithreaded typed
assembly language. In Proceedings of TV ’06, 2006.

64

http://ramp.eecs.berkeley.edu/
http://ramp.eecs.berkeley.edu/

	Introduction
	The -Calculus
	Syntax
	Semantics

	MIL: Multithreaded TAL
	Architecture
	Syntax
	Operational Semantics
	Type Discipline
	Examples

	The -Calculus Run-time
	Channels Queues
	Communication
	Channels

	Translating the -calculus into MIL
	Conclusion
	Queues

