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Resumo

À medida que as medições dos acoplamentos do bosão de Higgs se tornam cada vez mais precisas, a sua

largura de decaimento poderá tornar-se numa ferramenta poderosa no estudo de extensões ao Modelo

Padrão (SM) com sectores escuros, no Large Hadron Collider (LHC). Neste trabalho, queremos cal-

cular as correcções electrofracas a 1-loop à amplitude de decaimento do bosão de Higgs para um par

de partículas candidatas a matéria escura, no contexto da fase de dubleto escuro do Next-to-minimal 2-

Higgs-doublet Model (N2HDM), com o objectivo de limitar o espaço de parâmetros do modelo.

Começamos por apresentar os sectores escalar e de Yukawa do N2HDM geral. O N2HDM é uma

extensão simples do Modelo Padrão da Física de Partículas (SM) com dois dubletos e um singleto de

isospin fraco. O potencial do N2HDM contém duas simetrias Z2 para além da simetria de CP. Existem

várias configurações de vácuo (fases) possíveis no N2HDM, nas quais se inclui a fase de dubleto escuro

(DDP). Nesta fase, um dos dubletos e o singleto obtêm um valor de expectação de vácuo (VEV) não-

nulo, quebrando uma das simetrias Z2 do potencial e resultando em dois sectores escalares diferentes:

um sector visível composto por dois bosões de Higgs neutros CP-par e um sector escuro composto por

um escalar neutro CP-par, um escalar neutro CP-ímpar e dois escalares carregados. No âmbito da DDP,

existem quatro processos de decaimento distintos que podem representar o decaimento do bosão de Higgs

do Modelo Padrão para um par de partículas de matéria escura.

Para que possamos calcular as correcções radiativas a 1-loop às amplitudes de decaimento destes

processos, é necessário proceder à renormalização dos sectores escalar e de gauge do modelo. As massas

e as funções de onda são renormalizadas recorrendo ao esquema de renormalização on-shell (OS), no

qual a forma dos propagadores das partículas a ordens superiores é fixada como sendo igual à do nível-

árvore. Em conjunto com o esquema OS, também utilizamos o esquema alternativo de tadpoles (AT),

através do qual são renormalizados os VEVs. Neste esquema de renormalização, os VEVs sofrem um

desvio que resulta em diagramas de Feynman adicionais que contribuem para as correcção a 1-loop dos

processos. A carga eléctrica é renormalizada recorrendo ao esquema Gµ. Este esquema trata de cor-

recções logarítmicas que surgem devido às baixas massas dos fermiões em relação à escala de energia

electrofraca. O ângulo de mistura dos escalares CP-par, é renormalizado recorrendo ao esquema KOSY,

assim denominado em honra a Shinya Kanemura, Yasuhiro Okada, Eibun Senaha, C.-P. Yuan. Junta-

mente com o esquema KOSY, utilizamos a pinch technique de modo a garantir a independência de gauge

das amplitudes corrigidas. Os parâmetros restantes do potencial, são renormalizados utilizando três es-

quemas de renormalização distintos: o esquema MS e dois esquemas dependentes de processos físicos
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(process-dependent). Em ambos os esquemas process-dependent, o processo Hi → ADAD é utilizado

como processo auxiliar para renormalizar o processo Hi → HDHD. Um dos esquemas é denominado

OS process-dependent onde as partículas externas que participam no processo auxiliar estão on-shell.

O outro esquema é denominado ZEM process-dependent onde as partículas externas que participam no

processo auxiliar têm momento linear nulo.

Neste trabalho definimos também os observáveis que pretendemos calcular. Começamos por definir

os conceitos de largura parcial e largura total de decaimento, derivando a sua forma a leading order (LO)

e a next-to-leading order (NLO). Por fim, definimos o conceito de fracção de decaimento, apresentando

também a sua forma a LO e a NLO.

Apresentamos dois cenário possíveis para o decaimento do bosão de Higgs para um par de partículas

de matéria escura, no contexto da DDP. Estes cenários resultam da hierarquia entre as massas das duas

partículas escalares do sector visível do DDP. No primeiro cenário, o cenário do Higgs leve, o bosão de

Higgs do modelo padrão corresponde ao escalar visível mais leve, identificado como H1. No segundo

cenário, o cenário do Higgs pesado, o bosão de Higgs corresponde ao escalar visível mais pesado na

DDP, identificado como H2. Para cada cenário, apresentamos a forma explícita das correcções a 1-loop

à amplitude do processo de decaimento. Também são apresentadas de forma explícita, as expressões para

a largura parcial de decaimento e a fracção de decaimento a NLO. São apontadas algumas diferenças entre

os dois cenários, nomeadamente o maior espaço de parâmetros e a contribuição adicional para a largura

total de decaimento do processo H2 → H1H1, ambas no cenário do Higgs pesado.

Relativamente a resultados numéricos, são apresentados dois estudos. No primeiro estudo, observa-

mos como os diferentes esquemas de renormalização utilizados para fixar os contra-termos dos parâmet-

rosm2
22 e λ8 se comportam relativamente a alguns parâmetros do modelo. Primeiro, abordamos a relação

entre a largura parcial de decaimento e o acoplamento escuro λH1HDHD
, no limite do modelo do dubleto

inerte (IDM). Observamos que o esquemaMS é muito sensível à massa do escalar carregado, produzindo

correcções muito grandes à largura parcial de decaimento para valores mais altos da massa do escalar

carregado. No caso dos esquemas process-dependent isto não ocorre, sendo que estes esquemas pro-

duzem correcções muito mais pequenas mesmo para valores mais altos da massa do escalar carregado.

Estudamos também a relação entre o tamanho das correcções à largura parcial de decaimento e a difer-

ença entre as massas dos escalares neutros do sector escuro. Concluímos que as correcções a 1-loop nos

esquemas process-dependent são tanto maiores quanto maior é a diferença entre as massas. No caso do

esquema MS isto não ocorre, mantendo-se o tamanho das correcções constante relativamente à diferença

de massas.

No segundo estudo numérico, realizamos um scan no espaço de parâmetros da DDP. Utilizamos o

código ScannerS para gerar pontos do espaço de parâmetros para cada cenário, considerando constrang-

imentos teóricos e experimentais. Para cada ponto, é calculada a fracção de decaimento a NLO para o

decaimento do bosão de Higgs para um par de partículas de matéria escura, no esquemaMS e nos dois es-

quemas process-dependent. Concluímos que o esquema OS process-dependent é o mais estável dos três,

enquanto que o esquemaMS é o mais instável. Concluímos que a instabilidade do esquemaMS não pode

ser atribuída à escolha de escala de renormalização e que este esquema de renormalização simplesmente

não é adequado a este caso em particular. Concluímos também que a estabilidade dos esquemas process-
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dependent está relacionada com o limite superior de 10GeV para a diferença entre as massas dos escalares

neutros do sector escuro. Por fim, comparamos as fracções de decaimento dos pontos com o actual limite

experimental dos decaimentos invisíveis do bosão de Higgs, BR(h125 → invisible) < 0.11, excluindo

todos os pontos com correcções à largura parcial de decaimento maiores do que 100%. Concluímos

que, se impusermos limites às correcções a 1-loop de modo a que a teoria de perturbações seja válida, a

maioria das fracções de decaimento a NLO para os esquemas de renormalização process-dependent estão

abaixo do limite experimental. Desta forma, ainda não é possível obter constrangimentos para o espaço

de parâmetros da DDP do N2HDM a next-to-leading order. No entanto, à medida que as medições dos

acoplamentos do bosão de Higgs e dos seus decaimentos invisíveis se tornam cada vez mais precisas,

estamos certos de que no futuro poderemos utilizar este método para restringir o espaço de parâmetros

do modelo.

Palavras Chave: Matéria Escura, Bosão de Higgs, Extensões ao Modelo Padrão, N2HDM, Renor-

malização.
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Abstract

With the measurements of the Higgs boson couplings becoming more and more precise, its invisible

decay width may prove to be a powerful tool in probing Standard Model extensions with dark sectors at

the Large Hadron Collider (LHC). In this work, we calculate the one-loop electroweak corrections to the

partial decay width of the Higgs boson decay into a pair of darkmatter particles, in the context of the Next-

to-minimal 2-Higgs-doublet model in its dark doublet phase. We start by performing the renormalization

of the scalar and gauge sectors of the N2HDM.With the renormalizedmodel, we calculate the expressions

for the one-loop corrected partial decay width and branching ratio of the Higgs boson decay into a pair

of dark matter particles. In the end, we show that the current measurement on the Higgs-to-invisible

branching ratio, BR(h125 → invisible) < 0.11, does not constrain the parameter space of the N2HDM

at leading order. We also conclude that, by requiring the one-loop corrections to not be unphysically

large, no constraints on the parameter space can be extracted yet at next-to-leading order.

Keywords: Dark Matter, Higgs Boson, Standard Model Extensions, N2HDM, Renormalization.
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Chapter 1

Introduction

The discovery of the Higgs boson in 2012 at the Large Hadron Collider [1, 2], gave the world the missing

piece of the puzzle that is the Standard Model of Particle Physics (SM). This discovery confirmed the va-

lidity of the SM and of the mechanism of electroweak symmetry breaking (EWSB), by which all massive

particles in the SM acquire their masses. However, even though the SM is one of the most successful

models in physics, it still does not provide the answers to some of particle physics biggest mysteries such

as the matter and anti-matter asymmetry, the neutrino masses or the existence of dark matter.

With respect to dark matter (DM), while we do not know much about its nature, there is great ev-

idence of its existence. From gravitational effects on astrophysical scales to cosmological calculations

of the relic density of baryonic matter based on the cosmic microwave background radiation, there is

overwhelming evidence that what we see is not the whole picture [3]. Currently, one of the most popular

candidates for DM is the so-called weakly interacting massive particle (WIMP). The WIMP is described

as an elementary particle that may interact through gravity and any force as weak or weaker than the

weak interaction. In most models, the WIMP has a mass of the order of the electroweak scale. If we

wish to merge the WIMP paradigm with the SM, we must turn to SM extensions. Due to the exceptional

agreement between the SM and most of the experimental measurements, any SM extension is strongly

constrained as it needs to contain the SM with at least the same experimental agreement than the SM.

One of the simplest SM extensions is the Next-to-minimal 2-Higgs Doublet model (N2HDM) [4–8].

In this model, the scalar sector of the SM is extended by a weak isospin doublet and a real weak isospin

singlet [7]. The N2HDM allows for several vacuum configurations that generate DM candidate particles.

One of these configurations is the so-called Dark Doublet Phase (DDP). This phase of the N2HDM, is

very similar in construction to another SM extension, the Inert Doublet Model (IDM) [9–12]. However,

the N2HDM presents a richer phenomenology, introduced by the additional singlet.

In this work, we explore the DDP of the N2HDMwith the goal of probing its dark sector. To achieve

this, we make use of the precise measurements of the Higgs boson couplings to the SM particles, which

are becoming a very powerful tool in limiting the parameter space of SM extensions. When it comes to

DM models, a specially useful measurement is the upper limit on the branching ratio of the Higgs boson
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Chapter 1 Introduction

decay into invisible particles, which is currently constrained to be BR(h125 → invisible) < 0.11 [13].

The main goal of this work is to calculate at next-to-leading order (NLO) the partial decay width and the

branching ratio of the decays within the DDP of the N2HDM that may represent the Higgs boson decay

to DM candidates. To calculate these observables at NLO, we must calculate their one-loop corrections

which requires the renormalization of the model. In the end, we compare the numerical values of the

corrected observables, for the allowed parameter space, to the experimental upper limit. The discussion

presented in this thesis is based on the work developed in [14].

This thesis is structured as follows: in chapter 2 we introduce the N2HDM and its DDP. In chapter 3,

we discuss the full process of renormalization of the scalar and gauge sectors of the N2HDM. In chapter

4, we determine the expressions for the partial decay width and branching ratio at both LO and NLO.

In chapter 5, we discuss two possible scenarios for the decay of the Higgs boson into DM candidates.

In chapter 6, we present and discuss our numerical results. Finally, in chapter 7, we draw our final

conclusions. This thesis also contains two appendices: in appendix A, we present some additional details

related to the DDP of the N2HDM. In appendix B, we present some additional calculations related to the

process of renormalization.
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Chapter 2

The Next-to-Minimal 2-Higgs Doublet

Model

The Next-to-Minimal 2-Higgs Doublet Model (N2HDM) [4–8] is a simple extension of the SM. The

N2HDM scalar sector is composed of two complex SU(2)L doublets of hypercharge 1 and a real SU(2)L

singlet of hypercharge 0. The addition of an extra doublet and an extra singlet, results in a rich phe-

nomenology that allows for the existence of dark matter candidate fields. In the next sections, we discuss

the construction of the N2HDM, as well as the specific vacuum configuration that is used in this project.

2.1 Scalar Sector

The scalar sector defines the scalar-scalar and the scalar-gauge interactions. The scalar Lagrangian

Lscalar is defined as

Lscalar = (DµΦi)
†(DµΦi) +

1

2
(∂µΦS)(∂

µΦS)− Vscalar, (2.1)

with Φi (i ∈ {1, 2}) being the complex SU(2)L doublets and ΦS being the real SU(2)L singlet. Dµ is

the covariant derivative and is defined as

Dµ = ∂µ + igL
σa

2
W a
µ + igY

Y

2
Bµ, (2.2)

where σa (a ∈ {1, 2, 3}) are the Pauli matrices and Y is the hypercharge. gL and gY are the SU(2)L and

U(1)Y coupling constants respectively, and W a
µ and Bµ are their corresponding gauge fields. The last

term of equation 2.1 is the scalar potential Vscalar, that we will discuss further in the next subsection.

2.1.1 Scalar Potential

The most general renormalizable form of the N2HDM potential, includes all possible combinations of

the fields Φ1, Φ2 and ΦS up to the quartic terms that are compatible with the SM symmetries. In this

3



Chapter 2 N2HDM

project, we impose additional constraints to the model in the form of two Z2 symmetries, defined as Z(1)
2

and Z(2)
2 , which are given by

Z(1)
2 : Φ1 −→ Φ1, Φ2 −→ −Φ2, ΦS −→ ΦS , (2.3a)

Z(2)
2 : Φ1 −→ Φ1, Φ2 −→ Φ2, ΦS −→ −ΦS . (2.3b)

The resulting potential Vscalar is

Vscalar =m2
11(Φ

†
1Φ1) +m2

22(Φ
†
2Φ2)−m2

12(Φ
†
1Φ2 + h.c.) +

λ1
2
(Φ†

1Φ1)
2 +

λ2
2
(Φ†

2Φ2)
2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

λ5
2
[(Φ†

1Φ2)
2 + h.c.]

+
1

2
m2
SΦ

2
S +

λ6
8
Φ4
S +

λ7
2
(Φ†

1Φ1)Φ
2
S +

λ8
2
(Φ†

2Φ2)Φ
2
S ,

(2.4)

with m11, m22, m12 and mS having dimension of mass and λi (i ∈ {1, 8}) being dimensionless co-

efficients. We take the model to be CP-conserving which means that all coefficients can be defined as

real.

The doublet and singlet fields can be parameterized as

Φ1 =

(
φ+1

1√
2
(v1 + ρ1 + iη1)

)
, Φ2 =

(
φ+2

1√
2
(v2 + ρ2 + iη2)

)
, ΦS = vS + ρS , (2.5)

where ρ1, ρ2 and ρS are neutral CP-even fields, η1 and η2 are neutral CP-odd fields, φ+1 and φ+2 are

charged complex fields. The most general non-charge breaking vacuum state has the form

〈Φ1〉 =

(
0
v1√
2

)
, 〈Φ2〉 =

(
0
v2√
2

)
, 〈ΦS〉 = vS , (2.6)

with v1, v2 and vS being the vacuum expectation values (VEV) of Φ1, Φ2 and ΦS respectively. These

VEVs, spontaneously break the SU(2)L⊗U(1)Y symmetry to aU(1)EM . The doublet VEVs are related

to the SM VEV through the relation

v2SM = v21 + v22. (2.7)

We require the potential to be minimized at the VEV. Therefore, the following stationary conditions must

be met 〈
∂V

∂Φ1

〉
= 0 ⇒ v2m

2
12 − v1m

2
11 =

1

2
v1(v

2
1λ1 + v22λ345 + v2Sλ7), (2.8a)〈

∂V

∂Φ2

〉
= 0 ⇒ v1m

2
12 − v2m

2
22 =

1

2
v2(v

2
1λ345 + v22λ2 + v2Sλ8), (2.8b)〈

∂V

∂ΦS

〉
= 0 ⇒ −vSm2

S =
1

2
vS(v

2
1λ7 + v22λ8 + v2Sλ6), (2.8c)
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where λ345 = λ3+λ4+λ5. These minimum conditions allow us to writem2
11,m

2
22 andm

2
S as functions

of the VEVs and the λ parameters. The parameterizations presented in equations 2.5 and 2.6, represent

the most general case of the N2HDM also know as the broken phase of the N2HDM. This phase does not

contain a dark sector. However, by choosing different combinations for the values of the VEVs, we get

different phases of the model, some of which feature dark sectors. In this project, we will be working with

the Dark Doublet Phase (DDP) in which only one of the doublets and the singlet acquire non-vanishing

VEV. This phase is discussed further in section 2.3. The remaining phases of the N2HDM are discussed

with greater detail in [4–8].

2.2 The Yukawa Lagrangian

The Yukawa Lagrangian describes the interactions between the scalar fields and the fermions. The

fermions are treated in the same way as in the SM. Fermions are grouped into triplets in flavour space

ψ ∈

U :=

uc
t

 , D :=

ds
b

 , E :=

eµ
τ

 , N :=

νeνµ
ντ


 , (2.9)

where U represents the up-type quarks, D represents the down-type quarks, E represents the charged

leptons and N represents the neutrinos. All fermionic fields are also decomposed into their chiral pro-

jections

ψ = ψR + ψL, (2.10)

where ΨR/L represents the chiral right-hand/left-hand component of the fermion. All left-handed states

are then grouped into SU(2)L doublets

QL :=

(
UL

DL

)
=

(
(uL, cL, tL)

T

(dL, sL, bL)
T

)
, LL :=

(
NL

EL

)
=

(
(νe,L, νµ,L, ντ,L)

T

(eL, µL, τL)
T

)
, (2.11)

while all the right-handed states are grouped into SU(2)L singlets1

UR :=

uRcR
tR

 , DR :=

dRsR
bR

 , ER :=

eRµR
τR

 . (2.12)

The most general Yukawa Lagrangian is composed of all possible combinations of the SU(2)L doublets

ψL, the SU(2)L Higgs doublets Φ1 and Φ2 and the SU(2)L singlets ψR in such way that the Lagrangian

remains invariant under SU(2)L ⊗ U(1)Y transformations. Thus, the Yukawa Lagrangian LY ukawa is
written as

LY ukawa = −
∑
i

Q̄TLYU,iΦ̃iUR + Q̄TLYD,iΦiDR + L̄TLYE,iΦiER + h.c., (2.13)

1Just like in the SM, neutrinos are considered to only have LH chiral projection.
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with Yψ,i being the 3× 3 Yukawa coupling matrices in flavour space, Φ̃i being defined as εijΦ
∗
j with εij

being the totally anti-symmetric tensor in two dimensions and ψ̄L being the anti-fermionic field.

Since the Yukawa coupling matrices are not necessarily diagonal in flavour space, equation 2.13

allows for the occurrence of flavour-changing neutral currents (FCNC) at tree level which are very con-

strained by experimental observation. To prevent FCNCs at tree-level, the Z2 symmetry presented in

equation 2.3a is extended to the fermions in such way that all fermions only couple to the Higgs doublet

Φ1 [15].

2.3 The Dark Doublet Phase

The Dark Doublet Phase (DDP), is one of the three phases of the N2HDM that allows for the existence of

a dark sector. In the DDP, only one of the SU(2)L Higgs doublets and the singlet acquire non-vanishing

VEVs. If we choose Φ1 to be the doublet with non-null VEV, the Z(2)
2 symmetry in equation 2.3 is

spontaneously broken while the Z(1)
2 symmetry is conserved. This means that the fields originating from

Φ2 form a dark sector of particles in the sense that they are odd under Z2 while all other fields are even.

Therefore, the vacuum configuration in equation 2.6 becomes

〈Φ1〉 =
1√
2

(
0

v

)
, 〈Φ2〉 =

(
0

0

)
, 〈ΦS〉 = vS , (2.14)

where we used the relation in equation 2.7 to set v1 equal to the SM VEV v. Also, with this vacuum

configuration, the minimum conditions in equation 2.8, become

m2
11 = −1

2
(v2λ1 + v2Sλ7), (2.15a)

m2
12 = 0, (2.15b)

m2
S = −1

2
(v2λ7 + v2Sλ6). (2.15c)

From equation 2.15b we see that the parameter m12 is identically zero in this phase of the N2HDM,

meaning that the DDP contains only 11 independent scalar parameters instead of the original 12. In this

vacuum configuration, the CP-even fields ρ1 and ρS are allowed to mix because they have the same

quantum numbers. This includes the new ”darkness” quantum number associated with the conserved

Z(1)
2 symmetry.

2.3.1 Mass Eigenstates and Parametrization

The rotation to the mass basis, leads to a reparameterization of the potential. This happens because the

mass matrices of the fields are required to be diagonal in the mass basis. With this constraint, we obtain

expressions that allow us to write the gauge parameters as functions of the physical parameters. The mass

6
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matrices are given by

Mρ
ij =

∂2Vscalar
∂ρi∂ρj

, Mη
kl =

∂2Vscalar
∂ηk∂ηl

, M±
kl =

∂2Vscalar

∂φ+k ∂φ
−
l

, (2.16)

with i, j ∈ {1, 2, S} and k, l ∈ {1, 2} and whereMρ represents the CP-even fields 3 × 3 mass matrix,

Mη represents the CP-odd fields 2 × 2 mass matrix and M± represents the charged fields 2 × 2 mass

matrix. Since there is no mixing in the CP-odd and charged sectors, their corresponding mass matrices

are already diagonal, meaning that the CP-odd fields and the charged fields are already mass eigenstates.

The same applies to the CP-even field ρ2 which is a mass eigenstate as well. From this point onward,

these fields will be relabeled as

HD = ρ2, (2.17a)

G0 = η1, AD = η2, (2.17b)

G± = φ±1 , H
±
D = φ±2 . (2.17c)

The mass eigenstates G0 and G± come from the SM-like doublet Φ1 and are the Goldstone bosons. The

mass eigenstatesHD, AD andH±
D come from the dark doublet Φ2 and form the dark sector of the DDP.

The mass matrices of the CP-odd and charged fields can thus be expressed as

Mη = diag(0,m2
AD

), (2.18a)

M± = diag(0,m2
H±

D
). (2.18b)

With respect to the CP-even sector, the mass matrix is not diagonal due to the mixing between the

fields ρ1 and ρS . Since we already established that the dark CP-even field HD is a mass eigenstate, the

CP-even mass matrix can be reduced to a 2 × 2 matrix referring only to the masses of the fields ρ1 and

ρS . This mass matrix has the explicit form

Mρ =

(
v2λ1 vvSλ7

vvSλ7 v2Sλ6

)
, (2.19)

where we used the minimum conditions in equation 2.15 to write the parametersm2
11 andm

2
S as functions

of the VEVs and the λ parameters. The diagonalization of the CP-even mass matrix is performed, using

the rotation matrix R(α), defined explicitly as

R(α) =

(
cα sα

−sα cα

)
, (2.20)

where cα and sα represent the cosine and sine of the mixing angle α, respectively. The CP-even mass

matrix is then diagonalized through the relation

R(α)MρR(α)T = D2 = diag(m2
H1
,m2

H2
), (2.21)
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where mH1 and mH2 represent the masses of the visible CP-even mass eigenstates labeled H1 and H2.

By convention, the visible CP-even physical fields are ordered by ascending mass

m2
H1

≤ m2
H2
. (2.22)

The CP-even fields in the gauge basis ρ1 and ρS are related to their mass basis counterparts H1 and

H2 through the same rotation martix that we use to diagonalize the CP-even mass matrix. This relation

is expressed as (
H1

H2

)
= R(α)T

(
ρ1

ρS

)
, (2.23)

meaning that the CP-even mass eigenstates H1 and H2 are linear combinations of the fields ρ1 and ρS

that are written explicitly as

H1 = ρ1cα − ρSsα, (2.24a)

H2 = ρ1sα + ρScα. (2.24b)

Like mentioned earlier, this rotation from the gauge basis to the mass basis leads to a reparameter-

ization of the potential. In this reparameterization we choose as independent parameters of the scalar

potential in the mass basis the following set

{m2
H1
, m2

H2
, m2

HD
, m2

AD
, m2

H±
D
, v, vS , α, m

2
22, λ2, λ8}. (2.25)

The relations between the parameters in the gauge and mass basis are given in Appendix A.1.

2.3.2 Higgs Decays to Dark Matter Candidates

The goal of this project, is to study the possible decays of the SM Higgs boson to the dark matter candi-

dates. In the DDP of the N2HDM, either of the two visible CP-even mass eigenstatesH1 andH2 can be

identified as the SM Higgs boson. Therefore, we want to study the decays of both of these fields to the

dark matter candidates.

To be considered dark matter, a particle must meet certain requirements. Two of those requirements

that are relevant to us are that the particle must have no electric charge [16] and it must be stable [17].

From the particles that form the dark sector of the DDP, only HD and AD meet the first requirement.

The stability requirement, means that the dark matter particle must be the lightest of the two particles.

Since we cannot establish a mass ordering between HD and AD, both particles can be DM candidates,

depending on which has the smaller mass. In this work, we will focus on the case wheremHD
< mAD

,

meaning that HD is our dark matter candidate. However, we checked the results for the case in which

AD is the dark matter particle and obtained very similar results.

8
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We can then identify two possible decays within the DDP that may represent the decay of the SM

Higgs boson to a pair of dark matter particles. These decays are

H1 → HDHD, (2.26a)

H2 → HDHD. (2.26b)

The couplings associated with the interactions between the visible CP-even scalars and the dark neutral

scalars are very important for our calculations and are given by

λHiHDHD
=
Ri1
v

[
λ8v

2
S + 2

(
m2

22 −m2
HD

)]
−Ri2λ8vS , (2.27a)

λHiADAD
=
Ri1
v

[
λ8v

2
S + 2

(
m2

22 −m2
AD

)]
−Ri2λ8vS , (2.27b)

with i ∈ {1, 2} and R being the rotation matrix defined in equation 2.20. The full list of the DDP’s

trilinear scalar couplings is presented in appendixA.2. From equation 2.27, we see that the only difference

between the couplings of H1 and H2 with HD and AD is the masses of the dark particles.
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Chapter 3

Renormalization of the N2HDM

When dealing with perturbative corrections in Quantum Field Theories (QFT), it is inevitable that one

faces divergent integrals at some point. These integrals usually arise from Feynman diagrams containing

loops such as the ones depicted in figure 3.1. As an example, let us consider the typical loop integral

∫ ∞

0

d4q

(2π)4
1

q2 −m2
, (3.1)

where q is the loop momentum and m is the mass of the loop particle. It is clear that, for q → ∞ the

integral diverges. These types of divergences are called ultraviolet (UV) divergences because they are

associated with high loop momentum. If we make m = 0, we see that another divergence arises for

q → 0. These are called infrared (IR) divergences because they are associated with low loop momentum.

If we expect to be able to draw physically relevant conclusions from the model, we need to treat these

divergences. Both types of divergences have to be treated separately. In this project, we address only the

UV divergences since none of the processes that we are interested in contains IR divergences at one-loop.

3.1 Renormalization and Regularization

Before we can renormalize the model we need to isolate the divergences. This is achieved through the

process of regularization. While there are several methods of regularization, one of the most common

is dimensional regularization1 [18]. In dimensional regularization, the divergent integrals are solved in

generalD dimensions instead of four space-time dimensions. This turns the divergent integrals into well

defined, solvable integrals. D is commonly defined as

D = 4− 2ε, (3.2)

1Dimensional regularization preserves the gauge structure of Green’s functions at one-loop.
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Figure 3.1: Loop diagrams. Some examples of possible Feynman loop diagrams.

with ε being the regulator. Solving the loop integral in equation 3.1 using dimensional regularization,

isolates the divergent part (as well as a finite part that comes with it) in the term

∆ =
1

ε
− γE + ln 4π, (3.3)

where γE is the Euler-Mascheroni constant. In the limit ε→ 0, we recover the physical dimensionD = 4

and the divergence becomes explicit.

With the loop integrals regularized, we can treat the UV divergences by renormalizing the model. In

the process of renormalization, we assume that each of the parameters of the model is a bare parameter.

This bare parameter ρ0 is infinite by definition and can be decomposed into a finite part ρ and an infinite

part δρ such that

ρ0 = ρ+ δρ. (3.4)

The finite term is the renormalized parameter and can be identified as the physical parameter. The infinite

term is the counter-term of the parameter. These counter-terms must then be fixed in such way as to

cancel out the divergent parts of the loop integrals [19]. For n independent parameters, n renormalization

conditions are needed to fix all the counter-terms.

If we want not only a finite S matrix but also finite Green’s functions, a similar procedure must be

applied to the fields’ wave-functions. We decompose the bare wave-function φ0 into a renormalized

wave-function φ and a wave-function renormalization constant (WFRC) δφ by scaling them as

φ0 =
√
Zφφ ≈

(
1 +

δZφ
2

)
φ, (3.5)

where the factor
√
Zφ is the field strength renormalization constant. The WFRC in the last step of

equation 3.5 is obtained through an expansion of the square-root around unity, up to NLO. In a similar

way to the renormalization of the parameters, for m fields, m renormalization conditions are needed

in order to fix all the WFRCs. The renormalization conditions for parameters and wave-functions are

determined using renormalization schemes. The schemes used in this project are discussed in the next

sections.

After all parameters and wave-functions are renormalized, all divergences vanish and all experimen-

tally measurable results are finite, allowing us to calculate higher order corrections to the observable

quantities of the model. Since we are only interested in studying the processes in equation 2.26, we do
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iΣ(p2) = = + + ... (3.6)

Figure 3.2: One-particle irreducible Feynman diagrams for the propagator. The 1PI Feynman di-

agrams for the propagator are the set of loop diagrams that cannot be reduced to simpler loop diagrams

by a simple cut. These types of loop Feynman diagrams, with only one initial and final states are called

the self-energies of the field.

not need to renormalize the entire model. Instead, we only need to renormalize the parameters appearing

in equation 2.27 as well as the fields H1, H2, HD and AD
2.

3.2 On-Shell Renormalization Scheme

One of the more common renormalization schemes is the On-Shell (OS) renormalization scheme. In the

OS scheme, it is assumed that all particles of the model are on their mass-shell. This means that the

particles obey the condition p2 = m2 and are therefore physical. Using this renormalization scheme we

are able to fix all mass and WFRCs.

To better understand the OS scheme, let us consider a scalar particle φ of mass m. The motion of

this particle through space-time is ruled by a function G of its momentum called the propagator. This

propagator is a Green’s function of the field’s equations of motion. At all orders in perturbation theory,

the propagator can be defined as a geometric series

G(p2) =

∫
d4x 〈0|Tφ(x)φ∗(0)|0〉

=
i

p2 −m2
+

i

p2 −m2
iΣφ(p

2)
i

p2 −m2
+

i

p2 −m2

(
iΣφ(p

2)
i

p2 −m2

)2

+ ...

=
i

p2 −m2

∞∑
n=0

(
−Σφ(p

2)

p2 −m2

)n
=

i

p2 −m2 +Σφ(p2)
,

(3.7)

where p is the momentum of the field, |0〉 represents the vacuum state, T is the time-ordering operator and

iΣφ(p
2) represents the sum of all the field’s truncated one-particle irreducible (1PI) Feynman diagrams,

as shown in figure 3.2. A 1PI Feynman diagram is any diagram that cannot be separated into two distinct

diagrams by removing a single line [19]. The sum of the 1PI diagrams with two external fields, may also

be referred to as a self-energy.

2Although the processes we are studying do not involve the field AD , its renormalization is needed for the renormalization

of the processes Hi → HDHD . This is discussed in subsection 3.7.2. Moreover, to calculate the branching ratio at NLO we

would also need to renormalize the processHi → ADAD .
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The goal of the OS scheme is to keep the form of the propagator at the next order in perturbation

theory. This will fix the mass and WFRCs. We start with the bare propagator G0 which is defined at the

lowest order. Using the definition of the propagator in equation 3.7 we obtain

G0 =

∫
d4x 〈0|Tφ0(x)φ∗0(0)|0〉 =

i

p2 −m2
0 +Σφ(p2)

⇒
√
Zφ

∗
∫
d4x 〈0|Tφ(x)φ∗(0)|0〉

√
Zφ =

i

p2 −m2 +Σφ(p2) + δm2

⇒
∫
d4x 〈0|Tφ(x)φ∗(0)|0〉 = i√

Zφ
∗
(p2 −m2 +Σφ(p2) + δm2)

√
Zφ

⇒ G(p2) ≈ i

p2 −m2 + Σ̂φ(p2)
,

(3.8)

whereG(p2) is now the renormalized propagator and Σ̂φ(p
2) represents the renormalized self-energy. In

the last step of equation 3.8 we ignore all terms of orderO
(
δ2
)
and above. The renormalized self-energy

is thus written as

Σ̂φ(p
2) = Σφ(p

2)− δm2 +
δZ∗

φ

2
(p2 −m2) + (p2 −m2)

δZφ
2
, (3.9)

where we used the expansion in equation 3.5.

As mentioned earlier, the fixing of the counter-terms is achieved by setting conditions for the renor-

malized propagator in equation 3.8. This translates into conditions for the renormalized self-energy. The

application of these conditions is, in general, straightforward. However, we are faced with some sub-

tleties that we must deal with, due to the mixing of the fields at one-loop. In the next subsections we

discuss the application of these conditions in the cases of non-mixing and mixing fields.

3.2.1 Renormalization Conditions for Non-mixing Fields

In the OS scheme, there are two main conditions that are applied to the renormalized propagator: (1)

the renormalized mass of the field must be the pole of the propagator and (2) the residue of the field’s

propagator must be fixed at i. The first condition, means that the mass must be physical and, therefore,

the field must be on its mass shell. From the renormalized propagator in equation 3.8, we easily conclude

that for the renormalized mass to be the pole of the propagator, the renormalized self-energy, must vanish

at the pole p2 = m2. Evaluating the expression in equation 3.9 at the pole and setting it equal to zero, we

get the expression

δm2 = Σφ(m
2), (3.10)

fixing the mass counter-term for the field.

To use the second condition, we need to go through a fewmore steps. First, we must preform a Taylor
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expansion, up to NLO, of the denominator of the renormalized propagator around the pole

iG−1(p2) = p2 −m2 + Σ̂φ(p
2)

≈

(
1 +

∂Σ̂φ(p
2)

∂p2

∣∣∣∣
p2=m2

)
(p2 −m2).

(3.11)

Then we take the residue of the propagator at the pole. Since it is a simple pole, the residue is given by

Res(G(p2),m2) = lim
p2→m2

(p2 −m2)i

(
1 +

∂Σ̂φ(p
2)

∂p2

∣∣∣∣
p2=m2

)−1

(p2 −m2)−1


= i

(
1 +

∂Σ̂φ(p
2)

∂p2

∣∣∣∣
p2=m2

)−1

.

(3.12)

Requiring the residue in equation 3.12 to be i, yields the condition

∂Σ̂φ(p
2)

∂p2

∣∣∣∣
p2=m2

= 0. (3.13)

Using the renormalized self-energy expression in equation 3.9, and applying the condition in equation

3.13, we obtain the expression

δZφ = −Re

{
∂Σφ(p

2)

∂p2

∣∣∣∣
p2=m2

}
, (3.14)

fixing the WFRC.

For a non-mixing field at one-loop, the WFRC and the mass counter-term are fixed through the ex-

pressions in equations 3.10 and 3.14 respectively. For a set of mixing fields, although the process is very

similar, some changes must be made.

3.2.2 Renormalization Conditions for Mixing Fields

Let us consider two mixing fields φ1 and φ2 with masses m1 and m2 respectively, containing the same

quantum numbers. They can be paired into a vector Φ such that

Φ =

(
φ1

φ2

)
. (3.15)

The renormalization of the vector’s wave-function can be done through a decomposition analogous to

the one in equation 3.5. Defining Φ0 as the bare wave-function, we obtain the expression

Φ0 =

(
φ1,0

φ2,0

)
≈
(
I2×2 +

δZΦ

2

)(
φ1

φ2

)
, (3.16)
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where I2×2 is the 2× 2 identity matrix and δZΦ is a 2× 2 matrix containing the WFRCs, written as

δZΦ =

(
δZφ1φ1 δZφ1φ2
δZφ2φ1 δZφ2φ2

)
. (3.17)

The renormalized propagator for the doublet Φ can be defined in an analogous way to the one in

equation 3.8 and is best expressed through its inverse

G−1
Φ (p2) = −i

(
p2I2×2 −M2 + Σ̂Φ(p

2)
)
, (3.18)

whereM2 is the diagonal matrix containing the squared masses for the fields φ1 and φ2 and Σ̂Φ(p
2) is a

symmetric 2×2matrix containing the renormalized self-energies for the mixing fields. The renormalized

self-energy matrix elements are defined in a similar way to the expression in equation 3.9

Σ̂φiφj (p
2) = Σφiφj (p

2)− δM2
ij +

δZ∗
φjφi

2
(p2 −M2

jj) + (p2 −M2
ii)
δZφiφj

2
, (3.19)

with i, j ∈ {1, 2} and whereΣφiφj (p2) represents the sum of the 1PI self-energy Feynman diagrams with

φi in the initial state and φj in the final state and δM
2 is a symmetric 2 × 2 matrix containing the mass

counter-terms3.

The renormalization conditions introduced in subsection 3.2.1 still apply in the case of mixing fields.

In this context, condition 1 means that for p2 = m2
i , the i-th diagonal element of the propagator should

vanish. This translates into the following set of conditions

Σ̂φiφi(m
2
i ) = 0. (3.20)

Applying the set of conditions in equation 3.20 to the diagonal renormalized self-energy elements using

the expression in equation 3.19, we are able to obtain the diagonal mass counter-terms

δM2
ii = Σφiφi(m

2
i ). (3.21)

Condition 2 can be applied in a way equivalent to the non-mixing case. By expanding the inverted

propagator in equation 3.18 around the pole p2I2×2 −M2 and requiring the residue of the i-th diagonal

element to be i at p2 = m2
i . This produces the set of conditions

∂Σ̂φiφi(p
2)

∂p2

∣∣∣∣
p2=m2

i

= 0. (3.22)

The set of conditions in equation 3.22 enables us to obtain the diagonal WFRCs

δZφiφi = −Re

{
∂Σφiφi(p

2)

∂p2

∣∣∣∣
p2=m2

i

}
. (3.23)

3The matrix δM2 is, in general, not diagonal.
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The main difference between the non-mixing and the mixing cases is the off-diagonal elements of

both δM2 and δZΦ matrices. In general, these elements are not zero and contribute to the renormalization

of the model, meaning that they must be calculated as well. In the context of the OS scheme, a third set

of conditions needs to be applied when dealing with mixing fields. Since we assume that particles are

on their mass shell, no mixing should be allowed when p2 = m2
i . This means, that both off-diagonal

self-energies should vanish at both p2 = m2
1 and p

2 = m2
2, which results in the four conditions

Σ̂φiφj (m
2
i ) = 0,

Σ̂φiφj (m
2
j ) = 0,

(3.24)

with i 6= j. These four conditions can be used to obtain expressions for both the off-diagonal counter-

terms and their complex conjugates. However, from equation 3.19 and based on the fact that bothΣΦ(p
2)

and δM2 are symmetric matrices, we conclude that δZφiφj = δZ∗
φiφj

, meaning that δZφiφj must be real.

This reduces the initial set of four conditions to only two

Σ̂φiφj (m
2
j ) = 0. (3.25)

The conditions in equation 3.25 result in the expressions for the off-diagonal WFRCs

δZφiφj =
2

m2
i −m2

j

Re
{
Σφiφj (m

2
j )− δM2

ij

}
. (3.26)

However, we are yet to fix the off-diagonal mass counter-terms. The expressions for these counter-

terms depend on the renormalization scheme used for the so-called tadpole terms. This is discussed in

detail in the next section.

3.3 Tadpole Renormalization

In general, the N2HDM scalar potential contains terms that are linear in the CP-even fields ρ1, ρ2 and

ρS . These terms are called the tadpole terms because they are represented by Feynman diagrams like the

ones in figure 3.3, which resemble a tadpole. These tadpole terms can be obtained through the relation

Ti =

〈
∂V

∂ρi

〉
, (3.27)

with i ∈ {1, 2, S}. Recalling the vacuum stability conditions in equation 2.8, we realize that those are

just the result of the conditions

Ti = 0. (3.28)

At tree level, these conditions are necessary to make sure that the vacuum is fixed at the proper value,

meaning that the tadpole terms should vanish at the vacuum state.
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iTi =�ρi
(a)

iTHi =�Hi

(b)

Figure 3.3: Tadpole diagrams. Feynman diagram representation of the linear terms in the fields in the

(a) gauge basis and in the (b) mass basis, at one-loop.

In the case of the DDP, the stability conditions are reduced to their form in equation 2.15. Therefore,

we can define the DDP tadpole terms as4

T1 =
1

2
(v2λ1 + v2Sλ7) +m2

11, (3.29a)

TS =
1

2
(v2λ7 + v2Sλ6) +m2

S . (3.29b)

At one-loop, the tadpole terms suffer a shift analogous to the parameter shift in equation 3.4. After the

shift, the vacuum must remain fixed at the proper value, meaning that the bare tadpole term Ti,0 must

obey the condition

Ti,0 = Ti + δTi = 0, (3.30)

with i ∈ {1, S} and where Ti is now the renormalized tadpole and δTi is the tadpole counter-term. From

equation 3.30 we obtain the set of tadpole renormalization conditions

δTi = −Ti. (3.31)

There are two options regarding the application of the renormalization condition in equation 3.31.

One approach is to renormalize the tadpole terms, maintaining the tree-level relations between the VEVs

and the masses [20–22]. The second approach, consists in renormalizing the VEVs themselves. In this

project, we follow the second method, known as the Alternative Tadpole (AT) scheme [23–25]. The AT

scheme, has the advantage of producing gauge-independent counter-terms for the physical parameters.

However, this is not true for the WFRCs, as we will see in section 3.6.

In the AT scheme, we identify the VEVs of the model as being the bare VEVs v0 and vS ,0 that must

be corrected at one-loop, through the shift

v0 = v + δv,

vS ,0 = vS + δvS .
(3.32)

4If we take the parameter m2
12 to be identically zero in the DDP, the minimum condition corresponding to the field ρ2

vanishes since the doublet Φ2 has zero VEV.
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In this case, the tadpole shifts in equation 3.30 are the result of the shifts in the VEVs in equation 3.32.

These tadpole shifts can be obtained as a function of the VEV counter-terms by

δT1 =
∂T1
∂v

δv +
∂T1
∂vS

δvS , (3.33a)

δTS =
∂TS
∂v

δv +
∂TS
∂vS

δvS , (3.33b)

where the tree-level minimum conditions in equation 2.15 can be used to substitute m2
11 and m

2
S . The

derivatives in equation 3.33, correspond to the elements of the CP-even mass matrixMρ. Therefore, the

relation between the tadpole counter-terms and the VEV counter-terms can be expressed as(
δT1

δTS

)
=Mρ

(
δv

δvS

)
. (3.34)

It is easier to work with the tadpole counter-terms in the mass basis. For this reason it is convenient to

obtain a relation between the VEV counter-terms and the mass basis tadpole counter-terms. This can be

achieved by multiplying both sides of equation 3.34 by the inverse of the mass matrix and then use the

rotation matrix in equation 2.20 to rotate the tadpole counter-term side to the mass basis(
δv

δvS

)
= R(α)R(α)T (Mρ)−1R(α)R(α)T

(
δT1

δTS

)

= R(α)(D2)−1

(
δTH1

δTH2

)
.

(3.35)

Using the tadpole renormalization condition set in equation 3.31, we can substitute the tadpole counter-

terms in equation 3.35 by the tadpole terms. Therefore, the explicit relation between the VEVs and the

mass basis tadpole terms becomes(
δv

δvS

)
=

−cα
TH1

m2
H1

− sα
TH2

m2
H2

sα
TH1

m2
H1

− cα
TH2

m2
H2

 . (3.36)

From equation 3.36 we can see that the VEV counter-terms are given by the linear combination of the

tadpole terms refering to the mass eigenstatesH1 andH2 devided by their corresponding squared masses.

This leads to an interesting conclusion. Using as an example the expression for δv, we see that

δv = cα
i

m2
H1

iTH1 + sα
i

m2
H2

iTH2 . (3.37)

If we use the tadpole diagram representation in figure 3.3, we can see that each of the terms of equation

3.37 can be represented by a tadpole diagram. However, we can take this interpretation further by noting

that the factors i/m2
Hj

can be interpreted as scalar propagators with zero momentum transfer. This turns
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the truncated tadpole diagrams from figure 3.3 into connected tadpole diagrams. Therefore, the VEV

counter-terms in 3.36 can be represented as a combination of Feynman diagrams of the form

δvi = Ri1

(�H1

)
+Ri2

(�H2

)
, (3.38)

where i ∈ {1, 2} with δv2 corresponding to δvS . The dot in each diagram indicates that it is a connected

diagram.

Since the masses depend on the VEVs, the shifts in equation 3.32 have an effect in the mass renormal-

ization. In addition to the mass counter-terms coming from the bare mass decomposition, an additional

term appears due to the VEV counter-term contribution

m2
0 = m2 + δm2 +∆m2, (3.39)

where the term∆m2 represents the contribution coming from the VEV renormalization. For the case of

two mixing fields like the ones in subsection 3.2.2, an analogous contribution appears in the form of a

matrix

M2
0 =M2 +

(
δm2

φ1
0

0 δm2
φ2

)
+

(
∆M2

φ1φ1
∆M2

φ1φ2

∆M2
φ2φ1

∆M2
φ2φ2

)
. (3.40)

The elements ∆M2
φiφj

are functions of the VEV counter-terms and, therefore, contain the combination

of diagrams that we found in equation 3.38. In general, they are of the form

∆M2
φiφj

= iλH1φiφj

(�H1

)
+ iλH2φiφj

(�H2

)
, (3.41)

where λH1φiφj and λH2φiφj represent the trilinear couplings for the verticesH1φiφj andH2φiφj respec-

tively. From equation 3.41, we conclude that the additional mass counter-terms ∆M2
φiφj

resulting from

the renormalization of the VEVs, have the form of self-energy diagrams and can be represented as

∆M2
φiφj

= i

�φi φj

H1
+�φi φj

H2

 . (3.42)

By comparing the counter-term matrices in equation 3.40 with the mass counter-term matrix δM2 in

equation 3.19, we are able to deduce the explicit form of the δM2 matrix as

δM2
ij = δm2

i δij +∆M2
φiφj

. (3.43)

Furthermore, since the mass counter-terms resulting from the VEV renormalization have self-energy

form, we can define a modified self-energy iΣTadφiφj
such that

iΣTadφiφj
(p2) = iΣφiφj (p

2)− i∆M2
φiφj

, (3.44)
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iΣTad(p2) = + + + ... (3.46)

Figure 3.4: Modified self-energy in the AT scheme. In the alternative tadpole scheme, the particle

self-energy includes the so-called tadpole contributions. These contributions, are the result of the renor-

malization of the VEVs.

where iΣTadφiφj
contains not only the sum of the 1PI diagrams between φi and φj but also the tadpole

contributions from equation 3.42, as shown in figure 3.4. With this definition, the renormalized self-

energy can be expressed as

Σ̂φiφj (p
2) = ΣTadφiφj

(p2)− δm2
i δij +

δZ∗
φjφi

2
(p2 −M2

jj) + (p2 −M2
ii)
δZφiφj

2
, (3.45)

where δij is the Kronecker delta function. The renormalized self-energy for the case of the non-mixing

fields has an analogous form to equation 3.45.

With the self-energy definition in equation 3.45 we can now express the mass counter-terms and the

WFRCs in their final form. In the non-mixing fields case, the mass counter-term and WFRC definitions

in equations 3.10 and 3.14 become

δm2 = ΣTadφ (m2), (3.47a)

δZφ = −Re

{
∂ΣTadφ (p2)

∂p2

∣∣∣∣
p2=m2

}
. (3.47b)

In the case of mixing fields, the mass counter-terms and WFRCs definitions in equations 3.21, 3.23 and

3.26 become

δm2
i = ΣTadφiφi

(m2
i ), (3.48a)

δZφiφi = −Re

{
∂ΣTadφiφi

(p2)

∂p2

∣∣∣∣
p2=m2

i

}
, (3.48b)

δZφiφj =
2

m2
i −m2

j

Re
{
ΣTadφiφj

(m2
j )
}
, (3.48c)

with i, j ∈ {1, 2}
There are some additional effects under the AT scheme. From equation 2.27, we realize that the

trilinear couplings for our processes have dependencies on v and vS . By renormalizing the VEVs, ad-

ditional terms appear that depend on the VEV counter-terms. Using, once again, the Feynman diagram
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representation of the VEV counter-terms, we can write these additional terms as

∆λHiHDHD
= λHiHiHDHD

(�Hi

)
+ λHiHjHDHD

(�Hj

)
, (3.49)

with i, j ∈ {1, 2}. Similarly to what happens with the additional mass counter-terms in equation 3.41,

the terms in equation 3.49 can be interpreted as a set of extra diagrams of the model

∆λHiHDHD
=

	Hi

HD

HD
Hi

+
Hi

HD

HD
Hj

 . (3.50)

The diagrams in equation 3.50 will contribute to the renormalization of the process amplitude, which is

discussed in section 3.7.

3.4 Scalar Masses and Fields

The renormalization of the scalar masses and fields of the N2HDM is done using the OS scheme along

with the AT scheme discussed in sections 3.2 and 3.3 respectively. Like we discussed in subsection 3.2.2,

some fields are allowed to mix at one-loop. In the N2HDM, this is the case of the CP-even fields H1

and H2. Therefore, to renormalize the fields we must group them in a bare vector as per equation 3.16,

resulting in (
H1,0

H2,0

)
=

(
1 +

δZH1H1
2

δZH1H2
2

δZH2H1
2 1 +

δZH2H2
2

)(
H1

H2

)
. (3.51)

We then use equations 3.48b and 3.48c to obtain the expressions for the WFRCs

δZH1H1 = −Re

{
∂ΣTadH1H1

(p2)

∂p2

∣∣∣∣
p2=m2

H1

}
, (3.52a)

δZH2H2 = −Re

{
∂ΣTadH2H2

(p2)

∂p2

∣∣∣∣
p2=m2

H2

}
, (3.52b)

δZH1H2 =
2

m2
H1

−m2
H2

Re
{
ΣTadH1H2

(m2
H2

)
}
, (3.52c)

δZH2H1 =
2

m2
H2

−m2
H1

Re
{
ΣTadH1H2

(m2
H1

)
}
. (3.52d)

To renormalize the masses, we first identify them as bare parameters as in equation 3.4. This results in

the shifts

m2
H1
,0 = m2

H1
+ δm2

H1
, (3.53a)

m2
H2
,0 = m2

H2
+ δm2

H2
. (3.53b)
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The counter-terms in equation 3.53 are then fixed using equation 3.48a, resulting in

δm2
H1

= Re
{
ΣTadH1H1

(m2
H1

)
}
, (3.54a)

δm2
H2

= Re
{
ΣTadH2H2

(m2
H2

)
}
. (3.54b)

The remaining scalar fields HD and AD are non-mixing fields. As such, their renormaliztion is

straightforward. The fields are renormalized by identifying them as bare fields and using the definition

in equation 3.5, from which we get

HD,0 =

(
1 +

δZHD

2

)
HD, (3.55a)

AD,0 =

(
1 +

δZAD

2

)
AD. (3.55b)

The WFRCs are fixed using equation 3.47b, giving us the expressions

δZHD
= −Re

∂ΣTadHD
(p2)

∂p2

∣∣∣∣
p2=m2

HD

, (3.56a)

δZAD
= −Re

∂ΣTadAD
(p2)

∂p2

∣∣∣∣
p2=m2

AD

. (3.56b)

The squared masses for HD and AD are treated in the same way as in the case of the mixing fields H1

and H2, meaning that the bare squared masses are given by

m2
HD
,0 = m2

HD
+ δm2

HD
, (3.57a)

m2
AD
,0 = m2

AD
+ δm2

AD
. (3.57b)

Using equation 3.47a, we obtain the expression for the squared mass counter-terms as

δm2
HD

= Re
{
ΣTadHD

(m2
HD

)
}
, (3.58a)

δm2
AD

= Re
{
ΣTadAD

(m2
AD

)
}
. (3.58b)

3.5 Electroweak Parameters

In section 2.3, we established the VEVs as independent parameters of the potential, in the mass basis.

However, we would like to express our calculation in terms of measurable quantities. We can achieve
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this, by expressing the VEVs as functions of these quantities. With respect to the VEV v, it can be defined

at tree-level by the expression

v =
2mW

√
m2
Z −m2

W

e mZ
. (3.59)

Since we are working in the AT scheme, the renormalized VEV is fixed as the tree-level VEV. Therefore,

the reparameterization in equation 3.59 leads to additional terms due to the VEV renormalization. These

additional terms labeled ∆v, are obtained through the relation

∆v =
∂v

∂m2
W

δm2
W +

∂v

∂m2
Z

δm2
Z +

∂v

∂e
δe. (3.60)

Applying equation 3.60 to the relation in equation 3.59, we get the explicit form of ∆v as

∆v =
2mW

√
m2
Z −m2

W

e mZ

(
1

2(m2
Z −m2

W )

[
m2
Z

m2
W

δm2
W −

m2
W

m2
Z

δm2
Z

]
+ δZe

)
, (3.61)

where we used the substitution δe = eδZe. We should note that ∆v is not related to the VEV counter-

term δv. In fact, this procedure would not be necessary if we had expressed the potential as a function

of e,m2
Z andm2

W from the beginning. However, if we had done that, the tadpole renormalization would

have been slightly more complicated and not as elegant.

An equivalent argument can be made in the case of the VEV vS . This is addressed in subsection

3.7.1.

From equation 3.61 we get three additional counter-terms that we must fix: the charge counter-term

δZe and the counter-terms for the masses of the W and Z bosons.

3.5.1 W± and Z Boson Masses

The renormalization of the gauge boson masses can be done using the OS scheme along with the AT

scheme in a similar way to what was done to the scalar masses in section 3.4. However, since we are

dealing with vector fields, their propagator has a different form. The propagator for a generic vector field

V in the general Rξ gauge is given by

Gµν(p
2) =

(
−gµν +

pµpν
p2

)
GT (p2)− i

pµpν
p2

ξV
p2 − ξVm2

V

, (3.62)

where gµν is the metric tensor and ξV is the gauge-fixing parameter. The last term of equation 3.62 is

the longitudinal part of the propagator and will not be used in our calculations. The remaining term of

equation 3.62 is the transverse part of the propagator and contains the scalar function GT which is a

Green’s function that can be defined at all orders of perturbation theory as

GT (p2) =
i

p2 −m2
V +ΣTV (p

2)
, (3.63)
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where iΣTV represents the sum of all truncated 1PI Feynman diagrams for the vector field. Equation 3.63

is therefore equivalent to the scalar propagator definition in equation 3.7, meaning the OS scheme can

be applied to the vector fields in the exact same way as we did for the scalar fields. Therefore, the mass

counter-terms for the W boson can be fixed using the expression in equation 3.47a

δm2
W = Re

{
ΣTad,TW (m2

W )
}
. (3.64)

At one-loop, the Z boson mixes with the photon, due to both having the same quantum numbers. This

means that we must treat the Z boson and the photon as mixing fields in the context of the OS scheme.

Therefore, we can define a self-energy matrix ΣTad,T (p2) such that

ΣTad,T (p2) =

(
ΣTad,TZZ (p2) ΣTZγ(p

2)

ΣTγZ(p
2) ΣTγγ(p

2)

)
, (3.65)

where each self-energy contains the sum of all 1PI Feynman diagrams between each combination of fields,

including the tadpole contributions according to the AT scheme. The self-energy diagrams involving the

photon do not have tadpole contributions since the photon does not couple to the CP-even scalar fields

H1 and H2. The mass counter-term for the Z boson is then given by equation 3.48a as

δm2
Z = Re

{
ΣTad,TZZ (m2

Z)
}
. (3.66)

3.5.2 Electric Charge

The physical value of the electric charge is fixed in the Thomson limit which is the limit of zero photon

momentum in the Thomson scattering between an electron and a photon. To renormalize the electric

charge, we assume a bare charge e0 that can be decomposed as

e0 = (1 + δZe)e, (3.67)

where e becomes the renormalized electric charge and δZe is the charge counter-term. The charge

counter-term is fixed by the condition that all corrections to the eeγ vertex must vanish when the ex-

ternal particles are on their mass-shell. Due to a Ward identity originating from the gauge invariance

of the model, the charge counter-term can be expressed simply as a function of the photon and Z boson

self-energies, defined in equation 3.65 [20]. Explicitly, the charge counter-term has the form

δZα(0)e =
1

2

∂ΣTγγ(p
2)

∂p2

∣∣∣∣
p2=0

+
sW
cW

ΣTγZ(0)

m2
Z

, (3.68)

where cW and sW are respectively the cosine and sine of the Weinberg angle and the superscript α(0)

denotes that we are considering the fine-structure constantα at the zeromass scale. However, the counter-

term in equation 3.68 contains large logarithmic corrections due to the small fermion masses (f 6= t).
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To minimize the effect of these undesired contributions, we use the so-called ”Gµ scheme” [20, 26] in

which α is derived from the Fermi constant Gµ as

αGµ =

√
2Gµm

2
W

π

(
1−

m2
W

m2
Z

)
. (3.69)

This leads to a large part of the O(α) corrections being absorbed in the LO decay width and allows

us to take into consideration the running of the fine-structure constant from the zero mass scale to the

electroweak scale. Since these corrections are included in the LO width, we must subtract them from the

explicit O(α) corrections to avoid double counting. This is done by subtracting the weak corrections to

the muon decay ∆r from the counter-term in equation 3.68. Therefore, the electric charge counter-term

becomes

δZe
∣∣
Gµ

= δZα(0)e − 1

2
(∆r)1-loop, (3.70)

with (∆r)1-loop being the one-loop expression for ∆r given by

(∆r)1-loop =
∂ΣTγγ(p

2)

∂p2

∣∣∣∣∣
p2=0

−
c2W
s2W

(
ΣTad,TZZ (m2

Z)

m2
Z

−
ΣTad,TW (m2

W )

m2
W

)
+

ΣTad,TW (0)− ΣTad,TW (m2
W )

m2
W

− 2
cW
sW

ΣTγZ(0)

m2
Z

+
α

4πs2W

(
6 +

7− 4s2W
2s2W

log c2W
)
.

(3.71)

Through the expression in equation 3.70 we see that the first term of equation 3.68, which contains the

undesired corrections, cancels against the first term of equation 3.71. From this point on, whenever we

mention the counter-term δZe we will be referring to the definition in equation 3.70.

3.6 Mixing Angle α

As an independent parameter of the model, the mixing angle α must also be renormalized. To do this,

we must choose in which basis we wish to do it, as it will lead to different paths of renormalization. If

we perform the renormalization in the gauge basis, α has to be renormalized as a function of the gauge

basis parameters and not as a mixing angle. If instead we perform the renormalization after the rotation

to the mass basis, αmust be renormalized as a mixing angle. The difference between the two approaches

is that in the first case, the rotation angle is the renormalized parameter, while in the second case it the

bare parameter α0 that is used to rotate to the mass basis. In this project, we use the second approach, to

which we refer as the KOSY scheme [21, 22].

In a similar fashion to the other physical parameters, we start by defining the bare mixing angle α0,

which is decomposed as

α0 = α+ δα, (3.72)
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where α is the renormalized mixing angle and δα is the mixing angle counter-term. As mentioned in the

beginning of the section, we use the bare mixing angle to perform the rotation between the gauge and

mass basis. Using the decomposition in equation 3.72 with the rotation matrix R, we get

R(α0) =

(
cosα0 sinα0

− sinα0 cosα0

)
=

(
cos(α+ δα) sin(α+ δα)

− sin(α+ δα) cos(α+ δα)

)
= R(α)R(δα). (3.73)

We can then use the rotation matrix in equation 3.73, to perform the rotation of the bare fields between

the gauge and mass basis , resulting in the expression(
H1,0

H2,0

)
= R(α0)

T

(
ρ1,0

ρS ,0

)

= R(δα)TR(α)T
√
Zρ

(
ρ1

ρS

)

= R(δα)TR(α)T
√
ZρR(α)R(α)

T

(
ρ1

ρS

)

=
√
ZH

(
H1

H2

)
,

(3.74)

where
√
Zρ and

√
ZH represent the field strength renormalization constant matrices in the gauge and

mass basis, respectively. The matrix
√
Zρ is a real symmetric matrix. Therefore, at NLO, we may use

the following parameterization for
√
ZH

√
ZH = R(δα)T

(
1 +

δZH1H1
2 δC

δC 1 +
δZH2H2

2

)

≈

(
1 +

δZH1H1
2 δC + δα

δC − δα 1 +
δZH2H2

2

)
,

(3.75)

where we use the approximations cos δα ≈ 1 and sin δα ≈ δα and discard all terms of orderO
(
δ2
)
. For

the renormalization to be consistent, the relation for the field renormalization that we obtained in equation

3.74 must be equivalent to the one we obtained previously with the OS scheme. Therefore, comparing

equations 3.51 and 3.75, we obtain the relations

δZOSH1H2

2
= δC + δα, (3.76a)

δZOSH2H1

2
= δC − δα, (3.76b)

where the superscript OS denotes that the counter-term comes from the OS scheme. Solving this system
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of equations for δα and δC, results in

δα =
δZOSH1H2

− δZOSH2H1

4
, (3.77a)

δC =
δZOSH1H2

+ δZOSH2H1

4
. (3.77b)

The counter-term δC is not used and may be ignored. Finally, we can replace δZOSH1H2
and δZOSH2H1

by

their expressions in equations 3.52c and 3.52d. With this substitution, we obtain the final expression for

the mixing angle counter-term as

δα =
1

2(m2
H1

−m2
H2

)
Re
{
ΣTadH1H2

(m2
H1

) + ΣTadH1H2
(m2

H2
)
}
. (3.78)

There is a problem with the expression that we just derived. The amplitudes of some diagrams con-

tributing to the self-energies in equation 3.78 are not gauge-independent. This would not be a problem as

long as the gauge-dependence vanishes in the final amplitude calculation. However, it has been shown

that when using the KOSY scheme for the angular counter-terms, the final amplitudes remain gauge-

dependent [24]. If we wish to make physically relevant calculations, the total amplitude of the processes

cannot depend on the gauge. Therefore, we must find a way to make equation 3.78 gauge-independent.

In the next subsection, we discuss a method to obtain gauge-independent self-energies.

3.6.1 Pinch Technique

Oneway of making the self-energies in equation 3.78 gauge-independent is using the pinch technique. An

extensive discussion of the method and its applications can be found in [27]. While a detailed description

of the technique is outside the scope of this thesis, we describe the basic procedure.

As an example, let us consider the amplitudeM for a generic scattering process between two fermions.

By definition, the amplitude of the process must be gauge-independent at all orders of perturbation the-

ory. However, at NLO, the total amplitude will contain contributions of self-energy, triangle and box

diagrams that might be individually gauge-dependent, as shown in figure 3.5. In order to keep the total

amplitude gauge-independent, the gauge-dependent terms from the individual classes of diagrams must

cancel out. This can be demonstrated by separating the total amplitude into sub-amplitudes representing

the contributions of each class of diagrams

M(s, t,mi) = Mself(t, ξ) +Mtri(t,mi, ξ) +Mbox(t, s,mi, ξ), (3.79)

where s and t are the Mandelstam variables, obeying the relation s + t + u = 2(m2
1 + m2

2) with mi

representing the masses of the external particles. ξ is the gauge-fixing parameter and Mself, Mtri and

Mbox are the amplitudes of the one-loop contributions from self-energy, triangle and box diagrams re-

spectively. If we take the derivative with respect to ξ and s on both sides of equation 3.79, we can easily
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Figure 3.5: One-loop contributions to a scattering process. At one-loop, the contributions for a general

scattering process can be separated in (a) self-energy contributions, (b) and (c) triangle contributions and

(d) box contributions. The sum of the amplitudes of all contributions must be gauge-independent.

see that
∂2Mbox

∂ξ∂s
= 0, (3.80)

which means thatMbox can be split into two independent functions, depending on ξ and s separately

Mbox = M̂box(t, s,mi) + h(t,mi, ξ), (3.81)

where M̂box is gauge-independent. Since they have the same variable dependency, we can add the gauge-

dependent function h toMtri defining a new triangle sub-amplitude M̃tri

M̃tri(t,mi, ξ) = Mtri(t,mi, ξ) + h(t,mi, ξ). (3.82)

ReplacingMbox in equation 3.79 by the expression in equation 3.81 and using the definition in equation

3.82, we now have

M(s, t,mi) = Mself(t, ξ) + M̃tri(t,mi, ξ) + M̂box(t, s,mi). (3.83)

We can then repeat the process taking the derivative with respect to ξ and mi on both sides of equation

3.83, obtaining

∂2M̃tri

∂ξ∂mi
= 0, (3.84)

which means that similarly toMbox, we can decompose M̃tri into two independent functions, depending

on ξ andmi separately

M̃tri = M̂tri(t,mi) + f(t, ξ), (3.85)

where, once again, M̂tri is gauge-independent. The function f has the same dependency as the sub-

amplitudeMself(t, ξ) which means that we can define a new sub-amplitude M̂self as

M̂self(t, ξ) = Mself(t, ξ) + f(t, ξ). (3.86)
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We were able to isolate all gauge dependencies inside the sub-amplitude M̂self. However, since the

total amplitude must be gauge-independent, M̂self must also be gauge-independent, meaning that the all

gauge-dependencies have to cancel out inside M̂self. Therefore, the total amplitude can be expressed as

the sum of individually gauge-independent contributions

M(s, t,mi) = M̂self(t) + M̂tri(t,mi) + M̂box(t, s,mi). (3.87)

This procedure illustrates the essence of the pinch technique at one-loop: the gauge-dependent terms of

the triangle and box diagram contributions can be ”pinched out” and eventually canceled at the level of the

self-energies. In fact, the gauge-dependent terms that are extracted from the triangle and box diagrams,

can be represented as self-energy diagrams that cancel out the gauge-dependent terms of the original self-

energy contributions. Therefore, we can define a new gauge-independent ”pinched” self-energy given

by

ΣPT (p2) = ΣTad(p2)
∣∣
ξ=1

+ΣAdd(p2), (3.88)

where ΣTad(p2)
∣∣
ξ=1

is the original AT scheme self-energy contribution evaluated in the Feynman gauge

(ξ = 1) and ΣAdd(p2) represents additional gauge-independent terms, leftover from the pinch technique.

Applying this to the mixing angle counter-term in equation 3.78, we get the expression

δα =
Re
{
ΣPTH1H2

(m2
H1

) + ΣPTH1H2
(m2

H2
)
}

2(m2
H1

−m2
H2

)

=
Re
{[

ΣTadH1H2
(m2

H1
) + ΣTadH1H2

(m2
H2

)
]
ξ=1

+ΣAddH1H2
(m2

H1
) + ΣAddH1H2

(m2
H2

)
}

2(m2
H1

−m2
H2

)
,

(3.89)

where ΣAddH1H2
has the explicit form

ΣAddH1H2
(p2) = −

g2Y
32π2c2W

cαsα

(
p2 −

m2
H1

−m2
H2

2

)
×
[
B0(p

2,mZ ,mZ) + 2c2WB0(p
2,mW ,mW )

]
,

(3.90)

where gY is the U(1)Y coupling constant, cW is the cosine of the Weinberg angle and B0 is a Passarino-

Veltman function. The expression in equation 3.89 was obtained from the calculations for the counter-

terms of the mixing angles for the broken phase of the N2HDM in [25]. To obtain the equivalent expres-

sion for the DDP, we used the replacement

(β − α1, α2, α3) → (α, 0, 0) , (3.91)

and the fact that (AD, Z) and (H
±
D , W ) loop contributions do not exist in the DDP due to AD and H±

D

belonging to the dark sector.
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Figure 3.6: Tree-level Higgs decay Feynman diagrams. Tree-level Feynman diagrams for the possible

decays of (a) H1 and (b) H2 to the dark matter candidate HD

3.7 Amplitude Renormalization

In general, the observable quantities related to a given process depend on the quantum mechanical prob-

ability associated with that process. This probability is represented by the probability amplitude M of

the process. In terms of Feynman diagrams, the amplitude is defined by the sum of the amplitudes of all

possible diagrams with the same initial and final states. Since we are only interested in decay processes

like the ones in equation 2.26, we will be limiting this discussion to the case of one-to-two particle pro-

cesses. These decay processes are represented at tree-level by a single Feynman diagram as shown in

figure 3.6. In general, the leading order probability amplitude of a decay process involving only scalar

fields, is given by

MLO = λ, (3.92)

where λ represents the coupling between the fields involved in the process.

When we consider the one-loop corrections to the amplitude of the process, several additional contri-

butions have to be considered. In general, these contributions can be separated into classes of Feynman

diagrams as shown in figure 3.7. Diagrams (a), (b) and (c) represent corrections to the external legs.

These self-energy like contributions should vanish under the OS scheme, since they are accounted for

in the propagator renormalization. Diagram (d) represents the vertex correction contributions. These

include all 1PI Feynman diagrams with the same initial and final states, including the vertex tadpole

contributions defined in equation 3.50. Diagram (e) represents the counter-term contributions. These

contributions appear due to the additional terms resulting from the renormalization of the parameters and

fields. The sum of all these one-loop corrections, can be expressed as a total amplitudeM1-loop, expressed

as

M1-loop = MVC +MCT, (3.93)

where MVC represents the amplitude of the vertex correction contributions and MCT represents the

amplitude associated with the counter-term contributions. If we ignore all the terms of order O
(
δ2
)
, the

counter-term amplitude can be separated into terms coming from the renormalization of the parameters
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Figure 3.7: One-loop corrections to the amplitude. The one-loop corrections to the amplitude of a

decay process can be represented by classes of Feynman diagrams containing (a), (b) and (c) external leg

correction contributions, (d) vertex correction contributions and (e) counter-term contributions.

and terms coming from the renormalization of the wave-functions, such that

MCT = δλP + δλWF, (3.94)

where the superscript P andWF indicate the parameter and wave-function contributions respectively. The

term representing the parameter renormalization contribution, can be interpreted as being a counter-term

for the coupling of the process that results from the renormalization of the parameters. The explicit form

of this counter-term can be obtained by calculating the shift in the coupling as a result of the shift in the

parameters of the model

δλP =
∑
i

∂λ

∂ρi
δρi, (3.95)

where the ρ represents the set of independent parameters of the model and δρ their corresponding counter-

terms.

The term representing the wave-function renormalization contributions, results from the additional

Lagrangian terms that appear due to the WFRCs. The explicit form depends on the mixing nature of the

fields involved in the process and can generally be expressed, at one-loop, as

δλWF = λ
∑
i

δZXi

2
+ δZmix, (3.96)

whereX represents the set of fields interacting in the process and δZmix represents the terms containing

off-diagonal WFRCs coming from the renormalization of mixing fields.
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The total NLO amplitude of a process MNLO, is given by the sum of the leading order amplitude

defined in equation 3.92 with the one-loop corrections that we have defined in equation 3.93, such that

MNLO = MLO +M1-loop. (3.97)

In order to calculate the counter-term contributions for the amplitude as defined in equation 3.95, we

must fix the counter-terms of all parameters that appear in the coupling of the process. From equation

2.27, we see that the couplings of the processes that we want to study, contain dependencies in the param-

etersm2
22, λ8 and vS . However, we are yet to fix the expressions for the counter-terms δm2

22 and δλ8 and

the form of ∆vS . These counter-terms cannot be calculated using any of the renormalization schemes

discussed so far, meaning that we must find alternative schemes through which we can fix the remaining

counter-terms. In the next subsections, we discuss two renormalization schemes that will allow us to

complete the renormalization of our processes.

3.7.1 Minimal Subtraction Scheme

The minimal subtraction (MS) scheme, is a widely used renormalization scheme. In general, it uses

the fact that, after regularization, the divergences of one-loop integrals appear isolated as poles in the

regulator ε like described in subsection 3.1. After fixing all possible counter-terms for the fields and

parameters using other renormalization schemes, the remaining counter-terms are fixed such that they

exactly cancel the remaining divergencies.

A much more common form of the MS scheme is the modified minimal substraction scheme (MS),

also known as MS-bar. In the MS scheme, the counter-terms cancel not only the divergent parts of the

integrals, but the full ∆ terms as defined in equation 3.3.

We use the MS scheme to find the counter-terms for the parameters m2
22 and λ8. We do this by

first, finding the β functions for the parameters. The β function is a measure of the dependence of the

parameter on the renormalization scale µ introduced by the dimensional regularization and is defined as

β(1)ρ = 32π2
∂ρ

∂ lnµ
, (3.98)

where ρ represents the parameter and the superscript (1) indicates that it is the one-loop β function. The

β function is related to the parameter counter-term by

δρ =
1

32π2
β(1)ρ ∆, (3.99)

with∆ being defined in equation 3.3. Applying this to the parametersm2
22 and λ8, we get the expressions

for their the counter-terms as

δm2
22 =

1

32π2
β
(1)

m2
22
∆, (3.100a)

δλ8 =
1

32π2
β
(1)
λ8

∆, (3.100b)
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where the functions β
(1)

m2
22
and β

(1)
λ8

, given in terms of the gauge basis parameters, have the explicit form

β
(1)

m2
22

= 2λ4m
2
11 + 4λ3m

2
11 + 6λ2m

2
22 −

45

30
g2Ym

2
22 −

9

2
g2Lm

2
22 + λ8m

2
S , (3.101a)

β
(1)
λ8

= 2λ4λ7 + 4λ3λ7 +
λ8
10

(
30λ6 + 40λ8 − 45g2L + 60λ2 −

45

3
g2Y

)
, (3.101b)

where gY and gL are the U(1)Y and SU(2)L gauge couplings, respectively. These expressions were

obtained using the Mathematica package SARAH 4.14.2 [28–32].

With the expressions in equation 3.100, we would expect the renormalization process to be complete.

However, when we check the total amplitude of the renormalized process with respect to its finiteness, we

notice that some divergent terms remain. In the beginning of section 3.5, we mentioned that the explicit

form of the term∆vS was unknown. We see now that, since our couplings depend on vS , we need to fix

∆vS in order to cancel all the divergent terms and make the process amplitudes UV finite. Under the MS

scheme, we can simply define∆vS in such way that it absorbs the remaining divergent terms. By doing

this, we obtain the expression

∆vS = −

(
sα
TH1

m2
H1

+ cα
TH2

m2
H2

)
div

, (3.102)

where the subscript ’div’ denotes that we take only the divergent part of the expression. The explicit

calculation of ∆vS is presented in appendix B.1.

With the expression in equation 3.102, we have fixed all the counter-terms that are involved in our

process, meaning that we now have finite NLO amplitudes.

3.7.2 Process-Dependent Scheme

A different way to obtain the expressions for the counter-terms of m2
22 and λ8 is to use a process-

dependent scheme. This scheme has the advantage of defining the parameter counter-terms in a more

physical way. The process-dependent scheme consists of taking a set of different processes, containing

couplings which depend on the parameters that are to be renormalized, and requiring that their partial

decay widths are the same at both LO and NLO. This results in the condition

ΓLO
Aux = ΓNLO

Aux , (3.103)

where the subscript Aux indicates that the partial decay widths refer to the auxiliary processes. The

explicit form of the partial decay width at both LO and NLO is derived in section 4.1. In practice,

the condition in equation 3.103 is equivalent to saying that the absolute square of the amplitude of the

auxiliary process must be the same at LO and NLO, resulting in the expression∣∣MLO
Aux

∣∣2 = ∣∣MNLO
Aux

∣∣2 . (3.104)
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Using the definition in equation 3.97 and expanding the absolute square of the amplitude at NLO we get∣∣MNLO
Aux

∣∣2 = (MNLO
Aux

)∗MNLO
Aux

=
(
MLO +M1-loop

Aux

)∗ (
MLO

Aux +M1-loop
Aux

)
=
∣∣MLO

Aux

∣∣2 + ((MLO
Aux

)∗M1-loop
Aux +MLO

Aux

(
M1-loop

Aux

)∗)
+O(NNLO)

≈
∣∣MLO

Aux

∣∣2 + 2Re
{(

MLO
Aux

)∗M1-loop
Aux

}
.

(3.105)

If we substitute the result from equation 3.105 in equation 3.104, we get the condition

2Re
{(

MLO
Aux

)∗M1-loop
Aux

}
= 0. (3.106)

The renormalization condition can be simplified further by noticing that, according to equation 3.92,

the LO amplitude MLO
Aux is just the coupling associated with the auxiliary process. Therefore, our final

renormalization condition becomes

Re
{
M1-loop

Aux

}
= 0. (3.107)

Applying this condition to all the auxiliary processes, results in a system of equations that can be

solved in order to obtain expressions for the counter-terms we want to fix. Usually, we would need as

many auxiliary processes as the counter-terms we want to obtain. However, in the specific case of the

processes we are studying, we only need one auxiliary process to fix both counter-terms δm2
22 and δλ8.

From the scalar trilinear couplings listed in appendix A.2, we see that there are two decay processes

with couplings that have the exact same dependence onm2
22 and λ8 as the coupling of our process. These

processes are

Hi → H+
DH

−
D , (3.108a)

Hi → ADAD. (3.108b)

The process in equation 3.108a should be avoided, since the vertex corrections included in the amplitude

one-loop correction will contain IR divergences due to diagrams with photons in the loop. Therefore, we

are left with the process Hi → ADAD as our auxiliary process. Applying the condition for the process-

dependent scheme in equation 3.107 to our auxiliary process and using the one-loop amplitude definition

in equation 3.93, we get the expression

M1-loop
Hi→ADAD

= MVC
Hi→ADAD

+MCT
Hi→ADAD

∣∣∣∣
δm2

22,δλ8=0

+Mδm2
22,δλ8

Hi→ADAD
= 0, (3.109)

where we split the counter-term contribution to the amplitude, into a term containing only the contribu-

tions due to the counter-terms δm2
22 and δλ8 in the term and a term containing the remaining counter-term

contributions. Since both the main process and the auxiliary process have the same dependence on the
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parametersm2
22 and λ8, the contribution to their corresponding one-loop amplitudes due to the counter-

terms δm2
22 and δλ8 should also be the same, leading to the relation

Mδm2
22,δλ8

Hi→HDHD
= Mδm2

22,δλ8
Hi→ADAD

. (3.110)

Using equation 3.110, we can solve equation 3.109 in order to obtain the solution

Mδm2
22,δλ8

Hi→HDHD
= −MVC

Hi→ADAD
−MCT

Hi→ADAD

∣∣∣∣
δm2

22,δλ8=0

. (3.111)

Using this result, we can finally write the complete one-loop amplitude correction for our main process

as

M1-loop
Hi→HDHD

= MVC
Hi→HDHD

+MCT
Hi→HDHD

∣∣∣∣
δm2

22,δλ8=0

−MVC
Hi→ADAD

−MCT
Hi→ADAD

∣∣∣∣
δm2

22,δλ8=0

.

(3.112)

Process-dependent schemes are usually accompanied by a physical constraint on the auxiliary process.

More commonly, it is required that the auxiliary process occurs strictly on-shell. This is equivalent to

saying that the auxiliary process must be physical. This requirement, constrains the mass of the auxiliary

dark particle AD, resulting in the condition

mAD
≤ mHi

2
. (3.113)

This condition, restricts the parameter space as the allowedmass range for the auxiliary particle is limited.

For the rest of this thesis, this approach will be referred as the OS process-dependent scheme.

An alternative approach, is to set the external momenta of the auxiliary process to zero. We refer to

this approach as the zero external momentum (ZEM) process-dependent scheme. This method has the

advantage of not constraining the mass of the auxiliary dark particle, allowing for a wider scan of the

parameter space.

Both the OS and the ZEM process-dependent schemes are represented in figure 3.8 in the form of

Feynman diagrams. The vertex corrections contained in the third term of equation 3.112, depends on

which approach we choose. This means that each scheme will produce different one-loop corrections

to the amplitude of the main process. In section 6.4, we compare how the different process-dependent

schemes affect the final numerical results.
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Figure 3.8: Process-dependent schemes. Feynamn diagram representation of the two process-

dependent schemes. In the (a) OS process-dependent scheme the auxiliary process happens when the

external momenta obey p2i = m2
i . In the (b) ZEM process-dependent scheme, all external momenta are

set to zero.
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Observables at Next-to-Leading Order

In order to make theoretical predictions that can be tested in an experimental setting, we need to link

the results of the quantum mechanical quantities to observable quantities. In this project we are specially

interested in calculating the NLO corrections to twomeasurable quantities with respect to the processes in

equation 2.26: the partial decay width and the branching ratio. The calculation of each of these quantities

at NLO is discussed in the next sections.

4.1 Partial Decay Width

When a particle is unstable, it may decay into different sets of other particles. We refer to each of these

decays as decay channels or decay modes. Often, the different decay modes of a particle differ in terms of

their dependence on conserved quantities, coupling constants or other parameters of the model. For this

reason, each decay mode has an associated probability of occurring, that may differ from the remaining

modes. One way of measuring the probability associated with a certain decay is through the decay’s

partial decay width. The partial decay width of a process is related to its probability amplitude by Fermi’s

Golden Rule [33]. Explicitly, if we assume a decay from an initial state i of mass mi to a set of n final

states {f1, f2, ..., fn} of masses {m1,m2, ...,mn}, the differential partial decay width of the process is

given by

dΓi→f1f2...fn =
1

2mi

(
n∏
k=1

d3~pk
(2π)32Ek

)
(2π)4δ(4)(pi −

n∑
k=1

pk)S
∑
d.o.f

∣∣Mi→f1f2...fn

∣∣2 , (4.1)

where pi is the momentum of the initial state, Ek and pk are the energy and momentum of the k-th final

state, δ(4) is the Dirac delta function, S is a product of statistical factors 1/m! for each group ofm identical

final states andMi→f1f2...fn
is the amplitude for the decay as defined in section 3.7. Note that in equation

4.1 the absolute square of the amplitude is being summed over all possible degrees of freedom allowed by

the initial and final states, e.g. spins, polarizations, etc. In the processes that we wish to study, all external

39



Chapter 4 Observables at NLO

particles are scalars, meaning that for all initial and final states, there is only one degree of freedom. This

allows us to simply drop the sum over the degrees of freedom in our calculations. Assuming that the

probability amplitude of the process is independent of the final momenta, we can integrate equation 4.1

for a two-body decay over all final momenta, in order to obtain the general expression for the partial

decay width as

Γi→f1f2 =
S

16πm3
i

λ(m2
i ,m

2
f1 ,m

2
f2)
∣∣Mi→f1f2

∣∣2 , (4.2)

where the function λ is the Källén triangle function defined as

λ(x, y, z) =
√
x2 + y2 + z2 − 2xy − 2xz − 2yz. (4.3)

We have seen that the partial decay width of a process is proportional to the absolute square of its

probability amplitude. Therefore, when we take into consideration the one-loop corrections to the am-

plitude of the process, this also affects its partial decay width. By substituting the absolute square of

the amplitude in equation 4.2 by the NLO expansion in equation 3.105, we obtain the expression for the

partial decay width at NLO as

ΓNLO
i→f1f2

= S
λ(m2

i ,m
2
f1
,m2

f2
)

16πm3
i

(∣∣MLO
i→f1f2

∣∣2 + 2Re
{(

MLO
i→f1f2

)∗M1-loop
i→f1f2

})
= ΓLO

i→f1f2
+ S

λ(m2
i ,m

2
f1
,m2

f2
)

8πm3
i

Re
{(

MLO
i→f1f2

)∗M1-loop
i→f1f2

}
,

(4.4)

where the second term of the last step represents the one-loop correction to the LO partial decay width.

Another important quantity that will be useful in our analysis, is the relative size of the one-loop

correction to the partial decay width. This quantity helps us gauge how large the one-loop corrections

are with respect to the LO partial decay width and is defined as

ΓNLO
i→f1f2

− ΓLO
i→f1f2

ΓLO
i→f1f2

. (4.5)

The sum of the partial decay widths of all the decay modes of a certain particle, is called the total

decay width of the particle [33]. The total decay width of a particle i, is defined as

Γi =
∑
f

Γi→f , (4.6)

where f represents the possible decay modes of the particle i. For any simple extension of the SM, like

the N2HDM, the total decay width of a particle can be separated into a part containing the partial decay

widths of decays to SM particles and a part containing the partial decay widths of the decays to the new

particles introduced by the model, such that

Γi = Γi→SM + Γi→New. (4.7)
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It is clear that the one-loop corrections to the partial decay widths also affect the total decay width.

The total decay width at NLO, is obtained by replacing the partial decay widths in equation 4.8 by the

corresponding NLO widths. Therefore, we can write the total decay width as

ΓNLO
i = ΓNLO

i→SM + ΓNLO
i→New. (4.8)

Now that we have defined the partial and total decay widths of a decay process, we have all the tools

necessary to calculate the second measurable quantity of interest to us.

4.2 Branching Ratio

The branching ratio, also known as the branching fraction, represents the relative frequency of a particular

decay mode [33]. In other words, the branching ratio represents what fraction from a set of n identical

particles, will decay through that specific decay mode. Like the name suggests, it is the ratio between the

partial decay width of the decay mode and the total decay width of the decaying particle. For a particle i

decaying to a set of particles {f1, f2}, the branching ratio of the decay is given by

BR(i→ f1f2) =
Γi→f1f2

Γi
. (4.9)

We can isolate the decay process in question in the total decay width, obtaining

BR(i→ f1f2) =
Γi→f1f2

Γi→other + Γi→f1f2

, (4.10)

where the subscript ’other’ denotes that this term contains the sum of the partial decay widths of all the

remaining decay modes of i. This decomposition is useful in showing how we include the one-loop

corrections in the branching ratio. If we use the one-loop corrected partial decay widths in equation 4.10,

we obtain the expression for the NLO branching ratio as

BRNLO(i→ f1f2) =
ΓNLO
i→f1f2

ΓNLO
i→other + ΓNLO

i→f1f2

. (4.11)

In a similar fashion to the partial decay widths, we can analyse how large the one-loop corrections

to the branching ratio are, by calculating their relative size with respect to the LO branching ratio. This

quantity is defined as

BRNLO(i→ f1f2)−BRLO(i→ f1f2)

BRLO(i→ f1f2)
. (4.12)

As we will see in section 6.4, the branching ratios of the Higgs boson decays to the dark matter

candidates are our main tool to study the parameter space of the DDP of the N2HDM.
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Chapter 5

The Higgs Decays to Dark Matter

The main goal of this thesis is to study, at NLO, the possible decays of the Higgs boson to the dark matter

candidates in the context of the DDP of the N2HDM. Like we mentioned in subsection 2.3.2, both mass

eigenstatesH1 andH2 can be identified with the SM Higgs boson. This results in two separate scenarios

for the Higgs boson decays to the dark matter candidates, due to different couplings between the two

mass eigenstates and the dark particles as well as the mass ordering convention introduced in equation

2.22. In the next subsections, we discuss each scenario with more detail. From equation 2.27, we see that

the couplings for the two dark matter candidates differ only in mass of the dark particle. Therefore, we

can limit the following discussion to the case in which HD is considered the dark matter particle.

5.1 Light Higgs Decay

The first scenario we are considering, is the one in which the SM Higgs boson is identified with the

CP-even neutral scalarH1. Due to the mass ordering condition in equation 2.22, this means that the SM

Higgs is the lightest of the two visible CP-even scalar particles in the model. For this reason, we refer to

this scenario as the Light Higgs scenario. In this case, the explicit coupling to the dark matter candidate

HD is written, using the appropriate elements from the rotation matrix R in equation 2.27a, as

λH1HDHD
=

2cα
v

(
λ8v

2
S

2
+m2

22 −m2
HD

)
− sαλ8vS . (5.1)

Like we discussed in section 3.7, to calculate the one-loop corrections to the amplitude of the process,

we must calculate the vertex correction contributions and the counter-term contributions. For the vertex

contributions, we must sum the amplitudes of all 1PI Feynman diagrams with H1 in the initial state and

a HD pair in the final state. All included diagram classes are shown, in figure 5.1.

With regards to the calculation of the counter-term contributions, we refer to the expression in equa-

tion 3.94. For the parameter contributions to the counter-term amplitude, we use the expression in equa-
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Figure 5.1: Vertex corrections for the Light Higgs scenario. Vertex corrections to the amplitude of

the process H1 → HDHD, in the Light Higgs scenario. Notice the last four classes of diagrams are the

additional vertex diagrams that result from the ATS.

tion 3.95, obtaining the expression

δλPH1HDHD
=

2cα
v2

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
∆v − 2cα

v
δm2

HD

+

(
2sα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
− cαλ8vS

)
δα

+
2cα
v
δm2

22 +
(cα
v
v2S − sαvS

)
δλ8 +

(
2cα
v
λ8vS − sαλ8

)
∆vS .

(5.2)

For the WFRC contribution, we use the expression in equation 3.96. Taking into consideration the fact
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that H1 and H2 mix at one-loop, the WFRC contribution to the vertex has the form

δλWF
H1HDHD

= λH1HDHD

(
δZH1H1

2
+ δZHD

)
+ λH2HDHD

δZH2H1

2

=

(
2cα
v

(
λ8v

2
S

2
+m2

22 −m2
HD

)
− sαλ8vS

)(
δZH1H1

2
+ δZHD

)
−
(
2sα
v

(
λ8v

2
S

2
+m2

22 −m2
HD

)
+ cαλ8vS

)
δZH2H1

2
.

(5.3)

Using equations 5.2 and 5.3, we can write the full counter-term amplitude contribution as

MCT
H1→HDHD

=
2cα
v2

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
∆v − 2cα

v
δm2

HD

+
2cα
v
δm2

22 +
(cα
v
v2S − sαvS

)
δλ8 +

(
2cα
v
λ8vS − sαλ8

)
∆vS

+

(
2sα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
− cαλ8vS

)(
δα+

δZH2H1

2

)
−
(
2cα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
+ sαλ8vS

)(
δZH1H1

2
+ δZHD

)
.

(5.4)

With the one-loop corrections to the amplitude completely defined, we can now obtain the partial

decay width of the process. As discussed in section 4.1, the LO expression for a decay process is given

by the expression in equation 4.2. Therefore, for the process we are considering, the LO partial decay

width is written as

ΓLO
H1→HDHD

= S
λ(m2

H1
,m2

HD
,m2

HD
)

16πm3
H1

∣∣MLO
H1→HDHD

∣∣2
=

√
m2
H1

− 4m2
HD

32πm2
H1

(
2cα
v

(
λ8v

2
S

2
+m2

22 −m2
HD

)
− sαλ8vS

)2

,

(5.5)

where we used the statistical factor S = 1/2! since the decay contains two identical particles in the final

state. The expression for the partial decay width at NLO, is obtained through the definition in equation

4.4. Using the expressions previously derived in this section, we write the NLO partial decay width of

the decay as

ΓNLO
H1→HDHD

= ΓLO
H1→HDHD

+

√
m2
H1

− 4m2
HD

16πm2
H1

Re
{(

MLO
H1→HDHD

)∗ (MVC
H1→HDHD

+MCT
H1→HDHD

)}
.

(5.6)

Assuming all the counter-terms are fixed, the expression in equation 5.6 should be positive and finite.

The form of the NLO partial decay width of the process is independent of the renormalization schemes

used to fix the counter-terms.
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Like we mentioned before, while we only present the results for the case in which HD is the dark

matter particle, the same procedure can be applied in the case in which AD is the dark matter particle,

yielding similar results.

5.2 Heavy Higgs Decay

The second scenario that we will discuss, is the one in which the SM Higgs boson is identified with the

CP-even neutral scalar H2. Using once again the mass ordering condition in equation 2.22, we see that

the SM Higgs becomes the heaviest of the two visible CP-even scalar particles. For this reason, we refer

to this case as the Heavy Higgs scenario. One of the main differences between the Heavy Higgs and the

Light Higgs scenarios, is that in the Heavy Higgs scenario, the mass ordering leads to an upper bound

on the other visible CP-even particle H1. This constrains the parameters space since mH1 ≤ 125 GeV.

Also, in the Heavy Higgs scenario, an additional contribution to the total decay width of H2 must be

considered due to the process H2 → H1H1 being kinematically allowed.

In this scenario, the explicit coupling to the dark matter candidate HD is

λH2HDHD
= −2sα

v

(
λ8v

2
S

2
+m2

22 −m2
HD

)
− cαλ8vS . (5.7)

Once again, we refer to the discussion in section 3.7 for the calculation of the one-loop corrections to the

amplitude. The vertex correction contributions are given by the sum of the amplitudes of all 1PI Feynman

diagrams withH2 in the initial state and aHD pair in the final state. The considered diagram classes are

shown in figure 5.2, where we can see that they are essentially the same as in the Light Higgs scenario.

In a similar fashion to the Light Higgs scenario, we use equation 3.94 to decompose the counter-term

contribution to the amplitude, into parameter counter-term contributions and WFRC contributions. For

the parameter counter-term contributions, we again use equation 3.95 to obtain the expression

δλPH2HDHD
=

2sα
v2

(
λ8v

2
S

2
+m2

22 −m2
HD

)
∆v +

2sα
v
δm2

HD

+

(
2cα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
+ sαλ8vS

)
δα

− 2sα
v
δm2

22 −
(sα
v
v2S + cαvS

)
δλ8 −

(
2sα
v
λ8vS + cαλ8

)
∆vS .

(5.8)

For the WFRC contribution, we refer once again to equation 3.96. Similarly to the Light Higgs scenario,

we must take into account the mixing nature of H2. Therefore, we obtain the expression

δλWF
H2HDHD

= λH2HDHD

(
δZH2H2

2
+ δZHD

)
+ λH1HDHD

δZH1H2

2

=

(
2sα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
− cαλ8vS

)(
δZH2H2

2
+ δZHD

)
−
(
2cα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
+ sαλ8vS

)
δZH1H2

2
.

(5.9)
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Figure 5.2: Vertex corrections for the Heavy Higgs scenario. Vertex corrections to the amplitude of

the processH2 → HDHD, in the Heavy Higgs scenario. Notice the last four classes of diagrams are the

additional vertex diagrams that result from the ATS.

Using equations 5.8 and 5.9, we can write the full counter-term amplitude contribution as

MCT
H2→HDHD

=
2sα
v2

(
λ8v

2
S

2
+m2

22 −m2
HD

)
∆v +

2sα
v
δm2

HD

− 2sα
v
δm2

22 −
(sα
v
v2S + cαvS

)
δλ8 −

(
2sα
v
λ8vS + cαλ8

)
∆vS

+

(
2cα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
+ sαλ8vS

)(
δα− δZH2H1

2

)
−
(
2sα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
− cαλ8vS

)(
δZH1H1

2
+ δZHD

)
,

(5.10)
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The partial decay width of the process at LO is written as

ΓLO
H2→HDHD

= S
λ(m2

H2
,m2

HD
,m2

HD
)

16πm3
H2

∣∣MLO
H2→HDHD

∣∣2
=

√
m2
H2

− 4m2
HD

32πm2
H2

(
2sα
v

(
m2
HD

−m2
22 −

λ8v
2
S

2

)
− cαλ8vS

)2

,

(5.11)

where again we used the statistical factor S = 1/2!. Using equation 4.4 along with the expressions

already calculated in this section, we get the expression for the partial decay width of the decay at NLO

ΓNLO
H2→HDHD

= ΓLO
H2→HDHD

+

√
m2
H2

− 4m2
HD

16πm2
H2

Re
{(

MLO
H2→HDHD

)∗ (MVC
H2→HDHD

+MCT
H2→HDHD

)}
.

(5.12)

Similarly to the Light Higgs scenario, the same procedure can be applied in the case in which AD is

the dark matter particle, yielding similar results.

5.3 Total Decay Width and Branching Ratio Calculation

Like we discussed in the end of section 4.1, the total decay width of a particle is defined as the sum of

the partial decay widths of all the decay modes of that particle. This means that, if we want to calculate

the total decay widths for H1 and H2 at NLO, we must consider the one-loop corrections to all the

decay modes of these particles. However, in the context of the two scenarios that were described in the

previous sections, we use an approximation in which we only consider the one-loop corrections to the

Higgs boson decay into dark matter particles. Using the decomposition in equation 4.8, we can express

this approximation to the total decay width as

Γ
NLO

Hi
= ΓLO

Hi→SM + ΓLO
Hi→ADAD

+ ΓLO

Hi→H+
DH

−
D

+ δi2Γ
LO
H2→H1H1

+ ΓNLO
Hi→HDHD

, (5.13)

where the bar indicates an approximated quantity and δ is the Kronecker delta function. Note that in the

process-dependent renormalization schemes described in subsection 3.7.2 the second term of equation

5.13 is not an approximation due to the renormalization condition in equation 3.103. This is only a good

approximation if the NLO corrections to the partial decay widths of the remaining decay modes are small

enough to be ignored. To check the validity of this approximation, we start by noting that in the Light

Higgs and Heavy Higgs scenarios we are considering the limits cα → 1 and sα → 1 respectively. In these

limits the partial decay width of H1 or H2 to SM particles approaches the total decay width of the SM

Higgs boson. This means that, in these specific scenarios, we may use the SM predictions in order to see

how large the NLO corrections to the partial decay widths are. Using the Fortran code HDECAY [34, 35],

we get numerical values for the SM total decay width of the Higgs boson at both LO and NLO. For the
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LO total decay width we get ΓLO
h125→SM = 4.068 MeV while at NLO we get ΓNLO

h125→SM = 4.096 MeV,

representing a correction of around 0.7%. We can see that the NLO corrections to the decay widths of

the Higgs boson in the SM are very small. Within the DDP, we must take into consideration additional

vertex correction diagrams at one-loop that contain loops with particles from the dark sector. This is

the case for the decays Hi → ZZ and Hi → WW due to the coupling of the W and Z bosons to the

dark sector of the DDP. These corrections should be of the same order as the corrections to the vertices

Hi → HDHD that we have been studying. These new vertices that modify the decay widths of the Higgs

decays to Z andW bosons are already very constrained at tree-level by experimental measurements of the

couplings of the Higgs boson. Also, most of the decays contributing to the Higgs boson total decay width

remain unaffected by these corrections. Take for example the case of the Higgs’ decays to fermions which

represent over 65% of the contributions to the Higgs boson total decay width. Since the fermions do not

couple to the dark sector of the DDP, the one-loop corrections to these decays should be very close to the

SM case. With respect to the NLO corrections to the partial decay widths of the decays of H1 and H2

into particles from the dark sector, we can again argue that these decays are very limited by experiment

at tree-level and their NLO corrections should be low. Taking all of these points into consideration it is

fair to assume that the corrections to the Higgs total decay width will not be too large, meaning that our

approximation is reasonable.

Finally, using the approximated total decay width, we define an approximated branching ratio for the

decays of H1 and H2 into DM particles. For that, we define the quantity RHi as the ratio between the

actual NLO total decay width and our approximation, written as

RHi =
ΓNLO
Hi

Γ
NLO

Hi

=
ΓNLO
Hi

ΓLO
Hi

− ΓLO
Hi→HDHD

+ ΓNLO
Hi→HDHD

. (5.14)

The approximated branching ratio is then expressed as a function of the exact branching ratio as

BR
NLO

(Hi → HDHD) = RHiBR
NLO(Hi → HDHD)

=
ΓNLO
Hi→HDHD

ΓLO
Hi

− ΓLO
Hi→HDHD

+ ΓNLO
Hi→HDHD

.
(5.15)
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Chapter 6

Numerical Analysis

In the previous chapters we discussed the general construction of the N2HDM and its DDP, described

the process of renormalization, defined the form of the observable quantities at NLO and established

the scenarios we wish to study. In this chapter, we put everything together and discuss some numerical

results. In the next sections, we present the software and inputs used to obtain these results. Then, we

discuss how the different renormalization schemes discussed in section 3.7 affect the NLO partial decay

width of our processes. Finally, we perform a scan of the allowed parameter space, for both scenarios

described in chapter 5, and discuss the results for the branching ratios of the generated points.

6.1 Software

Most of the calculations in this work were done using high energy physics’ codes. For the calculation of

the one-loop corrections, several Mathematica packages were used. The implementation of the model

was done using FeynRules 2.3.35 [36–38]. This package, takes the implementation of a model and

outputs all its Feynman rules. FeynArts 3.11 [39, 40] is a tool that generates Feynman diagrams and

their corresponding amplitudes. Using the output from FeynRules with FeynArts , we obtained all

the one-loop amplitudes needed for our calculations. These amplitudes were subjected to a series of

simplifications using FeynCalc 9.3.1 [41, 42]. FeynCalc is a package that handles several common

algebraic calculations within QFT. Some of these calculations are the contraction of Lorentz indices,

the calculation of color factors, tensor and Dirac algebra in D dimensions and the reduction of one-loop

integrals to Passarino-Veltman functions.

Other codes were also used to obtain the numerical values that we will be discussing in the following

sections. The Mathematica package LoopTools 2.14 [43, 44] was used to obtain the numerical values

for the finite parts of the Passarino-Veltman functions contained in the one-loop amplitudes. The scan of

the parameter space was performed using the C++ code ScannerS [45, 46]. This code generates param-

eter space points, taking into consideration the most relevant theoretical and experimental constraints.

Regarding the theoretical constraints [7, 8], ScannerS tests for perturbative unitarity, boundedness from

51



Chapter 6 Numerical Analysis

below and vacuum stability. As for the experimental constraints, ScannerS takes into consideration

electroweak precision data, Higgs couplings measurements and scalars exclusion limits and dark matter

constraints. ScannerS integrates these constraints through an interface with other codes. These include

HiggsBound-5 [47] for the Higgs searches results, HiggsSignals-2 [48] for the constraints of the SM-

like Higgs boson measurements and MicroOMEGAs-5.2.4 [49–51] for the dark matter relic abundance

and the nucleon-DM cross section for direct detection. The dark matter relic abundance has to be below

the measurement by the Planck experiment [52] and the nucleon-DM cross section has to be within the

bounds imposed by the XENON1T [53] experiment. Finally, we used the Fortran code N2HDECAY [54],

which is an extension for the N2HDM of the original HDECAY [34, 35] code, to obtain tree-level total de-

cay widths and branching ratios for the CP-even mass eigenstates H1 and H2, including state-of-the-art

QCD corrections.

6.2 General Inputs

In order to calculate the numerical values for our observables, we must define the set of values to use

as inputs for the parameters of the model. In this section, we present only the values for the parameters

that are constant throughout all calculations. These are essentially the SM parameters that include the

fermion and gauge boson masses, the CKM matrix elements and the EW coupling constant. The values

for the scalar parameters of the DDP, vary depending on which analysis is being performed. Therefore,

they will be defined in each of the following sections, as needed.

For the fermion masses, the chosen values are

mu = 2.2× 10−3 GeV, mc = 1.43141297 GeV, mt = 172.5 GeV, (6.1)

md = 4.7× 10−3 GeV, ms = 0.095 GeV, mb = 4.84141297 GeV, (6.2)

me = 0.510998910× 10−3 GeV, mµ = 0.1056583715 GeV, mτ = 1.77682 GeV. (6.3)

Regarding the masses of the W and Z bosons, we used the following values

mW = 80.35797 GeV, mZ = 91.15348 GeV. (6.4)

As for the CKM matrix, it is considered to be real in all calculations. Its elements are set as

VCKM =

0.97427 0.22534 0.00351

0.2252 0.97344 0.0412

0.00867 0.0404 0.9991

 . (6.5)

Like we discussed in subsection 3.5.2, we use the Gµ scheme for the renormalization of the electric

charge. This means that the value of the EWcoupling constant depends on the value of the Fermi constant.

This value is very precisely measured and is currently

GF = 1.1663787× 10−5 GeV−2. (6.6)
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In subsection 3.5.2 we also mentioned that, in the Gµ scheme, a large part of the corrections is already

included at LO. For that reason, the LO results presented in the following discussions are not pure tree-

level results.

6.3 Effect of the Renormalization Scheme on the Higgs-to-invisible Decay

Rate corrections.

In subsections 3.7.1 and 3.7.2 we discussed three different renormalization schemes that were used to

fix the expressions for the counter-terms δm2
22 and δλ8. We now study the effect that each of these

renormalization schemes has on the one-loop corrections to the decay width of the Higgs boson to the

dark matter candidates. For this analysis, we focus only on how the one-loop corrections behave with

respect to some parameters of the model for each of the different renormalization schemes, ignoring

theoretical and experimental constraints.

The DDP can be compared to the IDM [9–12] due to the similar vacuum configuration of the doublets.

In fact, we can obtain the IDM as a limit of the DDP by setting the parameters λ8, α and vS to

λ8 = 0, α = 0, vS → ∞, (6.7)

in this specific order. This is equivalent to settingm2
S , λ6, λ7 and λ8 to zero in the potential in equation

2.4. The resulting potential is the IDM potential. By considering this limit, we can use the existing IDM

bounds [55] to limit the range of some of our parameters. We will be limiting this discussion to the Light

Higgs scenario, as it is the only scenario with a non-vanishing coupling in the IDM limit.

We have to fix the scalar inputs used for the following discussion. Since we are in the Light Higgs

scenario, the mass of H1 is the same as the mass of the SM Higgs boson. Therefore, the masses of the

two visible Higgs bosons are fixed as

mH1 = 125.09 GeV, mH2 = 500 GeV. (6.8)

As for the dark sector, we assume mAD
> mHD

, making HD the dark matter candidate. We fix the

masses of the dark particlesmHD
andmH±

D
and dark coupling λ2 as

mHD
= 60 GeV, mH±

D
= 100 GeV or 500 GeV, λ2 = 0.12, (6.9)

while the the mass parametersmAD
andm2

22 are either fixed or scanned over in each analysis. In the the

MS scheme, the one-loop corrections to the amplitude of the process depend on the energy scale µ. For

this analysis, the energy scale has been chosen as µ = mH1 .

We start by studying how the partial decay width behaves as a function of the coupling of the process.

For this analysis, we setmAD
as

mAD
= 62 GeV. (6.10)
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Figure 6.1: Relation between partial decay width and tree-level coupling. Partial decay width

as a function of the tree level coupling in the IDM limit of the DDP, in the (a) MS scheme and

in the (b) process-dependent schemes. The NLO partial decay widths are evaluated at mH±
D

=

100 GeV and 500 GeV.

As form2
22, we choose a range that respects the current upper bounds on the IDM dark coupling |λL| <

0.005 [55]. This limit, corresponds to the current bound on direct detection of dark matter from the

XENON1T experiment [53]. This IDM dark coupling, relates to the coupling of our process in the IDM

limit of the DDP as

λL =
λIDMH1HDHD

2v
=
m2

22 −m2
HD

v2
. (6.11)

In figure 6.1, we present the correlation between the tree-level coupling in the IDM limit and the partial

decay widths of the process H1 → HDHD, at LO and NLO, for different values of the mass of the dark

charged scalar. We can see that for both the MS shceme on the left and the process dependent schemes

on the right, the partial decay width behaves parabolically at both LO and NLO. This result should be

expected, as from the definitions in equations 4.2 and 4.4 we see that the partial decay width depends on

the squared amplitude of the process which, in turn, depends on the coupling. An interesting result, is the

strong dependence of the one-loop corrections on the mass of the charged scalar in the MS scheme. The

corrections in this scheme, can become very large for large values of mH±
D
. This is not the case for the

process-dependent schemes. From the plot on the right, we can see that the corrections are much more

reasonable in the process-dependent schemes, even for large values ofmH±
D
.
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Figure 6.2: Size of the one-loop corrections and scalar mass difference. Relative size of the one-loop

corrections as a function of the difference between the masses of HD and AD, in all renormalization

schemes. In each scheme, the corrections are evaluated for mH±
D

= 100 GeV and 500 GeV with the

exception of the MS scheme which is only presented atmH±
D
= 100 GeV.

Next, we study how the size of one-loop corrections to the partial decay width evolve with respect

to the difference between the masses of the neutral dark scalars HD and AD. The relative size of the

correction is defined as in equation 4.5. For this analysis, we setmHD
= 50GeV andm2

22 = (42 GeV)2.

We also define the difference between the masses of the neutral dark scalars as

∆m = mAD
−mHD

. (6.12)

Due to the limit imposed on mAD
by the OS process-dependent scheme kinematic constraints, we set

the upper limit∆m / 12 GeV. In figure 6.2, we present the correlation between the relative corrections

to the partial decay width and the difference between the masses of the neutral dark scalars, in each

of the renormalization schemes and for different values of mH±
D
. We notice that the corrections in the

MS scheme remain fairly constant with respect to the mass difference, showing that in this scheme the

corrections are independent of ∆m. This is not true in the case of the process-dependent schemes. We

see that for both the OS and ZEM process-dependent schemes, the corrections are larger for higher values

of the mass difference, ranging between 0% and 4% for mH±
D

= 100 GeV. For larger values of mH±
D

these corrections become larger, ranging between 4% and 40% for the OS process-dependent scheme and

between 24% and 57% for the ZEM process-dependent scheme, formH±
D
= 500 GeV. We notice again

the dependence of all renormalization schemes on the mass of the charged Higgs. This is specially true
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(a) (b)

Figure 6.3: Parameter space projections. Projections of the parameter space of the generated points

on the (a) (m2
22, λ8) plane and on the (b) (mother, sinα) plane for both the Light Higgs scenario (purple)

and the Heavy Higgs scenario (blue). The mass mother represents the mass of the non-SM Higgs boson

field in each scenario.

in the MS scheme, as the size of the corrections go from 19% formH±
D
= 100 GeV to well above 100%

formH±
D
= 500 GeV.

6.4 Scan Analysis of the Parameter Space.

In chapter 4, we presented the definition of the partial decay width and the branching ratio, as well as

their form at both LO and NLO. Our main goal is to scan the allowed parameter space of the DDP with

respect to the one-loop corrected partial decay width for the SM-like Higgs decays to the dark matter

candidates. We want to calculate the NLO branching ratio as defined in equation 5.15, and compare it

with the current limit on the SM Higgs-to-invisible decay with the objective of trying to constrain the

parameter space of the DDP. In the following discussion, we discuss the scan results for both observable

quantities and how the different renormalization schemes discussed in section 3.7 affect these results.

In order to perform the scan of the parameter space, we must define ranges for the parameters. Like

we discussed in chapter 5, in the Light Higgs scenario, we identify H1 as being the SM Higgs boson.
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Therefore, we choose the following values for the scan

mH1 = 125.09 GeV,

130 GeV < mH2 < 1500 GeV.
(6.13)

In the Heavy Higgs scenario, we identify H2 with the SM Higgs boson instead. Therefore, the chosen

values are
62 GeV < mH1 < 120 GeV,

mH2 = 125.09 GeV.
(6.14)

For both scenarios, the following ranges are used for the values of the remaining scalar parameters

1 GeV < mHD
< 62 GeV, 1 GeV < mAD

< 1400 GeV, 65 GeV < mH±
D
< 1400 GeV,

10−3 GeV2 < m2
22 < 106 GeV2, 0 < λ2 < 4π, −4π < λ8 < 4π,

1 GeV < vS < 5000 GeV, −π
2
< α <

π

2
.

(6.15)

Using ScannerS with these input ranges, we generate parameter points for each scenario, applying all

theoretical and experimental constraints. In figure 6.3 we show the parameter space projected onto two

planes: on the left, we have the projection onto the (m2
22, λ8) plane and on the right we have the projection

onto the (mother, sinα) where mother represents the mass of H2 in the Light Higgs scenario or the mass

ofH1 in the Heavy Higgs scenario. In the first projection, we can see that most of the allowed values for

the coupling λ8 are very close to zero in the Light Higgs scenario, while on the Heavy Higgs scenario,

they are more frequent for higher values of m2
22 and are mostly negative. In the second projection, we

can see that sinα is either close to zero or close to ±1, depending on the scenario. This results from the

constraint that in each scenario, the visible CP-even scalar identified as the SM Higgs boson must have a

very SM-like behaviour. With respect tomother, it is clear that, as discussed in chapter 5, the Light Higgs

scenario contains a much larger parameter space in comparison with the Heavy Higgs scenario.

We now discuss how the NLO partial decay widths for each scenario compare across the different

renormalization schemes for the dark parameters m2
22 and λ8. In figure 6.4, we present the correlation

plots between the NLO and LO partial decay widths for the Higgs boson decays to the dark matter can-

didate HD, in the MS scheme and in the OS process dependent scheme. Since we are considering the

field HD as our dark matter particle, we choose only points wheremAD
> mHD

. Also, due to the mass

constraints discussed in subsection 3.7.2, we only consider points wheremAD
≤ 125/2 GeV for the OS

process dependent scheme. In both scenarios, we notice that the values for the LO partial decay widths

have a boundary at around 4 × 10−4 GeV. This is the result of experimental constraints on the Higgs

boson couplings to SM particles. These measurements are done with very high precision and limit the

allowed values for the partial decay widths of the Higgs boson decays to new particles. For the NLO

partial decay widths we can clearly see that the MS scheme and the OS process dependent scheme have

very different behaviours. For the MS scheme, we see that for both scenarios, most of the NLO partial

decay widths are several orders of magnitude larger than the corresponding widths at LO, meaning that
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(a) (b)

Figure 6.4: Partial decay width in the MS and OS process-dependent schemes. Correlation between

the NLO and LO partial decay widths for the (a) Light Higgs scenario and the (b) Heavy Higgs scenario,

in the MS (red) and OS process dependent (blue) renormalization schemes.

the one-loop corrections to the partial decay width in the MS scheme are very large. For the OS process

dependent scheme, the values for the partial decay widths are much more well-behaved. This is due to

the relation between the one-loop corrections to the decay width and the difference between the masses

of HD and AD, discussed in section 6.3. For the allowed points in the OS process dependent scheme,

the mass differences between the DM candidates are very low with |∆m| . 6 GeV. This produces small

corrections to the partial decay widths, leading to the more consistent behaviour of this renormalization

scheme.

We can do the same analysis for the ZEM process dependent scheme. Like we discussed in subsec-

tion 3.7.2, the ZEM process dependent scheme does not have the mass constraints that the OS process

dependent scheme does. We can use this feature to create two different sets of parameter points: one for

mAD
≤ 125/2 GeV and another for 125/2 ≤ mAD

≤ 1500 GeV. In figure 6.5 we present once more

the correlation between the NLO and the LO partial decay widths but this time, for the ZEM process

dependent scheme. We can see that formAD
≤ 125/2 GeV (grey points) the partial decay widths have

a similar behavior to those in the OS process dependent scheme, meaning that the values for the partial

decay widths at NLO are reasonably close to the values at LO. However, it is also clear that the correc-

tions are larger in the ZEM process dependent scheme since there is a wider distribution of the points

with respect to the line ΓNLO = ΓLO. For the case with 125/2 ≤ mAD
≤ 1400 GeV, we see a com-
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(a) (b)

Figure 6.5: Partial decay width in the ZEM process-dependent scheme. Correlation between the

NLO and LO partial decay widths for the (a) Light Higgs scenario and the (b) Heavy Higgs scenario,

in the ZEM process dependent scheme. The parameter points are separated into two samples: one for

mAD
< 125/2 GeV (grey) and another for 125/2 GeV < mAD

< 1500 GeV (cyan).

pletely different behavior. The NLO partial decay widths reach very high values similar to what happens

in the MS scheme. This is again the result of the dependence of the amplitudes in the process dependent

schemes on the difference between the masses of the DM candidates HD and AD. In this sample, the

allowed mass differences are bigger, leading to much higher corrections on the observables.

To better understand how the different renormalization schemes influence the size of the corrections,

we present in figure 6.6, plots of the relative size of the correction to the partial decay width, as defined

in equation 4.5, as a function of the LO partial decay width in each renormalization scheme, for each

scenario. In order to compare the same set of parameter points in all renormalization schemes, we limit

our samples to points wheremAD
≤ 125/2GeVwhich is the limit for the OS process dependent scheme.

The black line indicates the 100% value for the corrections. We can see from the plots that the OS process

dependent scheme is the most stable of the three schemes, with the corrections staying mostly between

−100% and 100%. While some points in this scheme can reach values as high as 500%, these occur

only for small values of the LO partial decay width, meaning that the values for NLO partial decay width

of these points can still be within the experimental limit. For the ZEM process dependent scheme, we

can see that a considerable amount of points have corrections above 100%, making this renormalization

scheme much less stable than its OS counterpart. The MS renormalization scheme is the most unstable
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(a) (b)

Figure 6.6: NLO corrections to the partial decay width. One-loop corrections to the partial decay

width as a function of the LO partial decay width for the (a) Light Higgs scenario and the (b) Heavy

Higgs scenario in the MS (red), OS process-dependent (blue) and ZEM process-dependent (grey) renor-

malization schemes. The black line indicates the ±100% value for the corrections.

of the three, producing the highest corrections for all values of the LO partial decay widths.

Since the corrections in the MS scheme depend on the choice of the renormalization scale, this could

become a source of instability. For all previous calculations we chose µ = 125.09 GeV as the renormal-

ization scale. To understand if this value is adequate, we studied how the size of the correction to the

partial decay width of random parameter points depends on the renormalization scale. The points were

selected in two extremes: the ’low’ points were selected from all the points with ΓRel < 50% and the

’high’ points were selected from the points with ΓRel > 100000%, both at µ = 125.09 GeV. In figure

6.7, we show the results for two of the parameter points. The plot on the left shows the result for one

of the ’low’ points, while the plot on the right shows the result for one of the ’high’ points. We can see

that, in both cases, the smallest correction occurs at very different renormalization scales. For the ’low’

point, the minimum correction occurs in the vicinity of our chosen renormalization scale, becoming in-

creasingly large for higher renormalization scales. Similar behaviours were observed for the other ’low’

points. For the ’high’ point, the correction is very large at the original renormalization scale, decreasing

substantially until reaching its minimum value at around µ = 780 GeV. The general behaviour is the

same for the other ’high’ points. However, the renormalization scale at which each point reaches the

minimum correction varies greatly. Based on this analysis, we can conclude that the instability of the
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(a) (b)

Figure 6.7: Renormalization scale dependence in theMS scheme. Absolute size of the corrections as a

function of the renormalization scale for two random parameter points in the extremes of the corrections

size (at µ = 125.09 GeV). For the (a) parameter point with low correction, the minimum correction

occurs at a very different renormalization scale than that of the (b) high correction parameter point. While

the size of the correction was evaluated for the full range 0 GeV < µ < 1000 GeV, we only show the

curve in the interval of µ for which the NLO partial decay width is physical (ΓNLO > 0).

corrections in the MS scheme, are not the result of the choice of renormalization scale and that the MS

scheme is simply not a good renormalization scheme for this particular application.

Finally, we consider the approximated NLO branching ratios for the generated points. To do that, we

use equation 5.13 to calculate the approximated total decay width of H1 and H2 in the Light Higgs and

Heavy Higgs scenarios respectively. As mentioned in section 6.1, we use the N2HDECAY code to get the

LO total decay widths of H1 and H2. To obtain the approximated NLO total decay width, we perform

the calculation

Γ
NLO

Hi
= ΓN2HDECAY

Hi
− ΓLO

Hi→HDHD
+ ΓNLO

Hi→HDHD
, (6.16)

with i ∈ {1, 2} andwhereΓN2HDECAY
Hi

represents the LO total decaywidth forHi coming from N2HDECAY .
This calculation, replaces the LO partial decay width of the process Hi → HDHD coming from the

N2HDECAY with the calculated one-loop corrected partial decay width.

Within the context of perturbation theory, it is fair to assume that very high NLO corrections are

not realistic, meaning that we should obtain more trustworthy results by setting an upper limit on these

corrections. In figure 6.8, we present the correlation between the NLO and LO branching ratios for both
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(a) (b)

Figure 6.8: Branching ratios with small corrections. Correlation between the approximated branching

ratio at NLO and the LO branching ratio for the (a) Light Higgs scenario and the (b) HeavyHiggs scenario,

for parameter points with one-loop corrections to the partial decay width below 100%. The red, blue

and grey points, correspond to the MS, OS process-dependent and ZEM process-dependent schemes,

respectively.

scenarios in the three renormalization schemes. For all samples, we consider only points where the NLO

corrections are below 100%. We can see that all the surviving points still have NLO branching ratios

below the experimental limit. While no constraints on the parameter space can be obtained from these

results, we managed to establish a range of allowed values for the NLO corrections. As the measurements

on the Higgs couplings become increasingly precise and the limit on the branching ratio of the Higgs-

to-invisible decay improves, we are certain that these results will lead to constraints on the parameter

space.

With regards to the cases in which AD is the dark matter particle, we performed the exact same

analysis and obtained identical results in both the Light Higgs scenario and the Heavy Higgs scenario.
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Conclusions

In this work, we calculated the one-loop electroweak corrections to the amplitude of the SM Higgs boson

decay into dark matter candidates, in the context of the N2HDM in its DDP. We started by presenting

the scalar and Yukawa sectors of the N2HDM. The N2HDM is a simple extension of the SM with two

weak isospin doublets and a singlet. The scalar potential of the N2HDM contains two Z2 symmetries.

The N2HDM allows for the existence of different vacuum configurations or phases, one of which is the

DDP. In the DDP, one of the doublets and the singlet have non vanishing VEVs, conserving only one of

the Z2 symmetries. This results in two distinct sectors: a visible sector, composed of two neutral CP-

even Higgs bosons and a dark sector composed of a neutral CP-even, a neutral CP-odd and two charged

Higgs bosons. The DDP provides four distinct processes that could possibly represent the decay of the

SM Higgs boson into a pair of dark matter particles. These processes are represented in the N2HDM as

Hi → HDHD and Hi → ADAD with i ∈ {1, 2}.
In order to calculate the one-loop corrections to the amplitudes of the processes under study, we

performed the renormalization of the scalar and gauge sectors of the model. The masses and the field

wave-functions were renormalized using the OS renormalization scheme, in which the form of the par-

ticles’ propagators at higher orders is fixed as being equal to the tree-level propagator. Along with the

OS scheme, we also used the AT scheme for the renormalization of the VEVs. In the AT scheme, the

VEVs suffer a shift, resulting in additional self-energy and vertex correction diagrams that contribute

to the one-loop corrections of the amplitude of the processes. The electric charge was renormalized us-

ing the Gµ scheme, which deals with undesirable logarithmic corrections due to the low fermion masses

compared to the electroweak energy scale. The CP-even mixing angle was renormalized using the KOSY

scheme along with the pinch technique to ensure the gauge-independence of the corrected amplitudes.

The remaining parametersm2
22 and λ8, related to the dark couplings, were renormalized using three dis-

tinct schemes: the MS scheme and two process-dependent schemes. We concluded that only in the MS

scheme does the expression of the additional VEV counter-term∆vS needs to be fixed. In both process-

dependent schemes, we usedHi → ADAD as the auxiliary processes to renormalize the amplitude of the

processes Hi → HDHD. One of the process-dependent schemes is the OS process-dependent scheme,
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where the particles interacting in the auxiliary process are required to be on their mass shell. The second

process-dependent scheme is the ZEM process-dependent scheme, where the external particles of the

auxiliary process are required to have zero momentum.

With the renormalization of the processes completed, we discussed the observable quantities that we

wished to calculate. We started by defining the concepts of partial decay width and total decay width

of a process. For both observables, we derived their general expressions at both LO and NLO. We then

presented the concept of branching ratio and calculated its expressions at LO and NLO.

We presented two possible scenarios for the decay of the SMHiggs into a pair of dark matter particles,

within the DDP of the N2HDM. These scenarios result from the mass ordering between the two visible

CP-even Higgs bosons of the DDP. In the first scenario, the Light Higgs scenario, the SM Higgs is

identified with the lightest visible neutral CP-even field, H1. In the second scenario, the Heavy Higgs

scenario, the SM Higgs is identified with the heaviest of the two visible Higgs bosons of the DDP, H2.

For each scenario, we presented the explicit one-loop corrections to the amplitude of the process, as well

as the expressions for both the partial decay width and the branching ratio, at NLO. Several differences

were pointed out between both scenarios. These differences are the larger parameter space in the Heavy

Higgs scenario and the additional contribution to the total decay width due to the kinematically allowed

process H2 → H1H1, also in the Heavy Higgs scenario.

Two numerical studies were performed. In the first study, we observed how the different renormaliza-

tion schemes used to fix the counter-terms form2
22 and λ8, behave with respect to some parameters of the

model. First, we discussed the relation between the partial decay width and the dark coupling λH1HDHD

in the IDM limit. We observed that the MS scheme is very sensitive to the mass of the charged Higgs

boson, producing very high corrections to the partial decay width for higher masses of the charged Higgs

boson. We observed that this is not the case for the process-dependent schemes, in which the corrections

are much smaller even for higher charged Higgs mass. We also studied the relation between the size

of the corrections to the partial decay width and the difference between the masses of the neutral dark

scalars. We concluded that the corrections become larger in the process-dependent schemes as the mass

difference increases, while in the case of theMS scheme, the size of the corrections remain fairly constant

with respect to the mass difference.

The second numerical study that we performed, was a scan over the parameter space. We used

ScannerS to generate parameter points for each scenario, taking into consideration the most relevant

theoretical and experimental constraints. For each parameter point, we calculated the NLO branching

ratio for the decay of the Higgs into a pair of dark matter particles, in the MS scheme and both process-

dependent schemes. We concluded that of the three renormalization schemes, the OS process-dependent

scheme is the most stable of the three, while the MS scheme is very unstable. We concluded that the

instability of the MS scheme cannot be explained by the choice of renormalization scale and that it is

simply not a good renormalization scheme in this particular case. We also concluded that the stability of

the process-dependent schemes is related to the upper limit of 10 GeV on the mass difference between

the neutral dark particles. Finally, we compared the results of the branching ratios with the current upper

64



Chapter 7 Conclusions

limit on the Higgs-to-invisible branching ratio, BR(h125 → invisible) < 0.11, excluding all points with

corrections to the partial decay width larger than 100%. We concluded that, if we require that the one-loop

corrections are not unphysically large, most of the NLO branching ratios from our sample, calculated on

each process-dependent scheme, are at or below the experimental limit. We also observed that, for lower

values of LO branching ratio, the NLO corrections become very large. This means that, as the branching

ratio becomes more constrained, the NLO corrections will become more unstable.

With some experiments being updated like the LHC run 3 and new experiments being developed, we

expect that in the next few years we will have access to increasingly precise measurements of the Higgs

couplings and Higgs-to-invisible decay. These measurements may very well be our only tool to probe the

dark sectors of many SM extensions, as the dark couplings of these models are only accessible through

processes involving dark matter particles. Even though we were not able to extract any constraints to the

parameter space of the N2HDM in its DDP, we can see that the presented results are already very close

to the current experimental limit. We are certain that as this limit improves, our work will prove very

usefull in limiting the parameter space of the DDP of the N2HDM.
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Appendix A

Dark Doublet Phase

In this appendix we present additional information, regarding the reparameterization and the cou-

plings of the Dark Doublet Phase of the N2HDM.

A.1 Reparametrization

In subsection 2.3.1, we described the process by which we rotate the system from the gauge basis to the

mass basis, and the associated reparameterization. Here, we shall explicitly derive the relations between

the gauge basis parameters and the mass basis parameters.

We start by expressing the mass parametersm2
11 andm

2
S as a function of the VEVs v and vS by using

the DDP stationary conditions in equation 2.15 such that

m2
11 = −1

2
(v21λ1 + v2Sλ7) (A.1a)

m2
S = −1

2
(v21λ7 + v2Sλ6) (A.1b)

From the diagonalization of the CP-even mass matrix, presented in equation 2.21, we get the following

conditions

m2
H1

= v2λ1 cosα2 + v2Sλ6 sinα2 + vvSλ7 sin 2α (A.2a)

m2
H2

= v2λ1 sinα2 + v2Sλ6 cosα2 − vvSλ7 sin 2α (A.2b)

0 = −v2λ1 cosα sinα+ v2Sλ6 cosα sinα+ vvSλ7 cos 2α (A.2c)

The dark sector fields are already mass eigenstates and their masses are given by

m2
HD

=
1

2
(2m2

22 + v2(λ3 + λ4 + λ5) + v2Sλ8) (A.3a)

m2
AD

=
1

2
(2m2

22 + v2(λ3 + λ4 − λ5) + v2Sλ8) (A.3b)

m2
H±

D
=

1

2
(2m2

22 + v2λ3 + v2Sλ8) (A.3c)
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Using the conditions from equations A.1, A.2 and A.3, we solve a system of equations that allows us

to write the gauge basis parameters as functions of the mass basis parameters. The resulting relations are

λ1 =
1

v2
(
m2
H1

cos2 α+m2
H2

sin2 α
)

(A.4a)

λ3 =
1

v2

(
2(m2

H±
D
−m2

22)− vSλ8

)
(A.4b)

λ4 =
1

v2

(
m2
HD

+m2
AD

− 2m2
H±

D

)
(A.4c)

λ5 =
1

v2
(
m2
HD

−m2
AD

)
(A.4d)

λ6 =
1

v2S

(
m2
H1

sin2 α+m2
H2

cos2 α
)

(A.4e)

λ7 =
1

vvS

(
m2
H1

−m2
H2

)
cosα sinα (A.4f)

Like we mentioned in subsection 2.3.1, the dark parameters m22, λ2 and λ8 cannot be expressed as a

functions of the physical parameters and are, therefore, included in the mass basis parameter set.

A.2 Scalar Trilinear Couplings

Here we present all scalar trilinear couplings for the DDP of the N2HDM. These trilinear couplings

λXiXjXk
are given by

λXiXjXk
=

∂

∂Xi

∂

∂Xj

∂

∂Xk
L (A.5)

whereXi/j/k represents any scalar field in the mass basis. The DDP contains the following scalar trilinear

couplings

λHiHiHi = −
3m2

Hi

vvS

(
vSR

3
i1 + vR3

i2

)
(A.6a)

λHiHjHj = −
2m2

Hi
+m2

Hj

vvS

(
vSRi1R

2
j1 + vRi2R

2
j2

)
(A.6b)

λHiHDHD
=
Ri1
v

(
λ8v

2
S + 2

(
m2

22 −m2
HD

))
−Ri2λ8vS (A.6c)

λHiADAD
=
Ri1
v

(
λ8v

2
S + 2

(
m2

22 −m2
AD

))
−Ri2λ8vS (A.6d)

λHiH
+
DH

−
D
=
Ri1
v

(
λ8v

2
S + 2

(
m2

22 −m2
H±

D

))
−Ri2λ8vS (A.6e)

where i, j ∈ {1, 2}, i 6= j and R is the rotation matrix defined in equation 2.20. We can see that

dark particles always appear in pairs in these couplings. This is due to a conserved ”darkness” quantum

number that results from the unbroken Z(1)
2 symmetry in equation 2.3a.
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A.3 Scalar Quadrilinear Couplings

Here we present all scalar quadrilinear couplings for the DDP of the N2HDM. These quadrilinear cou-

plings λXiXjXkXl
are given by

λXiXjXkXl
=

∂

∂Xi

∂

∂Xj

∂

∂Xk

∂

∂Xl
L (A.7)

where Xi/j/k/l represents any scalar field in the mass basis. The DDP contains the following scalar

quadrilinear couplings

λHiHiHDHD
=
R2
i1

v2
(
λ8v

2
S + 2

(
m2

22 −m2
HD

))
−R2

i2λ8 (A.8a)

λHiHiADAD
=
R2
i1

v2
(
λ8v

2
S + 2

(
m2

22 −m2
AD

))
−R2

i2λ8 (A.8b)

λH1H2HDHD
= −cosα sinα

v2
(
λ8(v

2 + v2S) + 2
(
m2

22 −m2
HD

))
(A.8c)

λH1H2ADAD
= −cosα sinα

v2
(
λ8(v

2 + v2S) + 2
(
m2

22 −m2
AD

))
(A.8d)

where i ∈ {1, 2} and R is the rotation matrix defined in equation 2.20. While there are a lot more

quadrilinear couplings in the DDP, we present only the relevant ones for this project.
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Appendix B

MS Renormalization Scheme

In this appendix we discuss additional details about the MS renormalizations scheme.

B.1 Calculation of ∆vS

In this section we present the explicit calculation of the counter-term ∆vS in the MS scheme. Like we

discussed in subsection 3.7.1, this counter-term is necessary in order to obtain a finite one-loop amplitude.

We start by referring to section 3.3, where we discussed the ATS. In the ATS, both the self-energies

and the one-loop vertex corrections contain both non-tadpole and tadpole contributions, as represented

in figure B.1. We shall refer to the non-tadpole contributions as the usual contributions. If we treat

each contribution separately, we realize that the divergences originating from the usual contributions

vanish just by using the MS counter-terms δm2
22 and δλ8. However, this is not the case for the tadpole

contributions. In order to cancel the remaining divergences coming from the tadpole contributions, we

fix the counter-term ∆vS in such way that it cancels these divergences. For simplicity, we shall present

the calculation using the process H1 → HDHD, as the calculation is analogous to all other processes.

We start by expressing analytically the tadpole contributions to the one-loop corrections. Using the

definition in equation 3.93, we can represent the tadpole contributions as

M1-loop
H1→HDHD

∣∣
tad

= MVC
H1→HDHD

∣∣
tad

+MCT
H1→HDHD

∣∣
tad

(B.1)

The tadpole contribution for the vertex correction is given by the expression in equation 3.49, which can

be written as

MVC
H1→HDHD

∣∣
tad

= λH1H1HDHD

TH1

m2
H1

+ λH1H2HDHD

TH2

m2
H2

(B.2)

As for the counter-term amplitude, the tadpole contributions come from the counter-terms appearing in

equation 5.4. However, not all counter-terms have tadpole contributions. The MS counter-terms δm2
22

and δλ8 do not contain any tadpole contributions. The same happens for the counter-terms δZH1H1

and δZHDHD
. From equations 3.52a and 3.56a, we see that these counter-terms are the derivative with
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Figure B.1: Tadpole decomposition. Decomposition of the self-energy and vertex correction contribu-

tions into usual contributions and tadpole contributions.

respect to the squared external momentum of the self-energies. Since the tadpole contributions to the

self-energies do not depend on the external momentum, the tadpole contributions from the counter-terms

δZH1H1 and δZHDHD
vanish. Therefore, the expression for the tadpole contributions to the counter-term

amplitude is given by

MCT
H1→HDHD

∣∣∆vS=0

tad
= λH2HDHD

(
δZH2H1

2
+ δα

) ∣∣∣∣
tad

− 2cα
v2

(
vSλ8
2

+m2
22 −m2

HD

)
∆v

∣∣∣∣
tad

− 2cα
v
δm2

HD

∣∣∣∣
tad

(B.3)

where we omitted the term with ∆vS as we only want to identify the leftover divergent terms. The first

term of equation B.3 vanishes. This can be demonstrated by using the definitions in equations 3.52d and

3.78, obtaining the result(
δZH2H1

2
+ δα

) ∣∣∣∣
tad

=
1

2(m2
H1

−m2
H2

)

[
ΣTadH1H2

(m2
H2

)− ΣTadH1H2
(m2

H1
)
] ∣∣∣∣

tad

= 0 (B.4)

where we used the relation

ΣTadH1H2
(m2

H2
)

∣∣∣∣
tad

= ΣTadH1H2
(m2

H1
)

∣∣∣∣
tad

= λH2H1H1

TH1

m2
H1

+ λH1H2H2

TH2

m2
H2

(B.5)

The tadpole contributions coming from the counter-term δm2
HD

are simply written as

δm2
HD

∣∣
tad

= λH1HDHD

TH1

m2
H1

+ λH2HDHD

TH2

m2
H2

(B.6)

Regarding the counter-term ∆v, we see from equation 3.61 that its tadpole contributions originate

from the electroweak counter-terms discussed in subsections 3.5.1 and 3.5.2. The charge counter-term
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δZe does not contain any tadpole contributions. Therefore, the only tadpole contributions to ∆v come

from the mass counter-terms δm2
W and δm2

Z . From equations 3.64 and 3.66, we see that the tadpole

contributions from these counter-terms are simply the tadpole diagrams for the W and Z bosons self

energies, that can be written generally as

ΣTad,TV V

∣∣∣∣
tad

= −

(
cα
TH1

m2
H1

− sα
TH2

m2
H2

)
(B.7)

where V ∈ {W,Z}. Therefore, we can write the tadpole contribution from the counter-term ∆v as

∆v

v

∣∣∣∣
tad

=
1

2(m2
Z −m2

W )

(
m2
Z

m2
W

ΣTad,TW

∣∣∣∣
tad

−
m2
W

m2
Z

ΣTad,TZZ

∣∣∣∣
tad

)
= −1

v

(
cα
TH1

m2
H1

− sα
TH2

m2
H2

) (B.8)

Replacing all the explicit tadpole contributions into equation B.3, we get the expression

MCT
H1→HDHD

∣∣
tad

=

(
λH1H1HDHD

+
2c2α
v2

(
λ8vS
2

+m2
22 −m2

HD

)
− 2cα

v
λH1HDHD

)
TH1

m2
H1

+

(
λH1H2HDHD

− 2cαsα
v2

(
λ8vS
2

+m2
22 −m2

HD

)
− 2cα

v
λH2HDHD

)
TH2

m2
H2

= λ8

(
2vscα
v

− sα

)(
sα
TH1

m2
H1

+ cα
TH2

m2
H2

) (B.9)

The final result contains the tadpole terms TH1 and TH2 that contain divergent terms. We want to fix

∆vS in such way that it cancels the remaining divergence exactly. To achieve this, the term with ∆v in

equation 5.4, must cancel the divergent part of the result in equation B.9. Therefore, we get the condition

∆vS = −

(
sα
TH1

m2
H1

+ cα
TH2

m2
H2

)
div

(B.10)

This condition ensures that the one-loop corrections to the amplitude of the process is finite, under the

MS renormalization scheme.
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