UNIVERSIDADE DE LISBOA
FACULDADE DE CIENCIAS
DEPARTAMENTO DE FiSICA

C Ciéncias
ULisboa

Constraints from muon related observables in BSM physics

Gabriel de Sousa Lourengo

Mestrado em Fisica
Especializagdo em Fisica Nuclear e Particulas

Dissertagao orientada por:
Doutor Rui Alberto Serra Ribeiro dos Santos

2023






Acknowledgements

I would like to thank my advisor Professor Dr Rui Santos for all the invaluable guidance and advice.
His insight proved numerous times pivotal in advancing this project. I deeply appreciate his patience and
willingness to answer my many, sometimes repeated questions. It has been a pleasure to work with him.

This work was done in collaboration with André Santos, whithout whom it would have taken twice as
long and been certainly more frustrating. I would like to thank him for all his contributions, substancial
support and thoughtful discussions. I must also thank Professor Dr Jodo Paulo Silva, who accompanied
this work from the very beginning, providing valuable input and guidance.

I would also like to thank my friends, whose support has been truly extraordinary and at times instru-
mental in keeping my sanity. In particular, I would like to thank Rodrigo Capucha for the assistance he
provided with the code micrOMEGAS and for all the advice he gave over the past year.

Finally, I would like to thank my family for their uncondicional and unwavering support. They have
provided me with a loving home and numerous opportunities that have profoundly influenced my personal
and academic life, ultimately leading to this moment. They are in great measure responsible for what
success I may have. To them I will be forever grateful.

1ii



v



Abstract

The Standard Model is an achievement of modern physics, but is still not without flaws. One of its
most important shortcomings is the lack of a dark matter candidate. Some experimental results are also
not consistent with the theory either, chief among them the measurements of the anomalous magnetic
moment of the muon. In the past few years, beyond the Standard Model scenarios have been proposed to
address these issues in tandem.

In this work, we present a method to use precision muon-related observables for constraining new
physics. The two key quantities are the muon asymmetry parameter, A, and the ratio of hadronic decay
rates, R., = R./R,. We use Hollik’s on-shell renormalisation scheme to get the one loop electroweak
radiative corrections to Z — u*u~ and ete™ — utu~. We conclude that if new physics does not alter
the theory’s tree-level structure, the one loop matrix elements have Born-like expressions, with redefined
left- and right-handed chiral couplings, QED and weak neutral couplings and Weinberg angle. We test
our constraint on a model that introduces a vector-like fermion and two scalar singlets of SU(2)r,, one of
them with a colour charge. We calculate the contributions to the chiral couplings and see that they can
lead to a significant deviation to the observables, mainly through the left-handed coupling. This model
impacts several flavour-related processes at one loop order. We take advantage of experimental bounds on
these processes and on dark matter observables to restric the parameter space of the model by performing
a multiparameter scan where we also impose the constraint derived from A, and R, . The results are in
line with previous studies, with only minor alterations from the precision observables. Finally, we employ
the same aproach to a different decay channel, Z — 7+7~, and compare it with the case of the muon.

Keywords: Electroweak corrections, renormalisation, Z-pole physics, dark matter, g — 2.
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Resumo

O Modelo Padrdo da Fisica de particulas € uma das mais bem sucedidas teorias fisicas, tendo ul-
trapassado indmeros testes experimentais e guiado a comunidade a descoberta de novas particulas e a
um conhecimento mais profundo da constituicdo do universo. Apesar do seu éxito, o Modelo Padrdao
tem algumas limitagdes, sendo uma das mais relevantes a auséncia de um candidato a matéria escura.
Do ponto de vista experimental, existem resultados que ndo estdo de acordo com a teoria, em particular
medi¢des do momento magnético andmalo do mudo. Virios modelos com extensdes ao Modelo Padrao
tém sido propostos para resolver estes problemas. Em particular, alguns destes modelos que pretendem
solucionar a anomalia do mudo e simultaneamente apresentar um candidato a matéria escura necessitam
de um acoplamento forte entre as novas particulas e o0 muio.

Neste trabalho, apresentamos um método para constrangir o espagco de parimetros de extensdes do
Modelo Padrao com recurso a observaveis de precisdo relacionados com mudes. A ideia central do nosso
procedimento é calcular o impacto da nova fisica a um loop em observaveis experimentalmente bem
determinados e verificar se a previsdo tedrica € aceite pelo intervalo experimental. Para isso, recorremos a
dois observaveis que medem a assimetria forward-backward e as taxas de decaimento hadrénicas no pélo
do Z, o pardmetro de assimetria do mudo, Ay, e R., = R./R,, respectivamente. Escolhemos trabalhar
com este rdcio em vez das taxas de decaimento por si s6, porque estas sao definidas com correc¢des aos
estados finais que em primeira ordem sdo independentes do leptdo e como tal cancelam-se em R, Ay
¢ extraido do processo e*e™ — f*f eRpde Z — f*f~.

Antes de proceder a andlise das correc¢oes radiativas, deduzimos as expressoes a nivel-drvore dos el-
ementos de matrizde Z — f*f~ eete” — fTf~, juntamente com as dos observaveis e demonstramos
como estes podem ser escritos de forma aproximada exclusivamente em termos dos acoplamentos quirais
esquerdo e direito, gz r. Para calcular as correccdes radiativas aos processos, seguimos o esquema de
renormalizacdo on-shell de Hollik. Este esquema permite separar as correccdes em duas classes invari-
antes de gauge, correcgdes de QED e correccdes fracas, o que se revela util por permitir determinar as
contribui¢des da fisica da interac¢do fraca independentemente dos pormenores experimentais que tém de
ser tidos em conta para cancelar as divergéncias IR foténicas com a emissdo de fotdes reais sob a forma
de bremsstrahlung. As correc¢des QED sdo, entdo, tratadas a parte e consideram-se apenas as correcgdes
fracas. Estas dividem-se em trés grupos, correcg¢des ao vértice, correc¢des aos propagadores e correcgdes
de diagramas tipo box. Neste texto, nds identificamos quais os diagramas que contribuem para cada cor-
reccao e explicamos como alteram os elementos de matriz dos processos. As correc¢des aos vértices € as
provenientes dos diagramas tipo box resultam em termos aditivos as constantes de acoplamento quirais,
enquanto que as correc¢des aos propagadores levam a redifinicdes das constantes de acoplamento da QED
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e da corrente fraca e do angulo de Weinberg. A correc¢do a um loop ao propagador do Z € insuficiente,
visto que se cancela na seccdo eficaz de ee™ — f* f~. Por isso, consideramos o propagador completo
e com os termos de mistura yZ. Desta revisdo, concluimos que caso o novo modelo em estudo ndo al-
tere as relacdes a nivel-drvore do Modelo Padrdo, os efeitos da nova fisica podem ser introduzidos de
forma simples, somando os diagramas a um loop para o vértice ou auto-energias que contribuem para
as correc¢des aos propagadores. Neste caso, como as correcgdes aos propagadores estdo constrangidas
pelos pardmetros obliquos de Peskin-Takeuchi, pode-se contabilizar o efeito da nova fisica unicamente
no vértice, redefinindo os acoplamentos quirais como g7 g — g;'x + 08z, onde o primeiro termo contém
todos os efeitos do Modelo Padrdo e o segundo aquele que deve ser um pequeno desvio causado pelos
efeitos quanticos das novas particulas. Finalmente, quantificamos o impacto das contribui¢des de nova
fisicaem Ay, e R, partindo das expressdes dos observaveis em termos de g7 r € fazendo uma expansao
em primeira ordem para 6g;. Daqui resulta uma férmula para os desvios 6. A, e 6R., que vém da nova
fisica a um loop. Estes desvios tém de ser tais que, quando somados a melhor previsdo do Modelo Padrao
para os observaveis, o resultado esteja contido no intervalo de incerteza experimental a 1o-. Definimos
assim o constrangimento.

Para testar o nosso constrangimento, usamos um modelo designado por Modelo 5 que introduz um
fermido vectorial, y, e dois escalares, ®; e @, que sdo singletos de SU(2)r. @, € um tripleto de SU(3),
e tem uma carga de cor. Impomos uma simetria Z, para a qual os campos do Modelo Padrio sio pares
e os campos do Modelo 5 fmpares. Isto impossibilita o decaimento da particula nova mais leve, que,
portanto, € estdvel. A particula neutra mais leve € assim o candidato a matéria escura. Escolhemos a
componente real de ®; = (S+iA)/ V2 como o candidato a matéria escura, embora a fenomenologia fosse
amesma para A. A componente neutra de y também podia ser considerada, mas esta escolha impossibilita
a solucdo do problema do momento anémalo do mudo. O Modelo 5 leva a contribui¢des a um loop para
vérios processos de fisica do sabor. Para além do momento anémalo, os processos B — K u*u~,
By — utu~, b — sy e By — By sio influenciados pelas novas particulas. Para além destes, também
observaveis relacionados com matéria escura, a densidade de reliquia, a seccéo eficaz de deteccdo directa
e o decaimento invisivel do Higgs, sdo afectados pelos campos do Modelo 5. Nés indicamos qual a
contribuicdo de nova fisica para cada processo e observavel de matéria escura e os valores experimentais
mais recentes para de seguida os conjugar e limitar o espaco de pardmetros da teoria.

Usando os pacotes de Mathematica FeynRules, FeynArts, FeynCalc e LoopTools calculamos
os diagramas que contribuem para as correcgoes ao vértice Zu* ™ no Modelo 5. Ao variar os pardmetros
do modelo que entram nas correcg¢des, as massas das particulas Mg, M4 e m, e o acoplamento entre 0s
campos novos € 0 mudo, y,, vimos que a correcgdo a gz € dominante, sendo sempre pelo menos duas
ordens de grandeza superior as restantes, que sao por comparagdo negligencidveis. Tendo isto em conta,
ecomo 6g'y <0,0A, >0edR., > 0. De seguida, estudamos o impacto do constrangimento muénico
no plano Mg — M 4 para diferentes valores de m, e y,, e verificamos que quanto mais forte o acoplamento
para uma massa de y fixa, mais forte € o constrangimento. Por outro lado, para y,, fixo o constrangimento
¢ tdo mais forte quanto menor for .

Finalmente, realizamos um scan multiparamétrico e aplicamos os constrangimentos do sabor, matéria
escura e dos observaveis relacionados com mudes. A equacdo de Boltzmann foi resolvida numericamente
com o programa micr0OMEGAS. Os resultados do scan s@o consistentes com os estudos realizados anteri-
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ormente para este modelo. No nosso caso, aumentamos o limite superior de y, de Var para 47. Isto leva
a um novo limite superior para Mg de 389 GeV e um limite inferior de |y;| de 0.07. Fora estas pequenas
mudangas, A, € R, ndo restringem substancialmente o espaco de pardmetros para além daquilo que
resultava da aplicag@o do constrangimento do g — 2. Concluimos o nosso estudo comparando a regido de
aceitacdo a 20~ no plano Ms—M 4 do mudo com os observaveis equivalentes para o decaimento Z — 7+7~.
As expressoes tedricas sdo como esperdvamos iguais a parte da massa do fermido. Como tal, o compor-
tamento qualitativo € semelhante, embora uma comparagdo directa da aplicacdo dos constrangimentos
para mudes e taus neste método seja delicada, uma vez que os valores tedricos de A, e R., ndo estido

contidos no seu intervalo experimental.

Palavras chave: Correccdes electrofracas, renormalizagao, fisica no pdlo do Z, matéria escura, g —2.
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Chapter 1

Introduction

It is only human to ponder on the nature of the world, on what it is made of and on what binds it
together, weaving such complex patterns as if to amaze us. And the study of these patterns in the most
fundamental elements of reality is what particle physics is about.

The twentieth century was the century of modern physics, triggered by the development and subse-
quent establishment of both the theory of relativity and quantum theory in its first two decades. By the
end of 1933, the electron, the proton, neutron, photon and Dirac’s anti-electron had been detected exper-
imentally [1-5]. The muon was discovered in 1936 [6] and Pauli’s beta-decay missing energy particle,
later named neutrino by Fermi, was first observed in 1956 [7]. Around this time, increasingly better de-
tectors and more powerful accelerators lead to Oppenheimer’s “sub-nuclear zoo” [8], whose elementary
animals were categorised by physicist according to intrinsic quantum proprieties. Once again, repeating
patterns emerged and in the 1960s Gell-Mann and Ne’eman explained them with the Eight-fold Way [9,
10], which later lead to the quark model [11, 12], which describes most of the new particles as combi-
nations of elementary quarks. The up and down quarks were first observed in the SLAC experiments of
1968 as constituents of the proton and the neutron [13, 14].

At the same time, there were attempts to create mathematically consistent, renormalisable quantum
theories for fields. The theoretical description of particle physics was made in terms of quantised fields
in a Lagrangian formalism, but there were numerous technical difficulties. Towering above all else were
divergences which plagued the calculations whenever the effect of virtual particles had to be included.
Dyson, Feynman, Schwinger and Tomonaga successfully develop Quantum Electrodynamics (QED) and
the renormalisation techniques needed to deal with the divergences in the theory in the late 1940s [15-
17]. Similar efforts were then undertaken for the weak and strong interactions. In 1967, Glashow, Salam
and Weinberg devised the electroweak theory, successfully unifying the weak and electromagnetic inter-
actions [18-20] and incorporating Higgs’s spontaneous symmetry breaking mechanism [21-23], which
gives mass to the particles. The theory is later proven renormalisable by 't Hooft and Veltman [24, 25].
In the 1970s, the concepts of asymptotic freedom and confinement became cornerstones of Quantum
Chromodynamics (QCD), the theory of the strong interaction of quarks and the force carriers, the gluons.
At the end of the decade, the sum of all the knowledge of particle physics at the time is codified in the
Standard Model of particle physics.

The Standard Model (SM) is one of the most successful physical theories. Many, if not most, theo-
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retical predictions seem to be in agreement with experimental results and with great accuracy. More than
that, all particles that make up the SM have been detected. With the discovery of the tau neutrino in 2000
[26], only the Higgs boson remained exclusively in the realm of theory. In 2012, the ATLAS and CMS
Collaborations at the LHC finally observed the Higgs boson, the last piece of the electroweak puzzle [27].
For all its merits, however, the SM has several shortcomings. One major component of what aims to be
a theory of everything is gravity, which is not explained in this context. Among others, the abundance of
matter over antimatter [28], the mass of the neutrinos [29], the hierarchy problem [30] and the nature of
dark-matter are not explained by the SM. There are also some experimental observations that are not in
agreement with the best theoretical results, like the most recent measurements of the anomalous magnetic
moment of the muon [31].

Beyond the Standard Model (BSM) scenarios have been developed by adding new hypothetical fields
with the required properties to solve some of the issues that face the SM. Depending on the structure of the
new theory, the new particles can contribute to physical processes in quantum loop corrections at higher
orders. This means that extending the SM can change the expected values of already experimentally
well known observables. Hence, experimental results can be used to constrain free parameters of the new
model such as masses and couplings. Even if a particular model seems to solve one of the aforementioned
problems, if there is no region of the parameter space which is compatible with experimental results for
some observable, then that model is excluded. The smaller the uncertainty on a certain measurement, the
tighter the bounds it will impose on the new parameters.

Several models have been proposed in recent years that attempt to explain the observed discrepancies
of the muon g — 2 experiments while also introducing viable dark matter candidates [32-34]. These
models require a strong coupling to the muon and it is important to know whether this is compatible with
precision tests of the electroweak theory. In particular, measurements at the Z pole provide excellent
probes of fermionic couplings.

In this work, we present a method to constrain extended sectors of the SM based on two precision
muon-related observables. Our procedure is similar to the studies of a possible anomalous right-handed
Zb*b~ coupling [35-37], but has the advantage of dealing only with leptonic final states. We make use
of the hadronic decay rate, R, and the fermionic asymmetry parameter, A, the latter extracted from
the forward-backward asymmetries. To avoid dealing with the final state corrections to R, we define
the quantity R.,, = R./R,, which gives the ratio between the partial decay widths of the Z to muons
and to electrons and use this instead of R,. We discuss the general structure of the radiative corrections
to Z — u*u~ and ete™ — ptu~ at one loop level and argue that the most significant new physics
contributions come from Zu*u~ vertex corrections. These are accounted for as additive corrections to
the left- and right-handed chiral couplings. Because the observables can on approximation be written
exclusively in terms of these couplings, it is possible to get the deviation to the SM prediction caused by
new physics writing the coupling as the sum of the SM part with the new physics term. We use as a test
case a model from [33] which introduces two scalar fields, one with a colour charge, and a vector-like
fermion. The scalars are singlets of SU(2),, while the fermion is a doublet of the same group. Finally,
we perform a random scan over the parameter space and apply flavour and dark matter related constraints,
followed by the condition that the new physics contribution to A, and R, must keep the final result in
agreement with the experimental values of the observables to 1o.
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This thesis is structured as follows. In Chapter 2, the SM is briefly reviewed with emphasis given
to some topics relevant for the rest of the work. Two challenges to the SM are presented, dark matter
and the anomalous magnetic moment of the muon, with a brief discussion of the current theoretical
and experimental situation. In Chapter 3, we introduce the observables on which we base our study.
First, some experimental context is provided and after that the tree-level expressions are deduced. In
Chapter 4, we discuss the radiative corrections to Z — f*f~ and ete™ — f*f~. After introducing the
renormalisation procedure and the different types of corrections, we explain why the new physics effects
can be considered to be mostly contained in the vertex corrections and how this allows to parameterise
the effects of physics beyond the SM in the observables. In Chapter 5, the new model and the flavour
and dark matter related constraints used in the scan are introduced. For each constraint, we show how the
new particles contribute to the physical process that defines it. In Chapter 6, we present our results. We
begin by showing the diagrams that contribute to the vertex corrections and computing the corresponding
analytical expressions. We then study the importance of the corrections and their dependence on the free
parameters. Finally, we perform a random scan over the parameter space and discuss how the flavour, dark
matter and muon-related constraints restrict the masses and couplings of the model. Chapter 7 contains
a summary of our results and offers a few concluding remarks.






Chapter 2

The Standard Model

The SM is the theory that describes particle physics in the context of quantum field theory. It is a
gauge theory based on the symmetry group SU(3). X SU(2)r X U(1)y, which explains the strong, weak
and electromagnetic interactions. The particle content of the theory is given by the fermions, charged
leptons, neutrinos and quarks, and the bosons, the gluons of the strong interactions, the photon of elec-
tromagnetism and the Z and W= bosons of the weak interaction. Electromagnetism and the weak force
are described in a unified manner. Despite all its successes, the SM fails to explain some important ex-
perimental observations. In this chapter, we review the structure and components of the SM, beginning
by giving a primer on quantum field theory and gauge theories and then introducing the parts of the SM
which will be relevant for this work. We finish by introducing the two main challenges to the SM that the
model we test tries to answer, dark matter and the anomalous magnetic moment of the muon.

2.1 Mathematical description of elementary particles

The mathematical framework used to describe elementary particles and their interactions is that of
quantum field theory, which combines relativistic quantum mechanics with classical field theory [38—41].
Unlike classical quantum mechanics or even its relativistic counterpart, it is able to account for states with
any possible number of particles together with the creation and annihilation of particles while respecting
the causality principle. After quantisation, fields are operator-valued distributions that act on a Fock state
and which obey some commutation or anti-commutation relation. Bosonic fields have integer spin and
commute, meaning that multiple bosons can occupy the same quantum state, whereas fermionic fields,
which have half-integer spin, follow an anti-commutation relation and are forbidden from occupying the
same state. This leads to the statistical behaviour of bosons and fermions, the particles associated with
the homonymous fields, being described by Bose-Einstein statistics and Fermi-Dirac statistics. The state-
ment that fermions are not allowed to occupy the same quantum state is the well known Pauli exclusion
principle.

The dynamics of the fields ¢; = ¢;(x) is described in a manner analogous to classical field theory.
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One begins by introducing a dimensionless quantity called action,

S= / A L(61, 0,u0:), @.1)

which is a functional which operates on field configurations over space-time. x is the four-vector that rep-
resents the position in space-time. £ is the Lagrangian density, which is a function of the fields and their
derivatives. It depends on a number of parameters like masses and couplings. The Lagrangian density,
from now on Lagrangian for short, contains all the information about the fields and their interactions. The
principle of stationary action applied to (2.1) gives the equations of motion for the fields.

The action, hence the Lagrangian, is invariant under Poincaré transformations. The Poincaré group
includes Lorentz transformations and space-time translations. According to Noether’s first theorem [42],
to every continuous global symmetry of the action corresponds a conservation law. Linear and angular
momentum conservation as well as energy conservation are a result of space translation, space rotation
and time translation symmetries, which are all Poincaré symmetries. A different type of symmetry, an
internal symmetry, comes from a redundancy in the definition of the fields. The so called gauge symme-
tries correspond to local transformations of the fields under which the Lagrangian is invariant. There is a
freedom to redefine the fields without altering the Lagrangian. Gauge invariance under a particular sym-
metry transformation is achieved by the application of the gauge principle, through the introduction of
interaction terms with gauge fields encoded in the kinetic part of the Lagrangian. This defines a covariant
derivative that when acting on the field transforms the same way as the field. The form of this derivative
depends on the symmetry group, as does the number of interacting gauge fields, which is equal to the
number of generators of the group. A theory whose Lagrangian is invariant under gauge transformations
is called a gauge theory. The Standard Model of particle physics is one such theory.

The SM [19, 20, 43-46] is a gauge theory based on the symmetry group SU(3). x SU(2)p x U(1)y
which provides a unified description for three fundamental forces of nature, the strong and weak nuclear
forces and electromagnetism, via the exchange of spin-1 gauge bosons. The fermionic matter content
is given by spin-% leptons and quarks. The mediators of the strong interaction are the eight gluons, the
mediator of the electromagnetic interaction is the photon and the mediators of the weak interaction are
the neutral Z and the charged W* and W~ bosons. The gluons and the photon are massless and the weak
bosons are massive. There is also a neutral, massive, spin-0 boson called the Higgs boson. The fermions
are organised in three families or generations with identical proprieties distinguished only by their mass
and flavour quantum number. There are six quarks which interact via all forces and six leptons which do
not interact via the strong force. Each fermion has a corresponding anti-particle. The masses of the weak
bosons and the fermions are generated through the spontaneous symmetry breaking of the electroweak
group to the electromagnetic subgroup, SU(2); X U(1)y — U(1)gm. This happens when the Higgs
doublet gets a non-zero vacuum expectation value, giving rise to the Higgs boson in the process. The
strong SU(3). part of the model concerns the particles with a colour charge, the gluons and the quarks.
The name given to this part of the theory is Quantum Chromodynamics. Table 2.1 shows fermions of the
SM and some selected proprieties that are relevant for this work.
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Table 2.1: Fermion fields of the SM. Left-handed fermions are doublets of SU(2);, and right-handed fermions are
in a singlet representation of the same group. For each field we indicate the family, gauge group representation
and weak hypercharge. The electric charge Q is obtained from the third component of the weak isospin and the
hypercharge. There are no right-handed neutrinos in the SM.

Multiplet : Farﬁmy T SUB) | SUQL | Uy | Q=5+

Ver Vur, 1473 1 0= % - %
1 2 -5 1%
Leptons er Ur TL -1=—5-3
€R MR TR 1 1 -1 -1=0-1

21,1
AR TR
K L L L 3= ot

R S 7 N W S0 EUES
dR SR bR 3 1 —% —% =0- %
The Lagrangian of the SM can be divided in the following manner
Lsym = Locp + Lew + Lu + Ly + Lok + Lahosts (2.2)

where Lqcp is the QCD Lagrangian, Lgw is the electroweak Lagrangian, Ly is the scalar (Higgs) La-
grangian, Ly is the Yukawa Lagrangian, Lgr is the gauge fixing Lagrangian and Lghegs is the ghost
Lagrangian. Because the specificities of QCD are not relevant for this work, Locp is left out of the fol-
lowing discussion. A review of QCD related topics can be seen in [47]. A proper definition of the field
propagators in a gauge theory requires gauge fixing terms and the ghost fields are needed to cancel virtual
degrees of freedom of gauge bosons in loops. Their precise form is, however, irrelevant for this work. As
such, Lgr and Lghost Will also not be shown, but are discussed in [41].

2.2 The electroweak sector

ai
>
i = 1,2,3, with o; the Pauli matrices. [48], and the weak hypercharge Y acting as generators of SU(2).

The electroweak group SU(2),, X U(1)y is a non-Abelian group, with three isospin operators I; =

and U(1)y, respectively. Each generator is associated with a spin-1 field. To the isospin operators corre-
sponds a triplet of fields W, and to the hypercharge a singlet B - Before defining the covariant derivative
through the application of the gauge principle, it is important to mention that the SM is also a chiral the-
ory, meaning that the left- and right-handed components of the fermions lay in different representations
of the SU(2);, group. Left-handed fermions, W, are isospin doublets and right-handed fermions, ¥R,
are isospin singlets,

L _
Y =

ot ) Ui U (23)

where j is the family index and the w index denotes the up-type fermions, w = +, and the down-type
fermions, w = —. Each left- and right-handed fermion is an eigenstate of Y with an eigenvalue such
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that the Gell-Mann-Nishijima relation Q = I3 + Y [49, 50] for the electric charge, O, and isospin and
hypercharge quantum numbers is fulfilled. A fermion is decomposed into its chiral components by the

application of the chirality projection operators

PL=30-3).  Pr=3(+ys), 4
with y5 = iyoy1v2v3, where v;,i =0, 1, 2, 3, are the Dirac matrices,
Y =(PL+PRW =YL +Yr. (2.5)
The covariant derivative acting on left- and right-handed fermions is

DY} = [0, —iglaWy +ig'YB,| ¥}, (2.6)
DR, = [0, +ig'YB,| R, 2.7

where g and g’ are the SU(2), and U(1)y gauge couplings. To get the kinetic term for the gauge bosons
themselves, first one defines the field strength tensors

W, =0, Wi — 0,W + geanc W WE,

(2.8)
B, = 0,B, - 0,B,.
where the Levi-Civita tensor €45 plays the role of the structure constant for SU(2)y..
The Lagrangian for the electroweak sector can now be written in full as
1 1 —L, —R
Low = =g Wi, W — 2By B + DD+ Y U iy DR, (2.9)
J Jw

with ¢ = ¢/ Ty the adjoint spinor in the Dirac representation. The first two terms are sometimes referred
to as the Yang-Mills Lagrangian [51] and contain cubic and quartic interactions between the gauge fields.

Lgw is missing mass terms for both gauge fields and fermions. In fact, adding a mass term for the
bosons would break the gauge symmetry. A Dirac mass term for the fermions, myy = m (ELwR +JR¢/L),
would explicitly break the symmetry, because its chiral components transform differently under SU(2)r .
At this moment, even the relation between the gauge fields Wj; and B, and the physical fields A, Z,, and
Wj, the last three of which are massive, is not clear. The Higgs mechanism and spontaneous symmetry
breaking will resolve these issues.

2.3 The Higgs mechanism

To generate masses for the gauge bosons in a way that does not explicitly break the symmetry one
must make use of the Higgs mechanism [21-23], which allows to spontaneoulsy break the electroweak
symmetry down to the local electromagnetic group, SU(2); X U(1)y — U(1)gm. In the process, three
out of four electroweak generators are broken, keeping the combination Q = I3 + Y unbroken and as a
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consequence the photon massless. The minimal theory that gives the intended result is with a complex
scalar doublet of SU(2), with hypercharge 1/2 and a non-vanishing vacuum expectation value (vev) v,

H:(zo), (0|H|0):(0|¢0|0):%(8), (2.10)

which is called the Higgs scalar. The vev is the minimum of the potential of the Lagrangian. The La-
grangian that describes the Higgs field is given by

2
Ly = (D,H) (D*H) - V(H), V(H) = (l2H'H+ 2 (HTH) : 2.11)

with /12 < 0. To ensure the potential is bounded from below, we define 4 > 0. From here, the vev is
determined to be v = y/—u?/A. The covariant derivative is defined in (2.6). There is, in fact, an infinite
number of degenerate states with the minimum energy defined in (2.10). The act of choosing a particular
minimum is what leads to symmetry breaking. Although £ remains invariant under transformations of
the full electroweak group SU(2)r X U(1)y, the vacuum is only invariant under U(1)gym. This is what is
meant by spontaneous symmetry breaking.

For the vacuum of the theory, only one combination of the weak generators remains unbroken, corre-
sponding to the electric charge

0(0[¢°|0y = (I3 +Y) ( (v) ) =0, I, I, (I = Y){0[¢°| 0) # 0. (2.12)

The Goldstone theorem [52, 53] states that a massless boson is generated for each broken generator of
the symmetry. For the case of the electroweak symmetry, there are three broken generators, hence three
Goldstone bosons. These Goldstone bosons, m;, i = 1,2,3, can be parameterised as complex phases
writing the Higgs scalar as

0
%(v + h)

ina (2.13)

H =

where h and n; are real fields with vev=0. The SU(2), invariance of the Lagrangian allows to eliminate
the dependence on the Goldstone bosons by choosing the unitary gauge [41] in which the Higgs field
becomes

0
H:[ Loen (2.14)

and the three massless degrees of freedom 7; are ”absorbed” into the definitions of the Z and W= bosons’
longitudinal polarisations. The remaining degree of freedom, an excitation around the vacuum, corre-
sponds to a physical field that gets a mass term my, = \/T,u2 from the kinetic term of L. This is the
Higgs boson.
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The Higgs boson has triple and quartic couplings coming from the terms in the scalar potential V (H).
Expanding the kinetic term reveals the mass terms for W\, Wﬁ,Wi and B/, in the form of a non-diagonal
mass matrix,

2 2
8gv 2 2 v
—(W1+W2)+Z( W3 B, )

g (2.15)

gg/ g/2 B

gt gg )( W

)i

The symmetries of the theory are more apparent when the Lagrangian is written in terms of the gauge
fields W;; and B,. However, for practical purposes it is much more useful to write the Lagrangian in
terms of the physical fields A,, Z and W*, which are the ones that are observed experimentally. To do
this, the following transformations are applied to the Lagrangian,

Wl xiw?
Wi = —+—F, (2.16)
2
and
Z'u _ Cw Sw W’g (217)
A# —Sw Cw B'u ’

where sy = sin Oy and cw = cos Oy are the sine and cosine of the Weinberg angle, Gy . In terms of the

couplings,
g g
sSW = ——— cw = ——. (2.18)
[¢7+ g2 [¢2 + g2
In terms of the physical fields, (2.15) is
1 0 O A
2 - u
MWW 43 ( Ay 7, ) . M%)(ZH ) 2.19)

where the mass matrices are now in a diagonal form and the W* and Z bosons have masses given by

1
My = 78V
e 1 gv 1 (2.20)
My = 5|8 +8% = 52— = — My,
2 2 cw cw
while the photon remains massless.
The covariant derivatives (2.6) and (2.7) are written in terms of the physical fields as
DY = o, —is (0'+W++0'_W_) +ieQA, — i (13 ~ 05> )z v, 2.21)
H M \/z M M H cw w H
DR, = |8, +ieQA, + i%Qs%‘,Zﬂ] R, (2.22)

10
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with 0* = (0! +i0?)/2 and the charge operator is
vy 0
o=|? | . (2.23)

The electric charge of QED can now be identified as

’

e=gsw= g'cW = L’ (224)

g/2 + g2

unifying the weak and electromagnetic coupling constants.

It is useful to write the weak neutral interaction terms in a way that emphasises the different couplings
to the chiral components of the fermions. Doing this also reveals in a clearer way the underlying vector-
axial nature of the current and the couplings to the photon and Z. Considering the relation between the
left- and right-handed components of the fermions and the proprieties of the chiral projectors,

—L [ — — —
UiV Uk, = PLd ;Y Prjw = ¥ j PRYUPLY jo = W juYiuPiWiw = WY PLdjw.  (225)

where Pry ., = lﬁ;w%(l - )Ty = ;bj.w%yo(l +9°) = JijR. Proceeding in a similar way for the

term with the right-handed components,
R u. R _ T M
ViV Viw =YY PrRYjw- (2.26)

The weak neutral interaction in (2.9) can then be written as

e

— e —
YY" (QLPL+8RPR)VjwZy = —— ¥,V (gv - gA)’S) Viwly (2.27)
SwCwW SwCw

where the left- and right-handed coupling constants, gy, r, and the equivalent vector and axial coupling
constants, gy 4, are defined as

gL = I§ - QfS%V,

1.y
gr = -0 sy, 8a =513,
(2.28)
= 1
8L =8v ¥ 84, gv = E(gL +gR),
8R = 8v — §A, 1
8A = E(gL —&R)-

I*3f corresponds to the eigenvalue of I3 and Q ¢ is the electric charge of the fermion f. Similarly for the
interaction terms with the photon,

—eQ W ;YU jwAu (2.29)

11
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which is identical to the QED interaction. From these terms, the Feynman rules forthe Z f* f~ and y f* f~
vertices can be extracted as usual [38],

¢
Z . u : u 5
=i y* (8LPL + grPR) = —i Y (gv - 8AY ) , (2.30)
SWCwW Swcw
f+
#-
Y .
=—ieQsy". (2.31)
f+

2.4 The Yukawa sector

A Dirac mass term for the fermions would violate the SU(2)y X U(1)y symmetry. In order to provide
masses to the fermions, an interaction between the fermions and the Higgs is introduced in a manner that
the Higgs mechanism can generate mass for the fermions while preserving the symmetry. The Lagrangian
for this interaction is called Yukawa Lagrangian and can be written in a general form as

—L —L ~
Ly = —y;- ¥ HY [ -y ¥ HY S, +he.

=L 4+ R =L 0, R =L 0, R —L _ R (2.32)
= Yij Wi U = Vi O = Vi UL Yi ¢ Y, +hee,

with y; ;. the Yukawa matrices, which are 3 X 3 complex matrices. i and j are the family indices. His

the charge-conjugate of the Higgs doublet,
- ¢O*
H=ionH" = s | (2.33)

which transforms the same way as H under SU(2)r, but has hypercharge —1/2. This term is required
to give masses to the up type quarks. After symmetry breaking, ¢° = (v + h)/ V2 = #*, resulting in
interaction terms with the Higgs boson and mass matrices

v
6)]”“)

for the fermions. The matrices Y;;, are not necessarily diagonal because of the gauge interactions. Fol-

Yijw= (2.34)

lowing [41, 54], by rotating the fermions to the mass basis from the flavour basis in which the Lagrangian
was originally written, it happens that different flavours of quarks interact via exchange of the charged W*
bosons. The matrix that connects the flavour states to the mass states is called the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. This mixing of states in no longer true for the leptons, due to the absence of
right-handed neutrinos in the SM.

In order to make the previous remarks clearer, a less general notation closer to that of Table 2.1 is

12
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introduced, with the Lagrangian (2.32) now written as

—i : —i i —i ~
Ly =-y,,L Hly - y,0 Hdy, — y};,0 Hug, +h.c.

l V =i 1 Ll VvV —i i v —_ 1 (235)
= _yi‘j%lLl]R - yijEdejR B y?/Eu’Lué +--+he,

with I = ( vp [ )" the left-handed lepton doublet, [ the right handed (charged) lepton singlets,

@l = (uy dr ) the left-handed quark doublets and dg and ug the down and up type right-handed
quark singlets. In the second line only the mass terms obtained after symmetry breaking were kept. The
matrices Y4 = —y%4(v/ \/5), a =1,d, u, can be diagonalised through bi-unitary transformations. For each
matrix Y4, two unitary matrices U, and K, can be found such that

U'Y9K, = M?, (2.36)

where M ¢ is diagonal and has positive eigenvalues. Thus, one needs to rotate the fermion states to a new
basis according to the transformations

Ip — Uly, dp, - Ug4dy, up, = Uyup, 237)
Ir — KilR, dr — KadRg, ur — K,ug.
After these transformations, the Lagrangian becomes
Ly = —m!Ty Ul = m3dy diy — mTy iy +--- +hc. (2.38)

where m¢{ are the diagonal elements of M“ which correspond to the physical masses of the fermions.
Applying the same transformations in the interaction terms of the fermions with the charged weak bosons
in (2.21), gives

8 v g
S WHUqdy = =
V2 V2

where the matrix V = UZUd is the CKM matrix [55, 56]. Because the right-handed quarks are SU(2)r
singlets, they do not couple to W=, hence there is no mixing in the interaction terms with the neutral

Wy (VE)gul + Wiy Vidl |, (239)

- " g _ _
dLU;y”@WMUuuL+uLU;y“ p di |,

bosons. There are no flavour changing neutral currents in the SM. The procedure is formally equivalent for
the leptons, but because the neutrinos are massless in the SM they are degenerate and any transformation
by a unitary matrix must lead to the same state. Hence, we can use the same unitary matrix to transform
both the neutrinos and the charged leptons, which leads to the absence of mixing in the leptonic sector.

Although neutrinos are massless in the SM, they are experimentally known to have a small mass due
to the observation of neutrino oscillations [47]. This implies the existence of a 3 X 3 matrix that mixes the
flavour states like the CKM matrix does for the quarks - the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [57-59].

13
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2.5 Problems of the SM

The two problems of the SM that serve as the main motivation for the class of models we study are
dark matter and the anomalous magnetic moment of the muon. Understanding the nature of dark matter
is currently one of physics greatest challenges and the SM is unable to provide an answer. No particle in
the SM is a good dark matter candidate. The anomalous magnetic moment of the muon, also designated
as the muon g — 2, is a problem of a slightly different nature. At present, there is a large discrepancy
between the experimental results and the best (perturbative) theoretical predictions which could indicate
the presence of new physics. However, even on the theory side there are conflicting results from different
groups, not all in agreement with the FermiLab result [31].

2.5.1 Dark Matter

The first evidences of the existence of dark matter hail from astronomical observations. After some
early attempts at measuring the non-luminous matter in the galaxy [60-62], the first major indication
of a missing mass came from Zwicky’s study of the Coma cluster that showed that in order to remain
stable, the mass density of this galaxy cluster had to be much higher than it would be considering only
visible matter [63]. Other impactful results like the rotation curves of galaxies [64, 65], measurements of
gravitational lensing and X-ray emission from galaxy clusters [66], the bullet cluster [67, 68] and from a
number of other sources like the CMB or BAO [69] all point to the existence of invisible matter which we
call dark matter. Moreover, experimental observations show that only about 15% of the matter content of
the universe corresponds to the fermions and bosons of the SM. Explanations for structure formation in
particular rely heavily on dark matter, since in the radiation-dominated era its density perturbations can
be large enough to gravitationally attract ordinary matter that later collapses [70]. Dark matter has been
detected in collapsed structures of different scales [66, 71, 72]. In spite of overwhelming experimental
evidence pointing to its existence, the exact nature of dark matter is unknown and currently one of physic’s
greatest open questions. No particle in the SM is a suitable dark matter candidate. Some effects observed
to be caused by dark matter can be explained in the context of modified gravity theories [73], but unlike
in models with particle dark matter these often fail at reproducing some larger scale observations like the
bullet cluster [74, 75].

The ACDM model of cosmology, the current standard of that field, considers that 84.4% of the total
matter density is due to a non-baryonic matter species which must be electromagnetically close-to-neutral,
have negligible velocity at the time of structure formation and interact weakly with baryonic matter - Cold
Dark Matter (CDM) [47]. Some possible components of cold dark matter are Weakly Interactive Massive
Particles (WIMPS) or Axion-Like Particles (ALPs) [76, 77]. Other models propose astronomical bodies
like Massive Compact Halo Objects (MACHOSs) as cold dark matter candidates [78]. A discussion on
particle dark matter candidates, cold and non-cold, can be seen in [79].

Dark matter production mechanisms are an essential part of this subject, with several thermal and
non-thermal scenarios being proposed, like freeze-out or freeze-in [47] and production via decays [80,
81], respectively. All possibilities must reproduce the observed dark matter relic density. The most recent
value, measured by the Planck Collaboration, is Qp s h2 =0.1200 + 0.0012 [69].

Constraining the parameter space associated to dark matter is a subject of intense research and searches
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for dark matter are ongoing. There are three main types of dark matter searches, direct detection, indirect
detection and production at colliders. Direct detection experiments intend to observe scattering processes
of dark matter particles with atomic nuclei. Indirect detection searches look for SM particles produced in
processes that involve dark matter that would occur in regions of high dark matter density like the galac-
tic center. Collider searches look for dark matter particles that are produced in the machine but escape
without interacting with the detectors, leading to a large missing energy associated with a particle.

So far, astrophysical and cosmological data as well as constraints from direct detection and collider
searches establish limits on mass [82—86], charge [87] and self-interactions [88]. Because of its role in
structure formation, dark matter must be stable, with an estimated lifetime of at least 160 Gyr [89].

2.5.2 The anomalous magnetic moment of the muon

Consider a spin—% particle of mass m and charge ¢ in an external electromagnetic field described by
the four-potential A* = (¢, Z). With a minimal coupling to the field, which means taking the momentum
operator in position space as ﬁ = —iV - qg, the non-relativistic limit of the Dirac equation leads to the
Schrodinger-Pauli equation [90]

I . 8
Hy =i o {% [(—iV — gAY + g5 - B] +q¢}¢ - za—‘f. (2.40)

W = y(t,7) is the wavefunction that describes the fermion, B =V xA is the magnetic field and o =
1
2

(o1, 0%, 03) the Pauli matrices. For a weak uniform magnetic field A=1Bx7and keeping only first

order terms in the interaction, the Hamiltonian becomes [48]

—i%z q 3 5 -
~ _ 4 L+2S)-B, 241
2m 2m ( ( )
with
3 53 3 3 1,
L=rXp, S = 50‘, 2.42)

the orbital angular momentum operator and the spin operator. Comparing this expression with the clas-
sical result for a charged particle in an external uniform magnetic field [91], the magnetic moment of the
fermion is defined as [92]

G- % (Z + 2§) , (2.43)
where the second term corresponds to an intrinsic magnetic moment. The coefficient of the interaction
between the spin and magnetic field gq/2m is called the gyromagnetic ratio. The adimensional constant
g is called the g-factor and for fermions g = 2. This result is exact in the context of the Dirac theory,
accounting for two Bohr magnetons g /2m, but quantum field theoretical corrections in the context of the
SM will alter this value.

The most general amplitude for the interaction between a photon and a charged particle in the SM can
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be written as

. ] sk
a(p)lu(p) = @(p1) ey Fe (k) + S22 By (k) | u(pa). (2.44)

2m

where u#(p) and u(p;) are the spinor functions for the charged particle with momenta p; and p;. k =

p1 + p> is the momentum of the photon. Fg and F, are the electric and magnetic form factors, which
include higher order contributions from the perturbation expansion.

By taking once again the non-relativistic limit, a comparison can be drawn between the classical

expression and the Dirac result, but now also with the quantum corrections from quantum field theory.

Doing this shows that Fr(0) = 1 and that the coefficient that multiplies the spin operator in (2.43) becomes

q q
_2 + —
2m 2m

2Fp(0). (2.45)

Defining the corrected gyromagnetic factor as g = 2 + 2F;(0), where the first factor of 2 corresponds to
the Dirac result, allows to parametrise the difference as

1
a=Fy(0)= E(g -2), (2.46)

which we call the anomalous magnetic moment. An extensive review of the fundamental theoretical
aspects of the anomalous moment of the muon can be found in [92].

At the moment, the best SM theoretical prediction for the anomalous magnetic moment of the muon
from the Muon g-2 Theory Initiative is a, = 116591810(43) x 1071 [93]. This value contains QED
corrections up to order five, QCD corrections up to third order and two loop weak corrections. Most of
the uncertainty comes from the hadronic contributions.

The first experiments aimed at measuring the anomalous moment at CERN were in agreement with
the SM [94], but a 2006 measurement from the Brookhaven National Laboratory [95], validated by the
Fermilab National Accelerator Laboratory in 2021 [96], showed some tension with the expected value,
the latter with a significant 4.20" deviation. The most recent results from Fermilab based on data collected
for the first three years published in 2023 show an even starker departure from the SM prediction, with
aﬁ)‘p = 116592059(22) x 10!, which in relation to the 2020 theoretical prediction corresponds to a 5o
discrepancy [31]. Such a striking deviation could point to new physics. This could be considered a fully
fledged discovery were it not for its disagreeement with results from lattice calculations of the hadronic
vacuum polarisation [97] and with measurements of the e*e™ — n*7~ cross-section [98].
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Chapter 3

Experimental observables

Our end goal is to use results from Z pole experiments to constrain the parameter space of extended
sectors of the SM. For this, we require physically motivated experimental observables to test the new
models. In this chapter, we introduce two Z pole quantities, A, and R,,, used to formulate our new
constraints. We begin by defining the relevant electroweak observables at the Z resonance and then
derive the tree-level expressions for A s and R,;, highlighting results which are important later on.

3.1 Precision electroweak observables

With the advent of electron-positron colliders like LEP at CERN [99, 100] or SLC at SLAC [101],
precision measurements of many electroweak quantities became possible to the point of detecting small
deviations from tree-level predictions. Between 1989 and 2000, seventeen million Z boson events were
recorded by the four LEP experiments ALEPH [102, 103], DELPHI [104, 105], L3 [106-109] and OPAL
[110-113] and 0.55 million at the SLC [114-119] between 1992 and 1998.

High precision measurements of several observables around the Z resonance, that is at a center-
of-mass (CM) Center-of-Mass (CM) energy s = M%, at LEP [120, 121] and SLC [122-126] allowed
for accurate determinations of the cross-section “lineshape” parameters, the position and height of the
peak and the width of the distribution. These determine the mass of the Z, the partial decay widths
['y=T(Z— f*f7), forall fermions f except the top quark, and the total Z width, 'z = 3 s I'y. Other
observables, namely Z pole asymmetries, provide constraints to initial and final state couplings, the Wein-
berg angle and to the left- and right-handed chiral couplings, thus probing the quantum structure of the
theory.

The principal set of fitting parameters chosen by the LEP Collaboration was Mz, I'z, the hadronic
decay rate for leptons, R? and the hadronic pole cross-section, (TS

> and the leptonic forward-backward
asymmetry, A%l with the latter three defined as [122, 127]

FB
Fhad 0 127 Fel“had 0.1 3 ﬂe + Pe

RY = , =— , A, =-A—, 3.1

LT Thad =7 T2 BT 37T P A, G-

where [og = I, + g+ -+ +1 is the partial decay with of the Z to light quarks. P, is the polarisation
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Chapter 3. Experimental observables 3.1. Precision electroweak observables

of the initial state electrons, which is zero at LEP giving Agﬁ = %ﬂeﬂ r with

2 2
8Ly T 8Ry  28v,84a;

Ap = =
2 2 2 2
8Ly *8R, 8V, T84,

3.2)

the fermionic asymmetry parameter. Ay gives information on the final state couplings for leptons, f = [,
or quarks, f = g. For leptons, this is a set of nine parameters: Mz, ['z, 0'}?& 4> three hadronic decay rates
and three asymetry parameters. Assuming lepton flavour universality, this reduces to five parameters,
with only one hadronic decay rate and one asymmetry parameter for the leptons. These parameters are
weakly correlated experimentally and for this reason are chosen instead of the more natural set of mz,
I'z, I'y and Ay which are strongly correlated [47, 121].

These quantities are affected by QED and QCD initial and final state corrections [122], as well as
electroweak radiative corrections at one loop order. A discussion on these contributions and their relative
importance will be given in section 4.2.1. It is, however, necessary to mention that the initial and final
state corrections are independent of the underlying structure of the theory and treated separately from
the electroweak corrections. An index ”0” will be used to indicate when a certain quantity has been
deconvoluted from these corrections and is therefore only dependent on the details of the model. o-l?a &
for example, is the cross section of annihilation of e*e™ into hadrons after removing the final state QED
corrections included by definition in I',.

A distinction must be made at this point between an observable and a pseudo-observable. Strictly
speaking, only quantities measured directly should be considered observables proper like cross-sections
and asymmetries. Any other quantity derived from these is of a secondary nature and called a pseudo-
observable. From now on, the designation of observable will be used indiscriminately.

Of central importance to this work are two observables, the hadronic decay rate, Ry, and Ay. The
latter is determined from more than one Z pole asymmetry [114-119]. Considering only Z boson ex-
change at s = M é and deconvoluting the QED corrections, the relevant asymmetries can be written in
terms of the fermionic asymmetry parameters (3.2). These are the unpolarised forward-backward asym-
metry, Ag’g = %ﬂeﬂf, and the average polarisation of the final state tau, (P,) = —A,, measured at LEP
and the polarisation asymmetries, the left-right forward-backward asymmetry, AE’I{FB = %ﬂ r» and the
left-right asymmetry, AgR = A,, measured at SLC. Unlike LEP, the SLC functioned with longitudinally
polarised electrons. This allowed to measure polarised asymmetries and then compute the unpolarised
results by taking into account the luminosity-weighted polarisation [122]. The measurements of these

observables at LEP and SLC form a complementary set of asymmetry parameter results. For the sake

0.5
FB *

distribution of the final state particles produced in the forward direction, meaning they are scattered in the

of simplicity, in section 3.2, A ¢ will be derived from A Agigf measures an asymmetry in the angular

hemisphere defined by the polar angle # < 7 they make with the initial electron beam, versus the ones
that are produced backwards, 6 > % In terms of the cross-sections,

0 0

O, — 0
Apl = App (ete” > fTf7) = L5, (3.3)
O'F+O'B
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Chapter 3. Experimental observables 3.2. Ry and Ay at tree-level

with the forward and backward cross-sections

dao? do?

0 0

= — (s,0) dQ = — (5,0) dQ 3.4

O-F ‘L<” dQ (S’ ) ’ O-B L>ﬂ dQ (S’ ) H ( )
2 2

where do® /dQ is the deconvoluted differential cross-section for unpolarised beams and Q the solid angle.
The fact that the left- and right-handed couplings of the fermions to the Z are different means that even
when the colliding beams are unpolarised the Z exhibits a polarisation. As such, because of parity non-
conservation the final state fermions will have a non-symmetric angular distribution. The hadronic decay
rate for leptons and quarks is defined as

Ihaa I'y
Ri= 2=, Ry ==
I had

(3.5)

Ry is typically defined inclusively, meaning that the partial widths include the final state QED and
QCD corrections [122]. In this way, the sum of the partial widths corresponds to the total width of the Z.
Not wanting to deal with the hadronic part of the observable which leads to the QCD contributions, we
define the quantity

R = % = Il:—: (3.6)
which is "hadronically clean”, depending only on decays to leptonic final states and on the QED correc-
tions.

The most up-to-date values for the main Z pole observables can be seen in Table 3.1. We use these
results to compute an approximate SM prediction and experimental value for R, ,.

From the definition (3.6), for the muon we get

ReXP = 1.0009 + 0.0029, R3Y ~ 1.0000 + 0.0007. (3.7)

Exp
eu >
perimental measurements. For consistency, we use the associated theoretical values to get Rgff The

To compute R we used the hadronic decay rate values of Table 3.1, since these are the primary ex-
uncertainty was determined by propagation. REZP and RSfl’[ are in fairly good agreement and with uncer-
tainties of the order of 1073 and 10~%, respectively, meaning any deviation from the SM values coming
from new physics is tightly constrained.

3.2 Ry and Ay at tree-level

We now derive the tree-level expressions for the decay rate of Z — f*f~ and the cross section of
ete” — f*f~, from which we get the lowest order expressions for the observables R.; and A . With
these somewhat extensive calculations we aim also to set some notation and discuss physical concepts
and definitions that here arise naturally and that will be useful in other chapters.
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Chapter 3. Experimental observables 3.2. Ry and Ay at tree-level

Table 3.1: Experimental (Exp) values and SM predictions of the main Z pole observables [47]. The hadronic, elec-
tron and muon partial decay widths are derived from the previous quantities without assuming lepton universality.
Rey and R, were computed from the hadronic decay rates.

Observable Exp SM
Mz (GeV) 91.1876 £0.0021  91.1882 + 0.0020
I'z (GeV) 2.4955 +0.0023 2.4941 + 0.0009

R, 20.804 + 0.050 20.736 £ 0.010

R, 20.784 + 0.034 20.736 + 0.010
R, 20.764 + 0.045 20.781 £ 0.010
Ae 0.15138 £0.00216  0.1468 + 0.0003
Ay 0.142 £ 0.015 0.1468 + 0.0003
A 0.136 £ 0.015 0.1468 + 0.0003
Ohad (nb) 41.481 +0.033 41.482 £ 0.008
Ihag MeV) 17448 £2.6 1740.97 £ 0.85
I'e MeV) 83.87 £0.12 83.942 + 0.085
'y (MeV) 83.95+£0.18 83.941 + 0.085
I'y (MeV) 84.03 £ 0.21 83.759 + 0.085
Reu 1.0009 + 0.0029 1.0000 + 0.0007
Rer 1.0019 + 0.0032 0.9978 + 0.0007

Table 3.2: Experimental (Exp) values and SM predictions for the left- and right-handed chiral couplings of the
electron, muon and tau [122].

Coupling Exp SM
gr,  —0.26963 +0.00030 0.26919 + 0.00020
gr,  +0.23148£0.00029  0.23208+)-9001
gL, -0.2689 +0.0011  0.26919 + 0.00020
gR,, +0.2323+0.0013  0.23208+)0001¢
gr.  —0.26930 +0.00058 0.26919 = 0.00020
gr,  +0.23274+0.00062  0.077345+0-00005

321 Z— f*f  and Ry

Consider the process of Z decay into a fermion anti-fermion pair Z — f*f~ in Fig. 3.1, with f any
fermion but the top quark, since m; > M. Using the Feynman rules in (2.30), the matrix element for the

process is

SIM(Z > fHf7) = =M = i ()T a0y (8vy — 8a,75) vs(a2), B8)
SwWCw

where ¢; and ¢, are the momenta of the fermion and anti-fermion, respectively, and k = g1 + g2 is the
momentum of the Z boson. The Z f* f~ coupling is written in terms of the vector and axial components
to simplify the trace calculations and also to use a notation closer to that of [128, 129]. € (k, A) is the

Z polarisation vector for the state A, ur(g1) and v (g>) are the particle and anti-particle spinors. The
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Chapter 3. Experimental observables 3.2. Ry and Ay at tree-level

f+

Figure 3.1: SM tree-level diagram for Z — f*f~.

squared matrix element is

2
IM[? = (W) e (k, ) € (k, ) [y a1y (8, = 8a,75) v (a2) (3.9)
: [Vf(cn)yv (gvf - gAfYS) uf(Ql)] : (3.10)

Summing over the spin and polarisation states gives

2
1
<|M|2>=( c )— e (k, ) € (k, 1)

swew 3; G.11)

>, [ﬁ}(ql)m (gv = gays) V}(qz)] [V}(qz)yv (gvf - gAfys) u}(m)] :

where s and r label the possible spin states of the fermion and anti-fermion and the % factor comes from
averaging over the three possible initial state polarisations. The sum over the spins can be calculated by
applying the trace formalism [130], which results in

D) =Tr [(qu’f +mg) Yy (gvf - gAfys) (Yoqs +mys) vy (gvf - gAst)] : (3.12)
S,r
By applying the proprieties of the Dirac gamma matrices [38], we get
D2 =4 (gd, + 83, ([@to + a1 - gular - @) +4 (2], - &) gy (3.13)
S,r

_8gigqul?CIgiEpu(rv- (3-14)

The completeness relation for the sum over the polarisation states of a massive vector boson V is

HEv

k
Z e (k,A) € (k, ) = —g"” + . (3.15)
M2
A %
Inserting these results in (3.11) and performing some simple algebraic manipulations gives
2 e 1 2 2 2 2 2 kzmic
(IM|%) = (SWCW) 3 (8v, +&4,) |(q1-q2) + M_%(k ~q1)(k - q2) | +3(gy, _gAf)M—% . (3.16)
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Chapter 3. Experimental observables 3.2. Ry and Ay at tree-level

At the Z pole, k? = 5 = M% and considering that the Z boson momentum is defined as k = g + ¢, the
last expression can be further simplified by using the following relations

1 2
a1 -q2=5(MZ—2mf), 3.17)
1
k-qi=k-q2=5M3, (3.18)

2

to give

2 2
N € 2| 2 2 2 2 mg
(M| >_Nc§(s ) M2 gvf+gAf+2(gvf—2gAf) (M_z) : (3.19)

wCew

where the colour factor N cf is added to distinguish the final state fermions. N, f = 3 for quarks and N, Z =1
for leptons.
The general expression for the decay rate for a two-body decay a — b + c is [130]

p 2
I'lfa—> b+c) = M|~ dQ, 3.20
( )= [ (3.20)

with p* = \/[mg - (myp + mc)z] [mfl - (myp — mc)z] /2m, the momentum of the final-state particles in
the centre-of-mass frame. For the Z decay to fermions, this is equal to

coonf (e Y Mz | ()
1 ¢ SwcCw 127 Mz

2
my

Defining u s = m? /M % and the standard width Ty = (ﬁ)zgﬁl—i, the previous result can be rewritten as
Ty = 3N ToT =41, [gzvf +gh, +2 (gzvf - 2g§f) y f] (3.22)

3
= SNIToVT=4u; [gif YR, - (gif vgh, - 6gLngf) ﬂf] . (3.23)

Considering that for all SM fermions with the exception of the top quark u s < 1, we can safely neglect
the terms proportional to u s and get the following approximate expression for the decay rate

~ NS 2 2\ _ 3 e 2 2
Iy ~3N/T, (gvf + gAf) = SNSTo (gLf + ng) : (3.24)
It is now possible to write an approximate SM expression for R,; using this final result. In terms of
8L and 8R;»
2 2
_ 81, t 8k,

= . (3.25)
81, + 8k,

el

which depends only on the left- and right-handed couplings of the final state fermion and electrons.
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Chapter 3. Experimental observables 3.2. Ry and Ay at tree-level

Figure 3.2: SM tree-level diagram for ete™ — f*f~.

322 efe” — ff and A,

Consider the process of fermion pair production from electron-positron annihilation in the context of
the electroweak interaction, e*e™ — f* f~. The lowest order Feynman diagrams for the process can be
seen in Fig. 3.2. The Higgs exchange contribution is neglected [128], since the Yukawa couplings are
much weaker than the couplings to the Z. In this case, f can be any fermion other than the electron and its
neutrino. For those final states there are also t-channel photon and Z exchanges related to the scattering
process that occurs when the initial and final state fermions are a part of the same fermion doublet [131].
Using the Feynman rules in (2.30), the matrix element for the process is given by the sum of the two

diagrams,
. — . —l'g:uv_ )
—iM =Ve(p2) (—ieQeyu) ue(p1) () (=ieQ ) v #(q2)
—i (gr7 - LKL (3.26)
o Y S T L L A Y 0 PO
v u U v ’
e\D2 swew | e pP1 kz—M%+iMZF% 41 Swew rovr(g2

where p1, p2, q1 and g, are the momenta of the electron, positron, fermion and anti-fermion, respectively,
and k = p| + p2 = q1 + ¢> is the exchanged boson’s momentum. I, = ¥, (gv, — ga,ys) and [y =
Yo (gv .~ 8A fy5) represent the vector-axial Ze*e™ and Z f* f~ couplings. The Z propagator is written
in the lowest order Breit-Wigner approximation [132], which takes into account the fact that the Z is
an unstable particle. More than that, it removes the divergence at the Z pole of the ordinary tree-level
propagator by displacing the pole from the real axis.

The terms proportional to k” k7 /M % cancel in the approximation that m, = 0,

Ve(P2)Teptte (P1)KP =Ve(p2) (gv. +8a.Y5) Pitte(P1) +Ve(P2) P, (gv. — 84, Y5) Ue(P1)
=Ve(p2) (gv, +8A.¥5) te(P1)Me + meVe(p2) (8v, — 84, Y5) ue(p1)  (3.27)
~0,

where we used the Dirac equation for spinors,

Pte(p1) = mette(pr), (3.28)
Ve(pZ)pz = meVe(p2). (3.29)
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Chapter 3. Experimental observables 3.2. Ry and Ay at tree-level

The matrix element can now be written in the form M = M, + Mz,

uv

- g _
M= - ezQEQfVe(pZ)yM”e(pl)?”f(@l))/y\/f(qz)
e’ po (3.30)
— Ve Fe Ue u r oV )
(SWCW) (P2)lep (Pl)k2 By YERVa) @) rave(q2)

The squared matrix element averaged over the initial state spin states is
2
(IMPP) = (M) +2(Re {MZME}) + (IM2 ), (3.31)

where we consider that both the electron and positron beams are unpolarised. By applying the same
techniques as in the previous section, we arrive at

8 4
<|My|2> = S%QiQ? [(pl ~q2)(p2-q1) +(p1-q1)(p2-q2) + (p1 -pz)mfc , (3.32)

4
(Re {MzMI}) = SsizQleReﬂX(Sﬂ} {gv,8v. [(p2-q1)(p1-q2) + (p1- 91 (P2 - 92)]

+8a,84. [(P2-q1)(p1-g92) — (p1-q1)(p2- q2)] (3.33)
~gv,8v.(p1 - p2)m%},

4
IMZP) = 25 P (s, + 64, ) (85, + 5. ) [p2 - a0 (P10 + (1 a1)(p2 - 02)
- (g%/f - g,if) (nge + gie) (p1 - p2)m’ (3.34)
~4gv.8a,8v.84. [(P1-q)(p2-q2) — (p2-q)(p1-q2)1 }

where we define

2
S
X) = (SWCW) s — M2 +iMzTY (3.35)
(1 s(s-MD)
Re {X(S)} - (chW) (s — Mé)z + M%F%Z (3.36)

At tree-level the electroweak axial-vector or left- and right-handed couplings are real. This is no longer
the case at higher orders [128, 129].
In the centre-of-mass reference frame, defining 6 as the angle between the forward scattered fermion
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and the electron-positron beam and defining the xz plane as the scattering plane, the four-momenta are

plzﬁ(l,(),(), 1), q1=£(l,ﬁsin9,0,ﬁ0059),
2 2
(3.37)
Vs Vs .
p2==-(1,0,0,-1), 42 = —(1,-Bsin6,0, ~Bcos ),
with 8= /1 - 4m§c/ s the velocity of the final state fermion. Replacing the momenta,
My = €*Q% [1+cos? 0 + (1 - B2) sin” 6] (3.38)
¥ 8e* s> 2 2 )
Re {MzM}}) = —50:0 Re{lx ()1} {gv,gv. 5 [(1+87) cos® 6 + sin” 6] (339)
s22 9 S 5
+84,84, g 2B 080 = gv,gv.omih,
(IMz|?) = 8—e4| {3, +g4.) eV, + &5 s [(1+ %) cos® 6 + sin® 4] (3.40)
zI") = 2 X\ vy T 8a,)\8v. T84, 3 B .
s
- (8%, - 43,) (gh, +£2.) MG+ 48,848V, 84,5 cos B},
where the last two can also be expressed in terms of the left- and right-handed couplings as
f 2¢4 5> 2 2 .2
(Re {MM]}) = S—zQleRe{|X(S)|} {(g, +8r,) (gL, +8Re)§ [(1+B°) cos” 0 + sin® 0]
2
N
+(gr, — 8r,)(8L. — gRe)§2,3 cos ¢ (3.41)
S
—(8L, +gr,) (8L, + gRe)Emir},
(IM |2>—2—e4| (g7, +8%.)(e7 +23 f[(1+ %) cos® 6 + sin 6| (3.42)
zI =3 XS 8Ly T8R; ) \8L, T 8R. 3 B~) cos s .

—8Ls8Ry (8ie + g%ee) Sm? + (gif - g%gf) (g%e - g%e) s*B cos 0}.

The total squared matrix element can be written in a way that organises the components by their
dependence on the scattering angle 8. Grouping the terms in this way gives

2
(IMP) = AN G (1 2 ) _ 4mf
= ¢ [|G1(s) |1 +cos™ @) +4urGo(s)sin” 0 +2/1 - G3(s)cosf|, (3.43)
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where we define the functions

Gi(s) = 020% +28.,8v, 0.0 Re {x(s)} + (83, + 3. ) (%, + 83, — 483,417 ) kD), (B44)
Ga(s) = Q20% +22.,8v, 0.0 Re {x ()} + (g%, + &5 ) &%, (), (3.45)

G3(s) =284,84,Qc0Re {x(5)} +4gv,84.8v,8, X ()|, (3.46)

and Nf is the colour factor as in (3.19).
Neglecting the mass of the initial state particles, the expression for the differential cross section of a
two body process a + b — ¢ + d is [130]

do® 1
dQ  64n2s

BUMIP). (3.47)

Replacing (3.43) in (3.47) and integrating in the solid angle gives the total cross section

m2
G (S) + 2_G2(S)

o4
a'(s) = Nfﬁ (3.48)

As s — Oors — oo, the total cross section approaches a constant. For energies below the Z
resonance, the QED contribution is the most important and the cross section decreases with increasing
energy as 1/s. When s ~ M %, the pure Z contribution is dominant and would technically diverge when
s — M% if it were not for the resummed propagator. This behaviour is called the Z resonance, or Breit-
Wigner resonance. At the peak of the resonance, the Z boson exchange diagram is roughly three orders
of magnitude greater than the QED diagram [122]. The interference term (3.41) vanishes at the pole, but
becomes important off-peak. Notice also that the terms proportional to cos 8 do not contribute to the total
cross section.

Integrating the differential cross section in the forward and backward hemispheres as defined in (3.4)

gives
2
do f my
o (s) =/ (s 0) dQ = —N B 4G (s) + S—Gz(s) +3BG3(s) |, (3.49)
0<% dQ 967
2
9(s) / do ( 0) dQ = 4G()+8mfG() 3BG;(s) (3.50)
op(s) = s, = s —Ga(s) — s)| - .
B o>z dQ 9675 ! s 2 3
From the definition in (3.3) the tree-level expression for the asymmetry can now be written as
0 0
0.f,n_ 9r~0%p 3 G3(s)
App(s) = 07 50 =-0 > . (3.51)

rtog 4 Gi(s) +22LGs(s)

Unlike the cross section, this observable allows some insight into the cos # dependent term in the matrix
element (3.43).
At the Z pole AOF’lj; can on approximation be written as the product of two factors that each depend
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exclusively on the initial or final stated fermions. For s = M%, Re { )((M%)} =0,8=pz =+/1-4uy
and

2 M
(M) = 5. (3.52)
r
z
Taking the narrow width approximation, F%z <M é, (3.51) becomes
o.f 3. 28v.8a, 2gv,84
Angzﬁzz 2 2 (] 2f fz 2 (3.53)
gve +gAe gi( - :uf) +gAfﬁZ
2 2
_3 81, ~ 8k, 2 (gLf - ng) 3.54
_Zﬂzz 2 2(1 -2 _ 252° (3.54)
87, +8%, (8L, +8r) (1 =2pp) + (8L, = 8R,)*B
and in the case where my < Mz, uy =~ 0, 8z = 1 and
32 2gv,8a, 387, ~ 8k, 8L, ~ 8k, 3
Vr8A T~ L R
AOF,IJ; ~ 2 “8Ve8A. oAy 3O6L, SR, °Ly r o AA, (3.55)

4gy, +8h gy, 8, 487, *8k 81, *8, 4

where we recover the approximate formulas in (3.2).

The fermionic asymmetry parameters quantify the parity violation of the weak interaction. If gz, =
gr; © ga, = 0, then Ay = 0. This observable, depends only on the square of the couplings, being
unable to give information about the relative signs.
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Chapter 4

Radiative corrections

The amplitudes of the two processes discussed in the previous chapters were only analysed at order
zero in perturbation theory. These are the leading terms of the expansion. The contributions from higher
orders are called radiative corrections. Diagrammatically they are described by graphs with loops or the
emission of particles from the initial or final states and their interference. A thorough understanding of the
radiative corrections and their profound relation to renormalisation is needed for a high precision study,
where the sensitivity of the detectors makes it possible to discern the effect of these smaller contributions,
whether coming from SM physics or beyond.

In this chapter, the one loop radiative corrections to e*e™ — f*f~ and Z — f*f~ are discussed.
Starting with a brief introduction to renormalisation, the renormalisation of the weak neutral current
vertex is presented following Bohm, Hollik and Spiesberger’s multiplicative renormalisation in the on-
shell scheme [128, 133, 134]. Then the radiative corrections are explained, making a distinction between
the QED and weak corrections, and how they change the two observables R,; and A at one loop. Finally,
the inclusion of physics beyond the SM is discussed.

4.1 Regularisation and renormalisation

When resorting to the method of the perturbation expansion in QFT [38], one inevitably finds di-
vergences in the calculations. These divergences, Ultraviolet (UV) divergences, are inescapable and a
consequence of large fluctuations of the fields in short distance scales [135]. As a consequence, the mo-
menta of the loops are unbounded and tend to infinity. This mathematical downside of perturbativity leads
to nonphysical divergent results. How to address these problems and recover physical meaning, hence the
possibility of making testable predictions, is the domain of renormalisation. The main working principle
of renormalisation is that it is possible to define the free parameters of the theory in such a way that they
cancel the divergences.

The first step in dealing with the divergent integral is to separate the finite and singular parts of the
integral in a process called regularisation. There are several methods to regularise the integrals, for ex-
ample lattice regularisation [136] or Pauli-Villars regularisation [137]. In this work we follow the process
of dimensional regularisation [25, 138, 139]. The main advantage of this method is that, because it is
based on an analytical continuation of the original four dimensional integral, it preserves Lorentz and
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gauge invariance [25]. On the other hand, one is required to work with the Dirac algebra in d dimensions
as well as with s, whose treatment in higher dimensions is complicated due to the possible appearance
of axial anomalies [140-142]. The loop momenta in dimensional regularisation have components in all
dimensions, but the momenta of the external legs and the ys matrix are inherently defined in four dimen-
sions. The ys matrix in particular cannot be defined in dimensions higher than four in a way that preserves
all its proprieties, like the anticommutation relation {ys, y,} = 0. This leads to the non-conservation of
the axial current [39]. The general idea of dimensional regularisation is to extend the dimensionality of
space-time from 4 to an arbitrary number d of dimensions,

d*k wq [ d%
1 H d:
(27) (27)

4.1

d is a continuous variable, thus not necessarily an integer. In doing so, the UV divergences are replaced
after integration by singularities related to the number of dimensions and the integral is split into a finite
and a singular part. This singular part is then to be cancelled by renormalisation so that the final results
are finite for d — 4. The integrals are commonly written in terms of a set of functions called Passarino-
Veltman integrals [143].

The masses and couplings of the Lagrangian as defined in (2.1) are free parameters of the theory. A
general free parameter of the unrenormalised Lagrangian is called “bare” parameter and represented by
go. The divergences from the one loop diagrams can be interpreted as shifts in these quantities. As such,
beacuse the parameters can be redefined, go can be written as

1 1
0=Zig~ (1 . 5(szg) g (42)

where Z, is a renormalisation constant and g is the renormalised parameter. g is finite after being fixed
by a renormalisation condition. There must be as many renormalisation conditions as free parameters.
0g is the counter-term which is chosen to cancel the divergencences coming from the corrections to the
parameter. This procedure assures that the S-matrix elements are finite, but in order to obtain finite
propagators and vertices it is necessary to ensure that the residue of the pole of the propagator is equal to
one. This is done by introducing a field strength renormalisation constant

do = Zfb¢ ~ (1 + %5z¢) ®, 4.3)
where similarly to the parameter go, ¢ is the bare field, ¢ the renormalised physical field and 6Z is the
counter-term. Like with the free parameters, renormalisation conditions fix ¢ and there must be as many
of them as there are fields.

The expansion in the counter-terms of the renormalisation constant for a field or parameter i, Z;, is
done to the same order as the perturbative expansion. So, for first order calculations as exemplified for a
general g and ¢ above, Z; = 1+0Z; + 0(6Zl.2). Replacing the bare parameters and fields in the Lagrangian
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with their renormalised counterparts and respective counter-terms allows to rewrite the Lagrangian as

£0(¢0’ gO) ~ ‘L(¢7 g) + LCI((b’ 8 6Z¢’6g)9 (44)

with £ the Lagrangian from where one builds the tree-level and one loop diagrams and L the counter-
term Lagrangian. Here lies the distilled essence of renormalisation, where for the renormalisation of a
certain diagram one needs to add to it a certain number of counter-term diagrams to cancel the divergence.
Not all theories, however, are fully renormalisable, even if they can be renormalised to a certain order
[135]. This method of multiplying the parameters by a renormalisation constant is called multiplicative
renormalisation. In this work, we follow [128, 133, 134], from where the notation heavily borrows.

4.1.1 Renormalisation transformations for the electroweak sector of the SM

There are several possible renormalisation prescriptions, like the MS scheme [144, 145], the MS
scheme [146, 147] or the on-shell scheme [143, 148—150]. In this work, we use Bohm, Hollik and Spies-
berger’s on-shell renormalisation [128, 133, 134]. This could be called a semi on-shell scheme, due to
a number of noteworthy caveats that distinguish it from the other on-shell schemes. Renormalisation is
done in a way that respects the electroweak symmetry. A single field renormalisation constant, 6Z§V and
625 , is introduced for each multiplet. This is the minimum required to get finite self-energies and vertex
corrections, as well as to fulfil the on-shell condition for the charge and that the residue of the photon
propagator is equal to one like in QED. On the other hand, the Z, W= and I3 = +1/2 quark propagators do
not have residue equal to one [133]. This scheme is a natural extension of the QED on-shell renormalisa-
tion, with the renormalised electric charge being defined as the full ye*e™ coupling for on-shell external
particles in the Thomson limit (k> = 0) of Compton scattering.

To renormalise the Lagrangian of the electroweak sector of the SM (2.9) in line with what was dis-
cussed in the previous section, the following renormalisation transformations for the fields or symmetry
multiplets of fields and free parameters of the model are introduced

W, = (23w, wly - (Z)uk, Ho — (Z")*H,
Bou — (ZF)?B,, uR o = (Zi)2uR,
4.5)
g0 — z)V(Z)) 3, vo — (ZM)2 (v = 6v),
g) — ZB(ZP) 3y, Viwo = (ZM)21Zi@y, .

The transformations for the remaining parameters are not written here explicitly, since they are not neces-
sary for the coming calculations. The field renormalisation constants are identified by an index 2. The
tadpole diagrams originating from the Higgs potential in one loop order are renormalised independently
in a way that the relation between the vev and the parameters of the Higgs potential, v = 4/—u? /A, remains
valid after renormalisation. This allows to remove the tadpole diagrams from the renormalised Green’s
functions and amplitudes, but in that case the mass counter-terms are not gauge invariant [133].

The input parameters are chosen to be the fundamental charge e, the masses of the physical bosons
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My, Mz and My and of the fermions, m 7, as well as the fields A, Z, and Wlf themselves. This choice is
not unique, but it configures a set of relevant, experimentally measurable physical quantities. Moreover,
it is the most natural choice for the electroweak renormalisation in the on-shell scheme. The renormalised
Lagrangian can be written in terms of the fields A,,, Z,,, W;;' and / by following the same steps as in section
2.3 and taking into account the renormalisation transformations. By doing this, equivalent expressions to
(4.5) are obtained for the physical fields

1
Wy, — (Z")2 Wy, My, — My, + My, m3 — m5+6m7,

(z%)ﬁ(@fﬂ <z;Z>%)(z,,) MZ, > ME+0M,  eg o e+ e

(4.6)
Ao, Z)%):  (Z]): A M3 — M3 +6M;,

u

ho — (ZM)2h

which now include also the masses of the bosons and fermions. The mixing of the photon and the Z is
parameterised by a real 2 X 2 matrix. The counter-terms are obtained by performing the renormalisation
transformation in (2.9) and rewriting the result in terms of the physical fields with (2.16) and (2.17).
Comparing the folowing terms in the renormalised Lagrangian,

1 21 2
i (a,,wg - o,wa) - 7078 (0uBy = 0,B,) ++--. (4.7)

with the terms obtained after rotation to the physical basis

1 2 w 2 B
- (302 + 3,678) (92 - 9,2,)

- %CWSW (523}[/ - 525) (OuZy = v Zy) (0uAy = Oy Ap) +-- -,

2 2

1
-3 (53,622 + 3,62 (3,4, - 0,4,)
4.8)

gives the following relations between the counter-terms of Wz and B, and those of the photon and Z

boson
94 2 2 w
( 577\ ( sw o w | [ 92! ) 4.9)
z 22 B '
0Z; W Sw 0Z;
and
62" = cwsw (62 - 670 ) = (677 - 67)). (4.10)
‘wSw

To find the connection between the counter-terms and the quantum corrections of the theory, first the
propagators of the free fields must be written at one loop level so that the renormalisation transformations
in (4.6) can be applied. The propagator represents the probability of the particle to move between two
points in space-time. It is formally described by the causal Green function of the equations of motion of
the field. As an example, consider a generic scalar field ¢ with momentum p. The full bare propagator is
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Figure 4.1: Diagrams that contribute to one 1PI self energy function.

given by [39]

Go(p?) = / AP QT 9o (1) B0 |Q) = \Zo / dxe P QTP (1) Q) Zg
=VZs G(P)Zs

where T is the time ordering operator, Z the field strength renormalisation constant and G (p?) is the

4.11)

renormalised propagator. The circumflex symbol ” ~ ” is used to denote a renormalised quantity. In
the language of perturbation theory, the full or dressed propagator is given by the sum of the tree-level
propagator with all one particle irreducible (1PI) self-energy diagrams. 1PI self-energies are all topologies
that cannot be split into two distinct graphs by cutting a single internal line. —iX(p?) is defined as the
sum of the truncated diagrams of Fig. 4.1.

4.1.2 Renormalisation of the vector boson propagators

The vector boson propagator is written in terms of transverse and longitudinal amplitudes, A‘T, and
A‘L,, as

Dy, (k) = —iguy A} (K*) + kyky Ay (k%) (4.12)

withV =y, Z, W. A‘T, is given by the sum of the transverse components of the tree-level propagator and
of the higher-order corrections. In physical amplitudes the longitudinal component of the vector boson
propagators is suppressed as a consequence of the Slavanov-Taylor identities [151, 152]. As such, only
the transverse component has to be taken into account. From now on, every mention to the propagator
is to be understood as meaning the transverse component that multiplies the factor g,,,,, which is omitted
for simplicity.

The quantum corrections to the propagators come in the form of the 1PI diagrams of Fig. 4.1. The

33



Chapter 4. Radiative corrections 4.1. Regularisation and renormalisation

full bare propagator for the W boson is given by the Dyson sum of the 1PI self-energies,

= (=iZw(s))— +- (- sz(s))—( zzw(s» +-
2 2 2 2
s — MWO s — MWO s — MWO - MW MW0 MW0
2
— —i - - [
= + —iZw(s) )+ (—zZW(s)—) +---
2 2 2 2 2
s—MW0 s—MWO( s—MWO S—MW MW

|
9%
|
§N
o
gk
|
Fﬂ'
=
=
|
EN
)
S —
N

s — M‘Z)VO +2w(s)
(4.13)
which is a geometric series. This result leads to interpreting the inverse of the bare propagator as the sum

of the 1PI functions
-1

called the 1PI two point function.

Making use of the general expression (4.11) and of the renormalisation transformations (4.6) to first
order, that is keeping only terms linear in the counter-terms and neglecting the products of counter-terms
and Xy, one gets

Dy ~ s — M}, — M3, + Zw(s) + 62y (s — Myy), (4.15)
from where the renormalised self-energy is defined as
Sw(s) = Zw(s) — My, + 62, (s — My,). (4.16)

At tree-level the photon and the Z propagate independently. The fields are mass eigenstates. However,
because of the mixing of the fields at higher orders the propagator has to be considered a 2 X2 matrix, since
higher order corrections introduce non-diagonal terms. The simplest way to compute the yZ propagator
is to first consider the corresponding 1PI two point function, the inverse propagator

D= ( S 2y2(5) ) . @.17)

Eyz(s) s — M%O + Ezz(s)
Inverting this matrix gives the full bare photon, Z and mixing yZ propagators represented in Fig. 4.2

D7 Dyz
D,z Dz

D= , (4.18)
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Figure 4.2: Resummed photon, Z boson and yZ propagators.

1
D, =
22 (s)
vZ
$*2yy() = T e
1
Dz = ; 4.19
2 (s) (4.19)
2 z
s — MZO +27(s) — S+72y(s>
—2,7(s
Dyz _ 7Z( )

[s+2,(5)] [s - M2+ zz(s)] ~32,(s)

Proceeding in the same manner as for the W propagator, but taking into consideration the matrix structure
of the yZ propagator, one obtains the one-loop renormalised self-energies
iy(s) =2,(s)+ 6Z27s,
$2(s) = Zz(s) — M2 + 6Z% (s — M3), (4.20)
$,2(5) =2y 2(s) = 62" s + (6277 - 62)7)M2.

The mass counter-terms are related by

2 2
SME oM,

2 2
ML M},

= W (5277 —267)%). 4.21)
cw

Keeping only the leading terms resummed to all orders, the propagators in (4.19) are after renormal-
isation written as

1
s+ ﬁlw(s) ’
1
s — M% +3,(s)
_iyZ(s)
s(s — M%)'

~

D, ~
Dz =~ (4.22)

Dyz =~

This expression for the Z propagator can be identified with the Breit-Wigner form in (3.26) at the Z pole
if Re {EZ(M%)} ~ 0 and Im {ﬁlz(M%)} = MZF%.
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4.1.3 Renormalisation of the fermion propagator

The full bare fermion propagator is obtained in the same way as for the W boson. Summing all 1PI

diagrams gives

Sr(k) ==

=i(k+m2f0)+i(k+m2f0)(_izf)i(k+m2fo)+z(k+mf0)( i )l(k+mf0)( i )l(k+mf0)+
s—myg sy, sy, S_mfo s mfo
i (2(k))+ i (2(k))
k_mfo k_mfo k_mfo k- mg, K mfy
i
NEGES R0
(4.23)

where in the third line we consider the self-energy of the fermion X ¢ a function of ¥ = y,k* and rewrite
the propagator as i/(k — m,) [39]. Here we drop the family indices and write these expressions for any
fermion f.

The self energy can be decomposed in the following way [133],

Zf(k) = kPLZfL (S) + kPRZfR (S) + meZfS (S), (4.24)

putting into evidence the different chiral components. The renormalised fermion self energy is obtained
after performing the renormalisation transformations (4.6),

57, 6ZL omy
2 2 myg

$ (k) = kPL (S1(5) +6ZL) + kP (zR(s) + 52,{) +my (Zg(s) - (4.25)

The mass renormalisation counter-term is related to the Yukawa and Higgs vev renormalisation constants.
From the definition of the bare mass of the fermion in terms of the Higgs vev and Yukawa couplings,
mg =vys/ V2, performing the renormalisation expansion (4.5) gives
om
—L —ozl - (4.26)
my %
where f identifies the fermion. Due to this relation, the renormalisation of the Yukawa couplings is fixed
by the renormalisation the fermion masses.

4.1.4 Renormalisation of the neutral vertices

The renormalised neutral vertices are obtained by performing the renormalisation transformations
(4.6)inthe yf*f~ and Zf* f~ vertices. This is the same as summing to one loop order all contributing
diagrams - the tree-level diagram, the vertex correction, the yZ mixing diagrams and the self-energies of
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the external legs. For the electromagnetic vertex, this gives [133]
007 = —ieQpy, +ieNT —ieQry,(6Z) — 6Z)) —ieQyyu (6ZLPL +SZrPR)

e 4.27)

—i Yu (8LPL +grPR) (62)7 — 62)7),

Swew

where AZf /" are the one loop vertex corrections. Proceeding in a similar fashion, one obtains the renor-
malised neutral weak vertex

e

2 CW?’# (§1.PL +grPR) (8ZF - 6Z%)

u

=i

.. Z .
Yu (gLPrL + grPR) + leA#ff +1
SWCw Sw

+ieQpyu (6277 = 622%) +i—

f (4.28)
- Yu(8LOZLPL + grROZR PR),
w

Sw

with Agf 7 the one loop vertex contribution.
The structure of the first order vertex contributions Azf f and Aff S is addressed in Section 4.2.2.1.

4.1.5 On-shell conditions

Once the renormalisation transformation from bare quantities is complete, a set of conditions must
be chosen to define the renormalised quantities and counter-terms and relate them to some experimental
observable. This set of rules are collectively called the renormalisation conditions. In the on-shell scheme,
the counter-terms are defined in such a way that the renormalised parameters are equal to their physical
values. This is the same as saying, for example, that the renormalised masses must correspond to their
on-shell values, respecting the well known relativistic relations. This is an important advantage of this
scheme, where the parameters have an obvious physical meaning and are experimentally well known.

The on-shell conditions for the masses and fields can be summarised as

1. The masses are the real parts of the poles of the propagators.
2. Mixing between fields must vanish on mass shell.
3. The fields are normalised by fixing the residue of the propagator at the pole to be equal to 1.

These conditions ensure the proper pole structure and lead to the renormalised propagator coinciding with

the tree-level propagator when p? ~ m?.

The on-shell conditions for the electroweak sector of the SM are written as

Re {} T 0 & Re {Sw(My)} =0,
Re {} o =0 Re {ﬁZ(Mé)} =0, (4.29)
Re {} S0k {£,0m0)} =0,

s=m?
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Ea e

where the (4.29) corresponds to the first on-shell condition and (4.30) to the second. There are more

=0 2,2(0)=0, (4.30)
s=0

renormalisation constants than there are free parameters. As such, following [133], the remaining counter-
terms can be fixed by applying the third condition to the photon and charged lepton propagators,

- — ) — ,
ds ( Y Y )s:O = ds
§=0 (4.31)
—_— =0s 1 z —(k) =0.
k—m%( ! f )k:ma g 2 Bu- ()
u_(k) is the spinor for the external fermion with /3 = —%. This condition is valid for both charged

leptons and quarks and defines Z;, and Z. Z determines the neutrino field renormalisation as well. For
the I3 = +% quarks, the condition for renormalisation is that the residues of the left- and right-handed
propagators become equal at s = m?, but different from one. This fixes Z}.

The on-shell condition for the renormalisation of the electric charge is

=ley, © fzee(s =0,4,=¢q, =m.) =ieyy, (4.32)

5=0,¢4,=¢,=me

which means all corrections to the vertex must disappear in the Thomson limit of zero momentum transfer
and on-shell particles.

Solving the equations (4.29), (4.30), (4.31) and (4.32) using the renormalised self-energies for the
gauge bosons (4.20) and the fermions (4.25) and the renormalised electromagnetic vertex (4.27), gives
the explicit expressions for the various counter-terms.

The mass renormalisation counter-terms for the bosons and the fermions in the on-shell scheme at

one loop order are

oM}, = Re {Zw(My)},
oM% =Re {2z(M3)},
(5mf 3 1

=2 |20m2) + 2 (m3) | + S (m2),

(4.33)
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The field renormalisation counter-terms for the gauge bosons are

XYy
62; = =——(0),
Sw XY YZ
6] = ——( oz
2 5 )
5772 = _(927 0)-2 W= sW $7Z(0) + — Sy 6M% B M2,
2 ds SWCW MZ S%V M2 M‘%V s
2 2
577 = _827 ) - 3cW - 2sW >7Z(0) CW - SW M, 6MW ’ (4.34)
1 as Swew M2 S%v M% M‘z;v
2 2
52V = 9% ) _pcw Z7(0) + oM OM3,
2 0s s 2 Y 2 |
w M M2 MW
2 2
52V = 9% o) _ 325y, VZ(O) SMy My,
1 Os SWCW M% M2 M%V

The counter-terms 6Z}¥ are combinations of §Z) and 6Z7 obtained from (4.9). For the left- and right-

handed fermion fields,

OZR

6Zp = -2 (m*) —m? [62L< 2)+

( %)+ 2 ( 2)]
] e 82R 2 2 (4.35)
0Zgr = —2r(mZ) —m= W(m_) ( )+ 2 ( -

The renormalised electric charge can be written in terms of the counter-terms by applying the trans-
formation (4.6) directly to (2.24),

5
e — 2(1+252) =352)) = ¢ (1 +2—e) (4.36)
e
with
e 3
2 =577 - 307, (4.37)

Equivalently, from multiplicative renormalisation one gets 6Z, = de. Solving (4.32) yields

Se 1 0% =2 (0
ge 1 _ w20 (4.38)
e 2 0s |,y cw M

where the first term in € is formally identical to the renormalised charge in QED, although it here contains
contributions from the weak bosons.
The electroweak couplings g and g’ are changed by (4.34), getting higher order contributions from
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the self-energies of the bosons. As a consequence, the Weinberg angle (2.18) is redefined as

SM%  S5M?2
2 2 2 Z w
S50 — So, + ¢ —_— - 4.39

wo w w ( M% M‘Z)V ) ( )

4.2 Radiative correctionsto Z — f*f~ and ete™ — f*f~

One of the advantages of this on-shell scheme is that it allows the separation of the radiative correc-
tions into gauge invariant classes that can be treated separately. This is because of the unbroken U(1)gm
symmetry, which allows to compute the purely photonic radiative corrections and QED renormalisation
independently of the rest of the electroweak sector [128]. The QED corrections come from virtual photon
exchange and real photon emission in the initial and final states. Summing these diagrams eliminates all
IR divergences as per the Kinoshita-Sirlin-Lee-Nauenberg theorem [153—155], the electroweak extension
of the Bloch-Nordsieck theorem of QED [156], and the result is UV finite by itself. Addressing the QED
corrections individually is also convenient since they depend on the experimental setup [129]. The weak
corrections consist of all other non-photonic one loop diagrams and depend only on the fundamental
content of the theory. They correspond to the vertex, propagator and box corrections. These corrections
include all particles in the model that are allowed to couple in the loops, whether be they from the SM
or some extension of it. It is this fact that, allied to the great sensitivity of modern detectors, makes the
weak corrections such a great probe into new physics.

The weak corrections are the main interest in this work. We look exclusively at quantities that have
been deconvoluted from the QED effects. However, the QED corrections depend on experimental condi-
tions and are large around the Z pole, hence in practice one would need to know how to deal with them
in order to subtract its effects from the data and probe the weak effects in the first place. As such, a brief
description of the QED corrections is given in section 4.2.1.

In the case of a hadronic final state there are also final state QCD corrections. Their treatment is
formally identical to that of the final state QED corrections, but because we deal only with leptonic final
states they will not be addressed here, but can be seen in [127].

4.2.1 QED corrections

The one loop diagrams for Z — f*f~ and e*e™ — f* f~ with virtual photon exchange in the vertex
or in the self-energy of the external legs are IR divergent. In order to eliminate these divergences, it
is necessary to include the diagrams with real photon emission in the form of bremsstrahlung from the
external legs. We can then define the initial and final state QED corrections as coming from the diagrams
with a single extra real or virtual photon added to the initial or final state fermion legs in the Born type
diagrams. In other words, they include the photonic vertex diagram and self-energy contributions to the
external legs as well as the diagrams with the emission of real photons. There are also QED corrections
from the interference of the initial and final states. The diagrams that contribute to the QED corrections

to Z — f*f~ are represented in Figs. 4.4 and the e*e™ — f* f~ diagrams are represented in Figs. 4.5,

4.6 and 4.3.
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Figure 4.3: QED diagrams that contribute to the e*e™ — f* f~ initial-final state interference corrections.

Because real photons are massless, there is no lower limit for their energy, E,,, which can be smaller
than the detector sensitivity [39]. The final state fermion can radiate any number of these photons. These
diagrams are IR divergent in the limit of vanishing photon momentum and their divergences cancel to all
orders if summed with the ones from virtual photon corrections [153—-155]. Hence, one must sum over
the diagrams that are consistent with the loop order in which the process is being dealt with.

When computing the cross section with the radiated photon, the integration can be performed over the
whole kinematically allowed phase space or limited by a cut informed by the experimental setup. The case
when the maximum energy of the emitted photon in the CM frame of the initial state electron-positron pair,
w, is much smaller than the energy of the process E, < w < +/s, is called the soft photon approximation.
In this part of the phase space, the energy loss in the photon and Z boson propagators is very small.
In the case of a near resonance Z propagator, the energy loss due to initial state photon emission is not
necessarily small compared to the resonance width and must be taken into account in the propagator [129].
This approximation is usually not applicable in experiments because of the configuration of the detectors
themselves. In these cases, the E, > w region is important and this hard photon part of the phase space
is bounded by experimental cuts. The hard photon part is IR and UV finite and can be treated separately
from the other corrections [157]. Typically this is done with Monte Carlo simulations [158].

The final state corrections are small in comparison to the corresponding decay rate or cross section.
The QED O(«) initial state corrections are large around the Z resonance, of the order of 25% [47], and as
such require a comprehensive second order calculation in order to identify their effects for an electroweak
precision study. The size of the contribution to the cross section coming from the interference of the initial
and final states from the diagrams in Fig. 4.3 is negligibly small [129] and there is nothing particularly
relevant to be gained from its discussion in this work.

4.2.1.1 Final state corrections

First consider Z — f* f~, which only has final state corrections. Following [116], integrating over
the full phase space and summing to order O(«) all QED diagrams with virtual and real photons shown
in Fig. 4.4 and the tree-level diagram for the process, one gets

M2
Tp=TY 1+§Q}a(ﬂ2)+0(a2) . (4.40)

To first order in a, the result is independent of the lepton species, which justifies our definition of R,
in (3.6). Summing these diagrams is sufficient to guarantee an IR finite result [153—-155]. We define
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Figure 4.4: QED diagrams that contribute to the Z — f* f~ final state corrections.

Figure 4.5: QED diagrams that contribute to the e*te™ — f* f~ final state corrections.

42



Chapter 4. Radiative corrections 4.2. Radiative corrections to Z — f*f~ and ete™ — f*f~

Figure 4.6: QED diagrams that contribute to the e*e™ — f* f~ initial state corrections.

2
SQED = %Q? a“’\fz ) , which gives a correction smaller than 0.17% in relation to I" j)c [129, 159]. The final

state QCD corrections are formally identical and the total multiplicative factor that accounts for both QED
and QCD effects is sometimes called “radiator function”.
The correction to the e*te™ — f* f~ is similar. If no cuts are applied, to first order in & the denomi-

nator in (3.3) gets a correction
(oF +0B) (1 + 6QED) , “4.41)
which results in a correction to A%f;
ALy~ A% (1-60ED) - (4.42)

Like in the previous case, this translates into a sub-percent change in the value of the observable. If the
energies are in the soft photon region, the correction to the cross section can be large and negative, but it
multiplies both the numerator and denominator of AJI; B

1

@ 5 2w s 3 s 1
(O'F + O—B) {1 + ;Qf l210g$ (logm - 1) + z (logm—lz - 1) + ? - 5 , (443)
and hence the observable is not affected.

4.2.1.2 Initial state corrections

The diagrams that contribute to the initial state QED corrections of ete™ — f* f~ are shown in Fig.
4.6. One way to include them is to obtain the corrected cross section from the convolution of the weakly

corrected cross section, o0, with a distribution function, G(z,s) [129],

1
o(s) = / o(29)G(z, s)dz, (4.44)
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where zs is the invariant mass of the produced fermion pair with

<zp<z< 1 4.45)

N
- |3,

The kernel G(z, s) contains the higher order QED effects. For A; > an analogous procedure allows the

inclusion of the QED corrections as [129]

_ 1
A;B(s):ﬁ / (ag(s)—ag(s))H(z, 5)dz, (4.46)

where o(s) is the QED corrected total cross section for the process (4.44).

There are exact analytical results for the O(«) corrections [157]. For the higher order corrections,
there are several distinct approaches, like performing soft photon resummation in the first order result
[160], explicitly computing the two loop result [161] or applying QCD structure functions to obtain the
equivalent QED result [162]. These methods have the advantage of giving formally identical expressions
where only the function H(z, s) in (4.46) varies according to the different approach. As an alternative to
the procedure outlined in the previous section for the final state radiation, those corrections can also be
included in the convolution method here described.

As mentioned before, the initial state corrections are the most relevant of the QED corrections. They
lead to a shift in the position of the peak of about +100 MeV [121]. Beyond that, the corrected cross section
is also higher for smaller energies and lower for higher energies than the deconvoluted cross section [122].
The asymmetry is also significantly affected by the initial state QED corrections. Close to the peak they
lead to a deviation of about 5AJ; g = —0.025, which is of the order of the asymmetry itself [129].

4.2.2 Weak corrections

The weak corrections include corrections to the vertices, corrections to the photon and Z propagators
and box diagrams with massive boson exchange. The diagrams that contribute to the weak corrections to
ete”™ — f*f~ are represented in Figs. 4.8, 4.9 and 4.11. The contributions to Z — f*f~ represented
in Figs. 4.7 and 4.10 are similar, but the propagator corrections lack the purely photonic component.

One important aspect of the weak corrections is that they have a deep connection to the renormalisa-
tion procedure. The finite part of the counter-terms is included in the corrections and as such influences
the final result. Moreover, the separate treatment of the QED corrections means that the diagrams which
include the exchange of a photon in the loop are here excluded.

Comparatively to the QED corrections, the weak corrections are small, being typically only of the
order of 1% [129].

4.2.2.1 Vertex corrections

Vertex corrections are defined as the yf*f~ and Zf* f~ 3-point functions in one loop order after
renormalisation [128], including the self-energy contributions to the external legs that comes from wave
function renormalisation. These corrections depend on the fermion species.
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Figure 4.8: Weak diagrams that contribute to the e*e™ — f* f~ vertex corrections.

The one loop vertex contributions Azf / and A'Zf /in (4.27) and (4.28), respectively, have the form

AT =y (AT PLAA T PR)+(a2=q0)u (T 458 2T ) 4 (a2 q) (AT 4ys A 20T,

4.47)
which is the most general covariant decomposition for on-shell fermions in the SM. The amplitudes A
are functions of the scalar products q%, q% and ¢ - g2, which means that for on-shell fermions, q% =
q% = m?, their only kinematical dependence is on s. By applying the Gordon identies [163], one recovers
an expression similar to (2.44) which allows to interpret Ay; and Ag as contributing to the magnetic
moment and to the CP violating electric dipole moment, respectively. Ag and Ap come from scalar and
pseudoscalar couplings, but are in fact redundant. Current conservation requires As = 0 and leads to Ap

being written in terms of Ay and Ag [92].

2
f’
negligible and the vertex corrections can be written as additive form factors to the coupling constants to
yield the ’dressed vertices” [129]

In the SM, when the fermion is on-shell and s > m, the terms that multiply the momenta are

E3 = =ieQyy —iey (F} ()PL+ Y (9P (4.48)
~Zff _le ie zr 2

The weak form factors FZ’gf 7 include the left- and right-handed components of (4.47) and the first
order terms in the counter-terms coming from (4.27) or (4.28), respectively. These are functions of s, de-
pending also on the masses. Because by definition they do not include the photon exchange contributions,
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Figure 4.10: Weak diagrams that contribute to the Z — f* f~ propagator corrections.

they are IR finite.

4.2.2.2 Propagator corrections

There are three types of propagator corrections, photon exchange, Z exchange and yZ mixing. The
first one affects only the ete™ — f* f~ process, due to the photon mediated diagram in Fig. 3.2.

Making use of the propagators in (4.22), the photon exchange correction can be understood to come
from the polarisation of the vacuum,

2 2

0% 0% e 1 e
=Q0r——=0.0r———F5—, 4.50
QQfS+Zy(s) QQfsl_'_Hy(S) (4.50)

where the spinors and Dirac matrices are omitted. This effect can be accounted for by defining a running

charge

e2

2 _
e’(s) = 1+1L,(s)’

4.51)
with ﬁy(s) = ﬁy(s)/s.

The situation is more complicated for the Z and yZ mixing corrections, because the approximation
in (4.22) is inadequate around the Z pole [128]. Defining MZF% = Im {ﬁZ(MZ)} as in (3.26) with
Re {ﬁlZ(M %)} = 0 as per the renormalisation conditions (4.29) cancels the first order corrections to the
cross section. To remedy this, the mixing terms in the complete renormalised Z propagator (4.19) have
to be included, as well as second order corrections to the imaginary part of the denominator.

Omitting once again the spinors, with the higher order contributions from yZ the Z propagator cor-
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rection is given by

5 I
WZA/@?A c%vs—M%+Re{iz(S)}+iIm{iZ(S)}

w
o2 | ! (4.52)

-2 .2 A 2 5 ’
s2.c2 1+ T1,(M2) . _ a2 o Im{E2()}
ww z( z’s MZ+’1+ﬁZ(M§)

with
. 2
- R (ZyZ(S))
27(8) =27(8) - ——, 4.53)
z(s) = 2z(s) My 0)? (
in the place of the Z self-energy in (4.22) as in (4.19) and
Re {$7(s)} = (s — MZ)T1z(5). (4.54)

Using the propagator with the mixing terms leads to a redefinition of the on-shell condition for the mass
of the Z boson, which must now be Re {iZ(M %)} = 0. This changes the mass counter-term 6 M %, but all
others remain unchanged, as do the vertex corrections [128].

¥ (s) is analytic close to s = M%, hence in the vicinity of the Z pole it can be Taylor expanded to
first order as

Re{S7(s)} ~ 0+ (s - M%)% Re {2(s)}|, (4.55)

M2
_MZ

where the first term is zero from the new on-shell condition. This gives the explicit definition IT, (M %) =
P <
a5 Re{Z2 (9} _pzz-

The higher order corrections to the Z width are added as

1 1

I, = W TEROMD) [Im {£,(M2)} + ATZ] . (4.56)

with AI'z containing the Weak, QED and QCD corrections to Z — f*f~ that do not come from Z
exchange.
The Z propagator correction at the Z pole is then given approximately by

z Z  sjey 14T (M2) s = M +ig-T7 '

where it is now clear that the imaginary part of ¥ () contributes to the width and the real part amounts

to a redefinition of the neutral current coupling.
The yZ mixing corrections can be accounted for in the same manner as the vertex corrections, adding
this contribution to the left- and right-handed coupling constants. The expression of the renormalised full
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mixing propagator (4.19) can be rearranged as

. _iyz(s)
Do, = —2yz(s) _ [s+2y ()]
vZ = N ~ ~ - ~ 22 (s
[S+Zy(s)] [S_M%O"'ZZ(S) _Ziz(s) [S—M%O+EZ(S)] - _[S+?((;)>] (4.58)
N .
-3.7(s) 4
_ yZ( ) D

[s + f),,(s)]

which shows that when writing the matrix elements for the processes the mixing contributions can be
summed as

=i—% y, (g1PL+gRPR) +ieQ y Sz o
swew ! LOLTORER f”s+27(s)
e ﬁyZ(S) ﬁyZ(s)
Schyﬂ (gL w WQf1+Hy(S) L (gR w WQf1+H7(S) R
with the dimensionless quantities
3 $,(s) . £y2(s)
I, (s) = ’T M, 7(s) = 22—, (4.60)

Considering the definition of the couplings in (2.28), it can be seen that the yZ mixing can also be
included in an alternate manner, as redefinition of the mixing angle to an effective angle such that in the
neutral current vertex

2 ﬁyZ(s)

2 = 2
Sw — Sw = Sy — SwC — . 4.61)
w w w T oW W1+H7(s)

Using the one loop expression in (4.22) without the mixing terms would amount to making the substitution

I by
2(5) | Sy2(5)
1 +11,(s) s

(4.62)

4.2.2.3 Box corrections

The amplitudes corresponding to the box corrections of Fig. 4.11 can be written as the product of the
initial and final currents, J. and J, respectively, and a form factor )’ that is a function of the scattering
angle through the Mandelstam variables, t = —5(1 — cos ) and u = —5(1 — cos #), and of the mass of
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Figure 4.11: Weak diagrams that contribute to the e*e™ — f*f~ box corrections.

the exchanged boson, M,
Je - Jr X (5,0,M) (4.63)

Considering the structure of the electroweak theory, when the fermions are on-shell and s > m?, J. and
J ¢ can only contain left- and right-handed contributions and the box corrections can be added to the left-
and right-handed couplings. Once again, all diagrams with at least one photon in the loop are treated as
part of the QED corrections to the process, making the weak box diagrams IR finite. They are also UV
finite [129]. The contribution of the box diagrams to the cross section at the Z pole is less than 0.02%
[129].

4.3 A, and R, at one loop level and new physics

All one loop electroweak radiative corrections have now been identified and additional adjustments
made to compensate the cancelling of first order corrections in the e*e™ — f*f~ cross section. The
results of the previous section show that the one loop corrections will not fundamentally alter the structure
of the matrix elements (3.8) and (3.26) for the decay rate of Z — f*f~ and for the cross section of
ete™ — f*f~. The diagonal propagator corrections result in the redefinition of the QED and weak
neutral couplings, while the yZ mixing can be added to the vertex corrections and absorbed in an effective
mixing angle. The box corrections can also be added to the vertex corrections. The reason as to why this
is possible is because the theory for light fermions at one loop does not introduce Dirac terms that were
not already present at tree-level. As such, one can get approximate Born-like expressions for the matrix
elements at one loop.

Considering only the one loop weak corrections, the decay rate for Z — f*f~ (3.24) is affected by
the vertex corrections (4.48) and the Z and yZ mixing corrections, (4.52) and (4.59). The Z propagator
corrections enter as a global normalisation constant due to the redefinition of the total width in (4.56).
If 'z = X'y, then at the Z pole every partial decay rate must be multiplied by (1 + n(m é))‘l. The

renormalised one loop expression for the decay rate is

. 1 3 Zf
= —— ZN°Ty|e? +¢2 +2g1. | FZT (M2) + swe
f 1+HZ(M%)2 fLo|l8L T 8r 8Ly | I ( z) wew

ﬁyZ(M%)

1+11,(M2)
ﬁyZ(M%) ]
1+11,(M2) ) |

(4.64)
+ Zng (Fgf(M%) + Swcw
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At the vicinity of the Z pole, the one loop photon and Z boson exchange amplitudes for ete™ — f*f~

are given by

2 M2
o Z)Ve(Pz)Yu [Qe + F“(MZ)PL + FY* (MZ)Pr] ue(p1)-

a0yt | Qs+ FYY (M) PL+ B (M2)Pr| v (42)

M
7 (4.65)

and

2
e 1
Mz = ~ Ve 1. Pr+8Rr,PR) Ue .
z (SWCW) T+ AO) (P2)Yu (8L, PL + 8R.PR) ue(p1) 466

Ty (21, Pe+ &r, Pr) vr(a2),
where the corrected left- and right-handed chiral couplings to the fermion are defined as

ﬁyZ(Mé)
1+11,(M2)

1
1+T1(M2)

GLR = lgL,R - Swew + Fij;g (M%)] = #(M%)ggm (4.67)
defining an effective coupling, Gr. g, [127]. e(M%) is the running charge (4.51). The box contributions
are neglected. Because the overall structure of the matrix elements does not change at one loop level, the
expression for the squared matrix element (3.43) remains valid, with the functions G, G, and G3 getting
new terms from the first order contributions. The complete expression for the one loop ete™ — f*f~
matrix element can be seen in [128].

Obtaining the explicit first order results for R., and A, is now straightforward. However, for the
purposes of this work it is more relevant to see how the inclusion of the radiative corrections at the
Z pole changes the mathematical form of the observable and how one can get a fairly general way of
parameterising the effects of new physics on the observables.

By examining the definition of R,; (3.6) and the one loop result (4.64), it is simple to see that only
the vertex and yZ propagator corrections will influence the final result for this observable. The overall
normalisation factor is independent of the fermion species and cancels. Consequently, the one loop ex-
pression for light leptons is similar the tree-level one (3.25) with all first order effects introduced through
the modified couplings g1 r as in (4.67). For the second observable, because at the Z resonance the
Z exchange diagram in e*e™ — f*f~ is dominant, one can consider to a good approximation that the
corrections to the Z f* f~ vertex and to the Z propagator will be the most important. Hence, for light
fermions and in the narrow width approximation, (3.2) can be used with the tree-level couplings replaced
by the effective coupling (4.67). The (1 + fI(M%))‘% factor also cancels for this observable. For this
reason we now drop this multiplicative constant and work with g;, g.

Rewriting the g7 g in (4.67) as §1..r = gL.R +08L.R, Where g g is the tree-level coupling and dg;, g
is the small contribution from the weak radiative corrections to the Z f* f ~ vertex, the observables (3.25)

50



Chapter 4. Radiative corrections 4.3. A, and R, at one loop level and new physics

and (3.2) can be expanded to first order in 6gy, gr, giving

A 2gL 28R
Rel ~ Rel + AD l,\z 5ng + AD l,\z 5gRl’ (468)
81, T 81, R, T8k,
Ar~ A 81,87, s o1, 8% 5 (4.69)
fRAf = 55080, — 55 5 98R,- :
(87, +8r,)* " (81, +gx)*

where the coupling for the electron is not expanded. This provides a simple formula to compute the shift
to the observables caused by the radiative corrections of the coupling to the lepton to first order, R,; and
0A . The question remains, however, as to how to include new physics in this scheme.

Physics from beyond the SM can be broadly classified into two types, depending on whether the tree-
level SM relations have to be changed to account for the new particles [164]. This means, for example,
changing the relations between the masses of the SU(2) bosons (2.20), inducing a mixing between SM
and new fields or altering the structure of the couplings (2.28) in a way that changes the form of the tree-
level matrix elements. This would further complicate the structure of the radiative corrections. On the
other hand, if the lowest order relations are not modified, then the part of the Lagrangian that describes
a process at tree-level is unchanged and the radiative corrections are formally identical to those from
the SM. The new particles contribute only through virtual effects in the loops and the renormalisation
constants, counter-terms and conditions can be used just as in the SM. In the context of this second case
there is also a useful distinction that is often made between “oblique” and “direct” corrections, the first
meaning the corrections to the bosonic propagators and the second to the couplings with the fermions. In
the absence of the latter, the effect of new physics can be effectively quantified by the Peskin-Takeuchi S,
T, and U oblique parameters [165].

In the presence of new physics that respects the lowest-order structure, the deviations from the tree-
level values of the observables can be parameterised in exactly the same way as in (4.68) and (4.69), with
0gr.r containing both the SM and new physics (NP) one loop contributions. To study the effect of new
physics on the muon-related observables, we do a similar parameterisation as before, but now consider
the effective coupling divided as g7 r = g’k + 0g g, With the first term containing the tree-level and
one loop vertex contributions from the SM and the second term the one loop terms that contain the new
fields. g 'y is taken to be small in comparison to g;. This means that now R, ~ IQSIM + 6R,; and
A FR flfcM + 0A ¢, with the first terms corresponding to the SM tree-level plus one loop values.

This parametrisation requires we take a more careful look at (4.67). Because we consider only the
corrections to the coupling with the muon, 6R,, depends on the weak current renormalisation factor
(1+T1(M %))‘% which unlike in (4.68) does not cancel. Moreover, the corrections to the Weinberg angle
(4.39) would also have to be taken into account in the expansion. Instead, we consider the following
transformation [129]

e 1
2swew \| 1 +11(M2)

L

;1
5 (\/EGMM%) Pl (4.70)
where G, is the Fermi constant and p s is the parameter that contains the terms that come from the
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corrections to the Z propagator and to the Weinberg angle. At tree-level, p s = 1. This parameter has been
computed experimentally to be p; = 1.0050 £ 0.0010 for leptons [122]. Hence, we use the transformation
(4.70) and consider pr ~ 1. As a consequence, we have G; g ~ g1 r and the expansion is similar to
(4.68) and (4.69).

Using the SM values in Table 3.2, for the muon we get

~ _ NP NP
ORey ~ 4.26189(5gL” + 3‘674355ng’ @71
NP )
OA, ~ —3.634296g122 _4'215425gRu .

It is now possible to compute the effect of new physics to R, u and ﬁ# by calculating the deviations
(4.71). Comparing the result with the experimental values in Table 3.1 serves as a constraint on the
parameters in ¢g;y, which must be such that when the new physics contributions are added to the SM
values, the final result is compatible with the experimental value.

New physics contributions to the Weinberg angle are constrained by the oblique parameters. Separat-
ing this component from the rest of the vertex corrections introduces an extra term in (4.71) proportional
to [166]

2 @ 1 2 2
Osy = ﬁ (ZS - chWT) . 4.72)
w W

From the best experimental values for the two parameters [47],

S =-0.02£0.10,
T =0.03+0.12,

4.73)

we see that at most the contribution to the observables is of the order of 107*. As such, we neglect all
new physics oblique corrections to the effective couplings and focus only on the vertex corrections.
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Chapter 5

New model

In this chapter, we describe the model used to test the muon-related constraint defined in 4.3. After
a general introduction on its origin and motivations, we present the field content of Model 5 and discuss
some bounds on the masses of the new particles and the nature of the dark matter candidate. The new
model leads to one loop diagrams for a number of flavour related processes which can be used to constrain
the parameter space of the model. We introduce the new physics contributions to these processes as well
as to the dark matter relic density, direct detection and Higgs invisible decays.

5.1 General description

The model studied in this work was first introduced in [33], being inspired by the model in [32]. It
originally intended to address the anomalies in the decay rates of the B meson observed at the LHCb [167,
168] while simultaneously providing a viable dark matter candidate. For that end, the SM was expanded
by adding two new scalar fields, one of them being SU(3). coloured, and an SU(2)., singlet vector-like
fermion. This is a spin—% particle whose left- and right-handed components transform the same way
under SU(2)r. As such, this fermion couples to a vector current Y7y, Y1 + YrYu ¥R = ¥y, and hence
the name. This particle was initially chosen to be the dark matter candidate, which is stable due to a
Z, symmetry that prevents it from decaying to lighter SM particles. A listing of similar renormalisable
models that introduce higher order contributions from new fields that couple to linear combinations of
SM fermions via Yukawa like interactions that solve the B meson discrepancies can be seen in [169].

In [33], the authors also take into consideration the tension in the measurements of the anomalous
magnetic moment of the muon and include constraints coming from contemporary experimental results
[96]. The models there defined extend the SM by adding three new fields: a vector-like fermion y with an
electric charge of 0 or +1, an SU(3), coloured scalar ®, and a colourless scalar ®;. The electric charges
of the scalar fields are determined by the following Yukawa Lagrangian

'£$P = yLizLi(DlXR + yQiaLiq)qXR +he, G.h

where y;, and yg, are constants, Ly, and Q;, are the SM left-handed lepton and quark doublets and yr
is the right-handed component of the vector-like fermion. To write the Lagrangian in a form similar to
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the SM Yukawa Lagrangian, only the right-handed component of the fermion appears. Together with the
scalar potential, this Lagrangian connects the SM to the new sector. This is where the interaction terms
relevant to solve the muon g — 2 anomaly and B — K u*u~ are written.

The lightest neutral particle will be the dark matter candidate. A Z; symmetry under which the SM
fields are even, ¢ — ¢5M  and the new fields are odd, VP — —¢™VF is introduced to guarantee
the stability of the dark matter candidate. Because the whole Lagrangian must be invariant under this
symmetry, the interaction terms that include fields of the extended sector must always have an even number
of the new fields. This effectively means that the lightest dark matter particle cannot decay, since the decay
exclusively to SM particles is forbidden.

By making different combinations of the fields’ representations under SU(2)z, and U(1)y charges, a
class of eight models in total was created. The representation of a field under the symmetry group has a
significant effect on the structure of the theory and consequently on the possible interactions of that field.
The models are numbered from 1 to 8 and the charge assignments for the fields can be seen in the tables of
[33]. In every model, the vector-like fermion y and ®; are singlets and @, a triplet under SU(3),.. Their
representations under SU(2), vary from model to model, with y being in a singlet, doublet or triplet
representation and the scalars either in a singlet our doublet representation. Model 2 has no electricaly
neutral particle and therefore cannot provide a dark matter candidate. In Models 1 and 6 the vector-like
fermion is self-conjugate and can have a Majorana mass term, which means there is no need to introduce
the left-handed component y to write a mass term. All models give similar results in terms of flavour
and dark matter physics and the differences between them are reflected in their allowed parameter spaces.
In this work, we use Model 5, which has already been thoroughly explored in [33].

5.2 Model 5

In Model 5, the scalars are singlets of SU(2);, and the fermion is a doublet of the same group, y =
(x°, x7). The quantum numbers of the new fields can be seen in Table 5.1.

Table 5.1: SU(3)., SU(2), and U(1)y charge assignments for the new fields of Model 5.

SUB)e SUQ2) Uy

YR 1 2 172
@ 1 1 0
o, 3 1 23

Having in mind the representations and charges in Table 5.1 and the SM expressions (2.6) and (2.7),
the covariant derivatives for the new scalar fields are

D,®, =3, (52)
2 28
Dyu®q = 0, ®q +ieS A + lggc—WZ'u(Dq. (5.3)
w

Because @; is a neutral singlet it does not couple to any of the SU(2);, X U(1)y gauge bosons. The QCD
couplings of @, are irrelevant for the following discussion, so they are not shown here explicitly. y is a
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vector-like fermion, hence both its left- and right-handed components transform the same way under the

gauge group. The covariant derivative is

O — 127, Lw 0
X
DuxL,Rr = _ . fow 'ul L.R (5.4)
_lHW# Oy —ieA, —1% (—§+s%,v) Z, XL.R
The gauge kinetic Lagrangian for the new fields is then given by
LY = (D, )" (D*®) + (D, ®,)" (D" D) + Xiy"Dux, (5.5)

with the derivatives defined above.

x is charged under U(1)y, so it cannot have a Majorana mass term [41]. However, since the left- and
right-handed components of y transform the same way under SU(2), the vector-like fermion can have a
Dirac mass term m, (7 YR + X p 1), Which is invariant under the symmetry group. Both the neutral and
charged component of the doublet will by definition have the same mass. Writing the Yukawa Lagrangian
for Model 5 in the fermion mass basis by rotating the quarks and leptons to their mass eigenstates and
including the mass term gives

)’el

LY =myX 1 XR+Ya, (uL Vixe+dr, )(R)<I> + =L (S+iA) (VL Ujixs+er, )(R) +he, (5.6

with yg4, and y,, obtained from yp, and y;, using the CKM and PMNS matrices V and U, respectively.
We assume that the flavour and mass basis are aligned for the charged leptons and down-type quarks. In
order to suppress the strong flavour constraints on the first generation fermions and keep the number of
interactions to a minimum, in [33] the authors only consider y;, ys and y,, to be nonzero.

The most general scalar potential for Model 5, V5 = Vs (H , Dy, (Dq), is given by

’

2 He,
Vs == i3y 1HI + i, 100+ 413, |0+ A2t 1HI' + Ao 1041+ Ao, @[ + 2 (0] + 07)

2 2
+Ana, [HI? | @1 + Ao, 1HI? @] + Aoy, |01 @y (5.7)

/}'H(Dl /ld)lq)q

2
i ((I)lz + (I)}"Z) +

(P (0 +072) +
4

@ (@} + ;).

which introduces thirteen free parameters. The scalar fields written in the unitary gauge as in (2.14). H
is the SM Higgs doublet,

0
H:[‘/%(v+h) (5.9)

with a vacuum expectation value (vev) v = ./ u%{ [/Ag ~ 246 GeV [47]. Only the Higgs acquires a non-
zero vev. h is the Higgs boson field. The neutral scalar ®; can be decomposed in its real and imaginary
parts as ®; = (S+iA) /V2. The potential must be bounded from below so that there is a minimum
energy state. This condition leads to constraints on the parameters of the potential. However, these are of
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no relevance to this work.
To obtain the masses of the scalars, one simply has to compute the minima of the potential in relation
to the different fields. This gives the following mass spectrum

I
m, = 247, Mo, = o, + 30,V (59)

Mé = ,uél +/,th + % (/chpl +/l;qq)l) V2, Mf‘ = ,uél - ugl + % (/lH(p, - /I}I(Dl V2.
Notice that S and A have the same mass if /,lgl = —%/l;lq)lvz.

The lightest neutral particle will be the dark matter candidate, so it will either be the neutral component
of y or the real or imaginary part of @;. If y° were to be considered the dark matter candidate, its mass
would have to be of the order of TeV to avoid experimental constraints from direct dark matter searches,
because it has a very large dark matter-nucleon scattering cross section due to tree-level Z mediation. The
large mass is required to balance the strong gauge coupling to the Z in the cross section. But in that case,
the other new particles would be required to have masses even greater, which would make the new loop
contributions necessary to solve the muon-related problems too small. As such, and because the flavour
phenomenology is the same for the real and imaginary parts of the neutral scalar, S is chosen as the dark
matter particle. This means that a choice is made for Mg < M4, or equivalently ,ugl < —%/l;m)lvz.

Even before considering constraints related to flavour physics and to the couplings to the muon, it
is possible to indicate some bounds on the masses. LEP searches for charged vector-like leptons [170]
predict a lower mass of 101.2 GeV for y*, meaning a similar limit for the neutral component in Model
5. More recent constraints from the LHC do not apply to this scenario, since they assume the fermion
couples to the tau [171] or a small amount of missing transverse energy in the final state [172]. The colour
charged scalar @, can be produced in pure QCD processes [33] and then decay through ®, — gy, with
g a second or third generation quark. The dominant decay of the vector-like fermion is to Sv,, or Su*,
depending on whether it is the neutral or charged component. The decay of ®, can then generate the
following signals in detectors: ®y, — jj +utu~ + £, jj+u*+ E, or jj + Er, where j represents a
final state jet and £ is a missing transverse energy associated with the dark matter particle S. According
to [32], for a model where the colour charged scalar is a doublet of SU(2)y with Y = 1/6, LHC data
[173] for the final signature suggests that Mg, > 1000 GeV. This result is valid for Model 5, because the
production process for the coloured particle is the same [33]. Finally, if S is the dark matter candidate,

then by definition all other Z,-odd particles must be heavier.

5.2.1 Flavour and dark matter constraints

As previously mentioned, Model 5 aims to introduce a dark matter candidate and present a possible
solution to the discrepancies in the measurements of the magnetic moment of the muon. To fit the model
to experimental data, in [33] a number of physically relevant processes to which this extension to the SM
contributes were selected. Matching these processes with experimental results significantly restricts the
parameter space. In this work, the same set of measurements is used, but with the results from B meson
decays constituting just another constraint and no longer a source of tension with the SM to be resolved.
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5.2.1.1 Muong -2

The new fields of Model 5 contribute to the magnetic moment of the muon through the diagrams in
Fig. 5.1. The one loop new physics contribution for the anomalous moment (2.46) is given by [174]

Ad = bl 2 2 5.10
a, —W[ 7(xs) + 7(XA)]’ (5.10)

: ) 2
with xg 4 = MS’A/mX and

1—6x+3x2+2x3—6x2Inx
12(1 —x)*

Fr(x) = (5.11)

AaY} is constrained by the recent FermiLab results a, " = 116592059(22) x 10~'! [31].

Ko S, A Ko

Figure 5.1: Feynman diagrams for the anomalous magnetic moment of the muon.

5.2.1.2 Dark matter

The first important dark matter measurement to be considered is the relic density. In Model 5, the
standard freeze-out mechanism is assumed to be responsible for the generation of dark matter. The relic
abundance of S is obtained by solving the Boltzmann equation [47],

dns
ar +3H(t)ns = —(ov) (né - ngz) , (5.12)

where ng is the number density of the dark matter particle S, H(¢) is the Hubble parameter, (ov) is the
thermal average of the dark matter annihilation cross section times the relative velocity v and ng is the
equilibrium value of the number density.

S SM
RS h .
s SM

Figure 5.2: Feynman diagrams for the dark matter annihilation channels with Higgs mediation (left) and y medi-
ation (right). ”SM” represents all massive SM particles.
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The main dark matter annihilation channels are represented in Fig. 5.2. In [33], the authors note
that when M4 — Mg or m,, — Mg is smaller or comparable to the temperature of the universe, other co-
annihilation processes become relevant in predicting the relic density. The current benchmark for the dark
matter relic density is the result of the Planck Collaboration, which gives Qp s h? =0.1200+0.0012 [69].

Another important restriction related to dark matter comes from direct detection experiments, which
are concerned with dark matter-nucleon scattering processes. The main signal for Model 5 is due to the
t-channel diagram in Fig. 5.3 (left), with tree-level Higgs mediation. The cross section is

2
!’
(10, +25,) " 22,

o (SN — SN) = - Yo
S h

) (5.13)

with my the mass of the nucleon N and uy = MsMpy /(Ms + My) the reduced mass of the S — N system.
fn = 0.3 represents the effective Higgs-nucleon coupling [175-177]. Currently, the best upper bound on
the dark matter direct detection cross section for masses above 6 GeV is from the LZ experiment [178].

Figure 5.3: Feynman diagrams for SN — SN and 7 — SS.

The final dark matter constraint arises from collider searches, in particular Higgs invisible decays.
When the mass of the dark matter particle is small enough that the Higgs can decay to it, in this case
Ms < M}, /2, one can resort to the experimental bounds on the invisible decay width. In Model 5, this is

given by
2 2
T'(h— SS (AH(DI”&”) ’ Mg 5.14
(h=588) = —=701, M (5.14)

for the process in Fig. 5.3 (right). The most recent bounds for the Higgs invisible decay are given by the
LHC Collaboration [47].

5213 B— K®utu-

Starting in 2014, results from the LHCb Collaboration [167, 168] for the exclusive branching frac-
tions R(K™) = B(B — K™ pu*u~)/B(B — K™ e*e™), were in disagreement with the SM [179, 180]
in which RSM (K(*)) = 1. Other observables sensible to hadronic physics complemented this conclusion
[181-185], with all these phenomena related to the transition » — su*u~. This apparent suggestion
of violation of lepton flavour universality served as motivation for constructing the class of models in
[32]. The most recent results from the LHCb are now compatible with the SM [186, 187]. After the
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implementation of stricter particle identification criteria and improved rejection of misidentified and par-
tially reconstructed background, all measurements of R(K*)) in B — K y*u~ coincide with the SM

prediction,
RJ® = 0.949+0:04240.022 R =1.0007 + 0.0003, (5.15)
RPP = 1.027+9072+0.027 RSM =0.9832 +0.0014, (5.16)

with the first set of errors in the experimental results being statistical in nature and the second systematic.
The fact that there is no longer tension between theory and experiment does not mean this observable
should not be considered, since it still provides useful constraints. Moreover, b — su*u~ related ob-
servables still exhibit large deviations from SM values. Hence, the new results for R(K*)) can be said to
suggest anomalous b — se*e™ transitions with possible implications for new physics [188, 189].
The flavour changing neutral current b — su* ™ is described by the effective Hamiltonian [190, 191]
4GF

Heor = —thbvt*s (Cé\IPOg + C%POlo) 5.17)

where C}* and C} are the new physics Wilson coeflicients for the operators

a _ _ a _ _
o [5y” Prb] [Eyvul s O10 = 1 [57"Prb] [7yv Y 1], (5.18)

T 4n

in the operator product expansion [38]. The operators get contributions from three diagrams in Model 5,
the box and penguin diagrams in Fig. 5.4. The Z penguin diagrams are neglected, being suppressed by a
factor mi /M2, and of the remaining two the box diagrams offer the dominant contribution.

Figure 5.4: Feynman diagrams for B — K®) ™.

The box diagrams contribute to the Wilson coefficients in (5.17) as [174]

wly (2
C;ox — _Ci())x — \/E ysybb]/l
AGFVip Vs 647ra/m)2(

[F(xo,.xs) + F(xo,,x4)] , (5.19)

with

1 x% Inx; x% Inx;

Flx) = =) T U om P =) T (=m0~

(5.20)
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and xg,,5,4 defined as before. From these results, C;* ~ C3™ = —~C)¢* =~ C\7.
The best value for the Wilson coefficient that takes into account the updated results from the LHCb
is ;¥ = -0.19 = 0.06 [189].

5214 By — utu-

The decay process By — u*u~ can also be used to help constrain the model, since it depends on the
O operator. In Model 5, the box diagrams in Fig. 5.5 contribute to this decay. The branching fraction
for this channel is obtained from the SM one [192] replacing the SM Wilson coefficient with the new
physics one [193],

2032 .2 2
G.m 2 4dm

BN (By — p'u7) = fzmpstas———5— Vi Vi[O | 1 = =5 (5:21)
167 my

where fé is the meson decay constant and m g, and 7g are the meson’s mass and lifetime.
S 8

b X H b
I 0w
@, ! 'S, A X lezv<
L e T, I
s X ur 5

Figure 5.5: Feynman diagrams for By — u*u~.

The most recent SM prediction for this decay is [192]
BM(By — putp”) = (3.65+0.23) x 1077, (5.22)
and the best experimental value comes from the LHCb Collaboration [194],
BEP(By — ptum) = (2.779%) x 107, (5.23)

5215 b — sy

The process b — sy gets contributions at the one loop level in Model 5 and can be used to further
constrain it. The diagrams are represented in Fig. 5.6. The effective Hamiltonian for this case is given by
[174]

4G

Heg = _fvﬂ,v,*s (CX07 + ¥ 03) , (5.24)

with the operators

e .
07 = ——my5o* PRDF,,, O = 2 500" PRT

= o 45bpGY,,. (5.25)
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F,, and G;,, are the photon and gluon field strength tensors and g is the strong coupling constant. @ and
B are colour indices.The operator Og does not give a direct contribution to b — sy, but because of the
renormalisation group running from QCD [195, 196] there is a mixing effect between O; and Os. The
Wilson coeflicients for the Model 5 contributions are [174]

* 2

o V2 sy Iyl [
" AGEVwV 2m?

V2 ysy?,ly,u|2

v = Fi(xa, ), 527
ST IGO0 7(xa,) (5.27)

Qo, F1(xa,) — 0y F7(xe,)] (5.26)

where F7 is given by

2+3x —6x2+x3 +6xInx

F7(x) = 201 —x)? (5.28)
Y
D, PILEN
45—1/—)(2\—F
Figure 5.6: Feynman diagrams for b — svy.
The most recent SM prediction for this decay is [195, 196]
BM(h - sy) = (3.36 £ 0.23) x 1074, (5.29)
and the best experimental value comes from the HFLAV Collaboration [197],
BEP(h - sy) = (3.32+0.15) x 107*. (5.30)

For b — s and By — B, mixing the constraint on the model is defined through secondary quantities
instead of using the cross sections or branching ratios directly. For the first process, following [174, 198],
from the ratio

B(b — sy)

2\T )~ NP
G S o) 1=-2.7(C, +0.19C"), (5.31)

Rb—>sy =

combined with (5.29) and (5.30) to obtain R, = (0.7 £ 8.2 x 1072) at a 2 o level, one gets

|C)" +0.19C)"| < 0.06. (5.32)
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52.1.6 B, - B, mixing

The final flavour constraint is related to the By — By mixing. The effective Hamiltonian that describes
the contributions to this process is given by [33]

Her = Cyg [Sa¥*PLbo] [Spy* PLbg] - (5.33)
the Wilson coefficient for the Model 5 contribution in Fig. 5.7 is

o (ysy3)?

55 gy 00 (5.3

with F defined as in (5.20).

S
| £a¥
@l
S
Qe«
@l

s 4)( b § D, b

Figure 5.7: Feynman diagrams for By — By mixing.
The limit for Cg% is determined from the ratio [198]

AME*P
AMM

Ram, = —1=-0.09+0.08, (5.35)

where AM;EXp and AM SSM are the experimental mass difference between B, and B, and its SM value,
which can be written in terms of the Wilson coefficient in the following way [199]

NP
0.8C —(un)

1+
NP
Coz(un)

Ram, = —1. (5.36)

Cg%(,u 1) is the Model 5 coefficient computed at an energy scale uy = 1 TeV and Cg%(,ub) ~7.2x1071
GeV 2 is the SM value at the energy scale up [200].
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Chapter 6

Results

In this chapter, we present the new physics corrections dg;'y to the muon-related observables R, u

and ?A(#. We use the packages FeynRules [201, 202], FeynArts [203, 204] and FeynCalc [205, 206] to
calculate the Model 5 diagrams that contribute to the vertex corrections and write an analytical expression
for the loop integrals. With the package LoopTools [207], we investigate the impact of each component
of the vertex corrections and see how Iée,u and f(,u depend on the parameters. Finally, we show the
results of a random scan over the parameter space of Model 5 where we apply the flavour and dark matter
restrictions in 5.2.1 and a new constraint for the muon-related observables.

6.1 One loop radiative corrections in Model 5

Model 5 extends the SM by adding two new scalar fields and a vector-like fermion. However, the
proprieties of the fields are such that the electroweak gauge group remains the SM SU(2);, X U(1)y, with
only the SM W*, Z and vy bosons. The Z; symmetry forbids the mixing between the SM fields and any
of the new ones as well as couplings with an odd number of the new particles. The tree-level structure of
Z — f*f~ and ete™ — f*f is the same as in the SM. All of the conditions set forth in 4.3 apply to
Model 5, meaning that the method there described is valid.

In order to determine the one loop new physics contributions to the processes and how they impact the
observables, one must calculate all new diagrams that contribute to the vertex (4.48) and to the yZ mixing
self-energy (4.59), as well as any new box diagrams. Because the new fields only couple to the second
generation fermions, no new box diagrams coming from Model 5 for ete™ — f*f~ are allowed. This
characteristic of the model simplifies this approach even further, since the corrections to the couplings
for both processes are precisely the same, which in general need not be the case.

6.1.1 New diagrams

The model is written in the Mathematica [208] package FeynRules [201, 202], which identifies the
allowed interactions, and then FeynArts [203, 204] is used to generate the diagrams. The amplitudes
are calculated with FeynCalc [205, 206] and written in terms of the Passarino-Veltman functions [143,
209].
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6.1.1.1 Vertex diagrams

There are two vertex diagrams from the extended sector contributing to the vertex corrections. At
one loop, only the vector-like fermion couples to the Z boson, with the neutral scalar closing the loop in
the vertex diagrams. One diagram has the real component and the other the imaginary component. The
analytical expressions for these diagrams are formally identical,

6.1
. e
pkr— (AZP(S)PL + AgP(S)PR) + (g2 = q)uNy" () + (g1 + 42)uysART (s),
with the contributions to the left- and right-handed couplings at the Z pole
32
AgP(M%) :Wiz(c%‘, - s%v) [Bo(Mz,mi,,mi,) + (Mé - mi,)Co(mi,mi, Mz,mi,, Mg,mi,)
6.2
- 2C00(mfl, M%, mi, Mg, m)z(, m)z() + ZmiCl (mi, M%, mi, Mé, m)z(, m)z()] 6.2)
+ Mg < My,
y2m>
NP 142 W22 2 2 a2 2 a2 2 2 g2 2 g2 2 2
AR (MZ) == 647'[2 (CW - SW) [C()(mﬂ, m/‘, MZ7 m/\/, MS’ m/\/) + 2C1 (m‘u’ MZ’ m‘u’ MS9 m/\/’ m)()]
+ Mg & My,

(6.3)
with Mg < M4 representing the expression for the second diagram, which is similar to the first but with
the masses changed. The final two terms correspond to the anomalous magnetic moment, AYF and to
the pseudoscalar couplings, All\f P in (4.47),

2
m
NP 2 y.u Ho2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ay (M7) = ———(cyy = sw) |Ci1(my, M, my, Mg, m,m:) + Ci1(my,, M5, m,,, Mg, m’, ,my)
6472 M o S My My % o S Ty My
2 ag2 2 g2 2 D 2 242 2 ag2 2 2
+C12(m'u,MZ,m'u,MS,mX,mX)+C1(mﬂ,MZ,mﬂ,MA,mX,mX)
2 2 2 2 2 2 2 2 2 2 2 2
+C11(mﬂ’MZ’mﬂ’MA9mX’mx)+C]Z(mﬂ7MZ’mﬂ7MA9mX’mX)]v
(6.4)
yym
NP 2 | ) 2 2 2 2 2 2 2 2 2 2 2 2 2
Ap" (M7) = ——(cy — sw) |Ci(my,, M5, m,, Mg, m’ ,m3) + Ci1(my,, M7, m,,, Mg, m,,m’)
647r2 M M ST Ty M M ST Ty
2 ag2 2 g2 2 2 2 ag2 2 a2 2 2
—Clz(m#,MZ,mﬂ,MS,mX,mX)+C1(m#,MZ,mH,MA,mX,mX)
2 ag2 2 ag2 2 2 2 ag2 2 a2 2 2
+Cr1(m,, My, my,, M3, my,m%) — Cia(my,, M3, m>,, M3, m5,m3)].
(6.5)
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6.1.1.2 Muon self-energy diagrams

Like for the vertex contributions, there are only two new muon self-energy diagrams with the scalar
®; and the fermion y in the loop. The two diagrams are also formally identical and for on-shell muons
read

2
/ \ y
> ' = —32’7‘1 5By (m,,my, Mg ,)PL. (6.6)

6.1.1.3 yZ self-energy diagrams

Three diagrams contribute to the yZ mixing self-energy, which enters the corrected vertex through
the renormalisation of the vertex itself in (4.28) and the yZ propagator correction. Two of them, a self-
energy diagram and a sunset diagram, have the scalar ®, in the loop. The third includes the vector-like

fermion. These diagrams lead to the following contributions to the transverse part of the propagator:

et
- M) (6.7)
X ; T 8nZcy O ®a” ‘
’\/\/\/\/\/\/\/\\/\\/N//\/\/\/\/\/\/\/\/
Y Z
2,
)
e, ¢ swp (s, M2 M2 ) (6.8)
A PINANNANNN & ——m e —— S, . . .
Y % ! Z 97T2CW 00 Pq Pq
\\<+,
q)q
v
2 2 2
e’ Cy — Sy 2 2
=— sBo(s,m*,m
Y Z 162 swc 08, 1y 1y
(6.9)
X+
2 2 2 2
e Cy =Sy 2)_3_2 W_SWBOO(S m2, m?)
812 swew X 42 swew TXTX
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Following the on-shell renormalisation prescription, the diagrams must be evaluated for zero exchanged
momentum to calculate the counter-terms in (4.28). For d = 4 [210],

1
Boo(p?,m3,m3) = 3 [Ao(m?) +2miBo(p?, m}, m3) + (p* +m3 — m3) By (p*, m3, m3)
2 (6.10)
+m?+m3 - ?]

which for p? = 0 and m; = my = m simplifies to Byo(0, m?, m?) = %Ao(mz). Applying this result to the
diagrams gives

@, @,
+«,W\//h‘ L W Ao(M2 ) e swl Ao(M3, ) =0 (6.11)
. \ %A% = _ _— =
o oo oo 2 1872 cw N Heog) ™ 92 cw 2 Ao
W ‘qﬁq -
and
2 2 2 2 2
e CW_SW 2 e* cy = syl 2
=——A - W Wy =0. 6.12
v z 87‘1’2 SwcCw ( ) 7'[2 SwCw 2 O(m/\/) ( )
X s=0

Hence, these diagrams do not contribute to the counter-terms.
At the Z pole these diagrams do not cancel and as such give a non-zero contribution to the yZ mixing
propagator corrections, but as explained in 4.3 these are left out of our calculations for the vertex.

6.1.2 Impacton R,, and A,

The deviation to the left- and right-handed couplings at the Z pole coming from new physics can be

written as
ZNP (0) ZNP( )
SwcCw
68k = — AR (M2) + g1 ROZ} g, — gL,R— s— +swew ———, (6.13)
Sw MZ MZ

with 6Z}'", defined as in (4.35) for the muon self-energy diagrams in (6.6). ZNP is the sum of the new one
loop yZ mixing diagrams, which for this model calculated at s = 0 gives zero. The terms proportional to
the momenta are not included in this definition, since they do not contribute to g;,_g. They are discussed
below.

By looking at the expressions for the diagrams alone one would assume that |6gf"| > |6 gg“", since
Ogr" o mlzl In fact, that the left-handed coupling was larger than the right-handed was expected from
the Lagrangian (5.1), where by definition y and ®; couple to ;. To get the right-handed coupling a
mass insertion would be required, with a new term poportional to m, and hence supressed. dg;y are
functions of the masses m, , Ms and M4 and of the coupling y,,, as well as of SM parameters. By varying
the relevant free parameters in those functions, one can get a more accurate assessment of the possible
importance of the corrections. The input values for the Model 5 quantities are varied in the following
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intervals

Ms € [5,1000] GeV,

[
M € [Ms + 10, 1000] GeV.,
A € [Ms ] (6.14)
m, € [max{Ms + 10, 101.2}, 1000] GeV,
[

Yu € [0,4n],

and the rest fixed to their SM values [47]. Because S has to be the lightest particle, following [33] the
lowest allowed masses for A and y have to be 10 GeV higher than Mg. This minimum difference of
10 GeV is an arbitrary definition related to the random scan. Values for the masses of the particles that
were too close could lead to numerical instabilities. The maximum values of 1000 GeV were chosen
to coincide with the search ranges of current dark matter experiments. The mass of the fermion has to
respect the LEP limit of 101.2 GeV as well. The mass of the coloured scalar @, is fixed at 1500 GeV.
We have chosen an upper limit of 4 for y,, instead of the more conservative bound of V4r in [33]. This
is to better gauge whether the muon-related constraints provide a limit for this quantity. A discussion
about the limits on y, can be seen in [34]. In Fig. 6.1 we show dg['; as functions of Mg, m, and y,,
for 10* random points were the parameters obey (6.14). The Passarino-Veltman functions are computed
numerically using LoopTools [207].

200 400 600 800 1000

-1.x107

Q0 _1.5x107

-2.x107
-25x107

3200 400 600 800 1000 0 “600 800 1000
M;s (GeV) my (GeV) Yu

Figure 6.1: Scatter plot of dg'y in terms of Mg, m, and y,, for 10* random points where the free parameters are
varied in 6.14. |6g"| is always at least 100 times larger than |6gRT|, with the largest deviations corresponding to
8¢ = —0.022 and 5gI* = —8.043 x 1078.

As shown in the plots, both 6g"* and dgX* are negative, but differ by several orders of magnitude. At
most, [6gM*| ~ 1072, whereas |0g\| ~ 1078, This means that the left-handed correction can be of the
same order of magnitude as the SM electroweak corrections [129]. For every point, |6g"| is always at
least two orders of magnitude greater than |5g}*|. Proceeding in a similar manner for AI;I,P and AII}I/IP gives
maximum values of |A§P| ~ 1077 and |AI‘A2°| ~ 1078, with Aﬁp > 0and A%P < 0. All contributions are
orders of magnitude smaller than dg;", and are as a consequence neglected. This explains why it is safe
to remove AI‘AfIP’P from (6.13).
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—————————————————————————————————————————————————————————

099 100 101 1.02 1.03 1.04 1.05

Rey

Figure 6.2: Plot of R, u— flﬂ for 10* random points shown in red. The central SM value is show in blue and the
experimental value in green. The green box represents the 1o~ uncertainty interval around the experimental point.
ORc, and 6A,, are always positive. Most of the points lie outside the experimental uncertainty range.

dg;" being negative means that according to (4.71), both 6 R, and 6.A,, are positive. This would not
necessarily be the case if 5gi" were not negligible in comparison to 6g*. Fig. 6.2 shows how randomly
varying the input parameters in the intervals in (6.14) affects the observables. The points shown in red
are obtained by summing 6R., and 6. A, calculated for the random points to the respective theoretical
values. The blue and green points represent the best SM prediction and the central experimental value
for the observables from Table 3.1. The green box encompasses the region defined by the 1o experi-
mental uncertainty range. Fig. 6.2 shows that many points are excluded at 1o-. This indicates that these
observables can effectively be used to limit the allowed parameter space and get tighter bounds on (6.14).

Further information can be obtained by looking at the Mg — M 4 plane for different values of m, and
of the coupling y,. In Fig. 6.3, we plot the regions of parameter space that keep Iée“ and fl,u within
their 1o~ uncertainty range for m, = 200, 500 and 600 GeV. Each region corresponds to a fixed valued of
v, and the higher the value of the coupling, the darker the shade of orange of the associated region. The
different regions overlap. The grey shaded area marks the combinations of Mg and M 4 that are out of the
allowed ranges in (6.14). The first thing to note is that the Mg < M4 exchange symmetry is visible in
these plots, which are symmetric. Moreover, from these plots it is clear that the higher the value of y,,,
the smaller the allowed region for a fixed mass of the fermion, particularly for lower values of Mg and
M 4. On the other hand, if the coupling is kept fixed, then the constraints become weaker the higher m,,
is.

6.2 Parameter space scans

To see how Model 5 fares against the constraints of 5.2.1, we perform a multiparameter scan to identify
the common regions of allowed parameter space. Our procedure builds on the work in [33, 34], for beyond
the dark matter and flavour related constraints, we consider also a new constraint coming from the muon-
related observables.
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Figure 6.3: Mg — M4 parameter space regions for which R, « and f(ﬂ are within their 1o~ uncertainty range for
fixed values of m, and y,,. For fixed m, , darker shades of orange correspond to higher values of the coupling. The
grey zone is excluded because M4 > Mg + 10 GeV and m, > Ms + 10 GeV. Higher values of y, lead to more
stringent constraints for fixed m, . If y,, is fixed, the constraint becomes less stringent for larger .

We perform a random scan of more than 10° points over the whole parameter space. The input
parameters are the masses Ms, Ma, my and Mo, the Yukawa couplings y,, y» and ys and the scalar
couplings Age, and ’lchp, . Because the scalar couplings enter (5.13) and (5.14) exclusively as Ay o, +/l;1¢,l s
we choose to take Age, = /l}lq)l. Moreover, the new Yukawa couplings to the b and s quarks always
appear combined as ypyj, which is required to be negative to agree with [189]. We then consider both
vp and yg to be real and yg = —yp, /4. Finally, after these simplifications, there are seven independent free
parameters. Mg is fixed at 1500 GeV and the remaining masses and y,, are varied in the same intervals
as before (6.14). |yp| and Aga, + /l,H<I>l are both lesser than or equal to one.

The first set of tests applied to the data are the flavour constraints related to B — K™ y*u~, By —
utu~, b — sy and By — Bs. A random point is accepted if it lies within the 20~ experimental range.

According to the discussion in 5.2.1, this means

C¥ € [-0.07,-0.031],

B(By — utp7) e [1.7x107%,3.9x 1077],
|C)" +0.19C}"| € [0,0.06],

Ram, € [-0.25,0.07].

(6.15)

The points that fail to verify these conditions are rejected. The second set of tests comes from the dark
matter constraints. We use micrOMEGAS 5.3.41 [211, 212] to solve the Boltzmann equation (5.12) nu-
merically. The code takes into account all annihilation and co-annihilation channels. The results must
reproduce the current relic abundance to a 20~ level, Qgps h? e [0.117,0.122]. The points must also be
within the direct detection limits and the 20~ bound of the Higgs invisible decay, I'(h — SS) € [0,0.11].
The final flavour related condition comes from the anomalous moment of the muon. We consider that a
point is valid if it agrees with the most recent results for g —2 to 3o, Aaﬁ”’ € [105x 107'1,393 x 10~ 11].

On top of the previous conditions, we define a new constraint from the muon-related observables R,
and A,. A point in the parameter space is accepted if Iéfﬁ” +0R.y, and ﬁﬁM + 0A,, with the deviations
defined as in (4.71) and the corrections to the couplings (6.13) are within the respective experimental
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uncertainty intervals. Using the values of Table 3.1, this translates to

—0.002 < 6R.; < 0.004,
-0.02 < 6A, <0.01.

(6.16)

In the following plots, the cyan points satisfy all flavour constraints and the blue points agree in
addition with the dark matter relic density. Together with the previous constraints, the green points also
verify the dark matter direct detection and Higgs invisible decay limits. The red points are the ones that
satisfy the anomalous moment constraint as well as all flavour and dark matter constraints. Finally, the
yellow points agree with all constraints, including the one coming from the muon-related observables
(6.16). The results of the scans are shown in Figs. 6.4 and 6.5.

1000

s00 R - P

M, (GeV)

5 10 50 100 500 1000

m, (GeV)

5 10 50 100 500 1000 5 10 50 100 500 1000

M;s (GeV) Ms (GeV)
Figure 6.4: Allowed parameter space projected in the planes Mg — M4 (top left), m, — y, (top right), Ms —m,
(bottom left) and Mg —y,, (bottom right). The cyan points agree with the flavour constraints (6.15). In addition the
blue points verify the dark matter relic density results and the green points also the direct detection and invisible

decay results. The red points agree with all previous constraints as well as the muon g —2 limits. The yellow points
satisfy all constraints including the one from the muon-related observables.

The results are consistent with [33], with the updated values for the flavour and dark matter results
not changing the overall allowed regions. All points verify the By — u*u~ and b — sy constraints,
which do not limit the parameter space. Of the dark matter constraints, the relic density provides the
weakest restrictions, with the direct detection constraints inducing some bounds for Mg for y,, < 5.5 and
my < 225 GeV. Considering the 30~ limit, the muon g — 2 provides the strongest constraint, excluding
many green points. The behaviour observed in the m, -y, plot on the top right of Fig 6.4 is consistent
with (5.10). Higher values of m, require higher coupling strengths in order to verify the g — 2 constraint.
This would still be the case had we considered y,, < V.
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The new constraint coming from the muon-related observables excludes few of the red points that
passed all the other tests. A « proves much less restrictive than R, u» with all the red points being accepted
tolo. R, u still eliminates a small strip in the m, — y, plane. However, if this condition is relaxed to 2c,
then all red points are accepted.

0.0 0.2 0.4 0.6 0.8 1.0 10 50 100 500 1000
[yl M (GeV)

Figure 6.5: Allowed parameter space projected in the planes |y;| — y, (left) and Ao, + /l,ch, (right). The cyan
points agree with the flavour constraints (6.15). In addition the blue points verify the dark matter relic density results
and the green points also the direct detection and invisible decay results. The red points agree with all previous
constraints as well as the muon g — 2 limits. The yellow points satisfy all constraints including the one from the
muon-related observables. The clean separation of the green points is due to the experimental bound from [178].

Using the precision results at the Z pole for the muon observables is a means of obtaining a valid
experimental upper limit for the coupling y,,, something which was missing in [33, 34]. For that reason,
unlike in the previous analysis of this model, y,, was allowed to vary up to 4. Extending the range of
the search ends up providing a new upper limit for Mg. Because of the positive correlation between Mg
and m, visible in the bottom left plot of Fig. 6.4, since the latter can now go up to 1000 GeV, the highest
allowed value for Mg also increases slightly to 389 GeV from 350 GeV in [33]. The higher values for the
coupling also lead to a different behaviour in the plot of Mg — Ao, + /I;I(Dl in Fig. 6.5. The extended
range for the coupling strength fills the region for Mg < 30 GeV which was mostly inaccessible in [33].
Finally, raising the coupling strength to 47 leads to a new lower bound for |y,| of 0.07.

The bounds to the parameters that result from the application of the muon-related observables .?A(#
and R, u are

M € [45,389] GeV, yu € [1.1,4x],
My 2 55 GeV, 0.07 < |ys| < 0.63.
my 2 101.2 GeV,

For the mass ranges used in this work, the muon-related observables do not impose an upper bound on
Yus M orm,y,.

The method here discussed can be applied directly to the process Z — 7*77 if one considers that the
NP particles have a Yukawa coupling to the tau like that to the muon. The diagrams for this case are the
same as for the muon, with only the mass and coupling needing to be replaced. Using the values in Table
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3.1 to compute the limits to the tau related observables we get

—-0.0009 < 0R.r < 0.007,
—-0.03 < 6A; < 0.004.

(6.17)

With these limits, we reproduce the plot of Fig. 6.3 for the tau. Fig. 6.6 shows the regions of parameter
space that keep R, and A, within their 20~ uncertainty range for m ¥ = 200 GeV in the Mg — M 4 plane.
As before, each region corresponds to a fixed valued of y,, or y, and the higher the value of the coupling,
the darker the shade of orange of the associated region. The behaviour is similar to what was shown for
the muon. A direct comparison between the two plots does not give much information on the relation
between experimental precision and the constraints, since the SM prediction for R, lies outside the 1o

experimental range.

m,=200 GeV m,=200 GeV
1000F " ' 1000~ g ‘ '
800} 800
= 600} = 600}
< | <
g a00r- - [ N . g 400¢
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0 200 400 600 800 1000 0 200 400 600 800 1000
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Figure 6.6: Mg — M, parameter space regions for which R, ™ fl#, R.; and f(,, are within their 20~ uncertainty
range for m, =200 GeV and fixed y, or y.. Darker shades of orange correspond to higher values of the coupling.
The grey zone is excluded because M4 > Mg + 10 GeV and m, > Mg + 10 GeV. Higher values of y,, or y. lead to
more stringent constraints for fixed m,, .
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Chapter 7

Conclusion

With this work, we intended to present a method to use precision muon-related observables as a means
to constrain BSM models. Our study was primarily motivated by recently proposed models that attempt
to solve both the muon g — 2 problem and present a viable dark matter candidate. These models require
strong couplings between the new fields and the muon, which can be probed by studying the decay of
the Z boson to muons. We select two Z pole observables, the muon asymmetry parameter A, and the
ratio of the hadronic decay rates R., = R./R,. This second quantity was chosen over the decay rates
themselves to eliminate the final state QED corrections.

We followed Hollik’s renormalisation scheme and successfully identified how the new physics cor-
rections affect the matrix elements for Z — f*f~ and e*e™ — f*f~, the latter used to get A,. We
concluded that, under the specific conditions where new physics leaves the tree-level structure of the
theory unchanged, the one loop matrix element has an approximate Born-like expression. The left- and
right-handed couplings g7 g get additive terms from the vertex corrections and the corrections to the
propagators result in a redefinition of the QED and weak neutral current couplings and of the Weinberg
angle.

We tested the impact of our new constraint on a model designated by Model 5, which introduces a
vector-like fermion y and two scalar singlets of SU(2)z, ®; = (S +iA)/V2 and ®,, the second with
a colour charge. Through our review and analysis of the electroweak corrections to Z — f*f~ and
e*e” — f*f~, we identified the new physics diagrams that contribute to the processes and calculated
the corrections they induce to gz r. By varying the free parameters of the model that directly affect these
corrections, we concluded that the left-handed contribution, §¢}", is dominant. In fact, 6g%y’ and two other
terms proportional to the momenta are negligible in comparison. Because of this, and since 6g}" < 0, the
deviation to the observables caused by new physics, 6.A,, and R, is always positive. 6. A, and 6R,,
can increase the values of the observables beyond their 1 and 20 range. By plotting the 10 acceptance
region in the Mg — M4 plane and by varying m, , we see that the stronger the coupling to the muon, y,,,
the more stringent the constraint. If the coupling is kept fixed instead, the higher the value of m,, the
weaker the constraint, which corresponds to a larger allowed region.

Model 5 can give contribute to several flavour-related processes at one loop order. We employed
experimental limits on quantities related to these processes and to dark matter observables to establish a
set of phenomenological conditions that Model 5 must verify. These limits together with the ones derived
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from A, and R., were applied in the multiparameter scan we performed. Our results are consistent
within the ranges explored in [33]. Having introduced a way to get an upper bound on y,,, we explored
the region with Vdr < y u < 4m which was previously left out. The positive correlations between m, and
vu and m,, and Mg combined with the higher values of the coupling in our scan result in new upper bound
of 389 GeV for Mg, which compares to 350 GeV in [33]. |y | also has its lowest value decreased to 0.007
from 0.25. In Model 5, the muon-related observables do not significantly further restrict the allowed space
beyond what was constrained by the g — 2 condition. It can be argued that in other models this will not be
the case and that these constraints will provide tighter bounds. Finally, we considered an alternative decay
channel, Z — 7*7~, and compared the results obtained using the equivalent observables, A, and R,
with the case of the muon in the Mg — M4 plane. The SM prediction for R., actually lies outside the 10
experimental uncertainty range, which makes a direct comparison between the plots a delicate subject.
Nevertheless, the overall behaviour is similar to the case of the muon, which was expected because the
only difference in the theoretical side is the mass of the lepton in question.
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