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Resumo 

Nos nossos dias, o sucesso de uma empresa depende da sua agilidade e capacidade de se adaptar a 

condições que se alteram rapidamente. Dois requisitos para esse sucesso são trabalhadores 

proactivos e uma infra-estrutura ágil de Tecnologias de Informação/Sistemas de Informação (TI/SI) 

que os consiga suportar. No entanto, isto nem sempre sucede. Os requisitos dos utilizadores ao nível 

da rede podem não ser completamente conhecidos, o que causa atrasos nas mudanças de local e 

reorganizações. Além disso, se não houver um conhecimento preciso dos requisitos, a infra-

estrutura de TI/SI poderá ser utilizada de forma ineficiente, com excessos em algumas áreas e 

deficiências noutras. Finalmente, incentivar a proactividade não implica acesso completo e sem 

restrições, uma vez que pode deixar os sistemas vulneráveis a ameaças externas e internas. O 

objectivo do trabalho descrito nesta tese é desenvolver um sistema que consiga caracterizar o 

comportamento dos utilizadores do ponto de vista da rede. 

Propomos uma arquitectura de sistema modular para extrair informação de fluxos de rede 

etiquetados. O processo é iniciado com a criação de perfis de utilizador a partir da sua informação 

de fluxos de rede. Depois, perfis com características semelhantes são agrupados automaticamente, 

originando perfis de grupo. Finalmente, os perfis individuais são comprados com os perfis de grupo, 

e os que diferem significativamente são marcados como anomalias para análise detalhada posterior. 

Considerando esta arquitectura, propomos um modelo para descrever o comportamento de rede 

dos utilizadores e dos grupos. Propomos ainda métodos de visualização que permitem inspeccionar 

rapidamente toda a informação contida no modelo. 

O sistema e modelo foram avaliados utilizando um conjunto de dados reais obtidos de um operador 

de telecomunicações. Os resultados confirmam que os grupos projectam com precisão 

comportamento semelhante. Além disso, as anomalias foram as esperadas, considerando a 

população subjacente. Com a informação que este sistema consegue extrair dos dados em bruto, as 

necessidades de rede dos utilizadores podem sem supridas mais eficazmente, os utilizadores 

suspeitos são assinalados para posterior análise, conferindo uma vantagem competitiva a qualquer 

empresa que use este sistema. 

 

Palavras-chave: análise de comportamento de rede, análise do perfil de utilizadores, 

comportamento de utilizador, fluxos de rede, fluxos aplicacionais, prospecção de dados, 

detecção de anomalias. 
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Abstract 

In our days, the success of a corporation hinges on its agility and ability to adapt to fast changing 

conditions. Proactive workers and an agile IT/IS infrastructure that can support them is a 

requirement for this success. Unfortunately, this is not always the case. The user’s network 

requirements may not be fully understood, which slows down relocation and reorganization. Also, if 

there is no grasp on the real requirements, the IT/IS infrastructure may not be efficiently used, with 

waste in some areas and deficiencies in others. Finally, enabling proactivity does not mean full 

unrestricted access, since this may leave the systems vulnerable to outsider and insider threats. The 

purpose of the work described on this thesis is to develop a system that can characterize user 

network behavior. 

We propose a modular system architecture to extract information from tagged network flows. The 

system process begins by creating user profiles from their network flows’ information. Then, similar 

profiles are automatically grouped into clusters, creating role profiles. Finally, the individual profiles 

are compared against the roles, and the ones that differ significantly are flagged as anomalies for 

further inspection. Considering this architecture, we propose a model to describe user and role 

network behavior. We also propose visualization methods to quickly inspect all the information 

contained in the model. 

The system and model were evaluated using a real dataset from a large telecommunications 

operator. The results confirm that the roles accurately map similar behavior. The anomaly results 

were also expected, considering the underlying population. With the knowledge that the system can 

extract from the raw data, the users network needs can be better fulfilled, the anomalous users 

flagged for inspection, giving an edge in agility for any company that uses it. 

Keywords: network behavior analysis, user profiling, user behavior, network flow, application 

flow, data mining, anomaly detection. 
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1 Introduction 

1.1. Motivation 

Corporations have always been under pressure to perform better than their competitors. Nowadays, 

that is truer than ever, as the world seems to evolve at an increasingly faster pace. Moreover, in a 

battlefield with conditions changing rapidly, corporations have to adapt quickly and be as efficient as 

possible. IT/IS systems have greatly helped on that field, empowering the workers to perform 

complex operations faster than before. However, how are those mechanisms being used? 

Because of the highly dynamic world, agility and proactivity are two highly sought characteristics in 

workers. This means they actively search for new solutions and methods to solve problems they 

never encountered before. The internet, for example, can be seen as a huge knowledge repository 

that can be used to expedite problem solving and research. Also available on the internet are a 

myriad of tools (software) for almost every purpose conceivable. Proactive workers may download 

and use new tools that the corporation has not made available to their users. Of course, allowing 

that kind of access is a tradeoff with security. Nevertheless, even if they do not procure new tools, 

they can use existing (allowed) software in novel ways. For example, a server may be slow to 

respond during traditional work hours, making statistics collection from a supervisor a very 

inefficient endeavor. Some may chose to perform that task during off-hours so that they do not 

waste time. The application is the same, but it is being used in a different (temporal) way by 

different groups of users. 

Consider this real example: in a client-server application, the users should fill a registration form with 

customer data. For existing customers, the lookup was supposed to be performed in another 

window, and when the correct data was located, copied into the registration form. However, the 

developers designed a registration form so dynamic, that it could be used directly to perform the 

query. Some users discovered this ‘accidental’ feature and began using it, as it was more practical. 

Moreover, as new users arrived, they were instructed by the older ones to do it this way, as it was 

the most efficient one. However, the form was intended for updates only, and not for queries. Albeit 

unnoticeable for the end-users, it caused locking problems on the underlying database, degrading 

performance for the rest of the users. On the other hand, some other users were unaware of this 

‘feature’ and were using the application in the ‘intended’ way. In this example, different groups of 

users were using the same application in different ways. 

The underlying question in these examples is: “What is the user’s behavior while using the IT/IS 

infrastructure?” The answer to this seemingly simple question may allow answering to several other, 

related issues. For example, what are their real needs? Do they use applications other than the ones 

the IT/IS support deemed necessary? How do they use the applications? In essence, in a very 

dynamic environment, it is difficult to correctly estimate the real user network resource 

requirements. Traditional approaches like over-provisioning are inefficient and expensive. Using 

server-side estimates may be overly complex as there are too many applications. In addition, this 

approach does not solve the problem of applications that use external servers (on other 

corporations’ extranets, or even in the internet). 
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A second aspect of the problem concerns corporate (re)organization and relocation. To remain 

competitive it is common for large corporations to modify its internal structure every couple of 

years, physically relocating departments and reassigning space. However, how to determine the 

network needs of the users that are being relocated? What do they do, how and when do they do it?  

The third aspect involves trust. Even if Saltzer’s principle of least privilege [1] could be completely 

enforced, some kind of privilege is still required by the users to execute their functions. What 

guarantee does the corporation have about that trust? In other words, how vulnerable is it to insider 

threats? And more importantly, how to detect it? They are very difficult to detect, and some 

approaches are based on auditing. A different approach is to track the flow of information to detect 

impending leaks [2]. Whatever the approach, it is noteworthy to mention that anomalous behavior 

may be indicative of insider threat, and should be investigated. 

The fourth and final aspect concerns user compliance with the security policy with regard to 

applications. What applications are being used? Maybe they have found a new useful application. 

However, have they reviewed the licensing requirements? Alternatively, are they, even if 

involuntarily, executing malware on their machines? 

The knowledge of user behavior can deal with these four fundamental aspects. We propose a model 

and architecture to characterize user network behavior and group them into similar roles. This 

characterization can be used to identify each role (and user) network requirements, and to identify 

deviant behavior. 

1.2. Contributions 

The main contribution of this work is a model and system architecture to characterize network user 

behavior and group it into similar roles. In addition, a prototype of the said model and architecture 

was implemented and allowed better evaluation and drawing conclusions instead of a purely 

theoretical work. Also as important, a real dataset was measured from a large IT corporation and 

used for the system evaluation. The fact that many works use synthetic sets only emphasizes the 

importance of using real data. In fact, it is our opinion that, since this work deals with human 

behavior, it would not be possible to correctly and effectively evaluate the model with simulated 

data. Finally, several visualization models were devised to display some of the multidimensional data 

structures. 

1.3. Document structure 

This work is organized as follows. Chapter 2 will detail the relevant background information. The 

corporate environment section contains information about the company and its systems that are 

related with this thesis. The dataset section analyses the real dataset that was used to implement 

and evaluate this work. Relevant concepts from the areas of statistics and data mining are also in 

this chapter. This chapter ends with related work on relevant areas. 
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Chapter 3 describes the system model and architecture. Each component is explained, as well as 

model properties. This chapter also contains the models of previous attempts at solving the 

problem. 

In Chapter 4 the results are analyzed. The prototype was run against the real dataset, and the kind of 

information that the model contains is demonstrated. Anomaly detection was evaluated considering 

the underlying population. 

Chapter 5 analyses deployment into a production scenario. Every component is analyzed regarding 

the resource requirements and bottlenecks. The scalability of the entire system, regarding a large-

scale deployment is also analyzed. Finally, due to the nature of the data contained in the model, 

privacy issues are addressed. A deployment scenario that minimizes privacy exposure is presented. 

This work concludes with future work and evolution on Chapter 6 and the conclusions on Chapter 7. 
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2 Background 

This chapter details the relevant background information. The corporate environment section 

contains information about the company and its systems that are related with this thesis. The 

dataset section analyses the real dataset that was used to implement and evaluate this work. We 

rely on concepts from the areas of data mining and statistics, and a primer on both can be found on 

the corresponding section. This is, by no means, a complete analysis of data mining techniques. It is 

intended as a reference section, so that the relevant concepts are not introduced on first use, 

breaking the flow of this document. This chapter ends with the related work on relevant areas. 

2.1. Corporate environment 

The background of this project is a large IT Company that has facilities and workers spread 

throughout the country, even if more concentrated in urban areas. To help monitor and manage its 

IT infrastructure, it deployed a Complex Event Processing [3] system named Pulso [4], that performs 

data acquisition, processing, transformation and display. Its architecture is depicted in Figure 1. 

 

Figure 1 – Pulso complex event processing architecture 

The Pulso system is composed of three kinds of entities. Data sources produce events that are sent 

and stored in the event repository, in a canonical format. Examples of data sources are active 

network probes, sniffers, application-generated events, etc. The analyzers process the raw events 

into higher-level events, extracting relevant information from data. Finally, the display entities 



6 

 

generate or display the available information into human-readable formats, like alarms, maps, 

graphs, tables, performance indicators, visual displays, web portals, etc. 

The latest evolution of Pulso features workstation probes. These obtain flow information tagged 

with the source application and the account under which the application is executing. This kind of 

detail is rarely available, and it was the main drive for this project – to infer and group user behavior 

based on their tagged network flows. 

2.2. Dataset 

For this project, a real dataset with two months worth of recent data, from April to June 2009, was 

made available. The dataset was obtained on a call center and contains tagged network flow 

information. A flow is defined in the usual way, the packets involved in a connection between a 

source and destination, usually characterized by the 4-tuple <source IP, destination IP, destination 

port, transport level protocol (TCP/UDP)>. The flows are tagged, and the tags contain the application 

that originated (or received) the flow, as well as the account under which it was launched. The 

information available for each flow is the start timestamp, the duration and total bytes transferred 

(per direction, and per transport protocol). Therefore, the information available are flow records of 

the kind <source IP, destination IP, destination port, transport level protocol (TCP/UDP), application, 

user account, start timestamp, duration, bytes transferred>. The information in bold is the one that 

is unique on this work, only available because of the workstation probes. 

2.2.1. Dataset characteristics 

The transformation from accounts to users is rather simple. Domain accounts translate directly into 

users. The remaining local accounts are related to system processes, and are designated System 

accounts. 
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Figure 2 – Total daily number of users 
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As it can be seen on Figure 2, the dataset has, on average, 160 distinct users per day on weekends 

and 490 on work days. A small percentage is system users. Figure 3 shows that total traffic averages 

from 3GB/day on weekends to 7GB/day on work days. System processes generate a little additional 

traffic. 
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Figure 3 – Total daily traffic in dataset 

In Figure 4, the number of distinct user flows is, on average, 55K/day on weekends and 130K/day on 

workdays. System processes increase these figures by 40%. 

0

50

100

150

200

250

3 Apr 10 Apr 17 Apr 24 Apr 1 May 8 May 15 May 22 May 29 May

Date

Fl
o

w
s 

(K
)

System

Users

 

Figure 4 – Total daily number of flows in dataset 
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Ignoring all the system processes flows, the entire two month dataset has 1131 distinct users and 

297 distinct applications (at the binary level). From these statistics, we can conclude that the dataset 

has enough size and information to be statistically significant. 

2.2.2. Limitations 

This dataset is all the information available to execute and evaluate this project, no additional 

information can be obtained. In addition, the probe system is already in place and cannot be 

modified. However, modifications and suggestions that result from this work can influence the next 

versions. 

2.2.3. Pre-processing 

‘Users’ are domain accounts that univocally correspond to human workers (there are no shared 

accounts). ‘System’ accounts refer to local workstation accounts related to OS tasks. By analyzing the 

data, system accounts were filtered from the dataset for two reasons. First, the applications that are 

directly run by users are more likely to mirror their behavior. After all, these are the ones they are 

interacting with. Second, system accounts will most likely be performing OS-relevant functions, and 

would generate noise for our analysis. Third, only a few tasks performed under system accounts 

might indirectly mirror human behavior, by being related to user applications. These are a minority, 

and this benefit is probably insignificant when compared to the noise they could add. For these 

reasons, they were filtered. 

2.2.4. Classes 

The user population was identified into three distinct ‘classes’ or categories. Note that in a single 

class there can be users from different departments. The three classes are: 

• Class 0 – Callcenter Operators. These users have no special privileges, and should be 

performing a well-defined subset of tasks; 

• Class 1 – Callcenter Supervisors. Supervisors monitor callcenter sections, and therefore have 

greater responsibility and privileges. Their tasks are less clear, since they have to solve all the 

problems that may arise; 

• Class 2 – Others. This category includes users from tech support and specialized teams that 

may have administrative privileges and almost unlimited flexibility in the tasks they perform. 

The distribution from these classes is far from even; 90% are operators, 5% are supervisors and just 

3% are others. 

• Class 0 (Operators): 1035/1131 (91,5%) 

• Class 1 (Supervisors): 60/1131 (5,3%) 

• Class 2 (Other): 36/1131 (3,2%) 
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2.3. Data mining 

Data mining can be described as the process of extracting information from data. The main 

characteristic that tells it apart from traditional information retrieval techniques is the enormous 

sizes of the datasets. Traditional techniques may be unsuitable due, not only to this, but also 

because of the high dimensionality, heterogeneity and distributed nature of the data. To solve these 

problems, data mining is a confluence of areas, drawing ideas from machine learning, artificial 

intelligence, pattern recognition, statistics, and database systems. It is also related with Knowledge 

Discovery in Databases (KDD), the overall process of converting raw data into useful information. 

The steps of the KDD process, according to [5], are depicted on Figure 5. There are three main 

stages. The data preprocessing stage consists in reducing the available data to a manageable and 

meaningful set, i.e., selecting the relevant features, normalizing the data, etc. The data mining stage 

consists of extracting relevant information from this data set. The final stage may include manual 

tasks, and involves representing the relevant information into human-understandable form. 

 

Figure 5 – Process of knowledge discovery in databases 

The core data mining tasks are Clustering, Association Analysis, Predictive Modeling (Classification) 

and Anomaly Detection. These fall into two broad categories: 

• Predictive tasks: Predict the value of some attributes (target variable) based on the value of 

other attributes (explanatory variables). Tasks in this category are Predictive Modeling 

(Classification) and Anomaly Detection; 

• Descriptive Tasks: Derive human-interpretable patterns that summarize the underlying 

relationships in data. Clustering and Association Analysis are usually classified as descriptive 

tasks. 

In the next section, we will first analyze the properties of data itself. Then, we will briefly discuss 

these tasks, with greater emphasis on the most relevant for our work. 

2.3.1. Data 

Evidently, data mining is about data. Data can be seen as a collection of data objects, each with a 

collection of attributes that characterizes it. The values the attributes can have depend on their type. 

Four properties are used to describe attributes, related with the operations than can be performed 

with them: 
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• Distinctness: = and ≠. With only these two operations, attributes can be either equal or 

different from one another. 

• Order: <, ≤, > and ≥. These operations allow the values of an attribute to be ordered. 

• Addition: + and –. These operations allow the values of an attribute to be added and 

subtracted. 

• Multiplication: * and /. These operations allow the values of an attribute to be multiplied 

and divided. 

With these properties, attributes are classified into four types. Each type contains all the properties 

of its predecessor: 

• Nominal (distinctness). These attributes can only be compared against each other. Examples 

are ZIP codes, eye color, gender, etc. 

• Ordinal (order and distinctness). These attributes also have a natural order, like happens 

with grades, street numbers, scales, the Mohs scale of mineral hardness, etc. 

• Interval (addition, order and distinctness). These attributes can be added (and subtracted), 

which happens, for example, with calendar dates, temperature in Celsius or Fahrenheit. 

• Ratio (multiplication, addition, order and distinctness). These attributes have an absolute 

zero value, and therefore can be multiplied (and divided), like what happens with age, mass, 

length, temperature in Kelvin, etc. Therefore, it makes sense to say, for example, that one 

person weighs twice as much as another person, but it makes no sense to say that a 

temperature of 20 Celsius is twice as warm as a temperature of 10 Celsius (because the 

Celsius scale has no absolute zero). However, on the Kelvin scale, 200 degrees can indeed be 

said to be twice as warm as 100 degrees. 

It is also common to group nominal and ordinal attributes as categorical (or qualitative) attributes. 

Similarly, interval and ratio attributes can be labeled as numeric (or quantitative) attributes.  

Nevertheless, the attributes can also be classified by a different property, the number of values they 

can have: 

• Discrete attributes have a finite or countable infinite set of values. These attributes can be 

categorical, such as the examples before. Binary attributes are a special case of discrete 

attributes with just two values. 

• Continuous attributes are those whose numbers are real attributes. 

Both of these classifications are important because most techniques can only handle certain type of 

attributes, and it is common to refer to them by any of these classifications. 

Data sets 

All data sets have three characteristics that have a significant impact on the data mining techniques 

that can be used: dimensionality, sparsity and resolution. 
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The dimensionality of a data set is the number of attributes that the objects in that data set possess. 

The difficulty in analyzing high-dimensional data is referred as ‘the curse of dimensionality’. To solve 

this, dimensionality reduction techniques are used, and some will be discussed later. 

Sparsity relates to the ratio of the dataset object attributes that have a non-zero value over the 

entire data set object attributes. If this ratio is low, the dataset is labeled sparse. In practical terms, 

this is an advantage since usually only the non-zero attributes have to be stored and manipulated. 

Resolution influences the size of the dataset, and, consequently, which properties will be discernible, 

i.e., the patterns on data depend on the level of resolution. If the resolution is too high, the pattern 

may be hidden in noise, if it is too low, the pattern may disappear altogether. For example, a 

document scanned at 100 dpi is smaller, and may allow individual characters to be recognized. The 

same document scanned at 100 times that resolution, 10K dpi, will be much larger. The type of 

printing technology and paper texture can be discerned, but the fact that it contains text may not be 

detected. 

Dimensionality reduction techniques 

Principal Component Analysis (PCA) [6] and Singular Vector Decomposition (SVD) [7] are two widely 

used techniques for dimensionality reduction. PCA differs from SVD in the fact the PCA removes the 

mean of the data and SVD does not. 

Both involve a mathematical procedure that transforms a number of possibly correlated variables 

into a smaller number of uncorrelated variables called principal components. The first principal 

component (dimension) tries to capture as much of that variability as possible. The second 

dimension will be orthogonal to the first, captures as much of the remaining variability, and so on. 

The resulting set of dimensions constitute a new multidimensional space where the original data is 

projected. The idea is to capture as much of the variability of the data as required in a lesser 

dimensional space. The original dataset can then be projected into this reduced-dimensionality 

space. Since it has fewer dimensions, it is likely that more data mining algorithms can be applied to 

the data set. Note that in the end of processing, the data can be projected back into the original 

space, where it has meaning. 

 

Figure 6 – PCA example 
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Take Figure 6 as an example. The two vectors clearly point to the directions of greater variability. If 

that space had to be reduced to just one dimension, the longest vector could be used, and a 

projection on that (uni-dimensional) space would account for most of the variability. 

Another common visualization method related with dimensionality reduction is the scree plot, 

shown in Figure 7. A scree plot shows the relationship between the principal components and the 

variance explained by each of them. They are sorted by explained variance (Y-axis), and the X-axis 

contains the principal components. A scree plot helps the analyst visualize the relative importance of 

the principal components (also called factors) — a sharp drop in the plot indicates that subsequent 

factors are ignorable, because they explain less variability. In Figure 7, the most important 

components are the first two, because they are clearly higher than any of the others. It is also 

common to select the principal components up to the ‘knee point’ of the curve. 

 

Figure 7 – Scree plot 

In short, PCA has some interesting characteristics: 

• Tends to identify the strongest patterns in the data. Can be used as pattern finding 

technique; 

• Often, most of the data variability can be captured by a small fraction of total dimensions. 

After this dimensionality reduction, low-dimensionality techniques can be used; 

• If the noise is weaker than the patterns, dimensionality reduction can eliminate much of the 

noise. 

2.3.2. Clustering 

The goal of cluster analysis is to divide data into groups (clusters) that are meaningful and/or useful. 

For that, the clustering algorithm needs a similarity measure, a function that calculates the degree to 

which two objects are alike. The Euclidean distance is a very simple and popular similarity distance 

for continuous attributes, but there are others, like the Mahalanobis distance, the cosine similarity 

or the Jaccard coefficient. 
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Any clustering algorithm will try to group data points such that intra-cluster similarity is maximized 

and inter-cluster similarity is maximized. In other words, create clusters such that data points in one 

cluster are more similar to one another and data points in separate clusters are less similar to one 

another. 

Consider the example in Figure 8. The algorithm used the Euclidian distance as its similarity measure, 

so the idea was to group points that were close to one another. The data set was grouped into five 

groups, indicated by the different shapes (and colors). The goal was achieved, as five distinct groups 

are evident. 

 

Figure 8 – Clustering example 

Next, three clustering algorithms will be presented: K-means, X-means and DBScan. 

K-means 

K-means [8] is one of the oldest and most widely used clustering algorithm. It is a prototype-based 

clustering algorithm that can be applied to objects in a continuous n-dimensional space. In 

prototype-based clustering algorithms, a cluster is a set of objects that is closer (more similar) to the 

prototype of that cluster, than to the prototype of any other cluster. In K-means, the prototype is 

the centroid, i.e., the mean of a group of points. The algorithm, quite simple, is shown on Table 1. 

1. Select K points as the initial centroids 

2. Repeat 

3. Create K clusters by adding the points to its closest centroids 

4. Recalculate the centroids for each of the K clusters 

5. Until the centroids do not change 

Table 1 – K-means algorithm 

Despite its simplicity and effectiveness, it is not without issues. First, K (the number of clusters) has 

to be manually specified beforehand. In addition, the selection of the initial centroids affects the 

outcome of the algorithm. The algorithm may converge to a local minimum, and not to a global 

minimum. Several workarounds can be used, like randomly generating centroids, running that 

algorithm multiple times and choosing the best run (the one with less total error). A better approach 

is the one used in X-means, which we will analyze in the next chapter. 
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K-means does have modest time and space requirements. Let m be the number of points, n the 

number of features and t the number of iterations to converge. Its space complexity is O((m+K)n), 

because only data points and centroids are stored. Time complexity is O (t*K*m*n), but since t is 

usually small, and if K<<m, it will be linear with m. In short: 

• K-means strengths: Simple, efficient, even with multiple runs; 

• K-means weaknesses: Not suitable to all types of data: non-spherical clusters or clusters of 

different sizes and densities; has trouble clustering data with outliers, although outlier 

detection and removal can help. 

X means 

X-means [9] is a Carnegie Mellon evolution of the popular K-means algorithm that addresses two of 

its shortcomings: it improves computational scalability and determines an ‘optimal’ number of 

clusters K. This algorithm is much faster than repeatedly using K-means for different values of K, a 

common practice for automatically determining K. The computational scalability improvements are 

due to the data structure used (multiresolution kd-trees, a special case of BSP-trees) and blacklisting 

(considering only the needed centroids for each region). 

The optimum K is determined by recursively splitting each centroid into two or more, and evaluating 

if the resulting subclusters are better than the single one – a technique known as bisecting K-means. 

The algorithm uses the Bayesian Information Criterion (BIC) scoring function as its optimal measure. 

Nevertheless, it still requires a range of K ([kmin, kmax]) as input to determine the optimum K. 

DBScan 

DBScan [10] is a density-based clustering algorithm. These algorithms locate regions of high density 

that are separated from one another by regions of low density. The density of a point is the number 

of points inside a radius Eps (a configurable parameter). The results of this type of algorithm depend 

heavily on Eps. Consider the extreme cases: If Eps is too large, the density will equal m, i.e., all points 

are within Eps. On the other hand, if it’s too small, the density will equal 1 (only that point is within 

Eps). 

The algorithm, shown in Table 2, uses three types of points: 

• Core Points are the ones in the interior of a cluster. A point is considered a core point if the 

number of points inside Eps exceeds a threshold MinPts (the other configurable parameter). 

• A Border Point is a point that is not a core point, but is in the neighborhood of at least one 

border point 

• Noise points are all the others, i.e., points that are neither core nor border. 

1. Label all points as core, border or noise 

2. Eliminate noise points 

3. Create an edge between all core points within Eps of each other 

4. Make each group of connected points a separate cluster 

5. Assign each border point to one of the clusters of its core points 

Table 2 – DBScan algorithm 
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Let m be the number of points. Time complexity of DBScan is O(m*time to find points in the Eps 

neighborhood). The worst case is O(m
2
), but using kd-trees and in low-dimensional spaces it can be 

O(mlog(m)). Space complexity is just O(m), since only small amount of data is kept for each point: 

cluster label and type (core, border, noise). Summing up: 

• DBScan Strengths: Classifies points as outliers, not all have to forcibly belong to a cluster; for 

the same reason, it’s resistant to noise; handles clusters of arbitrary shapes and sizes; 

• DBScan Weaknesses: Does not handle well clusters with widely varying densities; it also does 

not handle well high-dimensional data, since density is more difficult to define; expensive 

when computing nearest neighbor requires computing all pair-wise proximities, as it is high-

dimensional data. 

2.3.3. Predictive modeling (classification) 

Classifiers require a collection of records (designated a training set), where each record contains a 

set of attributes, and one of the attributes is the class. The purpose of a classifier is to classify 

previously unseen records (assign a class) as accurately as possible. That is accomplished by finding a 

model for the class attribute as a function of the values of other attributes, i.e., class = f(attribute1, 

attribute2, …, attributen). To determine the accuracy of the model, test sets (previously unseen 

records) are used. Usually, a given data set is divided into training and test sets, with the training set 

used to build the model and test set used to validate it. 

Classification techniques are most suited for datasets with binary or nominal categories and less 

effective for ordinal categories. There are many techniques for building classifiers, each resulting in a 

different type of model: decision trees, rule-based, nearest-neighbor, Bayesian, artificial neural 

networks, support vector machines, ensemble methods, etc. 

Classifiers are evaluated based on metrics derived from its classification accuracy. This means that 

some of the models are not designed to be easily interpreted by humans, and use the black box 

approach, in the sense that no information can be extracted from them. Neural networks are an 

extreme example of that. 

2.3.4. Anomaly detection 

The idea behind anomaly detection is simple: find objects that are different from most other objects. 

A variety of approaches exist, all trying to capture the idea that an anomalous object is unusual or in 

some way inconsistent with the other objects. The three main approaches for anomaly detection 

are: 

• Model-Based – Build a model, anomalies are the ones that don’t fit well into the model; 

• Proximity-Based – Anomalous objects are distant from most other objects; 

• Density-Based – Objects in low density regions are relatively distant from their neighbors 

and can be considered anomalous. 

Class labels are labels that indicate if a data point is anomalous or normal. Considering the class label 

requirements, each technique can be classified as supervised, unsupervised and semi-supervised. 
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Supervised anomaly detection requires a labeled training set with both anomalous and normal 

objects. In unsupervised anomaly detection, no class labels are available. On semi-supervised, only 

normal labels are available in the training set (no anomalous labels). 

Chandola’s recent and thorough survey on anomaly detection [11] is a new reference in this area, 

much more complete than the previous overviews, for example, Patcha [12]. Patcha’s was more 

focused on Intrusion Detection, while Chandola’s covers a broader spectrum of applications. Note 

that anomaly detection is not our primary goal, and, therefore, not all techniques are available to us.  

Classification-based anomaly detection involves training a classifier with normal (or abnormal) data, 

so that it can recognize (classify) anomalies. However, most of the classifiers require supervised data 

in the training phase, i.e., the supplied data must be labeled (as ‘normal’ behavior, or as ‘abnormal’ 

behavior). Nearest-neighbor techniques assume that normal data instances occur in dense 

neighborhoods, while anomalies occur far from their closest neighbors. These techniques (distance 

to k
th

 nearest neighbor and relative density) are somewhat similar to the ideas behind clustering. 

Clustering-based anomaly detection is of particular interest, since we are grouping similar behavior 

into clusters. The available techniques rely on one of three basic assumptions: 

A1: Normal data instances belong to a cluster, while anomalies do not. Under this assumption, any 

clustering algorithm that does not forcibly cluster all elements can be used, like DBSCAN. A 

disadvantage of these techniques is that they may not be optimized for finding anomalies, since 

their main aim is to find clusters. 

A2: Normal data instances lie closer to their centroids than anomalies. Techniques that rely on this 

assumption first use any clustering algorithm, and then, the distance to its closest centroids is its 

anomaly score. K-means clustering, Expectaction-Maximization and Self-Organizing Maps (SOM) 

have been analyzed by Smith et al. in [13]. 

One weakness of this approach is that if the anomalies form clusters by themselves, these 

techniques will not detect them. In other words, anomalous clusters are not detected. To tackle this 

problem, a third category of clustering based techniques has been used, which relies on the 

following assumption: 

A3: Normal data instances belong to large and dense clusters, while anomalies either belong to small 

or sparse clusters. 

Although not considered by the authors, if the number of clusters is acceptable and human-

understandable, manual classification can be a perfect detector of such anomaly clusters. 

Statistical anomaly detection is also worth mentioning. The underlying assumption is that normal 

data instances occur in the high probability regions of a stochastic model, while the anomalies occur 

in the low probability regions. These techniques fit a statistical model to the data, and then apply a 

statistic inference test to determine the probability of an instance belonging to the model or not.  

Parametric techniques assume that the normal data is generated by a parameterized parametric 

distribution. Non-parametric techniques do not require that the model is known a priori, it is defined 

from the data. These techniques typically make fewer assumptions regarding the data. 
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Histogram-based techniques construct histograms to maintain a profile for each attribute of the 

data. Kernel function based techniques use a function to estimate the actual probability density 

function. Parzen windows estimation [14] is a known and proven function. Note that kernel-based 

techniques can potentially have quadratic time complexity in terms of data size. 

2.3.5. Association analysis 

The goal of association analysis is, given a set of records each of which contain some number of 

items from a given collection, to produce dependency rules which will predict occurrence of an item 

based on occurrences of other items. This area first originated to deal with customer purchase data, 

designated market basket transactions.  

Transaction ID Items 

1 {Bread, Milk} 

2 {Milk, Apples, Juice, Cola} 

3 {Bread, Milk, Apples, Juice} 

4 {Bread, Milk, Apples, Cola} 

5 {Apples, Bread, Eggs, Juice} 

Table 3 – Market basket transactions example 

For example, considering the transactions on Table 3, it might be concluded that {Bread} -> {Apples}, 

i.e., clients that buy bread are very likely to buy apples. This exemplifies the type of conclusions that 

can be drawn from association analysis. A very important aspect of these algorithms is that they only 

consider sets of categorical data, resulting in binary attributes. That is, the amounts of each item of a 

set are ignored. This has an impact on which domains these techniques can be applied. 

2.4. Related work 

Our work is a novel approach that applies existing and proven techniques towards a new goal, user 

network behavior analysis. Evidently, it is a multidisciplinary project that builds on several relevant 

fields, namely, traffic classification, data mining and user behavior. The related works are grouped by 

their major field, and analyzed in the next subsections. 

2.4.1. Traffic classification 

The goal of traffic classification is to identify and/or categorize network traffic, by analyzing some of 

its properties. The most common goal is to determine which application generated that traffic. 

While this is clearly not the main goal of this project, since the type of traffic and even the 

application is already known, this area of research is very relevant. The techniques and methods 

used to group and classify traffic are the foundation for grouping the users, since our working data 

consists of network data flows. 

Botminer [15] is a botnet detector using network traffic. Although the goal is quite different from 

our own, the techniques used are very interesting and similar to the ones we developed. Under the 

assumption that bots within the same botnet are likely to behave similarly, the technique involves 

clustering hosts using features of their behavior. First, flows are grouped into <source ip, destination 

ip, destination port, protocol (tcp/udp)> groups, per day. The relevant attributes considered are 
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number of flows per hour, number of packets per flow, average bytes per packet, and average bytes 

per second. Afterwards, for each of these four random variables, an approximate version of their 

distribution is computed by binning – dividing the entire sample set into groups of interval ranges, 

called bins. However, instead of using fixed-size binning, n quantiles between 5% and 90% are 

computed, and their values used as the bins limit. The last bin will contain all samples greater than 

the last quantile (90%). In effect, this technique is providing variable-sized bins, maximizing the 

information retained by the approximation. 

Clustering is performed in two steps. Since the previous binning technique generates many 

dimensions (number of bins * number of attributes), and the datasets also have high cardinality, a 

first, coarse-grained clustering is performed. For dimensionality reduction, only the mean and 

variance of the each distribution is used. Afterwards, for each cluster, a second clustering step is 

performed, this time with all the dimensions. The clustering algorithm used is X-means. Also 

noteworthy is the fact that two different data sources are used and clustered (network flows and 

activity). Afterwards, the clusters are correlated, and each host will receive a high score if it has 

performed multiple suspicious activities, and if other hosts in the same cluster exhibit the similar 

behavior. 

In [16], Erman et al. used clustering algorithms to perform traffic classification using only traffic 

statistics at the transport layer level. Classification techniques using transport-layer statistics rely on 

the fact that different applications typically have distinct behavior patterns when communicating on 

a network. For example, a large FTP file transfer would have a larger connection duration and packet 

size than an instant-messaging client sending sporadic short messages to other clients. Clustering 

analysis is one of the methods for identifying classes among a group of objects. They compared K-

means, DBSCAN and AutoClass algorithms on two empirical packet traces. For evaluation, the ratio 

of true positives over number of samples was used. Autoclass achieved the best accuracy, but only 

by a small margin, and it is almost two orders of magnitude slower than the other two. This factor 

also limits the number of samples it can handle in a reasonable amount of time. DBSCAN had the 

highest precision (ratio of true positives to false positives), and has the ability to label samples as 

noise. 

BLINC [17] (BLINd Classification) uses a different approach to traffic classification. Instead of 

classifying individual flows, it associates hosts with applications and then classifies their flows 

accordingly. The argument is that observing the activity of a host provides more information about 

the nature of the applications of that host. Note that BLINC only classifies hosts according to 11 

categories; it does not identify individual applications. Nevertheless, it does not use payload 

information or well-known port information. The behavior of each host is captured at three levels: 

social, network and application. 

The social level captures the interaction with other hosts, and its popularity (the number of other 

host it communicates with). This is used to detect groups, or, communities of nodes, which are hosts 

that interact with each other. This grouping is performed using cross-association algorithms.  

At the functional level, it is determined if a host is a provider or a consumer of a service, or if it 

participates in interesting communities. This is done by using the number of source ports a particular 

host uses for communication. A server is likely to use a single source port in most of its flows, while a 

client is more likely to use many (ephemeral) source ports. 



19 

 

The application level captures transport layer interactions and the final classification is refined. The 

host behavior is captured by matching all the levels against a library of empirically derived patterns, 

called graphlets. It is not mentioned how these patterns are derived, but it is highly likely a manual 

task, which is disappointing. 

In conclusion, BLINC is a complex multilevel classification approach that has a reasonable level of 

accuracy and completeness. 

Roughan et al. proposed a statistical signature-based approach [18] to solve the traffic classification 

problem. The purpose was to classify traffic into a reduced set of classes (interactive, bulk data, 

streaming and transactional). For each class, few applications (typically one) were chosen to train 

the model, using supervised learning, a predictive modeling technique. The methods considered 

were K-Nearest Neighbor and Linear Discriminant Analysis. The most relevant traffic features used in 

the model were average packet size and flow duration. Nevertheless, the authors had to include an 

additional feature, packet inter-arrival variability, to more accurately distinguish streaming traffic 

from data transfer traffic. Using 10-way cross-validation for evaluation, the results error rate was 

under 10% for the training applications, but higher for new applications. It seems that more work 

needs to be done. 

In ACAS [19], Haffner et al. also tackled the traffic classification problem by creating signatures. 

However, their goal was to determine which application a flow belongs to by inspecting application 

layer information only (payload). Using supervised learning techniques (Naïve Bayes, AdaBoost and 

Maximum Entropy), each classifier was trained using labeled data. Results showed that the first 64 

bytes of each flow were sufficient to classify the seven applications analyzed with a maximum error 

not exceeding 0.6%. Two of the applications were encrypted streams, namely https and ssh. In short, 

ACAS is using machine-learning techniques to distinguish the header of each flow. 

What is interesting in ACAS is the technique used to convert the payload data. Since these classifiers 

are known to perform well on binary data, a discrete byte encoding technique was used to convert 

the payload data into binary features. The first n-bytes of a flow f are converted into a feature vector 

v with n*256 elements. The value of each byte sets the value of the corresponding vector position to 

one. All the others remain at zero. This encoding also has the important property that all byte values 

are equidistant (based on the Euclidean distance). That is, each byte value is either equal 

(distance=0) or different (distance=1) from each other. If the first n-bytes of f were used directly, for 

example, byte values 23 and 25 (distance=2) would be considered closer (more similar) than byte 

values 50 and 80 (distance=30). This would introduce an unwanted bias in the results. 

The problem that Tan et al. address in [20] is different; the goal was to group hosts into similar 

groups, based on their connection patterns. The number of connections is not used, only the fact 

that a host has contacted another. The grouping problem was solved by reducing it to a bi-

connected component graph problem. However, the interesting part was that the number of groups 

produced was deemed too large. A subsequent phase reduced the number of groups by merging 

groups that where similar, according to the similarity function and number of connections. This 

phase had tuning parameters that had to be set to produce the desired results. Also noteworthy, 

was the notion of identifying group evolution over time. That is, groups formed by subsequent runs 

of the algorithms may have different ids, while being functionally the same. This role correlation 
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algorithm allowed tracking group variations over time. This is an important issue and solution, as 

grouping algorithms not always generate groups with the same id. 

2.4.2. Data mining 

The work by Moore, Han et al. on [21] deals with many of the challenges that we also faced, namely, 

when the dimensionality of the feature space becomes high relative to the size of the document 

space. The domain was to categorize web pages and extract the most relevant features (in this case, 

words). One of the methods is ARHP [22], which uses association rules discovery and hypergraph 

partitioning. The other one is Principal Component Analysis (PCA) Partitioning Algorithm, which cuts 

the space of documents with a hyperplane passing though the arithmetic means of the document 

and normal to the principal direction. The process is repeated recursively, creating a tree like 

hierarchy along the principal vectors. The algorithms were compared using an entropy measure, and 

both methods performed better than the traditional clustering algorithms analyzed: AutoClass and 

Hierachical Agglomeration Clustering (HAC). 

However, a more detailed analysis and their subsequent work on [23] clarifies that their model is 

suited towards frequent itemset mining, and not “clustering” in the traditional sense. More 

importantly, their scheme does not naturally handle continuous variables, which is the type of data 

we have on our work. They did develop a new algorithm called Min-Apriori [24] that operates 

directly on continuous variables without discretizing them. However, it is not clear if this variation 

was used in more recent works, like PACT [25]. 

Henderson et al. focused on analyzing user behavior in networked games [26], namely, Half-Life, 

Quake and Quake 3. Some results were expected, for instance, the number of players exhibit strong 

seasonal (time-of-day) variation. Player’s session duration time fit an exponential distribution, and 

interarrival times fit a heavy-tailed distribution. In addition, the number of players in a session 

affects new players’ decision to join or not a server, corroborating the empirical idea that players do 

not want to join empty servers. Also interesting were the techniques used for the analysis. The 

temporal autocorrelation function (ACF) and ARIMA (Autoregressive Integrated Moving Average) 

models [27] were used to examine these network externality effects. 

Park and Giordano use anomaly detection to detect insider threats in [28]. They define the users’ 

behavior using frequency patterns of their system actions (Search, Send, Copy). Then, as users have 

roles assigned to them, a pattern is inferred for each role. To detect anomalies, their technique 

involves two facets: role-level comparison, and individual comparison. Role-level comparison, 

matches each user’s behavior against that of its role (spatially). Individual comparison matches each 

user’s behavior against their own behavior while performing the same tasks in the past. 

Unfortunately, the implementation used a controlled simulation with synthetic data sets. 

Nevertheless, this dual-base comparison (against the group, and against the past) is quite 

interesting. 

The work by Lakhina in [29] is relevant, because of the usage of PCA for network traffic flows 

analysis. This was an example of using PCA to solve the “curse of dimensionality”. The analysis 

involved analyzing origin-destination flows over time in a network. In the datasets considered, there 

were fewer than two hundred dimensions. This is a high value, but not as high as the one we came 

across in our model. Nevertheless, just between 5 and 10 principal dimensions were enough to 
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accurately approximate the network flows. Another interesting conclusion was the classification of 

the eigenflows (network flows projected in some principal components) in three distinct categories: 

seasonal, spike and noise. In addition, the low-coordinate space formed by PCA shows some 

evidence of stability over time. 

InteMon [30] is a monitoring system that uses PCA to automatically infer correlations between data 

streams and alert when those correlations break. The system uses energy thresholding to 

automatically select the number of dimensions required to represent the data. An anomaly is 

signaled when the number of dimensions changes, indicating that either a correlation was broken, or 

a new one was created. Also noteworthy is using the reduced dimensional space obtained by PCA of 

the original streams to considerably reduce the sensor data storage space requirements. InteMon is 

a real-time monitoring system, so it uses a stream mining algorithm to perform PCA named 

SPRINT [31]. 

2.4.3. User behavior 

In [32], Manavoglu et al. present a sequential model for learning individualized behavior models for 

web users. First, a global behavior model is built for the entire population. Each component of the 

mixture model represents a dominant pattern in the data, and each sequence (user session) is 

modeled as a weighted combination of these components. Then, it is personalized by assigning each 

user individual component weights for the mixture model. They concluded that the Markov model 

performed better for predicting the behavior of known users, where the maximum entropy (maxent) 

model was better at the global behavior model (and also unknown users). Note that the maxent 

model was only computational feasible because of the reduced dimension of the action space. 

Mobasher et al. goal in [25] was to discover aggregate usage profiles to use as input source for 

recommender systems. In order to find overlapping aggregate profiles, two techniques were used: 

clustering of user transactions and clustering of pageviews. The relevance of this work is the 

experimental evaluation of the aforementioned profile discovery techniques based on real usage 

data. The first algorithm, PACT, uses standard clustering algorithms (K-means was used) to partition 

the space in groups of transactions that are close to each other according to some distance measure. 

A transaction is an n-dimensional vector in all the pageviews space. The aggregate profiles are 

generated from the centroids of each group. For each cluster c, a mean vector is computed by 

finding the ratio of the sum of the pageview weights across transactions in c to the total number of 

transactions in the cluster. The weights are then normalized, and low-support pageviews filtered 

out. PACT is similar to method proposed by Karypis and Han in [33], but applied to transactions and 

not documents. 

The second method clusters pageviews across user transactions. The idea is to capture overlapping 

interests of different types of users. However, since the transactions are now used as features, 

traditional distance-based techniques cannot be used because there are hundreds of thousands of 

dimensions. In addition, dimensional-reducing techniques may not be appropriate, as they may 

discard too much information. Instead, the Association Rule Hypergraph Partitioning (ARHP) [23] 

technique was used, using the well-know Apriori [34] algorithm. 

The authors concluded that PACT was the overall winner in recommendation accuracy, but 

Hypergraph does better when focused on more restricted data. Hypergraph produced a smaller set 
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of high quality and more specialized recommendations. On the other hand, PACT has a performance 

advantage when dealing with all the relevant data. 
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3 Model and architecture 

3.1. Architecture 

We followed an incremental approach and opted for a modular architecture. This enables each 

module to be replaced, upgraded, and even developed without affecting the rest of the system. It 

also creates a testbed to compare different approaches to solve each of the problems. The 

architecture is depicted in Figure 9. 

 

Figure 9 – Architecture block diagram 

The first stage, data generation, is executed by Pulso, as described in section 2.1, using the 

workstation probes and data collection mechanisms. This was the process used to create the 

dataset. Note that even this part of the process can be replaced with another that produces similar 

(or even different) data. 

The profiler is responsible for interfacing with the data, so it has to execute the pre-filtering 

operations. Its goal, however, is to characterize each user’s behavior according to a model. This 

tremendously reduces the data size to a manageable level, while remaining useful for the other 

blocks. Afterwards, the roler will gather all the individual user profiles and group them into roles 

with similar behavior. Each role will characterize a different type of behavior. The anomaly detector, 

by comparing the individual user patterns with the available roles will determine which ones have 

the highest probability of being anomalous behavior. We will now discuss each component in detail. 

3.2. Profiler 

First, the profiler has to interface with the database where the dataset is stored, adapt and convert 

the data to a manageable format and pre-filter it. As mentioned before, for this dataset it means to 

filter out local accounts. Next, the goal is to characterize each user behavior by using tagged flow 

information. The challenge is how to balance the tradeoffs. On one hand, the profile has to be 
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specific enough so that the roler can detect similar behavior, and the anomaly detector can detect 

anomalies. On the other hand, the profile size must be much smaller than original sample size – so 

that all components can run in acceptable time (i.e., solve the dimensionality problem). In addition, 

it must scale, so that it can be applied to bigger data samples. The solution is to choose an adequate 

model that satisfies all these properties. The task of the profiler then becomes to transform the 

original data into the model format, creating the user profile. 

3.3. User profile model 

Recalling our dataset information, for each user, there are three attributes of flow information per 

application: start timestamp, duration and total bytes transferred. Since the innovation of this 

dataset is the application information, ideally, we would want to characterize the user’s behavior 

using each application. For each relevant attribute, one could capture, for example, the average, the 

variance and any other number of statistical moments. However, that approach not only throws 

away too much information, as it is difficult to interpret and explain. For example, average and 

variance may have some empirical meaning, but what about skewness (asymmetry of the probability 

distribution), kurtosis ("peakedness" of the probability distribution), and the subsequent statistical 

moments? We propose a different approach, where we instead use a discretization of the 

probability density function. 

In statistics, the probability distribution (or density) function of a random variable is a function that 

describes the density of probability at each point in the sample space. The probability of a random 

variable falling within a given set is given by the integral of its density over the set. We propose a 

discrete version of this concept, defining a stepwise function with a fixed number of slices. The 

function is built from the corresponding histogram. This way, we retain most of the sample’s 

relevant features, as a tradeoff with space. The configurable tradeoff parameter is r, the number of 

slices. Therefore, we construct a discretized probability distribution function (pdf) in the following 

manner: 

1) Define the resolution r – the number of bins (or slices); 

2) Split the sample space into sequential non-overlapping intervals, and assign each bin to an 

interval. Every point in the sample space must be covered by one, and only one bin; 

3) All bins are initially empty, and each has an associated counter, with is initialized to zero; 

4) For each sample in the set, determine the corresponding bin to which it belongs, and 

increment its counter value; 

5) Normalize each bin counter, so that the total area is 1. In other words, divide the value of 

each bin counter by the total number of samples across all bins; 

6) Define a function pdf(s) that for each input of s, returns the corresponding normalized bin 

count. s must be in the range {1,2,3,…,r-1,r}. 

For example, let’s consider total traffic from individual flows. Each sample is the total traffic (in KB) 

from a distinct flow. The sample set will be {2,6,8,9,11,14,17}, i.e., 7 distinct flows. Let’s set 
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resolution r at r=4. Our sample space belongs to the interval [0,17[, so we’ll define the bins interval 

as b1=[0,5[, b2=[5,10], b3=[10,15[ and b4=[15,20[. Note that the bins do not have to be the same 

size. Any arbitrary bin interval will do, but we will discuss some techniques to dimension them. 

Applying the rules above, we obtain the results presented in Table 4: 

Bin Interval Samples Count 
Normalized 

value 

b1 [0,5[ {2} 1 0.14 

b2 [5,10[ {6,8,9} 3 0.43 

b3 [10,15[ {11,14} 2 0.29 

b4 [15,20[ {17} 1 0.14 

Table 4 – Calculating a pdf function 

The resulting pdf can be represented by the plot depicted in Figure 10. It can be interpreted that 

most flows are between 5 and 10 KB (corresponding to bin 2), and it resembles a very low-resolution 

normal distribution. 

 

Figure 10 – Example pdf function that uses the normalized values presented in Table 4 

Determining PDF slice size 

For a given resolution r, there are many ways to define the size of each slice r. To complicate things, 

most of the attributes sample space is infinite, since it has no upper bound. To solve this, the first 

step is to limit the sample space. For every period under analysis, there will be a maximum sample 

value max, such that no sample has a value greater than max. Similarly, there will also be a minimum 

sample value, typically 0. Now that the sample space is limited to [0, max], the simplest way to 

define r bins is to make them of equal size max/r, i.e., b1=[0, max/r[, b2=[max/r,  2max/r[, 

b3=[2max/r, 3max/r[, …, br=[(r-1)max/r, max]. Since the maximum value will be different per 

application, the slices size will vary per application (but not per user). 

This approach is simple but has a major problem: outliers will compress the useful data. Let’s 

consider the example from the previous section and add an outlier to it. The sample set is now 

{2,6,8,9,11,14,17,1000}, and r=4 as before. For this set, max=1000 and therefore each slice will have 

size=1000/4=250. 
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Bin Interval Samples Count 
Normalized 

value 

b1 [0,250[ {2,6,8,9,11,14,17} 7 0.875 

b2 [250,500[ - 0 0 

b3 [500,750[ - 0 0 

b4 [750,1000] {1000} 1 0.125 

Table 5 – A pdf function that exhibits compression 

As it is clear from Table 5, much information is lost because of the compression effect. We propose a 

simple solution to avoid this problem. Since, in most distributions, the number of outliers is small 

when compared to the rest of the samples, we will isolate them in a separate slice. This is 

accomplished by calculating a high percentile, say 99% (value selected rounded down). The values 

up to the percentile will be divided in r-1 equally sized slices. The last slice will contain the remaining 

1% of the distribution (which will include the outliers, if there are any). 

Recalculating the previous example, the 99-percentile of a sample with 8 values would be the 7th 

value (7,92 rounded down), which is 17. Therefore, each slice will have size=17/(4-1)=5,6. The last 

slice will contain the values higher than 17. Table 6 presents the results. This simple technique yields 

much better results, more realistically capturing the distribution of the sample. 

Bin Interval Samples Count 
Normalized 

value 

b1 [0, 5.6[ {2} 1 0.125 

b2 [5.6, 11.3[ {6,8,9,11} 4 0.5 

b3 [11.3, 17.0[ {14} 1 0.125 

b4 [17, +∞] {17,1000} 2 0.25 

Table 6 – A pdf function calculated using a percentile 

Determining attributes 

Of all the attributes of the dataset, the minimum set that allows characterizing behavior should be 

selected. The applications each user uses is certainly important to characterize his behavior.  The per 

application flow attributes (traffic per flow, flow duration, and flow start time) seem good 

candidates at discriminating user behavior. In addition, they are numeric attributes, which is the 

type best suited for the kind of analysis that we want to perform. 

The remaining attributes, destination IP and port are highly correlated to the application, not 

bringing any new information. In addition, they are categorical attributes, which would increase the 

dimensionality too much (because of the unfolding, more on this on the next section). 

In conclusion, for each application, we define three pdf functions that consider flow counts for each 

of the following attributes: traffic per flow, duration per flow and hour of day. The model of the user 

behavior is the set <application, traffic pdf, duration pdf, time_of_day pdf>, for every application 

used in the considered period. 
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3.4. Roler 

The goal of the roler is to group similar user behavior into groups or roles
1
 and to characterize them. 

It receives as inputs all the profiles, which are instances of the model described in section 3.3. For 

this kind of analysis, the most promising data mining technique is clustering. Anomaly detection is 

obviously not what we want (at this stage). Classifiers are a possibility, since they build a model – the 

ones that build black box models would be excluded. However, their main goal is to label samples 

with a certain class, as learned from the training set. In our case, we do not have a definite set of 

classes we want to distinguish. We want to find out natural, similar behavior. Because of this, they 

are inadequate. Association analysis is more geared towards discovering relationships of the type 

{Firefox} -> {Word}, that is, Firefox users are likely to also be Word users. While interesting, it is not 

what we want. Also, like mentioned in section 2.3.5, association analysis typically uses categorical 

attributes, and discards the number of uses. Finally, the goal of clustering is finding similar objects 

and group them together. Because of this, clustering techniques are the best candidates for this 

component. 

However, clustering can only be applied to numerical data. Consider the model we have: each user 

profile is a set of <application, traffic pdf, duration pdf, time_of_day pdf>, application is a categorical 

attribute, and each pdf is a structured attribute. This can be solved by applying dimensional 

unfolding, which consists in transforming every combination of categorical attributes into new 

dimensions. 

For our particular model, this occurs as follows. The starting point is a pdf slice with an associated 

numerical value, the expected probability of a flow occurring in that slice’s range. Each pdf has r 

slices. Each user profile has three pdfs, one for traffic, one for duration and other for time of day. All 

these 3*r slices will be distinct dimensions. The profile has these three pdfs for each application 

used. Each application will create new 3*r dimensions for its pdfs. In other words, each dimension in 

our model is a <application, attribute, pdf slice number> tuple. Table 7 exemplifies the unfolding 

process for our model. 

Dimension Value 

<Firefox, traffic, slice 1> 0.80 

<Firefox, traffic, slice 2> 0.10 

<Firefox, traffic, slice 3> 0.05 

<Firefox, traffic, slice 4> 0.05 

<Firefox, duration, slice 1> 0.30 

(…) 

<Firefox, duration, slice 4> 0.10 

<Firefox, time_of_day, slice 1> 0.00 

(…) 

<Firefox, time_of_day, slice 4> 0.10 

<Word, traffic, slice 1> 0.60 

(…) 

Table 7 – Dimensional unfolding example (k>=2, r=4, three attributes) 

                                                           

1
 Throughout this document, the terms group, cluster and role are used interchangeably, referring to the same 

concept. 
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This solution creates a high dimensional space, since for k applications used, for r slices per pdf and 

for our three attributes, the number of dimensions will be k*3*r. The input data for the clustering 

algorithm is conceptually a matrix, with m users (rows) and k*3*r dimensions (columns). Therefore, 

a suitable clustering algorithm must be used.  

K-means is simple, effective and fast (linear time and storage is just samples*features). However, as 

with all clustering algorithms, the issue is in determining the right parameters (at least initially). In K-

means, the parameter is K, the number of desired clusters. The problem is we have no apriori 

knowledge of how many clusters are adequate. The typical solution is to iteratively run K-means 

with increasing values of K, and calculate the total sum of squared error. When the error variation is 

below a certain threshold, K is selected. 

X-means is an improvement of K-means, since it automatically determines K in a much more time-

efficient manner, by experimenting which clusters are best to split. It is also much more memory 

efficient, since it uses kd-trees to store the data. For these reasons, X-means was the clustering 

algorithm used in the roler. 

3.5. Roles model 

The clustering algorithm will calculate a centroid for each cluster, the means of each dimension. 

Since each dimension is a slice of a pdf, each cluster centroid will be a set of pds. Therefore, the 

centroid pfds are the model for the corresponding cluster (role). This pattern describes the role 

(group) behavior. 

In effect, it is a pattern just like the user patterns (with the same dimensions), but describing the 

entire group. Nevertheless, since each dimension is calculated independently, what guarantee is 

there about the area of each pdf? We will show that if all input pdfs have unit area, each resulting 

centroid pdf also have unit area. 

Theorem 1: If all input pdfs have unit area, each resulting centroid pdf will also have unit area. 

Proof: A function pdf(s) is defined as in section 3.3, i.e., the probability that a given value lies in bin s. 

A function pdf(s,u) is a function that returns pdf(s) for the corresponding user u. All pdfs have the 

same total number of bins r. By construction, these functions have a total area of 1, i.e., 
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The clustering algorithm will calculate each pdf slice independently, where each slice s is the average 
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The total area of the pdf function for cluster c is given by 
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However, not every user uses every application, which means that, in a user profile, there will be 

pdfs with unit area, corresponding to the used applications, and pdfs with area 0, corresponding to 

the not used applications. In this case, we will show that each resulting centroid pdf area equals the 

ratio of users (in that cluster) that used that application over total users of that cluster. 

Theorem 2: If all input pdfs have either unit area or area equal to zero, each resulting centroid pdf 

area will equal the ratio of users (in that cluster) that used that application over total users of that 

cluster. 

Proof: Like before, function pdf(s) is defined as in section 3.3, i.e., the probability that a given value 

lies in bin s. 

A function pdf(s,u) is a function that returns pdf(s) for the corresponding user u. All pdfs have the 

same total number of bins r. However, now, some pdf functions have unit area, just like A1: 
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Others have area 0, corresponding to the applications the user did not use: 
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Also as before, the clustering algorithm will calculate each pdf slice independently, where each slice 

s is the average of the slice { }rs ...,3,2,1∈ of each user u in cluster c. 
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Again, the total area of the pdf function for cluster c is given by 
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Let’s divide cluster c into two sub-clusters: c0 containing the users that did not use the application 

(rule B2) and c1 containing the users that did use the application (rule B1). B5 can be rewritten as 

B6)
c

jipdfjipdf

cipdf cj

r

icj

r

i
r

i

∑∑∑∑
∑

∈ =∈ =

=

+
= 10

)),(()),((

),( 11

1

 

By substituting the first part with B2 and the second with B1, we have 
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These properties mean the model is correct, in the sense that the resulting pdfs represent the 

behavior of most users, and also yields information about the ‘popularity’ of each application in each 

cluster. For example, if cluster 4 has a pdf for application A with area of 1, that means that all users 

in that cluster used it. On the other hand, if cluster 5 has a pdf for application B that only has an area 

of 0.5, only half of the users in that cluster used it. 

Application energy 

In a profile, every application is characterized by 3 pdfs, one per attribute (traffic, duration, 

time_of_day). When a user utilizes that application, all pdfs have area 1, and when he does not, all 

three have area zero. As it was shown before, each application pdf in a cluster centroid will have an 

area proportional to its cluster usage ratio. This means that the area for any of the three pdfs that 

characterize it will be the same. Let’s define the average of the 3 pdfs area from application X as its 

‘energy’. Since all three areas are the same, the application energy will also be equal to any of its 

three pdfs area. The application energy will be in the range [0,1], since this is the range for each pdf.  

This property reflects the importance of each application in a cluster. High-energy applications are 

the most relevant for that cluster, and characterize it. The shape of each pdf characterizes how the 

users in that cluster used that application. For example, the same high-energy application in 

different clusters might be used differently, thus, the pdfs will have different shapes. 
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3.6. Anomaly detector 

As seen in section 2.3.4, the are three main types of anomaly detection techniques: model-based, 

proximity-based and density-based. Since we already have a model for the users and for the roles, 

the model-based technique is the most cost-effective to use. 

The main idea is that users that are farthest from clusters centroids are anomalies. For each user 

profile, we define an anomaly score as the sum squared error to the nearest cluster centroid. We 

calculate the anomaly score for each user, and sort them by that score. The highest scores up to a 

threshold or the top x% are considered anomalies. 

In the complete process, each anomaly may be manually analyzed, comparing the applications used 

with the ones on the nearest cluster. Sorting the applications by total error will yield the ones that 

were the most ‘anomalous’. For popular applications, a side-by-side comparison of the pdfs may be 

useful, revealing the differences in behavior. 

An additional step is required, though. An entire group may be “anomalous”, in the sense that it 

exhibits strange behavior. The elements of these groups will be near their centroids, and will not be 

flagged as anomalies. The only way to detect them is through manual inspection of each group 

profile, a step that was already recommended. 

3.7. Temporal analysis 

The architecture we have seen so far can be applied to any period: day, week, month, year, etc. 

Nevertheless, it is a single analysis. By making multiple consecutive analyses and comparing them, 

one could examine the evolution of: 

• Anomaly scores per user. The case of a user that exhibited anomalous behavior in just one 

period is different from the case of a user that has the said behavior for some periods. This 

analysis also allows making a distinction between single occurrences (spikes), and persistent 

behavior. It will also allow verifying if the anomaly score for a user is stable, increasing or 

decreasing; 

• Cluster stability. This analysis will show how the roles are evolving over time, and if they are 

stable or show much variation. 

3.8. Previous models 

The model described so far is the final version, and the culmination of this research project. It was 

neither the first nor the only one tried. The lessons learned from the previous models that lead to 

the success of the final one are also valuable. Therefore, this section briefly analyses the early 

approaches at solving the problem. 
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3.8.1. PCA / SVD 

The first attempt was to use principal component analysis (PCA) and similar techniques (like singular 

vector decomposition) to perform dimension reduction on the dataset. The idea was to discover 

which applications were important to tell users apart. The dataset was unfolded into application-

attribute pairs, but only a single attribute at the time. Only one value was considered by attribute, 

usually the sum. The resulting scree plot revealed a heavy-tailed distribution, meaning that many 

dimensions were required for accurate separation. Not only that, but the principal vectors contained 

contributions from practically all the applications, making it difficult to distinguish the important 

ones. 

The analysis was interesting, and helped shed some light into the dataset. Nevertheless, this line of 

research ultimately showed no useful results, and was abandoned to focus on more domain-specific 

approaches. 

3.8.2. Overly simplistic model 

The first domain-specific model was very simplistic on purpose, to get a more detailed feel of the 

data. Of course, had it sufficed, this would have been a much shorter project. The application 

information was ignored on purpose, and a tridimensional space was defined: <duration, time of 

day, total traffic>. Every flow was plotted on this tridimensional space, represented by a dot in 

Figure 11. All the dots have vertical lines connecting them to the XY plane. The X-axis (horizontal) 

represents duration, the Y-axis (depth) is the time of day and the Z-axis (vertical) is traffic. 

 

Figure 11 – Tridimensional (duration, time, traffic) plot of dataset 

There are no evident groups or separations, as expected. Clustering also did not yield any 

meaningful separation of the three classes (operators, supervisors, others). 
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These were also the first attempts at developing visualization techniques for the dataset. We agree 

that the human visual system is a “pattern seeker of enormous power and subtlety” [35]. Since this 

system is to be used by human operators, it makes sense to display the data in the most meaningful 

manner. 

3.8.3. Fixed categories on individual attributes (traffic/flows/duration) 

On this model, each application is a dimension. A single flow attribute is used (traffic, number of 

flows or duration). For each user flow, the values of the selected attribute are added to the 

corresponding application. In the end, the values are normalized. In effect, this determines the 

applications each user uses the most, according to the selected flow attribute. 

Experiments were made for each of the three attributes, and the results were similar. The clusters 

showed an even distribution across all three classes. No natural groups could be discerned. 

3.8.4. Variable categories on all attributes 

This model is an improvement over the previous one. The idea is to generate more dimensions, 

splitting each application into a set of usage patterns. It is a two-step model: 

First, cluster each application individually, to determine different application usage patterns. For 

each application, the entire dataset was used (all users). The space had three dimensions (time of 

day, duration, and traffic). These clusters defined usage categories. 

Second, using the categories from the previous step, classify each user flow, like in the previous 

model. In the end, normalize the matrix. 

 

Figure 12 – Scatterplot for application 520 
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Again, the results were not satisfactory. To find out why, scatter plots like the one in Figure 12 were 

generated for each application. Each dot represents a flow in the <duration, time of day, total 

traffic> space. The colors (if available) indicate the class: red is class 0, green is class 1 and blue is 

class 2 –  they are not that important, since class 0 dominates the plot, and the remaining classes can 

barely be seen. The X-axis (horizontal) represents duration, the Y-axis (depth) is the time of day and 

the Z-axis (vertical) is traffic. 

From the manual analysis, the conclusions were: 

• The categorization step only creates categories if a majority of the users behaves differently. 

Therefore, distinct but minority behavior will not be analyzed; 

• By using that few categories, many important information from the dataset is lost. 

Therefore, the results are poor; 

• Since the results are normalized, if a user behaves like all others, but uses a single 

application that unbalances the analyzed attribute (like much traffic or many flows), the 

relative percentage of the rest will decrease, making the user too different. This yields poor 

results; 

• On the other hand, if the results are not normalized, it is difficult to compare different users, 

because of their different workloads; 

• Treating each application individually was biasing the results, and the user separation 

process. 

 

The final model handles these issues by using more information (one pdf with r slices per attribute) 

and only one grouping phase, to pickup subtle differences in behavior. 
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4 Results 

A prototype of the proposed system described in Chapter 3 was implemented using a combination 

of Java and the R statistics program [36]. JRI in the rJava package [37] allowed Java to interface with 

R. This chapter presents and discusses the results. 

4.1. Single analysis 

The longest time frame on our dataset that had some period cycle was one month. Therefore, the 

first month of data was analyzed. Analysis on the second month yielded similar results. This period, 

corresponding to the second month, has 841 users and 203 distinct applications. The distribution for 

this period is similar to the one for the entire dataset: 

• Class 0 (Operators): 765/841 (91%) 

• Class 1 (Supervisors): 48/841 (5,7%) 

• Class 2 (Other): 28/841 (3,3%) 

 

Running the Profiler, we obtain the user profiles. Each user profile is a set of pdfs for the applications 

used by that particular user. Figure 13 contains the three pdfs for user 2 and application 58. 

 

Figure 13 – PDFs for user 2, application 58 

From left to right, the duration slices have width=0.4 hours, the time of day slices have width=2h, 

and the traffic bins have width=400KB. The application usage can be interpreted as containing 

mostly short duration flows. The application is used during the work hours, since the time of day 

exhibits the typical two hump daily distribution. Most of the flows contain little traffic. Now, if we 

unblind application 58 and reveal it is a web browser, this means the user mostly navigates in 

webpages during working hours. Let’s compare this, with the pattern of user 252, in Figure 14. 
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Figure 14 – PDFs for user 252, application 58 

These pdfs show a much more skewed time-of-day distribution, somewhat longer flows, and 

distributed between light and heavy traffic flows. Probably this user has to download large files on a 

regular basis, leaving them downloading after work hours 

This is an example of what the user model can characterize, per application. The profiler produces 

these distributions for each application, for each user. This multi-dimensional dataset can be 

represented as a matrix. We devised a visualization method for this data, designated 

‘user/application spectrogram’, a bird’s-eye view on all the user profiles. 

 

Figure 15 – User/application spectrogram (high contrast) 
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In a user/application spectrogram, each column corresponds to a user profile. Each consecutive set 

of rows will contain one application vector. Each row contains one dimension, unfolded as explained 

in section 3.4. It can be seen as if the three pdfs values are stored in a vector corresponding to an 

application. Therefore, each row contains one of the slices of the corresponding application-

attribute pdf. Each value in this matrix is the value corresponding to the pdf of user x, and 

application-attribute-slice y. Using a black-and-white palette, black corresponds to value 1 and white 

to value 0, we obtain the User/Application spectrogram in Figure 15. We present the high contrast 

versions of the spectrogram to better show its features. The contrast increase was obtained by 

applying a non-linear function to the (linear) tone scale. The function used was f(x)=x
a
 with a<1. 

The applications were ordered so that the most used ones appear at the bottom. Interestingly, 

despite the human ability to detect patterns, there does not seem to be any discernible ones. 

However, after running the roler, nine roles are defined, shown in Figure 16. The vertical (blue) 

dashed lines indicate cluster separation, and the users were re-ordered so that the clusters are 

contiguous. 

 

Figure 16 – User/application spectrogram (high contrast) after clustering 

The inter-group differences and the intra-group similarities can clearly be seen. Figure 17 is a detail 

of the bottom part of Figure 16. It contains the 25 applications with highest number of flows. 

Horizontal (blue) dashed lines were added to separate distinct applications. 
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Figure 17 – User/application spectrogram (high contrast) detail after clustering 

Now, humans can visually evaluate similarities and differences in quick and effective way, which is 

the strength of the User/Application Spectrogram. Let’s number the clusters from left to right, 1 to 

9. The class/role distribution is presented in Table 8. 

Role 
Class 0 

(Operators) 

Class 1 

(Supervisors) 

Class 2 

(Others) 

1 49 3 0 

2 164 1 0 

3 52 0 0 

4 132 1 0 

5 137 18 0 

6 35 10 15 

7 114 4 0 

8 82 11 1 

9 0 0 12 

Table 8 – Role user distribution per class 

From the data in Table 8, several aspects can be concluded. First, supervisors do not seem that 

different from operators, they appear mixed with them. Some roles contain mostly operators, 

namely roles 1 through 4 and 7. The supervisors are mixed with operators mostly in roles 5, 6 and 8. 

There is even an entire role (role 9) with just users from class 2, the ‘Others’ group. This role is 

clearly different from the others, as can be seen from the spectrogram. Role 3 is also different from 

the rest, and contains mostly operators, which is quite strange. Role 6 contains a mix of every class. 

From the spectrogram, roles 3 and 6 also stand out, backing the results on the table. 
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4.1.1. Role visualization 

Similar to the user profiles, each role is also characterized a set of applications and their behavior 

(pdf function) in each of the three attributes (traffic, duration, time). As an example, one of the most 

used applications for role 3 – application 476 – can be seen in Figure 18. 

 

Figure 18 – Application 476 in cluster 3 

This application is characterized by fast interactions (low duration flows), and light traffic (around 

6KB per flow). It shows the usual two hump cycle, but there are many interaction between 18-20h, 

probably due to functions performed at office closing hours. This type of characterization is exact, 

but lengthy, since there are many applications. 

 

Figure 19 – Application energy plot for all clusters 
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To solve this, we developed a visualization that allows quick role characterization: by using the 

energy per application (as defined in section 3.5, page 30), it can be seen which applications each 

roles use most. Designated ‘Application energy plot’, this visualization plots the energy for each 

application. An example for our nine roles can be seen in Figure 19. The dashed lines indicate the 

50% and 25% borders. It can be seen that each role has its distinct signature. 

 

Figure 20 – Application energy plot for clusters 3 and 4 

Cluster 3  Cluster 4 

Usage Application  Usage Application 

100% Business 533  100% Business 533 

100% Business 520  100% Business 520 

100% Business 476  100% Business 476 

94% Login 6  100% Login 6 

92% Business 236  100% Business 267 

90% Web Browser 58  100% Web Browser 58 

85% Business 552  99% Business 275 

   99% Business 236 

   99% Business 330 

   98% Business 319 

   98% Business 105 

   98% Business 131 

   84% Business 218 

   59% Office 133 

   51%  Office 264 

Table 9 – Cluster 3 vs cluster 4 applications breakdown (over 50%) 
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Let’s compare roles 3 and 4 seen before on Figure 17. For that, let’s use the Application energy plot 

for just roles 3 and 4 in Figure 20. The differences between which applications each role uses the 

most can be seen. There are some common applications on the upper left quadrant, but each series 

has a distinct signature. Table 9 shows a more detailed breakdown (for applications used by more 

than 50% of the role) with differences highlighted in bold. 

Role 3 has a unique application when compared to role 4 – Business 552. Role 4 has many more 

unique applications, including office applications. As expected, there is a common set of applications 

(after all, it is the same general population). This information confirms and explains the differences 

seen in the spectrogram detail (Figure 17, page 38). Role 3 has many more white areas because 

there are a number of applications that are not much used when compared with role 4. 

Nevertheless, even applications used by many users can be used differently. Let’s compare Business 

Application 476 in Figure 21 (role 3) with Figure 22 (role 4). Both have the same short duration flows 

(less than 18 minutes). However, role 3 uses it throughout the day, with greater emphasis between 

18-20h. In addition, there is a greater variability on flow traffic, maybe due to a more diverse set of 

operations. Cluster 4 only uses it from 14h-22h, potentially an afternoon shift. In addition, traffic 

flow is more regular, between 6KB and 13KB, pointing towards a more stable set of operations. 

 

Figure 21 – Business application 476 in cluster 3 

 

Figure 22 – Business application 476 in cluster 4 
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4.1.2. Anomaly detector 

We have seen how our model can characterize individual user behavior, role behavior and how 

visualizations can be used to quickly inspect data. The final component of the system is the Anomaly 

Detector. It computes an anomaly score for each user, the ‘distance’ to the nearest cluster centroid. 

To visualize these scores, the ‘Anomaly Score’ plot contains the sorted scores for all the users. 

 

Figure 23 – Anomaly score plot 

The X-axis has the users sorted by anomaly score, and the Y-Axis, the anomaly score. The vertical 

blue dashed lines separate the top 10% and 5% of the users. Each class is plotted with a different 

symbol and color. 

Based on our knowledge of the dataset we were expecting class 2 to be mostly anomalies, since they 

have great freedom and privileges. We were also expecting for class 1 to be anomalies, since they 

have much greater freedom than operators do. The operators (class 0) should all be similar and 

‘well-behaved’, not anomalies. 

Therefore, we are expecting class 2 and class 1 to be most of the anomalies. To evaluate the results 

we also have to take into account the base distribution. Recalling, the base distribution is: 

• Class 0 (Operators): 765/841 (91%) 

• Class 1 (Supervisors): 48/841 (5,7%) 

• Class 2 (Other): 28/841 (3,3%) 

Class 1 and 2 together represent only 9% of the total samples. Therefore, at least 9% of the 

anomalies the detector flags should be either class 1 or class 2 samples. By comparing our results 
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against these 9% we get an estimate on how good the anomaly detection is. The anomaly detector 

had the results shown in Table 10, confirming the data on the anomaly score plot. 70% of the top 1% 

higher anomaly score were either class 1 or 2, a 7.8 times increase over the base distribution (9%). 

For the top 5% and 10%, more than 40% of the anomalies were class 1 or 2. This is a significant 

increase (over four times) over the base distribution. These results were what we expected. Let’s 

analyze the top two anomalies shown in the plot. 

Anomalies Class 1+2 
Increase over 

base distribution (9%) 

Top 1% 70% 7,8 

Top 5% 43% 4,7 

Top 10% 42% 4,6 

Table 10 – Anomaly detection results 

Class 2 anomaly 

The anomaly with the highest score is user number 2, and as it can be seen from Figure 23, belongs 

to class 2 (top right red x mark). Therefore, his role uses many and uncommon applications. But even 

considering those, he uses 72 distinct applications, most of which no one else on his role uses. This 

diversity accounts for the bulk of his anomaly score. 

Manual and individual inspection of the applications reveals that many are not business-related, 

some require administrator privileges, and some are unknown to us. Clearly, either this user is 

cleared for such behavior or it is in violation of the security policy. It is, in fact, an anomaly, that 

warrants further investigation. 

Class 0 anomaly 

These anomalies are much more promising and interesting, since one would expect all class 0 users 

to be operators and behave in a similar fashion. The user in question is user 10, belongs to class 0 

(operator), cluster 5. Recalling from Table 8, cluster 5 contains mostly operators, and some 

supervisors. 

The user had 90 distinct applications. A quick comparison of their names to the ones on his cluster 

reveals a great mismatch. We identified media playing applications, network debug tools, and 

different business applications. It is very suspicious that a callcenter operator would use such 

applications. It also warrants further investigation. 

During this analysis, we realized that on screen side-by-side comparison of the user’s pdfs and the 

cluster’s pdfs for the applications is a useful technique to spot subtle differences. 

On both analyses, we omitted the application list table versus cluster. Since the application names 

are blinded, it would not be much useful to display a long table of ‘number applications’. 
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5 Deployment 

This section details the major concerns in deploying this system. It also analyses issues relevant for 

deployment in a corporate environment. 

5.1. System components 

5.1.1. Probes 

Although not part of this project, the probes must be deployed on workstations to generate the 

relevant events for this system. Since most corporations have control over the images on the 

workstations, and the deployment process, this should be easy to accomplish. The probe should 

generate little traffic (as not to be intrusive) and stable. 

The per-workstation traffic volume is already low, but sampling can be used. It will be most effective 

if applications with many volumes are sampled, instead of randomly sampling flows (since it might 

affect applications with little flows). Sampling can also be done at the workstation level, which 

means not all users will be monitored. This may affect the results, because some potential outliers 

may be missed. It is recommend that all users are monitored, especially since the probes are light, 

unobtrusive and stable. 

The events that are sent from the probe to the central event repository should be protected, 

depending on the attacker model: 

• If an attacker has eavesdropping capabilities, the confidentiality of the events should be 

assured. Otherwise, the attacker will gain information about what applications each user 

utilizes; 

• If an attacker has injection capabilities, the authenticity of the sender should be assured. 

Otherwise, the attacker can poison the database with false events. The authenticity of the 

event repository should also be assured; otherwise, an attacker may impersonate it. 

Freshness mechanisms (like timestamps and/or nonces) should be used to prevent replay 

attacks; 

• If an attacker has modification capabilities, the integrity of the message should be assured, 

otherwise, the attacker could mask anomalous behavior. 

5.1.2. Event repository 

A listener will store the events in a backend database. The listener should be light to reduce latency. 

The database will be queried by the profiler to provide data. The datasets will most likely not fit in 

memory, so disk throughput is the main concern. It will have very little CPU requirements. 

Concurrency should be managed, so that the listener does not block writing events when the profiler 

is accessing data. 
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5.1.3. Profiler 

The bottleneck of the profiler will most likely be the database access speed, since it needs to access 

all the flow information for all users to create the model. The profiler will calculate quantiles, group 

samples and generate pdfs. These general-CPU operations are not easily parallelizable.  

Additional memory will allow several users’ flow information to be fetched at the same time. This 

will increase the speed, because less database queries will need to be done. On one extreme, one 

query per user will have to be made; on the other extreme, one query will fetch all data for all users. 

5.1.4. Roler 

The Roler will be CPU and memory bound. The clustering algorithm allows parallel CPU operations, if 

parallel implementations are available. If the entire flat data set fits in memory, the fastest and 

simplest implementations that use flat matrixes can be used (like the ones in R). However, if a flat 

dataset does not fit into memory, which is highly likely, it is preferable to use a sparse clustering 

algorithm. The worse option is to use a simple clustering algorithm with flat dataset larger than 

memory and use swapping. This will have a potential high slowdown (due to disk access) of several 

orders of magnitude. 

5.1.5. Anomaly detector 

The anomaly detector is a simple step, a simple computation of distance against the cluster centers. 

5.1.6. Temporal analysis 

A temporal analysis is a sequence of <Profiler,Roler,Anomaly Detector> steps for different time 

periods. Previous results should be cached, since they will not change. Only the last period needs to 

be calculated. 

If sliding windows are used, the profiler can cache intermediate sample data on a minimum 

granularity (day) to avoid repeated database access. For example, pre-aggregated daily flow counts. 

5.2. Scalability analysis 

At first sight, it may seem the system will have scalability issues. The space requirements are 

dominated by the user profile matrix, needed by the roler. It is O(users*applications), more 

precisely, O(users*number_attributes*resolution*distinct_applications). In our particular case, with 

resolution=12, and number_attributes =3, it’s O(users*36* distinct_applications). 

A quick estimate shows that, for 10.000 users and 10.000 applications there will be 10K*10K*36 = 

3,6G elements. Using 32-bit floats that’s a total of 13,4GB! The following sections explain why this 

estimate is inaccurate. 

5.2.1. User / distinct application ratio 

It is important to realize that the number of distinct applications does not grow linearly with the 

number of users, even if we consider irrelevant applications. Using the complete (two months) 
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dataset, for every X (number of users), 10 random users were picked, and the number of distinct 

applications calculated. Figure 24 shows the resulting plot. 

 

Figure 24 – User to distinct application ratio 

The blue dashed line is the 1:1 ratio (y=x). It can be seen that the real ratio is much better than 

linear, it is either logarithmic or linear with a low slope. It seems it can be approximated with a 1:4 

ratio. 

5.2.2. Sparseness 

Another point to consider is that not all users use every application. Let’s consider the first month 

data. We have 841 users and 203 distinct applications. The matrix would have 841 X 203 elements = 

170723 elements (<user,application> pairs). However, since not every user uses every application, 

only 13147 elements are not 0. This yields a ratio (real elements / maximum elements) of 7.7%. 

For two months data the numbers are similar. We have 1131 users and 231 distinct applications. 

18729 elements are not 0 over a possible 335907, which yields a ratio of 5.6%. Table 11 sums up 

these results. 

Period Users Applications Max. Elements Real Elements Ratio 

One Month 841 203 170723 13147 7,7% 

Two Months 1131 231 335907 18729 5,6% 

Table 11 – User / application sparseness (application granularity) 

5.2.3. Sparseness refinement 

We can refine the previous approach, and consider that some pdf slices may have a probability of 

zero. If some elements of each pdf can be zero, the sparseness factor may be even lower. Using the 
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previous one month example, recalling that an application is, in fact, three pdfs with 12 slices each, 

with 841 users and 203 distinct applications, the matrix would have 841 X 203*(3*12) = 6146028 

elements (pdf slices). However, only 149845 elements are not 0. This yields a ratio of 2.4%, much 

better than the previous 7.7%. 

Similarly for two months data, the matrix would have 1131 X 231*(3*12)= 12092652 elements. Since 

only 210710 elements are not 0, the ratio drops from 5.6% before to 1.7%. 

Period Users Applications Max. Elements Real Elements Ratio 

One Month 841 203 6146028 149845 2.4% 

Two Months 1131 231 12092652 210710 1.7% 

Table 12 – User / application sparseness (pdf slice granularity) 

These results mean that sparse-efficient X/K-means algorithms can and should be implemented. 

These algorithms will have a small computational overhead for lookup operations dealing with the 

sparse data structures, but these are several orders of magnitude smaller than the penalty incurred 

by the entire flat matrix not fitting into memory – the swap disk I/O access times would severely 

impact performance. 

5.2.4. Projection 

Consider the same 10.000 user deployment scenario from the introduction of this section. This time 

we will use the techniques and estimates presented so far. First, the estimated number of distinct 

applications is 2500, using the 1:4 ratio. The matrix will be 10000 X 2500. With three fields and 

resolution=12, it will have 10K X 2.5K*3*12 values. Using a conservative 5% sparsiness factor, there 

will be 45M elements. Using 32-bit floats, the matrix will occupy around 172MB, and using 64-bit 

doubles 343MB. Even if we account for overhead due to the sparse structure management, this is a 

reasonable memory footprint, causing no problem whatsoever. 

5.3. Privacy 

In many areas of the world, like in Europe, the privacy of the workers is a fundamental right. 

Considering a process in which this system is inserted, the output of the anomaly detector and the 

roler will be analyzed by a human operator. These operators could be unnecessarily exposed to their 

co-workers private data (which applications they use, etc). The following is a suggested workflow to 

handle the anomalous behavior, reducing private data exposure to a minimum. 

The suspected anomalies will be presented to system specialists, operators skilled in workstation 

administration so that they recognize the applications. No information about the user will be 

displayed (username, name, id, number, etc.), except for his class (department). With the application 

and cluster information, a correct decision can be taken whether the user should be flagged for 

analysis. 

The system will send a notification to the flagged users’ hierarchical supervisors, asking if the 

anomalous behavior is justifiable. If it is, exceptions (whitelisting) will be created, so that they are 

not flagged again. If not, more specialized tools can be activated to analyze the situation. 
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6 Future work 

Our work’s modular approach allows for independent evolutions and parallel research of each 

module. During the course of our work, the following topics or areas were considered interesting to 

analyze in future work. 

Temporal Analysis. Temporal analysis concerns the evolution over time of several of the 

parameters. A temporal analysis of the anomaly score per user will allow making a distinction 

between single occurrences (spikes), and persistent behavior. It will also allow verifying if the 

anomaly score for a user is stable, increasing or decreasing. A temporal analysis on the cluster 

stability will show how the roles are evolving over time, and if they are stable or show much 

variation. It will be interesting to known which users changed clusters, and how they relate with the 

anomalies. 

Web-based applications. Web-based applications are accessed using the same client application – 

the web browser. Because of this, all of their flows are mixed together in the web browser 

application. In effect, we are analyzing all their behaviors as one application. This may lead to 

imprecise results and application masking. To solve this, we would create virtual applications: unfold 

the browser application into several <browser,ip> virtual applications. It is very rare to have web 

services for different applications on same machine. Therefore, using IP addresses (or ranges), we 

could tell these applications apart. The same goes for internet traffic, since in most corporations it 

flows through a web proxy. Internet traffic could also have its own virtual application. 

Variable-sized slices in pdf. Our current approach uses fixed-sized slices (or bins) and calculates a 

quantile to avoid outlier compression. This technique is simple and effective, but the higher quantile 

value must be manually adjusted. For example, from our analysis we suspect that the 99% quantile 

may still be compressing the duration attribute. 

The approach used in Botminer [15] is interesting, it uses variable-sized slices. As many quantiles as 

the number of slices are calculated, so that each contains approximately the same number of 

samples. For example, in our r=12 case, 12 quantiles would be calculated, each with 8.3% of the 

sample space. Bin one would have samples from 0 to the value of the 8.3% quantile, bin two from 

the 8.3% quantile to the 16.7% quantile, and so on, until the last one, bin twelve from the 91.7% 

quantile upwards. 

However, some questions remain, like, how would this variable-sized bins algorithms affect the pdf 

area properties? 

Weighted k-means/x-means. Currently every application has the same weight (importance). The 

idea is that giving them different weights could cluster the users differently, closer to reality. 

Automatic anomaly evaluation. Anomaly verification will most likely be a manual process, especially 

if no false positives are tolerated. As the operators accumulate experience over time, they will build 

a mental database of ‘suspect’ applications. By transferring this knowledge into the system, each 

application could have an ‘anomalous level score’. The goal is for the system to automatically 
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calculate an anomalous level score for the user, a refinement of the anomaly score, speeding up the 

task of the operator – or maybe even completely automating the system, except for new 

applications. 

Cluster Refinement. The clustering algorithms used do not have the ability to automatically mark 

samples as noise. Every sample must forcibly belong to a cluster. This means that anomalies may be 

skewing the cluster centers. Each time an anomaly is flagged, the clusters could be recalculated 

without the said anomaly (outlier). This would improve the clustering accuracy. 

Multi-dimensional pdf. Our current model uses three independent pdf, one for each attribute. 

However, these attributes may not be (as very likely are not) independent. To capture the 

dependencies between them, a multi-dimensional pdf (in our case tridimensional) pdf could be 

used. Our current model of three independent pdf can be seen as projections of this three-

dimensional pdfs into their own plane. This would inevitably bring additional challenges, for 

example, how to visualize the data. Do not forget that the function would be of the kind R
3
 to R, 

requiring four dimensions to visualize. It might also have an effect on the pdf area properties. 

Other clustering algorithms. By taking advantage of the modular design, other clustering algorithms 

and techniques could be experimented and compared with the current implementation. For 

example, graph-based or density-based clustering. It would be interesting to analyze the density-

based clustering capability of marking samples as outliers. 

PCA and K-means relation. Work by He et al. in [38] and [39] shows that PCA automatically projects 

to the subspace where the global solution of K-means clustering lie, and thus facilitate K-means 

clustering to find near-optimal solutions. Maybe PCA can be used to improve the clustering 

algorithm after all. 

Model evolution. Finally, the model itself can be refined. Can it be simplified and still achieve 

comparable results? Alternatively, maybe it could be extended capture the user behavior with more 

detail. 
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7 Conclusion 

The goal of this project was to use network flows tagged with user and application information to 

characterize the user network behavior. The knowledge of how users are utilizing which application 

can have an impact on the company IT infrastructure management. By knowing their real needs, 

resource usage can be optimized, and facilitate relocation. It may also detect anomalous behavior, a 

possible indicator of insider threat. In addition, the compliance with the security policy can be 

verified. 

With those goals in mind, we proposed a model and system architecture to characterize user 

network behavior, group them into roles (similar groups) and detect anomalies. This characterization 

can be used to identify each role (and user) network requirements, and to identify deviant behavior. 

The architecture consists of four components. The probes and event repository collect and store the 

tagged network flow information. The profiler characterizes each user behavior by creating an 

individualized profile. The roler groups user patterns into groups (roles) that reflect similar behavior, 

and creates role profiles. Finally, the anomaly detector compares the users’ profiles against the roles 

profiles and flags anomalous behavior. The user and role profile model consists of per application 

flow probability distribution functions of three attributes: flow duration, flow time of day and flow 

traffic. 

To evaluate our system and validate the model, we implemented a prototype and tested it using a 

real dataset. The dataset consisted of two months of recent data captured in a callcenter with over a 

thousand distinct users, and over two hundred distinct applications. The results confirm that the 

roles accurately map similar behavior. The anomaly results were also what we expected, considering 

the underlying populations. 

Visualization methods were created to quickly visualize all the information the model contains. The 

User/Application spectrogram allows a bird’s eye view of the user profiles and the roles differences. 

The Application energy plot shows a signature for each role, allows role comparison, and identify 

which applications are used the most. The anomaly score plot clearly shows how anomalous some 

behaviors are. Finally, but not less important, the three side-by-side pdfs allow to characterize an 

individual application. 

We conclude that our work is a first step into better understanding and characterizing the user 

network behavior. We believe that our model is sound, and that it effectively and accurately 

captures the user behavior and flags anomalies. If deployed with the recommended precautions, it 

can be a valuable tool for any corporation. With the knowledge that it can mine from the raw data, 

the users network needs could be better fulfilled, the anomalous users flagged for inspection, giving 

an edge in agility for any company that used it. 
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