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Resumo

Nesta dissertação, fazemos previsões de constrangimentos para dois modelos de Gravidade
Teleparalela Simétrica usando a abordagem da Matriz de Fisher. Para estudar estes modelos
usamos dados das Supernovas Ia para primeiro nos fornecer a abundância de matéria hoje e
construímos catálogos de sirenes padrão com base nas especificações de três observatórios de
ondas gravitacionais: LIGO, ET e LISA. O objectivo consiste em prever as suas respectivas
capacidades em restringir os parâmetros dos modelos e consequentemente de averiguar se seremos
capazes de distingui-los do modelo padrão da cosmologia ΛCDM.

O modelo ΛCDM é bem conhecido por ser o modelo mais simples que fornece uma boa
descrição das propriedades do Universo, tal como a existência e a estrutura da radiação cósmica
de fundo nos micro-ondas (CMB), que é a evidência direta da expansão do Universo; a expansão
acelerada do universo descoberta a partir do brilho e desvio para o vermelho de supernovas
distantes; e a homogeneidade e isotropia em escalas suficientemente grandes do nosso Universo.
Apesar do sucesso do modelo ΛCDM, ele ainda enfrenta algumas inconsistências, tal como a
tensão de Hubble (o valor obtido a partir de dados de supernovas é significativamente maior
do que o inferido usando a escala angular das flutuações da radiação cósmica de fundo) e as
anomalias nas anisotropias do CMB (uma polarização ligeiramente rodada na radiação cósmica
de fundo que não é explicada pelo modelo padrão).

Durante décadas, os cientistas tentaram propor um modelo alternativo para resolver es-
tas dificuldades modificando a ação de Einstein-Hilbert, onde em vez de se usar a curvatura
para descrever a gravidade, consideraram-se grandezas matemáticas tais como não-metricidade
ou torção. Esta dissertação baseia-se na não-metricidade, que é uma medida da variação do
comprimento de um vetor durante o transporte paralelo.

Em 2015, a deteção de ondas gravitacionais abriu uma nova porta para obtermos informa-
ções sobre o Universo. Uma das previsões da teoria da Relatividade Geral é que a fusão de
sistemas binários como buracos negros ou estrelas de neutrões, resulta numa perda de energia
na forma de ondas gravitacionais. Em particular, uma sirene padrão, é um evento que emite
ondas eletromagnéticas e ondas gravitacionais, na sequência da fusão, por exemplo, de duas
estrelas de neutrões. Um evento deste género fornece-nos a relação direta entre o desvio para o
vermelho e distância luminosa ao binário. Esta é uma vantagem enorme em relação aos métodos
tradicionais de medição de distâncias pelo método de escada de distâncias cosmológicas, que
são susceptíveis a erros de calibração. Infelizmente, até ao momento apenas um evento sirene
padrão foi confirmado, GW170817. Isto quer dizer que de momento ainda não somos capazes
de colocar constrangimentos aos modelos cosmológicos mas podemos tentar antecipar o nível
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de precisão desses constrangimentos no futuro. Para fazer essa análise, geramos catálogos de
sirenes padrão realistas e usamos o método da Matriz de Fisher (FM) para fazer a inferência
estatística dos modelos em estudo.

O método FM fornece um aumento extraordinário na velocidade de computação em relação
aos métodos tradicioanais (de grelha ou Markov Chain Monte Carlo) quando lidamos com mo-
delos com alguns parâmetros. Em vez de computação por força bruta, FM é uma aproximação
analítica de uma função de verossimilhança Gaussiana, dado que a probabilidade máxima é
conhecida a partir de informação obtida por observações independentes, como as restrições de
parâmetros fornecidas pelos dados de supernovas na nossa dissertação.

No primeiro capítulo desta dissertação, apresentamos uma breve história da cosmologia mo-
derna a partir do aparecimento da Relatividade Geral. Em seguida, mencionamos algumas das
descobertas mais importantes do último século, tais como a descoberta da radiação cósmica de
fundo que indica que o Universo é globalmente plano, velocidade excessiva das galáxias que levou
à ideia da matéria escura e a descoberta da expansão acelerada do Universo, que desvendou a
existência de uma energia escura. Em seguida, apresentamos os pressupostos estabelecidos pelo
modelo ΛCDM e os desafios que este enfrenta. Além disso, explicamos a distância luminosa e
apontamos as Sirenes Padrão como ferramentas para a medição de distâncias em cosmologia.

No segundo capítulo, apresentamos as ferramentas matemáticas utilizadas na Relatividade
Geral e revemos dois conceitos geométricos chamados torção e não-metricidade que recuperam a
formulação padrão da GR sem se usar curvatura. Em seguida, identificamos as fontes do tensor
Energia-Momento na equação de campo de Einstein e explicamos a métrica FLRW assumindo
o universo homogéneo, isotrópico e plano. Em seguida, mostramos os detalhes da modificação
da equação de campo de Einstein com base na não-metricidade. O final deste capítulo explica
o comportamento das ondas gravitacionais na gauge transversa e sem traço e como se obtém a
distância luminosa das ondas gravitacionais para as teorias f(Q). O resultado é semelhante ao
da contraparte electromagnetic (EM) mas com um termo multiplicativo adicional.

No terceiro capítulo, apresentamos a metodologia para calcular a função de verossimilhança
dos parâmetros de um modelo usando dados de supernovas e eventos de sirene padrão. Em
seguida, explicamos o método Matriz de Fisher e como ele transforma um teste qui-quadrado
dependente de dados numa formulação de Matriz de Fisher independente de dados. Depois,
mostramos algumas propriedades essenciais da FM, como a transformação de variáveis, maximi-
zação e marginalização da função de verossimilhança. Também mostramos o procedimento de
implementação de um código para o método da grelha e para o método Fisher Matrix. No final,
este capítulo fornece a especificação dos detalhes de dois observatórios de ondas gravitacionais
atualmente em operação, Laser Interferometer Gravitational-Wave Observatory (LIGO)-Virgo
e dos dois futuros observatórios Laser Interferometer Space Antenna (LISA), e Einstein Teles-
cope (ET). Esses detalhes consistem nas distribuições populacionais esperadas de eventos SS, as
incertezas de observação em termos de desvio para o vermelho e o procedimento para a geração
de catálogos de SS.

No quarto capítulo, mostramos os principais resultados desta análise aos modelos de f(Q).
Demonstramos e comparamos os constrangimentos de parâmetros de diferentes combinações de
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missões conjuntas. Devido ao rápido aumento da incerteza com o redshift, os dados do LIGO são
incapazes de fornecer qualquer constrangimentos aos modelos por si só. Portanto, LIGO é usado
como um complemento para outras missões, tirando partido da boa qualidade em eventos de
redshift extremamente baixos que não estão disponíveis com os outros observatórios. Enquanto
isso, para o LISA, classificamos três conjuntos de catálogos, o pior, o mediano e o melhor catá-
logo com base em quão bons são os resultados nos constrangimentos aos parâmetros. Por fim,
concluímos que o caso dos dados ET+Pantheon, é o caso que nos oferece os melhores constran-
gimentos. Isso deve-se ao grande número de eventos SS que se espera que sejam observados pelo
Einstein Telescope e com altas precisões de observação. Para o modelo quadrático, ao contrário
do primeiro modelo, descobrimos que as restrições de ET+Pantheon não são capazes de superar
LISA+Pantheon em todos os parâmetros, e chegamos à conclusão de que a análise conjunta de
LISA(pior)+ET+Pantheon é suficiente para constranger o modelo.

No quinto capítulo, estendemos a matriz de Fisher com termos de ordem mais elevados que
nos fornecem um método alternativo para aproximar uma probabilidade não-gaussiana com pelo
menos 20 vezes maior velocidade computacional do que o método da grelha. Nós fornecemos
o procedimento de implementação do código, e escolhemos dois modelos de Quintessência para
demostrar que o método DALI dá constrangimentos adequadas nos casos para os quais o método
da matriz de Fisher falha.

No último capítulo, damos uma conclusão sobre os principais resultados dos dois modelos de
f(Q) e listamos alguns trabalhos futuros que vale a pena explorar.

Palavras-chave: Gravidade Modificada, Matriz de Fisher, Cosmologia Observacional, Sirenes
Padrão, Ondas Gravitacionais
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Abstract

In this dissertation, we forecast constraints for two types of Symmetric Teleparallel Gravity
models using the Fisher Matrix approach. The first features a ΛCDM background with one
additional free parameter, where the differences arise at the perturbative level. The second
model generalizes the first model with a general power-law term. We first introduce the main
concepts of General Relativity and the f(Q) gravity theory. Then, we present the parameter
constraints computation methodology. We use grid and Fisher Matrix methods, the former
with supernova data and the latter with Gravitational Wave (GW) Luminosity distance mock
catalogs. Next, we introduce the specifications and the method of generating mock catalogs for
three GW observatories: LIGO-Virgo, LISA, and Einstein Telescope (ET).

We forecast parameter constraints for both f(Q) models with different combinations of mis-
sion datasets. We conclude that, for the first model, the ET+Pantheon data provides the best
constraints due to the large number of expected GW events, that will be observed with high
precision, by the ET at low redshift. For the polynomial model, we find that ET+Pantheon
constraints do not outperform LISA+Pantheon on all parameters, so we decided to join the
LISA and ET+Pantheon catalogs.

For LISA we used three quality catalog classes (worst, median, and best). The results show
that constraints from LISA+ET+Pantheon are similar, regardless of the quality of LISA data,
and are the strongest. So, the worst quality LISA catalogs are already good enough to provide
the best constraints on the models.

We also extend the Fisher matrix approach with higher order terms, which provide an al-
ternative approximation, especially for non-gaussian likelihoods. We chose two Quintessence
models to verify this technique and provide the code implementation procedure. We show that
this method gives proper constraints with at least 20 times higher computational speed compared
to the grid methods.

Keywords: Modified Gravity, Fisher Information Matrix, Observational Cosmology, Standard
Sirens, Gravitational Waves

vi



Contents

Acknowledgments ii

Abstract v

List of Tables ix

List of Figures xi

Acronyms xii

1 Introduction 1
1.1 The start of Modern Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 ΛCDM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Cosmological luminosity distances . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Standard Sirens: Gravitational waves + Electromagnetic (EM) counterpart . . . 4
1.5 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Layout of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modifications of General Relativity 7
2.1 Geometrical Tools for GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Trinity of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Energy-Momentum Tensor and Matter Source . . . . . . . . . . . . . . . 10
2.1.3 The FLRW Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 f(Q) Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Propagation of Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 18
3.1 The χ2 test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Type Ia Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Standard Sirens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Bayesian Inference Methodology . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



3.2.3 Fisher information matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Properties of the Fisher Matrix . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Procedure on code Implementation for the grid method and Fisher Matrix method 26
3.3.1 Grid Method: Compute the χ2 from the mock catalog . . . . . . . . . . . 26
3.3.2 Fisher Matrix Method: Compute the diameter of the ellipses from the first

derivatives of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Observatories specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 LIGO-Virgo Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 LISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Einstein Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Constraints on f(Q) models 33
4.1 n = 1/2 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Forecasts using Standard Sirens . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 n = 2 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Forecasts using Standard Sirens with n = 2 . . . . . . . . . . . . . . . . . 41

5 Constraints on Quintessence models 45
5.1 The DALI method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Procedure of the parameter constraints computation . . . . . . . . . . . . . . . . 47
5.3 Einstein Telescope forecasts in Quintessence model . . . . . . . . . . . . . . . . . 48
5.4 Einstein Telescope forecasts in Coupled Quintessence model . . . . . . . . . . . . 48

6 Final Remarks 51
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 53

viii



List of Tables

3.1 Values of the beta distribution for the redshift distribution of the massive black
hole binary (MBHB) plural populations No Delay [27] . . . . . . . . . . . . . . . 30

ix



List of Figures

2.1 This figure illustrates the geometrical meaning of when a vector is transported
along a closed curve in the respective geometry which is govern by the curvature
(left), the torsion (center) and the non-metricity (right), while the remaining
objects vanish. The figure is taken from [30] . . . . . . . . . . . . . . . . . . . . . 9

2.2 The figure illustrates the difference between comoving coordinate and physical
distance between two points. The coordinates remain constant as the universe
expands, whereas the physical distance increases. Figure taken from [31] . . . . . 11

2.3 The left side of figure refers to + polarization which oscillate along time on the
x-y plane, whereas the right side refers to × polarization. Figure taken from [35]. 16

3.1 This figure shows the relation between parameter space and the data space . . . 21
3.2 Example: Gaussian distribution in 2 dimensional parameter space . . . . . . . . 23
3.3 68.3% (1-σ) confidence ellipses for parameters x and y with 1-σ uncertainties

σx and σy and correlation coefficient ρ. In the first three panels, dashed lines
represent the marginalized 1-σ uncertainty for each variable: ασx and ασy , where
α ≈

√
2.3 ≈ 1.52. In the bottom-right panel, a zoom in to show the intersections

with the axes: ±βσx and ±βσy, where β ≈ 2.13
√
1− ρ (for ρ ≈ 1). Figure taken

from [43]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Parameter constraints computed by the Grid Method with fiducial values afid =

2, bfid = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Parameter constraints computed by Fisher Matrix Method with fiducial values

afid = 2, bfid = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Expected redshift distribution for LISA SS events . . . . . . . . . . . . . . . . . . 31

4.1 The constraint on Ωm using Pantheon sample with the marginalized SnIa likeli-
hood for f(Q) model using eq. (3.14) . . . . . . . . . . . . . . . . . . . . . . . . 35

4.10 Bottom left figure refer to 1σ and 2σ region of M∗ vs Ωm computed by using
the grid method, top figure refer to the likelihood summed along M∗, the bottom
right figure refers to the likelihood summed along Ωm . . . . . . . . . . . . . . . 42

4.11 Parameter constraints computed by Fisher Matrix (FM) method using Laser In-
terferometer Gravitational-Wave Observatory (LIGO)-Virgo, Einstein Telescope
(ET), worst, median and best Laser Interferometer Space Antenna (LISA) SS cat-
alogs. The marginalized Likelihood for each parameter is shown in the diagonal
plots. Dotted lines represent the fiducial values . . . . . . . . . . . . . . . . . . . 42

x



4.12 The left panel shows the parameter constraints of the joint analysis (LISA 3 case
+ LIGO-Virgo) and (ET + LIGO-Virgo) standard siren (SS) catalogs. The right
panel shows the parameter constraints by joint analysis (LISA 3 case + Pantheon)
and (ET + Pantheon). Both computed by FM method. The marginalized Likeli-
hood for each parameters shown in the diagonal plots. Dotted lines represent the
fiducial ΛCDM values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.13 The left panel shows a zoom in Figure of 4.12 (right panel). The right panel
shows the parameter constraints by joint analysis of LISA best, median and worst
catalog with ET+ Pantheon SnIa data. Both computed by FM method. The
marginalized Likelihood for each parameters shown in the diagonal plots. Dotted
lines represent the fiducial ΛCDM values. . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Contour plots made to obtain the most probable values for ΩM and λ for the
case of a Quintessence model with fiducial values ΩM = 0.311, λ = 0.01 on the
left panel, and ΩM = 0.3087, λ = 0.55 for the right panel. The plots on the first
row show the constraints computed using the grid method, the second row are
computed using the Fisher Matrix method, the third row are computed using the
Derivative Approximation for Likelihoods (DALI) method. . . . . . . . . . . . . . 49

5.2 Contour plots made to obtain the most probable values for γ and λ for the case of
a Coupled Quintessence model with fiducial ΩM = 0.3087, λ = 0.1, γ = 0.001 on
the left panel, and ΩM = 0.3087, λ = 0.7, γ = 0.007 for the right panel. The plots
on the first row show the constraints computed using the grid method, the second
row are computed using the Fisher Matrix method, the third row are computed
using the DALI method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



Acronyms

ΛCDM Λ Cold Dark Matter xi, 2, 3, 5, 12–14, 29, 34, 36–40, 43, 51

CMB cosmic microwave background 2

DALI Derivative Approximation for Likelihoods xi, 5, 6, 45–50, 52

EFE Einstein Field Equations 10, 14

EM electromagnetic iv, 4

EoS equation of state 10

ET Einstein Telescope iv, x, xi, 18, 29, 32, 36–38, 40–44, 47, 51, 52

FLRW Friedmann-Lemaître-Robertson-Walker 2, 11, 13

FM Fisher Matrix x, xi, 5, 36–40, 42, 43, 47

GR General Relativity 1, 8, 14, 16

GW gravitational wave 4, 5, 15–17, 20, 33, 34, 36, 40, 41, 47

LIGO Laser Interferometer Gravitational-Wave Observatory iv, v, x, xi, 4, 18, 29, 30, 38–43,
51, 52

LISA Laser Interferometer Space Antenna iv, x, xi, 18, 29, 31, 35–44, 51, 52

MBHB massive black hole binary ix, 30

MCMC Markov Chain Monte Carlo 6, 28, 33, 36, 37, 48, 52

PDF probability distribution function 24

SnIa type Ia supernova 4, 18, 35–37, 40

SS standard siren xi, 5, 6, 20, 29–34, 36, 37, 40, 41, 43, 48

STG Symmetric Teleparallel Gravity 12

TT Transverse Traceless 15

xii



Chapter 1

Introduction

In this chapter, we give a brief introduction on the start of modern cosmology and how scientist
utilize current observational data to test different universe models which are used to describe
our universe, and also the motivation of my work in this dissertation.

1.1 The start of Modern Cosmology

Astronomy is one of the oldest science branches of Physics that human beings have always been
interested in, from the observations of stars/constellations for orientation during the navigation
era. In modern days, Astrophysics plays a central role in shaping our understanding of the
universe through scientific observations and experiments, and Physical cosmology deals with
the study of the physical origins and evolution of the universe on large scales through both
mathematics and observations.

In the 17th century, Isaac Newton stated in his publication Principia Mathematica, the law
of universal gravitation, it provided a physical mechanism for Kepler’s laws caused by gravita-
tional interaction between the planets and the Sun. General Relativity, a theory of gravitation
developed by Albert Einstein between 1907 and 1915, revolutionized and shaped modern think-
ing of gravitation. It explains that gravitational effects are due to the warping of spacetime
between masses. General Relativity (GR) explains the anomalies in the orbits of Mercury which
Newtonian mechanics can not. It also predicts the existence of black holes, gravitational waves
and novel effects like gravitational lensing and time dilation. Furthermore, GR is able to de-
scribe phenomena in astrophysics scales, and also in cosmic scales. The cosmological constant,
introduced by Einstein in his Einstein field equations in 1917 [1], is originally introduced to
counterbalance the effect of gravity and achieve a static universe, then abandoned after Edwin
Hubble showed in 1929 [2] that the furthest galaxies are the ones that recede faster leading to the
interpretation that the Universe is expanding. A precise survey on supernova in 1998 discovered
the universe is expanding in a accelerating manner [3], this implies the cosmological constant
may have a positive value, and a new term Dark energy was introduced for this driving compo-
nent of the Universe. Besides this, a new form of matter called “Dark Matter” was introduced
to explain the stability of galaxies and the rate of formation of large-scale structures since the
appearance of surprising observations, which are the excessive speed of the galaxies and missing
mass observed in the Coma galaxy cluster, by Zwicky in 1933 [4]. Knowing that “Dark Matter”
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and “Dark Energy” are known today to be a major portion of mass-energy density budget our
Universe, they remain mysterious for us on what actually they are.

Another important moment in the history of cosmology included the discovery of the cosmic
microwave background radiation by Arno Penzias and Robert Woodrow Wilson in 1964 [5]
[6]. Around 1990, there were dramatic improvements on the observational instruments which
allowed us to carry out highly precise surveys. We finally entered the age of data science, large
amount of high quality data has been recorded and the efficiency of data analysis has to match
up with the incoming “big data”. Some of the important surveys included the observations of
the microwave background radiation from COBE [7], WMAP [8] and Planck satellites [9], large
recent and near-future galaxy redshift surveys such as 2dfGRS [10], SDSS [11] and Euclid [12].
These observations matched the predictions of the ΛCDM model.

1.2 ΛCDM Model

The concordance or standard Λ Cold Dark Matter (ΛCDM) cosmological model [13, 14] is a
well defined, predictive and simple cosmological model (see Bull et al. 2016, for a review). It is
defined by a set of simple assumptions:

1. The Universe consists of radiation (photons, neutrinos), ordinary matter (baryons and
leptons), cold (non-relativistic) “Dark Matter” which govern structure formation and cos-
mological constant Λ the simplest form of dark energy, the entity that drives the accelerated
expansion of the Universe;

2. General Relativity (Einstein 1917) is the theory that describes gravity on cosmological
scales;

3. Follow the Cosmological Principle which states that the Universe is statistically homoge-
neous and isotropic in space at sufficiently large scales (& 100 Mpc) ;

4. As a consequence of 2. and 3. The Universe is described by a flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric;

5. There are at least six independent parameters: the baryon Ωb and cold dark matter Ωc

abundances, the Hubble constant h, the amplitude As and tilt ns of primordial power
spectrum of scalar fluctuations and the reionization optical depth τ ;

6. There is an inflationary epoch shortly after the big bang;

Despite the success of ΛCDM model in explaining most properties of cosmological observa-
tions like the accelerating expansion of the Universe, the angular power spectrum and statistical
properties of the Cosmic Microwave Background (CMB) radiation, the matter power spectrum
and statistical properties of large scale structure of the Universe and the observed abundances
of different types of chemical light elements, this model is facing some inconsistencies between
theoretical prediction and observations. The following list shows some of the most significant
challenges [15]:
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1. The Hubble tension: The value of Hubble constant H0 obtained with supernova Type
Ia data is measured significantly higher than that inferred using the angular scale of
fluctuations of the Cosmic Microwave Background in the context of the ΛCDM model
[16].

2. The growth tension: Direct measurements of the growth rate of cosmological pertur-
bations (Weak Lensing, peculiar velocities, Cluster Counts) indicate a lower growth rate
than that indicated by the Planck satellite in the context of the ΛCDM model [17];

3. CMB anisotropy anomalies: A slightly rotated polarization on the cosmic microwave
background which is unexpected by the standard model [18];

1.3 Cosmological luminosity distances

The universe is under accelerated expansion, and the expansion rate can be described by the
Hubble function H(z), which can be expressed in term of its value today H0 (in the units
of km/s/Mpc) and a function E(z) that describes the different cosmological models. We can
figure out the rate of expansion by measuring different cosmological distances, such as the
luminosity distance, angular distance or the luminosity distance of gravitational waves. By fitting
a theoretical cosmological distance function with current observational data or mock catalogs,
we are able to estimate the range allowed for the Hubble constant and other cosmological
parameters.

Consider a luminous cosmological source with absolute luminosity L illustrate in Fig. (1.1),
the power emitted from the source is distributed in the spherical shell with area 4πd2L and the
power radiated by the source is conserved. Therefore, the apparent luminosity/Energy flux (F )
received by the observer (white unit square) located in different distant is:

F =
L

4πd2L
(1.1)

The quantity dL is defines as the luminosity distance. However, in the case of an expanding
Universe, the energy is not conserved which result from the redshift effect felt by the photons.
Then the luminosity distance for a flat universe is [19]:

dL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
(1.2)

The luminosity distance is an important cosmological observable which can be measured
by standard candles like Type Ia supernovae (SnIa) (z < 2.3) and gamma-ray bursts (GRBs)
(0.1 < z < 9). As the characteristic light curves of Type Ia supernovae are well known and can
be standardize, by measuring the luminosity as a function of time after the explosion and the
redshifts of the host galaxies, the distance-redshift relation of SnIa event is obtained. One of
the latest and largest SnIa dataset available is the Pantheon sample [20] consisting of a total of
1048 SnIa in the redshift range (0.01 < z < 2.26). We will use this dataset to compute the prior
on the parameter on Ωm and M∗ in this dissertation see sections 4.2.1.
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Figure 1.1: EM radiation is emitted by the point source (yellow) and the Flux received by
observer located in different distances correspond to the unit square (white) in this figure

1.4 Standard Sirens: Gravitational waves + Electromagnetic
(EM) counterpart

Gravitational waves (GW) are perturbations in the curvature of spacetime, generated by accel-
erated masses such as binary sources like black holes or neutron stars, that propagate as waves
at the speed of light. This phenomenon was predicted in 1916 by Albert Einstein with his the-
ory of general relativity [1]. Their existence was indirectly confirmed when observations of the
binary pulsar in 1974 showed an orbital decay which matched the decay predicted by general
relativity as the energy is lost due to gravitational radiation [21]. The first direct observation of
gravitational waves was GW150914 [22], detected in 2015 by the LIGO collaboration and since
then, there is a few GW events with a confirmed, GW170817 [23], and a proposed, GW190521
[24], electromagnetic (EM) counterpart. The combination of a gravitational wave (GW) signal
and its independently observed EM counterpart is called a Standard Siren [25].

The first GW detection not only verified the prediction by GR, it also opened a new door to
study our Universe. As an analogy, the EM observations act as the “eyes” and the GW observa-
tions act as the “ear” to receive messages from the deep space, more importantly, gravitational
waves can penetrate regions of space that electromagnetic waves cannot. They allow the obser-
vation of the merger of black holes and possibly other exotic objects in the distant Universe.
They also offer a possible way of observing the very early Universe, since before recombination
the Universe was opaque to electromagnetic radiation. Such systems cannot be observed with
traditional methods based on radiation, such as optical or radio telescopes, and so gravitational
wave astronomy gives new insights on understanding the Universe. At later times when the
universe is no longer opaque, we can obtain the luminosity distance for the GW and the redshift
from the EM counterpart, therefore we are able to construct the Hubble diagram. In contrast
to traditional standard candles, such as type Ia supernova (SnIa) calibrated by Cepheid vari-

4



ables, standard sirens do not require any form of cosmological distance ladder. Instead they are
calibrated in the context of general relativity through the observed GW waveform [26].

In order to observe more SS events, higher sensitivity detectors are planned to launch in the
coming future. With only one SS event confirmed, it is not possible at the moment to provide
any parameter constraints on models. However, in what follows, we will perform forecasts by
generating SS realistic mock catalogs based on the current and future GW observatories.

1.5 This thesis

1.5.1 Objectives

The main goals of this dissertation are to:

1. Study how a cosmological models based on non-metricity modify the propagation of grav-
itational waves ;

2. Generate mock catalogs of SS events based on current and future GW detectors;

3. Perform the parameter constraint based on two specific form of non-metricity cosmological
models, namely f(Q) = Qn with n = 1/2 and n = 2, using FM method;

4. Analyze both cosmological models and determine whether future SS events will be able to
distinguish between these models and ΛCDM;

5. Study the capability of higher order terms in the Fisher Matrix approach, the DALI
method, for parameter estimation, when the likelihood departs from a Gaussian distribu-
tion.

1.5.2 Layout of this dissertation

This dissertation consists of 6 chapters. The first three introduce all the background information
needed to make the parameters constraint in chapter 4. Chapter 5 provide a demonstration of
the higher order term of Fisher Matrix method. The details of each chapter is as follows:

• Chapter 1 introduce a brief history of cosmology, which lead to the appearance of the
ΛCDM model, the assumptions of this model and the problems it is facing leading to the
introduction of the idea of Modified gravity;

• Chapter 2 introduces the mathematical tools used in General Relativity and the framework
of non-metric theories of gravity, also the cosmological assumptions that the universe
models follow and equations that govern these modified gravity model and an explanation
on the propagation of gravitational wave and some essential observables;

• Chapter 3 presents the mathematical tools that compute the likelihood of the cosmological
parameters on a model, which lead to the conventional method, namely the grid method.
Next, we explains the theory and the properties of Fisher Information Matrix which give
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an analytical simplification on the grid method. Then, we demonstrate the code implemen-
tation for the grid method and Fisher Matrix method. In the end, we provide information
about the sensitivity of the observatories and the corresponding probability distribution
function of the SS events, which allow us to generate realistic mock catalogs;

• Chapter 4 will show the forecast on the parameter constraints based on two specific forms
of non-metricity cosmological models, namely f(Q) = Q+MQn with n = 0.5 and n = 2,
using the Fisher Matrix method. For the first model, we show a consistent result with [27]
computed using Markov Chain Monte Carlo (MCMC) method;

• Chapter 5 presents an extension on the Fisher Matrix formalism which included the higher
order terms, namely doublet-DALI approximation, and demonstrate the proper parameter
constraints which are highly non-Gaussian.

• Chapter 6 give a summary on this dissertation and presents some foreseeable future work.
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Chapter 2

Modifications of General Relativity

In this chapter, we will see how the description of gravity can be generalized and evaluate how
it affects quantities such as luminosity distance for supernovae and for gravitational waves data
analysis.

2.1 Geometrical Tools for GR

The spacetime metric tensor gµν is symmetric and depends on time and space:

gµν = gµν(t, x) (2.1)

It plays a fundamental role in General Relativity and turns observer-dependent coordinates
xµ = (t, xi) into the invariant line element:

ds2 = gµνdx
µdxν . (2.2)

where Einstein notation is used (repeated indices represent summations over indexes).
The square of the length of a contravariant vector V µ is [28]:

V 2 = gµνV
µV ν . (2.3)

The metric can also be use to find the angle between two contravariant vectors V µ and Uν [28]:

cos(V,U) =
gµνV

µUν√
gµνV µV νgρσUρUσ

. (2.4)

The determinant of the metric is denoted by:

g ≡ det(gµν) (2.5)

If the metric is non-singular and g is non-zero, then the inverse of gµν , gµν is given by

gανg
νβ = δβα . (2.6)

When a vector in a Euclidean space is parallel transported around a loop, it will again point in
the initial direction after returning to its original position. However, this is not true in a general
Riemannian manifold. If we parallel transport a contravariant vector V (x) from x to δx, the
change of the vector, δṼ , can be related by the connection, Γ;
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δṼ µ(x) = Γµ
αβV

α(x)δxβ . (2.7)

When taking the displacement to zero allow us to define the covariant derivative of a general
tensor as:

∇µV
ν···
α··· ≡ ∂µV

ν···
α··· + Γν

βµV
β···
α··· + · · · − Γβ

αµV
ν···
β··· − · · · (2.8)

Where ∂µ ≡ ∂/∂xµ is the partial derivative with respect to the coordinate xµ. When all the
components of the connection are zero we recover flat spacetime, and the covariant derivative
reduces to a partial derivative.
The Riemann curvature tensor is:

Rσ
ρµν ≡ ∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γα

νρΓ
σ
µα − Γα

µρΓ
σ
να . (2.9)

By contracting the first and third component of the Riemann tensor we obtain the Ricci tensor:

Rµν = Rα
µαν , (2.10)

Further contraction with the metric we obtain the Ricci scalar:

R ≡ gµνRµν . (2.11)

2.1.1 The Trinity of Gravity

There are two alternatives geometric interpretation in flat spacetime, that recover the formula-
tions of General Relativity, which also follow the equivalence principle. Instead of the standard
interpretation of gravity in which gravitational interaction is described in terms of the spacetime
curvature, gravity can also be fully described either by torsion or by non-metricity. These three
interpretations of General Relativity (GR) are known as the geometrical trinity of gravity [29].
We can summarize the different interpretations of gravity with the support of fig. 2.1 in the
following form:

• Curvature: The rotation of a vector transported along a closed curve is given by the
curvature (General Relativity), defined by the Riemann Curvature tensor R̂µ

νρσ in the
caption;

• Torsion: The non-closure of parallelograms formed when two vectors are transported along
each other is given by the torsion (Teleparallel Equivalent of General Relativity), defined
by the torsion tensor T̂µ

νρ in the caption;

• Non-metricity: The variation of the length of a vector as it is transported is given by the
non-metricity (Symmetric Teleparallel Equivalent of General Relativity), defined by the
non-metricity tensor Q̂µ

νρ in the caption;
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Figure 2.1: This figure illustrates the geometrical meaning of when a vector is transported along
a closed curve in the respective geometry which is govern by the curvature (left), the torsion
(center) and the non-metricity (right), while the remaining objects vanish. The figure is taken
from [30]

The affine connection is compose of three contributions: the Levi-Civita connection, contor-
tion and disformation,

Γλ
µν =

{
λ
µν

}
+Kλ

µν + Lλ
µν , (2.12)

the first term is the Levi-Civita connection which is symmetric and depend on the metric and
its derivatives. {

λ
µν

}
≡ 1

2
gλβ (∂µgβν + ∂νgβµ − ∂βgµν) , (2.13)

the second term is the contortion which is related to the metric and the torsion tensor:

Kλ
µν ≡ 1

2
gλβ (Tµβν + Tνβµ + Tβµν) , (2.14)

where the torsion tensor Tαβγ encodes the asymmetric part of the affine connection:

T λ
µν ≡ Γλ

µν − Γλ
νµ . (2.15)

And the third term is the disformation:

Lλ
µν ≡ 1

2
gλβ (−Qµβν −Qνβµ +Qβµν) . (2.16)

where the non-metricity tensor Qαβγ is defined as:

Qαµν ≡ ∇αgµν = ∂αgµν − Γβ
αµgβν − Γβ

ανgµβ . (2.17)

As we see in Eq. (2.15), two successive covariant derivatives may not commute, meaning that
when we change the order of the derivatives, the result may change according to the relation:

∇[µ∇ν]V
α =

1

2
Rα

βµνV
β +

1

2
(Γσ

µν − Γσ
νµ)∇σV

α , (2.18)

In the case of torsion free connection, the second term of Eq. (2.18) vanishes.
After introducing the essential quantities for recovering the equivalent theory of GR, we can

see by choosing only the Levi-Civita connection in the affine connection Eq. (2.12), and neglected
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the contortion and disformation tensor, the Ricci Scalar is now totally governed in terms of the

Levi-Civita connection R =

LC︷︸︸︷
R and we compute the equations of motion using the action:

S =

∫ √
−g

(
c4

16πG
R+ Lm

)
dx4 , (2.19)

where c is the speed of light, G is the gravitational constants, Lm is the Lagrangian for the
energy-matter content of the universe.

Then, by varying the action with respect to the metric, we obtain the standard Einstein
Field Equations (EFE):

LC

Rµν −
1

2

LC

Rgµν =
8πG

c4
Tµν , (2.20)

where T µν is the stress energy-momentum tensor

T µν ≡ 2√
−g

δ(
√
−gLm)

∂gµν
. (2.21)

This quantity gives the energy source for the spacetime curvature on the left side of the EFE.

2.1.2 Energy-Momentum Tensor and Matter Source

The requirements of isotropy and homogeneity force the energy-momentum tensor Tµν to be
that of a perfect fluid given by:

Tµν = (ρc2 + P )uµuν + Pgµν , (2.22)

where ρ and P are the energy density and the pressure of the fluid, uν is the four-velocity relative
to the observer and satisfying the normalization condition uνuν = −1.
The universe is filled with a mixture of different matter components. It is useful to classify the
different sources by their contribution to the pressure:

• Matter: Matter refer to all forms of matter for which the pressure is much smaller than the
energy density P � ρc2 (P ≈ 0). the energy density is dominated by the mass. The first
type of dust refers to "Dark matter" which is weakly interacting and therefore invisible,
and contribute to most of the matter in the universe, the second one is "Baryons" which
consist of ordinary matter (nuclei and electrons).

• Radiation: Radiation denote the relativistic particles, for which the pressure is about a
third of the energy density, P = ρc2/3, where the energy density is dominated by the
kinetic energy instead of the mass;

• Dark Energy: A mysterious energy which provided the source for the acceleration of the
universe with negative pressure P ≈ −ρc2. This energy density does not decrease, meaning
that energy has to be created as the universe expands.

Most cosmological fluids can be parametrised in terms of a constant equation of state (EoS):

w ≡ P

ρc2
, (2.23)
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This means that cold dark collisionless matter has w = 0, radiation has w = 1/3 and vacuum
energy has w = −1. These values govern the evolution of the energy density for each component
of the perfect fluid as we see later.

2.1.3 The FLRW Universe

Under the homogeneous and isotropic universe assumption described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric and considering a flat universe, the metric reads:

ds2 = −c2dt2 + a2(t)δuvdx
udxv, (u, v = 1, 2, 3) (2.24)

where a(t) is the scale factor, which is a function of the cosmic time t, this rearrangement lead
to comoving coordinates xu = x1, x2, x3, Then the physical velocity of an object is [31]:

vuphys ≡
dxuphys
dt

= a(t)
dxu

dt
+

da

dt
xu ≡ vupec +Hxuphys (2.25)

As we see there are two contributions, which are peculiar velocity, vupec ≡ a(t)ẋu, and the Hubble
flow, vuH = Hxuphys where the Hubble function is defined as:

H ≡ ȧ

a
(2.26)

The peculiar velocity of an object is the velocity measured by a comoving observer that follows
the Hubble flow. Figure 2.2 illustrates a system of coordinate that follows the Hubble flow,

Figure 2.2: The figure illustrates the difference between comoving coordinate and physical dis-
tance between two points. The coordinates remain constant as the universe expands, whereas
the physical distance increases. Figure taken from [31]

the physical distance between two points is expanding, but the coordinate remain constant.
Therefore, an observer under this frame of reference able to measure the peculiar velocity of an
object which deviate the Hubble flow.

2.1.4 Redshift

As information carried by light emitted from distant places and observed by us, for instance
light emitted from a distant galaxy, it is essential for us to interpret the observations correctly.
Therefore, we have to take into account the fact that the wavelength of the light gets stretched
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due to the expansion of the universe. The wavelength of light, λ, is inversely proportional to the
momentum of the photon, P , we have λ = h

P , where h is the Planck constant. As the momentum
of photons scales as a(t)−1, the wavelength scales as a(t). As the light emitted at time t1 with
wavelength λ1 will be observed at t0 with wavelength:

λ0 =
a(t0)

a(t1)
λ1 (2.27)

and knowing that a(t0) > a(t1), the wavelength of the light increases, λ0 > λ1. It is conventional
to define the redshift as the fractional shift in wavelength of a photon emitted by a distant galaxy
at time t1 and observed on Earth today at t0:

z ≡ λ0 − λ1

λ1
(2.28)

From Eqs 2.27 and 2.28 we have:
1 + z =

a(t0)

a(t1)
(2.29)

and it is common to define a(t0) ≡ 1.

2.2 f(Q) Gravity

In order to tackle the problems of the ΛCDM model listed in Section 1.2, one can consider
modifications to the theory of gravity. There are many ways to achieve it, one of the simplest
ways is to promote the scalar quantity in the action to an arbitrary function of itself for each of
the different representations of gravity in 2.1.1, R, T , Q. In this dissertation, we will focus on the
Symmetric Teleparallel Gravity (STG), namely f(Q) gravity, with no curvature, torsion-free,
and not metric compatible connection in Eq. 2.12. The non-metricity scalar Q is [29, 32]:

Q ≡ −1

4
QαβγQ

αβγ +
1

2
QαβγQ

γβα +
1

4
QαQ

α − 1

2
QαQ̃

α , (2.30)

and the two independent contractions of the non-metricity tensor are:

Qµ ≡ Qµα
α , Q̃µ ≡ Qα

αµ . (2.31)

The result non-metricity scalar computed using Eq. (2.30) is [33]:

Q = 6H2 . (2.32)

The action for f(Q) gravity is:

S =

∫ √
−g

[
− c4

16πG
f(Q) + Lm

]
d4x . (2.33)

where f(Q) is an arbitrary function of the scalar Q.
The field equations allow us to understand the dynamics of the universe, e.g., how the

cosmological fluids govern the Hubble function and scale factor, how the fluids evolve with
cosmic time. This is shown in the following paragraphs for the case of f(Q) model.

Varying the previous action with respect to the metric one obtains the field equations for
f(Q) gravity [33]:
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2√
−g

∇α

(√
−gfQ(Q)Pαµ

ν

)
+

1

2
δµν f + fQ(Q)PµαβQναβ =

8πG

c4
T µ

ν , (2.34)

where the index Q denotes a partial derivative of f(Q) with respect to Q, Pαµν is the non-
metricity conjugate,

Pα
µν = −1

2
Lα

µν +
1

4
(Qα − Q̃α)− 1

4
δα(µQν) , (2.35)

and Lα
µν is the disformation tensor. Now, inserting the FLRW flat metric and the energy-

momentum tensor of a perfect fluid in the modified field equations Eq. (2.34) one obtains the
modified Friedmann equations. The time-time component leads to the first modified Friedmann
equation [32]:

6fQH
2 − 1

2
f = 8πGρ (2.36)

The diagonal spatial components lead to the modified second Friedmann equation:

(12H2fQQ + fQ)Ḣ = −4πG

(
ρ+

P

c2

)
(2.37)

To obtain the continuity equation, we take the covariant derivative of the energy-momentum
tensor to get:

ρ̇+ 3
ȧ

a

(
ρ+

P

c2

)
= 0 (2.38)

This results is the same as in the ΛCDM model, meaning the cosmological fluid behaves the
same way. The evolution of each component of the fluid is related to the scale factor and can
also be expressed in terms of the equation of state Eq. (2.23). The continuity equation for each
component then reads:

ρ̇i
ρi

= −3
ȧ

a
(1 + wi) . (2.39)

By solving the previous equation, we obtain the evolution of the energy density of the i-th fluid
component:

ρi = ρi,0 a
−3(1+wi) , (2.40)

Using the values wi of each component in Eq. (2.23) for each component one obtains the density
evolution for matter, radiation and the cosmological constant:

ρm = ρm,0 a
−3, matter

ργ = ργ,0 a
−4, radiation

ρΛ = ρΛ,0, cosmological constant.
(2.41)

Here the index 0 refers to present time values. We can also define cosmological parameters Ωi

for each component:
Ωi =

8πG

3H2
0

ρi,0 (2.42)

For further details about the geometrical trinity of gravity, readers can find an excellent
review in [29].
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2.3 Propagation of Gravitational Waves

In the Introduction section we briefly discussed the origin of gravitational waves in GR, and
pointed out the relevance of their observation. In this subsection we will give more details on
the theoretical aspects related to the propagation of gravitational waves and how standard siren
events can help us to discriminate a modified gravity model from ΛCDM.

As the sources that produce SS events are far away from the observer (the Earth), GWs can
be treated as small tensorial perturbations on a flat Minkowski spacetime [34]:

gµν = ηµν + hµν , (2.43)

where ηµν is the Minkowski metric and hµν is a small perturbation with |hµν | � 1.
The Minkowski metric which is the same everywhere in space and time, can be written as:

gµν = diag(−1, 1, 1, 1). (2.44)

where diag is the diagonal elements of a matrix.
When we perform a linearization, the affine connections and Riemann curvature tensor become
[35]:

Γν
µρ =

1

2
ηνλ (∂ρhλµ + ∂µhλρ − ∂λhµρ) , (2.45)

Rµνρσ =
1

2
(∂ρνhµρ + ∂ρµhνσ − ∂ρµhνρ − ∂ρνhµσ) . (2.46)

We then introduce the trace-reverse tensor:

h
µν

= hµν − 1

2
ηµνh (2.47)

where h = ηµνh
µν and h = −h. This tensor simplifies the linearized EFEs and after computing

the Riemann curvature tensor, Ricci tensor and Ricci Scalar and substitute into Eq. (2.20), one
obtains the linearized EFE:

�hνσ + ηνσ∂
ρ∂λhρλ − ∂ρ∂νhρσ − ∂ρ∂σhρν = −16πG

c4
Tνσ (2.48)

where the wave operator is � = ηρσ∂
ρ∂σ. In order to further simplify the EFE, we have to find

a coordinate system such that the last three terms in the left hand side of Eq. (2.48) vanish, so
we impose the Lorentz gauge ∂νh

µν
= 0 and gives:

�hνσ = −16πG

c4
Tνσ (2.49)

The Lorenz gauge coordinate system can be found as follows. First we perform a coordinate
transformation with a small displacement field, ξα:

(ct, x, y, z) → (ct̃, x̃, ỹ, z̃)

xα → x̃α

x̃α = xα + ξα

(2.50)
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with ||ξα|| � 1 and || ∂ξ
α

∂xβ || � 1. Using the metric transformation rule:

g̃µν =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ. (2.51)

We then obtain the perturbation h̃µν in terms of the displacement field:

h̃µν = hµν − ξµ,ν − ξν,µ. (2.52)

When we combine Eq. (2.47) and Eq. (2.52), also taking into account partial derivatives along
different coordinates, we obtain:

∂ν h̃µν = ∂νhµν −�ξµ. (2.53)

So by choosing ξµ such that ∂νhµν = �ξµ, h̃µν satisfies Eq. (2.49). Then Eq. (2.48) is simplified
to:

G̃µν =
1

2
�h̃µν = −8πG

c4
T̃µν . (2.54)

As we study the propagation of gravitational wave (GW)s in vacuum, we set T̃µν = 0,
therefore the GW satisfy the wave equation

�h̃µν = 0. (2.55)

One of the simplest form of waves are plane waves in which their wave vectors k are orthogonal
to the plane wave surfaces kµhTT

µν = 0, where TT refer to the transverse Traceless gauge. Also,
within the Lorenz gauge we can restrict extra conditions to make the GW more obvious to vi-
sualize, by using the so called Transverse Traceless (TT) conditions. Under this gauge, starting
with an observer with four velocity U = Uµeµ and choose the general GW amplitude A orthog-
onal to the observer AµνU

µ = 0. Also, by choosing a frame of reference which is comoving,
that is only the time component in the four velocity is non-zero, U = (c, 0, 0, 0). Under these
conditions, all the time components in Aµν become zero. Suppose the plane wave propagates
along the z direction kµ = (ωc , 0, 0,

ω
c ), and also the trace of GW amplitude is zero Aµ

µ = 0. The
solution is composed of a superposition of two independent polarization states in TT gauge [35]:

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


µν

cos
(
ω(t− z

c
) + φ0

)
, (2.56)

where h+ and h× refer to the + polarization and × polarization amplitude, φ0 is an arbitrary
phase. Suppose a group of point particles along a ring, when a GW passes by and interact
with the particles, they oscillate (compress and expand a circle of point-like test particles). Fig.
2.3 shows the effect on these particles of the + polarization on the left hand side and the ×
polarization on the right hand side of the figure. The latter effect is a 45◦ phase shift of the
former.
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Figure 2.3: The left side of figure refers to + polarization which oscillate along time on the x-y
plane, whereas the right side refers to × polarization. Figure taken from [35].

The propagation of gravitational waves in GR is given by [36]:

h
′′
A + 2Hh

′
A + k2hA = 0, (2.57)

where hA are the Fourier modes of the GW amplitude with A = +,× refer to the two polariza-
tions, the prime denotes the derivative with respect to conformal time η, defined as dη = dt/a(t),
and H = a′/a.
The luminosity distance of gravitational waves under this condition behaves the same as the
electromagnetic radiation governed by Eq. (1.2). However, in f(Q) gravity, the coefficient of
the 2H term is modified and give propagation equation of the form [37]

h
′′
A + 2H [1− δ(z)]h

′
A + k2hA = 0 , (2.58)

where δ(z) is [38]
δ(z) = − 1

2H
d ln fQ
dη

. (2.59)

This can be seen as the modified Hubble function in Eq. (2.58) of the form

H [1− δ(z)] =
ã′

ã
(2.60)

The amplitude of gravitational waves instead of decaying as 1/a, it now decay as 1/ã such that
the luminosity distance for gravitational waves is [37, 36]

d
(GW)
L (z) =

a

ã
d

(EM)
L (z) . (2.61)

Let us now compute this ratio a/ã. Eq. (2.60) can be rewritten as

H [1− δ(z)] =
ã′

ã

Hδ =
a′

a
− ã′

ã

=
ã

a

(
a′

ã
− aã′

ã2

)
=

ã

a

d

dη

(a
ã

)
a′

a
δ =

d

dη
ln

(a
ã

)
(2.62)

Performing the integration of Eq. (2.62) we obtain

a

ã
= exp

[∫ η

0

a′

a
δdη′

]
= exp

[∫ a

1

δ

a
da′

]
(2.63)
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Since:
a =

1

1 + z
→ da = − dz

(1 + z)2
(2.64)

Through the GW signal, we are able to tell the luminosity distance of GW event. It behaves
similar to electromagnetic radiation which is redshifted and loses energy during the propagation
in an expanding universe. Combining Eq. (2.63) and Eq. (2.64), the GW luminosity distance for-
mulation is similar to the EM counterpart, Eq. (1.2), but consists of an additional multiplicative
term [37]:

a

ã
= exp

[
−
∫ z

0

δ

1 + z
dz

]
(2.65)

Replacing Eq. (2.59) into Eq. (2.65), the modified GW luminosity distance gives [38]:

d
(GW)
L (z) =

√√√√f
(0)
Q

fQ
dL(z) , (2.66)

where f
(0)
Q is the function fQ computed at the present day.
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Chapter 3

Methodology

In this chapter we introduce the approaches to perform χ2 test to compute the likelihood of
parameters of a model fitting either real or mock data. The first approach is the grid method
and the second is the Fisher Matrix Method which is the main focus of this dissertation. We
explain how to study our cosmological models using Type Ia Supernovae data and mock data
of Standard Sirens. Then, we explain the theory of FM and its properties. We give an exam-
ple to demonstrate the code implementation on both methods. At the end of this chapter, we
provide the specifications of three types of gravitational wave observatories: Laser Interferome-
ter Gravitational-Wave Observatory (LIGO), Laser Interferometer Space Antenna (LISA) and
Einstein Telescope (ET). We explain the procedure on mock catalog generation based on these
specifications.

3.1 The χ2 test

3.1.1 Type Ia Supernovae

A type Ia supernova (SnIa) is a type of supernova explosion that occurs in binary systems,
when one of the stars is a white dwarf that accretes mass from its companion beyond the
Chandrasekhar limit which is 1.44 solar masses. This type of supernovae are used as standard
candles which means for a given cosmological model it is possible to measure the distance of their
host galaxy from their standarizable light curves. In this work, we utilize the SnIa events from
the Pantheon sample available in the public repository [20]. In order to reduce the computational
time, the binned version is considered throughout this dissertation and provided the same result
as the complete dataset. Next, to quantify how likely a theoretical model fi(p) with a set of
parameters p, fit a set of data yi , we compute χ2:

χ2 =
N∑
i=1

[
(fi(p)− yi)

σi

]2
(3.1)

In the case of SnIa event, the χ2 equation becomes [39]:

χ2 =

N∑
i=1

[
m(obs)(zi)−m(th)(zi)

σ(zi)

]2

, (3.2)

where m(obs) is the observed apparent magnitude, m(th) is the theoretical prediction for the
apparent magnitude, N the total number of SnIa events and finally zi and σ(zi) are the redshift
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and the total uncertainty of the i-th observation, respectively. The relationship between the
apparent magnitude and the luminosity distance is given by [39]:

m(th) = M + 5 log (dL(z)) + 25 (3.3)

where M is the bolometric magnitude and dL is in the units of Mpc. Let us introduce the
following rearrangement considering the numerator of Eq. (3.2),

∆ = mth −mobs

= M + 25 + 5 log (dL(z))−mobs

= M + 25 + 5 log
(

c

H0
DL(z)

)
−mobs

(3.4)

where
dL(z) =

c

H0
DL(z) (3.5)

where DL(z) is the dimensionless luminosity distance.

∆ =

M︷ ︸︸ ︷
M + 25 + 5 log

(
c

H0

)
+5 log(DL)−mobs

= M+ 5 log (DL(z))−mobs

= M+ ∆̃ where ∆̃ = 5 logDL(z)−m(obs)

(3.6)

where M = M + 25 + 5 log
(

c
H0

)
. Using M in Eq. (3.3), mth can be written as

mth = M+ 5 log (DL(z)) , (3.7)

and
DL(z) ≡

H0

c
dL(z) = (1 + z)

∫ z

0

1

E(z)
dz , (3.8)

where E(z) ≡ H(z)/H0, H0 ≡ H(a = a0 = 1) is the Hubble constant. The latter is typically
written as H0 = 100h km s−1Mpc−1, where h refers to the dimensionless Hubble constant also
known as Hubble parameter.
As we noticed from Eq. (3.5), dL(z), which is H0 dependent, manifests a degeneracy between
H0 and M . This "unwanted" degeneracy can be resolved by using DL which is H0 independent,
and take M as a nuisance parameter. If no prior knowledge of M at all is assumed, we can
integrate the general χ2 function over M ∈]−∞,∞[ or equivalence to say, fix the χ2 function at
its minimum value. This is shown in the following steps. Lets insert Eq. (3.6) in the χ2 equation
which yields:

χ2 =

N∑
i=1

∆2
i

σ2(zi)
=

N∑
i=1

(M+ ∆̃i)
2

σ2(zi)
=

N∑
i=1

[
∆̃2(zi)

σ2(zi)
+ 2

∆̃(zi)M
σ2(zi)

+
M2

σ2(zi)

]
. (3.9)

We now define A, B and C, for further simplification of Eq. (3.9),

A ≡
N∑
i=1

∆̃2(zi)

σ2(zi)
, B ≡

N∑
i=1

∆̃(zi)

σ2(zi)
, C ≡

N∑
i=1

1

σ2(zi)
. (3.10)
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to obtain:
χ2 = A+ 2BM+M2C , (3.11)

Fixing the χ2 at its minimum with respect to M:

dχ2

dM
= 0, 2MC + 2B = 0 ⇒ M = −B

C
(3.12)

χ2 =

(
B

C

)2

C − 2
B

C
B +A = −B2

C
+A (3.13)

The likelihood for the SnIa then becomes [40]:

L = A′ exp
[
−1

2
(−B2/C +A)

]
. (3.14)

where A′ is a normalization factor.
By using Eq. (3.14), and by seting up a mesh-grid of parameter values, one can compute pa-
rameter constraints using supernova data. This method is called grid method. And the usage
of SnIa data is a complement of the constrains set by SS events due to a degeneracy between
Ωm and a cosmological parameters that appears in the f(Q) theory.

3.1.2 Standard Sirens

A standard siren (SS) event is a compact binary system whose merger, emitted both gravitational
waves and electromagnetic radiation due to the loss of energy from the system. The spectrum
allows us to obtain the redshift and the luminosity distance of the source. By constructing a
relation of luminosity distance as a function of redshift, we can constrain cosmological parameters
and test the evolution of the universe.

The formulation of the likelihood with respect to Gravitational Wave luminosity is also based
on Eq. (3.1), which is now written as [27]:

L =

N∏
i=1

1√
2πσtot(zi)

exp

−1

2

[
d

(obs)
GW (zi)− d

(th)
GW(zi)

σtot(zi)

]2
 , (3.15)

where d
(obs)
GW (zi) and d

(th)
GW(zi) are the i-th observed and the theoretical luminosity distance pre-

dicted by a model in redshift zi respectively. N is the number of SSs events. The parameter
constraints for GW luminosity distance is done using both the grid method and a Fisher Matrix
methodology in Chapter 4.

3.2 Fisher Information Matrix

3.2.1 Bayesian Inference Methodology

In cosmology, the focus is on testing models that aim to describe the Universe. Statistical tools
are then used to estimate the probability function for the parameters of these models based on
observational data. One of those statistical tools is the fisher matrix method [41], which is the
main focus in this dissertation. This chapter introduces the method along with its properties.
Additionally, detailed steps for code implementation are provided to demonstrate its practical
application.
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3.2.2 Statistical Inference

In forward probability (The frequentist approach) the goal is to compute the probability dis-
tribution of the data given a fixed and "true" value of the parameters. Data is often taken as
described by random Gaussian variables. Their probability corresponds to the frequency of a
given outcome occurs after many repetitions of the experiment, since the sample size of the data
is suppose to be large, meaning that the distribution is Gaussian.

In Inverse Probability (The Bayesian approach), the parameters are unobserved random
variables, and have a probability distribution function. The goal is to compute the conditional
probability of a model given a data set P (m|d). The joint probability P (m, d) can be defined
in both ways: P (m, d) = P (m|d)P (d) or P (m, d) = P (d|m)P (m), where the data (the esti-
mated physical property) denoted as d, the model (the values of the parameters) denoted as m.
Combining these expressions one has:

P (m|d) = P (d|m)P (m)

P (d)
(3.16)

This is known as the Bayes Theorem. The conditional probability P (m|d) is known as the poste-
rior probability distribution function. The function P (d|m) is usually referred as the likelihood
function. The function P (m) is known as the Prior distribution function as it encodes prior
information about the parameters. The P (d) is known as Evidence and gives the probability
of the data. It may be obtained from the joint probability by integrating over the full range of
parameter values. That is marginalizing over all parameters,

P (d) =

∫
m
P (d|m)P (m). (3.17)

which means that is model independent and therefore constant for a given dataset.
In frequentist hypothesis test, the crucial information we want to know is the χ2 distribution

of P (d|m) that transmits how good is the data to fit a given model. While in Bayesian parameter
inference, the crucial information we want to know is the χ2 distribution P(m|d) which is how
good is the variation of models fits for a given data set. As we see from Eq. (3.16), one has
P (d|m) ∝ P (m|d) if there is no prior information about the model (“uniformative" prior). So
there are two spaces exist and interrelated: the data space and the parameter space show in
Figure (3.1). From the fisher matrix derivation show in the next subsection, we can understand
how we perform a transformation from the data space to the parameter space.

Figure 3.1: This figure shows the relation between parameter space and the data space

To estimate the parameter values and their uncertainties from data, we need to the posterior
distribution P (m|d) which lives in the parameter’s space. There are three general ways to do
this:

1. By direct computation of the likelihood on a grid
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2. By stochastic methods such as Monte Carlo.

3. Fisher matrix.

3.2.3 Fisher information matrix

To calculate the likelihood function of a model using a grid method is often computationally
expensive. For instance, a model with 10 parameters and considering 10 values in each dimension,
implies that the evaluation of the likelihood demands 1010 calculaions. There are faster methods
like the Monte Carlo approach which instead of evaluating a full grid, one explores the log
Likelihood function with random jumps, where the size of the jump is related to the steepness of
the function. Smaller jumps over rough paths, larger jumps over flatlands. With this technique,
que number of evaluations grow with the number D of dimensions (parameters), instead of
exponentially as in the full grid method. The Fisher matrix is a way to compute the likelihood
even faster, with just a few of tens of calculations.

Theory

Suppose we obtain a series of observations yi, i ∈ 1,…, B, where B is the total number of data
points. Let us assume the data yi can be modeled by a function fi with some parameters p in
the bin i. One can define the χ2 function as:

χ2 = µiC
−1
ij(data)µj (3.18)

where µi = fi(p)− yi, and C−1
ij(data) is the inverse of the data covariance matrix:

C(data) =


σ2
1 σ12 ... σ1B

σ21 σ2
2 ... σ2B

...
... ...

...
σB1 σB2 ... σ2

B

 =


σ2
1 ρ12σ1σ2 ... ρ1Bσ1σB

ρ21σ2σ1 σ2
2 ... ρ2Bσ2σB

...
... ...

...
ρB1σBσ1 ρB2σBσ2 ... σ2

B

 (3.19)

where ρij is the correlation coefficient between the variables yi and yj , σ2
i is the variance of yb.

If observations are uncorrelated, meaning that one observation does not affect the mea-
surement of the other observations, then the covariance matrix becomes diagonal, C(data) =

diag(σ2
1, ..., σ

2
B), and the χ2 function reads:

χ2 =
B∑
i=1

(fi(p)− yi)
2

σ2
i

(3.20)

From the χ2 one can define the likelihood function of the parameters as:

L(p) ∝ exp
(
−1

2
χ2

)
(3.21)

Once again, by the central limit theorem, the distribution is Gaussian. For instance, see figure
3.2 and the fiducial value of the parameters located at (0,0). The smaller the value of χ2, the
larger is the likelihood occur on that value of parameters. Since the Fisher matrix method is a
Taylor series expansion up to second order to approximates only the region near the maximum of
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the likelihood, therefore the Fisher matrix method is usually used in forecasts where we already
know which are the parameter values that lead to a maximum likelihood. In addition, the Fisher
Matrix method is only valid if the contour levels are ellipses, or in other words, that we do have
a Gaussian likelihood.

Figure 3.2: Example: Gaussian distribution in 2 dimensional parameter space

If we expand about the best guess fiducial values of the parameters, which is pi = pi(fid)+δpi

, using a Taylor expansion to the second order and take the average over the data set. We obtain:

〈
χ2(p)

〉
=

〈
χ2(pfid)

〉
+

〈
∂χ2(pfid)

∂pj

〉
δpj +

1

2

〈
∂2χ2(pfid)

∂pj∂pk

〉
δpjδpk + .... (3.22)

The first term is a constant value, the second term (first derivative) vanishes, since taking the
average over the data points in bin b, the mean value of the gaussian distribution falls on the
theoretical curve. This implies:

〈
∂χ2(pfid)

∂pj

〉
=

B∑
b=1

2(fb(pfid)−

〈
yib

〉︷ ︸︸ ︷∑
ib
yib

Nb
)

σ2
b

∂fb(pfid)

∂pj
= 0 (3.23)

where Nb is the number of data point in bin b. So the shape of the distribution is encoded in
the third term. We therefore define the Fisher matrix as [41]:

Fjk =
1

2

〈
∂2χ2(pfid)

∂pj∂pk

〉
(3.24)

Moreover, the second derivative of χ2 along the parameters reduce to first derivatives of the
fiducial model due to the averaging of different data sets:

〈
∂2χ2(pfid)

∂pj∂pk

〉
=

B∑
b=1

(
2

σ2
b

∂fb(pfid)

∂pk

∂fb(pfid)

∂pj
+

2

0︷ ︸︸ ︷
(fb(pfid)− 〈yib〉)

σ2
b

∂2fb(pfid)

∂pj∂pk
) (3.25)
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Therefore we obtain the Fisher matrix in terms of the first derivative [42]:

Fjk =
B∑
b=1

1

σ2
b

∂fb(fid)

∂pj
∂fb(fid)

∂pk
(3.26)

and the covariance matrix of the parameters is simply the inverse of the Fisher matrix〈
δpjδpk

〉
= (F−1)jk (3.27)

As we compare eq. (3.24) and eq. (3.26) , we transformed the χ2 from data space to parameter
space. The Fisher matrix offers a best-case scenario to constrain cosmological parameters.
So we developed a formalism to propagate the errors from the observational errors σi to the
cosmological parameters. Therefore with the errors σi based on the expected performance of a
given experiment and the fiducial model, we are already able to perform a forecast. The partial
derivatives in the Fisher matrix requires only a few estimations of the likelihood for each of the
parameters.

3.2.4 Properties of the Fisher Matrix

Transformation of variables

We can write a Fisher matrix in terms of the new parameters p′ in terms of the original Fisher
matrix written in terms of p, by using the transformation matrix Mij , which is the Jacobian of
the transformation. We can obtain a new Fisher matrix as follows [43]:

F
′
mn =

∑
ij

∂pi
p′
m

∂pj
p′
n

Fij (3.28)

Also we can compute it using the matrices form:

[F ′] = [M ]T [F ][M ] where Mij =
∂pi

∂p
′
j

(3.29)

Maximization of the likelihood function:

To perform maximization of the likelihood with respect to some parameters, we have to fix
one of the parameters at its maximum likelihood estimator. This means putting the difference
pi − pi(fid) = 0. This can be done by removing the rows and columns of the corresponding
parameters we wish to perform maximization in the Fisher matrix. This can be illustrated
by the following example. Let us consider a general two-dimensional probability distribution
function (PDF) in matrix form (likelihood function in the parameter space):

L(Pi) = N exp
[
−1

2

(
∆PiC

−1
ij(par)∆Pj

)]
(3.30)

where N is a normalization factor, ∆Pi = pi − pi(fid) and for simplification, assume pi(fid) = 0.
Similarly to Eq. (3.19), the covariance matrix of the parameter are in the form of [43]:

C(par) =

[
σ2
1 σ12

σ12 σ2
2

]
=

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
(3.31)
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where σ1 and σ2 are the 1σ value of the parameters p1 and p2 respectively (marginalizing over
the other). σ12 = ρσ1σ2 where ρ is known as the correlation coefficient. It varies from 0
(independent) to 1 (completely correlated), both in positive and negative value. Figure 3.3
below illustrate the idea.

Figure 3.3: 68.3% (1-σ) confidence ellipses for parameters x and y with 1-σ uncertainties σx and
σy and correlation coefficient ρ. In the first three panels, dashed lines represent the marginalized
1-σ uncertainty for each variable: ασx and ασy , where α ≈

√
2.3 ≈ 1.52. In the bottom-right

panel, a zoom in to show the intersections with the axes: ±βσx and ±βσy, where β ≈ 2.13
√
1− ρ

(for ρ ≈ 1). Figure taken from [43].

When we combine eq. (3.30) and eq. (3.31), we obtain:

L(p1, p2) = N exp
[
− 1

2(1− ρ2)

(
p21
σ2
1

+
p22
σ2
2

− 2
ρp1p2
σ1σ2

)]
(3.32)

As we see eq. (3.32), the term inside the bracket above the exponential encode the shape
of the contour levels of the likelihood function, that is the shape of the ellipse: the length of
(semi-major axis, semi-minor axis), and the angle tilted between the semi-major axis and the
x-coordinate axis. Now, let us marginalize the parameter p2, we integrate L(p1, p2)dp2 over the
whole domain. This gives:

L(p1) = N̂ exp
(
− p21
2σ2

1

)
(3.33)

where N̂ is a new normalization constant. The new correlation matrix remain only the C11 = σ2
1

component, so we realize that the marginalization can be carried out by the removal of the rows
and columns of the second parameter from F−1 = C(par). This procedure can be applied to any
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number of dimensions. If we are interested in obtaining the fully marginalized 1σ errors of the
corresponding i-th parameters , we just have to marginalize over all the others parameters:

σ2
i = (F−1)ii (3.34)

This property is one of the time-saving feature of the Fisher method. One of the examples using
marginalization is, for instance, in the linear regression. If we recorded a bunch of data and
derived a fit, but we are interested only in placing confidence limits on the slope and not in the
intercept, then the intercept can be considered a nuisance parameter, and we should marginalize
over all possible values of this parameter.

3.3 Procedure on code Implementation for the grid method and
Fisher Matrix method

To demonstrate the idea, we use a simple model with 2 parameters a and b for parameter
constraint computation, and applications in cosmology will be made in chapters 6 and 7. Suppose
the model is a quadratic function with fiducial values afid = 2 and bfid = 3:

y = ax2 + b (3.35)

We now generate a set of random x values within the range 0.1 to 3 and use it to generate the
mock catalog using the steps shown in section 3.4 given the afid, bfid and σb uncertainties for the
corresponding x. Then, we compute the parameter constraints using the Grid Method described
in section 3.3.1, and also using the Fisher Matrix approach that can be found in section 3.3.2.

3.3.1 Grid Method: Compute the χ2 from the mock catalog

The following section shows the steps using grid method for the parameter constraints compu-
tation:

• First we create a parameter space a and b, and create 100 values for a with uniform
spacing, and similarly for b. So for each grid point, we have different combinations of a
and b values.

• Then, we use the set of x values of the mock catalog and σb values (in this case uniform
uncertainties σb = 0.7) and compute the corresponding theoretical model values fb for
each set of parameters in the grid, and perform the χ2 curve fitting with the mock catalog
using eq. (3.20). This process is repeated for the whole parameter space.

• The next step is to find the minimum χ2 value.

• Draw the 1σ and 2σ contours where the 1σ and 2σ contours are given by

∆χ2 = χ2 − χ2
min (3.36)
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1σ : ∆χ2 = 2.3 2σ : ∆χ2 = 6.17 (3.37)

where these value apply to 2 dimension.
The parameter constraints are shown in fig. 3.4. So all the combination of parameters inside

the purple contour give the 1σ probability around the best fit point indicated by a blue point.
The yellow contour refers to the 2σ region.

Figure 3.4: Parameter constraints computed by the Grid Method with fiducial values afid =
2, bfid = 3

3.3.2 Fisher Matrix Method: Compute the diameter of the ellipses from the
first derivatives of the model

There are different approaches to compute the Fisher matrix. The first one uses the first deriva-
tive of the model along the parameters which is the one used in this dissertation. This section
shows the steps using the Fisher Matrix Method for the parameter constraints computation:

• In this model, a 2×2 array is created for the Fisher Matrix as there are two parameters a

and b and no marginalization is carried out. We create two functions that perform a first
derivative of our model along the corresponding parameters at the fiducial points (a = 2

and b = 3) and at every redshift values. We chose the step size of i-th parameter (∆a and
∆b in this case) to be 0.01;

∂fb(fid)

∂a
=

fb(afid +∆a, bfid, x)− fb(afid −∆a, bfid, x)

2∆a
(3.38)

∂fb(fid)

∂b
=

fb(afid, bfid +∆b, x)− fb(afid, bfid −∆b, x)

2∆b
(3.39)

• We then compute the Fisher Matrix components following eq. (3.26) using the list of
uncertainties σb, the two lists of numbers we generate in the previous step and also the
list of uncertainties values,
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• Now, we obtain four components in the Fisher matrix, and we compute the inverse of the
Fisher matrix to obtain eq. (3.31). Then the ellipse parameters are calculated using the
components of covariance matrix Cpar [43]:

a2semimajor =
σ2
a + σ2

b

2
+

√
(σ2

a − σ2
b )

2

4
+ c (3.40)

b2semiminor =
σ2
a + σ2

b

2
−

√
(σ2

a − σ2
b )

2

4
+ σ2

ab (3.41)

tan 2θ =
2σab

σ2
a − σ2

b

(3.42)

where σab = ρσaσb, asemimajor is the length of semi-major axis, bsemiminor is the length of
semi-minor axis, θ is the angle between the semi-major axis and the x-axis.

• Now we plot the 1σ, 2σ confidence region. The axis lengths asemimajor and bsemiminor are
multiplied by a coefficient α depending on the confidence level one is intersected in

1σ : α =
√

∆χ2 =
√
2.3

2σ : α =
√

∆χ2 =
√
6.17

(3.43)

This can be explained by the area of the ellipse:

A = π(αa)(αb) = π(∆χ2)ab (3.44)

We then obtain the parameters constraint computed using Fisher Matrix method shown in
fig. 3.5:

Figure 3.5: Parameter constraints computed by Fisher Matrix Method with fiducial values
afid = 2, bfid = 3

The computational speed of this method is extremely high compared to the grid method
and Markov Chain Monte Carlo (MCMC), due to the analytical simplification from a second
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derivative to a first derivative of the model along parameters, also by obtaining the ellipse
parameters. The shape of the ellipse is obtained without loop through the parameter space
and find the 1σ, 2σ region through the χ2 values, unlike the case of higher order Fisher Matrix
Method in Chapter 5.

3.4 Observatories specifications

In this dissertation, we wish to study two currently in operation gravitational wave observatories:
the advanced Laser Interferometer Gravitational Wave Observatory[44], and advanced Virgo[45];
and also two future observatories: the Laser Interferometer Space Antenna, and the Einstein
Telescope. The former is first space-based gravitational wave detector expected to be launched
in 2037, it is aimed at the detection of massive binary events up to redshifts z ≈ 10 using
a constellation of three spacecraft arranged in an equilateral triangle with sides 2.5 million
kilometres long, flying along an Earth-like heliocentric orbit. The latter is a third generation
underground gravitational wave observatory expected to be build in 2035 [46], it will be able to
circumvent the limitations of current advanced detectors and of their subsequent upgrades. For
instance, the low frequency noise (seismic noise) lowers the sensitivity of ground base detector,
ET is designed to tackle the effect of the seismic noise, and cool down the mirrors to directly
reduce the thermal vibration of the test masses which enable us to reduce the uncertainties of
the observation in the low redshift regime.

Before going into the detail of the specification of the observatories, we first outline the
procedure for SS mock catalog generation [27]:

1. Generate random redshift z∗ values following the probability distribution function of stan-
dard sirens events and the number of values is matched to the expected observed number
of events for the corresponding observatory;

2. Compute the luminosity distances dL(z∗) from the obtained redshifts based on the fiducal
cosmology, which is ΛCDM model, with fiducial values h = 0.7 and Ωm = 0.284. The
latter value corresponds to the best fit for the SNIa from the Pantheon sample.

3. Compute the corresponding errors ∆dL(z∗) for the obtained redshifts using the σtot(z∗) for
the corresponding observatory, and consider as the 1σ region for the luminosity distances;

4. Generate a sample following a Gaussian distribution with mean in dL(z∗) and with stan-
dard deviation equal to σtot(z∗) for each obtained redshift z∗ and consider this sample as
the observed value of the luminosity distance d

(obs)
L (z∗);

The following section introduce the details of LIGO, LISA and ET specifications.

3.4.1 LIGO-Virgo Forecasts

The probability distribution function of SSs events for the LIGO-Virgo observatories follow
figure 2 in [47]. We first sample the values from the figure, then the PDF with respect to the
luminosity distances has to be converted in terms of redshift using the chain rule

∫
f(dL)d(dL) =
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∫
f(dL)

d(dL)
dz dz. The code first computes the luminosity distance versus redshift for a fiducial

cosmology, then interpolates and reverses the function as redshift versus luminosity distance.
The LIGO-Virgo catalog is composed of N = 50 events with a maximum redshift z = 2. After
obtaining the PDF, we go through the steps we mentioned in the above section using the
information of the uncertainties of the observatories σtotal. The total uncertainties of LIGO-
Virgo collaboration is [48]:

σ2
LIGO-Virgo = σ2

dL
+

(
d

dz
(dL)σphoto

)2

, (3.45)

where σdL is the luminosity distance measurement uncertainties, and dL(z) is in units of Mpc:

σdL =
5.63× 10−4

Mpc d2L(z) , (3.46)

and the second contribution is the error for the redshift, due to photometric measurements:

σphoto = 0.005(1 + z) . (3.47)

3.4.2 LISA

For the LISA mission, there are three redshift distribution of SSs events [49], which are expected
to be visible to LISA. In this work we selected the distribution that provides a middle ground
between the other two with respect to the redshift distribution of events, which is No Delay
massive black hole binary (MBHB) plural population with the mission specification L6A2M5N2
since it consider as the closest proposed mission specification presented in [50]. It is expected
to observe N = 15 SS events within the four year lifetime of LISA with redshift range above
z = 0.1. The redshift distribution function is a beta distribution [27]:

f(z) = γ
(z
9

)α−1 (
1− z

9

)β−1
, (3.48)

with values shown in the table 3.1: The normalized redshift probability distribution function is

α β γ

No Delay 2.14 4.7 3.61

Table 3.1: Values of the beta distribution for the redshift distribution of the MBHB populations
No Delay [27]

present in fig. 3.6:
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Figure 3.6: Expected normalized redshift distribution for LISA SS events with L6A2M5N2
mission specification and No Delay populations

The total uncertainty of the luminosity distance for LISA as a function of redshift is given
by [51]:

σ2
LISA = σ2

delens + σ2
v + σ2

inst +

(
d

dz
(dL)σphoto

)2

, (3.49)

The first term corresponds to total lensing uncertainty and consists of two factors in a multi-
plicative manner:

σdelens = Fdelens σlens , (3.50)

The delensing factor includes the possibility of estimating the lensing magnification distribution:

Fdelens = 1− 0.3

π/2
arctan (z/0.073) , (3.51)

and the analytically estimated weak lensing contribution:

σlens = 0.066

(
1− (1 + z)−0.25

0.25

)1.8

dL(z) , (3.52)

The second term refers to the error coming from the peculiar velocity of the sources:

σv =

[
1 +

c(1 + z)2

H(z)dL(z)

]
500 km/s

c
dL(z) . (3.53)

The third term considers the uncertainty in the luminosity distance measurement with the LISA
instrument:

σinst = 0.05

(
d2L(z)

36.6Gpc

)
, (3.54)

The last term refers to the photometric measurements in term of luminosiy distance as a function
of redshift and contribute only at redshifts larger than 2, this uncertainty is then dependent on
the fiducial model.

σphoto = 0.03(1 + z), if z > 2 . (3.55)
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3.4.3 Einstein Telescope

According to [52], ET is expected to observe N = 103 SS events over a three year observation
period with redshift range between zmin = 0.07 to zmax = 2. The observed SS events follows the
normalized redshift probability distribution function:

f(z) =
4πN r(z)d2L(z)

H(z)(1 + z)3
, (3.56)

where N is a normalization constant, determined by the requirement that the total number of
sources Ns be given by:

Ns =

∫ zmax

zmin

f(z′)dz′ (3.57)

and the function r(z) is called the coalescence rate which varies in redshift range:

r(z) =


1 + 2z if 0 ≤ z ≤ 1

(15− 3z)/4 if 1 < z < 5

0 if z > 5

(3.58)

The total uncertainty consists of two contributions:

σ2
ET = σ2

inst + σ2
lens , (3.59)

where
σinst ≈ (0.1449z − 0.0118z2 + 0.0012z3)dL(z) , (3.60)

is the estimate of the ET instrumental error and

σlens ≈ 0.05zdL(z) . (3.61)

is the lensing error.
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Chapter 4

Constraints on f (Q) models

In this chapter, we computed the parameters constraints using Fisher Matrix Method for both
current and future GW observatories, by using SS mock catalogs. In section 4.1 show consis-
tence results to [27] [53] which uses an MCMC method, and section 4.2 is the original work of
this dissertation. In this section we derive the E(z) function and the modification of the GW
luminosity distance for the polynomial f(Q) model. We start from the modified first Friedmann
equation presented in eq. (2.36):

fQQ− 1

2
f = 8πGρ (4.1)

with, a function f in the form stated in [54]:

f = Q+ αQn , (4.2)

where α is a constant and Q is still Q = 6H2.
We Combine Eq. (4.1) and Eq. (4.2). Since the expected SSs events are expected to be observed
in late time universe, we consider it to be composed only of ordinary matter, dark matter and
a cosmological constant and neglect radiation. The E(z) function is:

E2 +

M∗︷ ︸︸ ︷
6n

3
αH2n−2

0

(
n− 1

2

)
E2n =

8πG

3H2
0

(ρm + ρΛ)
(4.3)

where M∗ = 6nαH2n−2
0 /3 is the redefined free parameter .

Since
8πG

3H2
0

ρ0i = Ω0
i (4.4)

We finally have:
E2 +M∗

(
n− 1

2

)
E2n = Ω0

m(1 + z)3 +Ω0
Λ (4.5)

where Ω0
Λ = (2n−1)

2 M∗ + 1− Ω0
m to satisfy the condition E(z = 0) = 1.

Knowing the GW luminosity distance is in the form Eq. (2.66), we can also written as Eq. (4.7),
so we first compute:

Geff =
G

1 + αnQn−1
=

G

1 + 6n−1αnH(z)2n−2 (4.6)

33



The GW luminosity distance is:

d
(GW )
L (z,Ω0

m,M∗, h) =

√√√√f
(0)
Q

fQ
dL(z,Ω

0
m,M∗, h)

=

√
Geff (z)

Geff (0)
dL(z,Ω

0
m,M∗, h)

=

√√√√√ 1 + 6n−1αn
H2−2n

0

1 + 6n−1αn
H(z)2−2n

dL(z,Ω
0
m,M∗, h)

=

√
1 + M∗n

2

1 + M∗n
2 E(z,Ω0

m,M∗, h)2n−2
dL(z,Ω

0
m,M∗, h)

(4.7)

where E(z) ≡ H(z)/H0.

4.1 n = 1/2 model

This f(Q) modified gravity cosmological model features a ΛCDM background with the dif-
ferences arise in the propagation of the perturbations of gravitational waves. This difference
appears from an additional free parameter theory α, and by setting its value to zero, the model
gives back ΛCDM. The expression of n = 1

2 model takes the form [33]

f(Q) = Q+ α
√
Q . (4.8)

Starting from the first Friedmann equation presented in eq. (2.36), and set the right hand side to
be equal to 3H2 and using the non-metricity scalar Q with its relation with the Hubble function,
Q = 6H2, we have:

QfQ − 1

2
f − Q

2
= 0 , (4.9)

Since the SSs events are expected to be observed in late time universe and not detected at
very high redshifts, therefore the universe is dominated by ordinary matter, dark matter, a
cosmological constant and neglect radiation.
The Hubble function is written as:

H2 = Ωm(1 + z)3 +

ΩΛ︷ ︸︸ ︷
1− Ωm . (4.10)

We insert our model presented in Eq. (4.8) to the GW luminosity distance Eq. (2.66) of the
f(Q) model, and we obtain [27]:

d
(GW )
L (z,Ωm, M̃ , h) =

√√√√ 2
√
6 + M̃

2
√
6 + M̃/E(z,Ωm)

dL(z,Ωm, h) , (4.11)

where M̃ = α/H0.
As we can see there is a singularity at M̃ = −2

√
6E(z) in the previous equation, therefore

we have to ensure that M̃ has a lower bound at M̃ = −2
√
6 in order to obtain a strictly physical

luminosity distance for GWs, which is a real positive number for all redshifts.
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4.1.1 Forecasts using Standard Sirens

As we can see, the term M̃
E(z) in eq. (4.11), the parameters M̃ and Ωm present in the E(z)

function lead to an infinite degeneracy on the parameter constraints. In order to solve this
problem, we utilize Pantheon SnIa data with marginalized likelihood along H0 to fix the value
of Ωm. The graph below show the 1σ range of Ωm is around 0.0125 and the maximum likelihood
is located around Ωm = 0.284. We then set the Ωm value as our fiducial value, the 1σ range is
then added in the 00−component of the Fisher Matrix using this form 1

σ2
ΩM

, this addition in the
Fisher Matrices is equivalence to the multiplication of the likelihood functions. The Pantheon
data provide us the Prior P (m) in eq. (3.16).

Figure 4.1: The constraint on Ωm using Pantheon sample with the marginalized SnIa likelihood
for f(Q) model using eq. (3.14)

Figure 4.2: This figure shows the best, median and worst LISA catalogs represented in the
luminosity distance versus redshift plane.
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Figure 4.3: The left panel shows the corresponding constraints computed by Fisher Matrix (FM)
method using the generated mock catalogs, with the Pantheon sample set on the model given
by eq. (4.8). The right panel shows the parameter constraints computed by MCMC from [27].
Dotted lines represent the fiducial ΛCDM values.

LISA Forecasts

Starting the forecast with LISA, we generated three classes of catalogs with properties very
similar to the results found in [27]. Figure 4.2 shows the GW luminosity distance versus redshift
plane of the best, median, worst class of LISA catalogs. Some of the events happen at almost
redshift z ≈ 7.

The left panel of Fig. 4.3 illustrates the constraints on the parameters obtained by the same
catalogs, computed with the Pantheon SnIa data. We can see that the constraints of the best
is sufficiently better than the median, and the median is also sufficiently better than the worst
case. This can be explain by noticing that the best catalogs are the ones with the largest number
of low redshift data points.

Comparing the results with the ones found in ref. [27] and shown in the right panel of 4.3,
we can see that the region of the constraints for three cases is very close, with the difference
that the ellipses in our case are centered in the fiducial value in the Fisher Matrix method, and
the computational speed is much faster compare to MCMC and grid method. This applies to
all the following forecasts.

ET-Forecasts

Let us now move to the ET forecast. We have generated several sets of 1000 mock SS events,
and one set of mock SS events is shown in fig. 4.4, which all give the same parameter constraints
as in the left panel of fig. 4.5, and the right panel shows the parameter constraints computed
by MCMC from [27]. This can be explained due to the large amount of the sample, which
is sufficient enough to provide a "true" distribution. The fiducial ΛCDM cosmological model
is plotted as a dashed gray line on the left panel. It shows a single ET catalog in the GW
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luminosity distance versus redshift plane. The right panel shows the corresponding constraints
combined with SnIa obtained from the Pantheon sample.

Figure 4.4: This figure refer to the 1000 SS mock events luminosity distance versus redshift
relation, with mean values indicated in blue dots and the correspond uncertainties with orange
bars.

Figure 4.5: The left panel shows the parameter constraints computed by FM method, using the
generated 1000 SS events with the Pantheon data on the model given by eq. (4.8). The right
panel shows the parameter constraints computed by MCMC from [27]. Dotted lines represent
the fiducial ΛCDM model/values

Now, we are interested in comparing the constraints between the ET forecast and the LISA’s
best case. The left panel of fig. 4.6 shows both catalogs and the right panel plot the constraints
from the corresponding mock catalogs and the Pantheon sample. The constraints computed
using Fisher matrix is slightly larger than those computed by MCMC method [27]. As we can
see a larger number of low redshift events are supposed to be detected with ET when compared
with LISA. At the end of 3th year operation, ET can provide a good constraint on the model,
however, LISA detects fewer then 15 events and some of the events may be observed in high
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Figure 4.6: The left panel shows the luminosity distance versus redshift of ET catalog in orange
and best LISA catalog in blue. The right panel shows the corresponding constraints computed
by FM method combine with the Pantheon sample set on the model given by eq. (4.8). Dotted
line represent the fiducial ΛCDM model/values.

redshift which further enlarge the constraint of the current forecast.

LIGO-Virgo Forecasts

For LIGO-Virgo alone is unable to provide useful constraints on the model. This can be explained

Figure 4.7: This figure shows the LIGO-Virgo, 3 cases of LISA and ET catalogs Luminosity
distance, in Gpc, as a function of redshift with redshift between 0 and 1.4. The ΛCDM model
is plotted as a solid gray line.

when we present their correspond mock catalog in low redshift regime which is shown in fig. 4.7.
We can see that the number of LIGO events is much larger than the number of ET events. They
are limited within the range z ∈ [0.025, 0.3], but the error bars enlarge when redshift increases.
In addition, the first ET event with a much smaller error bar appears right after the furthest
event of LIGO. This gives an insight why LIGO is unable to give a proper constraint alone. An
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idea raised in [27] consists of considering of a joint analysis using the extreme low redshift LIGO
events z ∈ [0.025, 0.0625] to complement the other missions such as LISA. The following plot
shows a joint analysis on LISA with LIGO data:

Figure 4.8: The left panel shows the parameter constraints computed by the FM method using
the worst, median and best LISA catalogs joined analysis with LIGO-Virgo collaboration and
Pantheon SnIa data. The worst LISA catalog with Pantheon is also shown for comparison.
The right panel shows the parameter constraints computed by MCMC from [27]. Dotted lines
represent the fiducial ΛCDM values.

Let us compare the left panel of both fig. 4.3 and fig. 4.8. There is a substantial improvement
in the worst catalog with the complement of LIGO data, and a slight improvement on the median
class, and both constraints are compatible. Meanwhile, the best LISA catalog shows almost no
improvement.
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Figure 4.9: Parameter constraints computed by FM method using the worst, median and best
LISA catalogs joined analysis with ET and Pantheon SnIa data. The worst LISA catalog+Pan-
theon and ET catalog+Pantheon are also shown for comparison. Dotted lines represent the
fiducial ΛCDM values.

Lastly, we attempt to further increase the quality of our constraints, using the joint analysis
of all missions. In fig. 4.9 show that the constraints in the case of LISA worst catalogs+ET+Pan-
theon data are extremely close to the case ET+Pantheon data, also the results computed by the
best and median LISA catalogs are very close to the worst catalogs. For clarity, the best and
median case are not shown in the figure. In conclusion, using ET + Pantheon data is already
enough to give a tight parameter constraints. Likewise, LIGO-Virgo + ET showed no significant
improvements, as expected given the high quality of the constraints provided by ET alone.

4.2 n = 2 model

In this section we derive the E(z) function and the modification of the GW luminosity distance
for the polynomial f(Q) model with n = 2. We start from the modified first Friedmann equation
presented in Eq. (2.36):

fQQ− 1

2
f = 8πGρ (4.12)

with, a function f in the form:
f = Q+ αQ2 , (4.13)

where α is a constant and Q is still Q = 6H2.
Since the expected SSs events are expected to be observed in late time universe, we consider it
to be composed only of ordinary matter, dark matter and a cosmological constant and neglect
radiation.
The E(z) function for n = 2 model in late time universe regime:

E2 +
3

2
M∗E4 = Ω0

m(1 + z)3 +Ω0
Λ (4.14)
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where M∗ =
62αH2

0
3 is the redefined free parameter, and Ω0

Λ = 3
2M

∗ + 1 − Ω0
m to satisfy the

condition E(z = 0) = 1.
The explicit E2(z) function is:

E2 =
−1 +

√
−3M∗(−2Ω0

mz3 − 6Ω0
mz2 − 6Ω0

mz − 3M∗ − 2) + 1

3M∗
(4.15)

The GW luminosity distance is:

d
(GW )
L (z,Ω0

m,M∗, h) =

√
1 +M∗

1 +M∗E(z,Ω0
m,M∗, h)2

dL(z,Ω
0
m,M∗, h) (4.16)

where E(z) ≡ H(z)/H0.

4.2.1 Forecasts using Standard Sirens with n = 2

By looking at the expression for the luminosity distance of gravitational waves eq. (4.16), we
can see that this model features a degeneracy between two of its parameters, M∗ and Ωm. To
tackle this problem, we make use of the Pantheon sample with the marginalized SnIa likelihood
developed in section 3.1.1, to fix both Ωm and M∗. Figure 4.10 represent the 1σ and 2σ regions
computed using the grid method. The results show that the 1σ value of Ωm is 0.0249 and the 1σ

value for M∗ is 0.0243. The row and column components in the Fisher Matrix are constructed
in the order (Ωm,M∗, h). The 1σ values are added to 00-component in the Fisher Matrix and
11-component in the form 1

σ2
ΩM

and 1
σ2
M∗

respectively. Also we perform marginalization along
M∗ and Ωm respectively, the value of each parameters with maximum likelihood are set at the
fiducial value which located at Ωm = 0.297 and M∗ = 0 when n = 2.

Now, we start the forecasts using the same mock catalogs of the three observatories generated
in the previous section. Once again all the following 2D parameter constraints are marginalized
along the third parameter.

LIGO-Virgo, LISA, ET Forecasts

Figure 4.11 shows the parameter constraints of LIGO-Virgo, worst, median, best case of LISA,
and ET without the help by Pantheon date. We can see that only ET is able to provided a
relative smaller region.

Therefore, in order to improve the constraints, we can perform a joint analysis either using
the Pantheon data or the LIGO-Virgo SS catalog with the other two observatories.

As we compare fig. 4.11 and the left panel of fig. 4.12, with the help of LIGO-Virgo alone,
the constraints of the 3-LISA cases become smaller on all three parameters, but there is no
improvement on ET as it happened in chapter 6. On the right panel of fig. 4.12, we can see that
with the help of Pantheon data, the 1σ and 2σ region become much smaller in LIGO-Virgo,
LISA, and ET. The Pantheon data outperform LIGO-Virgo SS catalog.

For the joint analysis of LIGO-Virgo and Pantheon data, the constraints improve substan-
tially, unlike in n = 1

2 model, in which both LIGO-Virgo alone or LIGO-Virgo+Pantheon data
do not provide useful constraints. For ET with Pantheon data, there are a relativity smaller im-
provement compare the other two observatories. For LISA mission without Pantheon data, the

41



Figure 4.10: Bottom left figure refer to 1σ and 2σ region of M∗ vs Ωm computed by using the
grid method, top figure refer to the likelihood summed along M∗, the bottom right figure refers
to the likelihood summed along Ωm

Figure 4.11: Parameter constraints computed by FM method using LIGO-Virgo, ET, worst,
median and best LISA SS catalogs. The marginalized Likelihood for each parameter is shown
in the diagonal plots. Dotted lines represent the fiducial values

regions of the best case are significantly smaller than the median and worst case, and the latter
two are very close. However, with the help of Pantheon data, the three cases are very close with
tight constraints. Let us further zoom in the plots LISA(3 case)+Pantheon and ET+Pantheon.
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Figure 4.12: The left panel shows the parameter constraints of the joint analysis (LISA 3 case
+ LIGO-Virgo) and (ET + LIGO-Virgo) SS catalogs. The right panel shows the parameter
constraints by joint analysis (LISA 3 case + Pantheon) and (ET + Pantheon). Both computed
by FM method. The marginalized Likelihood for each parameters shown in the diagonal plots.
Dotted lines represent the fiducial ΛCDM values.

Figure 4.13: The left panel shows a zoom in Figure of 4.12 (right panel). The right panel shows
the parameter constraints by joint analysis of LISA best, median and worst catalog with ET+
Pantheon SnIa data. Both computed by FM method. The marginalized Likelihood for each
parameters shown in the diagonal plots. Dotted lines represent the fiducial ΛCDM values.

On the left figure of 4.13, we see that the best case give a slightly smaller region and the
region of median and worst case are almost the same. Importantly, unlike n = 1

2 model in which
ET’s constraint provide the best performance in all three parameters presented in fig. 4.6, LISA
3 classes of catalogs perform better constraint on parameter M∗. Therefore, it is interesting
to combine LISA data with ET data to give us the best constraint on all the parameters. On

43



the right panel of fig. 4.13, we shows the 1σ, 2σ region of LISA(worst)+ET+Pantheon and
ET+Pantheon, the former case provides a very tight constraints, and the constraints computed
using the LISA’s median catalog and the best catalogs are almost the same as the worst cat-
alog, which are not shown in the plots for clarity. Therefore, we conclude that in practice
LISA(worst)+ET+Pantheon data is already able to give a very good constraints on the three
parameters, when we obtain the real data.
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Chapter 5

Constraints on Quintessence models

In this chapter, we will demonstrate the Derivative Approximation for Likelihoods (DALI)
method for reconstructing and forecasting posteriors. DALI extends the Fisher Matrix for-
malism by introducing also the higher order terms which allows for a much wider range of
posterior shapes (non-Gaussian) while maintaining high computational speeds. We chose for
the sake of example a Quintessence model and a Coupled Quintessence model [55, 56] as they
provide both elliptical and non-elliptical confidence levels as can be shown by using, for example,
the grid method. To demonstrate the validation of the Fisher Matrix method and DALI method
in recovering the proper constraints, we compare the results with those computed by the grid
method. Furthermore, the computational speed of the results computed by DALI method is 20
times larger than the grid method with grid size 50 × 50 in both models. In a Quintessence
model, dark energy is governed by a dynamical scalar field. In coupled Quintessence model, the
scalar field interacts with dark matter. In either of this the luminosity distance for gravitational
waves is the same as the standard luminosity distance d

(GW )
L = dL.

For the Quintessence model the luminosity distance is a function of several parameters:

dL = dL(ΩM ,ΩΛ, λ) (5.1)

which includes a constant parameter λ defining the evolution of the field such that φ = φ0+λN .
The corresponding E(z) function is [55, 57]:

E2(z) = ΩM

[
3

3− λ2
(1 + z)3 +

(
1− ΩM

ΩM
+

λ2

λ2 − 3

)
(1 + z)λ

2

]
(5.2)

For the Coupled Quintessence model the Luminosity distance is a function with parameters:

dL = dL(ΩM ,ΩΛ, λ, β) (5.3)

where β is the coupling constant defining the interaction between the dark sectors.
The corresponding E(z) function is [56, 57]:

E2(z) =
3(1 + z)3−γ

3− λ2 − γ
ΩM +

(
1− ΩM +

λ2 + γ

λ2 − 3 + γ
ΩM

)
(1 + z)λ

2 (5.4)

where γ = βλ.
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5.1 The DALI method

In section 3.2.3, we know that the Fisher Matrix Method is a Taylor expansion of the χ2 function
up to the second order. The DALI method extends the formulation including third order and
higher, in which the non-Gaussianities are taken into account. For the parameter constraint
computation in DALI method, we follow Eq.(15) in Ref. [58]: P the posterior distribution refers
to eq. (3.21) and the χ2 that consist of the higher order terms is:

χ2 = Fαβ∆pα∆pβ +

(
Sαβγ∆pα∆pβ∆pγ +

1

4
Qαβγδ∆pα∆pβ∆pγ∆pδ

)
(5.5)

where we have the Fisher tensor:
Fαβ = µ,αMµ,β (5.6)

the Flexion tensor:
Sαβγ = µ,αβ Mµ,γ (5.7)

and the Quarxion tensor:
Qαβγδ = µ,δγ Mµ,βα+O(3) (5.8)

where ∆pα = pα − pα(fid), pα denoted the fiducial value of the αth parameter. The bold µ is
the theoretical model compared to a data set, which is the model vector, coma followed by α

denotes partial derivative along the parameter pα, the M is the data inverse covariance matrix
and supposed our observations are uncorrelated, M is written as:

M = diag(σ2
1, ..., σ

2
B) (5.9)

For the model vector µ in our case, the model refer to the GW luminosity distance as a function
of redshift, therefore:

µ,α=
∂d

(th)
GW (z)

∂pα
(5.10)

and similarly for µ,αβ.
An important advantage of the DALI method is its ability to reduce the flexion tensor from

third-order to a combination of first-order and second-order derivatives with respect to the
parameters. Additionally, it achieves the reduction of the Quarxion tensor from a fourth-order
derivative to a combination of two second-order derivatives.

There are some similarities and differences in the properties of the Fisher Matrix Method
and DALI method. Here we enumerate four major properties of the Fisher Matrix, where only
the last two are shared with the DALI method:

• i) Fisher Matrix allows the evaluation of the n-σ confidence-level contours (only ellipses)
analytically;

• ii) It allows performing marginalization over parameters simply by dropping rows and
columns of the corresponding parameters from its inverse Fisher Matrix;

• iii) Fixing parameters at their best fit values is simply done by dropping the corresponding
columns and rows of the corresponding parameters from the Fisher Matrix;

46



• iv) The FM of the product of two posteriors is the sum of the two posteriors FMs;

In the vast majority of cases, we are interested in one or two-dimensional contour plots of the
posterior marginalized in all other parameters. Therefore, marginalization in the DALI method
must be carried out numerically for the whole n-dimensional space.

5.2 Procedure of the parameter constraints computation

• Generate random redshift z∗ values following the probability distribution function of stan-
dard sirens events and the number of values is matched to the expected observed number
of events for the corresponding observatory, in this case ET;

• Compute the theoretical luminosity distances dL(z∗) from the obtained redshifts based on
the fiducial values following fig. 5.1 and fig. 5.2;

• Compute the corresponding errors ∆dL(z∗) for the obtained redshifts using the σtot(z∗) for
the corresponding observatory, and consider as the 1σ region for the luminosity distances;

• Create functions of the first and second derivative of the GW luminosity distance along
the required parameters, e.g. ΩM and λ in the Quintessence model and ΩM , λ, γ in the
Coupled Quintessence model;

• In the case of two parameters, create a 2 × 2 matrix, F , to store the Fisher Matrix
components computed by the first derivative of GW luminosity distance function; a 2×2×2

matrix, S, to store the Flexion terms computed by the first and second derivatives of the
GW luminosity distance; and a 2 × 2 × 2 × 2 matrix, Q, to store the Quarxion terms
computed by the second derivatives of the GW luminosity distance contracted with the
covariance matrix (computed in the third step) correspondingly. Finite difference approach
is used for the derivatives;

• Create arrays with sizes and dimensions that match the parameter space and store the
corresponding ∆p values. Contract each set of ∆p values with the Fisher tensor, Flexion
tensor and Quarxion tensor and sum the resulting values to obtain the χ2 value. Repeat
this process until it runs through the whole parameter space.

• Find the minimum χ2 value and the corresponding parameter indexes;

• Plot the 1-σ and 2-σ contour levels with the minimum χ2 value;

We finish this section with a final note about the computation of the Fisher, Flexion, Quarx-
ion tensors. The Fisher components are arranged in the order: [ΩM , λ], meaning that the F00

component is the contraction of the covariance matrix M with two first derivatives of d
(GW )
L

along ΩM presented in Eq. (5.6), and similarly to the other components. For the Flexion tensor
presented in Eq. (5.7), a 3 dimension matrix S is created. The first and second index compo-
nents correspond to the second derivative of d

(GW )
L along the parameters and the third index

corresponds to the first derivative. Therefore, considering the symmetry of second derivatives
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(Schwarz’s theorem), S1,0,0 = S0,1,0 and S1,0,1 = S0,1,1. Similarly to the 4 dimension Quarxion
Matrix Q Eq. (5.8), the first two indexes correspond to the second derivative, the third and
fourth indexes correspond to the other second derivative. This also implies the following sym-
metry in the Quarxion tensor Q0,1,1,1 = Q1,1,0,1 = Q1,0,1,1 = Q1,1,1,0 = Q1,0,0,0 = Q0,0,0,1 =

Q0,0,1,0 = Q0,1,0,0 = Q1,0,1,0 = Q1,0,0,1 = Q0,1,0,1 = Q0,1,1,0. We use these symmetries to speed
up the computation of the χ2 function.

5.3 Einstein Telescope forecasts in Quintessence model

For the Quintessence model, two sets of SS mock data are generated according to the fiducial
values as described in the caption of fig. 5.1. Then we perform constraints on the ΩM , λ param-
eter space for both cases. On the top row, the constraints are computed by the grid method,
are highly non-Gaussian. Since the grid method uses the mock data, the contour regions and
the likelihood maxima are slightly changed due to the different random realizations of the mock
catalogs. We can also see that the DALI approximation (bottom) is very close to the one com-
puted by the grid method in both cases, but the Fisher Matrix method (middle) is not able to
provide the appropriate constraints.

5.4 Einstein Telescope forecasts in Coupled Quintessence model

Similarly, the Coupled Quintessence model, the plots in fig. 5.2 follow two sets of fiducial values
as described in the caption, and we explored the λ, γ parameter spaces. The shape of the contour
computed by the grid method (top) when λ = 0.7 is highly Gaussian, and both Fisher matrix
method (middle) and DALI method (bottom) give a very good approximation. However, when
the shape of the contour is highly non-Gaussian (for λ = 0.1), the Fisher matrix method is
unable to give a proper constraint, but the DALI method performs very well.

We conclude that if the distribution is a Gaussian function, then the Fisher Matrix and
the DALI methods give the same results. However, when the distribution is a non-Gaussian,
the Fisher Matrix method on its own cannot tell us whether the distribution is Gaussian or
not, but the DALI method provides a proper approximation. When we are dealing with a few
parameters, the DALI method is a good choice due to the high computational speed, however,
when the number of parameters is large, its implementation in a code becomes complex. It is
advisable to use a MCMC method as an alternative.

48



Figure 5.1: Contour plots made to obtain the most probable values for ΩM and λ for the case
of a Quintessence model with fiducial values ΩM = 0.311, λ = 0.01 on the left panel, and ΩM =
0.3087, λ = 0.55 for the right panel. The plots on the first row show the constraints computed
using the grid method, the second row are computed using the Fisher Matrix method, the third
row are computed using the DALI method.
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Figure 5.2: Contour plots made to obtain the most probable values for γ and λ for the case
of a Coupled Quintessence model with fiducial ΩM = 0.3087, λ = 0.1, γ = 0.001 on the left
panel, and ΩM = 0.3087, λ = 0.7, γ = 0.007 for the right panel. The plots on the first row show
the constraints computed using the grid method, the second row are computed using the Fisher
Matrix method, the third row are computed using the DALI method.
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Chapter 6

Final Remarks

In this dissertation, we constructed Standard Siren mock catalogs based on a ΛCDM fiducial
model for three observatories, one current observatory which is LIGO-Virgo collaboration and
one future ground and one space based observatory. ET and LISA respectively. We have
investigated a generic polynomial form f(Q) = Q+ αQn which results in a cosmological model
with one additional free parameter. First we chose n = 1/2, which results in a model with a
ΛCDM background and then we explored the n = 2 case. Both cases lead to a modification on
the luminosity distance of gravitational waves by an effective gravitational multiplicative term
with respect to the standard luminosity distance.

For the first model, we have obtained using the Fisher matrix approach, consistent parameter
constraints comparable to the ones computed using MCMC method [27], apart from the fact
that the center of the ellipses are located on the fiducial values. This agreement can be explained
by the highly elliptical likelihood function. Then we moved to the analysis for the three observa-
tories. As a high number of events are expected to be observed by LIGO-Virgo and the Einstein
Telescope, a single set of mock catalogs for each observatory was generated and proved to be
able to give a representation of the "true" statistical distribution. We observed that due to the
rapid increase in the error of the data points with redshift in the LIGO-Virgo observations, the
data is unable to provide any constraint on the model by itself. We noticed, however, that given
the good quality data in extreme low redshift events z ∈ [0.025, 0.0625] which is not available
for other observatories, LIGO-Virgo catalog can be used as a joint analysis with LISA and ET
catalogs. This can be done by adding the Fisher Matrices for both missions to the LIGO-Virgo
Fisher Matrix.

For LISA, we classify three sets of mock catalogs, the worst, median, and the best catalog
based on how good the results on the parameter constraints are. The classification can be
explained by the high number of low redshift events (below or equal to redshift 2) with small
error bars that the best catalog has followed by the median and finally the worst case. Therefore
the quality of the parameter constraints is dominated by the low redshift events. With the joint
mission analysis with Pantheon SnIa data, only the best LISA catalog is comparable to ET
in which case ET provides relatively tighter constraints. Also, using the joint mission with

both LIGO-Virgo and Pantheon data with LISA’s three catalogs, we showed that only the worst
case the constraints are sufficiently improved as shown in fig. 4.8. We also illustrated the best
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case scenario using all of the data in fig. 4.9 and concluded that the joint analysis of ET with
Pantheon is already enough to provide the best constraints for future constraints of this model.
Once again, the conclusions corroborate the results obtained with MCMC method in [27]

For the second model, the priors found using Pantheon data give information on both ΩM

and M∗ instead of just ΩM . Comparing LISA three classes of catalogs and ET with the joint
analysis with either LIGO-Virgo or Pantheon data presented in fig. 4.12, we concluded that the
improvement using Pantheon data outperforms the LIGO-Virgo constraints. We also compared
the parameter constraints between LISA and ET with the complement of Pantheon data. We
noticed that unlike the n = 1/2 model, in which the constraints for all parameter in ET mission
are outperformed than LISA presented in fig. 4.6, all 3 LISA catalogs provided better constraint
on parameter M∗ in the n = 2 model. This brought us to perform a joint analysis between LISA
and ET with the assistance of Pantheon data presented in fig. 4.13. The results show that the
constraints are tight and very similar between the three classes of LISA catalogs in combination
with ET and Pantheon data. Therefore, we concluded that in future observations, even if LISA
provided us the worst case observations, by jointing both ET and Pantheon data, we have much
higher certainty on the verification of n = 2 model.

In the final part of this dissertation, we explored the DALI method by computing the pa-
rameter constraints when introducing higher order terms in the Fisher Matrix. A quintessence
model and a Coupled Quintessence model were used as they show highly non-Gaussian 1σ, 2σ
contour levels when computed by the grid method. These correction terms in the DALI method
can provide a proper approximation to the highly non-Gaussian likelihood in the cases when
the Fisher Matrix method fails. Also, the higher computational speed compared to the MCMC
and grid methods make it a compelling alternative. In our case, the results show that the DALI
method is at least 20 times faster than the grid method with grid size 50×50 in both models. For
simplification, we fixed the ΩM value at the maximum likelihood and explored the constraints
in the parameter space γ − λ. We leave the case of performing marginalization for future work
as this is more delicate, e.g., when a three-dimensional parameter space has to be considered,
meaning the Flexion and Quarxion tensor components increase substantially.

6.1 Future Work

There are a number of tasks worth investigation beyond the present work:

• Perform dynamical system analysis on both f(Q) models to determine the regions in
parameter space leading to viable cosmologies.

• Perform marginalization using DALI method on the Coupled Quintessence models;

• A study on PyCBC python package used as the gravitational wave strain generation for
varying parameters like the masses, the spins of the binary system. These data sets can
be used to train a AI machine learning algorithm to output the parameter constraints on
a given model. It would be very interesting if we apply the Fisher Matrix/DALI method
as an alternative.
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