
2023

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Automatic generation and evaluation of platform games

Diogo Alexandre Da Silva Soares

Mestrado em Engenharia Informática

Dissertação orientada por:
Prof. Doutor Luís Manuel Ferreira Fernandes Moniz

Acknowledgments

This project has been an incredible journey for me, it gave me the opportunity to explore and learn

so much about game design and content generation. I am grateful for the opportunity to have worked

on this project and to have been able to share my work with other people. But this project would not

have been possible without the help and support of some extraordinary people in my life, I would like to

express my gratitude to them.

First and foremost, I would like to express my gratitude to Professor Luı́s Moniz for making this

thesis topic available, as well as for his patience, encouragement, project guidance, and constructive

criticism.

I am also deeply grateful to my family for supporting me throughout this project. I am especially

grateful to my parents and brother for their unconditional love, support, and guidance throughout my

life. They have always believed in me and encouraged me to keep pushing for my dreams and never give

up. Their love, advice, and wisdom have been invaluable to me, and I will be forever grateful.

I would also like to give a very special thanks to Sofia Pereira, for being there for me through all the

highs and lows during this project. She has been my rock and my biggest supporter, and I am so grateful

to have her in my life. Without her unwavering encouragement and love, this project would have been

much more difficult.

I would also like to thank all my friends for their unrelenting support, encouragement and humour.

Especially David Pereira, Miguel Marcelino, Vasco Castro, Samuel Ferreira and Andreia Batista. They

made the last five years of college a lot more enjoyable, fun and interesting. The experiences we shared

together will live with me forever.

I am also quite thankful to my work colleagues for all the support and time they have provided me

throughout this project. Thank you for being such an amazing team!

Finally, I would like to thank all those who provided me with materials and resources that enabled

me to complete my work.

i

This work is dedicated to my father and mother, whose love and support have been an inspiration

throughout my life. They have always been there for me and I am so thankful for their guidance and

encouragement. I would not be where I am today without them. Thank you for always believing in me,

even when I doubted myself. I love you both dearly.

Dedication

Abstract

A two-dimensional platformer game can be characterized by levels consisting of uneven terrain that

requires jumping and climbing to traverse. This study explores the use of graph grammars as a rule

system for procedurally generating and evaluating these kinds of games. It follows the technique of sep-

arating the objectives or mission of a level from the layout or space of a level into two different domains,

where a mission is created following the syntax of a graph grammar and the space is generated based on

a mission. During this generation process, both the missions and spaces generated are evaluated directly

with the use of search-based evaluation functions and indirectly with an elementary player AI simula-

tion. To evaluate the generator’s capabilities, a simple prototype game using this generation technique

was created along with three separate mission grammars. The output levels generated with these gram-

mars were analyzed based on four data properties: linearity, leniency, density, and candidate feasibility.

The grammar that showed the most favourable results in terms of feasibility was then tested with a small

group of human players to validate the playability of the levels created by the generator. The obtained

data showed that the generator is capable of generating playable and engaging levels, but that generating

only the missions with a single grammar limits the possibilities of the content generated and makes the

position of structures more difficult to validate, indicating that using various targeted grammars in tiny

amounts might produce better outcomes.

Keywords: Procedural Generation, Platform Games, Graph Grammar, Level Evaluation, Replayability

v

Resumo

Com o crescimento da indústria de jogos eletrónicos, cada vez mais as empresas estão a investir na

criação de jogos, esta competição causa um aumento tanto na escala, como na complexidade e no custo

dos jogos, o que tem levado cada vez mais à necessidade de automatizar certos aspetos do processo de

criação de jogos. Uma metodologia popular para conseguir essa automatização, é chamada de geração

de conteúdo procedimental (GCP), sendo definida como uma forma algorı́tmica de usar software para

criar conteúdos de um jogo com muito pouca intervenção humana. Existem inúmeras abordagens para

criar e aplicar uma solução de GCP a um problema, muitas das quais são exclusivas do jogo para o qual

foram planeadas, no entanto, existem padrões comuns que formam abordagens mais generalizadas. Uma

destas abordagens generalizadas, é denominada de ”abordagem baseada em pesquisa”, e consiste em

usar um algoritmo de pesquisa estocástica para pesquisar o conteúdo que vai sendo gerado, avaliando

o conteúdo com a ajuda de uma ou várias funções de avaliação, por forma a descobrir qual o conteúdo

gerado com as qualidades mais desejadas. Outra abordagem de GCP consiste em usar uma coleção de

regras de produção normalmente na forma de uma ou mais gramáticas formais para instruir o programa

sobre como gerar conteúdos para o jogo seguindo a sintaxe das linguagens estabelecidas.

Este estudo explora o uso desta segunda abordagem para gerar processualmente jogos de plataforma em

2D, usando um tipo especı́fico de gramática chamada gramática de grafos como o sistema de regras.

Ao mesmo tempo, também explora o uso de funções de avaliação para avaliar e validar se os nı́veis

gerados são possı́veis de completar por um jogador. Para tal, foi desenvolvido um gerador de nı́veis,

usando uma versão adaptada para nı́veis de jogos de plataformas, a partir de uma técnica proposta por

Joris Dormans, usada para gerar nı́veis de jogos de ação e aventura. Nesta técnica, a geração de um nı́vel

é separada em dois domı́nios diferentes: os objetivos ou missão e o layout ou espaço do nivel. Neste

contexto, uma missão é um mapa representado por um grafo, onde os vértices representam os objetivos

ou elementos do mapa e as arestas representam as ligações entre estes elementos, este mapa de missão

é criado aplicando as várias regras de uma gramática de grafos. Além disso, o espaço é também um

mapa representado por um grafo, onde os vértices são as estruturas que compõem o nı́vel e as arestas

são as ligações entre estas estruturas. Como as estruturas estão associadas aos elementos de um mapa de

missão, a geração do mapa de espaço é feita com base nessa missão, por forma a aumentar as hipóteses

de gerar um nı́vel válido e que satisfaça os parâmetros escolhidos pelo programador, durante a geração

de um nı́vel são criados múltiplos mapas de missão. Cada mapa começa como um grafo simples apenas

com um vértice inicial, depois é transformado aplicando regras da gramática de grafos até não ser mais

possı́vel aplicar regras. Para facilitar este processo, foi desenvolvido um sistema de reescrita de grafos.

Este tipo de sistema é responsável por fornecer uma forma de criar regras de produção, reconhecer onde

uma regra de produção pode ser aplicada, escolher uma regra com base em critérios pré-definidos e, por

vii

fim, aplicar a regra de produção escolhida alterando o grafo de acordo com a regra. Após a construção de

todos os mapas de missão terminar, estes são avaliados e classificados diretamente usando as funções de

avaliação de cada parâmetro pré-definido pelo programador. No caso do jogo protótipo criado para este

estudo os parâmetros usados foram; o tamanho do nı́vel, a verticalidade do mapa de missão e o número de

inimigos e de moedas num nı́vel. Os mapas de missão com melhor classificação são depois transformados

em mapas de espaço. A criação de um mapa de espaço é feita percorrendo o grafo de uma missão

seguindo um algoritmo de busca em largura. A medida que o grafo vai sendo percorrido, cada vértice Vm

pertencente ao mapa de missão é convertido numa estrutura que seja associada a este. Depois cada vértice

Vad adjacente a Vm, que pertença às arestas que partem de Vm, também é convertido numa estrutura e

a sua posição relativamente à posição Vm é calculada e validada. Esta validação passa por verificar se a

estrutura Ead associada ao vértice Vad quando é posicionada não colide com outra estrutura Eb que já

esteja no mapa. Se houver uma colisão, então a posição da estrutura Ead é recalculada, mas desta vez

relativamente a Eb. Este processo é repetido até ser encontrado um local para posicionar a estrutura ou

até que o número de tentativas seja esgotado. Caso se esgote o número de tentativas, o vértice Vad e a

sua estrutura associada Ead são descartados e os filhos de Vad passam a pertencer ao vértice associado à

estrutura Eb. Todas as estruturas criadas formam os vértices do grafo que representam o mapa de espaço.

Após todos os mapas de missão estarem convertidos em mapas de espaço, estes também são avaliados

e classificados segundo os seguintes critérios: a distância euclidiana entre o inı́cio e o fim do nı́vel, o

número de colisões no posicionamento de estruturas, o tamanho do caminho mais pequeno entre o inı́cio

e o fim do nı́vel e por último se o nı́vel é viável ou não. Esta última verificação é feita indiretamente com

uma simulação elementar de um jogador usando inteligência artificial (IA). Posteriormente, o mapa de

espaço com melhor classificação é então transformado num nı́vel. Esta transformação é dependente da

maneira como a lógica do jogo funciona.

Para ajudar a avaliar as capacidades do gerador criado, foi implementado um jogo protótipo simples e

em conjunto também foram criadas três gramáticas de missão diferentes. Foram feitos dois testes para

avaliar o gerador. O primeiro teste consistiu em usar o gerador para gerar 100 nı́veis com cada uma

das três gramáticas, estes nı́veis foram então analisados com base em quatro propriedades: a linearidade

do terreno, a leniência ou o nı́vel de facilidade de completar o nı́vel, a densidade de colisões entre

estruturas durante a geração do nı́vel e por último a quantidade de nı́veis candidatos viáveis criados

durante o processo de geração. No segundo teste, o jogo protótipo foi disponibilizado publicamente

onde foi testado por um grupo pequeno de jogadores humanos para validar a jogabilidade dos nı́veis

criados. Nesta versão pública todos os nı́veis são gerados com base na gramática que apresentou os

resultados mais favoráveis em termos de viabilidade no teste anterior. Os dados obtidos mostraram

que o gerador é capaz de gerar nı́veis possiveis de jogar e cativantes, com a maioria dos participantes

a dar um feedback positivo. No entanto, os resultados também mostraram que, na sua simplicidade,

o gerador tem dificuldade em lidar com gramáticas onde o desenho das regras é mais complexo. A

simplicidade da simulação com o jogador IA para determinar a viabilidade dos nı́veis também afetou

a precisão desta validação, classificando uma grande percentagem de nı́veis como não viáveis quando

de facto eram possı́veis de serem completados, mostrando que o sistema de validação precisa de ser

melhorado. Por último, os dados mostraram que gerar as missões apenas com uma única gramática limita

as possibilidades e variedade do conteúdo gerado e também dificulta a validação do posicionamento

viii

das estruturas que compõem o nı́vel, indicando que o uso de várias gramáticas direcionadas para gerar

conteúdo mais especı́fico e aplicadas em pequenas quantidades pode produzir melhores resultados.

Palavras-chave: Geração procedimental, Jogos de Plataforma, Gramática de Grafos, Avaliação de

Nı́vel, Repetibilidade

ix

Contents

List of Figures xiv

List of Abbreviations xvi

1 Introduction 1
1.1 Objectives . 2

1.2 Document structure . 4

2 Background and Related work 5
2.1 Background . 5

2.1.1 Platformers games . 5

2.1.2 Aspects of procedural content generation . 5

2.1.3 The search-based approach . 7

2.1.4 The generative grammar approach . 9

2.2 Related Work . 12

2.2.1 Automatic dungeons generation . 12

2.2.2 Patterns in platform game level design . 12

2.2.3 Adventures in level design . 13

2.2.4 Evolving levels for Super Mario Bros. 13

2.2.5 Putting it all in one place . 13

2.3 Summary . 14

3 Methodology 15
3.1 Problem Analysis . 15

3.1.1 The force of gravity . 15

3.1.2 The price of abstraction . 16

3.1.3 Generation control . 17

3.2 Design . 17

3.2.1 Mission maps and grammars . 20

3.2.2 Step one: evolving mission maps . 22

3.2.3 Step two: creating the space layout . 27

3.2.4 Step three: building the level . 30

3.3 Summary . 31

xi

4 Implementation 32
4.1 Configuration . 34

4.2 Grammar engine . 34

4.2.1 Available graph rewriting tools . 34

4.2.2 Defining a mission grammar . 34

4.2.3 Custom graph rewriting and grammar system 35

4.3 Generation engine . 42

4.3.1 Mission map generation . 42

4.3.2 Space map generation . 45

4.4 Validation engine . 52

4.4.1 Mission validation . 52

4.4.2 Space validation . 53

4.5 Game engine . 54

4.6 Summary . 56

5 Analyze and Results 57
5.1 Generator expressivity evaluation . 57

5.1.1 Evaluation mission grammars . 57

5.1.2 Evaluation parameters . 58

5.1.3 Test generator parameters . 59

5.1.4 Results . 61

5.1.5 Review . 65

5.2 Analyzing participants data . 66

5.2.1 Test procedure . 66

5.2.2 Results . 67

6 Conclusion 70
6.1 Methodology Reflections and future improvements . 70

6.2 Future work . 72

6.3 Final thoughts . 73

Bibliography 77

A Extra figures 78

xii

List of Figures

2.1 An example of a simple grammar . 10

2.2 An example of a grammar describing the syntax to create a simple level 10

2.3 A comparison between string and graph grammar representations 11

3.1 Two scenarios in which the player’s jump fails because of the environment around him . 16

3.2 The three main steps of the level generation process . 18

3.3 The level generation flow diagram . 18

3.4 Representing the start of World 1-1 in Super Mario Bros. as terminal symbols for a

mission grammar and as prototypes structures . 19

3.5 A mission map representation of the start of World 1-1 in Super Mario Bros. 20

3.6 The three types of edge slope used in this study . 21

3.7 The production rules of a grammar that can create the mission map seen in 3.5 22

3.8 Mission map creation flow diagram . 22

3.9 The adjacency matrices of graphs A and B . 23

3.10 Building a correspondence matrix M0 from AdjA and AdjB 24

3.11 The search tree to find valid permutation matrices M ′ 24

3.12 Four cases of graph rewriting . 26

3.13 A space map representation of the start of World 1-1 in Super Mario Bros. 28

3.14 A visual representation of how element positions are determined with and without con-

nection structures . 29

4.1 The prototype’s architecture diagram . 33

4.2 Looping rules example . 35

4.3 A class diagram of the grammar loading system contained in the grammar engine 36

4.4 A class diagram of how the IGraphBrowser is implemented 36

4.5 A class diagram of how the IMissionGenerator is implemented 43

4.6 An example of a mission map generated . 45

4.7 A class diagram of how the ISpaceGenerator is implemented 46

4.8 A list of all the prototype structures used in this project’s prototype game 48

4.9 The max horizontal distance a child structure can be placed in front of its parent 49

4.10 The max vertical distance a child structure can be placed above its parent 50

4.11 The max vertical distance a child structure can be placed below its parent 50

4.12 Both cases of structure placement collision and how they are handled 51

4.13 A partial space map . 52

xiii

4.14 A class diagram of how the level generation is implemented 55

4.15 An example of a finished level . 56

5.1 Average percentage of feasible candidates created during the generation of 100 levels

with different maximum numbers of iterations to apply rules 60

5.2 Average percentage of feasible candidates created during the generation of 100 levels

with different amounts of candidates . 61

5.3 Histogram comparing the linearity of 100 levels created by different grammars 62

5.4 The shape and height of a mission map created with grammar A and another created with

grammar B . 62

5.5 Histogram comparing the feasibility of 100 levels created by different grammars 63

5.6 The number of levels each grammar could actually generate out of 100 63

5.7 Shows for each grammar the percentage of levels marked as non-feasible that could be

completed by a human (Yes) versus those that could not (No) 64

5.8 Histogram comparing the density of 100 levels created by different grammars 65

5.9 Histogram comparing the leniency of 100 levels created by different grammars 65

5.10 Charts showing the participant’s general experience while playing the generated levels

in terms of diversity, difficulty, enjoyment and level length 68

5.11 An histogram showing the frequency of participants’ answers in regards to four scenarios

while navigating the levels . 69

5.12 Two charts showing participants’ opinions of the generated levels when compared to

levels from other games they played . 69

A.1 Mission grammar A, used in this project’s prototype game 78

A.2 Mission grammar B . 79

A.3 Mission grammar C . 79

A.4 A composite grammar production rule written in Json format 80

A.5 A mission map generated using the grammar A A.1 . 81

A.6 A vertical print of a space map generated using the mission map in fig A.5 82

A.7 A vertical print of a level generated using the space map in fig 4.13 83

xiv

List of Abbreviations

AI artificial intelligence

PCG procedural content generation

2D two-dimensional

GCG generic content generation

L-system Lindenmayer system

LHS left-hand side

RHS right-hand side

AGG Attributed Graph Grammar

GGL Graph Grammar Library

PROGRES PROgrammed Graph REwriting Systems

DPO double-pushout

SPO single-pushout

SMB Super Mario Bros.

NPC non-player character

BFS breadth-first search

GUI graphical user interface

xv

xvi

Chapter 1

Introduction

With the growth of the video gaming industry, more and more companies are investing in the making of

games that will stay relevant for a long time or captivate players to buy their next games. This competition

has resulted in an increase in game scale, complexity and cost, to the point that big companies with larger

teams of developers expend many years developing a game. The amount of effort and human resources

needed to add great quantities of content to an already large game is enormous compared to the extra

bit of experience it adds for the player, this was pointed out by legendary game designer Will Wright

in his talk ”The future of content” at the 2005 Game Developers Conference[1]. This naturally leads to

the necessity of automating certain aspects of the game creation process. For example, once a game’s

general level feel and design are specified, a level designer will follow the set of guidelines or rules

defined to create new levels for the game; this process can be automated. A popular methodology for

achieving this is called procedural content generation (PCG), which is defined as an algorithmic way of

using software to create game content with limited human interaction [2], basically the game developer

writes an algorithm or set of comprehensive instructions to instruct the game on how to generate content.

Following this algorithm, the game will then generate something completely unique.

Games that rely on replayability like the original Rogue and the Rogue-like genre, use PCG to create

new levels for the player to have a fresh experience each time they play. A good example is a game called

Spelunky[3] in which designer Derek Yu implemented a system where each level is divided into a grid

of rooms, then a path is drawn from the entrance at the top to the exit at the bottom, after that each room

is picked from a set of room templates. The template is chosen based on where the room lies on the path

from the entrance to the exit. On each template there are randomized chunks that give some variety to

the level and then the level is completed by adding the extra bits like treasure and traps, a more detailed

explanation of this algorithm can be found in chapter 3 of Shaker, et al. book ”Procedural content

generation in games”[4]. With this algorithm, a nearly infinite number of levels can be generated that

are different enough to be perceived as new experiences, but keeping the core rules and feel of the game.

This is the power PCG can have when combined with the creative minds of designers. And Spelunky

is not a unique example, many other games use this technique as a core design of their game such as

RimWorld, Terraria, Starbound and many others, or as a way to generate more repetitive parts of their

design, for example, the use of the software SpeedTree to generate the vegetation in the game world.

Apart from saving companies money and time with automation of certain parts of the creation process,

PCG can enable smaller teams of developers to create content-rich games that can compete with the

1

Chapter 1. Introduction 2

big titles, not to mention serve as inspiration for human developers to create new and different designs.

Furthermore, PCG can be combined with player modelling techniques to monitor player responses to

game elements and adapt levels to those responses, allowing the creation of infinitely replayable adaptive

games[5].

But in order to use PCG the developer needs to create an algorithm or set of instructions to generate

the desired content, but what if it was possible to alleviate that process and provide a framework that

generated level layouts that followed the syntax of a predefined grammar, a developer could build said

grammar by defining a set of production rules that uses an alphabet of symbols that represent the content

in a level and specify where and when this content should appear. The main goal of this project is

to test this generative grammar approach by building a PCG framework capable of generating two-

dimensional (2D) platformer levels using an input predefined grammar, while also evaluating the content

created based on its playability and a set of possible parameters defined by the developer. The next

section will go into more detail about the objectives of this project.

1.1 Objectives

The main objective of this research is to find a method for generating levels in 2D platformer games

with minimal human intervention, by implementing a rule-based system where the developers can define

the rules. Additionally, the generator has to be capable of evaluating the content generated to ensure that

levels are playable. The approach used to build this generator, follows the method used by Joris Dormans

in his study [6] where he divided the creation of levels for action-adventure games into two steps: the

mission representing the objectives, items or player actions needed to complete the level and the space

which represents the level geometry.

This study experiments if the same can be done in a side-scroller 2D platformer game, by exploring

the generative grammars approach and creating a prototype software capable of generating levels given

a predefined grammar. The level evaluation uses a search-based approach where multiple candidates are

created at each stage of the generation process and evaluation functions are applied to select the best

candidates for the next step. As such, the following objectives are set for this project:

• Defining an alphabet of symbols to be used by the rules, these symbols have to be mapped to a list

of elements that represent the game objects in the level, called prototype structures;

• Define a rule structure to be used as the foundation of the generative grammar system;

• Create a graph rewriting system to implement the graph grammar approach;

• Apply Dormans’ method of dividing the level generation into two steps, the mission map and

space:

– The mission map is generated using the generative grammar system and is a collection of

steps that the player can take to complete the level;

– The space map uses the mission map to select prototype structures to be included in the level,

it also determines their position.

Chapter 1. Introduction 3

• Use a search-based approach to implement a validation system that can be tweaked by the devel-

oper using a combination of settings;

• Use the validation system to create levels with higher playability, where the playability of a level

depends on three factors:

– Feasibility: This measures if a player is able to complete the level. This is validated with the

use of a very simple player AI, to check if a player can reach the next step of the level being

generated;

– Interesting design: This measures if a player wants to complete the level, whether the level

structure is too monotonous, or whether the levels are sufficiently diverse from one another.

This is validated by scoring multiple generated levels and selecting the best one, the scoring

uses a set of parameters defined by the developer;

– Difficulty: This measures if the level provides the player with enough challenge to keep him

interested. This can be affected by two elements: the number of enemies in the level and the

jumping or moving difficulty of the level. The former is controlled by the definition of the

rule set and the latter is controlled by how far the simulated AI can jump while traversing the

level.

• Make a game prototype that uses the framework developed to generate levels;

• Evaluate the generator expressivity according to four data points: linearity, feasibility, density and

leniency;

• Test the prototype-generated levels with human players, to see how the levels perform in terms of

level design, navigation, length, difficulty and enjoyment.

In the end, the generator created revealed that even applied in a simple form, the use of generative

grammars as a rule system, is not only feasible but also flexible, enabling developers to easily modify

the layout of the generated levels and introduce new layouts. The study also showed that the approach of

dividing a level creation into distinct mission and space domains not only works for 2D platformer games

but also streamlines the entire process. Moreover, the study indicates that utilizing multiple targeted

grammars in small amounts can lead to improved outcomes while being more manageable.

Chapter 1. Introduction 4

1.2 Document structure

This document is organised as follows:

Chapter 2 - Background and Related work: An introduction to important subjects and terms that

this project uses or mentions, followed by a summary of the previous work done on this subject;

Chapter 3 - Methodology: A reflection and analysis of some of the project’s challenges and how

they affect the project, followed by a description of the design and decisions made to build the

generation system;

Chapter 4 - Implementation: A detailed description of the implementation used to develop this

study’s prototype game called ”2D Platformer Generator”;

Chapter 5 - Analyze and Results: A description of the procedure and results of an analysis

performed to assess the generator’s capabilities, as well as a description of the experiment done

with participants to see how the levels would perform.

Chapter 6 - Conclusion: A final reflection on the project, how it fits in with previous work, and

what exciting work remains to be done and researched.

Chapter 2

Background and Related work

This chapter provides an overview of the relevant background and related work related to the thesis topic.

In particular, this chapter will discuss the key studies, theories, and concepts that provide the foundation

of the current work. Additionally, this chapter will also review the related work from other researchers

in the field and how that work has informed the current research. By discussing the related literature,

this chapter will provide a contextual framework for the reader to understand the research topic and the

current study.

2.1 Background

This section is a discussion of topics relevant to this study, it serves as a gentle introduction to important

subjects and terms that this project uses or mentions.

2.1.1 Platformers games

Games come in all different shapes and sizes, so it is important to define the type of game that this

project is trying to create. Two-dimensional platformer games range from simple side-scrolling Runner

games to more complex Puzzle-platform games. They differ in terms of pace, style and goals. This

research focuses on the development of platform-adventure games such as Super Mario Bros., Sonic

the Hedgehog and Metroid. The reason for this selection is that these games are iconic and extremely

popular, with Super Mario Bros. being the subject of numerous artificial intelligence (AI) and PCG

studies.

The game mechanics in a Platformer present a series of challenges since the player is bound by

gravity; he can move left, right, and fall down, but he can only go up by jumping, and this is frequently

a very short distance upwards. As a result, the dynamics between platforms, traps, enemies and gaps are

crucial in these types of games.

2.1.2 Aspects of procedural content generation

Following the brief description of PCG in the introduction chapter, we will now delve into a more com-

prehensive analysis of this topic. Most of the information presented in this sub-section can be found in

greater detail in the book by Shaker, et al. called “Procedural Content Generation in Games”[2].

5

Chapter 2. Background and Related work 6

PCG refers to computer software that can generate game content following a set of instructions

constructed by a developer. The term “content” is defined by Shaker, et al. in their book as any parts

of a game that has an impact on gameplay: the levels, maps, game rules, textures, stories, items, quests,

music, weapons, vehicles, characters, etc. But excluding the AI behaviour of not non-player characters

or the game engine itself. The term ”game” is notoriously hard to define, from ancient civilizations to

modern game studies, many definitions exist to describe this term. Philosophers like Plato and Aristotle

contemplated the role of games in human society. The historian Johan Huizinga introduced a significant

and influential concept of ”game”, known as the ”magic circle”, which refers to a metaphorical boundary

that players enter when engaging in play, setting temporarily aside real-life rules for the rules of the game

and entering a safe, contained space for exploration and experimentation with a playful mindset. Despite

the various attempts to define the term ”game”, the intricacies of this term continue to challenge our

understanding, however, exploring these complexities is beyond the scope of this project. So in a more

literal sense, for PCG, the term ”game” refers to video games, board games, card games, puzzles, etc.

The term ”procedural” refers to a specific way of doing something, a set of steps that must be followed,

or an algorithm. And finally, “generation” implies that something is created.

With the increase of the spectrum of PCG problems and solutions, there was a need to develop a

taxonomy that could be used to compare and classify PCG approaches. Below is a brief version of the

taxonomy provided by Togelius, et al. [7] and revised in the book mentioned above:

• Online versus offline: PCG approaches can be used to generate content online while the user is

playing the game, or offline during game development or before the start of a gaming session.

• Necessary versus optional: PCG can be used to create either necessary game content for level

completion or auxiliary content that can be discarded or traded for other content.

• Degree and dimensions of control: PCG content generation may be controlled in a variety of

ways. One method for gaining control over the generation space is to use a random seed; another

method is to employ a set of parameters that regulate the content creation along a number of

dimensions.

• Generic versus adaptive: The term generic content generation (GCG) refers to the method of

creating content without taking into account player behaviour. In contrast, adaptive, personalized,

or player-centred content production generates material based on player interactions with the game.

• Stochastic versus deterministic: In contrast to stochastic PCG, where replicating the same con-

tent is typically not possible, deterministic PCG allows for the regeneration of the same content

given the same starting point and generating parameters.

• Constructive versus generate-and-test: Constructive PCG generates content in a single pass, as

is frequent in roguelike games. In contrast, generate-and-test PCG algorithms alternate generating

and testing in a loop, repeating until a good solution is created.

• Automatic generation versus mixed authorship: PCG allowed for very limited involvement

from game designers, who typically changed algorithm settings to regulate and steer content de-

velopment while creating endless versions of playable content. However recently a new paradigm

Chapter 2. Background and Related work 7

has emerged where a human designer or player collaborates with the algorithm to develop the

required content, called the mixed-initiative paradigm.

An important distinction between this kind of generation and something like art generation is that

the content generated must take into account the game’s design, requirements, and constraints, and one

of the most notable characteristics of a game is that it should be playable. In the case of 2D platformers,

for example, a player should be able to complete a level from beginning to end. Aside from meeting the

constraints of a game, there are other desirable features that a developer may seek in a PCG solution. In

their book Shaker, et al. provided a list of some of the most common desirable properties of PCG:

• Speed: The speed requirements vary greatly, depending on the game’s complexity and level of

detail and whether the content generation is done during gameplay or during the development

of the game. For this project, speed is not a priority because the generation is done in the level

selection screen and not while the player is exploring the levels.

• Reliability: Some generators just output content with any validation, others can guarantee that

the content they generate meets certain quality criteria. This is more important depending on the

types of content; for example, a missing exit on the level is a catastrophic failure, whereas an odd-

looking tree simply looks odd. It is critical for this project to ensure that a level has at least one

path that allows the player to travel along it and reach the goal.

• Controllability: It is often desirable that a content generator can be manipulated so that a human

user or an algorithm can specify some aspects of the content to be generated. There are many

possible dimensions of control, such as changing the properties of an element or a level capable

of adapting to the skill of a player. The generator created for this project takes as an input a set of

parameters and construction rules that alter certain aspects of its generation.

• Expressivity and diversity: There is a necessity to develop a diversified range of content in order

to avoid the content appearing to be small variations on a theme. There must exist a balance

between changing so little in the content that is barely noticeable and changing so much that it

becomes something completely different and chaotic. For this project, this balance is primarily

achieved in the construction of the rules; they must allow the levels to expand in many ways, but

not so arbitrarily that the validations become too complex or impossible to perform. Building level

generators that provide different content without sacrificing quality is no trivial task.

• Creativity and believability: In most cases, it is undesirable for the content to appear to have

been generated by a procedural content generator. However, this is not a major concern for this

research work. Because, in most situations, this necessitates a fine-tuning of art and design that

extends beyond the scope of this project.

2.1.3 The search-based approach

There are numerous approaches to tackling a PCG problem, many of which are unique to the game for

which they were designed, but one approach that is frequently used and studied in PCG research is the

Chapter 2. Background and Related work 8

search-based approach. This section gives a brief overview of the approach and the components that

comprise it.

In search-based PCG, a stochastic search algorithm with the help of an evaluation function is used to

search for content with the desired qualities. The supposition is that, regardless of how random the initial

answers are, by picking the solutions that are better suited to the task and tweaking them for the next

iteration while discarding the rest, the process will eventually arrive at a local maximum for the ideal

solution. This method requires three key components to function:

• A search algorithm: This is the core component of this approach, it represents the way the content

is searched to find the optimal solution. Evolutionary algorithms are often very suited for this

purpose, the basic principle behind them is to retain a population (also known as chromosomes or

candidate solutions) by evaluating them with an evaluation function in each generation, only the

fittest (highest evaluated) individuals are allowed to reproduce, meaning they are copied with small

changes (mutation) or combined (recombination or crossover), while the least fit are discarded

from the population.

• A content representation: In order to be searched and evaluated the content has to be represented

in some form, the type of representation chosen has an impact on the efficiency of the generation

algorithm and the space of content the method will be able to cover. In evolutionary algorithms,

solutions in the generation space are usually encoded in simple forms that can be evaluated more

efficiently called genotypes that later become phenotypes. In a case where game content is gener-

ated, the genotype may be the instructions for building a game level, and the phenotype could be

the actual game level.

• One or multiple evaluation functions: An evaluation function provides a score (a fitness value

or evaluation value) to each possible solution that is encoded in a representation. If a proper

evaluation function is not employed, the evolutionary process will fail and no good content will be

found. In general, the evaluation function should be constructed to evaluate some desired aspects of

the artefact, such as its playability, regularity, entertainment value, and so on. Evaluation functions

may categorize into three types:

– Direct: Where extracted features from the generated content are mapped to a fitness value,

meaning that the phenotype representation is directly evaluated by the function. This kind

of function is normally fast to compute and easy to implement because it tends to evaluate

a single aspect of the game content. However, establishing a direct evaluation function for

some aspects might be difficult.

– Simulation-based: Where AI agents are utilized to assess the quality of generated content,

this is done generally by scoring the game content according to statistics calculated from the

agent’s behaviour and play style. The proficiency and capability of the AI can be changed

depending on the type of evaluation task and desired outcome, for example in this project an

AI that has a smaller jump distance is used to create levels that have less difficult jumping

challenges.

Chapter 2. Background and Related work 9

– Interactive: Where the content is evaluated based on data gathered through human interac-

tion, there are two types of data collection: implicit and explicit. Implicit is accomplished

by collecting statistics on the user’s employed actions and behaviours, such as how long it

took to complete a level, how many coins were collected, and so on. Explicit involves the

user directly providing input by filling out a form or reporting preferences. However, both

approaches have limitations, hence a hybrid strategy is sometimes employed to mitigate these

by gathering information across different modalities.

2.1.4 The generative grammar approach

Another approach is to instruct the program on how to evolve a solution using a collection of established

rules; generally, one or more formal grammars are defined and utilized to generate solutions that fol-

low the language(s) rules established by the grammar(s). This section will first introduce the notion of

grammar, followed by an explanation of the intricacies of using them in a PCG context.

Formal grammar

In language theory, a formal grammar describes how to use a language’s alphabet to form strings that are

valid according to the language’s syntax. It is called formal because it does not specify the meaning of the

strings or what may be done with them, but merely their form. Noam Chomsky in his generative grammar

theory introduced the concept of formal grammar as a more powerful method of describing language[8].

However, they also have many other applications, for example, the in field of biology a type of formal

grammar called Lindenmayer system (L-system) is used for research in multicellular organisms [9] and

also to generate realistic-looking vegetation[10]. In PCG grammars can be used to generate levels that

follow a desired structure of syntax, a few examples of this are presented in the related work section.

But first, a grammar G can be defined more formally as a tuple (N,Σ, S, P) where: N is a finite set

of non-terminal symbols that don’t appear in the strings produced by G; Σ is a set of terminal symbols

disjoint from N ; P is a set of production rules and S is the start symbol and S ∈ N ; Σ and N form

the grammar’s alphabet. The process of applying a grammar is done by searching through a string, and

each time a symbol or sequence of symbols that appear on the left-hand side (LHS) of a production

rule is found, those symbols are replaced by the right-hand side (RHS) of that rule. This procedure is

repeated until either a specified number of iterations is reached or all symbols are terminal. For example,

Fig. 2.1 shows a very simple grammar with two production rules, the symbols ”S”, ”A” and ”B” are

non-terminal symbols often represented by upper case letters, and ”r”, ”gra” and ”mma” are terminal

symbols normally represented by lower case letters. Starting with a string containing only the symbol

”S”, in the first iteration rule 1 transforms ”S” into ”ABr”. In the second iteration, two rules could be

applied to the string ”ABr” depending on the way it is processed, if the search is done left to right rule

2 is applied first, but if the search goes right to left then rule 3 is applied first, in this example rule 2 was

applied first turning ”ABr” into ”graBr”. The third iteration then applies rule 3 making the final string

”grammar”. This describes a sequential rewriting of the string, all the changes made by the rules are

written in the same string before the next symbol is considered, another method of applying production

rules is parallel rewriting where all the possible rules are applied at the same time by not changing the

original string but instead saving the results of applying the rule in different separate strings. If a grammar

Chapter 2. Background and Related work 10

has exactly one rule that each symbol sequence, such that there is no doubt what rule will be applied for

a given string, then the grammar is called deterministic, otherwise the grammar is non-deterministic

resulting in several conceivable outcomes for a given string.

Grammar:
1. S ⇒ ABr
2. A ⇒ gra
3. B ⇒ mma
——————————————————————
Solution:
s. S → ABr → graBr → grammar

Figure 2.1: An example of a simple grammar

The same concepts apply to the creation of game levels; by establishing an alphabet made up of

symbols representing different aspects of a level, such as enemies, traps, gaps, platforms, and so on, it

is feasible to build a set of rules governing how these symbols can be combined to form a level. Fig.

2.2 shows a grammar that could create a level where the player would enter, find a key, open a lock and

reach the end (s1) or it could create a level where the player would enter, defeat an enemy, find a treasure

and reach the end (s2). A more complex example can be found in Shaker, et al. work [11] where string

grammars were used to generate levels for the game Super Mario Bros..

Grammar:
1. L ⇒ start C end
2. C ⇒ key lock
3. C ⇒ enemy treasure
———————————————————————————
Solutions:
s1. L → start C end → start key lock end
s2. L → start C end → start enemy treasure end

Figure 2.2: An example of a grammar describing the syntax to create a simple level

However, grammars are not limited to having their content represented as strings. For instance, shape

grammars[12] work with geometric shapes, transforming the form of a shape according to their produc-

tion rules. Graphs can also be used in grammars, graphs are more versatile than strings at expressing

non-linear game levels. While a string grammar, such as the one depicted in Fig. 2.2, can efficiently

represent a linear level, it falls short when it comes to representing more complex scenarios such as lev-

els that require multiple keys to open a lock or have a second secret path to the end. In contrast, graphs

provide a more suitable representation for these scenarios. Fig. 2.3 illustrates the representation of the

previous two examples in both graph and string grammar formats. As evident from the figure, the graph

form is more intuitive at conveying information, whereas the string form appears more complicated. To

represent multiple paths in the string version, certain assumptions were necessary. For instance, the use

of the symbol ”//” was introduced to indicate that all nodes connected by this symbol are accessible

from the previous node separated by an empty space. The need for such assumptions contributes to the

increased complexity of representing non-linear maps using only strings, making them more challenging

to work with.

Chapter 2. Background and Related work 11

Figure 2.3: Shows two levels 1 and 2 represented as graphs in 1.a and 1.b and the equivalent represented
as strings in 1.b and 2.b. Level 1 is a level where multiple keys are needed to unlock a lock and reach the
goal and level 2 is a level with multiple paths to the end

Graph Grammar

Graph grammars are a powerful tool for generating game levels. They allow developers to create com-

plex and varied levels with a simple set of rules. A graph grammar defines a graph structure, which is

composed of nodes (or vertices) and edges (or arcs). Each node represents a game element and edges

are used to define the relationships between the elements. Graphs come in a variety of shapes and sizes.

Edges can be both directed and undirected. Some graphs can have their nodes with labels, while other

graphs can be attributed by having nodes that contain variables associated with them. Developers can use

graph grammars to specify the basic structure of game levels, such as the placement of walls, platforms,

and obstacles. Graph grammars may also be used to specify the different types of characters, items,

and enemies that can occur in a level. By applying different rules to the graph structure, developers can

generate unique and varied levels with minimal effort.

The mechanics of applying a graph grammar to transform/rewrite a graph are similar to that of using

a string grammar to change a string, a graph called host is repeatably searched to find a subgraph that

is isomorphic to a rule’s LHS graph and if found, that subgraph is replaced by the rule’s RHS graph.

However, the process of searching for a subgraph that is isomorphic with the rule’s LHS, is considerably

more complex[13] than searching for a sequence of symbols in a string. There are a few algorithms for

solving this subgraph isomorphism problem, of special notice are the Ullmann algorithm[14] that uses a

recursive backtracking procedure, the VF2[15] an advanced form of Ullmann algorithm that is faster and

requires substantially less memory, and more recently the Glasgow Subgraph Solver[16] which adopts

a constraint programming approach, using bit-parallel data structures and specialized propagation al-

gorithms for performance. The Ullmann algorithm was used for this project’s prototype because it is

simpler to implement and performs well enough.

The process of rewriting a graph by replacing the subgraph with the rule’s RHS is also different for

graphs. One approach is the algebraic approach, when a match is detected in the host graph, any edges

connecting the nodes in the match to the rest of the host graph are destroyed, as are any matching nodes

in the host graph that are not also present in the rule’s RHS. The nodes on the RHS but not on the

LHS of the rule are then added to the host graph, and new edges are created to connect the newly added

nodes to the remainder of the host graph. To identify which nodes in the LHS are the same nodes in the

Chapter 2. Background and Related work 12

RHS a relation between nodes on the two sides is created by numbering the nodes and making matching

nodes have the same number. To know how to link the new nodes to the rest of the graph, a technique

called pushout is used, where context elements connect the new nodes to the rest of the graph. A context

element is a node that can be found on both the left and right sides of a rule. Due to the presence of

such nodes, the new nodes are immediately connected to the remainder of the host graph. There are two

approaches that use the pushout technique, the single-pushout (SPO) and double-pushout (DPO), the

main difference between the two is that the DPO gives more control over what edges should be deleted

even in cases were the node connected by this edges is removed, whereas in the SPO if a node is removed

all edges connected to that node are removed. In the DPO a rule also requires a third graph called the

interface graph that contains the context elements. Given that the rewriting needed for the prototype was

simple, a SPO approach was used.

Grammars can be a powerful tool for generating game content, but the process of creating a level

by hand has many different steps. So trying to construct every aspect of a level in a single generation

layer can be limiting and very difficult to maintain. Instead, a different approach is to use multiple layers

or phases, where each phase is responsible for a different step in the level generation process. Joris

Dormans for example, divided the creation of levels for action-adventure games into two phases[6]: the

mission phase, which represents the objective or player actions needed to complete the level, and the

space phase, which represents the level geometry. Dormans’ approach serves as a stepping stone for this

project.

2.2 Related Work

A fair bit of research has been done on the topic of PCG, this section focus on presenting some of the

work that inspired this project. The section is divided into subsections, each representing a separate

research project.

2.2.1 Automatic dungeons generation

In 2002, David Adams demonstrate the use of graph grammars to generate dungeons games[17], he did

this by developing a graph grammar system that took in generation strategies and a set of predefined

game-specific grammar rules and generated a graph representing a topological description of the level,

which is a description that only represents the order in which objects in the level are encountered rather

than their physical appearance. Adams used object-oriented abstraction to allow the developer to define

their own strategies for picking production rules and also to define parameters such as the size or difficulty

of a level that was used by a level strategy to output a level with the desired parameters.

2.2.2 Patterns in platform game level design

Kate Compton and Michael Mateas in their study[18], proposed a four-layer hierarchy to represent levels

of platform games that focus on repetition, rhythm, and connectivity. The basic layer is components, the

building block of a platformer level, which should be composed of an obstacle and a resting stop, like a

gap followed by a platform to land on. On the second layer, patterns would dictate how the components

should be grouped together and still maintain the rhythmic movement for the player. But since this

Chapter 2. Background and Related work 13

pattern would only be linear, in the third layer they would be encapsulated into cells that would then

be connected to one another following a cell structure to create a non-linear level. The fourth layer is

the level itself, which is made up of cell structures that were constructed by studying the level structure

patterns of previously released platform games.

2.2.3 Adventures in level design

As briefly mentioned at the end of section 2.1.4, Joris Dormans in his study[6] investigated strategies

to generate levels for action-adventure games and proposed the use of generative graph grammars to

procedurally generate missions for action-adventure games, which, due to their nonlinear structure, are

a good fit for games that involve exploration. In this research, Dormans suggested that in order to

build more sophisticated level layouts, the generation process should be separated into the creation of a

topological map called ”mission” which represented the steps needed to complete the level, and then use

that mission to build a geometric map called ”space” holding the physical information of the level. Graph

grammars were used to generate the missions and Shape grammars were used to generate the space. He

came to the conclusion that by breaking the operation down into these two parts, we may capitalize on

the strengths of each type of grammar, and that these methods can be used to create levels on the run,

allowing the game to adapt to the player’s actions.

2.2.4 Evolving levels for Super Mario Bros.

Noor Shaker, et al. [11] demonstrated a way of generating Super Mario Bros. levels using generative

string grammars, by building an alphabet where the terminal symbols abstracted the game content into

function calls. The functions had the same name as the element they represented and took as parameters

the properties of the elements. Using that alphabet they constructed a set of rules that could generate

levels. In other to test the grammar generator’s capabilities they used two other different generators to

create levels. Each generator’s output was analyzed and evaluated using a set of level design metrics,

namely linearity, density, leniency, and compression distance. A comparison was drawn between the

generators, this approach introduced a general framework that game designers could use for comparing

content generated by different generators.

2.2.5 Putting it all in one place

In 2016 Shaker, et al. [2] published a textbook book called ”Procedural Content Generation in Games”

containing an overview of the research field of PCG the first of its kind. The book was written based on

a syllabus of academic papers on the subject the authors put together for a course at the IT University

of Copenhagen, most chapters within the book introduce new methods together with fascinating and

relevant domains that illustrate their practical use. It also contains a revised taxonomy based on the

one done by Togelius, et al. [7], as well as important concepts about PCG. It acts as a guide for PCG

researchers from many fields to learn about the approaches developed in other communities as well as a

good learning textbook.

Chapter 2. Background and Related work 14

2.3 Summary

In this chapter, we introduced several fundamental concepts that will serve as the basis for the subsequent

sections of the dissertation. Specifically, we discussed the taxonomy that will be utilized, as well as the

properties that are typically desired in PCG. We also explored two different approaches for addressing

PCG problems, which will be integrated into this project. Furthermore, we referenced prior research

conducted on the subject, including Joris Dormans’ investigation of strategies for generating levels in

action-adventure games. This research will serve as a foundation for the work presented later in the

dissertation.

Chapter 3

Methodology

The idea behind this project was to explore the creation of a framework capable of using a set of rules de-

fined by a developer to generate playable two-dimensional levels for a platformer. This chapter presents

the approach taken in this study to begin developing such a framework. It will begin with an analysis of

potential problems and challenges that may arise during the development of such a framework, followed

by a discussion of the framework design and how some of the challenges were addressed.

3.1 Problem Analysis

3.1.1 The force of gravity

The creation of a two-dimensional side-scroller platformer level brings a set of new challenges when

compared to the creation of a level from a dungeon crawler game with a top-down view like Rogue. In

the latter kind, the player’s movement is not affected by an external force, this implies that as long as

there is a guarantee that all the areas in a level are connected by a pathway the player can move freely

anywhere there is a walkable path. In a platformer, however, the player’s movement is limited by the

artificial gravity provided by the physics engine, which means the player can only move left or right

and move down by falling. The only way to move up is to jump, which often pushes the player a short

distance upwards and initiates an arc trajectory, meaning that the player cannot freely control where

he’s going to land when he jumps, he can only predict. Validating if a level is playable becomes more

complicated with the existence of a physics engine, the length of the player’s jump is affected by the

player’s momentum at the initial moment of the jump, making it harder to calculate if a jump is possible

or not. The validations become even more complicated if in order to make levels more challenging and

add more variety, obstacles are placed in them, which can directly affect the player’s path and momentum,

making a platform that was within reach of a full-length leap, now not reachable because the player is

being blocked from reaching the necessary speed (see Fig. 3.1a). Moreover, if the obstacles are not static

their movement can also block the player from reaching the platform (see Fig. 3.1b), implying that to

determine if the player can reach the next platform, the algorithm would have to calculate every jump

imaginable at every speed the player may achieve, as well as every object placement combination in a

radius around the jump gap at each timestep, making it a very daunting task. Because of the number of

variables, it’s more practical to use a player AI simulation. This simulation can be used as an evaluation

function to filter out playable levels from a group of generated levels by having the AI play them and

15

Chapter 3. Methodology 16

picking the ones where it can reach the end while discarding the rest. This player simulation could also

serve as a simulation-based evaluation function (see section 2.1.3), to help generate playable levels in the

level generation process. As part of the generation process, the function would determine a location on

the map that is reachable by the AI player, this location would then be used for placing a new element

on the map. This does implicate that the performance of an AI player influences the position of elements

in the level, implying that a better performing AI will create more challenging levels. The AI can also

be given handicaps to change the way it affects the generated levels, such as lowering its jump force

to create levels with smaller jumps. The use of this type of evaluation function does have an increased

cost in performance, this could pose a problem in games that need to generate levels during runtime.

However, in the case of this project, the prototype generates all the levels when the player first enters the

level selection menu, so this performance cost is not an issue.

(a) A scenario in which the player cannot get enough speed to complete the jump

(b) A scenario in which the player’s jump is temporarily obstructed
by a moving platform

Figure 3.1: Two scenarios in which the player’s jump fails because of the environment around him

3.1.2 The price of abstraction

Creating a reliable generator that can generate and validate good levels for a specific game is difficult,

creating one that could be used for any style of platformer game is even more challenging and comes

with costs. No matter how well the software is made, there will still be some particular games that

require a very specific type of level layout or validation that the generator will not be able to perform.

Chapter 3. Methodology 17

This is because there is no perfect balance between ”good” and ”challenging” levels. There is no one

true best-level creator that fits all games perfectly, even if they are from the same genre, due to the nature

of how game designers make games that play differently. Each game has different types of challenges.

Creating a level of abstraction in the generator in order to make it customizable, such that a developer

could not only provide the generator with the elements he wants in the level and how they should be

connected, but also stipulate the validations that he wants the generator to make in order to create the

best fitting levels, could potentially solve the problem, but at a certain point of abstraction, the generator

would be so generic that the developer would have the same work creating his own. So there must be a

balance between the time-saving qualities a generic generator framework can provide and the limitations

of expressivity that come with those qualities.

3.1.3 Generation control

Another aspect to consider is the controllability of the generator, how much control should the developer

have in the generation of a level. Should it be a one-to-one relationship between an input and its output,

giving the developer complete control over every aspect of the creation of a level, or should the developer

have no control whatsoever. Since the levels are built from a grammar, the layout of the level will reflect

the syntax defined by that grammar’s production rules, giving the developer that designs that grammar

some control over the design of the level, however normally the cause and effect of changing a production

rule in a non-deterministic grammar is not very clear since the rules associated with a symbol or set of

symbols are picked at random, more control can be given to the developer if the rules themselves have

a priority value so that the developer can specify which patterns should be picked more often, tailoring

the generation process in the desired direction. Another way of increasing the controllability besides

allowing the developer to tweak certain aspects of the generation with parameter values is to give the

developer the option to define their own custom parameters which gives them the opportunity to make

specific evaluations of their generated levels. Using these optional methods it is possible to create a

generator that provides both a hands-off and a somewhat controlled approach to generating levels.

3.2 Design

As previously stated, this study follows Dormans’ method of separating the level creation into two dif-

ferent parts: the mission map, which contains the basic composition and objectives of the level, and the

space map, which contains the information and location of all the structures that will make up the level.

This separation of priorities brings a more refined control to each stage in the creation of a game’s level,

by first focusing on the level’s main objectives and elements and then worrying about where to place

them and what their physical form should be like. As such, the level generation process is divided into

three main steps (see Fig. 3.2), each of which is responsible for setting up certain aspects of the level,

which get increasingly detailed as the process progresses. The first step is to evolve a mission map using

a generative graph grammar, then in step two, a mission map is used to guide the creation of a space map,

and finally, in step three, a level is built from the space map.

Chapter 3. Methodology 18

Figure 3.2: The three main steps of the level generation process
(Icons adapted from www.flaticon.com)

During the level generation, the generated content is validated using an evolutionary algorithm,

meaning that multiple candidates are created at each stage of the level creation, and then evaluation

functions are used to score the created content, the best candidates are then filtered out and used on the

subsequent steps. Fig. 3.3 shows a flow diagram of the level generation process, it also shows that given

n mission maps, the top m maps are used to generate m space maps, and from these m maps the best

one is used to create a level.

Figure 3.3: The level generation flow diagram

But to create a framework capable of generating levels for more than one specific platformer game,

a level of abstraction has to be created to separate the generation process from the actual game details

and elements, but still give the generator enough information for it to be able to evaluate and create

usable levels. With this in mind, the framework was designed to work as independently from the game

content and logic as possible, so a developer using the framework would first establish a grammar to

build mission maps by defining an alphabet where the terminal symbols represent objectives or abstract

elements of the level and a set of production rules that will dictate how the symbols in the alphabet

should be joined together. And second, the developer would have to create a list of prototype structures

that would be used to create the space map, these prototypes structures represent templates for the actual

game objects used in the game, they hold the basic information like type, size and any other special

Chapter 3. Methodology 19

property the element might have, but know nothing of their actual graphical representation. A developer

can also establish specific parameters for the created level, such as the level’s maximum size or the level’s

overall slope. The level validator then uses these parameters to rank levels and select the ones with the

best fit.

To help explain all the steps of the generating process let’s try to generate the start of World 1-1

in Super Mario Bros. (SMB) (see Fig. 3.4a). First, we need to divide the level into pieces to create

the prototype structures. A prototype structure be be defined by a tuple (type of structures, width,

height, ..., other special properties). The start of this level contains a type of entrance, platforms,

treasure boxes and an enemy ”Goomba”, so at least four different prototype structures can be defined

(see Fig. 3.4c). Then we must establish the terminal symbols for our mission grammar, since the mission

represents a set of possible steps or objectives the player has to go through, for our example, the symbols

could be ”s” for the start of the level, ”p” for any type of platform the player has to go through, ”t” for

any type of treasure the player can pick up and ”e” to represent any type of enemy that might appear (see

Fig. 3.4b). These symbols could then be associated with their logical counterpart prototype structure

(see Fig. 3.4c). Although it is not exemplified here a mission grammar terminal symbol can and should

be associated with more than one prototype structure, to create variety, the reciprocal is also true, one

type of prototype structure could also be associated with multiple terminal symbols.

(a) The start of World 1-1 in Super Mario Bros.
(Adapted from www.nesmaps.com)

s − start
p − platform
t − treasure
e − enemy

(b) Terminal symbols

s → (”entrance”, width, height)
p → (”platform”, width, height)
t → (”treasure”, width, height, numBoxes,

items)
e → (”Goomba”)

(c) Terminal symbols associated with prototypes structures

Figure 3.4: Representing the start of World 1-1 in Super Mario Bros. as terminal symbols for a mission
grammar and as prototypes structures

Chapter 3. Methodology 20

3.2.1 Mission maps and grammars

A mission map is a graph that represents an abstract layout of the level, meaning that each node on the

graph represents a step in the level, and the edges represent the connections between these steps. The

term “step” is used here to mean an action or element the player needs to interact with or go through in

the level. In the case of the start of SMB World 1-1 (3.4a) a potential mission map could look like the

one represented in Fig. 3.5.

Figure 3.5: A mission map representation of the start of World 1-1 in Super Mario Bros.

Having defined the terminal symbols or ”steps” that should exist in our level map. The next stage is

to create one or more grammars that can rearrange these symbols in interesting ways to create mission

maps. The type and structure of the grammars should reflect their purpose, in Dormans’ study[6] the

mission map could only affect the layout in cases where a node was associated with another by a special

edge, such as a link between a key and a locked door, the key has to be accessible in a place not blocked

by the locked door it should unlock. The type of grammar he used to evolve and create these maps was

a graph grammar, where the productions rules were built to form interesting mission maps for action-

adventure games, the layout of the level was purely the responsibility of the space map, which was built

using a shape grammar where the production rules change the shape of the level. In the case of this study,

only the mission map is generated through the use of a grammar, more specifically a graph grammar. The

space map is built using only a mission map as a reference and is not transformed by any grammar. So

to help form the space map, the edges that link the nodes on a mission map graph have a slope attribute,

that denotes the direction of that connection line indicating where the target node of that edge should be

placed in relation to the source node. This does not negate the need for a space map, however, because

it is merely indicative of the direction it should be in, not defining the actual position. To keep things

simple for this study, the slope of the edge can only have three values: -1, 0 and 1. Indicating whether

the target should be placed at a lower, the same, or a higher height, respectively (see Fig. 3.6). But going

forward it would be interesting to give the connection edge an angle so that a target node could be placed

anywhere around the source node. It is also useful to give the edge some information about its nature,

just like in Dormans’ work it is important to have a way of telling the generator that a key node opens a

lock node, this could have been done by giving the edge between these two nodes a property type.

Chapter 3. Methodology 21

Figure 3.6: The three types of edge slope used in this study
(Super Mario Bros. sprites adapted from www.nesmaps.com)

The production rules of graph grammar consist of a LHS graph pattern that is replaced by that rule’s

RHS graph (see section 2.1.4 - Formal grammar). However, when creating a rule set capable of gener-

ating different-looking levels, it is advantageous to have multiple choices of replacements for the same

pattern, this way even if the rules are static the outcome is different. This can mean multiple rules with

the same left pattern but different right patterns or a single composite rule that maps the left pattern to

multiple right patterns. The latter option was used for this study, each composite rule is composed of

a left-side graph pattern that can be replaced by multiple right-side graph patterns, and each right-side

of the rule has a probability attribute that indicates the chance of it being selected to be applied, mean-

ing that right-sides with a higher probability value will be picked more often. This attribute is set by

the developer during the creation of a rule. Since the edges of a mission map’s graph have the slope

attribute, this permits the definition of patterns when defining production rules, such as having a parallel

path going up and down or having a hub where three paths diverge in different directions. This causes

the levels generated with a particular set of rules to share a resemblance in patterns between each other,

which might be advantageous if the idea is to build a game with a certain aesthetic resemblance between

the levels. Fig. 3.7 shows an example of a simple grammar with composite production rules that could

be used to form the SMB mission map in Fig. 3.5.

Chapter 3. Methodology 22

Figure 3.7: The production rules of a grammar that can create the mission map seen in 3.5

3.2.2 Step one: evolving mission maps

Every mission map starts has a graph called ”host” with a single node, this host is transformed by

applying rules from one or more grammars until there are no more possible rules to be applied or another

predefined condition is met, the only constant condition is that the host graph contains only terminal

nodes at the end of the morphing process. During each step of this transforming process (see Fig. 3.8),

the host is first searched to find what rules can be applied, then a rule is selected based on a strategy,

random selection being the default strategy. After a rule has been selected, if it can be applied in more

than one spot, then a random spot is picked to apply the rule. Finally, that spot is morphed to one of the

rule’s RHS according to their priority attribute.

Figure 3.8: Mission map creation flow diagram

Chapter 3. Methodology 23

Searching for applicable rules

To discover which rules can be applied to the host graph, it is necessary to discover if the host contains

any subgraph that is isomorphic to one of the rules’ LHS, this is called the subgraph isomorphism prob-

lem, and even though it is an NP-complete problem there are algorithms that can solve this problem

relatively fast for specific types of practical problems. One algorithm is Ullmann’s subgraph isomor-

phism algorithm[14] developed by J.R. Ullmann in 1976. Given graph A and graph B, to find if B is

subgraph isomorphic to A, first represent both graphs as adjacency matrices (see Fig. 3.9), then create a

correspondence matrix M0 of size |VB| × |VA| where:

m0
i,j =

{
1, if deg(VAj) ≥ deg(VBi) ∧ type(VAj) = type(VBi)

0, otherwise
,mi,j ∈ {0, 1}

The correspondence matrix shows all the possible nodes from graph A that can be considered candidates

for nodes in graph B. A node j in graph A (denoted as VAj) is only considered a candidate for a node i

in graph B (denoted as VBi) if node VAj has at least the same number of adjacent neighbours (denoted

as deg(VAj)) and is also of the same type (denoted as type(VAj)) as VBi. If the former two conditions

are met then node VAj is marked as a candidate to node VBi by setting m0
i,j = 1, otherwise m0

i,j = 0. It

is important to note that the conditions to consider a node as a candidate are specific to each use case of

the algorithm, for simple problems, checking for the number of adjacent nodes might be enough, but in

cases where the nodes have properties such as a ”type”, these properties need to be checked as well. Fig.

3.10 shows the correspondence matrix M0 constructed from AdjA and AdjB .

Figure 3.9: The adjacency matrices of graphs A and B

Chapter 3. Methodology 24

Figure 3.10: Building a correspondence matrix M0 from AdjA and AdjB

With the correspondence matrix, a search tree can be constructed by designating a potential node

candidate from graph A for every node in graph B and verifying whether an isometric correspondence

exists. In practice, this is achieved by creating permutation matrices M ′, where each row of the cor-

respondence matrix has only one non-zero element. Then testing each one to see if they are a valid

permutation matrix. An example search tree can be observed in 3.11. The root of the tree is the corre-

spondence matrix, and each branch is constructed by setting all values in a row to zero, except for one.

This process is repeated for each row until a leaf matrix with only one non-zero element in each row and

column is reached. During this process, any branches that result in more than one non-zero element be-

ing present in a column can be discarded, as it indicates that the same candidate node would be mapped

to two distinct nodes of the other graph. Once the search tree is complete, all the possible associations

between nodes of the two graphs are represented by the leaf matrices.

Figure 3.11: The search tree to find valid permutation matrices M ′

Ullmann also proposed a refinement rule for pruning or cutting off invalid branches from the search

tree by considering the following: if a node vj from A is among the candidates for a node vi in B, then

for each adjacent node of vi in B, denoted vAdj
i , there must be at least one node in A, denoted vAdj

j , that

Chapter 3. Methodology 25

holds: vAdj
j corresponds to vAdj

i and vAdj
j is adjacent to vj in A. If it does not, vj is removed from the

candidates for node vi by setting m0
i,j = 0. This check is performed until no more removals are possible

even with the new changes.

Once a valid permutation matrix M ′ representing a candidate subgraph from A is found it can be

tested using the criterion:

P = M ′AM ′−1, iff P is isomorphic to A, with a correspondence M ′

By calculating P = M ′AM ′−1 if the resulting matrix P is equal to B by (bi,j = 1) ⇒ (pi,j =

1) then this subgraph is isomorphic to B. Using this algorithm we can search the host graph to find

where and what rules can be applied. But using this algorithm can be costly, because of all the matrix

manipulation and multiplications involved, this cost can be minimised using more efficient ways of doing

these manipulations such as encoding the matrices as bit vectors and using bit-tweaking operations.

Another way to reduce the number of searches in the host graph is to give each rule a list of associated

rules, this list contains the other rules that could be applied if any of this rule’s RHS graphs were to exist

in the host graph. With this associated rule list when is time to pick a rule the algorithm already has

knowledge of some of the rules that could be applied and one could be picked without having to search

the host graph, it is still necessary to search where this rule can be applied, but the search is done for a

specific rule instead of all of them. Additionally, it is possible to reduce the cost of the search even more

by stopping at the first permutation matrix that satisfies the criterion above, not bordering on checking

the other branches of the search tree, of course, this raises the possibility of always selecting the same

first one; this can be avoided by selecting at random the first column of each row of the comparison

tree to be fixed at 1 and setting all others to zero when creating the search tree. To resume, grammar

production rules are created with the knowledge of their associated rules, then instead of searching for

what rules can be applied, a rule is picked from the associated list, and then the host graph is searched to

find the first place the rule can be applied.

Graph morphing

Once a rule has been chosen and a valid host subgraph match has been selected to apply it, the next step

is to replace that match with the rule’s RHS mutation graph. This process is known as graph rewriting.

In this study, an algebraic approach was employed, utilizing a SPO method as outlined in section 2.1.4.

The approach used in this study involves four distinct cases, depending on the number of nodes present

in both the match and mutation graphs, an illustration of each of these four cases can be seen in Fig. 3.12.

However, before delving into the specifics of each case, it is important to reference that when a subgraph

match is found, the nodes in the subgraph are numbered exactly like the rule’s LHS numbering, this is

important to be able to see the link between the node on the LHS and on the RHS.

The first case (see Fig. 3.12a) is a context-free case where a single ”match” node is replaced by

one ”mutation” node. This process is done by transferring all adjacent edges of the ”match” node to the

”mutation” node, then removing the ”match” node from the host graph, and finally adding the ”mutation”

node to the host graph.

The second case (see Fig. 3.12b) is also a context-free case where a single ”match” node is replaced

by a ”mutation” graph. This process involves designating the node with the lowest number in the ”mu-

Chapter 3. Methodology 26

tation” graph as the ”start” node, and the node with the highest number as the ”end” node. Next, any

incoming edges connected ”match” node are transferred to the designated ”start” node in the mutation

graph. Similarly, any outgoing edges connected to the ”match” node are transferred to the designated

”end” node in the mutation graph. Finally, the ”match” node is removed from the host graph, and the

nodes and edges of the mutation graph are added to the host graph.

The third case (see Fig. 3.12c) is a context-sensitive case where a ”match” subgraph is replaced by a

single ”mutation” node. This process is done by first removing all edges between the ”match” subgraph

nodes. Then transfer all other edges, that connect the ”match” subgraph to the rest of the host graph,

to the ”mutation” node. Finally, the ”match” subgraph nodes are removed from the host graph, and the

mutation node is added to the host graph.

The fourth case (see Fig. 3.12d) is also a context-sensitive case where a ”match” subgraph is replaced

by a ”mutation” graph. To accomplish this, first, all edges between the ”match” subgraph nodes are

removed. Then, each node in the ”match” subgraph, which is linked to a node in the ”mutation” graph

by having the same alias number, has its adjacent edges transferred to that linked ”mutation” node.

Finally, the ”match” subgraph nodes are removed from the host graph, and all nodes from the ”mutation”

graph are added to the host graph, along with any remaining edges.

(a) (b)

(c) (d)

Figure 3.12: Four cases of graph rewriting

Chapter 3. Methodology 27

Choosing rules and where to apply them

When evolving a mission graph, three crucial decisions must be made: which rule to apply, where to

apply it, and which RHS of the rule to use. All of these decisions will affect the way the mission is

created, and as such there should be a system that allows the developer to give some direction in the

algorithm choices. This can be achieved in a multitude of ways, rules can have a priority associated with

them just like the RHSs of the composite rules have, or an evaluation function could take in parameters

defined by the developer and classify each possible change and choose the one that as a better fit. The

latter option was tested in the prototype created for this study, but it was found to be a bit slow and

in need of optimization, so it was eventually compromised to generate multiple mission maps using

a faster method by making the choice of which rule to use random and apply it on the first subgraph

match found in the host graph by the searching algorithm, with the acRHS of the rule chosen based

on its priority attribute. The evaluation algorithm then classifies the different mission maps using the

parameters defined by the developer to select the best candidates to proceed to the next step and be

transformed into space maps.

Validating mission maps

The mission map validation is done by scoring the map according to a few parameters defined by the

developer to fit the style and feel of the game being created. The definition of these parameters also

contains a way to evaluate and score the map. In this study’s prototype the mission maps were scored

taking into account the following parameters:

• Level size: used to influence the level scoring based on the number of platform nodes in the

mission graph. Missions with more platforms will create large levels. It is worth noting that the

size of a level is also linked to the number of rules that can be applied to the level, with the grammar

developed for this prototype each time a rule is applied the number of nodes in the graph increases.

• Graph linearity: used to influence the level scoring based on the number of edge slopes that are

different from zero. A higher value means that there are more side paths and parallel paths in the

mission map.

• Number of enemies: used to influence the level scoring based on the number of enemy nodes on

the mission map.

• Number of coins: used to influence the level scoring based on the number of coins nodes on the

mission map.

All the mission maps created are scored based on the sum of these parameters then the m top maps

are selected to be translated into space maps.

3.2.3 Step two: creating the space layout

The space map is a graph that represents the infrastructure of the level, each node represents a level

element with width, height, position and other properties that the element might need, for instance, a

moving platform would also have the direction and distance it travels. The edges of this graph represent

Chapter 3. Methodology 28

the intended paths a player might take to go between these elements, however, they do not represent

all possible paths, for example, a node representing a platform might be on a different branch of the

graph representing a place height above another platform, the player can still fall to platform bellow even

though they were not linked in the space map graph. From the mission map represented in Fig. 3.5 the

following space map would be created 3.13.

Figure 3.13: A space map representation of the start of World 1-1 in Super Mario Bros.

The space map is created by going through a mission map graph using a breadth-first search (BFS)

traversal algorithm, which means that starting from the root node all neighbouring nodes are explored

first. Using this search method is advantageous since the level is being built in a specific direction, and

we can evaluate the pieces that make up each section of a level one step at a time. It also facilitates

the generation of a level at runtime since the mission map could be segmented and only one segment be

created until the other is needed. At each step of the mission map BFS, the current node or parent node

and its adjacent out edges or child nodes are translated into prototype structures and all the necessary

parameters of these structures are calculated. As explained, a prototype structure represents a template

for the actual element to be used, it contains the basic properties of the element like position, size and

any other special property the element might have. There are two types of prototype structures: placeable

structures and normal structures. Placeable structures are elements that must be placed on top of other

elements, possible examples are levers, traps and enemies. Normal structures do not have to be put on

top of elements, examples would be platforms or the level’s entrance and exit. It is important to highlight

that if a mission node happens to be associated with more than one prototype structure, a strategy for

selecting one should be specified. As the parent and children nodes are being translated the edges that

connect them on the mission map are also checked to see if they have a special type that dictates relations

between the nodes. For example, the connection between a key and the lock it opens, if an edge of this

type is found, then both the prototype structure of the key and the lock would have an extra property to

hold this connection.

After having translated both parent and children nodes, calculations are made to find their position

in the map, the position of the parent structure is already known either because it was calculated in a

previous step or because it is the initial default position. The child positions are calculated in relation

to the parent position with the help of a player simulation and depend on the player jump distance, on

the slope of the edge that connects the respective child mission node to the parent mission node and

where or not a connection prototype structure is going to be placed between them. A connection node

is a special prototype structure that connects two impossible-to-reach elements without blocking the

player’s movement, examples include, moving horizontal and vertical platforms, ladders that the player

can climb by pressing up and walk through by pressing left or right, a static platform that the player

Chapter 3. Methodology 29

can cross but also fall or jump through if he wants, a rope that the player can climb horizontally but

go through vertically, and so on. Normally, for a position to be legal, the player must be able to reach

it, this means that new elements cannot be placed further apart than the maximum distance the player

simulation can jump both vertically and horizontally (see Fig. 3.14a). However, connection structures

allow the elements to be put further apart while still ensuring that the player can reach them (see Fig.

3.14b).

Figure 3.14: A visual representation of how element positions
are determined with and without connection structures

(Super Mario Bros. sprites adapted from www.nesmaps.com)

When calculating the positions for prototype structures, it is important to check if the area the new

structure will occupy already contains another structure, either completely or partially inside it. If it

does, there are at least three solutions: either move the other structures to make room, skip and don’t

include the element being placed or while no valid place is found shift the element’s placement to the

end of the map by altering its parent mission node to another node in the mission graph that has already

been translated and placed the farthest in the direction the level is being created and then recalculating

the new position. The last option was the one used in this study’s prototype, it is basically a trial and

error strategy to find a valid place for the new element. A space map is complete once all of the nodes in

the mission map have been translated to prototype structures, assigned a place and all other parameters

they might contain have been determined. The next step is to validate it.

Validating space maps

The space map validation is done by scoring the map according to a few parameters, similar to the

mission map, these parameters can be defined by the developer to fit the style and feel of the game

being created. In this study’s prototype the space maps were scored taking into account the following

parameters:

• Distance to goal: the bigger the euclidean distance from the entrance to the goal of the level the

better, this helps prevent levels that have the start and goal right next to each other;

Chapter 3. Methodology 30

• Number of collisions: the number of times the calculated position of an element had to be shifted

because there has already an element in that area. Levels that have a low collision count are

preferable because every collision essentially changes the original mission map layout and can

create graphs that don’t follow the mission grammar syntax;

• Length of the player path: essentially the length of the shortest path from the entrance to the

goal. The euclidean distance indicates how far apart these two points are, but it does not consider

the obstacles along the way, so it is important to check if an actual path exits and how long this

path is.

• Feasibility: if the simulated player can go through the level’s shortest path from the entrance

to the goal without being blocked. This is accomplished by traversing the path’s nodes, when a

node represents any type of platform it is inspected to determine whether the player can cross the

platform from one side to the other without colliding with anything marked as an obstacle. It is

also verified whether the player can reach the next node in the path by assessing whether the next

node element is within an estimated player jumping range, which is obtained by calculating the

player’s jump trajectory.

Other parameters that were not used in the implementation of this study’s prototype but are worth

considering when creating levels with better gameplay are the number of side paths and the number of

dead-end branches. Favouring levels that have more than one way to reach the end goal is beneficial

because it provides the player with choice and motivates exploration. Reducing the number of pointless

dead-ends in the level improves the quality of the exploration as well. Since the player is not punished

by having to backtrack empty-handed when exploring a side path. Both of these aspects are also affected

by how the mission grammar is designed, production rules can be written to replace side branches that

terminate in empty node leaves with treasure and challenges, or they can be written to avoid side paths

entirely.

During the level generation process, to improve the likelihood of generating the most appropriate

map according to the parameters defined. Several space maps are built from various mission maps and

then rated, the space map with the greatest score is chosen to build the level.

3.2.4 Step three: building the level

The final step is to build and draw the actual level. This depends on the game engine used to program the

game, but it essentially involves going through the space map and transforming the prototype structures

into actual game objects, taking into account any special connections between them, and translating those

connections to the game logic.

Chapter 3. Methodology 31

3.3 Summary

In this chapter, we analysed and discussed some of the potential challenges that come with creating a

framework software capable of generating playable 2D platformer games. Specifically, we discussed

how the game’s engine gravity affects the movement of the player, by reducing control of the playable

character when the player jumps or falls. This, in turn, affects how the layout of the level should be

planned since the movement of the player is restricted. Next, we mention how creating a framework

that can generate any type of 2D platformer game is a daunting task and that at some point compromises

have to be made, otherwise the framework would have to be too generic leaving too much work and

responsibility to the developers using it. The last topic discussed was the level of control that developers

should have over the generation process in level design. Finding the right balance between complete

control and no control is key. A generator using graph grammars can give the developer the ability

to guide the level layout, by tweaking and changing the grammars rules, while still keeping a level of

randomness in the generation process. This randomness can be managed through priority values and

custom parameters, resulting in a generator that provides both a hands-off and a somewhat controlled

approach to generating levels.

After the problem analyses, we presented a possible design for the framework. We discussed how

Joris Dormans’ work on generating action-adventure games forms the bases of this study’s framework

design. Following his work, the generation of 2D platformer levels was divided into Three steps. These

are, deciding the goals and challenges of the level, creating the appropriate layout for the level, and

finally, constructing the level. To do this two structures were created: A mission map, that contains a

graph with the goals of the level. This mission graph is generated by applying grammar rules using

a generative graph grammar. And a space map, which also contains a graph, but with the prototype

structures that will be converted into actual game objects, these structures also have their positions on the

level. During the generation process, multiple mission maps and space maps are generated and evaluated,

and the best scoring space map is the one used to build the level. Next, we will discuss how this method

was used to create a prototype game.

Chapter 4

Implementation

A small prototype game called ”2D Platformer Generator” was developed as a proof of concept follow-

ing the previous section’s proposed design, the prototype was made using the C# language in the Unity

engine [19]. Unity was chosen because it provides an out-of-the-box game engine with a very friendly

learning curve, which made it easier to create the game aspects of the prototype. Using Unity also pro-

vided access to the Unity Store [20] which is a great source of resources to build games. Building the

framework using the object-oriented language C# also provided access to features such as inheritance

and reflection that helped separate the generating framework from the actual game engine. This chapter

holds a detailed description of the architecture and logic used to develop this prototype software, with

a special focus on the level generation logic since the other parts of the software deal with Unity and

gaming aspects that go beyond this project spectrum.

The prototype’s architecture (see Fig. 4.1) is divided into four layers: the grammar engine; the

generation engine; the validation engine; and the game engine. The grammar engine is responsible

for loading the grammar production rules and all processes that have to do with the application of the

grammar. The validation engine is responsible for all simulation, validation and scoring of mission maps

and space maps. The generation engine takes care of generating the mission maps and space maps using

the previous two layers. And finally, the game engine serves as a placeholder where the developer would

hold the logic for the specific game, using the generation engine to create the levels.

32

Chapter 4. Implementation 33

Figure 4.1: The prototype’s architecture diagram

Chapter 4. Implementation 34

4.1 Configuration

There are a couple of configurations and external files associated with the generator. One such file is

the engine configuration file, which contains the path to the two mission grammar external files needed

to create mission maps and it also includes the name reference of the mission and space generation

strategies classes that will be utilized during the level generation process. There is also a class called

”GeneratorParameters” that holds all the parameters needed during the stages of level generation.

4.2 Grammar engine

The grammar engine function as the core system for loading graph grammars, allowing the creation and

transformation of mission maps using the grammar’s rules. As such, it functions as a graph rewriting

system. This type of system is responsible for providing a way to create production rules, recognise

where a production rule can be applied, choose what rule would make the best modification to the graph

and finally apply the production rule by changing the graph according to the rule. In this section, we will

first take a look at some of the tools already available for graph rewriting and why they were not used in

this project, followed by an explanation of how the grammar engine works.

4.2.1 Available graph rewriting tools

Over the years many graph rewriting tools have been developed. In 2002, David Adams in his work

[17] referenced two tools. They are, the PROgrammed Graph REwriting Systems (PROGRES) [21],

a specification language that allowed the manipulation of graphs. And the Attributed Graph Gram-

mar (AGG)[22], a development environment written in Java that supports an algebraic approach to graph

transformation. More recently, the researchers at UT Austin have developed the tool GraphSynth[23],

written in C# the tool offers a way to transform a graph using graph grammar rules, storing these rules and

graphs in a common XML framework. Another recent tool is the Graph Grammar Library (GGL)[24] an

object-oriented ANSI C++ library that implements DPO approach and uses state-of-the-art algorithms to

implement and apply graph rewrite systems and offers great support for grammar-based graph transfor-

mation in chemistry.

For this project, however, it was opted to create a custom system since the tools mentioned above are

either too old or have too many features. The PROGRES was created in 1995 and as such its not easy to

find references or support for its use, AGG is still being updated with the last patch being from 2021, but

it is written in Java and does not provide that much control over the way rules are applied, only GGL and

especially GraphSynth could have potential being used for this project. However, a simpler system with

more control over the graph matching and replacement methods was preferred. The rest of this section

will focus on explaining how this custom system developed works.

4.2.2 Defining a mission grammar

For this prototype, mission grammars are defined in external Json files, Json format was chosen because

of its common use in the industry, meaning that many languages have support to parse these types of files.

Since this is an initial testing prototype the rules have to be written in Json format manually, of course,

Chapter 4. Implementation 35

this is not practical so ideally, they would be automatically parsed from a production rule creation GUI

or a functional language like Standard ML. Appendix A.4 shows an example of a composite production

rule defined in Json format. Every rule is composed of an id, a left-side graph and a list of right-side

graphs. Each graph has a list of edges and nodes where nodes have a type and an alias and edges have

a source node, a target node, a type and a slope. The right-side graphs also have a priority value and a

list of associated rules. The mission grammar designed and used in this prototype is called grammar A

and can be seen in appendix A.1. A secondary grammar known as closing grammar was also created,

this grammar is an exact copy of grammar A but it does not contain any direct or indirect recursive rules.

Illustrated in Fig. 4.2) is two examples of recursive rules.

Figure 4.2: Looping rules example

Without proper validation or checks, recursive rules can create endless loops of rules being applied.

Therefore, creating a grammar without recursive rules guarantees that a graph that still contains non-

terminal symbols will be transformed into a graph with only terminal symbols as fast as possible while

still respecting the original grammar syntax. Both of the grammars created contain the following terminal

symbols:

• start: where the player spawns in the level;

• goal: the end of the level;

• platform: any empty platform or ground the player can stand on;

• enemy: any adversary non-player character (NPC);

• coins: a group of collectable coins;

4.2.3 Custom graph rewriting and grammar system

The grammar engine layer contains the core components of the grammar system, as well as a couple

of interfaces that help with the use of the grammar system. One such interface is the IGrammarLoader,

which helps load the Json files by proving means of parsing the Json rule data and transforming them into

rule objects. This process can be better understood by looking at Fig. 4.3 which shows a class diagram of

the grammar loading system. Following the diagram it is possible to see that a Grammar class contains

an IGrammarLoader implementation called JsonGrammarLoader, this loader reads in an input Json rule

file and converts the Json data into a list of CompositeRule objects that implements an IGrammarRule

interface. Every CompositeRule contains one left side and multiple right sides, each side containing a

graph. The graphs are represented using an external library called QuikGraph [25], this class provides

methods to deal with all the internal graph operations, to keep this dependency to a minimum the class

was wrapped in our own graph class.

Chapter 4. Implementation 36

Figure 4.3: A class diagram of the grammar loading system contained in the grammar engine

Search graphs for rule patterns

This layer also provides a IGraphBrowser interface to search graphs for rule patterns, in the context of

the prototype created this interface was implemented by a class called GraphBrowser, which makes use

of a matching strategy interface called IGraphMachingStrategy to find subgraph patterns in graphs, this

interface is then implemented by a class called UllmanMatchingStrategy that uses Ullmann’s algorithm

(see section 3.2.2 - Searching for applicable rules) to find pattern matches. A class diagram of these

classes can be seen in Fig. 4.4.

Figure 4.4: A class diagram of how the IGraphBrowser is implemented

Chapter 4. Implementation 37

The UllmanMatchingStrategy class implements a way to search through the host graph to find sub-

graphs that match with the rules LHS to discover what rules can be used and where they can be applied.

The pseudo-code for the implementation of Ullmann’s algorithm used can be seen below.

Algorithm 1 Ullman’s subgraph isomorphism algorithm with pruning

1: procedure ULLMANSALGORITHM(hostGraph, patternGraph)
2: if |V (patternGraph)| > |V (hostGraph)| then
3: return
4: end if
5: M0 ← correspondenceMatrix(hostGraph, patternGraph)
6: subgraphs← permutationMatrices(M0)
7: return subgraphs
8: end procedure

The algorithm takes two input graphs, hostGraph and patternGraph, and returns a list of sub-

graphs of hostGraph that are isomorphic to patternGraph. It starts with a check to make sure that the

number of nodes in the pattern graph is not greater than the number of nodes in the host graph, V () is

a function that returns the nodes of an input graph. If the pattern graph has more nodes then there is no

possible subgraph inside hostGraph, and the algorithm returns immediately. Next, a correspondence

matrix, M0, is created using the correspondenceMatrix() function, which takes the host and pattern

graphs as inputs. The pseudo-code for this auxiliary function can be seen below.

Algorithm 2 Creation of a correspondence matrix and applying pruning

1: procedure CORRESPONDENCEMATRIX(hostGraph, patternGraph)
2: m← |V (hostGraph)|
3: n← |V (patternGraph)|
4: M0 ← zeros(n,m)
5: for all V pattern ∈ V (patternGraph) do
6: for all V host ∈ V (hostGraph) do
7: isV alidCandidate← |Adj(V host)| >= |Adj(V pattern)|
8: and Type(V host) == Type(V pattern)
9: j ← index(V pattern)

10: i← index(V host)
11: M0[j, i]← (isV alidCandidate) ? 1 : 0
12: end for
13: end for
14: pruning(M0, hostGraph, patternGraph)
15: return M0

16: end procedure

The purpose of correspondenceMatrix() is to create a correspondence matrix between the nodes

of the two graphs. The function starts by initializing two variables, m and n, which represent the number

of nodes in the host graph and the pattern graph, respectively. The matrix M0 is then created with

dimensions n × m and all elements are initialized to 0. The function then uses nested for loops to

compare every node in the pattern graph with every node in the host graph. The isV alidCandidate

variable is set to true if the number of adjacent nodes in the host graph node is greater than or equal to

the number of adjacent nodes in the pattern graph node and if their types are the same. The indices of the

Chapter 4. Implementation 38

nodes in the pattern and host graphs are stored in variables i and j, respectively. The matrix M0 is then

updated with a value of 1 at the ith row and jth column if the candidate is valid, and 0 otherwise. Finally,

the function applies pruning on the matrix M0, which is a process of simplifying a matrix by eliminating

invalid candidates. The purpose of this is to reduce the amount of computation needed. The pruning

process works by observing that if a node A ∈ hostGraph is a candidate to a node B ∈ patternGraph,

then an adjacent node to A should also be a candidate to an adjacent node to B. If this is not the case,

then it is an invalid candidate and the value in the matrix should be changed from 1 to 0.

Returning to Ullman’s algorithm, the next step after building the correspondence matrix is to check

every possible permutation of the correspondence matrix to identify valid subgraphs. The permutation-

Matrices() function traverses the matrix creating a tree with all possible subgraphs candidates, these can-

didates are then evaluated to determine if they satisfy the criterion for being isomorphic to patternGraph.

The function adds any valid subgraph to a list, which is built up as the algorithm continues to test every

possible permutation of the matrix. The algorithm demonstrated in the pseudo-code below is an example

of the permutationMatrices() function.

Algorithm 3 Checks every permutation on the correspondence matrix to find valid subgraphs

1: procedure PERMUTATIONMATRICES(M, row, validSubgraphs)
2: if row >= |rows(M)| then ▷ Check if current row is the last one
3: if satisfiesIsomorphicCriterion(M) then
4: add M to validSubgraphs
5: end if
6: end if
7: for col = 0 to |cols(M)| where M [row, col] == 1 do
8: isV alid← true
9: if there is a y ̸= row where M [y, col] == 1 then

10: if there is no x ̸= col where M [y, x] == 1 then
11: isV alid← false ▷ The same node cannot be a candidate for two different nodes,
12: ▷ and the second node does not have any other candidates
13: end if
14: end if
15: if isV alid then
16: copyM ← copy(M)
17: for every x ̸= col set copyM [row, x] = 0
18: permutationMatrices(copyM, row + 1) ▷ Recursion call
19: end if
20: end for
21: end procedure

As mentioned above, the purpose of this function is to check for every permutation on the cor-

respondence matrix to find valid subgraphs. This is a recursive function that implements backtrack-

ing to construct a tree of all possible arrangements of the correspondence matrix. Each branch in

the tree corresponds to the construction of a permutation matrix, this type of matrix is one where:

∀i ∈ 1, 2, . . . ,m,
∑n

j=1M [i, j] = 1 and ∀j ∈ 1, 2, . . . , n,
∑m

i=1M [i, j] = 1, where m and n are

the dimensions of the matrix M . Any branches that do not result in a leaf node with a valid permutation

matrix are rejected and not considered. Using the function satisfiesIsomorphicCriterion(), each created

leaf permutation matrix M ′ is checked to see if satisfies the isomorphic criterion P = M ′AM ′−1, where

Chapter 4. Implementation 39

P is the adjacency matrix of patternGraph. If it does, the matrix is added to the list of valid subgraphs.

The algorithm continues checking every permutation of the matrix until all possible permutations have

been checked, and the list of valid subgraphs has been built up.

To speed up the application of rules, a modified version of Ullman’s algorithm was used. Instead of

finding all possible subgraphs, this modification returns the first valid subgraph it finds and then stops.

This way, the process of creating a permutation tree stops as soon as the first valid subgraph permutation

matrix leaf is found. To avoid repeatedly selecting the same first subgraph that is found on the tree,

the correspondence matrix can be created by randomly shuffling the node order in both graphs. This

scrambles the information, causing the tree to construct the permutation matrixes in a different order. In

addition to randomizing the node order, an alternative approach to finding different subgraphs is to begin

building the tree from different columns in the first row. This reduces the likelihood of repeating the

same subgraph selection as well, leading to a more diverse set of results.

Morphing graphs

In addition to the previous interfaces, the grammar engine layer also provides the IGraphMutator inter-

face, which enables the system to morph graphs based on the identified grammar rules. When a rule is

found by the grammar engine layer, the IGraphMutator interface is used to perform the required mor-

phing of the graph. This morphing process involves substituting one subgraph pattern in the given input

graph for another pattern. The AdaptiveGraphMutator is a class implementation of the IGraphMutator

interface, which utilizes one of the four algorithms outlined in section 3.2.2 (Graph Morphing) to perform

graph morphing. As described in the previous section, this strategy involves analyzing the subgraph to

be replaced and the graph replacing it to determine the type of substitution that is required. This analysis

takes into account the number of nodes in each graph, to ensure that the appropriate morphing action is

taken.

The simplest case is to replace a single node with another node, the algorithm below represents this

case:

Algorithm 4 One-to-one graph morphing

1: procedure ONETOONEMORPH(host,matchNode,mutationNode)
2: add mutationNode to host
3: for all edge ∈ E(matchNode) do ▷ E() return all adjacent edges of the input node
4: newEdge← copyEdgeTo(edge,mutationNode)
5: add newEdge to host
6: remove edge from host
7: end for
8: remove matchNode from host
9: end procedure

This is a simple substitution algorithm. Given a host graph, a matching node from the host graph,

and a mutation node, the algorithm adds the mutation node to the host graph, copies all the edges from

the matching node to the mutation node, and removes the matching node from the host graph. More

specifically, the algorithm iterates through all adjacent edges of the matching node in the host graph and

creates new edges between the mutation node and the other nodes in the host graph that the matching

Chapter 4. Implementation 40

node was connected to, taking into consideration the direction of each edge. It then removes the original

edges between the matching node and the other nodes in the host graph. Finally, it removes the matching

node itself from the host graph. This effectively ”morphs” the host graph by replacing the matching node

with the mutation node, while maintaining the connectivity of the graph.

Another case is to replace a single node with a graph, for this, the following algorithm is used:

Algorithm 5 One-to-many graph morphing

1: procedure ONETOMANYMORPH(host,matchNode,mutationGraph)
2: first← start(mutationGraph) ▷ returns the node marked as first from the input graph
3: last← end(mutationGraph) ▷ returns the node marked as last from the input graph
4: add first to host
5: add last to host
6: for all edge ∈ E(matchNode) do
7: if edge is an inbound edge then
8: newEdge← copyEdgeTo(edge, first)
9: end if

10: if edge is an outbound edge then
11: newEdge← copyEdgeTo(edge, last)
12: end if
13: add newEdge to host
14: remove edge from host
15: end for
16: add all other mutationGraph nodes to host
17: add all mutationGraph edges to host
18: remove matchNode from host
19: end procedure

The main concept of this algorithm is to categorize the adjacent edges of the matching node into

inbound edges and outbound edges. This way, the first node in the mutation graph can have a copy of

the inbound edges, and the last node can have a copy of the outbound edges. The first and last nodes

are labelled as such in the creation of the rule. More specifically, the algorithm takes in a host graph, a

matching node from the host graph, and a mutation graph as input, and starts by adding the first and last

nodes of the mutation graph to the host graph, then using the same method as the last algorithm it copies

all inbound edges from the matching node to the first node of the mutation graph and all outbound edges

from the matching node to the last node of the mutation graph. Finally, it adds all other nodes and edges

of the mutation graph to the host graph and removes the matching node from the host graph. Effectively

replacing the match node in the host graph with the mutation graph and its edges.

On the other hand, if the morphing process involves replacing a subgraph with a single node, then

the following algorithm is applied:

Chapter 4. Implementation 41

Algorithm 6 many-to-one graph morphing

1: procedure MANYTOONEMORPH(host,matchGraph,mutationNode)
2: remove all edges between nodes of matchGraph from host
3: add mutationNode to host
4: for all other edges in matchGraph do
5: newEdge← copyEdgeTo(edge,mutationNode)
6: add newEdge to host
7: remove edge from host
8: end for
9: remove all matchGraph nodes from host

10: end procedure

The goal of the algorithm is to transform the host graph by replacing the match subgraph with the

mutation node. It takes in a host graph, a matching subgraph of the host graph, and a mutation node as

input, and it starts by removing all edges between the nodes of the match subgraph from the host graph.

It then adds the mutation node to the host graph. Next, it iterates over all the remaining edges in the

match subgraph, and for each edge, it copies the edge to the mutation node, again respecting the edge’s

direction. It adds these new edges to the host graph and removes the original edges from the host graph.

Lastly, it removes all nodes of the match subgraph from the host graph, effectively replacing the match

subgraph in the host graph with the mutation node.

Finally, in case the replacement includes substituting a subgraph with another graph, then the follow-

ing algorithm is applied:

Algorithm 7 many-to-many graph morphing

1: procedure MANYTOMANYMORPH(host,matchGraph,mutationGraph)
2: remove all edges between nodes of matchGraph from host
3: add all mutationGraph nodes to host
4: for all matchNode ∈ matchGraph do
5: for all mutationNode ∈ mutationGraph do
6: if alias(matchNode) = alias(mutationNode) then
7: for all edges ∈ matchNode do
8: newEdge← copyEdgeTo(edge,mutationNode)
9: add newEdge to host

10: remove edge from host
11: end for
12: end if
13: end for
14: end for
15: remove all remaining matchGraph edges connecting to host
16: remove all matchGraph nodes from host
17: add all mutationGraph edges to host
18: end procedure

As mentioned in section 3.2.2 (Graph Morphing) the algebraic SPO graph rewriting approach re-

quires context elements between the two sides of a rule, as such when a rule is created the nodes of both

sides of the rule are labelled numerically and context elements are defined by giving a node on the RHS

graph the same number as the one on the LHS, these nodes are also known as pivot or anchor nodes.

Chapter 4. Implementation 42

With this labelling, the algorithm takes in a host graph, a matching subgraph of the host graph, and a

mutation graph as input, and begins by removing all edges between the nodes of the match subgraph

from the host graph. Then, it adds all nodes of the mutation graph to the host graph. Next, the algorithm

checks if there are any pivot nodes by iterating each node in the match subgraph and trying to find a node

on the mutation graph with the same label or alias. If so, it copies all edges in the match node to the

mutation node using the same method as the previous algorithms, removing the original edges from the

host graph. Lastly, the algorithm removes all nodes of the match subgraph from the host graph as well

as all remaining edges connecting the match subgraph to the rest of the host graph and adds all edges of

the mutation graph to the host graph. Completing the process and successfully morphing the hot graph.

In summary, the grammar layer provides the means of specifying graph transformation rules and ap-

plying them to graph structures. The interfaces mentioned, provide developers with the means to modify

and refine these algorithms, providing the flexibility needed to create rules and transformations that are

optimized for particular use cases and requirements. In essence, this allows for a more customizable and

adaptable approach to graph rewriting, as developers can tailor the rules to suit the specific needs of their

applications.

4.3 Generation engine

In this section, we will delve into the details of the engine responsible for creating both mission maps

and space maps. On a higher level, this layer provides two interfaces, namely IMissionGenerator and

ISpaceGenerator, both of which contain a generate() method that generates a mission map or space map

accordingly, based on a set of parameters. These interfaces can be implemented by game developers to

define their own generate() method, allowing developers to tailor the map generation to their specific

needs. The rest of this section will specifically focus on how these interfaces were implemented for the

prototype game developed for this study, we will dive deeper into the inner workings of this engine to

understand how it can create these maps.

4.3.1 Mission map generation

The IMissionGenerator implementation developed for this study’s prototype, uses a grammar-based ap-

proach to generate mission maps. The implementation class is called MissionGenerator and uses the

grammar engine and the validation engine to create and validate mission maps. These maps are rep-

resented by a class called Mission that contains a graph. In Fig. 4.5, we can see the class diagram

representing how the mission generation system is implemented.

The MissionGenerator class implementation of the generate() method involves initializing a host

graph with a seed node, and then applying grammar rules until no more rules can be applied or the maxi-

mum allowed number of iterations is reached. Depending on the mode, the rules can be picked randomly

or via a hill-climbing approach that searches for the best-fitting rule to apply. After the maximum number

of iterations is reached, the non-terminal symbols in the mission map are transformed into terminal ones

using a closing grammar. The resulting mission map is then returned as an object of the Mission class.

Chapter 4. Implementation 43

Figure 4.5: A class diagram of how the IMissionGenerator is implemented

Mission generator initialization and parameters

In order to generate missions using the MissionGenerator, at least one Grammar object, an IGraphMuta-

tor object, and an IGraphBrowser object are required. For this prototype, we utilized an AdaptiveGraph-

Mutator and a GraphBrowser, as well as two grammars - a regular one utilized for the evolution process,

and a closing one utilized to conclude the generation process. The mission map validations are done with

a MissionValidator object. Also, it is important to note that the generate() method implemented takes in

the following set of parameters that affect the mission map generation process:

• maxGenIterations specifies the maximum number of iterations allowed for the mission map gen-

eration process. If this limit is reached and the mission map still contains non-terminal symbols,

the closing grammar is used to transform those non-terminal symbols into terminal ones.

• generationMode determines the mode of generation used, which can be either random or hill-

climbing.

• useRulesPriority is a boolean value that indicates whether or not the generation process should

prioritize picking the rule’s RHS that has a higher priority.

• validationParameters contains a set of parameters (see section 3.2.2 - Validating mission maps)

that are given to the MissionValidator in order to validate the generated mission map.

Chapter 4. Implementation 44

Generation process

In further detail, the generation process commences by initializing a host graph with a single seed node,

which serves as the starting point for map generation. The process then proceeds by executing a loop

that searches the host graph for applicable rules to expand and construct the mission map, until either no

more rules can be applied or the maximum number of iterations allowed has been reached. During this

loop, rules are picked based on the generationMode parameter.

If this parameter is set to ”Random”, the map generation process randomly selects a rule to apply

from the set of applicable rules in the regular grammar. This is achieved through the use of the IGraph-

Browser which searches for rules whose LHS is applicable to the current host graph. Once a suitable

rule is found, the method selects a random subgraph match from the set of all subgraph matches in the

host graph that can be mutated with the rule. If the selected rule has more than one RHS mutation, the

useRulesPriority parameter determines how the mutation is picked. If this parameter is false, a mutation

is picked at random. However, if this parameter is true, the mutation is selected based on the probability

it was given. After the mutation is chosen, the AdaptiveGraphMutator is used to apply the mutation

on the host graph replacing the selected match subgraph. This results in the expansion of the graph,

contributing to the generation of the mission map.

On the other hand, when the generationMode parameter is set to ”HillClimbing”, the process employs

a heuristic to select the most promising rule to apply based on the current state of the graph. Initially,

for every applicable rule in the regular grammar, a corresponding list of the rule’s RHS mutations is

created. Subsequently, for that same rule, the IGraphBrowser finds all possible subgraph matches that

are isomorphic to the rule’s LHS pattern. Next, the process iterates through each combination of mutation

and subgraph match, and using the AdaptiveGraphMutator applies the mutation in the subgraph match

location on a copy of the host graph. The resulting graph is then scored using the MissionValidator

according to the parameter values specified in the input parameters. This process is repeated for every

applicable rule collecting the scores of all resulting graphs in a list. In the end, the graph with the highest

score is selected and continues to the next step of the mission map generation.

This rule selection and application process is repeated until either no more rules can be applied, or the

maximum number of iterations has been reached. At this point, if the host graph contains only terminal

symbols the mission map is completed, otherwise the host graph is passed through a concluding step

where the closing grammar rules are used to transform those non-terminal symbols into terminal ones.

An example of a mission map can be observed in Fig. 4.6, additionally, appendix A.5 is an example of a

mission map created with grammar A (see appendix A.1), the grammar used to generate mission levels

in the prototype developed.

As it is possible to observe in Fig. 4.6, in the prototype developed every mission map starts with

a node of type start and ends with a node of type goal that marks the end of the level. Every terminal

node type in the mission alphabet is associated with one or more prototype structures, as explained in

the last chapter these structures are templates for the actual game-level pieces that make up the level, so

the start 1 node would be associated with one or more structures that represented the start of a level

like a door on top of a platform for example, the platform 2 node would be associated with an empty

platform or terrain formation, and so on or and so forth. Moreover, the slope of an edge between two

nodes determines whether the prototype structure associated with that edge’s target node is going to

Chapter 4. Implementation 45

Figure 4.6: An example of a mission map generated

appear below, in front or above the previous structure in the level. This means that the mission map

dictates what kind of game-level pieces will appear on the level as well as have an impact on the overall

shape of a level. Therefore, the mission map is a high-level representation of the level being generated

and plays a crucial role in the generation process. It ensures that the generated level follows the desired

structure set by the game developer.

4.3.2 Space map generation

The ISpaceGenerator implementation for this study’s prototype, takes in a mission map and generates

a corresponding space map based on the mission requirements. The implementation is done with a

class named SpaceGenerator which uses the services provided by the grammar engine and the validation

engine to create and validate the space maps. These maps are represented with a class named Space which

contains a graph called SpaceGraph. The decision to create a separate SpaceGraph class distinct from

the normal Graph class used in mission maps was made to better organize and manage the information

needed for the nodes in a space map, as they require more parameters than those in a mission map. While

it is technically possible to redesign the Graph class to accommodate these differences, it would require

additional time and effort that may not be practical or interesting for this study. Furthermore, separating

the SpaceGraph class from the Graph class can help clarify the conceptual differences between the two

types of maps and make the code easier to understand, maintain or modify as needed. The class diagram

in Fig. 4.7 shows how the space map generation system is implemented.

The SpaceGenerator class implementation of the generate() method, involves translating a mission

map into prototype structures and positioning them in the level based on the jumping capabilities of a

player AI simulation and the slope of the adjacent edges of the mission node being translated, these

prototype structures are then placed in space nodes on the space graph, the edges between the space

nodes serve as the possible paths a player can take from node to node. Once all mission nodes have been

translated and the structures have been given a location on the map, the space map is complete and is

returned as a Space object.

Chapter 4. Implementation 46

Figure 4.7: A class diagram of how the ISpaceGenerator is implemented

Space generator initialization and parameters

Before the generation process begins, there are certain dependencies that need to be set for the SpaceMap-

Generator to work properly.

Firstly, a SimplePlayerSimulation object needs to be initialized, which is an object that represents

the player in the generated space map. This player is used to determine the distance that prototype

structures like platforms can be placed from each other horizontally or vertically without the need to add

a connection structure between the platforms, the validation engine provides three predefined types of

player simulation, EasyPlayer, MediumPlayer and HardPlayer, the difference between them being the

distance the player simulation can jump. Increasing the jumping distance of the player simulation affects

the maximum distance that a structure can be placed from the current one. So as the jumping distance

increases, the player is required to make longer jumps to traverse the level, thereby increasing the level

of difficulty.

Secondly, a QuadTree object needs to be initialized. A QuadTree is a data structure used to parti-

tion the space into smaller sub-spaces, which allows for efficient collision detection between prototype

structures when trying to find a position to place them. In the prototype game created for this study,

prototype structures can be placeable or non-placeable, if a structure is non-placeable then it should not

overlap another non-placeable structure, the QuadTree helps detect these overlaps more efficiently when

finding a location of a structure. To maintain a simpler level design, the prototype game was deliberately

designed without any overlapping structures, such as platforms. However, in a more intricate game with

multi-layered level layouts, checking for overlapping platforms may either not be desired or only done

Chapter 4. Implementation 47

on a layer-by-layer basis.

Finally, the SpaceMapGenerator generate() method also takes in four generator parameters that in-

fluence the generation:

• maxDistanceBetweenPlatformsX and maxDistanceBetweenPlatformsY determine the maximum

distance that can exist between two platforms in the horizontal and vertical directions respectively.

• minDistanceBetweenPlatformsX determines the minimum distance that can exist between two

platforms in the horizontal direction, this property is useful to allow a gap to exist between plat-

forms and allow the player to fall and access the platforms that exist below. In a more elaborate

game with layered levels, this problem could be solved by creating platforms that allow the player

to either fall through them or jump through them to reach the top.

• addConnectionProbability parameter is used to determine the probability of placing a structure

farther away from the player than the maximum distance he can jump. If the structure is placed

outside the reach of the player, another prototype structure marked as a ”connector” is placed as

well, to help the player reach the new structure. This adds a level of randomness to the generation

process and can create more interesting maps.

Prototypes structures

As mentioned before prototype structures are templates used to hold desired properties and behaviours

of actual game-level objects or pieces, they are an abstraction created so that the space generator does

not need to know how the objects are implemented in the game engine. Each prototype structure is

characterized by a specific set of primary properties. These include a type identifier, a list of key mission

node types (i.e., mission grammar terminal symbols) that are associated with this type of structure, the

dimensions the structure should have, whether or not this structure is dynamic, meaning they have one

or more behaviour associated with it, as well as whether or not this structure is placeable, meaning that

it can overlap other non-placeable structures. In addition to these primary properties, each individual

structure prototype may possess its own unique set of specific properties. For example, a prototype for a

moving platform may include an additional property to define the speed at which the platform moves.

To create and maintain a list of prototype structures, a prototype structure factory class called Pro-

totypeFactory is utilized. Initially, this list of structures was populated by creating prototype structures

through a C# constructor, but in the future, they could be imported using a JSON file or a scripting lan-

guage. Incorporating a scripting language such as Lua1 could not only facilitate loading parameter values

for prototype structures but also allow for the integration of new behavioural logic for these structures

without requiring the game to be recompiled. Fig. 4.8 shows a list of all the prototype structures used

to create levels in the prototype game created for this project, on the left in green one can see separated

by type the prototype structures and their properties, and on the right, in blue the mission nodes each

structure is associated with.

1Lua is a lightweight, high-level scripting language that can be embedded into applications, and is used in the game devel-
opment industry.

Chapter 4. Implementation 48

Figure 4.8: A list of all the prototype structures used in this project’s prototype game

Generation process

In practice, the space map is generated by going through every node in the mission map graph in a

breadth-first search manner, starting on the mission node marked as ”startNode”. On every step of the

graph traversal, the current mission node, referred to as the parent, and its adjacent nodes connected by

outgoing edges, known as children, are translated to prototype structures. This is done using a method

from the PrototypeFactoty class, which takes in a mission node and picks at random a prototype structure

from a list of structures associated with that mission node’s type. For future studies, the choice of what

structure to use should also depend on the neighbouring structures that are already placed on the level

as well as any associated adjacent child mission node, this would allow a level designer to have more

control over what structures should appear next to each other. To keep track of translated nodes and

their associated prototype structures, they are stored in a dictionary data structure. This enables efficient

access to the data and prevents the re-translation of nodes.

After doing the necessary translations, the parent structure is placed in its pre-calculated location.

This calculation was done either in a previous step of the mission graph traversal or this is the first

structure in the level, in which case, it is placed randomly at the start of the level. Next, the location

coordinates for each adjacent child structure are determined, with the calculation being based on three

factors. Firstly, it takes into account whether the structure is placeable or not. In the event that it is,

Chapter 4. Implementation 49

a new non-placeable structure is generated to serve as its foundation and the dimensions of this new

structure are used for the rest of the calculations. The specific type of non-placeable structure created is

either selected from a list parameter of the placeable structure or by using a default structure if no such

list exists. Secondly, the slope of the edge that links the child node to its parent node determines the

height at which the structure should be placed in relation to that parent structure. If the slope is equal to

0 then it is placed in front of the parent, if it is equal to 1 it will be placed diagonally above the parent,

and lastly, if it is equal to -1 the new structures will be placed diagonally below the parent. Thirdly, is

the combination of the player AI jumping distance and the likelihood of adding a connector structure as

determined by the value of the addConnectionProbability parameter, these will influence the vertical and

horizontal distances the new structure is placed from the parent neighbour. To determine if a connection

structure should be used, a random number between 0 and 1 is generated and if that number falls under

the value set for the addConnectionProbability parameter then a connection structure is used.

With these factors in mind, the location-finding algorithm works as follows, once the dimensions of

the prototype structure (or added foundation prototype structure) have been established, the algorithm

proceeds to determine the height at which the structure should be placed in relation to its parent. Then

depending on the height, different checks are made to calculate a location:

When placing a structure in front of its parent (see Fig. 4.9), the vertical position is set to be the

same as its parent with a slight offset to ensure that the top of the child node aligns with the top of

the parent node. The horizontal position is then determined by selecting a random value between the x

coordinate of the top rightmost corner of the parent structure and the distance the simulated player can

jump horizontally minus their width, or until the maximum horizontal distance if a connection structure

is to be placed.

Figure 4.9: The max horizontal distance a child structure can be placed in front of its parent

If instead, the structure is to be placed diagonally above its parent (see Fig. 4.10), the vertical

position is selected randomly from a range between the y coordinate of the top rightmost corner of the

parent structure plus the simulated player’s height and the value of that y coordinate plus the maximum

distance the simulated player can jump vertically minus twice the player’s height, or until the maximum

vertical distance if a connection structure is to be placed. The horizontal position is then determined in

the same way as in the previous case.

Chapter 4. Implementation 50

Figure 4.10: The max vertical distance a child structure can be placed above its parent

Finally, if the structure is to be placed diagonally below its parent (see Fig. 4.11), the structure’s

vertical position is chosen at random within a range that starts from the y coordinate of the bottom

rightmost corner of the parent structure and ends at the value of that y coordinate minus the result of

the sum of the maximum distance the simulated player can jump vertically and the height of the new

structure being placed, and removing from that sum the player’s height and the height of the parent

structure. But, if a connection structure is to be placed, the range starts in the same y coordinate but ends

at the value of that y coordinate minus the maximum vertical distance. The horizontal position is then

determined in the same way as in the first case, where the structure was placed in front of the parent.

Figure 4.11: The max vertical distance a child structure can be placed below its parent

During this algorithm of positioning the children in relation to the parent node, if one of the children

is going to be placed diagonally below and another in front of the parent, then when positioning the one

in front of the parent a horizontal gap has to be left between the parent and the child structure being

placed in front, to let the player reach the child structure below. This placement algorithm ensures that

the vertical and horizontal jumping limits of the player are taken into account by subtracting the height

and width of the player, respectively. This ensures that the player has enough clearance to make the jump

Chapter 4. Implementation 51

safely. Additionally, the algorithm prevents any overlap between structures by checking the placement

area of the child prototype structure using the quadtree to determine if any existing structures already

occupy that space. If collisions are detected then the position of the prototype structure being placed is

recalculated. Fig. 4.12 illustrates the two cases that derive from this recalculation. In the normal push-

forward case (4.12a.), if there is not enough space to fit the structure A in front of its original parent

structure, the algorithm selects the rightmost structure that occupies the area where A was intended to

be placed as the new parent. The reason for selecting the rightmost structure in the collision area is

that, in the game prototype developed, levels are constructed from left to right. Therefore, this particular

structure has a higher probability of not having other structures in front of it at this point of the level

creation. Structures in the original placement area are considered first as parents, in order to try to

respect the mission map layout. A check is then made to see if A fits in front of this new parent structure.

If another collision occurs, this process is repeated by selecting another new parent structure until a

suitable location is found that can fit A without causing any collisions or until a limit of tries is reached.

If this limit is reached then the second case (4.12b.) is applied. In this case, A is discarded and its child

nodes are instead added as child nodes of the mission node that is associated with the rightmost structure

that occupies the area where A was intended to be placed originally. This iterative process ensures that

all structures are placed in a way that avoids overlap with other structures.

Figure 4.12: Both cases of structure placement collision and how they are handled

After all nodes of the mission map are visited once, and all possible structures have been placed, then

the space map is complete and is returned as Space object. A space map example generated from the

mission map shown in Fig. 4.6 can be observed in Fig. 4.13.

Chapter 4. Implementation 52

Figure 4.13: A partial space map

In the illustration above, the start and goal space nodes are painted in blue, the connectors are painted

in yellow, the red and green ones are placeable structures, and the rest are non-placeable structures. The

lines between the structures are the edges between the space nodes, in this example, all structures are

separated by an empty space so that the edges between nodes are more easily seen, in a real space map

generated, structures can be positioned right next to each other. The validation engine uses these edges

to find a path from start to end that the player simulation can take to test if a level generated with this

space map is possible to be completed. Using this space map as a blueprint the game engine can now

replace each prototype structure with an actual game object and create the level. An extra example of

a more complete space map, created by transforming the mission map in appendix A.5, can be seen in

appendix A.6.

4.4 Validation engine

The validation engine, in this project, functions as a critical component of the level-generation process.

Its primary purpose is to ensure that the generated levels are playable and consistent with the level design

goals and constraints. The validation process involves defining project-specified parameters that are used

to score and rank the generated mission and space maps. To accomplish this task, the engine contains

two validation classes, namely a MissionValidator and a SpaceValidator, both of which receive a set of

predefined parameters that are utilized to evaluate and score their respective maps. Since each game has

its unique requirements and validation criteria, the engine allows developers to create new parameters.

To achieve this, a developer needs to extend the Parameter class and provide an implementation for the

score() function, which returns an object of type Score. This engine also provides a player AI simulator

that allows for the validation of space maps. The simulator is responsible for simulating the behaviour

of the player as they traverse through the space map.

4.4.1 Mission validation

The MissionValidator is responsible for validating mission maps, and for this particular prototype game,

its main focus is to ensure that the generated map is of the appropriate size, has the correct structure, and

provides a suitable challenge for the player. With this in mind, four parameters were defined, the level

size, graph linearity, number of enemies, and number of coins. The level size parameter ensures that the

Chapter 4. Implementation 53

generated map is of the appropriate size, while the graph linearity parameter validates the connectivity

and structure of the map. The number of enemies and coins parameters can be used to ensure that the

level has a reasonable difficulty level and rewards for the player. These parameters are described in more

detail in section 3.2.2 (Validating mission maps).

For each of these four parameters, a scoring function was created. The level size scoring function

checks the number of nodes the mission graph has in total, the graph linearity scoring function counts the

number of edges between nodes that have a slope different than 0, meaning that they represent a change

in elevation in the level, and the number of enemies and coins parameters scoring functions count the

number of enemy or coin nodes in the graph, respectively. The score of each of these parameters is then

summed together and that gives the final score of the mission map. Missions with bigger scores rank

higher.

4.4.2 Space validation

The validation of space maps is done by the SpaceValidator class. For this specific prototype game, its

primary purpose is to verify that the generated map is both playable and beatable, while also ensuring

that it is not too short. To accomplish this task, the validator contains a player AI simulator in the form of

a class called SimplePlayerSimulation that determines the feasibility of the map. Three other parameters

were also defined for the space validator, namely ”distance to goal”, ”number of collisions”, and the

”length of the player path”. These parameters are described in more detail in section 3.2.3 (Validating

space maps). The scoring of each of these parameters is done using their respective scoring functions.

The ”distance to goal” scoring function is simply the Euclidean distance between the start node position

and the end node position, the ”number of collisions” scoring function relies on the fact that went the

space is being created and the structures are being placed the number of collisions that happen is recorder

in a variable on the space map object, and finally, ”length of the player path” is the length of the shortest

path from the start node to end node determined using the A* algorithm. Each of these parameters has a

weight associated with them that influences how they affect the final score.

The scoring algorithm begins by calculating each of the three previous parameters and multiplying

them by their respective weights. Afterwards, they are all added together to create the final score of

the space map. Next, the player simulation is used to traverse the path identified. This traversal involves

testing two scenarios: first, whether the player can navigate the structure associated with a node from one

side to another without colliding with any placeable structures, and second, whether each consecutive

node in the path is positioned at a jumpable distance from the player. It is important to note that, in

this space graph, connection structures have their own space node. If the player simulation collides with

any placeable structures or is unable to jump to a structure from another, the space map is considered

not feasible and is discarded, ignoring the previously calculated score. If the simulation passes both

conditions, then the space map is given the previously calculated score. The ranking of the scores follows

the same logic used in mission validation, with higher scores being ranked above lower scores.

A limitation of the validation approach used to assess the feasibility of a space map is that it is overly

simplistic and may result in discarding levels that can actually be beaten. This is because the test only

considers the shortest path in the space map’s graph, which does not account for all the possible paths

a player can take. Players can freely jump and fall from one structure to another, even if they are not

Chapter 4. Implementation 54

connected in the graph. Additionally, the shortest path may be blocked by structures placed too closely

together, but a player can still take another path not represented on the graph to reach the goal. However,

in the prototype game developed for this study, generating a level involves creating several space maps.

Consequently, a swift and straightforward validation approach like the one used in this study is capable

of quickly testing each of the generated spaces, identifying only those that are feasible. Making this

validation process adequate enough for selecting workable maps that players can enjoy.

In future iterations of this tool, it would be interesting to develop a more advanced simulation and

validation process that considers these limitations, and tests for a wider range of possible paths, while

creating graphs that more accurately represent the layout and possible movements of the player in the

level. Perhaps instead of finding the paths on the space map graph, a better approach would be to rep-

resent the space map as an intermediate tilemap that reflects the level layout, with each tile representing

a specific width and height area. This tilemap would be a matrix where the structures would be laid out

in their corresponding x and y coordinates converted to a position on the matrix. In this matrix, it is

only possible to change cells with a value of 0 during the placement of structures. Any cell containing

a non-placeable structure is designated as -1, while walkable areas, such as cells above non-placeable

structures and connector structures, are marked as 1. The remaining structures and empty spaces would

be left as a 0. Next, the A* algorithm could be used on that matrix to find the shortest path from the

start position to the goal position, by stepping only on cells that are marked with a 1 or cells that are

marked with 0’s that are in close proximity to a 1, the proximity being determined by the player’s jump-

ing distance. While finding the shortest path, the player’s dimensions would be taken into account as

well. This means that the algorithm would take into account the neighbouring area with the player’s

dimensions while selecting the next step. This proposed alternative approach, although more complex

than the one used, is still relatively straightforward and does not require excessive computational power

to execute. Moreover, the algorithm would consider the actual level layout in its entirety, and generate a

path that closely resembles a route a real player would take. This path could then be tested using a player

simulation to verify its feasibility.

4.5 Game engine

In this section, we will discuss the game portion of the prototype developed for this study. This simple

game was created to help examine the performance and expressive capabilities of the generator frame-

work constructed in the previous two sections. Dubbed the game engine, this layer contains all the game

logic and acts as a stand-in for the actual logic of a game where a developer would want to use this

generating framework to generate new levels. The stand-in game created consists of a simple platformer

game with minimal assets. The game contains two distinct modes: a level selection mode and a sandbox

mode. Within the sandbox mode, players are able to adjust various properties before generating a level,

and can freely generate or refresh levels as desired. On the other hand, the level selection mode generates

ten levels that can be played in sequence. As each level is successfully completed, the subsequent one

starts. Progress is automatically saved, enabling players to return and continue playing at a later time.

Each level is generated and consists of a player moving from left to right while jumping from platform to

platform, gathering coins, and avoiding or defeating enemies to reach an end goal marked by a red flag.

Chapter 4. Implementation 55

Inside this engine, a LevelController object is used to interact with the Unity engine and set up level-

building dependencies, in order to prepare the level to be played. It calls upon a LevelGenerator object to

generate the level, which produces a Level class object. The LevelGenerator contains an implementation

of IMissionGenerator and the ISpaceGenerator provided by the generator engine, it also contains a

MissionValidator and SpaceValidator provided by the validation engine to aid in generating valid levels.

The class diagram in Fig. 4.14 shows how this system is connected.

Figure 4.14: A class diagram of how the level generation is implemented

The LevelGenerator’s generate() method employs these dependencies to generate the level. It begins

by generating multiple mission maps with the mission generator, and then these missions are scored and

ranked using the MissionValidator. When the scoring is done, only the top-rated missions are retained.

Subsequently, the list of top missions is traversed, and a space map is generated from each mission map

using the space generator. Afterwards, the SpaceValidator also scores and ranks the resulting space

maps, but this time only the best one is chosen to be converted into a level.

Converting a space map into a level is done by translating each prototype structure into the actual

game objects they represent, this is done using the GameStructureFactory which converts prototype

structures into the respective game objects they represent. During this transformation process, all of the

necessary parameters and connections of the game object, are set according to the specifications defined

in the prototype structure, including logic parameters and the object’s placement within the level. Each

game object is visually represented on the level by one or more image sprites. In the end, the LevelControl

obtains a fully constructed level, containing a list of game objects, and all the necessary parameters and

logic to render the level on the screen. Below, Fig. 4.15 shows a level created from the space map in Fig.

4.13.

Chapter 4. Implementation 56

Figure 4.15: An example of a finished level

The terrain depicted above represents a finished generated level, where the prototype structures of

floor type were transformed accordingly to create the terrain illustrated. Similar to the previous space

map example, the colours in the illustration indicate the various types of structures present. The blue-

lined terrains mark the starting and ending points of the level. Notably, the vertical and horizontal

connectors were transformed into dynamic, moving platforms that traverse within the yellow area, repre-

sented in the illustration. Furthermore, the enemies selected for this level are highlighted in red, while the

coins are marked in green. Additionally, the trees and decorative objects in the background are generated

in conjunction with the terrain structures and selected randomly from a predefined list of decorations.

Annexed at the end of this document in appendix A.7 is a more complete and longer level example.

4.6 Summary

In summary, the implementation chapter has presented a detailed account of the technical aspects in-

volved in building the generator framework as well as the game prototype used to test the framework.

An outline was made of the various tools and methods used to create the project. This chapter also

described the project’s architecture and how it is designed to generate and validate levels using various

dependencies, which are divided into layers. At the bottom layer the grammar engine function as a

custom-made graph rewriting system that can load and apply grammar rules. Then the generation engine

uses the functionality provided by the grammar engine to generate mission maps and space maps. And

finally, the game engine transforms the space maps into proper levels that can be played. Alongside these

layers, the validation engine offers methods to validate each step of the generation process, particularly

the created mission and space maps. The next chapter will explain and show the results of how this

implementation was tested and analysed.

Chapter 5

Analyze and Results

To explore the design and expressivity of the generator, several data points were taken and analyzed

from levels generated by the ”2D platformer generator” prototype game, using three different mission

grammars. Additionally, the prototype game was made publicly available on the website itch.io [26]

along with a small data-collecting survey [27] for people to play-test the prototype and then answer the

survey. This chapter will present how the data was collected and the subsequent analyses made with that

data.

5.1 Generator expressivity evaluation

The expressivity of the created generator is directly linked to the design of the mission grammar, the type

of prototype structures the game needs and the parametrization in the generation. Since the main goal of

this project was to investigate the generation of levels using rules, an evaluation test was conducted to

analyse how the generator would perform with different grammars. As a result, three different mission

grammars were used to generate levels with the same generation parameters and the same prototype

structures. For each of the three grammars, 100 levels were generated and evaluated using four data

points ”linearity”, ”leniency/difficulty”, ”density”, and ”candidate feasibility”. These data points were

selected because they represent key aspects of level design that can affect the overall player experience.

As a matter of fact, the data points of linearity, leniency, and density were used by Britton Horn et al.

in their study on comparing different Super Mario Bros. (SMB) level generators [28]. They argued that

by analyzing these three characteristics, they could gain insight into the effectiveness of each generator

at producing levels that are similar to human-designed levels in terms of their structure, difficulty, and

pacing. The last data point, ”candidate feasibility”, was also analyzed since it is closely linked to the

performance of the generator. All data values collected were normalized to the range [0,1] using a min-

max normalization.

5.1.1 Evaluation mission grammars

As stated, in order to better analyse the generator, three mission grammars were used. Grammar A (see

appendix A.1) is the main grammar used by the prototype game developed for this study, it is a simple

grammar, designed to create linear platform segments with the occasional choice to go up or down, but

both paths eventually connect to the main path again. Grammar B (see appendix A.2) exhibits a subtle

variation from the previous one. It is also primarily tailored to generate linear platform segments while

57

Chapter 5. Analyze and Results 58

introducing a greater number of side paths that do not intersect with the main path. Furthermore, it

incorporates a customized end-cell pattern featuring two potential goals. Grammar C (see appendix A.3)

is an example of a more complex rule system, designed to create levels that have sections with multiple

paths. This last grammar serves as a stress test to see how the generator handles a grammar that creates

mission maps with multiple crossing edges.

5.1.2 Evaluation parameters

Linearity is influenced by the presence of various altitude differences along the level created by the vari-

ances in platform height. A very nonlinear level has frequent variations in platform height. A level with

such features forces the player to execute more jumps, allowing him to reach higher areas, it can also give

the player more than one alternative path to the level’s goal. This parameter was measured by iterating

through the elements of the level, computing the absolute values of the differences between the current

element height and the highest element in the level, and adding them together. After calculating the sum,

the result is negated, such that, the values of nonlinear levels are closer to zero after normalization.

Leniency or difficulty measures the level’s tolerance in terms of how easy it is for the player to

complete it. A very lenient level can make the player feel not challenged enough and bored, in contrast,

a very non-lenient level can make the player frustrated to play. The difficulty of a level is very subjective

to the style and audience of a game, a casual player might find a level very difficult, but a Kaizo Mario

World1 veteran player would find the same level very easy. However, attempting to measure it can provide

additional insight into what kinds of levels the generator is capable of generating. The same measurement

technique employed by Britton Horn et al., was applied here by iterating through the level’s elements and

assigning different lenience values to certain level elements:

• Gaps: -0.5;
• Average gap length: -0.5;
• Structure connectors: -0.5;
• Enemies: -1;

Density, in the context of this study, refers to the frequency with which a structure’s position had to

be altered because it would have otherwise intersected with another structure already placed on the level.

The generator aims to avoid such collisions in its placement of structures.

Candidate feasibility represents the number of space map candidates that during the level generation

were marked as feasible. Feasibility is the measure of whether the level can be completed by a human

player, it is determined by going through the space map using a player simulation and checking if the

simulation can reach the goal. In this respect, for each space map candidate created during the level gen-

eration, the value of feasibility is either 0 (not feasible) or 1 (feasible). Measuring the number of feasible

candidates produced during the level-generation process is a valuable way to evaluate the performance

of the generating algorithm. This is because the generator employs a space validator to reject any space

maps that are not feasible when selecting potential candidates. Therefore, a low candidate feasibility

rating indicates that the generator is wasting resources while creating invalid options.
1Kaizo Mario World is a series of Super Mario World ROM hacks that features extremely difficult level designs

Chapter 5. Analyze and Results 59

5.1.3 Test generator parameters

As explained, the test involved generating 100 levels using the ”2D platformer generator” prototype

with three different mission grammars, but keeping the generator parameters and prototype structures

constant. The prototype structures used for this test were the same ones created for the ”2D platformer

generator” prototype game and the generation parameters were set to their default values:

• level size: 1 (preference for larger levels);

• enemies: 0.8 (preference for more enemies);

• coins: 0.8 (preference for more coins);

• mission graph linearity: 0.5(preferring a similar amount of mission maps with varying edge

slopes).

The generator also contains two important generation parameters, which are ”number of iterations”

and ”number of candidates”. The ”number of iterations” represents the maximum number of times a

grammar can be used to alter a graph in the mission map creation process and it is also a safety precau-

tion that prevents infinite rule recursion from happening. Setting this property too low means that not

many grammar production rules are applied, therefore the grammar’s syntax cannot be effectively tested,

setting it too high makes the number of structures and length of the level increase and it might have

an impact on the feasibility of the levels generated. As for the ”number of candidates” parameter, this

represents the number of mission and space map candidates created and evaluated during the generation

of a level. Setting this too low means that there are fewer options to choose from when scoring and pick-

ing candidates, and setting it too high means that the generator has to spend more resources generating

and evaluating more candidates. To analyse the impact that changing these two parameters has on the

candidate feasibility of the generator, two tests were conducted.

On the first test, mission grammar A (see appendix A.1) was used to create levels. During this test, the

”number of candidates” parameter was kept constant at 70. While the ”number of iterations” parameter

varied, and for each value of this parameter 100 levels were created. To determine the percentage of

feasible levels for each number of iterations, an average of all feasible candidates was calculated from

the total of candidates created during the generation of the 100 levels. This calculation was made for

each of the values of the ”number of iterations” parameter. Fig. 5.1 illustrates how the percentage of

feasible levels changes with different values of the ”number of iterations” parameter. We can see that the

percentage of feasible levels tends to decrease as the number of iterations increases, with the tendency to

stabilize at around 10% feasible levels. This means that the generator works best when a small number

of rules are applied, so this property was set to 8 in this evaluation test.

Chapter 5. Analyze and Results 60

Figure 5.1: Average percentage of feasible candidates created during the generation of 100 levels with
different maximum numbers of iterations to apply rules

The graph in Fig. 5.1, also shows that even at just one iteration the percentage of feasible candidates

is just 30%, suggesting that either the generator is not effective at producing feasible levels or there

may be issues with the feasibility validation process. Furthermore, it should be emphasized that the

”number of iterations” attribute exclusively impacts the number of times rules from the regular grammar

are applied. Once the specified number of iterations is reached and the resulting graph still contains

non-terminal symbols, the closing grammar rules are applied until all the nodes in the graph represent

terminal symbols of the mission grammar utilized.

The second test followed a similar format as the first one, but with a variation in the ”number of

candidates” parameter while keeping the ”number of iterations” parameter constant at 8. Fig. 5.2 illus-

trates how the percentage of feasible levels changes with different values of the ”number of candidates”

parameter. We can see that increasing the number of candidates only decreases the percentage of feasible

candidates created very slightly. This decrease is not very significant which indicates that the number

of candidates has very little or no effect on the number of feasible candidates generated, even though

intuitively more tries means more chances of generating feasible candidates. It also reveals that when

using the grammar A to generate a level with the ”number of iterations” parameter set to 8, the average

percentage of candidate feasibility in the generator is 14%. This implies that during the generation of a

level, the generator is wasting an average of 86% of its time creating invalid level candidates, once again

suggesting that either the generator is not effective at producing feasible levels or there may be issues

with the feasibility validation process. Given the generator’s low success rate, it is essential to have a

sufficiently large number of candidates to ensure that at least one of them is feasible. However, it is

equally important to avoid setting the number of candidates too high, as this could cause the generator to

waste time creating invalid levels. Therefore, the number of candidates was kept at 70.

Chapter 5. Analyze and Results 61

Figure 5.2: Average percentage of feasible candidates created during the generation of 100 levels with
different amounts of candidates

5.1.4 Results

In the following section, two histogram charts will be presented side by side for each of the four data

parameters to compare the frequency of the values between the grammars. The charts on the left depict

values normalized between all the data collected with all three grammars, but because grammar C con-

tains more extreme data values, the data from grammar A and B is squished together along the x-axis

making it harder to see the difference between the two. So for each data parameter, a second histogram

was constructed depicted on the right side, taking only the normalized data between grammar A and B

into account, making the difference between the more explicit.

Linearity

From the linearity left chart 5.3a, it is possible to observe that grammars A and B generate mostly linear

levels, as expected, and that the more complex grammar C generates levels with a wider range of linearity

values. On the right chart 5.3b we can see that although both grammars generate linear levels, grammar

B seems to be more linear even though it was designed to have more side paths. But when comparing

these results with the mission maps created with both grammars 5.4 it becomes evident that even though

grammar A does not generate graphs with side paths, the height of the main path can vary substantially,

while in the graphs created by grammar B there is a lot of branching but the branches don’t deviate much

in height compared to the main path.

Chapter 5. Analyze and Results 62

(a) Comparing the three grammars (b) Comparing grammar A and grammar B

Figure 5.3: Histogram comparing the linearity of 100 levels created by different grammars

Figure 5.4: The shape and height of a mission map created with grammar A and another created with
grammar B

Feasibility

The left feasibility chart 5.5a, shows that the generator has problems validating levels when grammar

C is used, in 90% of the levels created with this grammar, none of the 70 candidates created could be

traversed by the player simulation, meaning that the generator failed to produce a valid level. This is

due to the way the grammar is designed, many production rules place platforms at different heights,

meaning that nodes and edges in the mission grammar can overlap with each other. During the creation

of a space map the slopes of the mission map edges are used to guide the placement of structures, this

has the advantage of creating maps that have more or less the same shape as the mission map graph.

But, if the mission graph is too tangled, many space structures will collide in the placement process,

causing the algorithm to send them to the end of the map to try and place them in a new location, or in

cases where many structures have already been placed in close proximity, it can make the algorithm skip

Chapter 5. Analyze and Results 63

placing the structure entirely because it can not find a place to put it. Essentially, when the algorithm is

forced to relocate a structure it invalidates not only the current structure position calculation but, also the

placement of all the structures linked to it that have already been processed and placed. This effect is less

noticeable in grammars A and B because their production rules were designed to grow the graph in a

more directed way, instead of letting the graph branch out in every direction. However, because grammar

B still crates some breaching paths and tends to group structures closer together, in the feasibility chart

on the right 5.5b we can see that it creates less feasible maps than grammar A . In fact, if we set the

generator to ignore all non-feasible maps and analyse the output of each grammar (see chart 5.6), we see

that grammar A can generate all 100 levels without ever failing to generate a valid level from the number

of candidates used, while grammar B and especially C failed sometimes.

(a) Comparing the three grammars (b) Comparing grammar A and grammar B

Figure 5.5: Histogram comparing the feasibility of 100 levels created by different grammars

Figure 5.6: The number of levels each grammar could actually generate out of 100

This data, also indicates that the validation system, to determine if a level is feasible, might be too

restrictive since the grammar A has an average of 86% non-feasible candidates and both grammar B

and C show an even bigger number of non-feasible candidates. As such, another test was made to

analyse how many of these non-feasible levels were actually impossible to complete by a human player

and determine the error associated with the player simulation test used in this feasibility validation of a

candidate. The test was done by setting the generator to output the best-fitting non-feasible candidate as

the generated level. Ten levels were created using each of the grammars and then they were play-tested

Chapter 5. Analyze and Results 64

by a human. Fig. 5.7 shows three pie charts depicting the percentage of levels that could be beaten

by a human in blue versus those that could not in orange. We can see that for all three grammar, the

percentage of levels that could be completed by a human is bigger or equal to those that could not, which

confirms the suspicion that the feasibility validation is too restrictive or has problems. This is most likely

caused by the fact that the player AI only checks whether it can take the shortest path from the start to

the end in the space map graph, so if any node in the shortest path ends up having its structure blocked

by some other node’s structure by being too near it, the player AI will not be able to cross that node

structure and be blocked from reaching the end making the level as non-feasible, but a human player can

just find another path.

(a) Grammar A (b) Grammar B

(c) Grammar C

Figure 5.7: Shows for each grammar the percentage of levels marked as non-feasible that could be
completed by a human (Yes) versus those that could not (No)

Density

Looking at the density chart comparing all the grammar 5.8a, it becomes even more clear why grammar

C has such a poor performance in the creation of levels. Although the density values are scattered across

the graph, grammar C has the biggest number of collisions overall which means that a lot of corrections

were made by the generator while trying to place all the structures, this has two consequences: First, it

can create levels without platforms or connecting structures that make the level impossible to complete.

Second, it can create a space graph with misplaced edges connecting the structures, this cuts one section

of the graph from another section making it impossible to find a path from the start node to the goal node

for the simulation player to test. Both of these consequences make the level be classified as not feasible.

When comparing the design of grammar A with B, it is surprising to see that B creates levels with fewer

collisions in general, but still, its performance is worse than grammar A. This may be explained by the

fact that grammar B generates levels with very clustered pathways, making structure repositioning more

Chapter 5. Analyze and Results 65

difficult, and forcing the algorithm to hit the limit of replacement tries and skip the structure which might

make the level not feasible.

(a) Comparing the three grammars (b) Comparing grammar A and grammar B

Figure 5.8: Histogram comparing the density of 100 levels created by different grammars

Leniency

As for the leniency of the levels created by the three grammars, it is not surprising to see that once again

levels generated using grammar C have more diversity in difficulty due to the variety of mission maps

it can create and the fact that it produces mission grammars with more nodes. It is also interesting to

observe grammar A tends to create more lenient levels than grammar B, this is most likely because

grammar B rules create more enemy nodes.

(a) Comparing the three grammars (b) Comparing grammar A and grammar B

Figure 5.9: Histogram comparing the leniency of 100 levels created by different grammars

5.1.5 Review

The data analyzed shows that the generator offers some flexibility in handling different mission grammar

designs, being able to create valid levels with two of the grammars used, but it has trouble dealing with

grammars containing production rules that create graphs with multiple overlapping branching paths.

Since the space map is created purely by following the mission map the edges between mission nodes

tell the space map generator where to place the next prototype structure in relation to the position of

the current structure, and a validation is made to see if the new position will collide with any structure

already placed. If so, the structure is relocated to try a place it elsewhere in the map. The data shows this

happens more often in mission graphs with multiple side paths especially if the pathways are clustered

Chapter 5. Analyze and Results 66

together. The data also indicates that this repositioning behaviour is incomplete and flawed because it can

leave a level without platforms or connecting structures, which might make it impossible to complete.

Or, it can mess up the creation of the space graph in such a way that a path from the start to the end of the

level does not exist. To improve this validation, when a structure is repositioned because it would clash

with other structures already in place, it should first be examined to see if the player can move from the

current structure to any of the structures implicated in the collision. This dependence on the shape of the

mission map for positioning puts a lot of responsibility in the design of one grammar, to not design rules

that create too much branching or overlapping. A better solution would have been to follow Dorman’s

[6] idea of creating a separate grammar for the shape of the level. In fact, this may be taken a step further

by developing additional specialized grammar targeted to deal with certain aspects of the level, such as a

grammar for platform position, another for enemy types, another for enemy positions, and so on.

5.2 Analyzing participants data

To further analyze the capabilities of the ”2D platformer generator” prototype, it was essential to gather

feedback on its effectiveness. For this reason, the prototype was made publicly available for playtesting.

Allowing a broad range of participants to provide feedback on their experience playing the generated

levels. The study intended to evaluate the generator’s ability to produce game levels that were both

feasible and engaging. As part of the study, participants played a variety of levels generated by the

”2D platformer generator” and completed a survey to rate their experience. By collecting feedback

from participants on their experience with the generated levels, the study aimed to gain insights into the

strengths and weaknesses of the generator and identify areas where improvements may be required.

5.2.1 Test procedure

As stated, during the study, participants were asked to play a set of ten levels generated by the ”2D

platformer generator”. The levels varied in terms of difficulty and size, providing a range of challenges

for the participants to complete. Upon finishing all ten levels, participants were then asked to complete a

survey consisting of 26 questions that evaluated their experience with the game.

Levels generated

All of the levels were generated using mission grammar A, which has better feasibility, but with four

different settings: easy, medium, hard and very hard. The first three levels were generated with the

easy setting, this setting only allows two iterations to transform the mission map with the grammar, the

number of enemies and coins are set to a low value, and it prefers mission maps with more edge slopes

equal to 0 and the player simulator is set to easy. This means that it generates smaller horizontal levels

with small gaps and few enemies and coins. Levels 4, 5 and 6 were generated with the medium setting,

this setting allows four iterations to transform the mission map with the grammar, and the number of

enemies and coins are set to a medium value, it also prefers mission maps with a small number of edge

slopes different than 0 and the player simulator is set to medium. This means that the levels generated are

a bit more vertical and longer than the easy ones, they also have wider gaps and more coins and enemies.

Levels 7, 8 and 9 were generated with the hard setting, in this setting, the number of iterations is set to

Chapter 5. Analyze and Results 67

five, and the number of enemies and coins are set to the maximum possible, it still prefers mission maps

with a small number of edge slopes different than 0 and the player simulator is set to hard. Another

parameter that was changed is the percentage of a gap containing a moving platform, this percentage

was made smaller to make the player have to jump instead of waiting for the platform. This made the

generated levels as vertical as the medium ones but longer in size, they also have even wider gaps with

fewer moving platforms and more coins and enemies. Finally, level 10 was generated with the very hard

setting, this setting is very similar to the hard setting, the only changes are the number of iterations is set

to 15 and it prefers mission maps with as many edge slopes different than 0 as possible. This generates

levels similar to the hard ones, but a lot longer and vertical with a bit less linearity. An interesting side

effect of this setting is that sometimes the end goal is positioned in the middle of the last quarter of the

map.

Survey

The survey consisted of 26 questions divided into 6 sections. The first section serves as an introduction

and it contains a question to see how often the participant plays video games. The second section focuses

on the participant’s general experience when playing the prototype’s levels, it questions the participant

about the level’s size, variety, difficulty and enjoyment while playing. The third section is only for

participants who have played other 2D platformer games before and focuses on the participant’s opinions

of the prototype when compared to these other games. The fourth section focuses on the generated level’s

layouts and the participant’s experience navigating through them, it inquires how frequently participants

become lost and had to backtrack, as well as whether they could backtrack. The fifth section is a less

important section about the creation of new grammar rules, unfortunately, no participant tried to change

the rules. And finally, the last section is a closing section asking for extra user suggestions and comments.

5.2.2 Results

Unfortunately, only nine participants filled out the survey, so the results presented here don’t have the

diversity needed to do a proper evaluation of the prototype, still, this small feedback provides us with

the opportunity to see how people react to playing the levels in the prototype. All of the participants

play video games, with seven of them playing frequently. In addition, all participants had previously

played a 2D platformer. When analysing the participant’s answers, we see that in terms of diversity

between levels, 44% of the participants thought that the ten generated levels were different from one

another (see chart in Fig. 5.10a). While another 44% were unsure whether the levels were different or

not, even so, all participants thought the levels were different enough to be enjoyable. This uncertainty

is predictable because only the location of elements changes from level to level, while the aesthetics of

the levels remain constant. If the background and style of platforms changed as well it would be more

noticeable, however, this could lead participants to believe that the level has changed when, in fact, just

the aesthetics were altered. In terms of difficulty, the majority of the participants thought the levels were

challenging enough to be entertaining with only one thinking otherwise, from the chart in Fig. 5.10b we

see that this challenge was not too difficult, with 67% of the answer being split between the middle of

the scale and value above it. In terms of level length, the chart in Fig. 5.10c shows that 56% participants

thought that most of the levels were more on the long side, but also thought that the quality was about

Chapter 5. Analyze and Results 68

the same as the shorter levels, with only one person saying otherwise. In terms of enjoyment, it was

pleasant to see that the majority of participants believed playing the levels was enjoyable, with only two

participants answering in the middle of the scale (see the chart in Fig. 5.10d). With the exception of two

participants, the majority of users believed that there was more than one way to reach the goal and no

participant believed it was tedious to search the map for coins or the goal.

(a) Level diversity answers (b) Level difficulty answers

(c) Level length answers (d) Level enjoyment answers

Figure 5.10: Charts showing the participant’s general experience while playing the generated levels in
terms of diversity, difficulty, enjoyment and level length

The participant’s experience while navigating the level was examined, by asking the participants how

often they experienced the following scenarios: getting lost, backtracking, not being able to backtrack,

and having to skip the level because they could not finish it. From the chart in Fig. 5.11, we can see

that the majority of participants either never got lost or got lost rarely. Looking at the ”backtracked”

answers, we see that even if people did not get lost they had to backtrack sometimes, and the majority

of participants could backtrack most of the time without problems with only two participants reporting

problems rarely and an outlier having problems often. We can also see that only two participants had to

skip levels.

Chapter 5. Analyze and Results 69

Figure 5.11: An histogram showing the frequency of participants’ answers in regards to four scenarios
while navigating the levels

When comparing the generated levels with levels from other 2D platformer games, the participant

had played before. The participants were asked to rate the quality of the levels and classify the layout of

the levels to see if they looked generated or handmade. From the charts in Fig. 5.12, we see that 44% of

the participants classify the prototype levels as generated and only 22% think that the level layouts look

handmade. In terms of quality, most of the participants said it had about the same quality as the levels

from the other games, this was surprising, but not very helpful or meaningful information with such a

small sample of participants.

(a) Level classification answers (b) Level quality answers

Figure 5.12: Two charts showing participants’ opinions of the generated levels when compared to levels
from other games they played

Among the comments left by the participants, some suggested improvement on certain aspects of

the gameplay. Suggestions, such as increasing the collision box size of coins to make them more easily

collected, or a way to pan the camera down to obtain a clearer view of whether or not there is a platform

below while exploring the level. One participant, was interested in seeing the level regenerate after the

player dies in the level, saying quote: ”Regenerating the map on a death is an interesting idea that

makes the player unable to memorize the level, but instead have to actually play through it.”. Finally

when asked all the participants were interested to see more games created this way.

Chapter 6

Conclusion

This work represents the begging stages of developing a generator framework that uses graph gram-

mars to generate levels for a platformer game, a prototype game called ”2D Platformer Generator” was

created using Joris Dorman’s methodology of creating action-adventure levels by separating the gen-

eration in two domains the mission and the space, but altering it to work with platformer games. To

test the performance of the generator, three distinct mission grammars were designed to generate levels,

which were then evaluated according to four characteristics linearity, feasibility, density and leniency.

The grammar that showed the best feasibility was then play-tested by nine participants. The results

showed that the generator can generate playable and engaging levels, with most participants saying that

they enjoyed playing them, but the results also showed that, in its simplicity, the generator has trouble

dealing with more convoluted rule designs and that the validation system needs to be better tuned, espe-

cially the use of the player AI simulator to determine whether a level is feasible or not. This chapter will

conclude this work by reflecting upon the methodology used and what could have been done better, it

will also mention the interesting future work that can still be done.

6.1 Methodology Reflections and future improvements

Upon reflection, if a future study were to be conducted there are many key points that should be consid-

ered and learned from this study. In other to have more refined control over how the grammar is applied

to create the mission map, a custom graph rewriting system was created, this brought more control but

also came with the cost of time. Creating this system took some time that could have been put into

analyzing a better rule system, better space layout validation, better game design, or even testing the

generator itself. The custom rewrite system also comes with the price of not being session tested, many

problems were found and resolved, but many more still probably remain. So for future research using

an external better tested library could save a lot of time and headaches at the cost of control. That being

said, the custom system created could likewise serve as a foundation to be improved upon.

Another issue to consider is that, even though the level generation was separated into the creation of

player steps with the mission map followed by the creation of the level’s layout with the space map, only

the mission page is moulded by a grammar. This created two problems, first, the layout of a level is very

attached to the syntax of a mission map, even if through the use of non-deterministic grammars the level

layout can look different but it will still be bound by the mission map syntax, this attachment constraints

the use of a single mission map to creating level layouts with the same feel instead of being used to

70

Chapter 6. Conclusion 71

create a multitude of thoroughly different space maps that have the same goals. The second problem

created is that the space layout has to rely on little information to decide where to place a level structure

and to validate its placement, in the case of the prototype this was the mission edge slopes. This limits

the solutions available and leads the space map into making decisions, such as repositioning a structure,

without the context of how that could affect the structures around them. A better approach to try and

minimize these problems would be to use multiple refined grammars with finer responsibilities, by for

example creating a grammar that is responsible for the layout of platforms and another that is responsible

for placing doors and locks. These grammars could then be connected by using the terminal symbols of

one grammar as the pattern required to apply rules from another grammar. Or link the use of grammars

by stipulating rules in another grammar that serves as a coordinating grammar. This affords the flexibility

to select the most suitable type of grammar and formulate a functional syntax for a specific aspect of the

level design. In the given example, this approach allows for the validation of the platform layout by

selecting a more suitable shape grammar and relying on its syntax for validation. Similarly, when adding

doors and locks using another grammar, only production rules that adhere to the connection condition

between the grammars are applied, and the position of the doors is validated by the grammar’s syntax if

the platform map is grammatically correct. Although, creating such a system can be a challenging task,

separating the responsibilities into multiple grammars gives the developers more refined control over the

generator behaviour and output and makes the debugging process more manageable.

A different point to think about and improve, is the validation of whether a level is feasible or not. In

this study, this is validated with the help of a player AI simulation, where each node of the shortest path

from start to goal in the space map is visited by the player AI. During this process tests are made to see

if any structure blocks the path of the player AI or if the player AI is capable of jumping to the structure

of the next node in the path. The simplicity of this validation makes it run very fast, but as shown by

the results it has a big error margin. There are several reasons for this error, first, only the shortest path

is tested, some of the structures in this path might have been placed too near to other structures of other

paths, meaning that the way is blocked to the player AI, but in reality, a real human player would just take

another path to the goal. So for better validation, there should be a number of paths tested before labelling

the level as not feasible. Another reason for the error in determining level feasibility is that in order to

make sure that the levels were definitely playable, during the level generation the player AI simulation

jump was used to determine the distance between structures, this was done by only calculating the arc

of the player jump to see how far the player can reach if he was standing at the edge of a structure and

jumped. The same AI and calculations are then used to see if the player can traverse a level candidate,

but of course, only simulating the arc of the jump does not take into account interferences from external

sources that might occur nor does it take into account the speed the player is travelling at. So for future

research using a proper platformer player AI and actually simulating a whole section of the path being

considered would yield better results.

Another point to reflect upon is the gameplay of the levels, the prototype created for this study offers

a very simple gameplay, it only contains one type of enemy, one type of collectable, and the platforming

challenge of going from one side of the level to another. Such a simple game worked to test the basic

capabilities of the generator, but a much larger game that features a multitude of enemies, collectables,

and other parts of the game that take place in more complex situations, could stress test the generator even

Chapter 6. Conclusion 72

further, probably providing more insight into ways of improving the generator. It would also offer the

human players a more interesting and familiar experience while giving them more content to comment

on or find flaws in. A familiar experience would also allow the human player to more easily compare

with other games they have played and give more interesting feedback. For example, one simple change

that could improve the gameplay, would be to let the player walk in front of some types of platforms,

instead of only above the platforms. This would allow platforms to be closer together and create more

interesting landscapes and level layouts. Another change that should be considered to improve gameplay,

is solving pointless dead-ends in the level. This could be done by removing some of these dead-end paths

completely, or by connecting them back with the main path with a connector structure, or even, making

the trip down these dead-ends rewarding by placing key items or rewards in them.

Finally, the sample of human participants who tested the prototype was quite small, which means

there is no guarantee that the results collected represent the thoughts of a larger sample or the population.

More participants would be highly recommended in future research.

6.2 Future work

Besides improving the current generator, there is still a lot more to explore and do. One of the most

tedious aspects during this study was having to manually write the grammar rules in Json format. An

interesting project would be to create some form of graphical user interface (GUI) that would help the

developer create graph rules more easily, and keep track of the grammars created. In an even more

ambitious version, the GUI could allow the preview of how the new production rule would most likely

affect the levels created by showing the effect on an example level.

But depending on the game requirements, creating grammars from scratch can be a time-consuming

and complex process. So another interesting research project would be to turn to the field of artificial

intelligence and use machine learning to automate or help create grammars. Machine learning algorithms

could be trained to learn the structure of a graph and the grammar that defines it. The algorithm could then

be used to generate new graphs with similar structures. The first step in generating graph grammar with

machine learning is to collect a large number of existing game levels represented as graphs from a variety

of sources, such as user-generated data, research papers or online databases. The graph representation

could be based on the level structural layout or even the rhythms of actions performed by a player when

playing through a level. The collected graphs could then be used to train a machine learning algorithm,

such as a deep neural network, to identify the structure of the graph and the rules that govern it. Once

the algorithm has been trained, it can be used to generate new graphs with similar structures. This can

be done by feeding the trained algorithm a set of level graph patterns the developer wants to design and

asking it to generate new graphs based on those patterns. A better-trained algorithm could even help the

developer by giving him feedback on the effects a new production rule could have or even suggesting

production rules.

Chapter 6. Conclusion 73

6.3 Final thoughts

In conclusion, this project showed that even in a simple form, the use of grammars as a rule system

to generate levels is very feasible and flexible, allowing a developer to easily change the layout of the

levels generated, it also revealed that Joris Dormans’s approach of separating the creation of an action-

adventure level into a mission domain and a space domain, not only works when applied to 2D platformer

games but also facilitates the process. In fact, it indicated that the use of multiple targeted grammars

applied in small amounts could yield better results and be more easily manageable. This is the small

contribution made by this project to the PCG field of study. PCG is a vast field of study, as more research

is done in it, the more fascinating and intriguing it becomes, surprising us with what it can accomplish

and the wonders we can create with it.

Bibliography

[1] Will Wright. The future of content. Talk by Will Wright at the 2005 Game Developers Conference.

[2] Noor Shaker, Julian Togelius, and Mark J Nelson. Procedural content generation in games.

Springer, 2016.

[3] Derek Yu and A Hull. Spelunky. A PC game published by Mossmouth, LLC, Xbox Game Studios

and Microsoft Studios, 2009.

[4] Noor Shaker, Julian Togelius, and Mark J Nelson. Procedural content generation in games, chap-

ter 3, pages 49–51. Springer, 2016.

[5] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne. Search-based

procedural content generation: A taxonomy and survey. IEEE Transactions on Computational

Intelligence and AI in Games, 3(3):172–186, 2011.

[6] Joris Dormans. Adventures in level design: generating missions and spaces for action adventure

games. In Proceedings of the 2010 workshop on procedural content generation in games, pages

1–8, 2010.

[7] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne. Search-based

procedural content generation. In European Conference on the Applications of Evolutionary Com-

putation, pages 141–150. Springer, 2010.

[8] Noam Chomsky. Three models for the description of language. IRE Transactions on information

theory, 2(3):113–124, 1956.

[9] Aristid Lindenmayer. Developmental algorithms for multicellular organisms: A survey of l-

systems. Journal of Theoretical Biology, 54(1):3–22, 1975.

[10] Bernd Lintermann and Oliver Deussen. Interactive modeling of plants. IEEE Computer Graphics

and Applications, 19(1):56–65, 1999.

[11] Noor Shaker, Miguel Nicolau, Georgios N Yannakakis, Julian Togelius, and Michael O’neill.

Evolving levels for super mario bros using grammatical evolution. In 2012 IEEE Conference on

Computational Intelligence and Games (CIG), pages 304–311. IEEE, 2012.

[12] James Gips. Shape grammars and their uses: artificial perception, shape generation and computer

aesthetics. Springer, 1975.

75

Bibliography 76

[13] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the third

annual ACM symposium on Theory of computing, pages 151–158, 1971.

[14] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):31–

42, 1976.

[15] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism

algorithm for matching large graphs. IEEE transactions on pattern analysis and machine intelli-

gence, 26(10):1367–1372, 2004.

[16] Ciaran McCreesh, Patrick Prosser, and James Trimble. The glasgow subgraph solver: using con-

straint programming to tackle hard subgraph isomorphism problem variants. In International Con-

ference on Graph Transformation, pages 316–324. Springer, 2020.

[17] David Adams et al. Automatic generation of dungeons for computer games. Bachelor the-

sis, University of Sheffield, UK. DOI= http://www. dcs. shef. ac. uk/intranet/teaching/project-

s/archive/ug2002/pdf/u9da. pdf, 2002.

[18] Kate Compton and Michael Mateas. Procedural level design for platform games. In Proceedings

of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 2,

pages 109–111, 2006.

[19] Unity Technologies. unity.com. https://unity.com/, 2005. [Online; accessed 2022].

[20] Unity Technologies. assetstore.unity.com. https://assetstore.unity.com/, 2010. [Online; accessed

2022].

[21] Peter Heimann, Gregor Joeris, Carl-Arndt Krapp, and Bernhard Westfechtel. A programmed graph

rewriting system for software process management. Electronic Notes in Theoretical Computer

Science, 2:127–136, 1995.

[22] TU Berlin. AGG. https://www.user.tu-berlin.de/o.runge/agg/, 1997. [Online; accessed 2022-11-

16].

[23] UT Austin. Graphsynth. http://designengrlab.github.io/GraphSynth/, 2006. [Online; accessed

2022-11-17].

[24] Martin Mann, Heinz Ekker, and Christoph Flamm. GGL. https://github.com/BackofenLab/GGL,

2013. [Online; accessed 2022-11-17].

[25] Alexandre Rabérin. unity.com. https://kernelith.github.io/QuikGraph/documentation/history.html,

2019. [Online; accessed 2022].

[26] Diogo Soares. itch.io. https://jackgoggles.itch.io/2d-platformer-generator, 2022. [Online; accessed

2022-11-29].

[27] Diogo Soares. Generation and Evaluation of 2d Platform Games.

https://docs.google.com/forms/d/e/1FAIpQLSdtXiSLktSAIDTalu h89MZXuswdNSJ8vqIzwkgeX

sz6w obw/viewform?usp=embed facebook, 2022. [Online; accessed 2022-11-29].

Bibliography 77

[28] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian Togelius. A comparative

evaluation of procedural level generators in the mario ai framework. In Foundations of Digital

Games 2014, Ft. Lauderdale, Florida, USA (2014), pages 1–8. Society for the Advancement of the

Science of Digital Games, 2014.

[29] Martin Mann, Heinz Ekker, and Christoph Flamm. The graph grammar library-a generic framework

for chemical graph rewrite systems. In International Conference on Theory and Practice of Model

Transformations, pages 52–53. Springer, 2013.

[30] Grzegorz Rozenberg. Handbook of graph grammars and computing by graph transformation, vol-

ume 1. World scientific, 1997.

[31] Wolfgang Kramer. What makes a game good. Game & Puzzle Design, 1(2):84–86, 2000.

Appendix A

Extra figures

Figure A.1: Mission grammar A, used in this project’s prototype game

78

Appendix A. Extra figures 79

Figure A.2: Mission grammar B

Figure A.3: Mission grammar C

Appendix A. Extra figures 80

{
” Id ” : ” e x a m p l e r u l e ” ,
” L e f t ” : {

” V e r t i c e s ” : [
{ ” Type ” : ” p l a t f o r m ” , ” A l i a s ” : 1 } ,
{ ” Type ” : ” p l a t f o r m ” , ” A l i a s ” : 2 }

] ,
” Edges ” : [

{
” Source ” : 1 , ” T a r g e t ” : 2 ,
” Type ” : ” normal ” , ” S lope ” : −1

} ,
]

} ,
” R i g h t s ” : [
{

” P r i o r i t y ” : 0 . 5 ,
” A s s o c i a t e d R u l e s ” : [” o t h e r r u l e ”] ,
” V e r t i c e s ” : [
{ ” Type ” : ” enemy ” , ” A l i a s ” : 1 } ,
{ ” Type ” : ” O t h e r C e l l ” , ” A l i a s ” : 2 } ,

] ,
” Edges ” : [
{

” Source ” : 1 , ” T a r g e t ” : 2 ,
” Type ” : ” normal ” , ” S lope ” : 0

} ,
]

} ,
{

” P r i o r i t y ” : 0 . 5 ,
” A s s o c i a t e d R u l e s ” : [] ,
” V e r t i c e s ” : [
{ ” Type ” : ” enemy ” , ” A l i a s ” : 1 } ,
{ ” Type ” : ” c o i n s ” , ” A l i a s ” : 2 } ,

] ,
” Edges ” : [
{

” Source ” : 1 , ” T a r g e t ” : 2 ,
” Type ” : ” normal ” , ” S lope ” : 1

} ,
]

}
]

}

Figure A.4: A composite grammar production rule written in Json format

Appendix A. Extra figures 81

Figure A.5: A mission map generated using the grammar A A.1

Appendix A. Extra figures 82

Figure A.6: A vertical print of a space map generated using the mission map in fig A.5

Appendix A. Extra figures 83

Figure A.7: A vertical print of a level generated using the space map in fig 4.13

	List of Figures
	List of Abbreviations
	Introduction
	Objectives
	Document structure

	Background and Related work
	Background
	Platformers games
	Aspects of procedural content generation
	The search-based approach
	The generative grammar approach

	Related Work
	Automatic dungeons generation
	Patterns in platform game level design
	Adventures in level design
	Evolving levels for Super Mario Bros.
	Putting it all in one place

	Summary

	Methodology
	Problem Analysis
	The force of gravity
	The price of abstraction
	Generation control

	Design
	Mission maps and grammars
	Step one: evolving mission maps
	Step two: creating the space layout
	Step three: building the level

	Summary

	Implementation
	Configuration
	Grammar engine
	Available graph rewriting tools
	Defining a mission grammar
	Custom graph rewriting and grammar system

	Generation engine
	Mission map generation
	Space map generation

	Validation engine
	Mission validation
	Space validation

	Game engine
	Summary

	Analyze and Results
	Generator expressivity evaluation
	Evaluation mission grammars
	Evaluation parameters
	Test generator parameters
	Results
	Review

	Analyzing participants data
	Test procedure
	Results

	Conclusion
	Methodology Reflections and future improvements
	Future work
	Final thoughts

	Bibliography
	Extra figures

