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1. INTRODUCTION

Between 1998 and 2017, floods were responsible for a total of US$656 billion in
economic losses (23% of the total of climate-related and geophysical disasters), only
surpassed by earthquakes and storms, and caused the loss of life to 142,088 persons
(11% of the total). Assessing the natural condition to the flood occurrence is the first
step to understand and prevent such disasters. Constraints on time and data
availability – high-resolution DEMs, permeability-related data, rainfall-runoff data or
historical records, for example – or the need to assess flood hazard homogeneously on
large areas limit the capacity of applying complex susceptibility assessment methods
(hydrologic-hydraulic modelling, geological-geomorphological interpretation, etc.). In
the so-called data scarce contexts, the application of coupled methodologies is quite
often not possible, requiring the search for more expedite approaches.
The proposed multi-criteria method to assess stream flood susceptibility (SFS)
considers 3 flood-conditioning factors: flow accumulation, average slope angle and
average inverse relative permeability. After assessing SFS on a cell-by-cell basis, a
municipal representation of SFS was performed to rank the 278 municipalities in
mainland Portugal (Figure 1).

Figure 2 Methodological scheme for the national scale stream flood susceptibility 
assessment.

Figure 8 Municipal flood 
risk profiles.

Classes of DISASTER flood cases per municipality

Average SFS 0 cases 1-9 cases 10-19 cases 20-90 cases Total

Very low [5.24, 6] 64
78 4 3 149

Low ]6, 7] 39
66 8 5 118

Moderate ]7, 8] 1
6 1 1 9

High ]8, 9] 1
1 0 0 2

Very high ]9, 10] 0
0 0 0 0

No. of municipalities 105 151 13 9 278

Figure 6 Classes of SFS according to models A, B and C near the Douro River mouth (A1, 
B1 and C1) and on the Águeda River basin (A2, B2 and C2). Location of plots in Figure 4.

Figure 1 Resident population (2011) per municipality in mainland Portugal (A) and 
elevation in Iberian Peninsula (B).

Figure 3 Scores assigned to the three input data used on the assessment of relative 
permeability: dominant parent material (A), fine fraction of the topsoil (B) and land use (C).

Figure 4 Historical flood records of Disaster and North databases (A), and Lima (B), 
Tâmega (C) and Águeda (D) basins.

Figure 5 Stream flood susceptibility conditioning factors: flow accumulation (A), average 
slope angle (B) and average inverse relative permeability (C).

Figure 7 Average flood 
susceptibility by municipality, 
according to SFS obtained from 
model C. Classification in 10 
classes of equal number of 
individuals (quantiles).

Table 1 Classes of average SFS per municipality and classes of DISASTER cases per 
municipality. 2. DATA AND METHODS

A summary of the used data and adopted methodology is presented in Figure 2.

2.1. DEM derived data

Flow accumulation (Facc) was calculated from the Shuttle Radar Topography Mission
(SRTM) DEM for the entire Iberian Peninsula with a 3 arc-second resolution. The result
ranges from 1 to 13029779 cells (each cell represents about 7482 m2), to which the
natural logarithm was applied, resulting in a range from 0 to 16.38.
Slope angle in degrees was calculated using the hydrologically corrected SRTM-based
DEM. Flow accumulation was ran using as input the previously obtained flow direction
raster dataset and using as weight factor the slope angle raster dataset (S), which
results in the accumulated slope angle. Average slope angle (Savg) is obtained by
dividing accumulated slope by flow accumulation and clipping the raster dataset to
mainland Portugal. As performed with Facc, the natural logarithm was applied to the
average slope raster dataset, resulting in scores ranging from [-6.3, 3.7]. The final
raster dataset of average slope angle (Savg) is the result of the transformation of those
scores to the interval [0, 10].

2.2. Inverse relative permeability

Relative permeability was estimated using three data sources: dominant parent
material (DPM), fine fraction of the topsoil (FFT) and land use (LU) (Figure 3). DPM
and FFT were extracted from the European Soil Data Centre (ESDAC) and express the
natural permeability, while LU (CLC2012) represents the effect of the land use
coverage on infiltration.
DPM and FFT classes were assigned scores from 0 to 10, on the perspective of their
influence to runoff and infiltration. Their mean was multiplied by LU (which ranges
from 0 to 1), thus obtaining relative permeability (Prel). Similarly to the other flood
conditioning factors, flow accumulation was calculated to obtain the accumulated
inverse relative permeability (Prel_invacc), in which flow direction is used as input data
and the inverse relative permeability (Prelinv) as the weight factor. The scores were
divided by Facc to obtain the average inverse relative permeability (Prel_invavg). The
natural logarithm was applied to these scores in order to obtain new values ranging
from [-1.2, 2.3] which were transformed to the interval [0, 10].

2.3. Historical flood records and model validation

Historical flood databases such as the DISASTER database (Zêzere et al., 2014) and
other flood documental databases (Santos et al., 2018; Santos and Reis, 2018), both
based on newspapers were used to select the best combination of flood conditioning
factors’ weights and to further validate the SFS models.
In both databases, those flood cases classified as ‘urban floods’ or ‘other type of
floods’ were excluded from this analysis.
The DISASTER database includes 932 flood cases that generated human losses (1 or
more casualties, missing, injured, displaced or evacuated persons), in mainland
Portugal, for the period 1865-2015. The other flood databases complement the
DISASTER database by adding the flood cases in which only minor losses are reported.
In sum, five validation areas were used to select the final SFS model (Figure 4).

2.4. Municipal stream flood susceptibility

The final index of SFS was computed using the data mapped in Figure 5, as follows:

Based on previous applications of this methodological approach in weighting flood
conditioning factors (Jacinto et al., 2014; Santos and Reis, 2018), the following three
models were tested at the national scale:
•Model A, with wFacc = 0.75, wSavg = 0.15 and wPrel_inv_avg = 0.10;
•Model B, with wFacc = 0.80, wSavg = 0.10 and wPrel_inv_avg = 0.10;
•Model C, with wFacc = 0.85, wSavg = 0.10 and wPrel_inv_avg = 0.05.

3. RESULTS AND APPLICATIONS

Considering the 4 validation areas, model C was selected as the one that best
describes stream flood susceptibility. A zoom-in of the SFS mapping is shown on Figure
6.

Profiles:
A – the safest (absence of 
DISASTER-type cases

B – few cases, low and very low 
susceptibility -> high exposure?

C and D – intermediate contexts 
of susceptibility and losses.

E – Moderate to Very High SFS 
and extensive record of losses

For model selection, since the models classify the stream network susceptibility, the
validation points from the historical flood databases were associated to the nearest
streamline resulting from each model, instead of being associated to the value of the
cell where they are positioned.
Pearson correlation coefficients were calculated between the i) number of cells in each
SFS class correlated with the number of flood cases per cell (P1) and ii) class of SFS
(from very low to very high) correlated with the number of flood cases per cell in each
SFS class (P2). For P1-type correlation coefficients, the more negative the correlation
the better the model: in fact, the strongest association between flood occurrences and
susceptibility occurs when high densities of flood cases occur in a small number of cells
of high susceptibility. For P2-type coefficient correlations, the more positive the
correlation the better the model because the highest densities of flood cases are
expected to occur on the highest susceptibility classes.

Model C (weighting 0.85 to Facc, 0.1 to Savg and 0.05 to Prel_invavg) performs a filtering
effect removing from streams that are represented in models A and B but that do not
have a historical record of flood cases. Higher averages of SFS are found on
municipalities crossed by transboundary rivers, particularly the Douro, Tagus and
Guadiana rivers. Some coastal municipalities located at the mouth of Portuguese river
basins, particularly between the Minho and the Douro rivers, are also classified on the
highest SFS quantile (scores between 6.67 and 8.86) (Figure 7).
Crossing the SFS municipal results with the historical flood losses from the DISASTER
database allowed for the definition of municipal flood risk profiles (Figure 8 and Table
1).

The methodology can be used in modelling the effects in SFS by changes in the
permeability conditions – caused, for example, by land use changes; the identification of
naturally priority areas of higher susceptibility for the application of hydrologic and
hydraulic (1D or 2D) modeling at the local scale.
When crossed with historical records and exposure data, the cell-by-cell SFS results have
the ability to identify priority reaches of the river network to benefit from early warning
systems, additional land use regulations and local engineering mitigation structures.


