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Abstract

In this thesis we investigate optical solitons in systems with spatial

modulations of the Dielectric Permittivity (DP) and quadratic nonlin-

ear susceptibility χ(2) that are transverse to the propagation of light.

We consider three physical arrangements. The first consists in a peri-

odic modulation of the DP and χ(2) in a lossless medium. The second

system considers a medium with gain and loss terms in the DP which

satisfy the PT-symmetry, i.e., the real part of the dielectric permit-

tivity is even in respect to the transverse spatial coordinate, while the

imaginary part, responsible for the gain and loss, is odd. It is also as-

sumed a constant χ(2). In the third system we consider a localized DP

with gain and loss DP which satisfy the PT -symmetry, with constant

χ(2).

The study of solitons is a very important topic of fundamental research

which also has found practical applications, specially as a medium to

carry digital information. Nonlinear systems such as the ones investi-

gated in this thesis, with quadratic nonlinearity, were found to exhibit

interesting applications such as conversion of infrared radiation into

visible light and all-optical switching in multichannel optical commu-

nication systems.

The search for solitonic solutions in the present thesis is done using

several numerical methods such as a shooting algorithm and Newton-

Raphson, used to find solutions and a split-step method to study the

dynamics of solitons. The implementation of the methods relies on

the careful analysis of symmetry and asymptotic properties of the

systems under investigation. The stability of solutions is, in addition

to numerical evaluation of perturbed solitons, studied by linear sta-



bility analysis in all cases and links between the two approaches are

discussed.

The phenomenon of bistability occurs in the periodic lossless system,

as two stable solutions can exist with same power and different sym-

metries and corresponding symmetry axes. An effective equation with

cubic nonlinearity that successfully predicts when bifurcations occurs

is presented.

The PT-symmetric system with periodic DP is found to support three

different types of bifurcations, related to the edge of the gap where

it occurs, it can be an edge of the Fundamental Field (FF), Second-

Harmonic (SH) or both. Quadratic solitons in this system support

stable embedded solitons in the case fundamental field edge bifurca-

tions.

The system with PT-symmetric localized potential supports soliton

branches which are limited in maximal power. Three types of bifur-

cations are discussed in a way similar to the periodic system. We

found that branches that bifurcate from a linear mode of the SH can

have finite amplitude of the SH component even when the amplitude

of the FF goes to zero. In the same previously refered bifurcation,

solitons with propagation constant close to the propagation constant

of the linear mode can be stable for strengths of gain and loss well

above the PT-symmetry breaking treshold.

Keywords: soliton, quadratic nonlinearity, periodic potential, local-

ized potential, gap solitons, nonlinear dynamics, parity-time symme-

try.



Resumo

Nesta tese investigamos solitões óticos em sistemas com modulações

espaciais da Permitividade Dielétrica (DP) e da susceptibilidade não

linear quadrática χ(2) transversas à propagação da luz. Consideramos

três sistemas f́ısicos. O primeiro consiste numa modulação periódica

da DP e χ(2) num meio sem perdas. O segundo sistema considera um

meio com ganhos e perdas presentes na DP que satisfazem a sime-

tria PT, i.e. a parte real da permitividade dielétrica é par em relação

à coordenada espacial transversa, enquanto a parte imaginária, re-

sponsável pelos ganhos e perdas, é ı́mpar e χ(2) considerado constante.

No terceiro sistema consideramos uma DP localizada, com ganhos e

perdas, que satisfaz a simetria PT, com χ(2) constante. O estudo de

solitons.

O estudo de solitões é não somente um importante tópico de pesquisa

fundamental, também foram encontradas aplicações práticas, espe-

cialmente como um meio de transporte de informação digital. Em sis-

temas não-lineares como os considerados nesta tese, com não lineari-

dade quadrática, foram descobertas aplicações tais como a conversão

de radiação infravermelha em luz viśıvel e comutação feita totalmente

óticamente em multicanais de comunicação óticos.

A busca por soluções solitônicas é feita nessa tese utilizando vários

métodos numéricos tais como um algoritmo de shooting e outro de

Newton-Raphson, usados na busca de soluções e um método de split-

step utilizado no estudo da dinamica dos solitões. A implementação

dos métodos basea-se na análise cuidadosa da simetria e do compor-

tamento assintótico dos solitões nos sistemas investigados. A estabili-

dade das soluções é, em adição à integração numérica das equações de



evolução, estudada através da análise de estabilidade linear em todos

os casos. Ligações entre as duas análises são estabelecidas.

O fenômeno da bi-estabilidade no sistema periódico sem perdas é en-

contrado, duas soluções estáveis podem ocorrer com a mesma potência

com simetrias e centros de simetria diferentes. Uma equação efetiva

com não-linearidade cúbica que prevê com sucesso quando uma bi-

furcação ocorre é desenvolvida.

No sistema periódico com simetria PT são encontradas três tipos de

bifurcações, relacionadas com qual fronteira do hiato nas constantes

de propagação elas ocorrem. Elas podem ser numa fronteira do campo

fundamental (FF), do segundo harmônico (SH) ou de ambos. Solitões

quadráticos esáveis nesse sistema podem ser encontrados dentro da

região de hiato do SH no caso de bifurcações advindas de uma fronteira

do FF.

No sistema com potencial localizado e simetria PT há ramos de soluções

com um máximo nos valores da potência. Três tipos de bifurcações

são discutidas numa maneira similar ao sistema periódico. Ramos que

bifurcão de um modo linear do SH podem ter amplitudes finitas do

componente SH mesmo quando a amplitude do FF aproxima-se de

zero. Na mesma bifurcação é encontrado que solitons com constantes

de propagação com valores próximos da constante de propagação do

modo linear podem ser estáveis mesmo valores de amplitude da parte

imaginária da DP muito acima do limiar de quebra de simetria PT.

Palavras-chave: solitões, não-linearidade quadrática, potencial perid́ico,

potencial localizado, solitões de hiato, dinâmica não linear, simetria

de espaço-tempo.
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Chapter 1

Introduction

1.1 Solitons in χ(2) media

Nowadays, nonlinear optics is a well established area of scientific research. It all

started with the invention of the lasers in the early years of 1960s, where the pow-

erful coherent light source allowed the experimental investigation of the nonlinear

response of matter to a high intensity beam. One of the first observed effects was

the Second Harmonic Generation (SHG). The effect consists in the emission of

light of frequency 2ω1, which in this thesis is referred as Second-Harmonic (SH),

as a result of the interaction of a incident light with frequency ω1, here referred

as the Fundamental Field (FF), with an optical material, more commonly a crys-

tal with a quadratic nonlinear response described by the coefficient χ(2) which

generally depends on frequency. The first experimental observation of SHG was

done in [1] and followed by the development of the theory continuous SHG in [2].

In the period between late 1989 and early 1990s interest in SHG systems

gained more attention after the works [3, 4]. The authors detected a nonlinearly

induced phase shift in the light of a laser after propagating in a potassium titanyl

phosphate crystal (KTP) as an effect of SHG in the crystal. The works demon-

strated that under special conditions of large wave vector mismatch SHG can

behave like system with cubic nonlinear response, i.e., χ(3). This is of particular

importance since it was discovered that χ(3) system possess Localized Solutions

(LS) [5, 6], commonly known as solitons. These stationary solutions remain lo-
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calized in one or more dimensions during propagation in the spatial regime or

light pulses which propagate without dispersion in the time domain.

The theoretical prediction of the existence of solitons in a system with quadratic

nonlinearity was made in 1974, in the work [7]. The first observations of χ(2) soli-

tons in a experiment appeared much latter, in mid 1990s, in the works [8], where

a bulk χ(2) crystal was used and in [9], in a waveguide system.

The advent of new technologies such as low-pressure hydride vapor phase

epitaxy [10] and molecular beam epitaxy using Si shadow masks [11] allows to

construct a systems with modulated χ(2). Other techninologies allows the fab-

rication of a system with modulated dielectric function, such as periodic one,

using one or more techniques such as stacking of micromachined silicon wafers

[12], holographic lithography [13, 14] and a combination of soft lithography and

holographic lithography [15]. All these advancements in technology, along with

the increasing power of personal computers increased the interest in the theo-

retical and numerical investigation various configurations of dielectric and χ(2)

modulations.

There is a growing interest in physical systems possessing the so-called PT

(parity-time) symmetry [16] (See the review [17]), i.e., as a matter of fact, dissi-

pative quantum systems with the antisymmetry between spatially separated gain

and loss. If the strength of the gain-loss terms does not exceed a certain threshold

value, the PT-symmetric system has a purely real spectrum and its non-Hermitian

Hamiltonians can be transformed into a Hermitian form [18]. Making use of the

similarity of the quantum-mechanical Schrödinger equation to the parabolic prop-

agation equation in optics it was proposed theoretically [19] and demonstrated

experimentally [20] that the PT-symmetry can be realized, in the purely classical

context of the wave propagation, in optics, where it implies that a waveguide

with the PT-balanced gain and losses allows the transmission of wave modes,

emulating the index-guiding transmission in ordinary (conservative) waveguides.

These findings stimulated numerous additional studies of the linear wave propa-

gation PT-symmetric systems in the special issue [21]. Particular attention being

focused on the periodic potentials [22] (see also review [23]).

It is relevant to mention that, as the PT-symmetric systems is a special type of

settings at the border between conservative and dissipative systems, the solitons
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that exist in them may be naturally compared not only to their counterparts

in conservative models (as mentioned above, concerning the relation to GSs in

the conservative χ(2) systems), but also to solitons in generic dissipative systems,

with unbalanced gain and loss. The crucial difference of the dissipative solitons

from their conservative counterparts is that they exist, as isolated attractors of

the system, at a single value of the propagation constant, rather than continuous

families parametrized by an arbitrary propagation constant [24, 25]. In particular,

as concerns GSs, 1D and 2D dissipative gap solitons in the complex Ginzburg-

Landau equations with periodic potentials were reported in Ref. [26, 27]. In this

sense nonlinear PT-symmetric systems, being not conservative and thus requiring

the balance between dissipation and gain, but still allowing for existence of the

continuous families of the solutions (what is the generic property of the such

system provided the nonlinearity obey the same symmetry as the linear part [28])

occupy an intermediate position between the conservative and dissipative systems,

and reduced to the former ones when the gain-loss coefficient becomes zero or the

the later ones when appears unbalance between gain and loss.

Nonlinear systems with PT-symmetry have been also investigated and it has

been found that system with a periodic PT-symmetric potential with χ(3) non-

linearity [29, 30, 31] and systems with combined cubic and quintic nonlinearity

[32] support stable solitons.

In addition to pure theoretical interest in the existence, properties and par-

ticularities of solitons in PT-symmetric systems, the possibility of experimental

realization of such systems using modern techniques actually stimulates theoret-

ical and numerical studies like the ones in this thesis with the objective to find

new relevant phenomena. The study of existence of solitons and their properties

in such systems take a great portion of this thesis.

1.2 The problems investigated in this thesis

We consider trough this thesis a one-dimensional model of propagation of light

on a medium. The medium itself is allowed to have modulations on the dielectric

function and nonlinear χ(2) coefficient. The modulations are considered to be

transverse to the light propagation direction.
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The first investigation had results published in [33]. The setup considers a

periodic dielectric function in the presence of gain and loss in a special configu-

ration which satisfies simultaneously parity and time reversal operations, a PT-

symmetric system. Here the quadratic nonlinearity is considered to be spatially

invariant. In this problem the model is introduced and three types of bifurcations

of solitons are discussed in detail. Each one has distinct limits for the FF and

SH in the limit of small amplitudes. We investigate the linear properties of the

gaps of the structure and discuss which type of bifurcation occurs in determinate

regions of the bands of the system. Finally we discuss the existence of solitons in

several forbidden propagation regions, i.e., band-gaps and their stability is dis-

cussed with a linear model valid for small perturbations and direct simulations

of full equations. The Chapter 4 is dedicated to this problem.

The second investigation to be presented is a system with periodic modula-

tions of the dielectric function and nonlinear coefficient χ(2) in a lossless medium.

The result of this investigation was published as an article in [34]. In this system

we suggest a physical structure that is feasible to laboratory experimentation.

We present asymptotic properties of the system that allows to use a shooting

algorithm. We discuss the symmetry of solitons and find the position relative to

the modulation where solitons can be centered. Families of solitons are found

and their stability are studied with linear analysis and direct simulations of per-

turbed initial conditions. We also derive an effective Nonlinear Schrödinger Equa-

tion (NLS) that successfully predicts when bifurcations occurs. The solutions of

the effective model is compared with the numerical solutions. In this thesis the

system is discussed in Chapter 5.

The last problem is about a PT-symmetric system where the dielectric per-

mittivity modulation is localized and χ(2) considered constant is presented on

Chapter 6. The results of this investigation were published in [35]. In this prob-

lem we investigate the types of bifurcations from localized modes of the linear

system. Branches are presented and their stability is studied. The new results are

discussed in detail and in special a model for bifurcations with small amplitude

limit of the FF in the presence of a finite localized SH is introduced.

In all the three different configurations the main object of study will be lo-

calized solutions. Their existence, dynamics and stability will be considered in
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detail. A significant amount of numerical schemes were developed by the author

to find numerical solutions. The development of such methods usually evolves

about the careful analysis of symmetry properties and asymptotic behavior of

solitons.

1.3 The thesis structure

In this thesis the Chapter 2 is a revision of the subject of LS in χ(2) media.

The equations which are used along all the investigated problems are presented

and their dimensionless representation is presented. The state of the art on the

subjected is presented.

The Chapter 3 is devoted to the presentation of the methods used in this

thesis. It consists mainly in numerical methods. Sections about shooting method

and Newton-Raphson are presented. The purpose of both methods is to find LS.

A split-step method is presented. It is used in the study of the evolution of LS

in the dynamical problem.

The Chapter 4 is dedicated to the study of solitons in χ(2) media with PT-

symmetric periodic potential. The Chapter 5 concerns the study of gap solitons

in nonlinear periodic χ(2) media. The study of localized modes in χ(2) media with

PT-symmetric localized potential is presented in 6.

Finally the final considerations and conclusions are made about the most

important results in Chapter 7.
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Chapter 2

Localized modes in χ(2)- media: a

revision

We consider the FF and SH having respectively frequencies ω1 and 2ω1 and wave

vectors k1 and k2. The wave vectors are allowed to have a mismatch δk = k2−2k1.

The mismatch is assumed to be small, i.e., |δk/k1,2| � 1. Both waves propagate

in a nonlinear medium along z direction and are assumed have a non-vanishing

component only in the y direction Maxwell equation is in the present case

∂2Ey
∂x2

+
∂2Ey
∂z2

− ε

c2
∂2Ey
∂t2

=
4π

c2
∂2PNL
∂t2

. (2.1)

The y component of the electric field is written as

Ey(x, z, t) = E1(x, z) exp [i (k1z − ω1t)]+E2(x, z) exp [i (k2z − 2ω1t)]+c.c., (2.2)

where E1 (E2) are the envelopes of the FF (SH). The medium is assumed to

be modulated in the direction transverse to the direction of propagation, i.e. x,

direction with characteristic size l, which can be the period of the modulation

or the size, in the case of a localized modulation. Respectively, for the dielectric

permittivity the definition

ε(x, βω1) ≡ εβ(x) = εβ0 + εβ1(x), β = 1, 2, (2.3)
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applies (See Fig.2.1). The symbol β refers to quantities calculated for the FF

(β = 1) or the SH (β = 2). It will be used in all thesis with the same meaning.

In above εβ0 is a constant which may be considered the average of εβ in the

case of periodic modulations or an extreme value of εβ in the case of a localized

modulation. Here εβ1 describes the modulation and is allowed to have complex

values. A Im(εβ1(x)) > 0 represents a gain at a given x and a Im(εβ1(x)) < 0

represents a loss.

Figure 2.1: Schematics of a system with a periodic modulation of the dielectric
permittivity. Dark gray and light gray regions denote regions of high and low
values of the dielectric permittivity. The period is given by l.
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The term PNL = χ(2)E2
y represents the non-linear response of the medium.

The envelopes are considered to be slowly varying in the z direction, i.e., we

assume here that, after inserting (2.2) in (2.1), terms containing ∂2/∂z2 can be

neglected. We also take in consideration only resonant terms, i.e., terms resonant

with the FF containing e−iω1t and terms resonant with the SH, containing e−2iω1t,

when expanding PNL using (2.2). Let χ1(x) ≡ χ(2)(x, ω1; 2ω1,−ω1) and χ2(x) ≡
χ(2)(x, 2ω1;ω1, ω1) with χβ(x) standing for the second-order susceptibilities at FF

and SH frequencies. The propagation equations reads (see e.g. [36, 37, 38])

2ik1
∂E1

∂z
+
∂2E1

∂x2
+

(
ω2
1

c2
ε11 (x) +

ω2
1

c2
ε10 − k21

)
E1 + 8π

ω2
1

c2
χ1(x)Ē1E2e

iδkz = 0

(2.4a)

2ik2
∂E2

∂z
+
∂2E2

∂x2
+

(
4
ω2
1

c2
ε21 (x) + 4

ω2
1

c2
ε20 − k22

)
E2 + 4π

ω2
1

c2
χ2 (x)E2

1e
−iδkz = 0

(2.4b)

where the bar denotes the complex conjugation, and c denotes the speed of light

in vacuum.

The wave-vectors kβ are related to the frequencies βω1 trough the dispersion

relation. Here we assume a linear one

k2β =
β2ω2

1ε0β
c2

. (2.5)

Then (2.4) reduces to

2ik1
∂E1

∂z
+
∂2E1

∂x2
+
ω2
1

c2
ε11 (x)E1 + 8π

ω2
1

c2
χ1(x)Ē1E2e

iδkz = 0 (2.6a)

2ik2
∂E2

∂z
+
∂2E2

∂x2
+ 4

ω2
1

c2
ε21 (x)E2 + 4π

ω2
1

c2
χ2 (x)E2

1e
−iδkz = 0 (2.6b)

From now on we will work on (2.6) in dimensionless form. To this end we make

clear that all the transformed parameters below are dimensionless. The coordi-

nates are written as

ξ =
2π

l
x, ζ =

2π2

k1l2
z. (2.7)
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The dimensionless envelopes u1,2 are given by

u1 =
l2ω2

1

πc2

√
χ10χ20

2

(
ε01
ε02

) 1
4

E1, (2.8a)

u2 =
l2ω2

1χ10

πc2
E2e

−iδkz. (2.8b)

In above χβ0 are the characteristic strengths of the nonlinearity, which can be the

amplitude of nonlinear modulations in the case of periodic χ1,2 or the constant

values of χ1,2 when nonlinear modulations are absent.

The substitution of (2.7) and (2.8) leads to the equations

i
∂u1
∂ζ

+
∂2u1
∂ξ2

+ V1 (ξ)u1 + 2f1(ξ)u1u2 = 0, (2.9a)

i
∂u2
∂ζ

+ σ
∂2u2
∂ξ2

+ 2 (V2 (ξ) + q)u2 + f2 (ξ)u21 = 0. (2.9b)

In above

q =
l2k1
4π2

δk, σ = k1/k2 =
1

2

(
1 +

δk

2k1

)−1
(2.10)

Finally optical potentials are given by

V1 (ξ) =
ω2
1

c2
l2

4π2
ε11

(
l

2π
ξ

)
, (2.11a)

V2 (ξ) =

(
1 +

δk

2k1

)−1
l2

4π2

ω2
1

c2
ε21

(
l

2π
ξ

)
(2.11b)

and the nonlinear functions are defined as fβ(ξ) = χβ

(
l2

k1
ξ
)
/χβ0.

This thesis focuses mainly on solutions that are localized in the ξ direction.

The solution is searched in the form

uβ(ξ, ζ) = wβ(ξ)eiβbζ , β = 1, 2. (2.12)

In above the propagation constant of the FF is given by b and dimensionless

stationary envelopes w1,2 are required to satisfy w1,2 → 0 as |ξ| → ∞. The
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substitution of (2.12) in (2.9) results in the nonlinear equations

d2w1

dξ2
+ (V1 (ξ)− b)w1 + 2f1(ξ)w1w2 = 0, (2.13a)

σ
d2w2

dξ2
+ 2 (V2 (ξ) + q − b)w2 + f2 (ξ)w2

1 = 0. (2.13b)

2.0.1 The PT-symmetric systems

In this thesis we consider in addition to real potentials, complex valued V1 which

satisfy the PT-symmetry requirements that we describe below.

Consider a linear Schrödinger equation

L1w1 = bw1, L1 =
d2

dξ2
+ V1(ξ). (2.14)

It is well known that if V1(ξ) is a real function the eigenvalues b are real valued.

If the potential is considered to have a period l, i.e. V1(ξ + l) = V1(ξ), (2.14)

becomes the well known Hill equation [39], with forbidden regions in the spectrum

of b called band-gaps (BG). A localized potential, i.e., V1 → 0 as |ξ| → ∞ can

have discrete eigenvalues with localized eigenfunctions w1 [40].

Considering V1(ξ) to be a complex function usually results in complex b.

However in [16, 17] it was found that the class of PT-symmetric potentials may

have only real eigenvalues. The PT-symmetry stands for the operator being

simulaneously symmetric in respect to the parity operator P and the time-reversal

operator T. In the present case the operator L1 is PT-symmetric when V1(ξ) =

V̄1(−ξ).

2.1 The state of the art

The physics of nonlinear wave processes in periodic media and their optical appli-

cations attracted a great deal of attention during the last years [41, 42]. Numerous

studies were focused on the band-gap materials with Kerr-type and χ(2) nonlin-

earities (for the recent reviews see e.g. [38, 43, 44, 45]). In particular, solitons
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in quadratically nonlinear optical media with shallow and deep periodic modula-

tions of the dielectric permittivity were investigated in Refs. [46] and [47, 48, 49],

respectively. The structure and stability of spatially localized and periodic sta-

tionary field patterns in optical parametric amplifiers and oscillators with peri-

odically modulated dielectric permittivity have been addressed in [50, 51, 52].

Such type of materials can be important for the design of optical transistors and

switchers [38, 53]. Recently, the attention has been turned to study of solitonic

structures in materials with periodic modulations of the χ(2) nonlinearity. In

[54] optical solitons in a two-dimensional quasi-phase-matched geometry involv-

ing two concurrent non-collinear quadratic processes have been investigated. It

was found that such system can support a class of localized modes with a large

domain of stability. Nonlinear photonic crystals, whose existence in a form of

a two-dimensional triangular lattice was suggested in [55], were experimentally

implemented in [56]. It was shown that the phase matching resonances are given

by a nonlinear Bragg law, what opens possibilities for the generation of new type

of solitons and multiple beam second harmonic generation.

There have been also reported studies of structures where both linear and

nonlinear modulations of χ(2) arrays are taken into account. These studies were

performed for thin layers with χ(2) nonlinearity embedded into linear optical me-

dia [57]. Such system can be described by the discrete χ(2) lattices, where discrete

breathers of the different symmetries have been investigated in [58]. Bright soli-

ton solutions in the second band gap in media with quadratic nonlinearity with

a deep Bragg grating are investigated in the work [59] in the framework of the

coupled-mode theory approximation. It was shown that only the difference from

the shallow grating case [38] is a reduction of the peak intensity of the gap soliton

(GS). Recently in [34] solitons with linear periodic modulations of the refractive

index and nonlinearity were investigated and were found to have bistability. In

[60] a system with periodic modulations in the refractive index imprinted with

the use of thermo-optic heaters was proposed and effects of adiabatic changes

in the modulation, such as defects and transverse displacement of the periodic

modulation, on the soliton mobility was presented.

Due to optical applications, additional interest has been recently attracted

by nonlinear PT-symmetric optical systems with periodic modulation of the re-
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fractive index [29, 31, 32, 61] which demonstrated that stable solitons can be

supported by the combination of the Kerr nonlinearity and periodic complex po-

tentials, whose spatially odd imaginary part accounts for the balanced gain and

loss. The stability of such solitons was rigorously analyzed in Ref. [62]. Solitons

can also be naturally found in linearly-coupled dual-core systems with balanced

gain and loss in the two cores and intrinsic Kerr (cubic) nonlinearity in each one

[63], and discrete solitons were predicted in coupled chains of PT-symmetric el-

ements [64] and in general network of coupled PT-symmetric oligomers (dimers,

quadrimers, etc) [65]. In addition to introducing the usual Kerr nonlinearity,

the PT-symmetric part of the system can be made nonlinear too, by introducing

mutually balanced cubic gain and loss terms [66].

Properties of solitons in PT-symmetric systems may differ significantly from

what is known about usual solitons in conservative models. In particular, different

families of solutions bifurcating from different linear modes may merge in a single

family, exhibiting increased stability [67]. On the other hand, the increase of the

gain-loss coefficient in the PT-symmetric Kerr-nonlinear coupler leads to shrink-

age of the stability areas for PT-symmetric and antisymmetric solitons, until they

vanish when this coefficient becomes equal to the inter-core coupling constant.

We also mention recent intensive activity in study of the combined effect of linear

and nonlinear PT [68, 69] on existence and stability of optical solitons.

A particularly interesting realization of a PT-symmetric modulation of the

refractive index is when losses and gain are localized in space, giving rise to a

PT-symmetric localized impurity. Such impurities allow for existence of localized

(defect) modes. In the linear theory such modes were studied for exactly inte-

grable models in [70, 71]. Linear scattering by a PT-symmetric inhomogeneity

and emerging of the related spectral singularities was described in [72]. The effect

of two and various randomly distributed PT-symmetric impurities on the lattice

dynamics was addressed in [73]. In [29] there was the first report of solitons in a

system with cubic nonlinearity. Several works on solitons with cubic nonlinearity

followed. Solitons supported by other PT-symmetric defects were also reported

for focusing [74] and defocusing [30] media. Switching of solitons in a unidirec-

tional coupler using PT-symmetric defects was suggested in [75]. Nonlinear modes

in even more sophisticated, double well PT-symmetric potentials were studied re-

12



cently [76]. Solitons in quadratic nonlinear media with conservative defects were

investigated in [77, 78], where it was shown that solutions are dynamically stable

in the case of attractive impurities. Recently the soliton dynamics in χ(2) mate-

rials was considered in the presence of a PT-symmetric localized impurity [35],

it was found that stable solutions can exist well above the PT-symmetry break-

ing threshold. In [33] quadratic solitons in PT-symmetric periodic medium was

investigated and stable fully localized embedded solitons were found.

13



Chapter 3

The methods

One of the fundamental objectives in this thesis is the search of stationary solu-

tions of the system of nonlinear differential equations (2.13). However analytical

solutions are not expected to be found easily due to the complexity of the prob-

lem. It is then necessary to use numerical methods in order to find solutions in a

computer.

The first method we use to find solutions is the shooting method, a method

that allows the systematic search of localized solutions of (2.13) using previous

knowledge about asymptotic properties of solutions and symmetries of the system.

The accuracy of the method is generally good enough to use as a initial seed for

the Newton-Raphson method, a iterative method to find solutions of a system of

nonlinear equations that can obtain high accuracy in little computational time if

the initial seed is good enough.

The next step is to study the behavior of localized profiles when solutions

of (2.13) are used as initial conditions at ζ = 0 in the full dynamical problem

presented by the system of partial differential equations (2.9). Since in any real

world physical applications imperfections are always present, it is necessary to

study the stability of stationary solutions when subjected to perturbations. We

use the split-step method, as it provides efficient computational evaluation, very

good accuracy in the case of integration of smooth functions, and energy con-

servation, properties that are specially useful in the study of the appearance of

instabilities, that can require a large propagation distance to have visible effects.

In the next sections we present all described methods directly applied to the
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3. The Methods

problems of this thesis.

3.1 Shooting method

In this thesis we consider several types of potentials Vβ when searching for solu-

tions of (2.13), but a simple distinction can be made between them, the simplest

form we consider is Im(Vβ) = 0, i.e. purely real potentials without a imaginary

part representing gain and loss. Furthermore we consider in this thesis localized

and periodic Vβ. In both cases the real part of Vβ will always be considered

even functions, i.e. Vβ(ξ) = Vβ(−ξ). In this thesis only f1,2(ξ) = f1,2(−ξ) are

considered.

In this thesis we consider only solutions of (2.13) with definite symmetry, of

which two types can exist if real and even Vβ and f1,2 are used [34, 52],

{w1(ξ), w2(ξ)} = {±w1(−ξ), w2(−ξ)}. (3.1)

This means that while w2 is always an even function, w1 can be even or odd. The

solutions are valid when f1,2 are even. The case when f1,2 is odd results in odd

w2, but it will not be considered in this thesis. The symmetry (3.1) is useful in

constructing a numerical method to find localized solutions as described below.

When considering solutions with symmetries like (3.1) it is enough to consider

only ξ ≥ 0, in which case the localized boundary conditions are

dw1,2

dξ

∣∣∣∣
ξ=0

= 0, w1,2(ξ)→ 0 as ξ →∞ (3.2)

for w1,2(ξ) = w1,2(−ξ) or

w1(0) = 0,
dw2

dξ

∣∣∣∣
ξ=0

= 0, w1,2(ξ)→ 0 as ξ →∞ (3.3)

for odd w1 and even w2.

The shooting method consists in transforming the boundary value problems

(3.2) or (3.3) into an initial value problem. To effect, consider that a ξf �
1 suitable asymptotic approximations can be used. In this thesis we use the
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3. The Methods

shooting method only with a real, even V1 with period l0. We first consider

the asymptotic behavior of the FF. For a large ξf , the nonlinear term in (2.13a)

can always be neglected in the case of LS. The resulting equation, (2.14), is the

well known Hill’s equation ([39]). The Floquet theorem states that two linearly

independent solutions exist for (2.14)

A1±(ξ) = φ1(±ξ)e±µ1ξ. (3.4)

In above µ1 is the real-valued characteristic exponent of (2.14) if the solutions are

calculated for a b in a band gap. Also in (3.4), φ1(ξ) is a function with period l0,

which is the period of Vβ not to be confused with the period of εβ1. The general

solution of (2.14) is given by

A1(ξ) = c+A1+(ξ) + c−A1−(ξ). (3.5)

In order to find the value of µ1 we need to solve the characteristic equation of

(2.14) [39]

r2 −

(
y1(l0) +

dy2
dξ

∣∣∣∣
ξ=l0

)
+ 1 = 0. (3.6)

The functions y1,2(ξ) are two linearly independent solutions of (2.14) defined by

the initial conditions

y1(0) = 1, (dy1/dξ)|ξ=0 = 0, (3.7a)

y2(0) = 0, (dy2/dξ)|ξ=0 = 1. (3.7b)

The characteristic exponent is related to the solutions r± of (3.6) through the

expression

r± = e±µ1 , (3.8)

valid when r+ 6= r−.

The case we are interested in this thesis, with even V1,2, has solutions that
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3. The Methods

satisfy the following condition (See [39])

y1(l0) =
dy2
dξ

∣∣∣∣
ξ=l0

. (3.9)

It is then possible to obtain the value of µ1 substituting (3.9) into (3.6) and using

(3.8) to obtain

µ1 =
ln
(
y1(l0) +

√
y1(l0)2 − 1

)
l0

. (3.10)

Now we need to calculate φ1(ξ). To this, just substitute the expression for A1+

in (3.4) into (2.14) to obtain

d2φ1

dξ2
+ 2µ1

dφ1

dξ
+
(
V1(ξ) + µ2

1 − b
)
φ1(ξ) = 0 (3.11)

and solve the boundary value problem φ1(0) = φ1(l0). The asymptotic behavior

of the SH in the case of periodic V1,2 is explained in the Appendix ??.

From now on, in the description of the shooting algorithm, we denote

w1,2(ξf ) ≈ C1,2A1,2(ξf ). (3.12)

In above A1,2 are functions that describe the asymptotic behavior of the solu-

tions, i.e. w1,2 → C1,2A1,2(ξ) as ξ →∞. The localized solution is found if a pair

C1,2 leads to (3.2) or (3.3) when (2.13) is integrated in the interval [0, ξf ] starting

from ξ = ξf .

A shooting algorithm is used to find pairs C1,2. The shooting itself is composed

of two shooting procedures running one within the other. The first step is to set

a given C1. It is generally useful to set a |C1| � 1 if a solution of a fundamental

branch, i.e., a branch with solutions satisfying wβ → 0, is sought. Then the

following algorithm finds a value of C2 for which dw2/dξ|ξ=0 is satisfied. The

algorithm consists in the following steps:

1. Choose a small C2, a small step δC2 � 1 and a small tolerance ε� 1. Set

w1,2(ξf ) = C1,2A1,2(ξf ). (3.13)
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3. The Methods

2. Integrate (2.13) from ξ = ξf to ξ = 0.

3. Store

D
(0)
2 =

dw2

dξ

∣∣∣∣
ξ=0

(3.14)

4. Set C2 → C2 + δC2, evaluate steps 1 and 2.

5. Store

D
(1)
2 =

dw2

dξ

∣∣∣∣
ξ=0

. (3.15)

6. If D
(0)
2 D

(1)
2 > 0 then the derivative has not changed sign between steps.

Make the change D
(0)
2 = D

(1)
2 and repeat steps in sequence 4,1, 2, 5 and

6. Else if D
(0)
2 D

(1)
2 < 0, i.e., the derivative has changed sign between steps.

Set C
(0)
2 = C1− δC2, C

(1)
2 = C2 and C2 = (C

(0)
2 +C

(1)
2 )/2, i.e., calculate the

new constant C2 between the last two iterated values of C2.

7. Evaluate steps 1 and 2 and store

D2 =
dw2

dξ

∣∣∣∣
ξ=0

. (3.16)

8. If D2D
(1)
2 < 0 then the derivative has changed signs in the interval [C2, C

(1)
2 ]

and substitutions C2 → (C2 + C(1))/2 and D
(0)
2 = D2 are made. If the

contrary happens, D2D
(1)
2 > 0 then the derivative has changed sign in the

interval [C
(0)
2 , C2] and the substitutions C2 → (C2 +C(0))/2 and D

(1)
2 = D2

are made.

9. Evaluate C2 = (C
(0)
2 + C

(1)
2 )/2.

10. Repeat evaluations of 1, 2, 7, 8 and 9 until the tolerance Cerror < ε, where

Cerror = |C(1)
2 − C

(0)
2 |, is attained. This means that the solution is within

the interval [C
(0)
2 , C

(1)
2 ].

See the Fig. 3.1 for a flow chart of the algorithm.

The algorithm described was used to find solutions of (2.13b) with dw2/dξ|ξ=0

at a good accuracy, i.e., dw2/dξ|ξ=0 ∼ O(10−8), for a given C1. Next it is necessary
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Evaluate
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Initial input: 

Set

Evaluate

Set

correct

false

Evaluate

Set

correct

false

false
Set

Final Result:

correct

Figure 3.1: Flowchart for the shooting algorithm to find C2. Each arrow denotes
an integration of the initial value problem at ξ = ξf using (3.12).
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to develop an shooting algorithm in order to find C1 to satisfy the boundary

conditions (3.2) or (3.3). The algorithm is the same, the only difference is that is

necessary to substitute C2, C
(0,1)
2 , D2 and D

(0,1)
2 by C1, C

(0,1)
1 , D1 and D

(0,1)
1 . The

iteration parameters D1 and D
(0,1)
1 can be the evaluation of dw1/dξ|ξ=0 if even w1

are sought or w1(0) the search is for odd w1.

We used integration routine ODE45 of MATLAB R© [79] to calculate the ini-

tial value problems for (2.13a). The routine is based on the Dormand-Prince

method (DOPRI) [80]. The DOPRI method consists on evaluation of Runge-

Kutta integrations of order 4 and 5. The error in the step is approximated as

the maximal value of the difference between the two integrations. If the error

is greater than the specified accuracy the step is reduced iteratively until the

tolerance is achieved.

The integration is based in two alternating steps. First integrate (2.13a) start-

ing from the initial point ξ = ξf using (3.12), denoted by w∗1,2
(0) = w1,2(ξf ), in a

small step h keeping w2 fixed and a temporary w∗1
(1) ≈ w1(ξ+h) is stored. Second

(2.13b) is integrated using the previous temporary value w̃
(1)
1 in the nonlinear term

to find the temporary value of w∗2
(1) ≈ w2(ξ + h). Integrations of (2.13a) using

w∗1
(0) as a initial condition and using w∗1

(0) and w∗2
(1) in the nonlinear term followed

by integrations of (2.13b) using a linear interpolation of values w∗1
(0) and w∗1

(1) and

w∗2
(1) as a initial condition, are repeated until max{|w∗1(1)−w∗1(0)|, |w∗2(1)−w∗2(0)|}

is lower than the specified tolerance. Note the small step h is not the internal

step of in ODE45 routine, where it has the role of integration interval, within the

routine the step used is allowed to vary, only the result after integration in the

interval h is used.

We mention that the presented shooting method was used extensively to ob-

tain localized solutions in this thesis, it is accurate enough that its use as a seed

in the iterative method to be presented in the section below resulted in accurate

solutions in very few, usually between 2 to 4, iterations.

3.2 Newton-Raphson method

The method to be described in this section is used to find localized solutions

of (2.13). It is used in this thesis in two ways: One is to increase accuracy of
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solution obtained with the shooting method. The other use is to obtain solutions

of a given branch of solutions by changing slightly b and iteratively obtaining the

desired number of solutions within a specified range in b.

It is convenient to write the functions

F1(w1, w2, w1, w2) =
d2w1

dξ2
+ (V1 (ξ)− b)w1 + 2f1(ξ)w1w2, (3.17a)

F2(w1, w2, w1, w2) = σ
d2w2

dξ2
+ 2 (V2 (ξ) + q − b)w2 + f2 (ξ)w2

1. (3.17b)

It follows that if a given solution {w1, w2, w1, w2}, satisfies simultaneously the

system of equations

F1(w1, w2, w1, w2) = 0, F2(w1, w2, w1, w2) = 0, (3.18)

The first step to solve numerically the system (3.17) is discretize the system in a

grid with a sufficiently large number N of discretization points

ξ(n) = (n− 1)L/(N − 1)− L/2, n = 1, 2, . . . N (3.19)

in a large interval [−L/2, L/2], with L � 1, and obtain the discrete versions of

F1,2

F1(y) = 0, F2(y) = 0. (3.20)

The following definitions are used

y =
(
w

(1)
1 , . . . , w

(N)
1 , w

(1)
2 , . . . , w

(N)
2 , w

(1)
1 , . . . , w

(N)
1 , w

(1)
2 , . . . , w

(N)
2

)T
,

F1,2 =
(
F

(1)
1,2,F

(2)
1,2, ...,F

(N)
1,2

)T
,

w1,2 = diag
(
w

(1)
1,2, w

(2)
1,2, ..., w

(N)
1,2

)
, w

(n)
1,2 = w1,2

(
ξ(n)
)
,

f1,2 = diag
(
f
(1)
1,2 , f

(2)
1,2 , ..., f

(N)
1,2

)
, f

(n)
1,2 = f1,2

(
ξ(n)
)
.

(3.21)

In above T denotes the matrix transpose. The functions F1,2 will be defined
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below. The discrete version of the condition w1,2 → 0 as |ξ| → ∞ is given by

w
(1)
1,2 = w

(N)
1,2 = 0. (3.22)

It is convenient to define the vectorial function

F (y) =
(
F

(1)
1 , ...,F

(N)
1 ,F

(1)
2 , ...,F

(N)
2 ,F

(1)
1 , ...,F

(N)
1 ,F

(1)
2 , ...,F

(N)
2

)T
=

(
F(1),F(2), . . . ,F(4N)

)T
. (3.23)

A solution of (3.20) is equivalent to a solution of F(y) = 0.

The second order derivatives in (3.17) are approximated by second order cen-

tral finite differences

d2w1,2

dξ2

∣∣∣∣
ξ=ξ(n)

≈
w

(n+1)
1,2 − 2w

(n)
1,2 + w

(n−1)
1,2

h2
(3.24)

in (3.20). Thus we have

F
(n)
1 =

w
(n+1)
1 − 2w

(n)
1 + w

(n−1)
1

h2
+
(
V1

(
ξ(n)
)
− b
)
w

(n)
1 + 2f1

(
ξ(n)
)
w

(n)
1 w

(n)
2 ,

(3.25a)

F
(n)
2 = σ

w
(n+1)
2 − 2w

(n)
2 + w

(n−1)
2

h2
+ 2

(
V2

(
ξ(n)
)

+ q − b
)
w

(n)
1 + f2

(
ξ(n)
) (
w

(n)
1

)2
.

(3.25b)

The above definitions are valid for the equally spaced discretization (3.19), i.e.,

h = ξ(n) − ξ(n−1), as defined in (3.19). Note that the boundary condition (3.22)

allows one to calculate F
(N)
1,2 and F

(1)
1,2 if we set the extensions w

(N+1)
1,2 = w

(0)
1,2 = 0.

Now expand the function F in Taylor series

F(y + δy) = F(y) +
4N∑
n′=1

∂F

∂yn′
δyn′ +O(δy2). (3.26)

In above yn′ are the coordinates of y as arranged in (3.21). The matrix of partial

derivatives in (3.26) is the Jacobian matrix J = [Jn′′,n′ ]4N×4N . Its matrix elements
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are written here as

J (n′′,n′) ≡ Jn′′,n′ ≡
∂F(n′′)

∂yn′
. (3.27)

Next write (3.26) in matrix notation

F(y + δy) = F(y) + J · δy +O(δy2). (3.28)

Neglect terms of order δy2 and higher and set F(y+ δy) = 0 results in the set of

linear equations for the corrections δy

δy = −J−1 · F(y). (3.29)

We use the eig routine from MATLAB R© to calculate the inverse matrix J−1. The

routine itself takes in account wether the matrix is real symmetric, Hermitian

or more generally, complex and non-Hermitian to choose automatically which

algorithm it uses. In this thesis the most general case the system (3.29) has

a complex valued non-Hermitian matrix J−1. The routine used in this case is

ZGGEV [81].

Finally the corrections are added to the solution vector yold

ynew → yold + δy, (3.30)

and the corrected solution vector ynew is obtained. The routine (3.30) is repeated

until the desired accuracy in the solution is obtained. The explicit form of J in

the present problem is

J =


L1 2f1w1 2f1w2 0

2f2w1 L2 0 0

2f1w2 0 L1 2f̄1w1

0 0 2f2w1 L2

 . (3.31)
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We have, for the non-zero components of the matrices L1,2,

L
(n,n)
1 = − 2

h2
+ V1(ξ

(n))− b, L
(n,n+1)
1 =

1

h2
, L

(n,n−1)
1 =

1

h2

L
(n,n)
2 = −σ 2

h2
+ 2

(
V2(ξ

(n))− b
)
, L

(n,n+1)
2 =

σ

h2
, L

(n,n−1)
2 =

σ

h2
. (3.32)

3.3 Split-step method

In previous sections the tools used to obtain stationary solutions of (2.13) were

discussed. The next step is to develop a method to study the dynamics of sta-

tionary solutions in the partial nonlinear differential equations (2.9).

The method we use in all numerical simulations of this thesis is the split-step

Fourier method. The main ideia of the method is to split the system of nonlinear

evolution equations into several steps, which are integrated separately in sequence.

The successive integration of each steps can then lead to the evolution of the full

system. The main idea of the method appeared in [82] and [83]. In the last years

it became popular and used to study dynamics of several physical systems[84, 85].

The main advantage of the method is that integrations of some steps of the

evolution equations, such as second-order spatial derivatives such as the one that

appears in (2.9), can be performed rapidly in a computer with great accuracy

using Fourier transforms. Other steps can generally be integrated by other nu-

merical integration method as Runge-Kutta method.

Today, numerical routines are readily available in books like [86] and also can

be used directly in commercial software like MATLAB R© and free software like

OCTAVE. So here we describe the method and how it is applied it to (2.9). See

[87] for several split-step method implementations with MATLAB R© code.

Here we assume that after the use of shooting method or Newton-Raphson,

a stationary solution {w1, w2} has been obtained. Next we study the evolution

of the initial condition u1,2(ξ, 0) = w1,2 in the sytem (2.9). It is convenient to

rewrite (2.9) as

∂u1
∂ζ

= i
∂2u1
∂ξ2

+ N1 (u1, u2) ,
∂u2
∂ζ

= iσ
∂2u2
∂ξ2

+ N2 (u1, u2) . (3.33)
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In above

N1 (u1, u2) = iV1(ξ)u1 + 2if(ξ)ū1u2, N2 (u1, u2) = 2i (V2(ξ) + q)u2 + if(ξ)u21.

(3.34)

The objective is to integrate Eqs.(3.33) in a small interval δζ along the ζ direction.

We do this in two steps for each equation. The first is to consider of dispersion

alone
∂u1
∂ζ

= i
∂2u1
∂ξ2

,
∂u2
∂ζ

= iσ
∂2u2
∂ξ2

. (3.35)

The field components in a given ζ coordinate are then represented by the values

u
(n)
1,2 in the equally spaced grid through the vectors u1,2 = (u

(1)
1,2, u

(2)
1,2, ..., u

(N)
1,2 )T .

The method we use to integrate (3.35) is based on the discrete Fourier trans-

form (DFT), defined as

ũ
(K)
1,2 =

N∑
n=1

u
(n)
1,2 exp [(−2πi) (n− 1) (K − 1) /N ] , (3.36)

and the inverse discrete Fourier transform (IDFT) defined as

u
(n)
1,2 = (1/N)

N∑
K=1

ũ
(K)
1,2 exp [(2πi) (n− 1) (K − 1) /N ] . (3.37)

The question now is how to evaluate the terms of the form ∂2u1,2
∂ξ2

in (3.35). The

differentiation must be performed on the trigonometric interpolation polynomial

of the sets of data points {u(1)1,2, u
(2)
1,2, ..., u

(N)
1,2 }, which is defined as

pβ(ξ) =
1

N

ũ(1)β +
∑

1<K′<N/2+1

(
ũ
(K′)
β e

2πi(K′−1)ξ
L + ũ

(N−K′)
β e−

2πi(K′−1)ξ
L

) (3.38)

which approximates the functions u1,2 in the continuous interval [−L/2, L/2]

and valid for odd N . The form (3.38). Is the minimal band interpolation of

{u(1)1,2, u
(2)
1,2, ..., u

(N)
1,2 }, i.e., (3.38) has only |K ′| < N/2 + 1, which means it has the

minimal amount of oscillations between any points [ξ(n), ξ(n+1)] [88].
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The second derivative in respect to ξ can be evaluated from (3.38)

∂2pβ
∂ξ2

= − 4π2

NL2

 ∑
K′=2<N/2+1

(K ′ − 1)2
(
ũ
(K′)
β e

2πi(K′−1)ξ
L + ũ

(N−K′)
β e−

2πi(K′−1)ξ
L

) .
(3.39)

Note that (3.39) is obviously independent of ζ. Additonaly the second deriva-

tive in respect to ξ of each fourier component evaluated at ξ(n) is equivalent

to the multiplication of each component of the original expansion (3.37) by the

correspondent component of the vector κ, where κ = (κ1, κ2, ..., κN)T and its

components defined as

κK =


[
2π
L

(K − 1)
]2

if K < N/2[
2π
L

(K − 1−N)
]2

if N/2 < K ≤ N.
(3.40)

The evolution in ζ of the dispersion term in the interval δζ/2 is easily evaluated

on the components

ũ
(K)
1 (ζ+δζ/2) = ũ

(K)
1 (ζ) exp

(
iκKδζ

2

)
, ũ

(K)
2 (ζ+δζ/2) = ũ

(K)
2 (ζ) exp

(
iσκKδζ

2

)
.

(3.41)

To obtain the solution in the ξ coordinate it is necessary just to calculate (3.37)

using (3.41) to obtain

u
(n)
1,2 (ζ+dζ/2) = (1/N)

N∑
K=1

ũ
(K)
1,2 (ζ+dζ/2) exp [2πi (n− 1) (K − 1) /(N)] . (3.42)

The spectral solutions with discrete spatial coordinates given by (3.42) of the

partial differential equations (3.35) have spectral accuracy[84, 89], i.e., the error

decays at a rate that depends only on the smoothness of the solution.

Now we turn attention to the steps represented by the equations

∂u1
∂ζ

= iN1(u1, u2),
∂u2
∂ζ

= iN2(u1, u2). (3.43)

We use the fourth order Runge-Kutta method ( see [86]) to obtain the evolu-
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tion of (3.43) through an interval δζ. The envelopes after the nonlinear evolution

are

u1,2(ζ + δζ) = u1,2(ζ) +
1

6

(
R

(0)
1,2 + 2R

(1)
1,2 + 2R

(2)
1,2 +R

(3)
1,2

)
, (3.44)

with

R
(0)
1 = δζN1(u1,u2),

R
(1)
1 = δζN1(u1 +R

(0)
1 /2,u2),

R
(2)
1 = δζN1(u1 +R

(1)
1 /2,u2),

R
(3)
1 = δζN1(u1 +R

(2)
1 /2,u2), (3.45)

and

R
(0)
2 = δζN2(u1,u2),

R
(1)
2 = δζN2(u1,u2 +R

(0)
2 /2),

R
(2)
2 = δζN2(u1,u2 +R

(1)
2 /2),

R
(3)
2 = δζN2(u1,u2 +R

(2)
1 /2). (3.46)

In (3.44) we assume that the nonlinear operator N1 acts only on u1 and N2 acts

only on u2.

Now we describe how all previous considerations combine in a multi-step

scheme. We use a symmetric second order split method for the u1 by evaluating

the sequence (3.36), (3.41) and (3.37), the dispersion step. Then we evaluate

(3.44) for the (3.43), the nonlinear part step. Note that only formulas related to

u1 are evaluated. After, repeat the sequence for the dispersion step and obtain

the evolution at the intermediate step δζ. The next step is to make the same

procedure, i.e., calculate the dispersion step, followed by the nonlinear step and

another dispersion step, considering changes in u2 only, to obtain u1,2(ζ + 2δζ).

Finally, the method is repeated to calculate u1,2(ζ + 4δζ) and so on.
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Chapter 4

Localized modes in χ(2) media

with PT-symmetric periodic

potential

4.1 introduction

The objective of the present Chapter is to introduce a generic one-dimensional

(1D) system with the PT-symmetric periodic complex potential and conservative

χ(2) nonlinearity, and construct stable solitons in it. The realization of such a

system in the spatial domain is quite possible in optics, using appropriately jux-

taposed gain and loss elements, like in Ref. [20], inserted into a χ(2) medium. We

here focus on the search for gap solitons (GSs) in the system with the periodic

potential, i.e., localized solutions whose propagation constant belongs to regions

of the forbidden propagation (gaps) in the underlying linear spectra. Similarly to

the usual χ(2) systems (which do not include gain and loss) [90], the quadratic na-

ture of the nonlinearity makes the interplay between the gaps of the fundamental-

frequency (FF) and second-harmonic (SH) fields a fundamental factor affecting

GS families. In particular, the generic mechanism of the creation of the fami-

lies via bifurcations from edges of the bandgaps [87] can work in the FF or SH

component, or in both [35]. We here analyze all these possibilities.

The Chapter is organized as follows. The model is introduced in Sec. 4.2. In
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Sec. 4.3 results are reported for soliton families found in the model, including the

analysis of their stability, using both direct simulations and linearized equations

for small perturbations. Some special cases are separately considered in Sec. 4.4

and in Sec. 4.5. The Chapter is concluded by Sec. 4.6.

4.2 The model

We consider the χ(2) system, based on the evolution equations for the FF and SH

components, u1 (ξ, ζ) and u2 (ξ, ζ), including the periodic PT-symmetric poten-

tial, with an imaginary component of amplitude α, which is assumed to act only

onto the FF field:

i
∂u1
∂ζ

=
∂2u1
∂ξ2

+ [V1 cos(2ξ) + iα sin(2ξ)]u1 + 2ū1u2, (4.1a)

i
∂u2
∂ζ

=
1

2

∂2u2
∂ξ2

+ 2 [V2 cos(2ξ) + q]u2 + u21. (4.1b)

Note that the conservative version of model (4.1), with α = 0, was studied in

Refs. [34, 50], where stable solitons were found.

Basic results are reported below for the situation that corresponds to the

periodic potential induced by a material grating etched into the χ(2) waveguide.

We consider V1 = V2 in Eqs. (4.1).

A virtual grating can made by means of the electromagnetically-induced-

transparency mechanism in a three-level atomic medium in a planar hollow-core

photonic crystal waveguide, see, e.g., Ref. [91, 92]. In this case, the effective

periodic potential is resonant, acting only in a narrow spectral interval. It is then

reasonable to consider the system with V1 6= 0 and V2 = 0, when the potential

does not affect the SH field, which is far detuned from the resonance, and the

opposite case, with V2 6= 0 and V1 = 0. To illustrate similarities and differences

between the different settings, some results for the systems with V2 = 0 (the

virtual grating) and V1 = V2 = 0 (the purely imaginary periodic potential) are

presented in Sections 4.4 and 4.5, respectively.

As concerns the loss and gain terms, they may be naturally assumed resonant
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(e.g., if both are induced by resonant dopants, with the inverted and uninverted

populations in the gain and loss regions, respectively). For this reason, it is

natural to assume that these terms are present only in the FF equation, as adopted

in the system based on Eqs. (4.1). The opposite situation, with the imaginary

potential acting on the SH field, is possible too; it will be considered elsewhere.

We look for LS with propagation constant b in the form of (2.12) where com-

plex functions w1,2 (ξ) obey the stationary equations,

d2w1

dξ2
+ [V1 cos(2ξ) + iα sin(2ξ)− b]w1 + 2w1w2 = 0, (4.2a)

1

2

d2w2

dξ2
+ 2 [V2 cos(2ξ) + q − b]w2 + w2

1 = 0. (4.2b)

Generally speaking, Eqs. (4.2) allow for solutions obeying one of the fol-

lowing symmetries: {w1(ξ), w2(ξ)} = {w1(−ξ), w2(−ξ)} or {w1(ξ), w2(ξ)} =

{−w1(−ξ), w2(−ξ)}. Note also that, in the well-known cascading limit, |q| → ∞
[90], Eq. (4.2b) yields w2 ≈ −w2

1/ (2q), and Eq. (4.2a) amounts to the equation

with the cubic nonlinearity,

d2w1

dξ2
+ [V1 cos(2ξ) + iα sin(2ξ)− b]w1 − q−1 |w1|2w1 = 0. (4.3)

As mentioned above, solitons in the PT system based on Eq. (4.3) were recently

studied in Refs. [29, 62].

4.3 Gap-soliton families

It is well known that χ(2) equations have particular solutions with the vanishing

FF component, w1 → 0, while the SH part may either vanish or remain finite

[41, 49, 50]. These solutions are usually subject to the parametric instability [90],

but they may be stabilized by an additional cubic nonlinearity [93], by an external

trapping potential either [94], or by a PT-symmetric localized defect [35].

To identify bifurcations which give rise to GSs from edges of bandgaps, it

is also necessary to analyze the situation for w1 → 0. Generally speaking, one
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should then deal with three different cases [35], as shown below.

Case 1 : both components are of the same order,

w2 = O(w1), w1 → 0. (4.4)

Case 2 : The SH field remains finite:

w2 = O(1), w1 → 0. (4.5)

Case 3 : The SH amplitude scales as the square of the FF amplitude:

w2 = O(w2
1), w1 → 0. (4.6)

Below, particular features of these three cases are considered separately.

4.3.1 Bifurcation of the nonlinear modes from the linear

spectrum

In the limit case defined as per condition (4.4), the nonlinear terms in both

equations (4.2) can be neglected, which, at the leading order, results in the system

of decoupled linear equations:

d2A1

dξ2
+ [V1 cos(2ξ) + iα sin(2ξ)− b]A1 = 0, (4.7a)

d2A2

dξ2
+ 4 [V2 cos(2ξ) + q − b]A2 = 0. (4.7b)

We notice that while Eq. (4.7b) is the well known Mathieu equation the lin-

ear spectral problem (4.7a) with the PT-symmetric periodic potential was also

thoroughly studied in literature [17, 22, 95]. In particular, it is known that sub-

ject to constraint |α| ≤ V1, equation (4.7a) gives rise to the pure real spectrum.

Now we turn to the combined bandgap spectrum of Eqs. (4.7), i.e. to the values

of the propagation constant b which belong to the spectra of the both spectral

problems. We denote by b
(m)
β,k the propagation constant with wave-vector k in the

m-th band (m = 0, 1, 2...) band for the FF (β = 1) and SH (β = 2) components,
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Figure 4.1: Panel A: the spectrum of potential (4.7) with α = 0.4. The blue
(solid) and green (dashed) curves correspond to the FF and SH components,
respectively. Regions of FF- and SH-bands are shaded. The total gap correspond
to white domains, as indicated in the figure. Panel B: Propagation constant vs
the gain-loss coefficient. Edges of the total gap determined by the SH component
are identifiable by horizontal lines, as they do not depend on α. The other edges
are imposed by the FF component. The other parameters are V1 = V2 = 1 and
q = 0.

the latter being computed for q = 0 (then propagation constants of the SH with

q 6= 0 are given by b
(m)
2,k − q). The upper (+) or lower (−) band edges are de-

fined represented by b
(m)
β,±. Accordingly, the sequence of finite gaps is defined as

Σ
(m+1)
β =

(
b
(m+1)
β,+ , b

(m)
β,−

)
and the semi-infinite gap is interval Σ

(0)
β = (b

(0)
β,+,∞). A

total gap is the intersection of gaps of both components, as illustrated in panel

A of Fig. 4.1.

Condition (4.4) requires that in Eqs. (4.7), b is a band edge for the FF and

SH components simultaneously (this situation is illustrated in the right panel of

Fig. 4.2) because otherwise one linear modes of (4.7) would decay with a rate

faster than the other, invalidating (4.4) for large ξ.. Since the band edges of the

FF and the SH are in general independent, to let case (4.4) occur, and hence to

let a branch bifurcate from the band edge b
(m)
1,± of the FF, we have to impose the

32



4. Localized modes in χ(2) media with PT-symmetric periodic
potential

following condition,

b
(m)
1,s = b

(m′)
2,s − q, s = ± (4.8)

where m′ can be any band of the SH. Note, however, that only edges of the same

type allow the existence of the bifurcation we are dealing with, which justifies the

same sign, + or −, on both sides of Eq. (4.8). Indeed, as one can see in panel A

of Fig. 4.1, the individual gaps are located directly above (below) the band edges

b
(m)
β,+ (b

(m)
β,−).

Figure 4.2: A schematic diagram illustrating matching the band edges of the FF
and SH for configuration of the Case 1. The left part of the figure represents
the system without mismatch (q = 0). The arrow in the middle shows to what

configuration the band structure is transfered when the mismatch q = q
(m,m′)
− ,

resulting in the existence of the total gap, is imposed.

Once we impose condition (4.8), we force individual gaps to have at least one

common edge. Then the total gap only exists if this edge is either the lower or

upper one for the both bands simultaneously, as illustrated by Fig. 4.2.

Condition (4.8) imposes constraints on the design of the periodic structure.

Typically, Vβ would be fixed, and one could change the concentration of the

dopant, which amounts to varying the amplitude of the imaginary part of the

potential, α, or mismatch q. Accordingly, for given values values of b
(m)
1,s and

b
(m′)
2,s , which are determined by the real part of the potential, it is possible to
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satisfy Eq. (4.8) by setting q = q
(m,m′)
s , where

q(m,m
′)

s = b
(m)
1,s − b

(m′)
2,s , s = ±. (4.9)

All edges of the FF and the SH bands may be, in principle, matched with q =

q
(m,m′)
s . Additionally it is possible to match the edges by tuning α alone, as can

be seen in the third gap of panel B in Fig. 4.1 for q = 0. It is also possible to see

that Case 1 in the semi-infinite gap cannot be realized solely through adjusting

α.

4.3.1.1 Solitons in the semi-infinite gap

Here and in the rest of the Chapter, localized solutions satisfying zero boundary

conditions were calculated numerically using the shooting method described in

Figure 4.3: Branches of fundamental solitons for α = 0.7 and different values of
q, found in the semi-infinite gap. The left, central, and right panels correspond
to cases 1, 2, and 3, with values q = q

(0,0)
+ = −0.316, q = 0 and q = −0.5134

respectively [see Eqs. (4.4), (4.5), and (4.6)]. Insets show power components P1

(line) and P2 (dashed line) close to an edge of the semi-infinite total gap. Here and
below, thick and thin lines represent stable and unstable solutions, respectively.
Shaded regions denote bands of the FF and/or SH. Parameters are V1 = V2 = 1
and α = 0.7.

detail in Section 3.1 for the conservative case, α = 0, which will be described
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in the Chapter 5, and then extended to given α > 0 by means of the Newton-

Raphson method. In Fig. 4.3, we display branches of the fundamental solitons,
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Figure 4.4: Examples of stable fundamental solitons found in the semi-infinite
gap pertaining to all the three cases, which are indicated by black circles in
Fig. 4.3. The upper panels correspond to case 1, with b = 0.25 and band-edge
matched with q = q

(0,0)
+ = −0.316. The middle panels correspond to case 2, with

b = 0.43 and q = 0. Lower panels show a solution of case 3 with b = 0.21 and
q = −0.5134. The parameters are V1 = V2 = 1 and α = 0.7.

found numerically in the Case 1 in the semi-infinite gap, using matching q = q
(0,0)
+ .

The branches are presented in the plane (b, P ), where the total power P is given

by

P = P1 + P2, Pβ ≡ β

∫ ∞
−∞
|wβ|2dξ. (4.10)
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Examples of fundamental soliton solutions, i.e. the energy flows in each compo-

nent as well as the currents are defined as

jβ(ξ) = |wβ|2
dθβ
dξ

, θβ(ξ) = arg wβ(ξ), (4.11)

corresponding to the total power P = 0.5 are shown in Fig. 4.4. We observe,

that while the currents having maximum in the center and domains with alter-

nating sign, have very similar shapes of the spatial profiles, the power density is

mainly concentrated in the FF and SH in the Cases 3 and 2, respectively and is

approximately equally split between the two components in the Case 1 (as this

is expected due to (4.4)). In all three cases the real valued FF current j1 has

a significantly higher amplitude than the current of the SH, j2, i.e. the balance

between gain and losses is accomplished mainly due to the FF.

4.3.1.2 Solitons in the third finite gap

The main focus of this Chapter is on the effects of the gain-loss coefficient α on

branches of the fundamental solitons. To concentrate on this point, in what

Figure 4.5: Branches of fundamental GSs found in the third finite gap for
several values of amplitude α of the imaginary part of the periodic potential.
All the three cases, 1, 2, and 3, which are defined as per Eqs. (4.4), (4.5), and
(4.6), respectively, are presented. The gray region denotes the band of the SH
component. The parameters are V1 = V2 = 1, q = 0.
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Figure 4.6: Examples of stable fundamental gap solitons in the third finite gap
pertaining to all the three cases, which are indicated by black circles in Fig. 4.5.
The upper panels corresponds to Case 1, with b = −1.207 and band-edge matched
with α = 0.7919. The middle panels correspond to Case 2, with b = −1.234 and
α = 0.7. Lower panels shows a solution of Case 3 with b = 1.553 and α = 0.9. The
total power of all the three solitons is P = 0.5. The parameters are V1 = V2 = 1,
q = 0.

follows we set q = 0. For this choice it turns out possible to obtain the matching

condition b
(1)
1,+ = b

(2)
2,+ = 1.29 only in the third finite gap at α = 0.792 (the value

indicated by an arrow in Fig. 4.1B). In this context the consideration of the third

gap becomes particularly relevant, as one can examine all three cases using only

small deviations in parameter α.

The respective modifications of the branches subject to variation of the am-

plitude of the imaginary part of the potential α are illustrated Fig. 4.5. Examples

of the profiles of the respective gap solitons are shown in Fig. 4.6, where all three
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presented solutions have the same energy flow: P = 0.5. The most significant dis-

tinction with the situation observed in Fig. 4.4 for the solitons in the semi-infinite

gap is that (i) now the intensity of the FF is always bigger than the intensity of

the SH and (ii) the energy currents of the FF and SH are counter propagating

and having constant signs (the current j1 is negative while j2 positive).

4.3.2 Stability analysis

The stability of the solutions found as outlined above was tested in direct simu-

lations using the split-step method described in Section 3.3, as well as within the

framework of the linear stability analysis as described in Appendix B. Turning

Figure 4.7: Top plots: The evolution of two GS solutions with 10% of amplitude
random perturbations in Case 1 [see Eq. (4.4)] in the semi-infinite gap. Left panel
has b = 0.25 and is stable. The right panel corresponds to unstable evolution of
a solution with b = 0.5. The corresponding eigenvalues of small perturbations
are shown in the lower panels. The parameters of the structure are V1 = V2 = 1,
α = 0.7 and q = q

(0,0)
+ = −0.316.
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now to the stability properties of branches located in the semi-infinite gap, we

obtain that the fundamental branches may have one or more instability intervals

(see Fig. 4.3). The lengths of these intervals increase with α approaching the PT-

symmetry breaking point. This is a feature observed in all the cases considered

below for semi-infinite gaps.

In Fig. 4.7 we show examples of the evolution of stable and unstable localized

solutions. The observed oscillatory instability is due to a quartet of complex λ

and instability develops as amplitude oscillations that increase with ζ.

Figure 4.8: Top plots: The evolution of two GS solutions with 10% of amplitude
random perturbations in Case 1 [see Eq. (4.4)] in the third finite gap. Left
panel has b = −1.207 and is stable. The right panel corresponds to unstable
evolution of a solution with b = −1.101. The corresponding eigenvalues of small
perturbations are shown in the lower panels. The parameters of the structure are
V1 = V2 = 1, α = 0.7919 and q = q

(0,0)
+ = 0.

Stability of the solitons of the fundamental branches in the third finite gap

(Case 1 with α = 0.792) is shown in Fig. 4.5. We observe an interval of stability
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which starts at the bifurcation point b = b
(1)
1,+ = b

(2)
1,+ = 1.29, the rest of the branch

corresponding to unstable solutions.

Explicit examples of the direct propagation compared with the linear stability

analysis are shown in Fig. 4.8. Stable and unstable GSs with slightly modified

b belonging to the third finite gap are shown in the left and right columns, re-

spectively. The two eigenvalues of the stable solution collide when b is varied and

assume purely imaginary values. It can be seen in the upper right panel that the

perturbed solution decays very rapidly.

4.3.3 Nonlinear modes without linear limit

Now we turn to numerical studies of solutions satisfying condition (4.5), in the

vicinity of the total gap, which coincides with an m-th SH gap edge, i.e. with

b
(m)
2,s . While FF component is vanishing in this case, i.e. w1 → 0 as b→ b

(m)
2,s , the

amplitude of the SH w2 persists finite while its width increases (i.e. the SH in

this limit becomes delocalized).

In particular, the effect of the delocalization is responsible for the grows of the

total power, i.e. divergence of P , at b → b
(0)
2,+ and α = 0.7 shown in the central

panel of Fig. 4.3 and at b→ b
(2)
2,+ shown in Fig. 4.5 for the branches with α = 0 and

α = 0.7 . Note that, in branches of Case 2 represented in Fig. 4.5 for both α = 0

and α = 0.7, P diverges at the same b = b
(2)
2,+, as the spectrum of Eq. (4.7b)

is independent of α. Similar results for the conservative system, with α = 0,

were previously obtained in Refs. [34, 50]. On the other hand, no delocalization

of the SH component was observed for the branches satisfying condition (4.5)

in Ref. [35], where a PT-symmetric localized potential was considered, since the

bifurcation of the second harmonic in that case departed from the localized defect

state. The SH amplitude, we denote it by C2 = max |w2|, of a solution with b

close to b
(m)
2,s , i.e., at |b − b(m)

2,s | � 1, depends on the phase mismatch and on the

gain-loss coefficient.

This is illustrated in the left panel of Fig. 4.9, where we display plots C2 vs.

α, calculated at the SH edge b = b
(1)
2,+ which coincides with the edge of the third

finite gap (like this is illustrated in the panel A of Fig. 4.1) for fixed q = 0. In

the right panel of Fig. 4.9 we show dependence of C2 on the mismatch q at the
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Figure 4.9: Left panel: C2 vs. α at the SH edge b = b
(1)
2,+ = −1.293 of the third

finite gap for q = 0. C2 = 0 at b
(1)
1,+ = b

(1)
2,+. Right panel: C2 vs. q for α = 0.7,

at the edge b = b
(0)
2,+ = 0.3784. The shaded region represents the interval where

b = b
(0)
2,+ + q falls inside the band [b

(0)
1,−, b

(0)
1,+]. C2 = 0 at q = q

(0,0)
+ and q = q

(1,0)
+ .

The parameters are V1 = V2 = 1.

SH edge b = b
(0)
2,+ coinciding with the semi-infinite gap edge for fixed α = 0.7.
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Figure 4.10: The boundary between stable (below the curves) and unstable
(above the curves) gap-soliton solutions in the plane of (b, α) obtained from the
linear-stability analysis. The curve with q = 0 represents a Case 2 branch bifur-
cating from b

(0)
2,+ = 0.3786 and the curve with q = −0.5134 represents a Case 3

branch bifurcating from b
(0)
1,+. Note that while b

(0)
2,+ can be identified easily in the

Case 2 curve as the point where the curve goes to α = 0, b
(0)
1,+ is not fixed because

it depends on α (See panel B of Fig. 4.1). The parameters are V1 = V2 = 1.

We found that C2 → 0 in the C2(α) and C2(q) depends on the specific value
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of the gain-loss coefficient: at α ≈ 0.7919 and q = q
(m,0)
+ respectively. In respect

to values in which C2(q)→ 0 we obtain this whenever q just adjusts the edge of

the SH band-edge, which in the present analysis is b = b
(0)
2,+, to be located exactly

of an edge of the FF of the same type (in the figure this means it is a edge of

upper type, +), exactly as described by formula (4.9). In Fig. 4.9 we show only

the values q = q
(0,0)
+ and q = q

(1,0)
+ , which translates to the matching of edges

b
(0)
1,+ = b

(0)
2,+ + q

(0,0)
+ and b

(1)
1,+ = b

(0)
2,+ + q

(1,0)
+ . In respect to the left panel of Fig. 4.9,

C2(α) vanishes at the given value of the gain-loss coefficient corresponding to the

situation when the edges of the FF and SH gaps coalesce (i.e. b
(1)
1,+ = b

(2)
2,+). Thus,

Figure 4.11: Top plots: The evolution of two GS solutions with 20% of amplitude
random perturbations in Case 2 [see Eq. (4.5)] in the semi-infinite gap. Left panel
has b = 0.4 and is stable. The right panel corresponds to unstable evolution of a
solution with b = 0.6. Note that the linearly unstable solution remains localized.
The corresponding eigenvalues of small perturbations are shown in the lower
panels. The parameters of the structure are V1 = V2 = 1, α = 0.7 and q = 0.

whenever C2 → 0 is attained by a proper choice of α or q, both the FF and SH

components emerge with infinitely small amplitudes w1,2 when condition (4.8) is
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met, i.e., when Case 2 merges with Case 1.

Figure 4.12: Left plot shows the evolution of an unstable localized solution with
b = 0.8 added by 10% of amplitude random perturbations in Case 2 [see Eq. (4.5)]
in the semi-infinite gap. The right plot shows the corresponding eigenvalues of
small perturbations. The parameters of the structure are V1 = V2 = 1, α = 0.7
and q = 0.

Examples of field profiles w1,2 pertaining to the fundamental GS branches in

the semi-infinite and in the third finite bandgap are displayed in middle panels

of Figs. 4.4 and 4.6, respectively. In both figures the solutions are in the region

close to the respective SH band edges b
(0)
2,+ and b

(1)
2,+ where (4.5) is satisfied.

As concerns the stability of the GSs, Case 2 has one notable difference in the

semi-infinite and in the third finite gaps in comparison with Case 1, whenever

a given branch satisfying (4.5) bifurcates from a SH edge b
(m)
2,s , a small unstable

region close to b
(m)
2,s that persists even when α = 0 exists. In Fig. 4.10 the

curves separating stable and unstable solutions of the fundamental branch values

of q = 0 and q = −0.5134 are shown in the plane (b, α). The Case 2 branch is the

curve with q = 0 in the semi-infinite gap, where can be seen stability threshold

abruptly decays to zero. The other curve with q = −0.5134 a Case 1 bifurcation,

it do not share this property. In both curves is possible to see that, as we reported

in the previous section, there may be one or more unstable intervals with lenghts

that increase with α.

Examples of the propagation of stable and unstable solutions with variations
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in b in the semi-infinite gap are shown in Fig. 4.11. Instability appear due to

the collision of internal modes with the band edges of the spectrum of (B.3)

resulting in four complex eigenvalues λ. The propagation however shows that

the perturbed solution can remain localized despite amplitude oscillations as is

possible to see in the upper left panel of Fig. 4.11. At about ζ = 300 there is

an emission of energy from the localized field region but the structure quickly

regains energy and remains localized. However not all linearly unstable solutions

have this behaviour. In Fig. 4.12 we show an unstable solution that rapidply

Figure 4.13: Top plots: The evolution of two GS solutions with 10% of amplitude
random perturbations in Case 2 [see Eq. (4.5)] in the third finite gap. Left panel
has b = −1.11 and is unstable. The right panel corresponds to stable evolution of
a solution with b = −1.268. The corresponding eigenvalues of small perturbations
are shown in the lower panels. The parameters of the structure are V1 = V2 = 1,
α = 0.7 and q = 0.

decays.

Examples of solutions in the third finite gap with slightly different b are shown

in Fig. 4.13. Unstable eigenvalue with positive λ appear when b is slightly bigger

than b = −1.268 of the stable solution. Instability develops as a rapid increase
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of the amplitudes of the intensities |w1,2|2 with propagation.

4.3.4 Modes with negligible second-harmonic

Finally, we consider GS branches generated by bifurcations which obey condition

(4.6) satisfied in a vicinity of the FF edge of the total gap, b = b
(m)
1,s . The branch

Figure 4.14: Branches of fundamental GSs for several values of α in the second
finite gap. The bifurcations are of the Case 3 type. The shaded region denotes
the band of the SH component. The branches extend into the SH band, as em-
bedded solitons, atr α > 0.41. Thick and thin lines represent stable and unstable
solutions, respectively. The parameters are V1 = V2 = 1, q = 0.

of the fundamental GS solutions pertaining to Case 3 is displayed in the right

panel of Fig. 4.3 for the semi-infinite gap.

An example of GS solution is displayed in the lower panels Fig. 4.4. It can be

seen that |w1|2 has a much higher amplitude than |w2|2. Fundamental branches

of Case 3 are also represented by the branches with α = 0.9 and α = 0.95 in

Fig. 4.5 for the third gap. An example of the respective field profiles for the GS

branch in the third finite bandgap, bifurcating from b
(1)
1,+, is shown in the lower

panels of Fig. 4.6. Also in the same figure, can be noted that while |w1|2 is

strictly positive, j1 is strictly negative. The current j2 is strictly positive.
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Figure 4.15: An example of a stable embedded soliton with b = −0.6, indicated
by the black circle in Fig. 4.14 inside the SH band. This solution belongs to the
branch of fundamental solitons that bifurcates from b

(0)
1,− in the second finite gap.

The parameters are α = 0.6, V1 = V2 = 1 and q = 0.

We observe in Fig. 4.14, where branches for several values of α are found in

the second finite gap, that the branch which bifurcates from b
(0)
1,+ at α = 0.6 goes

into the band of the SH, where it becomes a family of embedded solitons (ESs)

[96, 97], i.e., those existing inside (embedded into) the continuous spectrum. The

existence of such solitons is explained by fact that their decaying asymptotic tails

at |ξ| → ∞ follow relation (4.6), hence the SH equation is non-linearizable for

the decaying tails, invalidating the standard argument for the non-existence of

solitons whose propagation constant falls into the band. We have found that the

GS branches extend into the SH band for α > 0.41. In Fig. 4.15 we show a typical

example of stable ES. In particular is possible to see that both |w1,2|2 decay rapidly

despite being in the SH band. Note that no ESs were found for the conservative

version of the present system, with α = 0 [34, 50]. Embedded solitons were found

in Ref. [97] in the conservative model without the potential (V1 = V2 = 0), but

with cubic nonlinear terms added to the equations, otherwise only quasi-solitons

can be found, with non-vanishing tails at |ξ| → ∞ [98]. Furthermore, in the

conservative system the ESs were found only at discrete values of b. A noteworthy

feature of ESs in the present system is that a part of their family is stable, as

seen in Fig. 4.14 and in the left panels of Fig. 4.16 while in the conservative

system the isolated ES is semi-stable (in Ref. [97], the ES was stable against
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Figure 4.16: Top plots: The evolution of two GS solutions with 10% of amplitude
random perturbations in Case 3 in the second finite gap. Left panel has b = −0.6
and is stable. The right panel corresponds to unstable evolution of a solution
with b = −0.65. The corresponding eigenvalues of small perturbations are shown
in the lower panels. The parameters of the structure are V1 = V2 = 1, α = 0.6
and q = 0.

perturbations that increased the total power, but unstable against those which

decreased it). The unstable perturbations in the semi-stable conservative system

grow sub-exponentially [in fact, as ζ2, rather than as exp (const · ζ)]. In our

system, the gain component supplies the power and helps to stabilize perturbed

solitons, see Fig. 4.17. Instability, when it appears, is due to the emergence

of quartets of complex eigenvalues, as is possible to see in the right panels of

Fig. 4.17. The propagation of perturbed unstable solution revealed that the

decay is oscillatory (See right panels of 4.16). We also mention that in Ref. [99]

continuous families of ESs in a system with a cubic nonlinearity were found for

moving solitons in the plane of (v, b), where v is the soliton’s velocity. However,

the ES solutions still formed discrete sets for any given v, including the case of

the quiescent solitons, v = 0, considered here. To the best of our knowledge, the
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Figure 4.17: An example of the stable evolution of the GS with b = −0.6,
indicated by the black circle in Fig. 4.14, inside the SH band pertaining to the
fundamental branch that bifurcates from b

(1)
1,+, in the third finite gap. In the left

panel the initial condition is u1,2(ξ, 0) = 0.95 · w1,2(ξ) and in the right panel it is
u1,2(ξ, 0) = 1.05 ·w1,2(ξ). In both cases, the soliton is stable. The parameters are
α = 0.6, V1 = V2 = 1 and q = 0.

present system furnishes the first example a continuous branch of ESs in a system

with a purely quadratic nonlinearity, a part of the branch being stable. In the

semi-infinite gap, the behavior of solitons in Case 3 is similar to that in Case 1,

outlined above, with one or more alternating stable and unstable intervals, whose

lengths depend on the gain-loss strength, α. In Fig. 4.18 we show examples

of stable and unstable evolutions in the semi-infinite gap. The linear stability

analysis shows four complex eigenvalues in the case of the unstable solution.

Dynamics shows that instability develops as increasing amplitude oscillations.

In all the finite gaps, we have found two regions, one stable, starting at the

bifurcation point, and the other unstable, as one can see in Fig. 4.3 for values

α = 0.9 and α = 0.95 and Fig. 4.14. In Fig. 4.19 we show examples of stable

and unstable solutions in the second-finite gap. The linear stability analysis

shows that in the unstable solution the eigenvalues responsible for the instability

are purely real. Dynamics shows that the amplitude of the perturbed unstable

solution grows without oscillations.

Lastly, stable solutions have never been found for |α| > V1. This conclusion
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Figure 4.18: Top plots: The evolution of two GS solutions with 10% of amplitude
random perturbations in Case 3 [see Eq. (4.6)] in the semi-infinite gap. Left panel
has b = 0.21 and is stable. The right panel corresponds to unstable evolution
of a solution with b = 0.25. Note that the linearly unstable solution remains
localized. The corresponding eigenvalues of small perturbations are shown in the
lower panels. The parameters of the structure are V1 = V2 = 1, α = 0.7 and
q = −0.5134.

is qualitatively similar to that made in other nonlinear PT-symmetric systems,

where solitons do not exists above a critical level of the gain-loss coefficient [29,

63].
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Figure 4.19: Top plots: The evolution of two GS solutions with 20% of amplitude
random perturbations in Case 3 [see Eq. (4.6)] in the third finite gap. Left panel
has b = −1.155 and is stable. The right panel corresponds to unstable evolution
of a solution with b = −1.1. Note that the linearly unstable solution remains
localized. The corresponding eigenvalues of small perturbations are shown in the
lower panels. The parameters of the structure are V1 = V2 = 1, α = 0.9 and
q = 0.

4.4 The system with the “virtual grating”

Here we consider the case of V2 = 0, i.e. the periodic potential acting only on

the FF component. A typical example of a stable GS, found as solutions to

Eqs. (4.2a) and (4.2b) in the absence of the periodic potential acting on the SH,

is displayed in Fig. 4.20. It is seen that its shape is conspicuously different from

that of the solitons found above in the system with V2 = V1, cf. Fig. 4.6.

The analysis of the stability of solitons in Eqs. (4.1a) and (4.1b) in the case of

V2 = 0 reveals a stability boundary, shown in in Fig. 4.21, which is qualitatively

similar to its counterparts presented above for the system with V2 = V1, cf. Fig.

4.10. It particular, the instability area appears for values of α above a certain
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Figure 4.20: The intensities |w1,2|2 and currents j1,2 of a stable GS solution with
propagation constant b = 0.2 pertaining to the semi-infinite gap. The parameters
of the system are V1 = 1, V2 = 0, q = 0 and α = 0.9.
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Figure 4.21: The stability boundary in the plane of (P, α), in the system with
V1 = 1 and V2 = 0. The instability area is located above the boundary.

threshold. However, the difference is that only one instability interval exists in

this case, and the threshold for its appearance, α ≈ 0.75, is higher than in the

system where the periodic potential acts on both components.
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4.5 The case of a purely imaginary potential

Here we consider the limit case of the system when the potential in Eq. (4.1a) is

purely imaginary, and no potential appears in Eq. (4.1b), i.e., V1 = V2 = 0. A
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Figure 4.22: The intensities |w1,2|2 and currents j1,2 of a GS with b = 0.06, in
the system with V1 = V2 = 0 (no real potential) and q = 0, α = 0.5.

typical example of the soliton found in this case is shown in Fig. 4.22. In this

case, all the solitons are unstable at α > 0. The respective instability growth rate

being rather small, Fig. 4.23 shows that the growth of the instability in direct

simulations starts abruptly, as the instability eigenvalues are purely imaginary,

see Appendix B.
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Figure 4.23: Solitons in the system with V1 = V2 = q = 0 and α = 0.5.
The upper left panel: The power-vs.-propagation-constant (b) branch. The lower
left panel: The instability eigenvalue, λ, with the largest imaginary part, as a
function of b. The upper right panel: Stability eigenvalues for the soliton with
b = 0.06, the instability being accounted for by a pair of small purely imaginary
eigenvalues. The lower right panel: The unstable propagation of the soliton
randomly perturbed at the 1% amplitude level.

4.6 Conclusions

In this Chapter we considered a system with a PT-symmetric periodic potential

acting on the FF and a real potential acting on the SH. We studied numerically

three types of bifurcations of solitons with w1 → 0 at the edge of a total gap

which happens to be an edge of a gap of the FF, SH or both. We found that

part of the branch in all considered cases is stable, with exception of the case of

a purely imaginary potential, where no solutions stable solutions were found.
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The main concern in this Chapter was to study the effect of gain and loss

parameter on the system. The total-gap structure was found to depend on it,

even being responsible for the disappearance of total gaps for values of gain and

loss coefficient below PT-symmetry breaking threshold. The stable regions was

found to depends on the gain and loss parameter. The limit in amplitude of the

solutions approaching the edge of the SH was found to depend on gain and loss

parameter. Stable embedded solitons may exist as a part of a fundamental branch

that bifurcates from an edge of the FF. Their appearance depends on values of

the gain and loss parameter above some threshold.
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Chapter 5

Gap solitons in nonlinear

periodic χ(2)- media

5.1 Introduction

In the present chapter we consider a system with simultaneous spatially periodic

modulations of linear and nonlinear properties. The nonlinearity is considered

to have the same spatial distribution as the linear refractive index. We focus

on alternating layers of dielectric materials possessing quadratic nonlinearity and

address localized mode such systems.

The organization of this chapter is as follows. In Section 5.2 the physical

model is described. The asymptotic properties of stationary solutions are studied

in Section 5.3 and a numerical scheme for solution of the system of equations for

χ(2) media is described. In Section 5.4 the physical implementation of nonlinear

quadratic media periodically modulated parameters is given. The LS branches of

solutions and their stability are discussed in Sections 5.5.1, 5.5.2 and 5.5.3. The

main results are summarized in the conclusion.

5.2 The model

In this chapter we consider a perfectly matched fundamental field and the second-

harmonic having respectively the frequencies ω1 and 2ω1 and wave vectors k1 and
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k2 = 2k1. The both waves propagate along z direction. The medium is considered

periodically modulated in the transverse, i.e. x, direction with the spatial period

l. Respectively, for the dielectric permittivity (2.3) is used and ε1β(x) = ε1β(x+ l)

describes the periodic modulation. The following considerations will be restricted

to lossless media with same period l of the dielectric permittivity, such that

χ2 = χ1/2 is assumed to be satisfied (See [36]) along with χ1,2(x) = χ1,2(x + l).

Here the coefficient χ10 = max (χ
(2)
1 )−min (χ

(2)
1 ) is the amplitude of the nonlinear

coefficient modulation. It follows that the amplitude of nonlinear modulation of

the SH satisfies χ20 = χ10/2. The evolution equations (2.9) are written as

i
∂u1
∂ζ

+
∂2u1
∂ξ2

+ V1(ξ)u1 + 2f(ξ)u1u2 = 0, (5.1a)

i
∂u2
∂ζ

+
1

2

∂2u2
∂ξ2

+ 2V2(ξ)u2 + f(ξ)u21 = 0. (5.1b)

In above the index of fβ was dropped since f1,2(ξ) = f(ξ). From (2.7) is possible

to see that Vβ(ξ) = Vβ(ξ + 2π). The model (5.1) corresponds to (2.9) with

σ = k1/k2 = 1/2 and q = 0.

System (5.1) where only the linear lattice is present, i.e. where f(ξ) ≡const,

was considered in [50, 52], while in the presence of only nonlinear lattice, i.e. at

V1,2(ξ) ≡const, it was studied in the recent paper [54].

Solutions of (5.1) conserve the Hamiltonian

H =

∫ ∞
−∞

(
−
∣∣∣∣∂u1∂ξ

∣∣∣∣2− 1

2

∣∣∣∣∂u2∂ξ

∣∣∣∣2 +V1|u1|2 + 2V2|u2|2 + fū21u2 + fu21ū2

)
dξ (5.2)

and the total power (4.10).

5.3 Asymptotic properties of stationary solu-

tions

In this section the interest in asymptotic properties, i.e., properties of localized

field envelopes u1,2 for a large distance |x| → ∞. Stationary localized solutions

are searched in the form (2.12) where wβ (ξ) → 0 at ξ → ±∞. Following the
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arguments of [52], it is possible to prove that for exponentially localized solutions,

w1,2 (ξ) have constant phases, and thus can be chosen real, and consequently

satisfying the equations

d2w1

dξ2
+ (V1(ξ)− b)w1 + 2f(ξ)w1w2 = 0, (5.3a)

1

2

d2w2

dξ2
+ 2 (V2(ξ)− b)w2 + f(ξ)w2

1 = 0. (5.3b)

It follows from (5.3) that the localized stationary solutions obey the integral

relation ∫ ∞
−∞

(
dV1

dξ
w2

1 + 2
dV2

dξ
w2

2 −
df

dξ
w2

1w2

)
dξ = 0. (5.4)

Below in this chapter we focus the modulations having well defined symmetry.

More specifically we consider them to be even functions, i.e. V1,2(ξ) = V1,2(−ξ)
and f(ξ) = f(−ξ) (see Fig. 5.1 and its description below). Taking into account

the symmetry of the periodic medium, we search the solutions of the stationary

problem (5.3) which are either even or odd functions, i.e. which satisfy the

relations w2
1,2(ξ) = w2

1,2(−ξ).
Assuming that w2(−ξ) = −w2(ξ), it is deduced from Eq. (5.3b) that f(ξ)w2

1(ξ)

is either a odd function, or zero. Since the first possibility is ruled out by the above

suppositions about the parity of the nonlinear modulation f(ξ), we conclude that

nonlinear localized modes can exist only with an even field of the SH, i.e. with

w2(ξ) = w2(−ξ). Meantime Eq. (5.3a) may support both even and odd profiles

of the FF w1(ξ).

Since fw2 → 0 at ξ → ±∞, the last term in Eq. (5.3a) decays faster than

other ones and thus in the asymptotic region this equation becomes effectively

linear. This means that

w1(ξ)→ C1A1±(ξ), ξ → ±∞ (5.5)

where C1 is a constant and A1± are the solutions of the linear Hill equation (2.14)

(See[39]) decaying at ±∞ respectively. In above we remind that L1 was defined in

(2.14). The Floquet theorem assures that these two linearly independent solutions

can be expressed in the form (3.4). Here φ1(ξ) is a 2π-periodic function, and the
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real Floquet exponent µ1 is defined by the location of the propagation constant b

inside a gap of the spectrum of the operator L1 defined in (2.14) through (3.10).

Denoting the set of the gaps of (2.14) by Σ1, thus the formulated conditions can

be written as b ∈ Σ1.

Passing now to the asymptotic of Eq. (5.3b), it can be treated as an inhomoge-

neous linear equation for w2 satisfying the conditions dw2(0)/dξ = 0 (recall that

the mode w2(ξ) must be necessarily even) and w2(±∞) = 0, with w1 considered

as given. Then the asymptotic behavior of w2 depends on the relation between

the asymptotics of the solution of the linear equation

L2A2± = 2bA2±, L2 =
1

2

∂2

∂ξ2
+ 2 (V2(ξ) + q) . (5.6)

and on the decay of w2
1 defined by (3.4), i.e. by the exponent 2µ1. In other words,

the asymptotic of w2 depends on the position of a given b with respect to the

spectrum of Eq. (5.6). In the present chapter we concentrate only on the cases

where b belongs also to a gap of the spectrum of Eq. (5.6), i.e., a total gap (See

Section 4.3.1). We require b to be considered to be in a gap of (5.6), where can

again use the Floquet theorem and represent its solutions as

A2±(ξ) = φ2(±ξ)e±µ2ξ, (5.7)

where µ2 > 0 and φ2(ξ) is a 2π-periodic function.

The asymptotic of (5.3b) is given using the particular solution of the inho-

mogeneous equation (5.3b) with localized boundary conditions. Using the Green

function

G(ξ, ξ′) =

{
A2+(ξ)A2−(ξ′) for ξ < ξ′,

A2+(ξ′)A2−(ξ) for ξ > ξ′
(5.8)

Eq. (5.3b) can be rewritten in the integral form

w2(ξ) = − 2

W

∫ ∞
−∞

G(ξ, ξ′)f2(ξ
′)w2

1(ξ
′)dξ′. (5.9)

The Wronskian is given by W = A2+dA2−/dξ − A2−dA2+/dξ.

One can distinguish two asymptotic regimes in (5.9). In the first case, when
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2µ1 > µ2, from (5.5) we conclude that the integral

C+ =

∫ ∞
0

(A2+ + A2−) fw2
1dξ
′ (5.10)

exists. This allows us to write (5.9) as

−W
2
w2 = A2+ (ξ)

∫ ∞
ξ

A2−f2w
2
1dξ
′−

− A2− (ξ)

∫ ∞
ξ

A2+f2w
2
1dξ
′ + C+A2−. (5.11)

The both terms containing integrals in this expression decay faster than C+A2−

as ξ →∞. Thus the total solution decays with exponent µ2 and we have

w2(ξ)→

{
C+A2−(ξ) for ξ � 1,

C+A2+(ξ) for ξ � −1.
(5.12)

The second case corresponds to 2µ1 < µ2. For some ξ = ξf far enough from

the origin, one can approximate w1(ξf ) ≈ C1A1−(ξf ) and obtain

−W
2
w2 ≈ C2

1

∫ ∞
ξ

φ2 (−ξ′)A2
1−[φ2 (ξ) e−µ2(ξ

′−ξ)+φ2 (−ξ) e−µ2(ξ′+ξ)]dξ′+C−φ2 (−ξ) ,

(5.13)

where

C− =

∫ ξf

−ξf
φ2 (ξ) e−µ2(ξf−ξ)f2 (ξ)w2

1 (ξ) dξ. (5.14)

We notice that the described situation resembles the cases of free-tail and

tail-locked cases considered in [100] for the three-wave gap solitons in quadratic

media.

In order to obtain the localized modes in this chapter we use the shooting

method described in Sec. 3.1. Here the shooting parameters are C1 and C+ for

the 2µ1 > µ2 case or C1 and C− for the 2µ1 < µ2. The shooting parameters C±

plays the role of C2. The asymptotic formula (5.5) is used for A1 and (5.12) or

(5.13) for A2.

The shooting method allowed us to obtain solutions which when used in eval-

uation of (3.20) are of O (10−4). In order to increase the accuracy further we em-
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ployed the solution obtained using the shooting method as a seed for a Newton-

Raphson solver. The final accuracy of the obtained solutions was of order of

10−10.

5.4 A periodic structure

In order to proceed with numerical construction of particular solutions, it is

necessary to specify the layered structure, i.e. to introduce particular forms of the

functions Vβ and f . To this end we consider a structure consisting of alternating

slabs of two different materials alternating periodically and denoted below by

“a” and “b”. This structure is different from Chapter 4, where a continuous

modulation with cosine form was used, but results used in previous section for the

asymptotic behavior of solutions still can be used in the case α = 0. Respectively

we have for one period

Vβ(ξ) =

{
Vβa for |ξ| < π/2,

Vβb for π/2 < |ξ| < π
(5.15)

where Vβa and Vβb are constants, and

f(ξ) =

{
f0 + 1/2 for |ξ| < π/2,

f0 − 1/2 for π/2 < |ξ| < π.
(5.16)

In the numerical studies reported below we the use for slabs a and b respec-

tively an orientation-patterned Gallium Arsenide (OP-GaAs) [10] and the alloy

Al0.125Ga0.875As [101]. This structure, possessing the required modulation of both

dielectric permittivity and of the nonlinear susceptibility, can be fabricated with

the combination of techniques suchs as low-pressure hydride vapor phase epi-

taxy [10] for the χ1 modulation and molecular beam epitaxy using Si shadow

masks [11]. The both materials are transparent when k−11 = 3.18µm. Their di-

electric constants are ε1a = ε2a = 10.9 and ε1b = ε2b = 10.28 respectively. Here εβa

(εβb) represents the dielectric constant of the “a” (“b”) layer on the FF (β = 1)

or SH (β = 2). One has in this case ε10 = 10.59. We choose the period of the

structure to be l = 1.63µm. The modulus of the nonlinear susceptibilities are
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Figure 5.1: Upper panel: Schematic presentation of the periodic structure con-
sidered in the present chapter. The two black circles indicate the coordinates of
two symmetry axes (i.e. ξa = 0 and ξb = π) which are located in the slabs re-
spectively with lower (white) and higher (gray) refractive indexes. Lower panels:
The left panel shows gaps (white) and bands (black) for the FF. Middle panel
shows gaps (white) and bands (gray). Right panel shows the resulting total gaps
(white) and bands.

χ1a = 2χ2a = 94pm/V and χ1b = 2χ2b = −94pm/V [102]. The constant χβa

(χβb) is the nonlinear suscetibility in the “a” (“b”) layer at the FF (β = 1) or

SH (β = 2). The axis of the GaAs and Al0.125Ga0.875As are inverted in respect

to another, such that the second-order susceptibility changes sign from layer to

layer. Thus we have χ10 = 188pm/V. This particular structure corresponds to

f0 = 0, V1a = V2a = 0.31 and V1b = V2b = −0.31 in dimensionless form and is

schematically illustrated in Fig. 5.1.

We notice that the structure has two symmetry axes passing through the

centers of the layers of each type, i.e. through the points ξa = 0 and ξb = π (See
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the the black circles in the upper panel of Fig. 5.1).

5.5 Gap Solitons

5.5.1 Bifurcation of branches from continuum spectrum

Since we are interested in gap solitons belonging to one of the total gaps it becomes

relevant whether such gaps have edges coinciding with edges of the FF bands or

with edges of the SH bands as we previously discussed in Section 4.3. For the

layered structure at hand one observes from Fig. 5.1, that the total semi-infinite

gap is limited by the upper branch of the SH, while the first highest total gap has

the upper boundary from the band spectrum of the SH and the lower boundary

coinciding with the boundary for the semi-infinite gap for the FF. As we will see

below these facts have direct implications on the existence of small amplitude

gap solitons.

In order to clarify this last point we now turn to the analysis of the small am-

plitude limit, i.e., the Case (4.6), and more specifically we address the possibility

of having families of the gap solitons bifurcating from the continuum spectrum

(i.e. from the linear Bloch states). In the general analysis performed below we

exclude the possibility of two coinciding edges of bands of the FF, i.e., Case (4.4)

since this case does not exist in the structure subjected to analysis in this Chap-

ter. From (5.3) we deduce the conclusion that no branches can bifurcate from

the edge of the total gap which is originated by the spectrum of the SH, i.e., the

Case (4.5). Indeed, assuming the opposite we should have w2 tending to zero, i.e.

to the linear spectrum of the problem (5.6), while w1(ξ) for the respective prop-

agation constant, having nonzero detuning to a gap of the spectrum of the linear

problem (5.6), should have zero limit. This obviously contradicts to Eq. (5.3b),

which in the described case should have the first two terms much smaller than

the last one.

In other words, a branch of solutions (if any) can bifurcate only from the

boundary of the total gap coinciding with the boundary of a gap of the FF.

This is however is only a necessary condition for the existence of a bifurcating

branch but not yet enough one. The second necessary condition comes from the
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requirement of the instability of the Bloch states bordering the respective gap

edge. This issue can be addressed withing the framework of the multiple scale

expansion [103]. Indeed, when a branch bifurcates from a gap-edge of the FF,

then w1 is small. If at the same time w2 is not small, since in this case it does

not border any gap-edge of the SH, we again arrive at the contradiction because

now Eq. (5.3b) in the leading order becomes linear. This means that no small

amplitude limit with w1 = O(w2) is possible. This is what would happen in the

case 2µ1 > µ2. In the case 2µ1 < µ2, however, one can require w2 to be much

smaller than w1. Then Eq. (5.3b) may have a small amplitude solution which

obeys the scaling (4.6). Thus to find (approximately) such solution we have to

explore the expansions in the form

u1 = ηu
(1)
1 (ξ0, ξ1, ..., ζ0, ζ1, ...) + η2u

(2)
1 (ξ0, ξ1, ..., ζ0, ζ1, ...) + ..., (5.17a)

u2 = η2u
(2)
2 (ξ0, ξ1, ..., ζ0, ζ1, ...) + ... (5.17b)

where η � 1 is a formal small parameter and ξj = ηjξ and ζj = ηjζ, with

j = 0, 1, 2, 3..., are the scale variables, regarded as independent. In the vicinity of

a given band-edge (let it be m0-th band and k0 stands for the wave vector at the

reduced Brillouin zone) the leading order of the solution is searched in the form

u
(1)
1 (ξ0, ζ0) = U (ξ1, ζ2)φ

(m0)
1,k0

(ξ0) e
ib

(m0)
1,k0

ζ0 + c.c. (5.18)

where φ
(m0)
1,k0

(ξ0) is the Bloch function at the m0-th edge with wave vector k0 =

0, 1/2 and propagation constant b
(m0)
1,k0

of the FF where the bifurcation is consid-

ered. Here U (ξ1, ζ2) is a slowly varying envelope. The further steps are standard,

and therefore we only briefly outline them in the Appendix A. The resulting

equation for the small amplitude reads

i
∂U

∂Z
=
∂2U

∂X2
+ S |U |2 U. (5.19)

In above X is a rescaled transverse coordinate and Z is a rescaled propagation
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coordinate. The constant S = ±1 is defined in (A.7) in Appendix A. Bright

solitons are known to exist when S > 0. The constant S depends on an effective

nonlinearity, averaged over a product of band-edge functions of the FF and SH.

It is of particular importance, since given a structure with fixed V1,2, the periodic

nonlinear modulation f can effectively in change when a bifurcation satisfying

(5.19) can occur. This is in stark contrast to a system without nonlinear modu-

lation where only the band-edge functions of the FF and SH are relevant. Thus

the second condition which must be satisfied for existence of a solitonic branch

bifurcating from a gap-edge is that S > 0.

5.5.2 Branches of solutions

Turning to the discussion of the branches of the solution we notice that the sym-

metry of the structure implies the existence of two different families of solutions,

corresponding to two different symmetry axes of the structure (see Fig. 5.1). We

address the solitons which are centered either in a slab with lower refractive in-

dex, i.e. at ξa = 0 (shown in Fig. 5.2) or in an optically more dense slab, i.e. in

the point ξb = π, (see Fig. 5.3).

As the first step, using (A.6) and (A.7) we computed S for all edges of the total

gaps, coinciding with the gap-edges of the FF. It turns out that for the structure

at hand only the edge defined by the propagation constant b
(0)
1,1/2 ≈ −0.3573 (i.e.

at the boundary of the Brillouin zone, i.e. corresponding to a finite total gap) has

S = 1. Hence this is the only edge where a branch of the gap soliton solutions can

bifurcate from the linear spectrum. This precisely what the curves C, bifurcating

from the upper edge of the second total gap, in Figs. 5.2 and 5.3 show. In the low

intensity limit, the SH appears only as a small perturbation to the FF, what one

can also observe in the second lower panels in Figs. 5.2 (b = −0.044) and Fig. 5.3

(b = −0.48). The comparison of these two figures reveals the first interesting

phenomenon: the symmetry of the fundamental field is changed depending on

the center location.

Since we are in the small amplitude limit, this change of the symmetry is

understandable form the requirement for the light to concentrate in the waveg-

uides with higher refractive index (the gray strips). This gives also the physical

64



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

2

4

6

8

10

12

14

ξa = 0

b

P

−0.408
0

0.05

0.1

b

−0.02
0

0.5

−5 0 5
−0.1

−0.05

0

0.05

0.1

ξ/(2π)
−5 0 5

−0.2

−0.1

0

0.1

0.2

ξ/(2π)
−5 0 5

−0.3

−0.15

0

0.15

ξ/(2π)
−5 0 5

−1.2

−0.6

0

0.6

1.2

ξ/(2π)

Semi−infinite
gap

D
A

B

b = 0.2b = 0.073b = −0.044b = −0.4

Third gap First gapSecond
gap

C

Figure 5.2: Upper panel: the lowest branches of the solutions centered at ξa = 0
which belong to the semi-infinite gap and to the three highest total gaps of the
spectrum. Thick (thin) lines denote stable (unstable) solutions. Gray and black
bars represent FF and SH bands, respectively. In the abscissa axis we use the thick
(dotted) lines to indicate the range of the propagation constant where 2µ1 < µ2

(2µ1 > µ2). Lower panels: examples of gap solitons for the branch of each total-
gap starting from the semi-infinite total-gap on the right. Thick (thin) lines
represent w2 (w1).

understanding for the observed stability of the modes. This is another important

property, which can be interpreted as bistability of gap solitons, which manifests

itself in existing two different branches of the solutions bifurcating from the same

gap edge. The both branches C have overlapping intervals of the stability of the

solutions.

It worth mentioning an example of the first total gap, where at the edge where

b
(0)
1,0 = 0.0724 (it coincides with the band-edge of the FF) one has S = −1 while

the upper edge coincides with the band-edge of the SH. Therefore the lowest

branch of the solutions (see curves B in Figs. 5.2 and 5.3) does not approach zero

at any of the gap edges: at the lower edge because the NLS equation (5.19) does

not possess bright solutions when S = −1, while at the upper edge because the
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Figure 5.3: The same as in Fig. 5.2 but for the branches of solitons centered at
ξb = π. Notice that here we introduced the π-shift in the coordinate ξ (with
respect to the ξ-axis shown in Fig. 5.1), in order to place the soliton centers in
the origin.

branch borders the SH edge.

In general we observe that Eq.(20), obtained by multiple-scale expansion gives

the result which is in good agreement with the corresponding numerical solution

of the system (5.3). This is illustrated in Fig. 5.4.

Localized modes may have the field concentrated in the slabs with lower re-

fractive index. This observed in the third and first total gaps if the mode is

centered in the waveguide with lower refractive index (respectively the first and

third lower panels in Figs. 5.2 and 5.3). As it is expectable, such modes are

unstable.

Probably the most important distinction of the modes centered in different

domains is that while in the both cases one can find branches of solutions in

the semi-infinite gap, only “one-hump” mode having its maximum in a slab with

larger refractive index (the lower panel with b = 0.2 in Fig. 5.3) appears to be

stable if the propagation constant exceeds some critical value (c.f. A – branches
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Figure 5.4: Panels shows comparison of approximated model with numerical so-
lution with ξa = 0 and b = −0.038.

in the semi-infinite bands shown in Figs. 5.2 and 5.3).

In semi-infinite and third total-gaps (branches A and D in Fig.5.2 and Fig.5.3)

both edges are from the SH gap. As we previously explained, the small amplitude

limit is not possible in this case.

5.5.3 On dynamics of gap solitons

The stability of the modes discussed above has been checked both by the analysis

of the linear stability and by the direct propagation using the split-step method

described in Section 3.3. The results of this last test are illustrated in Fig. 5.5,

where we show the propagation of randomly perturbed input beam corresponding

to stable and unstable parts of the same branch of the solution.

Next we concentrate on possibilities of the exciting stationary gap solitons by

an input field consisting of only FF. The respective dynamics, obtained by the

direct numerical integration of Eq. (2.9), is shown in Fig. 5.6 where we used the
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Figure 5.5: Upper panels: stable propagation of the soliton centered in ξa = 0 and
having b = −0.05 (curve C in Fig. 5.2), integrated up to ζ = 4000. Lower panels:
unstable propagation of a solution centered at ξa = 0 and having b = −0.1 (curve
C in Fig. 5.2), integrated up to ζ = 2000. In all simulations the input beam was
perturbed by noise of order of 10% of the soliton amplitude.

initial conditions of the form u1(ξ, 0) = w1(ξ) and u2(ξ, 0) = 0. Dynamics of FF

and SH is shown in the left and right panels, respectively. The both examples

illustrate persisting localized solutions with almost all energy localized in the

fundamental mode, and periodic exchange of relatively small amount of energy

between the modes. The energy oscillations have a period ≈ 14 for the both

examples.
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Figure 5.6: Upper (lower) panel shows evolution of the initial condition u1(ξ, 0) =
w1(ξ) and u2(ξ, 0) = 0, where w1(ξ) is a solution of (5.3) with b = −0.038,
corresponding to branch C and centered at ξa (ξb).

5.6 Conclusions

In this chapter we considered a model that describes solitons in a system with

periodic modulations on the dielectric permittivity and nonlinearity. The system

was considered to be lossless. We studied solitons with definite symmetry and

their asymptotic properties, which were used in a shooting algorithm. A partic-

ular structure with realistic materials was proposed. Numerical solutions were

obtained and stability of solitons were discussed. In particular it was found that

two branches, characterized by their center of symmetry, which can be localized

in regions of higher or lower dielectric permittivity, can exist. In both cases stable

solutions were found, characterizing a type of bistability. We derived an effective

NLS equation that describes solutions with small amplitude in the case of bifur-

cations of a FF band gap edge. The equation was found to be useful in describing

when the limit of small amplitude exists.
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Chapter 6

Localized modes in χ(2) media

with PT-symmetric localized

potential

6.1 Introduction

In the present chapter we study the existence of solitons in the media with

quadratic nonlinearity and localized PT-symmetric potentials. Such systems may

be easier to realize physically than the periodic counterpart presented in Chap-

ter 4. Analytical solutions were found in [70, 71] for linear waves, and it was

found that localized modes exist in this system. It was found that a localized

PT-symmetric impurity can support solitons in the case of cubic nonlinearity [29].

Here the interest is to investigate solitons in a system with quadratic nonlinear-

ity with localized dielectric permittivity modulations with gain and losses acting

only on the FF.

The chapter is organized as follows. In Section 6.2 the model and statement

of the problem are formulated. The properties of localized modes for different

ratios between fundamental and second harmonics are studied in Sections 6.3,

6.4 and 6.5. The stability and dynamics of localized solutions are considered in

Section 6.6. Conclusions are made in Section 6.7.
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6.2 Statement of the problem

We consider the system (2.9) in the form

i
∂u1
∂ζ

+
∂2u1
∂ξ2

+ V

(
1

cosh2 ξ
+ iα

sinh ξ

cosh2 ξ

)
u1 + 2u1u2 = 0, (6.1a)

i
∂u2
∂ζ

+
1

2

∂2u2
∂ξ2

+ 2

(
V

cosh2 ξ
+ q

)
u2 + u21 = 0 (6.1b)

describing spatial second-harmonic generation in a χ(2) material with localized

modulation of the dielectric permittivity in the presence of gain and loss. The

dielectric permittivity modulation is characterized by the amplitude V . This

model is good for scientific investigation because the linear counterpart has ana-

lytical solutions for expressions for the localized modes [70, 71], which we use in

important parts of this chapter.

We notice that experimentally the introduced model can describe a medium

with active dopants, typically having rather narrow spectral resonances, i.e. af-

fecting only a limited range of frequencies. In particular, such impurities can

induce gain and dissipation, whose strengths is characterized by α, only for one

of the field component, which in our case is the FF.

Before into the detail study of the system (6.1) we note, that in the standard

way solitonic solutions can be found in the analytical form in the limit of large

mismatch parameter −q � 1, when u2 ≈ −u21/(2q) and the system (6.1) reduces

to the NLS equation with PT-symmetric potential for the fundamental harmonic

u1, in the same way as we shown in (4.3),

i
∂u1
∂ζ

+
∂2u1
∂ξ2

+ V (
1

cosh2 ξ
+ iα

sinh ξ

cosh2 ξ
)− 1

q
|u1|2u1 = 0. (6.2)

For q < 0 the bright soliton solution has the form [29]

u1 =
√
|q|Asech(ξ) exp[i

αV

3
tan−1(sinh(ξ)) + iζ],

A = (2− V +
α2V 2

9
) (6.3)
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We are interested in LS in the form (2.12). We have

d2w1

dξ2
+

[
V

(
1

cosh2 ξ
+ iα

sinh ξ

cosh2 ξ

)
− b
]
w1 + 2w1w2 = 0, (6.4a)

1

2

d2w2

dξ2
+ 2

(
V

1

cosh2 ξ
+ q − b

)
w2 + w2

1 = 0. (6.4b)

subject to the zero boundary conditions w1,2 (ξ)→ 0 as |ξ| → ∞.

We restrict our consideration mainly to solutions bifurcating from the linear

limits, (4.4), (4.5) and (4.6) which is understood as a limit where at least one of

the harmonics vanishes.

6.3 Modes with negligible second harmonic in

the linear limit

Let us start with the conditions necessary for (4.6) to occur. In this limit the

nonlinear term in (6.4a) can be neglected and in the leading order we have the

eigenvalue problem (2.14) with

L1 =
d2

dξ2
+ V

(
1

cosh2 ξ
+ iα

sinh ξ

cosh2 ξ

)
. (6.5)

Eq. (2.14) with (6.5) has been studied before. Therefore below we only briefly

outline the features necessary for our analysis, referring to [70, 71] for more

details. For V > 0 Eq. (6.5) possesses localized solutions. When α is below

the PT-symmetry breaking threshold

α < αcr = 1 +
1

4V
, (6.6)

the spectrum of Eq. (6.5) has discrete real eigenvalues given by [104]

b1,n = (n− η1)2, n = 0, 1, ... < η1, (6.7)
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Figure 6.1: Families of the solutions bifurcating from b1,0 = η21 in the case (4.6)
for several values of α. Thick (thin) lines represent stable (unstable) solutions.
Insertion shows the branches for larger values of α. The black circles represent
solutions studied in text. The parameters of the structure are V = 1/2 and q = 0
and αcr = 1.5.

where

η1 =
1

2

(√
V (αcr − α) +

√
V (α + αcr)− 1

)
. (6.8)

Above the symmetry breaking point (α > αcr) the eigenvalues of the bound states

are complex valued. We notice here that no fundamental branch satisfying condi-

tion (4.6) with α > αcr was found. Therefore from now on we concentrate only on

the results for PT-symmetry preserving case (6.6). Moreover, our consideration

will be limited to nonlinear modes that bifurcate from the ground state of defect

potential in Eq. (6.5), i.e. n = 0. The respective eigenstate of the linear problem

(6.5) reads [70, 71]

w1l(ξ) = W1sechη1(ξ) exp

[
i

2
Θ tan−1(sinh ξ)

]
(6.9)
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Figure 6.2: Families of the solutions bifurcating from b1,0 = η21 and correspond-
ing to the case (4.6) for several values of q. Thick (thin) lines represent stable
(unstable) solutions. The parameters of the structure are V = 1/2 and α = 1.44.

where W1 is a constant and

Θ =
√
V (αcr − α)−

√
V (α + αcr). (6.10)

Passing to (6.4b), in the small amplitude limit one can look for a solution with

w1 ≈ w1l, which plays the role of the inhomogeneous term in the linear equation

for w2. However, to obtain the complete families of solutions one has to consider

both Eqs. (6.4). We did this using relaxation Newton-Raphson method using the

described linear solutions as the initial ansatz.

Fig. 6.1 shows the dependence of the total power P as defined in (4.10) on the

propagation constant with several values of α. We observe that the fundamental

branches shown in Fig. 6.1 have a maximal in power PM , P ≤ PM . The value of

PM is decreasing as α increases. We also observed that PM → 0 as α→ αcr, i.e.

the fundamental branch disappears. For a given α, the position of PM in respect

to b approaches b = 0 as q decreases, as one can see in Fig. 6.2. The position of

PM moves to the right in the case q > 0. One can also see in Fig. 6.2 that in

this case the branch ends in b = −q because the mismatch shifts the position of

the continuum spectrum of the linear part of (6.4b) and w2 becomes delocalized.

74



Figure 6.3: Spatial distributions of the intensities |wβ|2 (upper panels) and the
currents jβ (lower panels). The left panels corresponds to a stable solution with
b = 0.024, as marked by a black circle in Fig. 6.1, pertaining to the fundamental
branch that bifurcates from b1,0 = 0.034, where V = 1/2, q = 0 and α = 1.452.
The right panels corresponds to a stable solution with b = 0.82, pertaining to the
fundamental branch that bifurcates from b1,0 = 0.92, where V = 2, q = 0 and
α = 0.5. Shadowed domains show the localized impurity (darker areas represent
higher values of its real part, V sech2ξ.

There is no low amplitude linear limit for w1 in this case.

In Fig. 6.3 we show the typical distributions of the fields wβ and the real-valued

currents jβ as defined in (4.11) By construction |wβ|2 and jβ are even functions.

The effective width of the intensities of modes may significantly exceed the size

of the impurity, particularly in the modes closer to the edge of the continuous

spectrum (the left panels of Fig. 6.3).

We note that in the left panels of Fig. 6.3 the solution has a relatively small

amplitude. This is a peculiarity of the chosen strength of the potential (it was

V = 1/2, solitons with larger amplitudes were found to be unstable). While this

potential (ensuring the existence of only one linear defect level in the localized

potential) is used below along the text, in the right panels of Fig. 6.3 we show a

higher amplitude soliton for the potential well having the width V = 2 (and the
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parameters α = 0.5 and q = 0).

6.4 Nonlinear modes without linear limit

In this section we investigate the case when the second harmonic remains finite

at w1 → 0, i.e., case (4.5). Then one can neglect the nonlinear term w2
1 in (6.4b)

reducing it to the well known linear eigenvalue problem (5.6) with (see e.g. [40])

L2 =
1

2

d2

dξ2
+ 2

(
V

1

cosh2 ξ
+ q

)
, (6.11)

whose eigenvalues are

b2,n =
(n− η2)2

4
+ q, n < 0, 1, ..., η2 =

√
1

4
+ 4V − 1

2
(6.12)

Here we again consider the case when there is only one localized mode. This leads

to the requirement that η2 ≤ 1 and consequently V ≤ 1/2. The corresponding

eigenfunction of b2,0 reads

w2,0(ξ) = W2sechη2ξ. (6.13)

where W2 is some constant which must be determined. This can be done from the

condition that the propagation constants in the equations (6.11) and (6.4a) are

the same. In the vicinity of the bifurcation point one can approximate w2 ≈ w2l,

i.e., Eq. (6.4a) can be approximated by the following linear system

L

(
w̄1

w1

)
= W2

(
w̄1

w1

)
, L = −1

2
coshη2(ξ)

(
0 L1 − b2,0

L̄1 − b2,0 0

)
.

(6.14)

Let us note that (6.14) is an eigenvalue equation and so the allowed values of

W2 are simply the eigenvalues. Next we define a bra– and ket– vectors: 〈ψ| ≡
(ψ(ξ), ψ̄(ξ)) and |ψ〉 ≡ (ψ̄(ξ), ψ(ξ))T (T stays for the transpose matrix), where

ψ(ξ)→ 0 at ξ → ±∞, and verify that the operator L is Hermitian with respect
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Figure 6.4: Left panel: The eigenvalues W2 of (6.14). The parameters of the
structure are V = 1/2, α = 1.4 and q = 0. Insertion shows the first few eigenval-
ues in detail. Right panel: The lowest |W2| of (6.14) as a function of the mismatch
q of the lowest P branch. The insertion shows how the minimum value of W2

reaches zero at q = q0.

to the weighted inner product:

〈ψ1|ψ2〉 =

∫ ∞
−∞

sechη2(ξ)
[
ψ1(ξ)ψ̄2(ξ) + ψ̄1(ξ)ψ2(ξ)

]
dξ. (6.15)

The Hermiticity of L ensures the reality of the admissible W2. We also note that

if (w̄1(ξ), w1(ξ))
T is a solution of (6.14) with eigenvalue W2, then −W2 is also an

eigenvalue with eigenfunction (−iw̄1(ξ), iw1(ξ))
T . This allows us to restrict the

consideration to W2 > 0.

We investigated the system (6.14) numerically and found that there is an

infinite number of discrete eigenvalues W2. The ones having the smalest absolute

values are shown in Fig. 6.4. The amplitude of the second harmonic W2 depends

on b = b2,0 (See Eq.(6.14)). In Fig. 6.4, we show the dependence of W2 on q

corresponding to the lowest |W2| branch. The special case, when for a certain

value of q the amplitude of the second harmonic W2 → 0, happens when b1,0 =

b2,0. This leads to

q = q0, q0 = η21 −
1

4
η22, (6.16)

which is precisely the case (4.4), however we consider it in the next section.
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Figure 6.5: The power diagrams of the fundamental branches bifurcating from
the linear mode b2,0 = 0.25 for several values of α. Thick (thin) lines represent
stable (unstable) solutions. Insertion shows in detail that P1 goes to zero in
the vicinity of b2,0 while P2 remains finite. Filled circles represents two stable
solutions shown below in Fig. 6.6. The parameters of the structure are V = 1/2
and q = 0.

We numerically studied the existence of bifurcations satisfying (4.5) in Fig. 6.5.

It is possible to see in the insertion of Fig. 6.5 that at the bifurcation point the

branches satisfy P1(b2,0) = 0 and consequently P (b2,0) = P2(b2,0). A simple

integration in (4.10) after the substitution w2 = w2l, reveals that for each α when

V = 1/2 and η2 = 1 (the case of Fig. 6.5) one has P (b2,0) = 4W 2
2 .

It can be seen in Fig. 6.5 for the power diagrams of the fundamental branches,

where stable solutions exist above the PT- symmetry breaking point. The exis-

tence of stable nonlinear modes even when the spectrum of the linear system is

not purely real has been earlier reported in [28] (see also recent work [105].)

In Fig. 6.6 there is an example of a mode in the case (4.5).
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Figure 6.6: An example of a stable solution of case (4.4) with b = 0.6 and
α = 2 > αcr, marked with the filled circle in Fig. 6.5. Shadowed domains show
the localized impurity (darker areas representing higher values of the real part of
the localized potential). The parameters of the structure are V = 1/2 and q = 0.

6.5 Bifurcation of the nonlinear modes from the

linear spectrum

Now we consider the case which the relation (4.4) holds. Previously we have

shown that if the bifurcation point is at the same time an eigenvalue of (6.5) and

(6.11), i.e., b1,0 = b2,0, then the mismatch must have the special value q = q0.

We also have seen that in this case W2 = 0. As a direct consequence, (6.14)

reduces to (6.5) and not only w2 → w2l but also the FF satisfy w1 → w1l at the

bifurcation point.

The Fig. 6.7 shows power diagrams of solutions satisfying (4.4) for several

values of α.

It is possible to see that two bifurcations occur at b = b1,0 = b2,0 (See the

dashed line in the insertion of Fig. 6.7). The branch that goes to the right is

a bifurcation of b2,0 and the branch that goes to the left is a bifurcation of b1,0.

Both branches have a behaviour very similar to branches of case (i) and (ii).

We observed in the numerical simulations, that there may be a collision of the

fundamental branch with a non-fundamental branch with two-peaked solutions.

The Fig. 6.8 shows the corresponding bifurcation diagrams, whereas Fig. 6.9 il-

lustrates the distribution of the intensities and the currents in a two-hump soliton

solution. The intensities and the current j2 are largely distributed far from the
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Figure 6.7: Several fundamental branches for the case (4.4) with different values
of α. Note that the branch disappear when α → αcr = 3/2. Stable (unstable)
solutions are represented by thick(thin) lines. Insertion shows the regions of
bifurcations from b1,0 (FF) and b2,0 separated by a vertical dashed line. The
parameters of the structure are V = 1/2 and q = q0(αcr = 1.5).

center of the potential, while the current j1 is localized at the defect.

One can see in Fig. 6.10 that as b decreases, |w1(0)|2 decreases at the same time

that two emergent peaks become increasingly separated. The intensity |w2(0)|2

(not shown) decreases as well.

In respect to phase, we found all stable solutions that bifurcate from b1,0 to

satisfy wβ(ξ) = wβ (−ξ). This means that the peaks of the two-hump solution

shown in Fig. 6.10 are out of phase.
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Figure 6.8: Left panel: Shows the fundamental branch (line) of case (4.4) with
α = 1.3 near b = 0 and the merged two-peaked branch. Thick lines (lines) are
stable (unstable) solutions. Right panel: Shows a fundamental branch and a two-
peaked branch with α = 1.44 near b = 0. Black circles are solutions represented
in Fig. 6.9 and in Fig.6.14. The parameters of the structure are V = 1/2 and
q = q0.

Figure 6.9: Stable double peaked solution with b = 0.0057 corresponding to
the black circle in left panel of Fig. 6.8. Left panel shows the intensities |wβ|2,
right panel shows the currents jβ. Shadowed domain show the localized impurity
V sech2(ξ) (darker areas represent higher values of the real part of the localized
potential). The parameters of the structure are V = 1/2, α = 1.3 and q = q0.
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Figure 6.10: The intensity profiles |w1|2 of solutions, pertaining to the fundamen-
tal branch of case (4.4) bifurcating from b1,0 = 0.063, at different b illustrating
the transition of a single-peaked profile into a double-peaked one. The local min-
imum occurs exactly at ξ = 0. The parameters of the structure are V = 1/2,
α = 1.3 and q = q0.

6.6 Stability and dynamics of localized solutions

The stability was studied by direct numerical simulations of the system (6.1),

using the split-step method described in Section 3.3, and within the framework

of eigenvalue evaluation of the eigenvalue problem (See The Appendix B. Let us

start the stability analysis with case (4.6). Then the branches have two stable

regions, one close to b1,0 and the other close to b = 0 as is shown in Fig. 6.1. It was

found numerically that only low amplitude solutions are stable. The instability

is produced by pairs of purely imaginary eigenvalues λ , see Fig. 6.11 showing

the eigenvalues and the typical evolution of the soliton resulting in its rapid
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Figure 6.11: The evolution of a stable solution with b = 0.076 (left upper panel)
and an unstable solution with b = 0.09 (right upper panel) of the fundamental
branch of case (4.5). The corresponding eigenvalues of the linear stability analysis
are given in the lower panels. The parameters of the structure are V = 1/2, q = 0
and α = 0.9.

decay. For case (4.5), we investigate the stability and found that all the solutions

are stable if α / 0.9, for α ' 0.9 some parts of the bifurcation curve become

unstable, see Fig. 6.12. Also inn Fig. 6.12 one can see that the unstable part of

the bifurcation curve becomes larger when α increases, but the stable solutions

survive even for α� αcr. The linear stability analysis shows that the instability

arises from quartets of complex eigenvalues (See Fig. 6.13).

Finally we discuss the case (4.4). We found that in respect to stability, the

behaviour is similar to case (4.6) and (4.5). For values b > b1,0, i.e., bifurcations

of b2,0, the stability behaves like in case (ii), with the appearance of instability

intervals that increase in length as α increases. The region b < b1,0 has solutions

that bifurcates from b1,0. There is always a stable region adjacent to b1,0 and also

another stable region close to b = 0. The instability, when observed, was due to
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Figure 6.12: Panel shows the maximal value of α for which a fundamental
branch solution is stable as a function of b. The branch bifurcates from b2,0. The
parameters of the structure are V = 1/2 and q = 0.

a quartet of complex eigenvalues of the stability matrix contained in the region

b > b1,0 and two purely imaginary eigenvalues in the region contained in b < b1,0

(See the middle panel of the Fig. 6.14).

We observed that there are stable solutions in the region where the funda-

mental branch bifurcating from b1,0 merges with a two-peaked branch (See Fig.

6.8).
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Figure 6.13: The evolution of a stable solution with b = 0.6 (left upper panel)
and an unstable solution with b = 0.27 (right upper panel) of the fundamental
branch of case (4.5) that bifurcates from b2,0. Both solutions were perturbed
by 10% of amplitude random noise. The corresponding eigenvalues of the linear
stability matrix are given in the lower panels. Both solutions are marked by black
circles in Fig. 6.5. The parameters of the structure are V = 1/2, q = 0 and α = 2.
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Figure 6.14: Left panels: Propagation of 10% of amplitude perturbations of
solutions marked by black circles in lower panel of Fig. 6.8 corresponding to case
(4.4). The upper left panel has b = 0.0172, the midle left panel has b = 0.0072
and lower left panel has b = 0.0017. Right panels are the respective eigenvalues
of the linear problem. Parameters of the structure are V = 1/2, α = 1.45 and
q = q0.
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6.7 Conclusions

In this chapter we studied solitons in a nonlinear quadratic medium with a local-

ized PT-symmetric modulation of dielectric permittivity. Branches with a small

amplitude limit were studied in detail. It was found that a soliton with a SH

component with finite amplitude exists when the amplitude of the FF goes to

zero. It was found that numerous branches, possibly an infinite number, exist

with this conditions, with different amplitudes of the SH. Only the branch with

smaller SH amplitude in the limit of vanishing FF amplitude was found to have

stable solutions. Also in the case of bifurcations from the linear localized mode of

the SH, we found stable solutions well above the PT-symmetry breaking thresh-

old. No such stable solutions were found when the bifurcation is from a linear

localized mode of the FF.
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Chapter 7

Conclusions

This thesis had as a primary objective the investigation of the dynamics of soli-

tons in three different types of media with quadratic nonlinearity. Through the

thesis one-dimensional modulations were used and envelope equations with one

transverse spatial dimension and a propagation dimension were considered. Fam-

ilies of the solitons have been constructed, and their stability was investigated by

means of the linearization and direct simulations alike.

In the first problem considered in this thesis we have introduced the model

combining the linear parity-time symmetric part and the χ(2) nonlinearity. The

parity-time symmetric terms are represented by the complex potential acting

on the fundamental field component, whose imaginary part, accounting for the

spatially separated and mutually balanced gain and loss, is, as usual, the odd

function of the coordinate. The potential acting on the second-harmonic wave is

assumed to be purely real. The complex linear potential gives rise to the corre-

sponding band-gap spectrum. Solitons were found semi-infinite and finite gaps,

starting from the bifurcation which gives rise to such solitons at edges of the

respective gap. We found that by properly adjusting the gain and loss parameter

or the mismatch between harmonics it is possible to merge the bifurcations from

edges of the fundamental field with edges of the second-harmonic. Solitons were

found to become delocalized in the second-harmonic component as propagation

constant approaches that of the second-harmonic gap edge. The amplitude of

these solutions were found to depend on the gain and loss parameter and mis-

match. Bifurcations from a second-harmonic gap edge were found to have a small
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amplitude limit only when the edges of the second-harmonic and the fundamental

field have the same value of propagation constant.

While the system contains several parameters, we have primarily focused on

effects produced by the variation of the amplitude of the imaginary part of the

potential, which is specific to the parity-time symmetric system. A noteworthy

result is that the present system may support of continuous family of solitons

embedded into the continuous spectrum of the SH component, and a part of

the family of such embedded solitons is stable. The analysis has been reported,

chiefly, for the most physically relevant case of equal effective amplitudes of the

real potentials acting on the fundamental field and second harmonic waves. In

addition, the virtual grating case, where the real potential acting solely on the FF

component was investigated. It was found that the solutions have stable solutions

in the semi-infinite gap with higher values of gain and loss coefficient than the

ones when the modulation is present in both harmonics.

A natural extension of this analysis may be performed for the two-dimensional

version of the χ(2) system with the parity-timesymmetric periodic potential. In

that case, it may be also interesting to construct vortex solitons, in addition to

the fundamental ones, and investigate their stability.

We have investigated, in the second problem considered in this thesis, the

existence, spatial properties, and stability of localized modes in lossless nonlin-

ear quadratic materials with periodically modulated linear refractive index and

quadratic nonlinearity. An important assumption about the structure was that

its quadratic nonlinearity averaged over the transverse direction is zero. We

considered in details asymptotic properties of the solutions which revealed two

different types of the behavior, corresponding to dominating asymptotic of either

fundamental field or of the second harmonic. These asymptotics were used for

the shooting method, used for computing computed the branches of the station-

ary solutions existing in the semi-infinite and three higher gaps. We have shown

that solitons may possess different symmetries (i.e. have profiles described either

by even or by odd functions) of the fundamental field, but the symmetry of the

second-harmonic is directly related to the symmetry of the nonlinear modulation,

being even in the case of even nonlinear modulation.

The modes may have the field energy to be concentrated either in slabs with
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higher of with lower dielectric permittivity. However only the former ones turn

out to be stable. Moreover, we found that only small amplitude gap solitons are

stable in the cases of finite total gaps. Such modes can bifurcate only from the

edge of the total gap (i.e. the domain of the propagation constant which in the

linear limit is forbidden for both fundamental and second harmonics) when it

coincides with the band-edge of the first harmonic. We derived an effective cubic

equation that was used to predict when a band-edge of the first harmonic supports

a branch with small amplitude limit. We found that the nonlinear modulation is

fundamental in wether such a bifurcation occurs, as opposed to the case with a

linear modulation only. Moreover, in the case of solitons in finite gaps, a stable

mode and can be excited with their centers belonging either to a slab with higher

refractive index or in a slab with the lower one. This simultaneous existence of

different stable localized can be viewed as a bistability of gap solitons. Solitons

in the semi-infinite total gap where found to have an opposite behavior, having

a minimal amplitude for unstable solitons, all solutions with higher amplitudes

being stable.

We mention quite different physical system where similar kind of gap solitons

may be observable. It is an atomic-molecular Bose-Einstein condensate loaded in

an optical lattices [106], where the modulation of the “quadratic nonlinearity” is

performed by manipulating the atomic-molecule scattering length in space using

the Feshbach resonance technique [107].

In the last problem investigated in this thesis we have show the existence

of solitons in quadratic nonlinear media with localized parity-time symmetric

modulations of linear refractive index. Families of stable one and two-hump

solitons were found. We found that it is possible that the two families to merge.

The region were the branches merge was found to have stable solutions.

The properties of nonlinear modes bifurcating from a linear limit of small

fundamental harmonic field were investigated. The bifurcations were found start

from linear modes of the fundamental field or the second-harmonic. In the case

of bifurcations from a linear mode of the fundamental field we found that the

fundamental branch have a maximum in power. This maximum is decreasing with

the strength of of imaginary part of the dielectric permittivity. This maximum

approaches zero when the gain and loss coefficient approaches the parity-time
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breaking threshold.

We found, for nonlinear modes no having linear limit, i.e., approaching a finite

amplitude of the second-harmonic field when the amplitude of the fundamental

field becomes negligible, that this limit depends on the gain and loss parameter

and mismatch. The amplitude of the second-harmonic becomes negligible as a

given choice of these parameters make the propagation constant of the linear

modes of the second-harmonic and the fundamental field coincide. The difference

between the localized modulation and the periodic modulation systems in this

case is that the second-harmonic field is always localized, even at the limit of

negligible fundamental field. We found that unstable regions occur, their range

in propagation constant was found to increase as the gain and loss parameter

increases. However we found that even for values of gain and loss coefficients much

higher than the parity-time-symmetry breaking threshold, two stable regions still

exists, one close to the linear mode of the second-harmonic and other for high

values of amplitude.

As a final conclusion, the work we developed really helped to expand the

frontiers of nonlinear optics, specially the new topic of parity-time symmetric

systems in an optics context. There are natural further developments which can

be made, such as, extension to two-dimensional models, the study of the effects

of the inclusion of parity-time symmetric defects in periodic structures and the

addition of other types of nonlinearity to the models presented in this thesis.
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Appendix A

Derivation of Eq. (5.19)

Let us notice that the wave-vector can be at the center (k0 = 0) or at the edge

(k0 = 1/2) of the first Brillouin zone and use φ
(m)
β,k (ξ0) and b

(m)
β,k for the orthonormal

Bloch states and the respective eigenvalues of the operator Lβ. It follows from

the Floquet theorem that φ
(m)
1,k = ϕ

(m)
1,k (ξ0) e

ikξ and ϕ
(m)
1,k (ξ + 2π) = ϕ

(m)
1,k (ξ0).

For the sake of simplicity and approaching the statement of the problem closer

to the reality we consider a finite structure, having a large length L = 2Nπ

(N � 1 is an integer) and impose the cyclic boundary conditions in the interval

0 ≤ ξ0 ≤ L, where L = 2Nπ and N is a large integer.

Substituting (5.17) and the scaled variables (2.7) in (2.9) we obtain in the

first order of η, i
∂u

(1)
1

∂ζ0
− L1u

(1)
1 = 0. This equation is solved by the ansatz (5.18)

In the second order of η we have

i
∂u

(2)
1

∂ζ0
− L1u

(2)
1 = −2

∂φ
(m0)
1,k0

∂ξ0

∂U1

∂ξ1
− iφ(m0)

1,k0

∂U1

∂ζ1
. (A.1)

The solution u
(2)
1 is searched in the form

u
(2)
1 =

∑
m 6=m0

gmφ
(m)
1 eib

(m0)
1 ζ0 + c.c. (A.2)
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In above φ
(m)
1 = φ

(m)
1,k0

. Substituting (A.2) in (A.1) and projecting in all Bloch

functions is possible to obtain

gm = 2
Γ
(m)
1

b
(m0)
1 − b(m)

1

∂U1

∂ξ1
, Γ

(m)
1 =

∫ 2π

0

ϕ
(m)
1

∂ϕ
(m0)
1

∂ξ0
dξ0. (A.3)

Now the investigate the η2 order equation of the SH

1

2
i
∂u

(2)
2

∂ζ0
− L2u

(2)
2 = −1

2
f (ξ0)

(
φ
(m0)
1

)2
U2
1 . (A.4)

We look for solutions in the form

u
(2)
2 =

∑
(m,k)

cm,k (ξ1, ζ2)φ
(m)
2,k e

2ib
(m0)
1 ζ0 + c.c. (A.5)

The expansion (A.5) is valid since we excluded a possibility for b
(m)
2,k to approach

b
(m0)
1 (see Fig.5.1). Next we substitute (A.5) in (A.4) and project on φ

(m)
2,k obtain

cm =
Γ
(m)
2 U2

1

2
(
b
(m0)
1 − b(m)

2

) , Γ
(m)
2 =

∫ 2π

0

ϕ(2)
m f (ξ0)

(
ϕ(1)
m0

)2
dξ0

Here we took into account that only wave vectors k = 2k0 give nonzero terms in

the expansion. Since 2k0 is either 0 or a vector of the reciprocal lattice, only the

functions φ
(m0)
2 enter in (A.6).

Notice that f (ξ0)
(
ϕ
(1)
m0

)2
is always even. This means that cm = 0 if ϕ

(2)
m is

odd. Finally we write the equation of order η3

i
∂u

(3)
1

∂ζ0
− L1u

(3)
1 = −i∂u

(1)
1

∂ζ2
− i∂u

(2)
1

∂ζ1
− ∂2u

(1)
1

∂ξ21

−2
∂

∂ξ0

∂

∂ξ1
u
(2)
1 − 2f (ξ)u

(1)
1 u

(2)
2 .
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Projecting this equation on φ
(1)
m0 and rescaling U =

√
|G/D|U1 where

D = 1 + 2
∑
m6=m0

∣∣∣Γ(m)
1

∣∣∣2
b
(m0)
1 − b(m)

1

, G =
∑
m

∣∣∣Γ(m)
2

∣∣∣2
b
(m)
2 − b(m0)

1

, (A.6)

Z = Dζ2 and X = ξ1 we arrive at Eq. (5.19) where

S = sign(GD) (A.7)

Notice that the function f(ξ) plays a fundamental role in definition of the sign of

F while D is fixed by linear potential V1(ξ).
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Appendix B

Linear stability analysis

In this appendix I consider the effect of small amplitude perturbations on localized

solutions in the framework of linear stability analysis. A detailed explanation of

the procedure can be found in [108].

The perturbed solution has the following form

uβ(ξ, ζ) =
[
wβ(ξ) + pβ+(ξ, ζ) + pβ−(ξ, ζ)

]
eiβbζ . (B.1)

The functions pβ+(ξ, ζ) and pβ−(ξ, ζ) represent small perturbations and wβ being

the localized stationary solutions which are subjected to stability analysis.

The interest here is to see if the small perturbations pβ±(ξ, ζ) grows along

the propagation distance. Substitution of (B.1) in (2.9) results in a nonlinear

partial differential equation, but the assumption that the perturbation are small

compared to the amplitude of the localized solution, i.e. |pβ±| � wβ allows the

nonlinear terms to be neglected. At first order is is possible to write four different

linear evolution equations

M


p2+

p1+

p2−

p1−

 = −i ∂
∂ζ


p2+

p1+

p2−

p1−

 , (B.2a)
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M =


L2 + 2(q − b) 2f2(ξ)w1 0 0

2f1(ξ)w̄1 L1 − b 0 2f1(ξ)w2

0 0 −L̄2 − 2(q − b) −2f̄2(ξ)w̄1

0 −2f̄1(ξ)w̄2 −2f̄1(ξ)w1 −L̄1 + b

 . (B.2b)

Where M is called the stability operator.

Next we note that (B.2b) does not depend on ζ. We separate variables in

the perturbation components as pβ,+(ξ, ζ) ≡ pβ,+(ξ) exp (−iλζ) and pβ,−(ξ, ζ) ≡
pβ,−(ξ) exp (iλ̄ζ) to obtain

M


p2+

p1+

p2−

p1−

 = λ


p2+

p1+

p2−

p1−

 . (B.3)

In all numerical calculations we approximate the second order differential operator

d2/dξ2 by finite differences in a equally spaced finite grid with N points and all

continuous functions are represented by their values at the grid points as in

Sec. 3.2. Then M becomes a 4N x 4N matrix. The eigenvalues are obtained

numerically using the eig routine of MATLAB. The routine itself can use multiple

LAPACK [81] routines depending on the specific type ofM , e.g., if it is symmetric,

hermitian or real valued.

A solution is said to be unstable if at least one eigenvalue Im(λn′) > 0, where

n′ = 1, 2, ..., 4N .
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