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Resumo 

Ao longo da costa da Ibérica, pelo menos dois meteotsunamis foram registados/observados nos 

últimos dez anos. Nesta região, meteotsunamis permanecem menos estudados, apesar das evidências da 

sua ocorrência. Este trabalho analisa em detalhe os meteotsunamis instrumentais registados nas costas 

da Península Ibérica, tendo como principal objetivo fornecer uma visão sobre a perigosidade de 

meteotsunami. Dois dos eventos estudados foram observados na costa ocidental da Península Ibérica e 

os outros dois eventos nas Ilhas Baleares (Espanha), no Mar Mediterrâneo. Os registos do nível do mar, 

correspondentes aos eventos de junho de 2006, julho de 2010, junho de 2011 e julho de 2018, realiza-

se a remoção do sinal da maré para isolar o sinal correspondente ao meteotsunami. A utilização de 

ferramentas de análise espectral permitiu avaliar as características do sinal do meteotsunami isolado. 

Neste trabalho, todos os registos disponíveis no nível do mar foram analisados e apenas os registos 

relevantes (ou seja, aqueles cuja mediana da altura da crista-vale excedia 30 centímetros) foram 

selecionados e apresentados como principais resultados. Em seguida, as observações de pressão 

atmosférica, velocidade, intensidade e direção do vento, foram examinadas para extração das condições 

meteorológicas que levaram à formação dos meteotsunami registados. Neste estudo, é possível verificar 

que existem correlações entre os saltos na pressão atmosférica e as mudanças nas direções, velocidades 

e intensidades do vento, revelando a ocorrência de condições meteorológicas precursoras específicas no 

momento da geração dos meteotsunami. Os resultados deste estudo em termos de características de 

meteotsunami (hora de chegada, altura das ondas, períodos, duração) e processos atmosféricos 

associados (salto da pressão do ar, velocidade do vento, direção do vento) foram compilados num 

catálogo preliminar. Este produto constitui o primeiro passo para o desenvolvimento de uma avaliação 

abrangente deste tipo de riscos nesta região, fornecendo informações importantes para desenvolvimento 

de modelos numéricos de meteotsunami. Este trabalho foi apoiado pelo projeto FAST- Development of 

new forecast skills for meteotsunamis on the Iberian shelf, financiado pela FCT (PTDC/CTA-

MET/32004/2017). 

Palavras-chave: meteotsunamis; costa Ibérica; perigo natural; medições do nível do mar; interação ar-

mar; análise espectral; forçamento atmosférico; catálogo de meteotsunami. 

 

Abstract 

Along the Iberian coast, at least two meteotsunamis have been recorded/observed in the last ten 

years. In this region, meteotsunamis remain less studied, despite evidence of their occurrence. This work 

analyses, with unprecedented details, the instrumental meteotsunamis recorded along the coast of the 

Iberian Peninsula, with the main objective of providing an insight into the meteotsunami hazard. Two 

of the studied events were observed on the western coast of the Iberian Peninsula (Portugal, Spain and 

France) and the other two on the Balearic Islands (Spain) in the Mediterranean Sea. Sea-level records 

corresponding to the events of June 2006, July 2010, June 2011 and July 2018 are de-tided to isolate the 

signal of the meteotsunami. The use of spectral analysis tools on the recorded signals allowed evaluating 

the characteristics of the isolated meteotsunami signal. In this work, all available sea-level records were 

analysed, and only relevant records (i.e. those with median crest-to-trough wave height exceeding 30 

centimetres) were selected and presented as main results. Then, the observations of atmospheric 

pressure, wind speed, intensity and direction are examined to extract the meteorological conditions 

leading to the formation of the recorded meteotsunami events. In this study, correlations between 

“jumps” in atmospheric pressure and changes in directions, speeds and intensities of the wind are found, 

revealing the occurrence of specific precursor meteorological conditions at the time of the generation of 

meteotsunami. The results of this study in terms of meteotsunami characteristics (arrival time, wave 

heights, periods, duration) and associated atmospheric processes (air pressure “jump”, wind speed, wind 
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direction) are gathered in a preliminary catalogue. This product is a first step towards developing a 

comprehensive meteotsunami hazard assessment in the region, providing important information for the 

development of numerical models of meteotsunami. This work was supported by the FCT funded project 

FAST- Development of new forecast skills for meteotsunamis on the Iberian shelf (PTDC/CTA-

MET/32004/2017). 

Key words: meteotsunamis; Iberian coast; natural hazard; sea-level measurements; air-sea interaction; 

spectral analysis; atmospheric forcing; meteotsunami catalogue. 
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Resumo Alargado  

 

Os meteotsunamis são ondas longas induzidas por perturbações da pressão atmosférica com 

períodos que variam entre alguns minutos e as dezenas de minutos. A designação de meteotsunamis 

surge pela comparação com as ondas de grande comprimento de onda geradas por sismos submarinos. 

Nomitsu (1935) e Defant (1961) propuseram o termo geral de “tsunamis meteorológicos”. Os seus 

efeitos, por vezes destrutivos, foram observados em diversas partes do mundo tendo sido reconhecidos 

como um risco natural. Este fenómeno é gerado por forçamento direto da pressão atmosférica; ou seja, 

os meteotsunamis ocorrem quando se verifica um salto repentino da pressão atmosférica que gera 

pequenas oscilações no nível do mar. Estas podem depois entrar em ressonância através de mecanismos 

específicos, amplificando a onda perto da costa.  

Rabinovich e Monserrat (1996, 1998) e Monserrat et al. (2006) mostraram a correspondência entre 

ondas induzidas por estas variações da pressão atmosférica e os tsunamis de origem sísmica e 

introduziram o termo “meteotsunami”. Os meteotsunamis têm designações diferentes nas regiões onde 

ocorrem com maior frequência tais como: “rissaga” nas Ilhas Baleares (Espanha, Mar Mediterrâneo), 

“marrubio” em Sicília (Itália, Mar Mediterrâneo),“ abiki” na Baía de Nagasaki (Japão),“ šćiga” na 

Croácia,“ seebär ” no mar Báltico,“ zeebeer” no sul do Mar do Norte,“ milghuba” em Malta ou “seiches 

extremos” nos Grandes Lagos (Estados Unidos da América). Os meteotsunamis foram também 

reportados no Mar Negro, Austrália Ocidental, Nova Zelândia, China, África do Sul, Reino Unido, no 

Canal da Mancha, Costa Leste e Golfo do México nos Estados Unidos da América e América do Sul 

(Pattiaratchi & Wijeratne, 2015; Rabinovich, 2019). 

Os tipos comuns de ressonância que levam à formação de meteotsunamis são a ressonância de 

Proudman (Proudman, 1929; Vilibić et al., 2008) e a ressonância de Greenspan (Greenspan, 1956), para 

além da ressonância fundamental do porto. Devido à natureza complexa do fenómeno, que envolve 

condições atmosféricas precursoras, efeitos multi-ressonantes atmosfera-oceano e ainda da costa 

oceânica, a capacidade de previsão dos meteotsunamis não está ainda operacional nos sistemas de alerta 

de tsunami. A ocorrência de meteotsunamis na Península Ibérica tem sido até agora um fenómeno pouco 

estudado. No entanto, nos últimos dez anos foram registados dois meteotsunamis. Assim, a integração 

do alerta de meteotsunamis no sistema operacional de alerta de tsunamis instalado no IPMA constitui 

um desafio científico e operacional. Para tal importa aprofundar o conhecimento científico sobre este 

fenómeno através da compreensão das condições atmosféricas e de ressonância específicas que levam à 

forte amplificação das ondas em mar aberto bem como o seu impacto costeiro.  

No sentido de contribuir para o avanço deste conhecimento é objetivo desta dissertação o estudo de 

quatro meteotsunamis registados na rede maregráfica bem como a análise dos dados atmosféricos e 

oceânicos disponíveis. Deste modo é possível avaliar não só o efeito forçador atmosférico como a 

resposta oceânica. Dois destes eventos foram observados na costa ocidental da Península Ibérica (2010, 

2011) e outros dois nas Ilhas Baleares (Espanha), no Mar Mediterrâneo (2006, 2018). Os registos do 

nível do mar correspondentes aos eventos de junho de 2006, julho de 2010, junho de 2011 e julho de 

2018 são examinados usando os registos maregráficos após remoção do sinal da maré, isolando deste 

modo o sinal correspondente ao meteotsunami. De seguida efetua-se análise espectral para avaliar as 

características do sinal. As observações de pressão atmosférica, velocidade, intensidade e direção do 

vento, são examinadas para extrair as condições meteorológicas que levaram à formação dos eventos 

registados. 

A análise destes fenómenos contribuirá para a elaboração de um catálogo de meteotsunamis que até 

aqui não tem sido possível devido à falta de definição clara deste tipo de fenómeno e por dificuldade em 
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distinguir estes fenómenos de outros tipos de oscilações perigosas no nível do mar (Gusiakov 2019). 

Este trabalho constitui o primeiro passo para a criação de um catálogo de eventos exclusivamente 

instrumentais registados ao longo da costa da Península Ibérica, tendo como principal objetivo fornecer 

uma visão sobre a perigosidade de meteotsunami. 

Esta dissertação de mestrado faz parte do projeto FAST, financiado pela FCT (PTDC/CTA-

MET/32004/2017). Os principais objetivos são : 1) identificar e analisar os eventos de meteotsunami 

observados/registrados ao longo da costa ibérica; 2) investigar as condições atmosféricas precursoras 

que levam à formação dos meteotsunamis identificados; e 3) construir o primeiro catálogo de 

meteotsunami para a costa ibérica, que incorpora apenas tsunamis de origem atmosférica instrumentais, 

com informações sobre a data de ocorrência, o tempo de chegada do meteotsunami, a maré na estação, 

a altura de onda máxima e a amplitude de vale a crista, o período dominante de oscilação, a duração do 

fenómeno e as perturbações atmosféricas, como a taxa de mudança da pressão do ar e a intensidade e 

direção do vento.  

O trabalho agora apresentado foi estruturado do seguinte modo: um capítulo introdutório, o primeiro 

capítulo apresenta uma visão geral sobre os meteotsunamis e a motivação para a realização desta tese, 

expondo os objetivos desta. De seguida, o segundo capítulo conta com o enquadramento teórico e uma 

breve história sobre meteotsunamis e a sua física. Na terceira secção são apresentados todos os dados 

usados e as metodologias usadas para cada um: dados maregráficos de nível no mar e dados de 

informação atmosférica tais como dados de pressão atmosférica, intensidade e direção do vento (à altura 

da estação e em altitude). No capítulo 4 são exibidos os resultados obtidos nas análises realizadas e a 

sua discussão. Foram analisados no total, 30 registos maregráficos embora para o trabalho aqui 

apresentado consiste na análise dos registos das seguintes estações: Cascais e Peniche para o evento de 

2010; estações de Peniche, Leixões, Marin e La Corunã para 2011; e para ambos os eventos de 2006 e 

2018, as estações de Palma de Mallorca e Ciutadella de Menorca. A análise dos registos maregráficos 

permitiu a identificação clara de meteotsunami em todos os 30 sinais dos marégrafos examinados, para 

os quatro eventos em estudo. Foram considerados registos relevantes aqueles em que a altura da crista-

vale excedia 30 centímetros ou os que o seu sinal fosse mais notório. Foram identificadas correlações, 

por comparação visual, entre os saltos na pressão atmosférica e as mudanças nas direções, velocidades 

e intensidades do vento, revelando a ocorrência de condições atmosféricas precursoras específicas no 

momento da geração de eventos de meteotsunami. O estudo do conteúdo em frequência dos sinais foi 

feito recorrendo ao cálculo das onduletas (wavelets), mostrando que os períodos dominantes do 

meteotsunami variam significativamente, de estação para estação. Essa análise também define 

claramente que o fenómeno amplificou os períodos ressonantes (períodos próprios) de quase todos os 

portos. O espectro de potência de wavelets confirma que todos os eventos de meteotsunami coincidem 

com oscilações energéticas na pressão do ar e/ou velocidade do vento (Šepić & Vilibić, 2011; Šepić et 

al., 2015a, 2015b; Thomson et al., 2009; Vilibić et al., 2014; Linares et al., 2016). De evidenciar que os 

eventos na costa portuguesa (2010 e 2011), ambos ocorreram durante a maré baixa, sem impactos 

destruidores. Ao contrário do evento de 2018 nas Ilhas Baleares, que ocorreu em condições de maré alta, 

provocando estragos de muito maior magnitude. Os resultados deste estudo em termos de características 

de meteotsunami (hora de chegada, altura das ondas, períodos, duração) e condições climáticas 

forçadoras (salto da pressão do ar, velocidade do vento, direção do vento) são compilados num catálogo 

preliminar. Conclusões gerais e perspetivas futuras estão presentes na seção final. A necessidade de altas 

resoluções espaciais e temporais, é uma conclusão importante de enfatizar. Nos registos de nível médio 

do mar é na maior parte conseguido (1 minuto). Mas, na pressão atmosférica as resoluções temporais da 

maioria das estações são de 10 minutos. Esta resolução é relativamente baixa para o que é desejado, uma 

vez que os saltos de pressão atmosféricas nestes fenómenos são repentinos e da ordem de até 3hPa em 

30 minutos. Assim, é necessária uma melhor resolução temporal (de 1 minuto) para dados de pressão 
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atmosférica. Importante também será a resolução espacial da batimetria, devido à rápida diferença de 

profundidade nas áreas costeiras, para cálculos posteriores em modelos numéricos de meteotsunami. 

Este produto é o primeiro passo para o desenvolvimento de uma avaliação abrangente de riscos de 

meteotsunami na região. Este catálogo irá fornecer informações cruciais para tese de modelos numéricos 

de meteotsunami, podendo ser usado no desenvolvimento das habilidades de previsão de meteotsunami 

para a costa ibérica. Contribuindo assim para aumentar a consciencialização do público ao impacto de 

meteotsunamis e, consequentemente, aumentar o nível de segurança da população costeira e diminuir o 

potencial dano em infraestruturas nas costas portuguesa. 
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1. Introduction 

 

1.1. Overview 

 

In the aftermath of the devastating tsunamis that struck the Indian Ocean in 2004 and the Pacific 

Ocean in 2011, tsunami science has known a significant progress, opening new fields of research and 

reaching regions where the tsunami hazard was previously underestimated. Meteotsunamis are among 

these events that called a particular scientific attention due to their meteorological origin possibly 

influenced by the increasing climate changes (Bechle et al., 2016). Consequently, the conditions of the 

meteotsunami formation has been intensively studied during the last two decades, but its evolution 

involving multi-resonant atmosphere-ocean and ocean-coast effects still need more in-depth 

investigation.  

Meteotsunamis are atmospherically induced high-energy ocean waves in the tsunami frequency 

band with destructive coastal effects (Monserrat et al., 2006). They occur when sudden atmospheric 

pressure “jump” forces the ocean to response through the generation of small sea-level oscillations that 

enter in resonance with the atmospheric forcing. Common types of resonance leading to meteotsunamis 

generation are the Proudman resonance (Proudman 1929) and the Greenspan resonance (Greenspan, 

1956). During the resonance process, the atmospheric disturbances moving above the ocean surface give 

raise to significant long ocean waves by continuously pumping additional energy into these waves 

(Rabinovich, 2009). The energetic ocean waves arriving at the coast (bay, inlet, or harbour) can become 

destructive due to the combination of other amplification mechanisms, including shoaling and resonance 

local effects (also applicable to tsunamis of other origins). Meteotsunamis differ from tsunamis in one 

key aspect: their generation mechanism; they are shallow water waves created by sudden air pressure 

disturbances moving over the sea, rather than by underwater earthquakes, landslides or volcanic 

eruptions. According to Monserrat et al. (2006), tsunamis and meteotsunamis have the same period, 

same spectral scales, similar physical properties and affect the coastal areas in a comparably damaging 

way. 99% of the energy of background oscillations is related to the meteorological forcing, so although 

damaging, meteotsunamis waves are much less energetic than tsunamis-waves of other more well know 

origins. 

In historical tsunami catalogues, the meteotsunami events are scarce (2% of all documented 

tsunamis), but it is possible that some of the ‘tsunami-like’ events of ‘unknown origin’ which appear in 

these catalogues are meteotsunamis (Monserrat et al., 2006), showing that there are problems in 

cataloguing this kind of phenomenon (Gusiakov 2019). Although, meteotsunamis were considered as a 

global threat only in the early 21st century. Conventionally, this phenomenon was thought to be 

generated only at a few of meteotsunami “hot spots”: in the Mediterranean, especially in Ciutadella in 

Balearic Islands and Vela Luka in Croatia, or Nagasaki Bay in Japan. All of them, elongated narrow 

harbours of high resonance properties. Recently, meteotsunamis have been documented in several coasts 

around the world, causing destructive impacts in some cases while being difficult to forecast (Jansá et 

al., 2007; Vilibić et al., 2009; Orlić, 2015, Šepić et al., 2015a; Vilibić et al., 2016; Šepić et al., 2016; 

Carvajal et al., 2017; Lin & Liang, 2017; O'Brien et al., 2018, Kim et al., 2019, Rabinovich, 2019).  

The recent worldwide growing interest in studying the meteotsunamis has led to numerous 

published works. Vilibić et al. (2018) assessed the strength and frequency of meteotsunamis in the future 

climate and found that the total number of days expected with meteotsunamis in the RCP8.5 scenario is 

projected to increase consistently over time (by 34% for the Balearic Islands). On the other hand, and in 

a changing climate, Weisse & Hünicke (2019) show the difficulty to predict how the frequency or 

intensity of meteotsunamis may change, particularly when dealing with weather conditions such as 

changing wind patterns. The development of meteotsunami forecast capability, still lacking in most 
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operating tsunami warning systems, has also been addressed following the hazardous meteotsunamis 

occurring worldwide. In this sense, several research works investigated the feasibility of forecasting 

meteotsunami in hazard prone coasts. Renault et al. (2011) used a coupled atmosphere–ocean modelling 

system to reproduce the whole process, from the source in atmosphere to the meteotsunami dynamics 

in the ocean for an eventual use in the forecasting of a meteotsunami event with necessary further 

improvements. More recently, the study by Vilibić et al. (2016) investigated the meteotsunamis in the 

Mediterranean Sea with the intension to forecast the destructive events and support early warning 

systems. They show that due to their close correlation with atmospheric processes and in particular with 

air pressure disturbances, meteotsunamis could presumably be forecasted more easily and at a lower 

cost than tsunamis of earthquake origin. Meteotsunamis are generated by intense, low-dispersive and 

sharp air pressure disturbances that can be tracked on the ground (Monserrat & Thorpe 1992; Vilibić et 

al., 2008; Thomson et al., 2009; Šepić et al., 2009; Tanaka 2010). Such an approach has been used for 

creation of pilot Adriatic meteotsunami observing network, found to successfully capture meteotsunami 

events (Šepić & Vilibić 2011). Another feasible approach has been used by the Balearic Meteorological 

Service (Jansà et al., 2007), which raises a ‘rissaga’ alert if the synoptic conditions are following the 

patterns observed during the meteotsunami events. Similar systems are under development in some other 

countries, including the United States and Japan (Rabinovich, 2019). Sea level stations can be used for 

detection of a meteotsunami (e.g., on the Balearic Islands, Marcos et al., 2009). Also, vertical sounding 

profiles (Vilibić & Šepić 2009) and satellite images (Belušić & Strelec-Mahović 2009; Vilibić et al., 

2010) can be used for detecting favorable conditions for a meteotsunami event. 

Along the coast of Iberia, at least 2 meteotsunamis were recorded/observed in the last 10 years: the 

July 7, 2010 (Antunes et al., 2011) and the June 27, 2011 (Tappin et al., 2013). The 2010 event was 

recorded along the Portuguese coast, causing alarm among fishermen and getting some attention of the 

media. On June 2011, a meteotsunami was formed in the English Channel and travelled towards the 

Atlantic coasts of Portugal, Spain, France and Britain (Tappin et al., 2013; Frère et al., 2014). In addition 

to these events, the meteotsunamis on the Mediterranean Sea on June 15, 2006 (Monserrat et al., 2006) 

and July 17, 2018 are also analysed due to their particular interest and level of damage. The June 2006 

meteotsunami damaged more than 40 boats and caused an economic loss of several tens millions of 

euros in the region of the Balearic Islands (Western Mediterranean) (Monserrat et al., 2006). The most 

recent event occurred in the same place as the Balearic Islands, where a 1.5 m wave flooded coastal 

cities in Mallorca and Menorca and caused the death of one person1. 

 

1.2. Motivation 

 

Along the Iberian coast, the tsunami hazard is mainly associated to large earthquakes occurring 

within the Azores-Gibraltar fracture zone. Here, the hazard from tsunamis of tectonic origin has been 

intensively investigated (Baptista et al., 2011; 2017; Omira et al., 2009; 2015). However, the tsunami 

hazard induced by non-seismic sources (i.e. landslides, volcano eruptions and meteorological 

conditions) remains not well understood to the same extent as the corresponding hazard from 

earthquakes. Up to date, despite observations of meteotsunamis along the Iberian coast in some 

occasions, the studies by Antunes (2011), Antunes et al. (2011) and Frère et al. (2014) remain the only 

works that addressed the meteotsunamis along the Portuguese coast. Extensive work remains to be done 

to identify past meteotsunami events that impact/reach the coast of Iberia, to properly determine their 

physical characteristics, to accurately constrain the atmospheric precursor conditions leading to their 

formation, and to enable the elaboration of predictive numerical models and hazard assessment.  

 
1 https://www.thesun.co.uk/news/6795390/majorca-menorca-mini-tsunami-wave-beach-tourists/ 

https://www.thesun.co.uk/news/6795390/majorca-menorca-mini-tsunami-wave-beach-tourists/
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Forecasting meteotsunamis remains challenging of any operational tsunami early warning system. 

The Portuguese Institute for Ocean and Atmosphere (IPMA, Portugal) as authority responsible of 

forecasting weather and tsunamis in the North East Atlantic faces the challenge of integrating the 

meteotsunami in its operational system. The IPMA observing and forecasting facilities in both 

atmosphere and ocean fields may insure a flexible feasibility of this complex task. In this sense, FAST - 

Development of new forecast skills for meteotsunamis in the Iberian Shelf- project leaded by IPMA and 

funded by Foundation for Science and Technology (FCT) aims at initiating the meteotsunami research 

in Portugal with the goal of developing forecast skills for this natural hazard phenomenon.  

 

1.3. Objectives and thesis organization 

 

This master thesis is a part of the ongoing FAST project funded by FCT. Its main objective is 

threefold: 1) to identify and analyse the meteotsunami events observed/recorded along the Iberian coast; 

2) to search for the precursor atmospheric conditions leading to the formation of the identified 

meteotsunamis; and 3) to build the first meteotsunami catalogue for the Iberian coast that incorporates 

the event source-to-coast information, including both sea-level recorders and atmospheric pressure 

gauge information. This cataloguing will help to better understand the origin of these types of events, 

providing crucial information for meteotsunamis science.  

To ensure a proper presentation of the working-plan and to reach the objectives mentioned above, 

this dissertation consists of four main sections. It begins with chapter 1 devoted to a general introduction 

to meteotsunamis with a focus on the scientific progress made and the remaining challenges. Motivation, 

objectives and thesis organization are also present in the Introduction section. The next section presents 

a brief history of meteotsunamis, giving a theoretical framework of the phenomenon. Chapter 3 presents 

a detailed description of the data used and the methods adopted in this work. Chapter 4 focuses on the 

presentation and discussion of the dissertation results. General conclusions and future perspectives are 

present in the final section. 

 

2. Theoretical framework 

 

2.1. Meteotsunami: history 

 

Nomitsu (1935) and Defant (1961) initially proposed the general term of “meteorological tsunamis” 

to describe the tsunami-like ocean oscillations caused by meteorological phenomena. A few years after 

the Daytona event, Rabinovich and Monserrat (1996, 1998) and then Monserrat et al. (2006), showed 

the visible correspondence between these anomalous atmospherically induced waves and seismically 

generated tsunamis and introduced the term “meteotsunami” to the tsunami community. Worldwide, in 

regions like Ciutadella de Menorca, where meteotsunamis are observed and considered more frequent 

(“hot spots”), this type of dangerous event have specific local names like: “rissaga” in Balearic Islands 

(Spain, Mediterranean Sea), “marrubio” in Sicily (Italy, Mediterranean Sea), “abiki” in Nagasaki Bay 

(Japan), “šćiga” in Croatia, “seebär” in the Baltic Sea, “zeebeer” in the southern North Sea, “milghuba” 

in Malta or “extreme seiches” in the Great Lakes. Meteotsunamis currently are also reported in the Black 

Sea, West Australia, New Zealand, China, South Africa, United Kingdom, in the English Channel, East 

Coast and the Gulf of Mexico in the United States of America and South America (Pattiaratchi & 



4 

Wijeratne 2015; Rabinovich 2019). In his latest meteotsunami overview, Rabinovich (2019) 

demonstrated that such waves can occur anywhere in the world’s oceans and not only in a few “hot 

spots”.   

However, in historical tsunami catalogues, the meteotsunami events are uncommon (2% of all 

documented tsunamis) and with well-known cases of meteotsunamis still absent in the database 

(Gusiakov 2019). In the Global Historical Tsunami Database (GHTD) maintained and updated by the 

NCEI/NOAA, meteotsunamis constitute a slightly higher fraction (2.4%) of all tsunamis. But still, 

likely, that some of the events of ‘unknown origin’ which appear in these catalogues may be 

meteotsunamis (Monserrat et al., 2006). During the period 1992-2016, there were 290 tsunami events 

around the world, 63 of which were potentially damaging (i.e. maximum wave heights higher than 1 

meter). In Ciutadella Harbour, Menorca Island, alone (one of the meteotsunami hottest spots) between 

1992 and 2018, there were 71 meteotsunamis with maximum wave heights larger than 1 meter. Thus, 

the total number of damaging meteotsunamis in Ciutadella alone was higher than the total number of 

potentially hazardous seismic tsunamis all over the world (Rabinovich, 2019). Hence, in Spain (Marcos 

et al., 2009; Renault et al., 2011) and Croatia (Vilibić et al., 2016; Denamiel et al., 2018), regions 

frequently affected by meteotsunamis, preliminary meteotsunami warning systems have already been 

developed. Similar systems are under development in some other countries, including the United States, 

Japan, and Portugal. 

 

2.2. Meteotsunami: physics 

 

The generation mechanism and the multi-resonant waves evolution are the key aspects turning the   

physics of meteotsunamis different from common tsunamis. Although meteotsunamis are also long 

waves, often governed by the shallow water equations (Equations 2.1-2.3), they occur under a specific 

weather condition when sudden atmospheric pressure “jump” forces the ocean to response through small 

sea-level oscillations (Figure 2.1). The evolution of these oscillations is then conditioned by a set of 

resonance phenomena, such as the Proudman resonance (Proudman 1929) and the Greenspan resonance 

(Greenspan, 1956) (Figure 2.1). Proudman resonance is produced when the speed of the atmospheric 

disturbance, 𝑈, matches the phase speed of the ocean long waves 𝑐 (Equation 2.4). 

 

 ℎ𝑡 + (ℎ𝑢)𝑥 + (ℎ𝑣)𝑦  =  0, (2.1) 

   

 
(ℎ𝑢)𝑡  +  (ℎ𝑢² +

𝑔

2
ℎ² )𝑥 +  (ℎ𝑢𝑣)𝑦  =  −𝑔ℎ𝑏𝑥  − 

ℎ

𝜌
(𝑃𝐴)𝑥 , 

 

(2.2) 

 
(ℎ𝑣)𝑡  + (ℎ𝑢𝑣)𝑥 +  (ℎ𝑣² +

𝑔

2
ℎ² )𝑦  =  −𝑔ℎ𝑏𝑦  −  

ℎ

𝜌
(𝑃𝐴)𝑦 ,   (2.3) 

 

where ℎ(𝑥,𝑦,𝑡) is the depth of the water, 𝑢(𝑥,𝑦,𝑡) and 𝑣(𝑥,𝑦,𝑡) are velocity in x and y direction, 𝑔 is 

the gravitational constant, 𝜌 is the density of water, 𝑃𝐴(𝑥, 𝑦, 𝑡)is the air pressure in Pascal, and 𝑏(𝑥,𝑦) is 

the bottom bathymetry. 

 𝑈 = 𝑐 =  √𝑔𝐻 (2.4) 

   

where 𝑔 is the gravity acceleration and 𝐻 is the depth (𝑚) of the water column beneath the traveling 

pressure perturbation.  
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Figure 2.1. Simple illustration of the generation and evolution of a meteotsunami, adapted from NOAA (Technical Report 

NOS CO-OPS 079), 2014. 

 

At their arrival at the coastal area, meteotsunamis can undergo additional amplification mechanisms, 

shoaling and local resonance (also applicable to tsunamis of other origins), becoming more destructive. 

In general, hazardous meteotsunamis are caused by pronounced and sharp air pressure disturbances. The 

strength of the atmospheric disturbance and the air pressure gradient are the essential mechanism in the 

generation of meteotsunamis and its intensity depends on the amplification potential of the harbours or 

bays where they mostly occur (Rabinovich 2009, 2019).  

Meteotsunamis are often confused with storm surge associated with tropical storms and other large 

coastal storms. Storm surge is a wind-driven effect that occurs when strong winds push water onto land, 

causing water levels to increasingly over the course of several hours. Meteotsunamis differ from storm 

surge and rogue waves not only because they have different spatial and temporal scales, but also because 

they have considerably distinct generation mechanisms and affect different oceanic regions (Rabinovich 

2019). Table 2.1 summarizes the meteotsunami physical characteristics in comparison to seismic 

tsunamis and storm surges.  

Likewise, as illustrated by Figure 2.2, it is possible to understand what differs meteotsunamis from 

other marine hazardous long waves by the spectrum of surface gravity waves in the ocean. Storm surge 

are a low frequency process, with typical periods from several hours to approximately 1 week. They 

occupy the red band of the ocean wave spectrum. In contrast, rogue waves, are high-frequency 

phenomena with typical periods from a few seconds to 30 s, corresponding to the blue part of the wave 

spectrum.1 Meteotsunamis have the same periods as ordinary tsunami waves, ranging from 1 to 2 min 

to about 3 h. In the ocean wave spectrum, meteotsunamis are located between storm surge and rogue 

waves. 
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Table 2.1. Contrasting characteristics of seismic tsunamis, meteotsunamis and storm surges (modified from Pattiaratchi CB, 

Wijeratne EMS. 2015). 

 Seismic tsunamis Meteotsunamis Storm surges 

Source 

location 

Below the sea surface, by 

sudden displacements of 

the sea floor 

Above the sea surface, 

by the inverse 

barometer effect 

coupled with resonance 

effects 

Above the sea 

surface, by the 

inverse barometer 

effect and a strong 

wind field 

Source 

duration 

Impulsive motions of the 

sea floor which last 

O(minutes) 

Driven by resonance 

effects which take effect 

O(hours) 

Driven by 

atmospheric pressure 

and wind field 

O(hours-days) 

Source 

extent 

Fixed to the region of 

uplift 

Propagate over the 

region 

Propagate over the 

region 

Water depth 

Occur in the deep or 

shallow water, but higher 

waves are generated in 

depths greater than the 

continental shelf 

Relatively shallow 

where Proudman 

resonance can occur 

Shallower and wider 

continental shelves 

have a greater 

influence 

Water-level 

change and 

currents 

Periods of O(minutes) with 

rapid oscillatory change 

Periods of O(minutes) 

with rapid oscillatory 

change 

Gradual change in of 

O(hours) 

Region of 

impact 

Can influence an entire 

ocean basin and beyond 
Local to regional 

Local to regional in 

nature 

 

 

 

Figure 2.2. Spectrum of surface gravity waves in the ocean (Rabinovich, 2019). The frequency bands of storm surge, 

tsunami/meteotsunami and rogue waves are indicated. The solid thin black lines denote the theoretical spectral limits of 

𝜔−2and  𝜔−5 (ω = wave frequency = 2π/T) for open-ocean background spectra. 



7 

2.2.1.  Physical parameters of meteotsunamis – proposal for a catalogue 

 

Bibliographic research on meteotsunamis was performed, searching for information in national and 

foreign articles, academic theses and electronic resources. Several studies have been found, and the topic 

has been thoroughly debated in recent years, for example in countries bordering the Adriatic Sea and 

the Mediterranean Sea, where this type of event occurs most regularly. Therefore, it was necessary to 

update the found elements and make a large selection of existing references. This research allowed the 

identification of the physical processes involved in the meteotsunami event.  

This thesis is the first step towards the creation of a catalogue of exclusively instrumental 

meteotsunami events. The catalogue will have specific information, based on the knowledge of the 

generation and evolution of the phenomenon. The essential parameters will then be information 

regarding the date of occurrence, the tsunami arrival time, tide level, the maximum wave height and the 

crest-to-trough amplitude, the dominant period of oscillation, duration of the phenomenon, and the 

atmospheric disturbances, like the rate of air pressure change and wind intensity and direction.     

 

3. Data and Methodology 

 

3.1. Sea Level Data 

 

A total of 27 tide-gauge records (Table 3.1 and Figure 3.1) from three different countries: 10 from 

Portugal, 7 from Spain and 10 from France, were analysed. The sea level data were obtained from 

operating tide-gauge stations available through the: Intergovernmental Oceanographic Commission Sea 

Level Monitoring Facility (IOC) (http://www.ioc-sealevelmonitoring.org/); Hydrographic Institute (HI) 

(www.hidrografico.pt); Directorate-General for Territory (DGT) (ftp://ftp.dgterritorio.pt/Maregrafos) 

and Network of Mareographs of Puertos del Estado (REDMAR); by their online website or by direct 

request. Table 3.1 presents the data providers and the sampling interval for each tide-gauge stations. The 

Cascais tide-gauge has a precision in the sampling interval of 2.499999 seconds. For the analysis of the 

meteotsunami signal record, an approximation for 2 seconds was necessary. 

Usually, tide-gauge stations present records with noise and contain resonance effects, because they 

are located near the coast or within ports. The tide-gauge stations from IOC, provides sea level data 

from relative levels, i.e. signal minus average over the selected period (period of approximately 7 days). 

This site is a data provider from tide-gauge stations all around the world. The HI, an institute of the 

Portuguese Navy, is recognized as a State Laboratory with the fundamental mission to ensure activities 

related to the sciences and techniques of the sea2. Sea level data consist of data from radar tide-gauge 

records and some data acquired by HI correspond to the reading of the equipment and are not referred 

to the Hydrographic Zero (HZ). To refer to data at the HZ level, the following quotas must be applied 

to the subsequent tide gauges records (𝑦)3: 

  

𝐿𝑖𝑠𝑏𝑜𝑎𝐻𝑍 = 𝑦 − 0.361 

 

(3.1) 

   

 
2 http://www.hidrografico.pt1 
3 https://www.hidrografico.pt/tabelamares 

http://www.ioc-sealevelmonitoring.org/
http://www.hidrografico.pt/
ftp://ftp.dgterritorio.pt/Maregrafos
http://www.hidrografico.pt/op/1
https://www.hidrografico.pt/tabelamares
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𝑃𝑒𝑛𝑖𝑐ℎ𝑒𝐻𝑍 = 5.433 − 𝑦 

 

(3.2) 

 

  

𝑆𝑒𝑠𝑖𝑚𝑏𝑟𝑎𝑍𝐻 = 4.996 − 𝑦 

 

(3.3) 

  

𝑆𝑖𝑛𝑒𝑠𝑍𝐻 = 6.318 − 𝑦 

 

(3.4) 

Also, to the Portuguese coast, the tide network managed by DGT consists of two tide-gauges located 

in Cascais, operating since 1882, and in Lagos, since 1908. In both tide-gauges, were recorded variations 

in mean sea level off the coast of mainland Portugal. The tide-gauge of Cascais, due to its geographical 

situation and long-time series of records, is of great importance not only at a national level but also for 

the entire scientific community, being integrated into the international tide-gauge networks4. In its turn, 

the mareograph network REDMAR has developed and maintains systems for the measurement and 

forecasting of the marine environment of Spanish coasts, with the main objective of providing ocean 

and meteorological data. In addition to other services, the system consists of measurement networks 

(buoys, tidal gauges, and high-frequency radars). 

Figure 3.1 depicts the location of all tide-gauge stations that recorded the signals analysed in this 

work. They are distinguished by different markers referring to the meteotsunami event: black dot for the 

2006 event that was recorded only at an atmospheric pressure station); red dots for the 2010 event 

recorded along the Portuguese coast; blue asterisk for the 2011 event, at the Spanish and French tide-

gauge stations; and finally pink crosses corresponding to the meteotsunami of 2018 in the Balearic 

Islands, Mediterranean Sea. Although the analysis is performed for all the records, this thesis will focus 

only on the most relevant meteotsunami signals of each event. These concerns the tide-gauges signals 

of Sines, Cascais, and Peniche for the 2010 event; the records at tide-gauges of Peniche, Leixões, Marin 

and La Coruña for the 2011 event. For the 2006 and 2018 events, only the available signals at Palma de 

Mallorca and Ciutadella de Menorca are analysed.  

 

 

 

 

 

 

 

 

 

 

 

 
4 http://www.dgterritorio.pt/cartografia_e_geodesia/geodesia/redes_geodesicas/rede_maregrafica/ 

http://www.dgterritorio.pt/cartografia_e_geodesia/geodesia/redes_geodesicas/rede_maregrafica/
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Table 3.1. Presentation of the providers of the sea level data from each event and their sampling interval. For Cascais tide-

gauge, an approximation of 2 seconds was necessary, because of the precision in the sampling interval of 2.499999 seconds. 

DATE AVAILABLE ON 
SAMPLING 

INTERVAL 
TIDE-GAUGE 

2010 

HI 

6 min 

Aveiro 

Figueira da Foz 

Leixões 

Viana do Castelo 

1 min 

Lisboa 

Peniche 

Sesimbra 

Sines 

DGT 
~2 s Cascais 

3 min Lagos 

2011 

IOC-SLMF 
1 min 

Bilbao 

Boucau-Bayonne 

Brest 

Concarneau 

Ferrol 

Huelva 

Ile d'Aix 

La Rochelle 

Le Conquet 

Le Crouesty 

Les Sables d'Olonne 

Port Bloc 

SOCOA 

5 min La Coruña 

HI 
6 min 

Leixões 

Sines 

1 min Peniche 

DGT 3 min Lagos 

REDMAR 5 min Marin 

2018 IOC-SLMF 1 min 
Palma de Mallorca 

Ciutadella de Menorca 
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Figure 3.1. Representative map of the location of all tide-gauge stations where the meteotsunamis under study were 

recorded: with a black point the 2006 event in Palma de Mallorca and a red ball the 2010 even along the Portuguese coast; 

with a blue asterisk the 2011 event along the Iberian Peninsula and French Atlantic coast and finally with a pink cross the 

2018 event in the Balearic Islands. 

 

 

3.2. Atmospheric Data 

 

Records of sea level and atmospheric pressure in the same site are rare, except for the tide-gauge 

stations of Balearic Islands. The atmospheric pressure data for this study were obtained from the 

Portuguese Geographic Institute's online site5 and by direct request to HI and Spanish State 

Meteorological Agency (AEMET). For the 2006 event in the Balearic Islands, the atmospheric pressure 

value was taken from a 2006 article study of Rabinovich. A total of 16 stations were evaluated; most of 

them are Portuguese (Table 3.2.). The sampling interval is 10 min for all stations except for Sines in 

Portugal, which has a smaller sampling interval of 1 min.  

 

 

 

 
5 ftp://ftp.dgterritorio.pt/Maregrafos 

ftp://ftp.dgterritorio.pt/Maregrafos
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Table 3.2. Presentation of the providers of atmospheric pressure data from the stations used in this study and their sampling 

interval. 

DATE AVAILABLE ON 
SAMPLING 

INTERVAL 
STATIONS 

2006 Rabinovich, 2006 -- Palma de Mallorca 

2010 

HI 
10 min 

Cantareira 

Lisboa 

Peniche 

Santa Maria 

Sesimbra 

1 min Sines 

DGT 10 min 
Cascais 

Lagos 

AWS I 10 min 

Coimbra 

Faro 

Lisboa / Gago Coutinho 

Lisboa / Geofísico 

Peniche 

Porto 

Sagres 

Sines 

Viana do Castelo 

2011 
AWS I 10 min 

Coimbra 

Faro 

Lisboa / Gago Coutinho 

Lisboa / Geofísico 

Peniche 

Porto 

Sagres 

Sines 

Viana do Castelo 

DGT 10 min Lagos 

2018 AEMET 10 min Ciutadella de Menorca 

 

To better understand the meteotsunami, it is also important to examine the precursor weather 

conditions that led to their formation. This will involve the retrieve and analysis of atmospheric high-

resolution observations during the period of occurrence of the events under study. Different sources of 

data will be considered, including: wind speed and direction for the 2010 and 2011 event for the Portugal 

coast, from the network of surface automatic weather stations from Portugal (Automatic Weather Station 

(AWS I)) (Table 3.3.); analysis fields and vertical profiles from the European Centre for Medium-range 

Weather Forecasts (ECMWF). It was also required from ECMWF the atmospheric situation from 

different layers to the 2010 event and radio-sonde (tefigram)6 to complement the analysis. In this 

analysis, it is important to be aware of the presence of a strong vertical wind shear and the presence of 

 
6http://weather.uwyo.edu/upperair/europe.html  

http://weather.uwyo.edu/upperair/europe.html


12 

warmer air around 850 hPa (and cold air at mid-tropospheric levels) that induces an abrupt change of 

stability in the vertical as stated by Romero et al, 2019.  

 

Table 3.3. Presentation of the providers of wind intensity and direction from the stations data used in this study and their 

sampling interval and altitude. 

DATE PROVIDED BY 
SAMPLING 

INTERVAL (MIN) 
STATION ALTITUDE (M) 

2010 & 

2011 
AWS I 10 

Coimbra 171 

Faro 8 

Lisboa / Geofísico 77 

Lisboa / Gago Coutinho 103.884 

Peniche 32 

Porto 69 

Sagres 25 

Sines 103 

Viana do Castelo 48 

 

 

3.3. Methodology 

 

 This thesis uses a two-step methodology. The first step concerns the analysis of the sea level 

signal to isolate the meteotsunami and determine its characteristics. While in the second step obtained 

meteotsunami signals are compared alongside with the atmospheric data to observe possible 

correlations.   

The collected sea-level data are analysed to distinguish the meteotsunami signal and determine its 

characteristics. This analysis process concerns the de-tiding to isolate the meteotsunami signal from the 

tidal signal. This process is done by means of the least squares algorithm to fit the interpolated data into 

polynomials of best fit degree and further improved by applying a band-pass filter. Once the filtered 

signal is obtained, this work undertakes the spectral analysis by applying the Wavelet algorithm to 

calculate the distribution of the meteotsunami energy in different frequency bands over the time of its 

propagation. For both de-tiding and spectral analyses, this work uses the ASAT tool (Lisboa, 2015), 

developed in the framework of ASTARTE7 project and was successively applied to study a number of 

tsunami events (Baptista et al., 2017; Omira et la., 2016).  

Wavelet analysis is a common tool for analysing localized variations of power within a time series 

(Torrence & Compo, 1998). The Wavelet algorithm is used to determinate “when” in time the 

frequencies of interest happen, information that is lost in Fourier analysis. So, this function can represent 

another function originally described in the time domain, so that be to analyse the function at a different 

frequency and time scales. The mathematical formulation of continuous Wavelet uses the integral of the 

signal function 𝑓(𝑡) at a scale 𝑎 ∈ 𝑅𝑛 and a translational value 𝑏 ∈  𝑅𝑛 expressed in the following 

manner: 

 

 𝑊Ѱ|𝑓(𝑎, 𝑏) =  ∫
1

√𝑎

+∞

−∞

Ѱ∗ (
𝑡 − 𝑏

𝑎
) 𝑓(𝑡) 𝑑𝑡  𝑎, 𝑏 ∈ 𝑅, 𝑎 > 0 (3.5) 

 
7 ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe, Grant 603839, 7th FP (ENV.2013.6.4-3) 
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 Ѱ0(𝑡) = 𝜋−1/4ℯ𝑖𝜔0𝑡ℯ−𝑡2/2  (3.6) 

 

where 𝑎 is positive and defines the scale and 𝑏 is any real number and defines the shift. The 𝑓(𝑡) is a 

continuous function in both time and frequency domains. Ѱ(𝑡) is called the mother function wavelet, in 

this case the Morlet wavelet. The asterisk represents the operation of complex conjugate. The purpose 

of this mother wavelet is to provide a source function to generate the daughter wavelets, which are the 

translated and scaled versions of the mother wavelet. In this way, unlike Fourier transforms, Wavelet 

transforms have the power to construct a time-frequency of a signal. The wavelet transform decomposes 

a function defined in the time domain into another function, described in the time domain and the 

frequency domain. 

The results of the wavelet algorithm can be presented in amplitude, energy density (ED) or 

logarithmic energy density classes. While the amplitude generally leads to the interpretation of maximal 

wave heights (both positive and negative) the Energy Density (ED) represents the squared version:  

 𝐸𝐷(𝑓, 𝑡) =  ‖𝑊Ѱ|𝑓(𝑓, 𝑡)‖
2
 (3.7) 

 

The results of this work are given in terms of energy density, which represents the squared version 

of the amplitude. That is, replacing in equation 3.5, where a is the frequency and b is the time. Thus, the 

meteotsunami signal of background noise is better distinguished. These results best illustrate how 

meteotsunami wave energy varies as a function of frequency and time. 

Once the meteotsunami signals is isolated, this work proceeds with comparing observed sea 

disturbances alongside with the collected precursor weather conditions (air pressure and wind direction 

and intensity). The objective of this comparison, mainly conducted through observation of data variation 

side by side, is to infer the correlation between the formation of meteotsunami and the weather 

conditions. 

 

4. Results 

Although a total of 27 tide-gauges records were analysed, the results presented here only focus on 

the signals that show more relevant perturbation for each event. That is, only those that have a crest-to-

through height superior to 0.30 m were selected. For the 2010 event, the signals from tide-gauges of 

Sines, Cascais, and Peniche are selected; records from the tide-gauges of Peniche, Leixões, Marin and 

La Coruña for the 2011 event; Palma de Mallorca station signals for both 2006 and 2018 events, and 

this last event also includes records from Ciutadella de Menorca. (Figure 4.1). To understand the 

correlation between what happened at sea and the atmosphere, a brief analysis if local atmospheric 

conditions is made for events with available data. This applies to the analysis of atmospheric pressure 

and wind at the closest meteorological stations to the location of the tide-gauges. The results of this 

thesis are presented below in chronological order of meteotsunamis events at the Iberian coast. 
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Figure 4.1. Map of the locations of the selected tide-gauge stations where recorded signals analysis is presented in the 

results section: black point in Palma de Mallorca ( for 2006 event);red dots along the Portuguese coast (for 2010 event); 

blue asterisk along the northwestern Iberian coast (for the 2011 event) and finally pink cross in the Balearic Islands (for the 

2018 event). 

 

4.1. The 15 June 2006 event in the Balearic Islands, Mediterranean Sea 

 

Rabinovich and Monserrat (1998) designated as “rissagas” in Ciutadella inlet, all sea-level 

oscillations in which the wave height, in the tide record, exceeds 30 centimetres and with a period ~10 

min. Although rissaga events with wave heights 1.0–1.5 meters are usually observed in this harbour 1–

2 times a year, destructive oscillations with crest-to-through heights of more than 3 meters occur just 

once every few years. This particular harbour has already suffered the impact of these type of 

phenomena in both 1984, 2003 and 2006, causing millions of pounds of damage to the harbour and 

boats8. The 2006 event in Ciutadella Harbour, being one of the most dramatic rissaga, has been widely 

studied (Monserrat et al., 2006; Jansá et al., 2007; Vilibić et al., 2008; Renault et al., 2011).  

An illustration of the method of generation and propagation of meteotsunamis at this location is 

shown in Figure 4.2, where it is possible to observe the prominent resonant properties providing 

significant amplification of incoming waves. Unfortunately, in 2006 no tide-gauges was operational in 

the inlet; therefore, no records of sea-level variation are available for the 2006 event. From this event, 

only observed data of atmospheric pressure variation are available to analyse. Figure 4.3 shows the 

atmospheric pressure records from Palma de Mallorca (Mallorca island) for June 15, 2006. Red dots 

indicate the beginning and the end of an intense pressure “jump” of approximately 3hPa in 5 min, that 

occurred at approximately 17:50 UTC. This pressure “jumps” supposedly travelled from SW to NE, 

with an estimated speed of 25 m/s (Monserrat et al., 2006).  

 
8 https://www.noonsite.com/news/spain-balearics-meteotsunami-rissaga-floods-islands-of-mallorca-and-menorca/    

https://www.noonsite.com/news/spain-balearics-meteotsunami-rissaga-floods-islands-of-mallorca-and-menorca/
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Figure 4.2. A sketch by Vilibić et al.,2008 illustrating the physical mechanisms responsible for the formation of the 

destructive rissaga on 15 June 2006 in Ciutadella Harbour (Menorca Island). 

 

 

Figure 4.3. Atmospheric pressure records from Palma de Mallorca on June 15, 2006. Red dots indicate the strong “jump” in 

atmospheric pressure. 

 

It is also possible to verify and confirm the general synoptic pattern associated with rissagas 

described by Jansá et al. (2007), quite apparent in the vertical profile of the Palma de Mallorca radio 

sounding (Figure 4.4). The pattern is characterized by a three-layer structures described by Jansá et al. 

(2007) as follow: “(1) low level Mediterranean air, with a weak surface depression, (2) warmer African 

air blowing above, around 850 hPa, with an inversion layer separating (1) and (2); and (3) a poorly stable 

or even a conditionally unstable layer between the African air and colder air in the upper levels, with a 

marked vertical wind shear across this layer (usually with strong south-westerly wind blowing at upper 

levels)”. In Figure 4.4, it is possible to identify the vertical shear and the temperature variation between 

850 hPa and the average levels of the troposphere. This consists of an abrupt change in vertical stability. 

The atmosphere is conditionally unstable, constituting an important condition for the occurrence of 

convection (Miranda, 2013). 
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Figure 4.4. Vertical profile for Palma de Mallorca at 1200 UTC on 15 June 2006. 

 

Regarding sea-level disturbances caused by the 2006 event, several simulations have been 

performed to better understand this specific event and to approximate the meteotsunami wave heights 

reported in this channel (e.g. Rabinovich et al., 1999, Jansá et al., 2007, Vilibić et al., 2008, Renault et 

al., 2011, Ličer et al., 2017). Both Vilibić et al. (2008) and Renault et al. (2011) applied models for this 

region of the Balearic Islands.  

 

Figure 4.5. A map of the computational domain and topography used by Vilibić et al.,2008 in Menorca Island with the 

position of select grid points used in the analyses, and the simulated sea-level disturbances at sites M and T during the 

rissaga event of 15 June 2006. 

 

Vilibić et al. (2008) simulated the 2006 meteotsunami using a 2-D nonlinear shallow-water model. 

This model is forced by a travelling atmospheric disturbance, with constant speed (25 m/s) and direction 

(225º), reconstructed from microbarograph measurements. The model was verified based on two weaker 
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meteotsunami events of 1997. In the left panel of Figure 4.5, the domain under Vilibić et al. (2008) study 

is shown, with the position of select grid points used in the analyses. In the right panel, the figure depicts 

the simulated sea-level disturbances at sites M (Ciutadella inlet-centre) and T (Ciutadella inlet-head) 

during the “rissaga” event of 15 June 2006. It is clear from these results that the incident wave underwent 

a significant amplification due to the harbour resonance, reaching the trough-to-crest wave height of 

about 2 meters at grid point T.  

 

 

Figure 4.6. a) Model domains and topography used by Renault et al. (2011), in the Ciutadella Harbour. (b) Simulated sea 

level anomalies at selected points O1 (blue), O2 (black) and O3 (red). (c) Spectrum of the sea level anomaly timeseries at 

selected the point O3 (red) and O1(blue). (d) The same as Figure 4b but for the points O4 (red line) and O5 (cyan line). (e) 

The same as Figure 4c but for the points O4 (red line) and O5 (cyan line). 

 

Figure 4.6 presents the results of the 2006 meteotsunami simulations performed by Renault et al. 

(2011). Their simulations applied a coupled atmospheric (Weather Research Forecast (WRF) 

atmospheric model) oceanic (Regional Ocean Modeling System (ROMS) forced by the WRF pressure 

field) model to compute the meteotsunami waveforms at the points of interest. The point O4 near the 

entrance of Ciutadella inlet and the point O5 at the Ciutadella inlet-head (Figure 4.6.a). At this grid 

point, the trough-to-crest wave also reaches 2 meters (Figure 4.6.d)). Due to the Proudman resonance, 

the spectrum of the sea-level anomalies time series increases, and the dominant period is around 24.3 

min (Figure 4.6.e)), which characterizes the shelf eigenfrequencies. Inside the harbour, as the main 

harbour eigenfrequency is 10.5 min and the main period simulated is about 10.9 min. In both 

simulations, the estimated maximum trough-to-crest wave height (~2 meters) is approximately one half 

of that reported by witnesses who claimed 4.5 meters waves in the harbour. 

 

4.2. The 6-7 July 2010 event in the Atlantic coast of the Iberian Peninsula 

 

4.2.1. Sea level and air pressure analyses for the July 2010 event 

 

At the end of July 6, 2010, between 21:00 and 22:00 local time, a convective cell of atmospheric 

instability developed SW of the Iberian Peninsula, characterized by strong downstream currents 

associated with surface gusts travelling in the NNW direction (Antunes et al., 2011). These led to 

a) 
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uncommon ocean waves that were observed south of Portugal and propagated all over the coast.  Here, 

analyses of the sea-level records of three Portuguese stations: Sines, Cascais and Peniche are presented. 

For Sines, the analysis of the recorded signal is depicted in Figure 4.7.  Figure 4.7 allows identifying 

the arrival of the meteotsunami at Sines at around 00:20 on July 7 (red line through the figure). After 

de-tiding and filtering of the signal (Figure 4.7 middle panel), the maximum crest-to-through 

meteotsunami height is estimated at 0.32 meters. This maximum occurs between 05:24 and 05:34. 

During this time interval, it is possible to observe more significant anomalies at sea with a dominant 

period window of [13.6-46.1] min (Figure 4.7 bottom panel). The meteotsunami event at Sines station 

ended approximately 12 hours later. 

 

 

Figure 4.7. Signal of meteotsunami in Sines tide-gauge station (sample interval is 1 minute) and its spectral analysis. Top 

panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, and the bottom 

panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded in the 

tide-gauge. 

 

Atmospheric pressure variation at Sines during the time of meteotsunami observation is depicted in 

Figure 4.8. From this figure, it is possible to observe four significant sudden jumps in atmospheric 

pressure. The most significant “jump” of 4.3 hPa occurred between 00:45 and 00:51, the time that almost 

corresponds to the estimated arrival of the maximum meteotsunami wave at Sines coast. The other three 

air pressure “jumps” occurred between 05:00 and 06:00, with values of 2.5 hPa, 1.5 hPa and 2.6 hPa, 

respectively, which corresponds to the most important activity on the meteotsunami spectrum (Figure 

4.7 bottom). It is possible to relate the arrival of meteotsunami with the first abrupt “jump” in 

atmospheric pressure, and it is also important to note that the period between the most significant 

“jumps” (~20 min) approximates the meteotsunami waves periods shown in the spectrum.  
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Figure 4.8. Atmospheric pressure from Sines station. The sample interval is 1 minute. The red dots identify the four more 

significant “jumps” in pressure.  

 

The signal recorded at Cascais tide-gauge (Figure 4.9), ~95 km further north from Sines station 

shows the arrival of the meteotsunami at around 02:20 during low tide. The station captures maximum 

crest-to-through height of about 0.47 meters around 07:00 (Figure 4.9, middle panel). The wavelet 

analysis results (Figure 4.9, bottom panel) show that the meteotsunami period band is around [7-20] min 

and between [22.5-45] min, with the dominant period being 32.1 min. In this coastal location, the 

meteotsunami perturbations ended after about16 hours. 

 

 

Figure 4.9. Signal of meteotsunami in Cascais tide-gauge station (sample interval is ~2 seconds) and its spectral analysis. 

Top panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, and the 

bottom panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded 

in the tide-gauge. 
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Air pressure data at Cascais (Figure 4.10) are of low temporal resolution (10 minutes) and low 

precision in the decimal point of the observed values, which turns any correlation with the observed 

meteotsunami difficult to make. Still, it is possible to observe a significant “jump” in atmospheric 

pressure of 3 hPa (1013-1017 hPa) between 06:30 and 07:00 on July 7 (third and fourth red dots in 

Figure 4.10), corresponding to the same time where the maximum wave height occurred.  

 

 

Figure 4.10. Atmospheric pressure from Cascais station. The sample interval is 10 minutes. The red dots identify the four 

more significant “jumps” in pressure.  

 

Finally, the tide-gauge of Peniche, the northernmost of the three Portuguese stations for which the 

records were examined for the 2010 event, and where highest wave crest-to-trough height (0.58 meters) 

occurred. The meteotsunami arrived at approximately 07:00 on July 7, during low tide (Figure 4.11, top 

panel). The dominant period band is around [12-45] minutes, with a dominant period of 17.3 min (Figure 

4.11, middle panel). At this coastal site, having a narrow bay entrance, it is clear that the eigen periods 

of the bay are between [11.25-22.5] min (Figure 4.11, bottom panel), suggesting this narrow bay as the 

leading cause of amplifying the meteotsunami signal. The meteotsunami ended at Peniche after about 

11 hours of increased activity.  
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Figure 4.11. Signal of meteotsunami in Peniche tide-gauge station (sample interval is 1 minute) and its spectral analysis. Top 

panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, and the bottom 

panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded in the 

tide-gauge. 

 

In Peniche, it is possible to observe two crucial “jumps” in atmospheric pressure (Figure 4.12). In 

the early hours of the July 7, between 07:00 and 08:00, perturbations in atmospheric pressure between 

07:00 and 07:30 are noticeable as a sudden decrease of 2.7 hPa (1015.2 to 1012.5 hPa), followed by a 

rise of 3.9 hPa until 08:00. These two perturbations in air pressures show good correlation with the 

arrival of the meteotsunami at Peniche tide-gauge station at about 07:00, and it is maximum wave 

heights that occurred at 07:34. 

 

 

Figure 4.12. Atmospheric pressure from Peniche station. The sample interval is 10 minutes. The red dots identify the more 

significant jumps in pressure. 
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Considering these three tide-gauges, the median crest-to-trough height for the 2010 event is 0.47 

meters. The spectral analysis shows an average dominant period of approximately 25 minutes. 

The speed of the meteotsunami varies as it approaches the coast, due to differences in depth. 

Nevertheless, given the location of the Sines and Peniche tide-gauge stations (Figure 4.1), it is possible 

with a simple ratio (speed equals distance over time) to deduce the average speed of the wave generated 

by the meteotsunami. The distance between Sines and Peniche stations it is roughly 162 kilometres. 

Based on the time of arrival of the first wave at Sines (00:20) and Peniche (06:40) tide-gauges, the 

average speed of the meteotsunami wave that travelled between Sines and Peniche is approximately 25 

km/h ≈ 7m/s.    

 

4.2.2. Atmospheric conditions for the July 2010 event 

 

For the 2010 event, clear disturbances in the signal records can be observed in all meteorological 

stations (Figures 4.13, 4.14 and 4.17), both in the atmospheric pressure field and the surface wind 

intensity. An air mass that affected Portugal Mainland was transported from July 4-7 through a 

depression valley that stretched from North Africa (Boletim Climatológico Mensal – Julho 2010, IM)9. 

A depression valley is a "configuration defined by isobars extending out of a low-pressure region. It has 

an associated valley axis (or valley line), which corresponds to a minimum pressure line (compared to 

adjacent points) on either side of the line)"10. Thus, at the end of July 6, an atmospheric instability caused 

by convective cells was formed SW of the Iberian Peninsula that moved in the NNW direction (Antunes 

et al., 2011).  

In all three stations, upon arrival of the meteotsunami, a drop in atmospheric pressure accompanied 

by an increase in wind intensity is observed. It is important to emphasize here the well-known fact that 

the higher the atmospheric pressure difference is for a given point, the more intense the wind acting at 

that point. For such a reason, the correlation between these measures can easily be observed, and 

therefore, its temporal concordance with what happens on the sea surface. Overall, there is a higher sea 

disturbance activity, reflected in greater intensity in the energy density of the spectrum when there are 

higher amplitude and variation of wind intensity. 

It is also worth mentioning that the collected wind values, obtained by the network of surface 

automatic weather stations in Portugal, are at station level and not at mean sea level. Therefore, the 

following values refer to this difference. For Sines, it is at 103 meters altitude. For Cascais, the relatively 

nearest station is used, being Lisbon/Gago Coutinho, which is 103,884 meters. For Peniche, the Cabo 

Carvoeiro lighthouse station is used which has an elevation of 32 meters. 

 

 

 
9https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20100805/vyJoENHeCqVoSirCTGWm/cli_20100

701_20100731_pcl_mm_co_pt.pdf  
10 https://www.ipma.pt/pt/educativa/glossario/meteorologico/index.jsp?page=glossario_uv.xml  

https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20100805/vyJoENHeCqVoSirCTGWm/cli_20100701_20100731_pcl_mm_co_pt.pdf
https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20100805/vyJoENHeCqVoSirCTGWm/cli_20100701_20100731_pcl_mm_co_pt.pdf
https://www.ipma.pt/pt/educativa/glossario/meteorologico/index.jsp?page=glossario_uv.xml
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Figure 4.13. Atmospheric conditions of Sines station. Wind intensity (top) and direction (down) and atmospheric pressure at 

station level. The sample interval is 10 minutes. The red line represents the estimated arrival of the phenomenon recorded in 

the tide-gauge. 

 

At Sines (Figure 4.13), it is possible to relate the arrival time at 00:20 on July 7 and the drop in 

atmospheric pressure at that time. It is also possible to observe that the period of highest activity and 

highest energy occurred around 5:30 on that day. The sharp drop in atmospheric pressure, and the 

increase in wind intensity, reaching 7 m/s. The same value previously referred to as the supposed average 

speed of meteotsunami between Sines and Peniche. A considerable variation in wind direction is also 

observed during this period, from 00:00 on day 7 to approximately 12:00 on the same day. Outside this 

period, the direction seems to remain constant. Around 225º (SW) before the arrival of the meteotsunami 

and NW/N after the event. 
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Figure 4.14. Atmospheric conditions of Lisboa / Gago Coutinho station. Wind intensity (top) and direction (down) and 

atmospheric pressure at station level. The sample interval is 10 minutes. The red line represents the estimated arrival of the 

phenomenon recorded in the tide-gauge. 

As Lisbon station is further east than Cascais, the data show a certain delay in detecting the 

disturbances. Still, it is possible to observe in the figure above (Figure 4.14) the period of meteotsunami 

energy focus, corresponding to the interval between 05:00 and 11:00 on July 7. This is noticeable once 

again in the wind intensity, which reaches 7 m/s during this period, especially at nearly 07:00. Regarding 

the wind direction, it seems constant N/NW outside the event's duration (between 270º after and 315º 

before), and quite dispersed during the event. 

At this station, it is also possible to observe what happened at altitude (Figure 4.15). Given the 

general synoptic patterns suggested by Jansá et al. (2007), it is important to highlight the wind shear that 

occurs at the first levels and the conditionally unstable layer between 850 hPa and upper layers. This is 

observed due to the approximation of the black segment to the blue segment (air temperature). The black 

segment is performed to determine the lifted condensation level (i.e. the approximate point where the 

lowest clouds will be found), based on air at the surface. It takes the dewpoint at the ground (green 

segment) up the mixing ratio line, and the temperature (blue segment) up to the dry adiabatic 

simultaneously until they intersect. Above the condensation level, the air is always saturated, describing 

a curve called saturated adiabatic.  

As shown in Figure 4.16 of the geopotential at 500 hPa wind between 00:00 and 12:00, it is possible 

to evaluate that the disturbances had propagation speeds of 29-46 km/h, with the disturbance at 00:00 

having a speed of 12 m/s = 43 km/h toward SW. This disturbance is thus confirmed to be characterized 

by strong downward currents associated with gusting surface winds (top panel of Figure 4.16). The 



25 

average meteotsunami speed calculations, given the waver arrival at each station, leads to values 

between 15-48 km/h. These velocities are within the expected range to get the Proudman resonance. 

 

 

Figure 4.15. Radiosounding data from Lisboa station on 7 June 2010 at 00:00 (local time). 

 

Figure 4.16. Top panel: Vertical speed at 850 hPa for 00 UTC and 12UTC of the 7 July 2010. On the scale, negative values 

represent descending wind speeds. Bottom panel: Geopotential (damgp), temperature (ºC) and wind (kt) at 500 hPa for the 

same time. 
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Figure 4.17. Atmospheric conditions of Peniche station. Wind intensity (top) and direction (down) and atmospheric pressure 

at station level. The sample interval is 10 minutes. The red line represents the estimated arrival of the phenomenon recorded 

in the tide-gauge. 

 

Figure 4.17 shows that there are significant atmospheric disturbances between 07:30 and 08:00, at 

the time of the arrival of the meteotsunami estimated at approximately 07: 00. Once again, a wind of 7 

m/s is observed during this period, with wind intensity peaks relating to the atmospheric pressure 

decreases. The wind direction recorded at this station is relatively constant northward, with little 

variation during the event towards E (90º). 

Equilibrium response to surface pressure variations of only a few hPa cannot directly explain 

significant oscillations of the sea-level. This is because of the inverted barometer principle. This 

response would account for an equivalent of a couple of centimetres. Since the effect of the inverted 

barometer is not enough, this is where the Proudman resonance (Equation 2.4) is important, reflecting 

the matching of the long ocean waves speed and the propagation speed of the precursor atmospheric 

gravity wave (Romero, 2019). In this specific case of the 2010 event for the Portuguese continental 

coast, considering a depth (H) between 1 and 10 meters in the harbour, it is possible to observe that c ≈ 

3-10 m/s ≈ 11-36 km/h. At station height, only U ≈ 7 m/s ≈ 25 km/h is obtained, but in Figure 4.15 and 

4.16, a speed of 15-48 km/h is extracted at the altitude that fit within the range of the resonance. 

Moreover, in all the three stations, the harbour resonance may contribute to the amplification of the 

incident meteotsunami. 
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4.3. The 26-27 June 2011 event in the Iberian Peninsula and the northeast of the English 

Channel 

 

4.3.1. Sea level and air pressure analyses for the June 2011 event  

 

Meteotsunamis can happen sequentially along the line of the same synoptic system (Šepić et al., 

2015b; 2009). The event of 26-27 June 2011 took place on the shores of the NE Atlantic and the English 

Channel, affecting nearly 300 km of coastline. Driven by convective cells extending from the southern 

Iberian Peninsula to the northeast of the English Channel, the meteotsunami was observed in about 30 

harbours. Tappin et al. (2013) rapidly rejected other ‘geological’ tsunami sources for the phenomena 

and Frère et al. (2014), using spectral analysis showed a dominant period of 25 min present on almost 

all data. This is because the phenomenon highlighted the resonant periods of the harbours (eigen 

periods). Through comparison with atmospheric data, they also show that the travelling pressure 

anomaly was probably the origin of these sea level anomalies, having this disturbance travelled to the 

northeast at 20-25 m/s. Here, the analyses of four sea-level records, two from Portuguese stations 

(Peniche and Leixões) and two from Spanish stations (Marin and Coruña), are reported. For the rest of 

the stations that recorded the 2011 event, the analyses are presented in Appendix III.  

Peniche station recorded the arrival of the meteotsunami at around 13:00 on June 26 (red line 

through Figure 4.18, top panel). The maximum crest-to-trough wave is about 0.34 meters (Figure 4.18, 

middle panel). The meteotsunami energy is concentrated in the period bands [11.25-22.5] min (Figure 

4.18 bottom panel). The event lasted ~ 4 hours. 

 

 

Figure 4.18. Signal of meteotsunami in Peniche tide-gauge station (sample interval is 1 minute) and its spectral analysis. Top 

panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, and the bottom 

panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded in the 

tide-gauge. 
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In Peniche, it is possible to observe the “jump” of 0.6 hPa in atmospheric pressure (Figure 4.19) 

between 13:00 and 13:20 on June 26. This disturbance, although small, can be related to the arrival of 

the meteotsunami at the Peniche station at around 13:00.  

 

 

Figure 4.19. Atmospheric pressure from Peniche station. The sample interval is 10 minutes. The red dots identify the more 

significant jumps in pressure. 

 

Another Portuguese tide-gauge is Leixões, ~212 kilometres further north from Peniche, that also 

recorded the 2011 meteotsunami. In Figure 4.20, it is possible to observe the arrival of the meteotsunami 

during low tide, around 17:30 on June 26 (red line through the figure). The maximum crest-to-trough 

wave occurs shortly after the arrival with a height of 0.28 meters. The wavelet analysis results show that 

the meteotsunami energy focus is in the period’s bands of [18-50] min and the dominants period is of 

40 min (Figure 4.19 bottom panel). The event lasted approximately 6 hours. 
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Figure 4.20. Signal of meteotsunami in Leixões tide-gauge station (sample interval is 6 minutes) and its spectral analysis. 

Top panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, and the 

bottom panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded 

in the tide-gauge. 

 

In the atmospheric pressure recorded at the Porto station, the closest station to Leixões (Figure 4.21), 

it is worth noting the "jump" of 1.1 hPa in atmospheric pressure in 10 min. This jump occurs around 

17:30 on June 26. 

 

 

Figure 4.21. Atmospheric pressure from Porto station. The sample interval is 10 minutes. The red dots identify the more 

significant jumps in pressure. 

 

At Spanish stations, the Marin tide-gauge recorded the arrival of the meteotsunami at around 20:00 

on June 26 (red line through Figure 4.22). Although the anomaly at mean sea level is small, the 
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difference in elevation in the filtered signal is clearly noticeable (Figure 4.22, middle panel). Around 

23:30, maximum crest-to-trough wave height of 0.34 meters is observed (Figure 4.22 middle panel). 

The wavelet analysis results show that the meteotsunami energy is concentrated in the period bands of 

[50-90] min with a dominant period of 72.4 min. In this location, the event lasted just over 4 hours. 

 

 

Figure 4.22. Signal of meteotsunami in Marin tide-gauge station (sample interval is 5 minutes) and its spectral analysis. Top 

panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, and the bottom 

panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded in the 

tide-gauge. 

 

At the northernmost station of the Iberian Peninsula, La Coruña tide-gauge presents a clear signal, 

with meteotsunami arriving at high tide early on June 27, around 00:00 (red line through Figure 4.23). 

Approximately half an hour after, crest-to-trough wave height of 0.21 meters reached the station (Figure 

4.23, middle panel). The dominant period is clearly observed at 34 min. The event lasted approximately 

8 hours. 

Considering the four tide-gauges the median crest-to-trough height is 0.31 meters. The obtained 

results are in good agreement with those presented in Tappin et al. (2013) and Frère et al. (2014), that 

show that the 2011 meteotsunami is explained by atmospheric convective activity in the Bay of Biscay 

and the English Channel. Frère et al. (2014) assumed the speed of the event in the Iberian coast to be 

approximated 20m/s ≈ 72 km/h. 
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Figure 4.23. Signal of meteotsunami in La Coruña tide-gauge station (sample interval is 5 minutes) and its spectral analysis. 

Top panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, and the 

bottom panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded 

in the tide-gauge. 

 

4.3.2. Atmospheric conditions for the June 2011 event 

 

Williams et al. (2018) combined observations and numerical models to show that convective 

weather systems generate meteotsunamis that occur in the English Channel. The 2011 meteotsunami, 

that also affected the coasts on the English Channel is confirmed to have been generated by a travelling 

pressure anomaly originated over western Iberia, that travelled to the northeast at 20-25 m/s speed.  

Less clear than for the previous event, it is possible to observe the correlation of the rate change of 

atmospheric pressure and the wind intensity and speed, in the Portuguese stations (Figures 4.24 and 

4.25). Upon the arrival of the meteotsunami, the drop in atmospheric pressure is observed and 

consequently a difference in wind intensity. The wind direction, however, does not suffer a significant 

visible variation. 
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Figure 4.24. Atmospheric conditions of Peniche station. Wind intensity (top) and direction (down) and atmospheric pressure 

at station level. The sample interval is 10 minutes. The red line represents the estimated arrival of the phenomenon recorded 

in the tide-gauge. 
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Figure 4.25. Atmospheric conditions of Porto station. Wind intensity (top) and direction (down) and atmospheric pressure at 

station level. The sample interval is 10 minutes. The red line represents the estimated arrival of the phenomenon recorded in 

the tide-gauge. 

 

The radiosounding data for La Coruña (Figure 4.26) shows an unstable vertical weather profile. This 

presents a potentially unstable air mass capable of causing strong downward wind gusts (Tappin et al., 

2013). At 500 hPa it is possible to observe wind of approximately 40 knots which are roughly 80 km/h 

≈ 22 m/s blowing from the southwest.  

From the analysis made by Tappin et al. (2013) for Point du Raz and Penmarche stations, it is 

possible to identify 2-3 hPa disturbances between 05:30 and 06:30 on June 27. These pressure “jumps” 

correlate with the first tidal anomaly in the French tide-gauge at Le Conquet at 05:50 (Appendix III.). 

Therefore, Tappin et al. (2013) support that "the number of pressure falls recorded at the Brittany buoys" 

are the result "of a series of downdraughts that probably initiated the meteotsunami" in the English 

Channel. 
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Figure 4.26. Radiosounding data from La Coruña on 27 June 2011 at 00 UTC. 

 

 

4.4. The 15-17 July 2018 event in the Balearic Islands, Mediterranean Sea 

 

4.4.1. Sea level and air pressure analyses for the July 2018 event 

 

During the early morning of 16 July 2018, a meteotsunami formed in the Mediterranean Sea near 

the coast of Spain and flooded the coasts of Mallorca and Menorca11. For this event, only two tide-

gauges are available and analysed: Palma de Mallorca and Ciutadella de Menorca, in the Western 

Mediterranean.  

The first sea-level anomalies begin to be observed in Palma de Mallorca (Figure 4.27), around 17:30 

on July 15. Unlike the results so far analysed, this phenomenon has a longer duration in this location, of 

more than 24 hours. The maximum crest-to-trough height is 0.53 meters (Figure 4.27, middle panel). 

The wavelet analysis results show that the meteotsunami energy is concentrated in [20-77] min, with a 

dominant period of 24.1 min and 75 min. The disturbances caused by the event lasted approximately 24 

hours. 

 

 
11 https://www.mirror.co.uk/news/world-news/majorca-menorca-tourist-beaches-hit-12930997 

https://www.mirror.co.uk/news/world-news/majorca-menorca-tourist-beaches-hit-12930997
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Figure 4.27. Signal of meteotsunami in Palma de Mallorca tide-gauge station (sample interval is 1 minute) and its spectral 

analysis. Top panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami signal, 

and the bottom panel presents the wavelet analysis results. The red line represents the estimated arrival of the phenomenon 

recorded in the tide-gauge. 

 

About 3 hours later, the first anomalies arrived in Ciutadella (Figure 4.28). Estimating 21:00 on 15 

July as the time of arrival (red line through the figure), the crest-to-trough wave height is 0.66 meters 

(Figure 4.28, middle panel). This tide-gauge, being out of the channel, does not have the typical period 

of 10.5 min. Nevertheless, the dominant period band is approximately between [10-45] min. The 

meteotsunami energy is higher at 24.3 min. This result meets the simulations made for the 2006 event 

(Figure 6.6.). The disturbances caused by the event lasted approximately 24 hours. 
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Figure 4.28. Signal of meteotsunami in Ciutadella de Menorca tide-gauge station (sample interval is 1 minute) and its 

spectral analysis. Top panel represents sea level variation, the middle panel depicts the de-tided and filtered meteotsunami 

signal, and the bottom panel presents the wavelet analysis results. The red line represents the estimated arrival of the 

phenomenon recorded in the tide-gauge. 

 

Observing the rate of atmospheric pressure change of this event, several significant disturbances in 

the atmospheric pressure corresponds to the highest intensity period of meteotsunami observed in the 

Balearic Islands (Figure 4.29), approximately between 00:00 and 05:00 on July 16. The most relevant 

being 3.9 hPa in 30 minutes, between 01:50 and 02:20. 

 

 

Figure 4.29. Atmospheric pressure from Ciutadella de Menorca station. The sample interval is 10 minutes. The red dots 

identify the time interval with more significant “jumps” in pressure. 
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4.5. First Catalogue of Meteotsunamis along the Iberian Coastline 

 

The ultimate product of this research project concerns the compilation of a meteotsunami catalogue. 

The parameters characterizing meteotsunami phenomenon are first defined. This includes parameters at 

sea level and the atmospheric precursor conditions of meteotsunami events. These parameters are 

extracted from the performed analyses and compiled in Table 4.1, on the next page. 

The first column of the table shows the date of the meteotsunami. Then, the tide gauges where the 

event was recorded. In the third and fourth columns, the day and time (local) of the estimated arrival of 

the meteotsunami. These parameters, plus the state of the tide when the first wave arrives, from the next 

column, and the maximum wave height in the sixth column, are all estimated visually. The first recorded 

oscillations of the tide gauge signal are taken into account. In the results obtained after de-tiding and 

filtering the sea level record, we can estimate the height of the maximum wave (6th column) and the 

peak-to-peak height recorded for the tide gauge (7th column). Column 8 shows the dominant periods of 

oscillation obtained by the spectrograms, referring to the maximum energy recorded. For the duration 

of the event (column 9), the period of most significant activity recorded in the tide gauge is observed, 

between the estimated arrival of the first wave of the meteotsunami and the end of the oscillations 

observed in the filtered data. The last two columns show atmospheric data. The rate of atmospheric 

pressure change is calculated from the largest "jumps" observed in the atmospheric pressure graphs 

throughout the event. The intensity and direction of the wind, estimated in the data of the surface 

automatic weather stations, radiosounding and/or weather charts. 
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Table 4.1. Preliminary catalogue of the meteotsunamis studied in this dissertation along the Iberian Coastline. 

Date Tide-Gauge 

Day and Time 

of Arrival 

(local time) 

Tidal 

Stage 

Max. 

Wave 

Height (m) 

Crest-

to-

trough 

(m) 

Period of 

Oscillation (min) 

Duration 

(h) 

Rate of 

Atm. Pre. 

Change 

hPa(/min) 

Wind 

(m/s) 

15 

June 

2006 

Ciutadella 

de Menorca 
15 ~20:50 High -- -- ~ 10.5 -- ~3 (/5) 

25 

SW 

6-7 

July 

2010 

Lagos 6 ~20:30 High 0.18 0.33 56.6 ~22 2 (/30) 

SW 

Sines 7 ~00:20 Low 0.21 0.32 21.8 [13.5-46.1] ~8 4.1 (/5) 

Sesimbra 7 ~00:40 High 0.14 0.26 [10.1-58.3] ~12 2.8 (/30) 

Cascais 7 ~02:20 Low 0.30 0.47 32.1 ~16 3 (/30) 

Lisboa 7 ~03:00 Low 0.05 0.13 53.4 ~14 2.5 (/30) 

Leixões 7 ~05:00 Low 0.11 0.22 38.7 [35-45] ~14 1.2 (/30)  

Viana 7 ~06:50 Low 0.08 0.16 29.7 [22-50] ~14 1.2 (/30) 

Peniche 7 ~07:00 Low 0.30 0.58 17.3 [12-60] ~11 3.9 (/30) 

Figueira 7 ~09:20 High 0.09 0.14 46.4 [32-55] ~12 1.2 (/30) 

Aveiro 7 ~10:00 High 0.06 0.14 40.4 [39-57] ~8 1 (/30) 

26-

27 

June 

2011 

Huelva 26 ~06:45 Low 0.04 0.07 29.7 [22-50] ~4 -- 

 

 

20-30 

S/SW 

Peniche 26 ~13:00 Low 0.17 0.34 15.8 [12.2-22] ~4 0.6 (/20) 

Leixões 26 ~17:30 Low 0.15 0.28 21.4; 41 [18-50] ~6 1.1 (/10) 

Marin 26 ~20:00 Low 0.16 0.34 72.4 [50-90] ~4 -- 

La Coruña 27 ~00:10 High 0.11 0.21 34.4 [21-54] ~8 -- 

Ferrol 27 ~00:20 High 0.06 0.12 24.9 [16-34] ~3 -- 

Brest 27 ~05:30 Low 0.11 0.15 
21.5; 74.4 [14-

92] 
~12 -- 

Le Conquet 27 ~05:55 Low 0.07 0.19 44.3 [41-70] ~20 -- 

Les Sables 

d'Olonne 
27 ~06:30 Low 0.25 0.38 37 [22.5-45] ~22 -- 

Concarneau 27 ~06:30 Low 0.18 0.32 
21.8; 72.2 [14-

90] 
~14 -- 

Le 

Crouesty 
27 ~06:45 Low 0.12 0.28 41.6 [22.5-44] ~12 -- 

Port-Bloc 27 ~07:00 Low 0.07 0.12 74.4 [30.5-97] ~17 -- 

La 

Rochelle-

Pallice 

27 ~07:40 Low 0.11 0.05 74.9 [15-90] ~8 -- 

Ile d'Aix 27 ~11:00 Low 0.06 0.13 47.5 [37-60] ~8 -- 

Boucau-

Bayonne 
27 ~14:00 Low 0.05 0.07 55 [45-90] ~14 -- 

SOCOA 27 ~14:35 High 0.07 0.14 15.8 [12-70] ~14 -- 

Bilbao 27 ~15:30 High 0.08 0.16 46.1 [36-63] ~6 -- 

15 -

16 

July 

2018 

Palma de 

Mallorca 
15 ~18:00 High 0.30 0.53 22.7 [24.1-76] ~24 3.9 (/30) -- 

Ciutadella 

de Menorca 
15 ~21:00 High 0.42 0.66 24.6 [24.1-34.9] ~24 3.9 (/30) -- 
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5. Discussion and Conclusions  

 

This dissertation investigates the instrumental meteotsunamis occurred in the Iberian coasts 

intending to improve our understanding of the phenomena in the region. It focusses on the analysis of 

both oceanic and atmospheric data. It attempts to identify a correlation between the meteotsunami 

generation and propagation and the precursor atmospheric conditions of the Iberian coast. The analysis 

allows determining the characteristics of the meteotsunami events together with the atmospheric 

conditions leading to their formations. These characteristics are then compiled in a preliminary 

catalogue of instrumental meteotsunamis in the region. The compiled catalogue forms a first step 

towards performing a comprehensive meteotsunami hazard assessment. 

A total of 30 tide-gauges records, corresponding to two meteotsunamis that occurred along the 

Iberian Peninsula coast (2010 and 2011 events) and two others of particular interest in the Balearic 

Islands (2006 and 2018 events), were analysed. Instrumental records of tide-gauges from Portugal, Spain 

and France were first collected and then examined to isolate the meteotsunamis signals and determine 

their metrics. The observed sea-level anomalies were quantified by spectral analysis of the records. 

Montserrat et al. (1998) showed that a spectral ratio is a useful tool for identifying tsunami signals. The 

spectral analysis divides the variance of a time series as a function of frequency (Thomson, 2014), 

enhancing amplifications at periods belonging to the tsunami. The same can be said about 

meteotsunamis. This time-frequency analysis (or wavelet analysis) is a powerful tool for studying the 

temporal variations of time-dependent phenomena, showing where the meteotsunami energy is 

concentrated in time bands at different times (Heidarzadeh & Satake, 2013).  

Among the 10 tide-gauge records examined for the 2010 event, the maximum crest-to-trough wave 

height was observed in Peniche tide-gauge with a value of 0.58 meters. Off Peniche, a wide continental 

shelf with depth between [50-150] meters spreads toward SW direction.  At this continental shelf, the 

Proudman resonance condition (Equation 2.4), corresponds to a speed of 22-38 m/s, favouring the 

amplification of small meteotsunamis approaching from SW with a speed 22-38 m/s (Kim & Omira, 

2020). The 2010 event lasted approximately 13 hours, along the Portuguese coast. For the 2011 

meteotsunami, the results presented in this dissertation show that the maximum crest-to-trough wave 

height was registered in Marin tide-gauge with a value of 0.34 meters. Although taking into 

consideration the 17 sea-level signals examined for 2011 meteotsunami event, Les Sables d'Olonne tide-

gauge (Appendix III.) in France recorded a maximum crest-to-trough wave height of 0.38 meters. This 

event lasted approximately 11 hours along the affected coast. For the 2018 event, the maximum crest-

to-trough wave height was in Ciutadella de Menorca station with 0.66 meters. This event had the longest 

duration, with 24 hours of activity. Regarding the oscillation periods, there is a dominant period in the 

range of [20-50] min, for all events. This period is directly related to resonant (eigen) periods. These 

periods are determined by the location of the tide-gauge, geometry and depth (Rabinovich, 2009). For 

all the records analysed, the natural frequencies (eigen periods) of the harbour can be clearly identified 

from the background noise.  

Observations of atmospheric pressure and wind speed, intensity and direction are examined to 

extract the meteorological conditions that lead to the formation of the recorded meteotsunami events. 

For all the events studied, on average, the rate of change in atmospheric pressure was distinguished 

between the values of 2-4 hPa in 30 min. Correlations were found between “jumps” in atmospheric 

pressure and changes in directions, speeds and intensities of the wind, revealing the occurrence of 

specific precursor climatic conditions at the time of the generation of meteotsunami events. For all the 

events, it is important to note that the dominant wind velocity was in the range of the 20-30 m/s wind. 

On the other hand, it is noticeable that the wind direction varies widely for each event and differs from 
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a station to another, but, in general, there is a prominent wind direction from S/SE for 2010 and S/SW 

for 2011 (Appendix III.). The atmospheric conditions from the 2010 and 2011 events evidence that the 

wind velocities were within the expected range to favour the occurrence of Proudman resonance. 

This work compiled the parameters determined by meteotsunamis in a preliminary catalogue (Table 

4.1). Parameters such as arrival time, tide stage at the arrival of the meteotsunami, maximum wave 

height, crest-to-trough height, dominant periods and duration are quantified. The catalogue also contains 

quantities of the forcing climatic conditions like “jump” in air pressure, wind speed and direction. This 

preliminary catalogue could be useful for further meteotsunami hazard and prediction. 

Prediction of meteotsunamis is in its early stage (Pattiaratchi, 2015) and is mainly dependent on the 

availability of high spatial and temporal resolution of atmospheric data allowing a better constrain of 

the precursor conditions and of the resonances involved (Bubalo et al., 2019). The air pressure “jump” 

often considered a characteristic of the atmospheric disturbances related to meteotsunamis (Belušić & 

Strelec-Mahović, 2009). The air pressure “jump” occurs suddenly within some minutes. Such a 

meteotsunami precursor must be detected/predicted using high-resolution temporal instruments/models, 

for meteotsunami forecast purpose. 

Preliminary results of this work were presented at an international conference, the European 

Geosciences Union General Assembly 2019 (Appendix I). They were well received by the conference 

audience, although most of the audience was not aware of the occurrence of meteotsunami on the Iberian 

coast. This shows the importance of such a work, performed in the frame of FAST project, in 

contributing, to raise public awareness in coastal areas vulnerable to meteotsunami impact and, 

therefore, increase safety level of coastal population and decrease potential damage along the Portuguese 

coastline. Future FAST work will consist of using the results of this dissertation as a starting point to 

develop meteotsunami prediction models (Kim and Omira, 2020) as well as generating prototype 

meteotsunami hazard maps and educational material for the Iberian coast. These achievements are 

expected to impact different groups of end-users including scientists, coastal engineers, coastal 

management authorities, and civil protection. 
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II. Characteristics of all the tide-gauges under study. 

 

Table II.1 Geographic characteristics (location and coordinates) of the tide-gauges under study. 

Tide-Gauge Country Coordinates 

Lagos Portugal 37º5'55.774"N 8º40'0.617"W 

Sines Portugal 37º55'59.999"N 8º52'59.999"W 

Sesimbra Portugal 38º25'59.999"N 9º5'60"W 

Cascais Portugal 38º41'35.498"N 9º24'55.102"W 

Lisboa / Gago Coutinho Portugal 38º45'58.23''N 9º 7'39.005'' W 

Peniche Portugal 39º19'59.999"N 9º21'59.998"W 

Figueira da Foz Portugal 40º8'53.304"N 8º51'57.24"W 

Aveiro Portugal 40º38'32.28"N 8º45'10.44"W 

Leixões Portugal 41º11'4.999"N 8º42'10.001"W 

Viana do Castelo Portugal 41º41'6"N 8º50'56.4"W 
   

Huelva Spain 37º7'55.272"N 6º50'1.284"W 

Marin Spain 42º24'22.032"N 8º41'27.888"W 

La Coruña Spain 43º21'59.76"N 8º24'0"W 

Ferrol Spain 43º27'46.26"N 8º19'32.952"W 

Bilbao Spain 43º21'5.508"N 3º2'42.468"W 

Ciutadella de Menorca Spain 39º59'15.317"N 3º49'41.354"E 

Palma de Maiorca Spain 39º33'36.54"N 2º38'14.928"E 
   

St. Jean de Luz (SOCOA) France 43º23'42.72"N 1º40'53.832"W 

Boucau-Bayonne France 43º31'38.28"N 1º30'53.388"W 

Port-Bloc France 45º34'6.6"N 1º3'41.652"W 

Ile d'Aix France 46º0'26.64"N 1º10'27.264"W 

La Rochelle-Pallice France 46º9'30.6"N 1º13'14.34"W 

Les Sables d’Olonne France 46º29'51"N 1º47'37.428"W 

Le Crouesty France 47º32'33.72"N 2º53'42.54"W 

Concarneau France 47º52'25.32"N 3º54'26.568"W 

Le Conquet France 48º21'36"N 4º46'48"W 

Brest France 48º22'48"N 4º30'0"W 
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III. Instrumental records of tide-gauges and respective spectral analyses 

 

All other tide-gauges analysed for the 2010 and 2011 events. Top panel of each figure represents 

sea level variation, the middle the de-tided and filtered meteotsunami signal, and bottom panel presents 

the wavelet analysis results. The red line represents the estimated arrival of the phenomenon recorded 

in the tide-gauge. 

 

a) Meteotsunami of 2010 on the Portuguese coast of the Iberian Peninsula 

 

 

Figure III.1 Signal of meteotsunami in Lagos tide-gauge and spectral analysis of the sea level. The sample interval is 3 

minutes. 
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Figure III.2. Signal of meteotsunami in Sines tide-gauge and spectral analysis of the sea level. The sample interval is 1 

minute. 

 

 
Figure III.3. Signal of meteotsunami in Sesimbra tide-gauge and spectral analysis of the sea level. The sample interval is 1 

minute. 
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Figure III.4. Signal of meteotsunami in Lisboa tide-gauge and spectral analysis of the sea level. The sample interval is 1 

minute. 

 

Figure III.5. Signal of meteotsunami in Figueira da Foz tide-gauge and spectral analysis of the sea level. The sample interval 

is 6 minutes. 
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Figure III.6. Signal of meteotsunami in Aveiro tide-gauge and spectral analysis of the sea level. The sample interval is 6 

minutes. 

 

Figure III.7. Signal of meteotsunami in Leixões tide-gauge and spectral analysis of the sea level. The sample interval is 6 

minutes. 
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Figure III.8. Signal of meteotsunami in Viana do Castelo tide-gauge and spectral analysis of the sea level. The sample 

interval is 6 minutes. 
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b) Meteotsunami of 2011 on the Spanish coasts of the Iberian Peninsula and on the French 

Atlantic coast 

 

Figure III.9 Signal of meteotsunami in Huelva (Spain) tide-gauge and spectral analysis of the sea level. The sample interval 

is 1 minute. 

 
Figure III.10. Signal of meteotsunami in Ferrol (Spain) tide-gauge and spectral analysis of the sea level. The sample interval 

is 1 minute. 
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Figure III.11. Signal of meteotsunami in Brest (France) tide-gauge and spectral analysis of the sea level. The sample interval 

is 1 minute. 

 

Figure III.12. Signal of meteotsunami in Le Conquet (France) tide-gauge and spectral analysis of the sea level. The sample 

interval is 1 minute. 
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Figure III.13. Signal of meteotsunami in Les Sables d'Olonne (France) tide-gauge and spectral analysis of the sea level. The 

sample interval is 1 minute. 

 

 
Figure III.14. Signal of meteotsunami in Concraneau (France) tide-gauge and spectral analysis of the sea level. The sample 

interval is 1 minute. 
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Figure III.15. Signal of meteotsunami in Le Crouesty (France) tide-gauge and spectral analysis of the sea level. The sample 

interval is 1 minute. 

 

 
Figure III.16. Signal of meteotsunami in Port-Bloc (France) tide-gauge and spectral analysis of the sea level. The sample 

interval is 1 minute. 
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Figure III.17. Signal of meteotsunami in La Rochelle-Pallice (France) tide-gauge and spectral analysis of the sea level. The 

sample interval is 1 minute. 

 

 
Figure III.18. Signal of meteotsunami in Ile d'Aix (France) tide-gauge and spectral analysis of the sea level. The sample 

interval is 1 minute. 
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Figure III.19. Signal of meteotsunami in Boucau-Bayonne (France) tide-gauge and spectral analysis of the sea level. The 

sample interval is 1 minute. 

 
Figure III.20. Signal of meteotsunami in St. Jean de Luz (SOCOA) (France) tide-gauge and spectral analysis of the sea level. 

The sample interval is 1 minute. 
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Figure III.21. Signal of meteotsunami in Bilbao (Spain) tide-gauge and spectral analysis of the sea level. The sample interval 

is 1 minute. 


