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This thesis is organized in 6 chapters, which are preceded by a summary written in 

Portuguese and by an abstract. Before the description of the results obtained, an introductory 

review of the subject is provided in chapter 1 and the aims of the work are also detailed at 

the end of chapter 1. In chapters 2, 3, 4 and 5 the original data obtained during this research 

project is presented and discussed. A general discussion, which integrates and puts into 

perspective all the results, is presented in chapter 6.  
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SUMÁRIO 
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Sumário 

A leucemia linfoblástica aguda de células T (LLA-T) constitui um subtipo agressivo 

de LLA, o cancro pediátrico mais comum. Apesar do grande sucesso obtido com regimes 

quimio-terapêuticos ajustados ao risco, a sua eficácia está frequentemente associada a efeitos 

secundários substanciais e os casos que não respondem a terapia ou que recidivam têm muito 

mau prognóstico. Portanto, são necessárias melhores terapias focadas na eficiência e 

especificidade contra as células leucémicas. Compreender a biologia e patogénese molecular 

que contribuem para o desenvolvimento de LLA-T é fundamental para atingir este objectivo. 

A interleucina-7 (IL-7) e o seu receptor (IL-7R; heterodímero constituído pelas 

subunidades IL-7Rα/IL7R e γc/IL2RG) são essenciais para o desenvolvimento de células T 

normais, existindo igualmente evidência de que a sinalização mediada por IL-7 promove 

leucemia. Ratinhos que sobre-expressam IL-7 desenvolvem linfomas de células B e T, e a 

expressão aumentada de IL-7Rα, presente em ratinhos AKR/J, promove o desenvolvimento 

de tumores de células T. Adicionalmente, a IL-7 promove a expansão de LLA-T in vivo e 

sobrevivência e proliferação celular in vitro. Nós estudámos a existência de mutações 

activadoras do IL-7R em LLA-T e descobrimos que 9% dos pacientes ao diagnóstico são 

portadores de mutações somáticas activadoras de IL7R. A maioria das mutações introduz 

uma cisteína não-emparelhada no exão 6 que promove homodimerização de cadeias IL-7Rα, 

resultando em sinalização constitutiva exclusivamente dependente de Jak1. Também 

revelámos que as mutações em IL7R promovem transformação celular e formação de 

tumores. É importante salientar que a sinalização do IL-7R mutante, e consequente aumento 

da viabilidade e proliferação celulares, são significativamente limitadas por inibidores da via 

Jak/STAT5 (Capítulo 2). 

No passado, demonstrámos que a IL-7 promove sobrevivência e proliferação de 

células leucémicas pela activação da via de sinalização PI3K/Akt/mTOR. No entanto, a 

observação de que a formação de linfomas murinos mediada por IL-7 requer STAT5 e o 

facto de células LLA-T com mutação no IL-7R serem sensíveis a inibidores da via 

Jak/STAT5, levou-nos a investigar o papel desta última via em LLA-T. Neste trabalho nós 

demonstrámos que STAT5 é essencial para o papel da IL-7 na viabilidade, crescimento e 

proliferação de células de LLA-T. Contudo, verificámos também que o efeito da IL-7 via 

STAT5 na sobrevivência das células leucémicas é independente da expressão de Bcl-2. Para 

tentar identificar o mecanismo envolvido, efectuámos análise de sequenciação de nova 

geração (NGS) que revelou que a cinase PIM1 é um alvo directo de STAT5 no contexto de 
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IL-7 e é necessário para os efeitos funcionais do eixo de sinalização IL-7-Jak/STAT5. 

Adicionalmente, os nossos estudos sugerem que a IL-7 diminui a expressão de BCL6 e 

promove a transcrição de um transcrito alternativo (Capítulo 3). 

A autofagia pode mitigar o stresse em células cancerígenas resultante, por exemplo, 

de proliferação mediada por oncogenes ou de quimioterapia. No entanto, quando persistente, 

o seu papel protector pode alterar-se para o que é designado de morte mediada por autofagia. 

Dado que a IL-7 promove activação de mTOR, o principal regulador negativo da autofagia, 

decidimos estudar se a IL-7 poderia regular autofagia em LLA-T. Os nossos estudos 

demonstram que a IL-7 regula autofagia em LLA-T de uma forma complexa, que envolve a 

activação de vias pro- (MEK/Erk) e anti- (PI3K/Akt/mTOR) autofágicas. Dependendo do 

contexto microambiental, a IL-7 usa uma ‘estratégia flexível’ para alterar a via de sinalização 

requerida para a sobrevivência. Num microambiente rico em nutrientes (baixa autofagia) a 

IL-7 inibe autofagia e a sobrevivência celular depende da activação da via PI3K/Akt/mTOR. 

No entanto, num microambiente pobre em nutrientes a IL-7 passa a aumentar a autofagia e 

a sobrevivência depende da via MEK/Erk (Capítulo 4). 

A IL-7 mantém o tamanho celular e activação metabólica em células T normais. A IL-

7 também promove a expressão de Glut1 e hexocinase II (HK2), ambos envolvidos em 

glicólise. Em LLA-T, demonstrámos previamente que a IL-7 regula o crescimento celular, 

uso de glucose e expressão de Glut1. Usando dados de NGS obtidos no Capítulo 2, nós 

aprofundámos o conhecimento relativo à regulação do metabolismo celular em LLA-T 

mediado por IL-7. Os nossos resultados sugerem que a IL-7 tem um impacto bastante mais 

generalizado na regulação de glicólise em células de LLA-T do que antecipado. A análise 

da expressão génica mostrou que a IL-7 promove a expressão precoce de vários genes da 

glicólise, incluindo os envolvidos em pontos-chave de regulação glicolítica (Capítulo 5).  

Tomados em conjunto, os estudos apresentados nesta tese expandem 

consideravelmente o nosso conhecimento do papel do eixo de sinalização IL-7/IL-7R em 

LLA-T. A descoberta de mutações oncogénicas no IL-7R poderá ter importantes implicações 

terapêuticas em LLA-T. Adicionalmente, nós fornecemos evidências claras de que as vias 

Jak/STAT5/PIM1 e MEK/Erk poderão constituir novos alvos terapêuticos. Finalmente, 

desvendámos papéis que a IL-7 tem em importantes processos fisiológicos como autofagia 

e glicólise, o que não apenas aumenta o entendimento corrente da biologia da IL-7 e da 

leucemia T mas poderá também contribuir para a criação de novas estratégias terapêuticas 

em LLA-T. 
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Abstract 

T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, 

the most frequent childhood malignancy. Although risk-adjusted chemotherapeutic 

regimens are currently extremely effective, they frequently associate with significant long-

term side effects. Moreover, cases that do not respond to therapy or that relapse have dismal 

prognosis. Thus, better therapies focused on efficacy and specificity against T-ALL cells are 

necessary. Understanding the biology and molecular pathogenesis of T-cell leukemogenesis 

is critical to carry out this goal. 

Interleukin-7 (IL-7) and its receptor (IL-7R; heterodimer constituted by IL-7Rα/IL7R 

and γc/IL2RG subunits) are essential for normal T-cell development and there is 

considerable evidence that IL-7-mediated signaling may promote leukemogenesis. Mice 

overexpressing IL-7 develop B- and T-cell lymphomas and increased expression of IL-7Rα, 

present in AKR/J mice, promotes development of T-cell tumors. Furthermore, IL-7 promotes 

T-ALL expansion in vivo and leukemia cell survival and proliferation in vitro. We assessed 

whether activating IL-7R mutations could occur in T-ALL. We found that 9% of T-ALL 

patients harbor somatic gain-of-function IL7R mutations. The majority introduced an 

unpaired cysteine in exon 6 and promoted IL-7Rα homodimerization, which led to 

constitutive signaling that relied exclusively on Jak1. We found that IL7R mutations promote 

cell transformation and tumor formation. Importantly, mutant IL-7R signaling (and 

consequent increase in viability and proliferation) was targetable with Jak/STAT5 pathway 

inhibitors (Chapter 2).  

Previously, we have shown that IL-7 promotes leukemia cell survival and proliferation 

in vitro by activating PI3K/Akt/mTOR signaling pathway. The observation that IL-7-driven 

murine lymphomagenesis requires STAT5 and the fact that IL-7R-mutated T-ALL are 

sensitive to Jak/STAT5 pathway inhibitors, led us to investigate the role of this pathway in 

T-ALL. Here, we showed that inhibition of STAT5 in T-ALL completely abrogates IL-7-

mediated T-ALL cell viability, growth and proliferation. Importantly, we demonstrated that 

survival mediated by IL-7 via STAT5 was independent from expression of Bcl-2 family 

members. Next-generation sequencing analysis (NGS) revealed that PIM1 kinase is a direct 

STAT5 target in the context of IL-7 signaling and that PIM1 is required for IL-7/Jak/STAT5-

mediated functional effects. In addition, we provide evidence that IL-7 downregulates the 

expression of BCL6 and promotes transcription of an alternate transcript (Chapter 3). 



 

xiv 

Autophagy may mitigate stress, such as that induced by oncogene-driven proliferation 

or chemotherapy, in cancer cells. However, when persistent, its protective role may shift to 

what is called autophagic cell death. Since IL-7 promotes activation of mTOR, a master 

negative regulator of autophagy, we decided to explore whether IL-7 may also regulate T-

ALL cell autophagy. We demonstrated that IL-7 modulates autophagy in T-ALL cells in a 

complex manner that involves triggering both pro- (MEK/Erk) and anti- (PI3K/Akt/mTOR) 

autophagic signaling pathways. Our data suggest that depending on the microenvironmental 

cues, IL-7 uses a 'flexible strategy' to shift the signaling pathway required for survival. In a 

nutrient-rich microenvironment (low autophagy) IL-7 inhibits autophagy and survival relies 

on PI3K/Akt/mTOR, while in nutrient-poor conditions (high autophagy) IL-7 promotes 

autophagy and survival relies on MEK/Erk pathway activation (Chapter 4). 

IL-7 maintains cell size and metabolic activity in normal T-cells. Also, IL-7 promotes 

expression of Glut1 and hexokinase II (HK2), both involved in glycolysis. In T-ALL, we 

previously showed that IL-7 mediated cell growth, promoted glucose use and Glut1 

expression. Using NGS data obtained in Chapter 2, we extended the knowledge on IL-7-

mediated T-ALL cell metabolism. We provide significant evidence that IL-7 is broadly 

involved in upregulation of glycolysis in T-ALL. Gene expression analysis showed that IL-

7 promotes very early expression of several glycolytic genes, including those involved in 

key stages of glycolysis regulation (Chapter 5). 

Taken together, the studies presented in this work significantly expand our 

understanding of the role of the IL-7/IL-7R signaling axis in T-ALL. The discovery of 

oncogenic IL7R mutations may have important therapeutic implications in T-ALL. In 

addition, we provide clear evidence that targeting Jak/STAT5/PIM1 and MEK/Erk pathways 

in IL-7 signaling constitute new promising therapeutic targets. We also unravel new roles 

for IL-7 in important physiological processes, such as autophagy and glycolysis, which may 

help devise new therapeutic strategies in T-cell leukemia. 

 

Keywords (5): IL-7, T-ALL, microenvironment, signaling pathways, therapeutic 

targets 
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1.1 Hematopoiesis and T-cell development: a brief overview 

 

 Hematopoiesis 

Hematopoiesis is the process of formation and maturation of blood cellular elements. 

These include red blood cells (RBCs), white blood cells (WBCs) and platelets. Postnatally 

and throughout life, hematopoiesis is restricted to the bone marrow (BM) [1]. However, 

under extreme stress it may occur extramedullary [1-4]. The hematopoietic system is very 

dynamic, allowing for a fine-tuned and controlled output of newly generated cells under 

different circumstances. For instance, increased erythropoiesis often occurs in response to 

hypoxia [5, 6] or malignancy [4]. 

The challenges posed to the hematopoietic system are met by a hierarchy of stem, 

progenitor and mature cells, each with a defined role. At the top of the hierarchy sits the 

hematopoietic stem cell (HSC), a multipotent cell type, capable of self-renewing and giving 

rise to all hematopoietic cell types [7-9]. During differentiation, two major branches in the 

hierarchy are established, the myeloid branch and the lymphoid branch [10, 11]. Whereas 

the later stages of cell maturation are relatively well characterized for each of the various 

cell types, the early stages of maturation and lineage establishment are less clear. Recent 

data from murine models suggest the existence of a branching point where the common 

myeloid progenitor (CMP) gives rise only to cells of the myeloid lineage and the lymphoid-

primed multipotent progenitor (LMPP) is capable of giving rise to cells of both the myeloid 

and lymphoid lineage [11-15]. 

 

 T-cell development 

The preferred model organism to study the hematopoietic development and, in 

particular, T-cell development is the mouse. To date an extensive list of knock-outs, knock-

ins and humanized mouse models have been generated [11] that allow studying both human 

and murine T-cell development, with their many similarities and important differences. 

The thymus is the organ where functional T-cells develop and mature. The thymus is 

seeded by different populations of precursors coming from the bone marrow which present 

lymphoid potential. The most studied of these precursors, in mouse and humans, are the 

common-lymphoid progenitor (CLP) and the LMPP [15-19]. Thymic development is a 

multi-step process (Figure 1). Under the influence of the thymic microenvironment, the 

different populations seeding the thymus undergo progressive T-cell lineage restriction, 
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becoming the most immature thymic cells, early-thymic precursors (ETPs), and culminating 

with the generation of CD4+ and CD8+ mature T-cells. As the cells progress through the 

developmental pathway, they acquire T-cell identity and lose the potential to generate other 

lineages. 

The traditional classification of thymic cell populations, or subsets, is based on the 

expression of the co-receptors CD4 and CD8 [20]. Briefly, thymocytes begin their 

development as CD4- CD8- (double negative; DN) cells, progress through a CD4+ CD8+ 

(double positive; DP) stage and then become either mature CD4+ CD8- (single positive CD4; 

SP4) or mature CD4- CD8+ (single positive CD8; SP8) cells. Additionally, commitment to 

αβ and γδ T-cell receptor (TCR)-expressing cells occurs at the DN stage. Moreover, 

particularly for αβ T-cells, key events such as β-selection and positive and negative selection 

take place. Cells that have not yet rearranged the TCR β-chain may be referred to as pro-T 

cells while cells that pass β-selection until the DP stage may be referred to as pre-T cells [21, 

22]. More detailed subsets have been identified for both mouse and human thymocytes, 

though they differ in the expression of cell surface markers between the two species (see 

sub-sections below) (Figure 1). 

Although the main focus of this introduction is the classification of developing thymic 

subsets based on cell surface markers, it is unavoidable to refer that a number of growth 

factors and signaling pathways play key roles in thymocyte development in mouse and 

human. The Stem cell factor (SCF) / Kit (CD117) signaling pathway and the interleukin(IL)-

7 (IL-7) / IL-7 receptor (IL-7R) mostly sustain proliferation and viability at the early stages 

of pro-T cells [23-27]. The Wingless-related integration site (Wnt) pathway was also found 

to be important in sustaining proliferation of DN cells [28]. Importantly, the Notch signaling 

pathway is the chief element that is mandatory to establish T-cell lineage commitment and 

identity in both mouse and humans [29, 30]. 

 

1.1.2.1 Mouse 

In the mouse, the DN1 stage (CD44+ CD25-) constitutes a broad population of cells 

which contains the earliest ETPs (Lineage/Lin-/low CD117hi CD44+ CD25-) capable of 

efficiently originating T-lineage progeny, high proliferative potential and B-/myeloid- 

lineage potential [16, 31, 32]. The DN2 stage (CD117hi IL-7Rα/CD127hi CD44+ CD25+) 

further restricts fate towards the T-cells, by loss of some myeloid- and total B-lineage 

potential, and still retain high proliferative potential [16, 33, 34]. In the DN3 stage (CD117- 

CD44- CD25+) several important events take place. T-cell lineage commitment is completed 
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[20, 35]. Cells reduce proliferation and either TCR β-chain rearrangement occurs, 

committing to αβ-lineage, or TCR γ- and δ-chain rearrangements, committing to γδ-lineage 

[36]. Within the αβ-lineage, a successful β-chain rearrangement coupled with expression of 

pre-TCR α-chain (pTα) at the cell surface (pre-TCR) that is signaling productive, allows 

transition to the next stages [37]. Cells that fail to productively rearrange the β-chain die (β-

selection). The pre-TCR signal strength is powerful enough for these cells to enter a pre-

TCR-dependent proliferative burst and transition to the DN4 stage (CD117- CD27+ CD44- 

CD25-) and then to the DP stage where both CD4 and CD8 co-receptors are expressed [38]. 

The DP stage comprises ~85% of total thymocytes. In this stage cell undergo a proliferative 

block and rearrange the TCR α-chain [39]. Thymocytes will continue to mature if they 

express TCRs with the appropriate characteristics. DP cells interact with antigen presenting 

cells in the thymus displaying Major Histocompatibility Complex (MHC) molecules to 

determine their fate. If TCR signals are too weak the developing T cells do not receive 

enough survival signals and die by neglect. Otherwise, cells will undergo the process of 

positive selection [40]. Effective interaction with MHC class I will promote development of 

CD8 SP T-cells and with MHC class II will promote development of CD4 SP T-cells [41]. 

However, when TCR signals are too strong and self-reactivity may develop, cells are actively 

killed by negative selection [42], or under particular circumstances, CD4+ cells may develop 

into regulatory T-cells (Treg) [43]. 

 

1.1.2.2 Human 

Human thymopoiesis shares many similarities with the murine counterpart. Key events 

such as T-cell lineage commitment and β-selection during the DN stage, negative and 

positive selection and CD4/CD8 SP lineage commitment at the DP stage are largely similar. 

However, DN subset classification based in the murine CD44 vs CD25 expression does not 

have the same representation in human thymocytes [44].  The early T-cell precursors that 

seed the human thymus are CD34+ CD38- CD1a- (DN1). Cells then upregulate CD38 (CD34+ 

CD38+ CD1a-; DN2), followed by CD1a (CD34+ CD38+ CD1a+; DN3) [45, 46]. Analysis of 

gene expression profiling and TCR gene rearrangements suggests that an overlap between 

mouse and human DN stages of development can be established. CD34+ CD38- CD1a- 

resemble mouse DN1/ETP, CD34+ CD38+ CD1a- the mouse late DN1/DN2 and CD34+ 

CD38+ CD1a+ mouse DN3 [46]. CD1a upregulation is strongly correlated with T-cell lineage 

commitment [47] and β-selection can occur as early as this stage [46]. Acquisition of CD7 

and cytoplasmic CD3 (cCD3) occurs at the CD34+ CD38- CD1a- stage, followed by increase 
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of CD2 and CD5 expression at the CD34+ CD38+ CD1a- stage [48]. Cells then lose 

expression of stem cell marker CD34, progressively gain CD4, CD8 and surface CD3 to 

become DP thymocytes (CD3+ CD4+ CD8+), which, after TCR α-chain rearrangement, 

undergo positive and negative selection, to become either mature CD4 or mature CD8 SP T-

cells  [44]. Acquisition of maturity is accompanied by loss of CD38 and CD1a expression 

[49, 50].  

 

 

 

Figure 1. Model overview of human and mouse T-cell development. Precursors migrate from the 

bone marrow to the thymus. Thymic T-cell development starts at the double negative (DN) stage. It progresses 

to the double positive (DP) and later to the single positive stage (SP). Important surface markers are represented 

for each stage. The β-selection and positive and negative selection events are indicated. Further details in the 

text. 
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1.2 Acute Lymphoblastic Leukemia (ALL) 

Hematopoiesis is regulated by numerous factors. For instance, T-cell development is 

under the control of survival, proliferative and differentiation signals, such as those elicited 

by IL-7, Notch or TCR, and determined by recombination-activating gene (RAG)-mediated 

DNA double-strand break activity during TCR maturation [44, 51]. Although the process is 

tightly monitored, developing precursors are at risk of transformation. Malignant 

transformation of cells of lymphoid origin will result in leukemia or lymphoma.  

 

 Epidemiology and causes 

ALL is the most common childhood cancer, accounting for 26% of the cases. It is more 

common in males than in females and more prevalent in white than black children [52, 53]. 

There is evidence that ALL may develop in utero. Studies in identical twins show leukemias 

with identical genetic rearrangements [54-56]. Additionally, analysis of neonatal blood spots 

showed the presence of leukemic genetic lesions before the diagnosis of ALL [57, 58]. 

Despite this, the peak of incidence is characteristically at ages 2 to 4 [52]. 

The exact causes for ALL are not clearly known, although some genetic conditions 

associate with predisposition for leukemia development. ALL has increased risk in genetic 

disorders such as Down syndrome [59], Fanconi anemia [60], Bloom syndrome [61], 

neurofibromatosis [62], and ataxia-telangiectasia [63]. 

There is also evidence that non-genetic factors may increase the risk of ALL 

development. For example, ionizing radiation exposure (e.g. during medical treatment or 

atomic disasters) was shown as an important physical factor contributing to increased ALL 

risk [64-66]. Infectious agents (or abnormal responses against them) have also been 

postulated to contribute to ALL [67, 68]. Other factors include exposure to environmental 

pesticides, parental smoking and diet of the mother. Secondary leukemia as consequence of 

cancer therapy is more associated with the development of acute myeloid leukemia (AML) 

than ALL [67, 69]. 

 

 Biological characteristics 

ALL is characterized by an abnormal accumulation of immature lymphoid cells, or 

blasts, arrested in their development and bone marrow involvement superior to 20%. 

Presence of masses in other organs and peripheral blood involvement may vary [70]. ALL 

originates from malignant clones of B- or T-cell lineage, and the origin is believed to be in 
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the BM or thymus [71]. ALL is therefore a heterogeneous cancer with combined 

morphologic, immunologic, cytogenetic and molecular genetic characteristics [72]. 

Morphological and cytochemical characteristics per se have limited ALL sub-

classification value and usage is mostly applied to distinguish ALL from AML [73]. ALL 

blast population cells tend to be small, homogeneous, with a central large nucleus, fine 

chromatin and scant cytoplasm. Cytochemical analysis of myeloperoxidase, acid 

phosphatase and periodic-acid Schiff (PAS) stainings, help complementing the diagnostics 

[74]. 

Immunophenotyping by flow cytometry and cytogenetic analysis of DNA lesions 

constitute the gold standard of ALL classification and sub-typing. In childhood, around 85% 

of cases present with a B phenotype and 13-15% present with a T phenotype. In adults, 

around 75% have a B phenotype and 25% are of T-cell origin [75]. In our studies, we adopted 

the criteria of the European Group for Immunological Characterization of Leukemias (EGIL) 

[76], which correlate the immunophenotype at which the leukemia cells are arrested with 

that of normal developing lymphocyte precursors. In the case of T-cell leukemia, 4 groups 

are recognized: pro-T or T-I (cytoplasmic CD3+, CD7+), pre-T or T-II (cCD3+ CD7+ CD2+ 

and/or CD5+), cortical-T or T-III (cCD3+, Cd1a+) and mature-T or T-IV (CD3+, CD1a-). 

Recently, a novel sub-type was identified, early T-cell precursor ALL (ETP-ALL), which is 

defined as CD1a-, CD8-, CD5low/- and expressing at least a myeloid or stem cell surface 

marker [77]. 

ALL often presents cytogenetic abnormalities involving numeric and structural 

chromosomal changes. A comprehensive study of cytogenetics showed that cytogenetic 

features have biological and prognostic significance [78]. ALL can be classified under 5 

major modal groups: diploid (46 chromosomes, no evident structural abnormalities; 31-

40%), high hyperdiploid (>50 chromosomes; 23-26%), low hyperdiploid (47-50 

chromosomes; 10-11%), pseudodiploid (46 chromosomes with structural abnormalities; 18-

26%), hypodiploid (<45 chromosomes; 6%). Regarding translocations, ALL may be divided 

according to the Lund Chromosomal Group as: t(9;22)(q34;q11.2) or a Philadelphia 

chromosome (Ph+); t(4;11)(q21;q23); t(8;14)(q24;q32) or del(8q); other 14q+ abnormalities; 

del(6q). The classification recognizes 10 groups, being the remaining related to modal 

chromosome number [78, 79]. Although these findings are useful for predicting clinical 

outcome and response to treatment, they are not totally accurate. For example, up to 20% of 

children with favorable genetic features (TEL-AML1 fusion and hyperdiploidy >50 

chromosomes) will eventually relapse, although a third of those with high-risk abnormalities 
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(the Philadelphia chromosome with BCR-ABL fusion and the t(4;11) with MLL-AF4 

fusion) can be cured with chemotherapy alone [80]. This fraction is currently even higher 

due to the introduction of tyrosine kinase inhibitors such as Imatinib and Dasatinib [81-83]. 

Additionally, genetic factors intrinsic to the individual (e.g. drug-metabolizing enzyme 

polymorphisms), rather than those acquired by the leukemic cell, may have an important 

impact on treatment outcome [84]. 

 

 Symptoms and treatment 

Most clinical symptoms of ALL relate to the collapse of normal hematopoiesis. The 

common clinical signs include fatigue and lethargy due to developing anemia. Bleeding and 

excessive bruising occurs due to thrombocytopenia. Neutropenia may lead to predisposition 

to infections and fever. Thymic masses may lead to shortness of breath and superior vena 

cava syndrome. Tumor spread to the meninges may result in headaches and central nervous 

system (CNS) involvement [85]. 

Survival rates of children with ALL has improved dramatically across the decades. In 

the 1960s, 5-year survival rate was 10%, whereas currently it reaches up to 90% (85% of 

event-free survival) [86]. These great improvements were built on top of significant 

advances such as those observed in the biological characterization of ALL, development of 

more effective drugs and risk-adjusted multi-agent therapy [86, 87]. In adults, however, 

treatments have been less successful, classically only achieving ~40% of 5-year event-free 

survival [75]. Lately, however, the application of intensive chemotherapy pediatric protocols 

on adult T-ALL patients was able to improve 7-year event free survival to 63% [88]  

The current treatment approach for ALL includes 3 main phases. A remission 

induction phase, an intensification (consolidation) phase and continuation long-term 

treatment [87]. During the remission-induction phase the main objective is to reduce 

leukemia burden and restore normal hematopoiesis. Therapy includes administration of 

glucocorticoids (prednisone or dexamethasone), vincristine and at least another agent 

(asparaginase or anthracycline). Exceptionally, for high risk ALL, regimens include 4 or 

more drugs [87]. The intensification (consolidation) treatment happens after restoration of 

hematopoiesis. This phase will deal with possible drug-resistant leukemic cells and decrease 

the chance of relapse [86]. Treatment regimens may vary, and have different degrees of 

success, but often include reinduction therapy, high doses of methotrexate and 

mercaptopurine, and pulses of vincristine and corticosteroid plus high-dose asparaginase 

[89-92]. The most extreme form of intensification treatment is allogeneic stem cell 
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transplantation, which is especially beneficial to very-high risk patients [93, 94]. During 

continuation treatment, regimens are adjusted for long-term tolerance. Mercaptopurine and 

methotrexate are regularly used in this phase [87]. Increased risk of relapse to the CNS 

associate with factors such as T-cell immunophenotype, hyperleucocytosis, high-risk genetic 

abnormalities, and presence of leukemic cells in cerebrospinal fluid. These cases require 

particular attention to CNS-directed treatment [87, 95-97]. 

Although the success of the treatments is evident, relapses still occur and aggressive 

treatments frequently impose severe long-term side effects. Side effects include osteoporosis 

[98], osteonecrosis [99], thrombocytic complications [100], secondary tumors [101], cardiac 

dysfunction, along with others [102, 103]. Therefore, a continuous effort is required to 

develop new, less toxic drugs and therapeutic strategies with improved efficacy against 

leukemic cells and less side effects. To achieve this, it is indispensable to investigate and 

improve the knowledge of the etiology and biology of leukemia. 

 

1.3 T-cell Acute Lymphoblastic Leukemia (T-ALL) 

T-ALL is a subtype of ALL, characterized by the emergence of malignant immature 

blasts of T-cell origin arrested during development. T-ALL often presents with higher risk 

factors such as high white blood cell counts (WBC; >50000/μL), older age, mediastinal mass 

and enlargement of the spleen, liver, and lymph nodes [72]. Historically, T-ALL cases had 

higher risk and poorer prognosis than B-ALL cases [104-106]. However, improved 

protocols, based on risk-adjusted chemotherapy, improved the outcome of T-ALL patients 

to such an extent that currently ALL patients with a T-cell phenotype benefit from better 5-

year disease-free survival for children (up to 78%) [86] and adults (65%; 7-year survival) 

[88, 107]. Relapses still occur in approximately 25% of the cases, and T-cell phenotype is 

associated with poorer prognosis after relapse [86, 108, 109].  

 

1.4 Genetic abnormalities in T-ALL 

The malignant transformation of healthy thymocytes into T-cell leukemia is believed 

to be a progressive, multi-step, process where several cell-autonomous mechanisms 

accumulate to promote a proliferative and survival advantage and a differentiation block to 

pre-malignant cells, which associates with abnormal signaling and eventually results in 

leukemia. Those factors range from point and small mutations, to epigenetic changes and to 
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large chromosomal alterations. Moreover, the microenvironment often impinges on those 

alterations by promoting and complementing an already signaling-aberrant cell [110-112].  

 

 TCR loci-associated chromosomal translocations 

In T-ALL, non-random chromosomal translocations involving the juxtaposition of 

promoter and enhancer elements of TCR gene loci (TCA@ 14q11, TRB@ 7q34-35, TRG@ 

7p15, TRD@ 14q11) and a developmentally important transcription factor are common, 

found in ~35% of the cases [113] (Figure 2). This leads to unregulated over-expression of 

the translocated gene and subsequent differentiation blockade [114]. Different families and 

groups of transcription factors are involved in these abnormalities. Importantly, several 

groups have classified T-ALL into distinct oncogenetic subgroups that are characterized by 

rearrangements and aberrant expression of transcription factors and share a similar gene 

expression profile [115-118]. Major groups include the basic helix-loop-helix (bHLH) 

family members (SCL/TAL1, TAL2, LYL1 and bHLHB2), the LIM-domain only (LMO) 

family (LMO1, LMO2, LMO3), several homeobox family members (HOX11/TLX1, 

HOX11L2/TLX3, NKX2.1, NKX2.2, NKX2.5, HOXA@ cluster) and proto-oncogenes such 

as TAN1 (truncated from of NOTCH1), MYC, MYB and MEF2C (reviewed in [119]).  

 

 Cell Cycle regulators 

Cell cycle deregulation is a hallmark of cancer. Deregulation may occur by increased 

activity/expression of cell cycle promoters, inactivation of cell cycle blockers, or both 

(Figure 2). The most common occurrence in T-ALL is the deletion of the 

CDKN2A/CDKN2B locus on chromosome 9p21, present in more than 70% of cases [120, 

121]. These genes code for the inhibitors of cyclin-dependent kinase (CDK) 4 proteins 

(p16INK4a and p15INK4b, respectively), thus disrupting the cyclin-CDK complexes [122, 123]. 

Deletion of these genes will lead to phosphorylation and inactivation of the retinoblastoma 

protein (Rb), thus promoting cell cycle progression [124]. Additionally, the CDKN2A locus, 

via an alternative reading frame, also codes for p14ARF protein, a negative regulator of 

HDM2 [125]. Loss of p14ARF will lead to p53 downregulation by allowing HDM2 to promote 

p53 degradation. Consequently, a decrease in p53 activity, decreases p21Cip1 expression, 

which does not allow proper DNA repair during cell cycle, leading to accumulation of DNA 

damage [125, 126]. 
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 NOTCH1 

NOTCH1 is a gene that has a major role in hematopoiesis. It regulates maintenance of 

stem cells [127] and is required for T-cell lineage specification [30, 128]. 

NOTCH1 is also one of the most frequently altered genes in T-ALL (Figure 2). Its role 

in leukemia was first described with the involvement in the translocation t(7;9)(q34;q34.3), 

but this is a uncommon event (~3% of T-ALL cases) [129]. However, the magnitude of 

NOTCH1 importance in cancer was only revealed later on, when it was found that >50% of 

T-ALL cases had activating mutations in the gene [130]. Although the mechanisms vary, 

NOTCH1 translocations or mutations will result in the accumulation of the intracellular, 

activated form of NOTCH (ICN) [131]. In addition, mutations in the F-box/WD repeat-

containing protein 7 (FBXW7) gene, found in ~15% of T-ALL patients [132, 133], lead to 

the stabilization, and consequent increase in activity, of the ICN protein. 

 

 Signal transduction elements 

During thymopoiesis, both pre-TCR and TCR engagement is required for normal T-

cell development. The TCR complex activates a cascade of multiple signaling pathways 

including the rat sarcoma/ mitogen associated protein kinase (Ras/MAPK), the 

phosphatidylinositol-3-kinase/ protein kinase B (PI3K/PKB(Akt)) and the phospholipase C 

γ/ calcineurin (PLCγ/calcineurin) pathways [134, 135]. These pathways are also recruited 

by pre-TCR signaling transduction. 

In T-ALL, multiple signaling components are targets of mutations or translocations 

(Figure 2). The Src family protein tyrosine kinase lymphocyte-specific protein tyrosine 

kinase (Lck) is central in TCR signaling [136]. Although rare, ectopic expression of LCK 

can occur in T-ALL due to the t(1;7)(p34;q34) translocation [137]. 

The Abelson murine leukemia viral oncogene homolog 1 (ABL1) is a downstream 

target of Lck [138]. Various ABL1 rearrangements occur in T-ALL. The famous BCR-ABL1 

fusion gene, though present, is uncommon [139]. The most common rearrangement is the 

NUP214-ABL1 (~6%) [140]. 

The Ras pathway also suffers from mutations. Activating NRAS mutations occur in 4-

10% [141]. Additionally, deletion or inactivating mutations in the Neurofibromin 1 (NF1) 

gene, a negative regulator of the Ras pathway, are found in 3% of the cases [142]. 
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1.4.4.1 Alterations in IL-7/IL7R-related signaling mediators 

Altogether, a major fraction of T-ALL cases presents alterations in two major signaling 

pathways, the PI3K/Akt and the Janus kinase/ signaling transducer and activator of 

transcription (Jak/STAT) pathways. Both are critical for IL-7R-mediated function in normal 

thymocytes and T-ALL (discussed later on) [143-145].  

The PI3K/Akt pathway is the target of mutations in T-cell leukemia. The most 

common are in the phosphatase and tensin homolog (PTEN). PTEN is a tumor suppressor 

and the major negative regulator of the PI3K/Akt pathway [146]. It is mutated in T-ALL (5-

30% of the cases) due to non-sense and frameshift mutations and gene deletion occurs in 

10% of the cases [147]. Mutations in PI3K family members are uncommon in T-ALL, 

although gain-of-function mutations in PIK3CA (p110α) and inactivating mutations in 

PIK3R1 (p85α) have been reported, each in 5% of the T-ALL cases analyzed. AKT mutations 

are even less frequent (around 2% of T-ALLs) [147].  

The Jak/STAT pathway is also a target for mutation in T-ALL. The oldest known 

alteration is the ETV6(TEL)-JAK2 fusion due to the translocation t(9;12)(p24;p13) [148]. 

Somatic JAK1 gain-of-function occur mostly in adult T-ALL (18% of the cases) and more 

rarely in pediatric T-ALL (2% of the cases) [149, 150]. JAK3 mutations are found in both 

adult (12% of the cases) [151] and pediatric (7%-25% of the cases) T-ALL [150, 152]. More 

recently, STAT5B gain-of-function mutations have been mutations have been reported in 8% 

of the patients [153, 154]. 

 

 Other important alterations 

Alterations on the MYB locus found in T-ALL, which lead to protein overexpression, 

include the chromosomal translocation t(6;7)(q23;q32), associated with high expression of 

proliferation and mitotic genes [155], and duplication of the MYB locus [156]. 

Mutations in chromatin remodeling genes that ultimately benefit T-cell leukemia 

progression have been reported to occur in EZH2, SUZ12 [157] and PHF6 [158]. 

Lastly, inactivating mutations in phosphatases other than PTEN were found recently 

in PTPN2 [159] and PTPRC (CD45) [160] genes.   
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Figure 2. Schematic representation of major genetic alterations in T-ALL driving survival and 

proliferation. Genetic abnormalities are grouped according to their nature. Represented are common 

translocations involving TCR loci; NOTCH activating mutations and FBXW7 inactivation; deletion of cell 

cycle regulators; and mutations in signaling transduction elements and growth factor receptors. Ovals represent 

either gene families (e.g. NKX) or individual genes (e.g. CDKN2A). The cross over a gene indicates 

inactivation of the gene or protein. Detailed information is in the text. TCR, T-cell receptor; TAL, T-cell acute 

lymphoblastic leukemia gene family; LMO, LIM-domain only gene family; TLX, T-cell leukemia homeobox 

gene family; HOXA, Homeobox A gene cluster; NKX, NK2 homeobox gene family; MEF2C, Myocyte 

specific enhancer factor 2C; ICN, Intracellular Notch FBXW7, F-box/WD repeat-containing protein 7; 

CDKN2A/2B, Cyclin-dependent kinase inhibitor 2A/2B; IL7R, Interleukin-7 receptor; JAK, Janus kinase; 

LCK, Lymphocyte-specific protein tyrosine kinase; PI3K, Phosphatidylinositol-3-kinase family; PTEN, 

Phosphatase and tensin homolog AKT, also known as protein kinase B (PKB); STAT, Signal transducer and 

activator of transcription; TEL, also known as ETS variant 6 (ETV6); NUP214, Nucleoporin 214; ABL1, 

Abelson tyrosine-protein kinase. 

 

 

1.5 Microenvironment in T-ALL 

A tumor is not a homogeneous entity consisting purely of malignant cells entirely self-

sufficient. In contrast, it is highly heterogeneous containing both malignant and non-

malignant cells of several origins, as well as components such as extracellular matrix and 

secreted factors. Together, all elements that constitute the tumor microenvironment interact, 

where the final consequence is to the benefit of the cancer cells [161, 162]. The 

microenvironment provides cancer cell survival, protects from chemotherapy and may 

support metastization [112, 162-164]. The studies on the involvement of the 
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microenvironment in T-ALL have focused mostly in the bone marrow niche, since this is a 

major site of leukemia burden. 

 

 Cell-to-cell contact 

Cell adhesion molecules are expressed in T-ALL cells, such as very late antigen 4 / 

vascular cell adhesion protein 1 (VLA-4/VCAM-1) and lymphocyte function-associated 

antigen 1 / intercellular adhesion molecule 1 (LFA-1/ICAM-1) [165]. T-ALL cells cultured 

in BM stroma have increased survival dependent on LFA/ICAM-1 interactions [166]. 

Interestingly, and in contrast with B-ALL, in vitro survival of T-ALL cells on BM stromal 

cultures appears to correlate with better patient outcome [167]. As mentioned above, the 

Notch1 receptor is commonly mutated in T-ALL, originating ligand-independent activation 

of the pathway. However, there is still room for the canonical ligand-dependent Notch 

signaling to play a role in T-ALL pathogenesis. Blocking of delta-like ligand 4 (Dll4), a 

Notch ligand, or of the Notch1/2/3 receptors themselves impairs T-ALL growth in vivo [168] 

and T-ALL cell escape from dormancy is associated with Notch3-Dll4 interaction in the 

microenvironment [169]. It is also noteworthy that PTEN deficient T-ALLs are sensitive to 

disruption of Notch1-Dll4-dependent signaling [170]. 

 

 Secreted factors: chemokines 

Other than cell-to-cell interactions, cytokines, growth factors and chemokines provide 

extra means of intercellular communication and behavior conditioning. The whole immune 

system, including T lymphocytes, is orchestrated by a network of cytokines and chemokines 

[171]. The stromal cell-derived factor 1 (SDF-1/CXCL12) interaction with its receptor C-X-

C chemokine receptor type 4 (CXCR4) was shown to be important for B-ALL homing to 

bone marrow [172]. More recently, two studies implicated the CXCL12/CXCR4 axis in 

migration, maintenance and leukemia initiating cell (LIC) activity in human T-ALL 

xenograft models [173, 174].  

Other chemokine signaling elements have also been involved in T-ALL pathogenesis. 

Particularly, Buonamici and colleagues [175] found that Notch-regulated expression of C-C 

chemokine receptor 7 (CCR7) in T-ALL and consequent C-C motif ligand 19 

(CCL19)/CCR7 signaling was a major regulator of T-ALL infiltration to the CNS. In 

addition, signaling of the C-C motif ligand 25/ C-C chemokine receptor 9 (CCL25/CCR9) 

or C-X-C motif ligand 13/ 5 (CXCL13/CXCR5) were shown to contribute to T-ALL cell 

survival, proliferation and organ infiltration [176-179]. 
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 Secreted factors: cytokines and growth factors 

Multiple cytokine and growth factors have been implicated in supporting T-cell 

leukemia. For instance, secretion of IL-18 by the stromal cells upon treatment with mitogen-

activated protein kinase kinase (MAPKK/MEK) inhibitors, led to increased T-ALL cell 

proliferation, suggesting that stroma-leukemic cell cross-talk may provide a protective niche 

against drug therapy [180].  

Also, activation of the insulin-like growth factor 1 receptor (IGF1R) in T-ALL cells is 

associated with increased LIC activity [181] and growth support from tumor-associated 

dendritic cells (DCs) [182]. 

Transforming growth factor β (TGF-β) is a multifunctional cytokine involved in a 

variety of processes such as cell growth inhibition, cellular senescence, differentiation and 

apoptosis [183]. The major effectors of TGF-β signaling are Smad2 and Smad3, which 

directly regulate gene expression [184]. In normal hematopoiesis TGF-β acts as a negative 

regulator [185]. In T-ALL its role is less explored. Of note, a fraction of primary T-ALL 

cells do not express Smad3 protein, although they still display non-mutated and normal 

levels of the Smad3 gene (MADH3) mRNA [186]. Additionally, studies in mice suggest that 

loss of Smad3 can synergize with other oncogenic events, such as the loss of p27kip1, to 

promote T-cell leukemogenesis [187]. 

 

1.5.3.1 The γ-common chain (γC) family of cytokines 

The members of the γC family of cytokines all bind to receptors that share the γC 

subunit (IL-2Rγ/CD132), along with one or more specific subunits, to transduce signals. The 

cytokine family includes IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 [188], all of which have 

some role in T-cell development, function or homeostasis (reviewed in [188] and [189]). In 

T-ALL, it was demonstrated that IL-2, IL-4, IL-7, IL-9 and IL-15 are able to promote 

proliferation of primary samples in vitro, with IL-7 having the most potent effect [190]. 

Interestingly, synergistic roles in proliferation were observed upon incubation with specific 

combinations of two γC cytokines [190]. IL-21, a more recently discovered γC cytokine, has 

not been tested to date in T-ALL. Nonetheless, given that it supports cell proliferation in 

other T-cell malignancies [191, 192] and the consistency of the other γC cytokines in 

promoting T-ALL proliferation, it is tempting to speculate that the effect of IL-21 in T-ALL 

should be similar.  
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1.6 The IL-7/IL-7R complex 

The IL-7R is a heterodimer consisting of the IL-2Rγ/γC, shared between the γC family 

of cytokines, and the IL-7Rα (CD127), shared between IL-7 and thymic stromal 

lymphopoietin (TSLP) [145, 193]. The heterodimerization of γC and IL-7Rα upon IL-7 

binding gives the specificity to IL-7 [194, 195] and is required for receptor activation (Figure 

3A) [196]. 

 

 The γC subunit 

As mentioned above the IL-2Rγ (γC/CD132) subunit is required for signaling of IL-2, 

IL-4, IL-7, IL-9, IL-15 and IL-21 [188]. The γC gene (IL2RG) is located in the X 

chromosome (Xq13.1) [197, 198], and inactivating mutations often result in X-linked severe 

combined immunodeficiency (X-SCID). In humans the X-SCID results in a T- B+ NK- 

phenotype, though B-cells are non-functional [194, 198]. In mice, the phenotype is more 

severe resulting in T- B- NK- phenotype [199, 200]. It is important to mention that Jak3-

deficient mice have a phenotype that closely resembles that of γC loss [201-203]. 

The γC receptor belongs to the type I cytokine receptor family and the mature human 

protein has 374 aminoacid residues (Figure 3B). The extracellular domain possesses two 

tandem fibronectin type III domains that include two pairs of the conserved cysteine 

residues, characteristic of the family. A tryptophan-serine-X-tryptophan-serine (WSXWS) 

motif exists close to the transmembrane domain [204, 205]. The γC, as all type I cytokine 

receptors, does not possess endogenous tyrosine kinase activity, instead it relies on Jak 

family tyrosine kinases for signal transduction. The intracellular portion possesses, proximal 

to the transmembrane domain, a Box motif required for Jak3 binding and activation. The 

short cytoplasmic tail is apparently not directly involved in transducing downstream 

signaling [204, 206-208]. 

 

 The IL-7Rα subunit 

The IL-7Rα gene (IL7R) is located on the chromosome 5p13.2 and is composed of 8 

exons. Exon 6 codes for the integral transmembrane domain. The canonical transcript is 

4619 nucleotides long. Alternative splicing generates a soluble isoform lacking exon 6 and 

introducing a premature stop codon [209, 210]. Inactivating mutations on the IL7R gene 

result in a type of SCID. In humans, the SCID results from a T- B+ NK+ phenotype [26, 211, 

212]. Mouse deficient in Il7r have impaired T- and B-cell development [24]. Importantly, 
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the presence of B-cell in human individuals and not in mice advocates for important 

differences in lymphopoiesis in both species. Notably, the phenotype of murine IL-7Rα 

deficiency is more severe than IL-7 deficiency. This has been attributed to be a consequence 

of TSLP signaling [213]. 

The IL-7Rα subunit is a type I cytokine receptor (Figure 3B). As such, it shares many 

structural similarities to the γC subunit described above. The mature form is 439 amino acid 

residues long. In the extracellular portion, it has two fibronectin type III domains, two paired 

cysteine residues and a WSXWS motif. The cytoplasmic tail contains a Box1 motif required 

for Jak1 binding and activity [205]. Additionally, the cytoplasmic tail contains at least 2 

tyrosine residues (Y401, Y449) that have been shown to play a role in the activation of 

downstream signaling pathways [214-217].  

As already mentioned, the IL-7Rα chain is also shared with the thymic stromal 

lymphopoietin/ cytokine receptor-like factor 2 (TSLPR/CRLF2) receptor for TSLP signaling 

[218, 219]. 

 

 Interleukin-7 

The IL-7 gene (IL7) is encoded in chromosome 8q12-13 [220] and requires 

glycosylation to be fully active [221]. Human and murine IL-7 share 65% aminoacid identity 

[222]. Human IL-7 can stimulate murine cells [223] and, conversely, murine IL-7 can 

stimulate human cells [224], although possibly with less potency in vivo [225]. IL-7 is 

produced by the stromal cells of the BM and thymus and by lymphatic endothelial cells [226-

230]. IL-7 is a soluble factor, nevertheless it has been observed that it can bind to 

extracellular matrix (ECM)-associated glycosaminoglycan, heparan sulfate, and to 

fibronectin [231-233]. Similar to its receptor, IL-7 is essential for normal B- and T-cell 

development in mice [25].  
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Figure 3. The IL-7/IL-7R signaling complex. (A) IL-7R heterodimer consisting of IL-2Rγ common 

chain and IL-7Rα, which provides IL-7 specificity. Upon IL-7 binding, downstream signaling is triggered. 

Janus kinase (JAK) 1 is associated with IL-7Rα and JAK3 with IL-2Rγ. When IL-7R is activated, JAK inter-

phosphorylation occurs, IL-7Rα is phosphorylated in the cytoplasmic tail with subsequent recruitment and 

activation of downstream signaling pathways. In T-ALL signaling pathways include JAK/STAT, PI3K/Akt 

and Ras/MEK/Erk. Src-family kinases are activated by IL-7, but their role remains undefined. (B) Structural 

detail of IL-7Rα and IL-2Rγ. The extracellular portion of both receptors possess two tandem fibronectin type-

III (FBN III) domains. Within those are found two pairs of conserved cysteine residues (Cys) and a tryptophan-

serine-X-tryptophan-serine (WSXWS) motif close to the transmembrane domain (TM). The cytoplasmic tail 

of both receptors has a Box1 motif required for JAK binding. The IL-2Rγ cytoplasmic tail does not possess 

downstream signaling transduction capacity. The IL-7Rα has, at least, two phosphorylated tyrosine residues 

(Tyr; Y401, Y449) involved in the recruitment of downstream signaling elements. 

 

 

 IL-7/IL-7R signaling 

IL-7 stimulates both human [27, 234, 235] and murine [236, 237] thymocyte 

proliferation.  

The earliest murine thymocyte population that responds to IL-7 are the DN cells, where 

IL-7 contributes to survival and proliferation of early T-cell progenitors [238] and is 

involved in promoting TCRγ rearrangements [239]. More recently, it was found that IL-7 

plays a role during β-selection, by promoting DN4 cells self-renewal and preventing 

premature TCRα rearrangements [240]. Although after β-selection and positive and negative 

selection (essentially the DP stage) IL-7Rα is downregulated, the role of IL-7 is 

controversial. It is accepted that during this stage proliferative and survival signals are TCR-

dependent [51, 238]. However, there is evidence that IL-7 in this stage is involved in SP8 

lineage specification [241-243]. IL-7R is re-expressed in the SP stage and in the periphery, 
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although heterogeneously. In the periphery, IL-7 signaling promotes homeostatic 

proliferation of T-cells [145, 244-248].  

In humans, similarly to the mouse, the early DN population proliferates in response to 

IL-7 [27]. Also, the SP populations rely on IL-7 for proliferation [249, 250]. The DP 

population also appears to be largely IL-7 insensitive, but in contrast to mouse DP cells, this 

is due to low γC expression rather than absence of IL-7Rα expression [250]. In the periphery 

IL-7 has a homeostatic proliferative effect [251-253]. 

The severe effects that absence of IL-7-associated signaling has on normal 

lymphopoiesis, mentioned above, not only delineate its importance in normal T-cells but 

further incites to investigate its impact on malignant T-cells.  

There is increasing evidence in the literature that IL-7/IL-7R-mediated signaling has a 

role in supporting T-cell malignancies. IL-7 transgenic mice develop T- and B-cell 

lymphomas [254-257]. Moreover, AKR/J mice, which have a naturally high expression of 

IL-7Rα, tend to develop spontaneous T-cell lymphomas [258]. Regarding IL-7/IL-7R-

associated signaling in T-ALL, IL-7R expression is increased in T-ALL versus other 

leukemias [259]. Concordantly, T-ALL samples express IL-7R [260-262]. In addition, 

blocking IL-7R or IL-7 in in vitro cultures decreases T-ALL cell viability and proliferation 

[263, 264]. Several studies demonstrated that IL-7 promotes in vitro T-ALL cell proliferation 

[262, 265-268] and accelerates leukemia in vivo [269]. Of note, IL-7Rα is transcriptionally 

upregulated by NOTCH1, one of the most commonly mutated genes in T-ALL [130] and 

appears to be involved in Notch-mediated leukemia cell maintenance [270]. Mechanistically, 

IL-7 signaling in T-ALL was shown to depend on PI3K/Akt and mammalian target of 

rapamycin (mTOR) signaling, which together promote viability, proliferation and cell 

growth. Molecularly, IL-7 leads to the down-regulation of the cell cycle inhibitor p27kip1, 

and upregulation of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2) and the glucose 

transporter GLUT1 – with consequent increase in glucose uptake and in reactive oxygen 

species which partake in leukemia cell survival [268, 271, 272]. The pathways involved in 

IL-7-mediated signaling appear to extend to JAK/STAT. IL-7Rα mutant T-ALL cells are 

sensitive to Jak/STAT pharmacological inhibitors [273] and STAT5 is required for mouse 

IL-7-dependent T-cell lymphomagenesis [254], indicating a role for this pathway in T-ALL 

cell survival. 
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1.7 IL-7-triggered downstream signaling pathways 

IL-7R activation triggers multiple intracellular signaling pathways. Several kinases 

associate directly with the IL-7Rα, including Jak1 [217], PI3K [216] and Src-family kinases 

p56lck and p59fyn [274, 275]. Jak3 is associated with the γC [206, 276]. The canonical IL-7R 

mechanism of activation requires IL-7 binding, that induces heterodimerization of the IL-

7Rα and IL-2Rγ chains, leading to activation by trans-phosphorylation of Jak1/3, 

respectively, and consequent tyrosine phosphorylation of IL-7Rα cytoplasmic tail (Y401, 

Y449 particularly). Recruitment of signaling mediators activates downstream signaling 

pathways that include Jak/STAT, PI3K/Akt/mTOR and Src pathways [277, 278]. STAT5 is 

the main STAT recruited, but STAT1 and STAT3 may also be recruited by IL-7 signaling 

[214, 217] (Figure 3A). The role of Src kinases in IL-7 signaling is unclear, since Src kinases 

in T-cells do not appear to regulate the essential signals delivered by IL-7, as observed by 

the mild phenotype of the p59fyn -/- mice compared to deficiency in IL-7, IL-7Rα or γC [279]. 

Thus, the canonical IL-7 downstream signaling for T-cells considers essentially Jak1/3-

STAT5/1/3 and PI3K/Akt/mTOR pathways [188, 189].  

Below, the major signaling elements of the pathways described to be activated by IL-

7 are introduced. 

 

 PI3K/Akt pathway 

The PI3K/Akt pathway is a central cellular signaling pathway involved in the 

regulation of cell growth, survival, metabolism, proliferation, glucose homeostasis and 

vesicle trafficking [280].  

 

1.7.1.1 Classification of PI3Ks 

Although PI3Ks are mostly known as lipid kinases, they can also perform 

serine/threonine protein kinase activities [281, 282]. The PI3K family is grouped into 3 

classes (I-III).  

Class I PI3Ks are further divided in 2 sub-classes. The class IA is activated by receptor 

tyrosine kinases (RTKs) and class IB by G-protein coupled receptors (GPCRs). Class IA 

forms heterodimers with a p85 regulatory subunit (p85α/55α/50α, p85β and p55γ) and a 

p110 catalytic subunit (p110α, p110β and p110δ). Class IB forms heterodimers with a p101, 

p84 and p87PIKAP regulatory subunit and a p110γ catalytic subunit [280].  
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Class II consists only of a p110-like catalytic subunit. Three isoforms are described: 

PIK3C2α, PIK3C2β and PIK3C2γ. The functions of this class are not yet well understood, 

but appear related with membrane trafficking and receptor internalization when activated in 

response to RTKs, integrins and cytokine receptors [280]. 

Class III contains the vesicle protein sorting 34 (Vps34) catalytic subunit and the 

Vps15 regulatory/catalytic subunit [283]. Given its central role in autophagy, this class will 

be discussed in more detail in the autophagy section (1.8) below. 

In vivo, class I PI3Ks primarily catalyze the reaction phosphatidylinositol-4,5-

bisphosphate  phosphatidylinositol-3,4,5-trisphosphate (PIP2  PIP3). Class III performs 

the reaction phosphatidylinositol  phosphatidylinositol-3-phosphate (PI  PI3P). Class II 

are believed to generate PI3P, PI-3,4-P2 and possibly PIP3 [280, 284]. 

By far, the knowledge of the function of PI3K proteins has relied mostly on the study 

of the class I and its interaction with Akt(PKB) [285-288], and more recently on class III 

due to its role in autophagy [283, 289].  

PI3K class I has been clearly implicated in cancer. PIK3CA (p110α) gene is frequently 

mutated in multiple tumors such as breast (26%), colon (26%) and hepatocellular (36%) 

cancers [290, 291]. As discussed before, both PI3K and Akt somatic mutations occur in T-

ALL [147]. 

 

1.7.1.2 Activation and inactivation of PI3K/Akt pathway 

Akt, a serine/threonine kinase, has 3 isoforms: Akt1/PKBα, Akt2/PKBβ and 

Akt3/PKBγ [292]. AKT gene amplifications are relatively frequent in cancers such as head 

and neck (30%) [293], pancreatic (20%) [294], gastric (20%) [295], ovarian (12%) and 

breast (3%) [296] cancers. Activating mutations were first described in breast (8%), 

colorectal (6%) and ovarian (2%) cancers [297]. In T-ALL, AKT activating mutations are 

rare (2%) [147]. 

 

Upon activation, PI3K generates PIP3 at the plasma membrane [287]. PIP3 acts as a 

second messenger and allows the recruitment of proteins containing a pleckstrin homology 

(PH) domain to the vicinity of the membrane [280]. Those proteins include Akt and the 3-

phosphoinositide dependent protein kinase-1 (PDK1) [298]. PDK1 phosphorylates Akt at 

the activating residue threonine 308 (T308) [299]. The mammalian target of rapamycin 

complex 2 (mTORC2) phosphorylates Akt at another activation residue, serine 473 (S473) 

[300].  



INTRODUCTION 

23 

The dephosphorylation, and consequent inactivation of the pathway, is mediated by 

the phosphatases PTEN and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase (SHIP) 

[301, 302]. Akt is also inactivated by protein phosphatase 2a (PP2A) and PH domain and 

leucine rich repeat protein phosphatase (PHLPP) [303, 304]. 

 

1.7.1.3 Downstream targets of Akt activation 

Akt phosphorylates multiple substrates with diverse cellular functions, including cell 

cycle, survival, metabolism and transcription (Figure 4). 

A major Akt target is the glycogen synthase kinase-3α/β (GSK3α/β), which is inhibited 

by Akt [305]. Importantly, GSK3 is involved in the degradation of cyclin D1, thus preventing 

cell cycle progression [306, 307] and it is also involved in promoting degradation of myeloid 

cell leukemia 1 (Mcl-1), an anti-apoptotic protein [308]. Thus, by inactivation GSK3, Akt 

contributes to both proliferation and cell viability. 

Other important Akt substrates are the forkhead box O family of transcription factors 

(FoxOs). Phosphorylation of FoxOs by Akt, lead to their inactivation by cytoplasmic 

retention and binding to 14-3-3 chaperones [309]. FoxOs promote the transcription of pro-

apoptotic genes (e.g. BCL2L11/Bim) and cell cycle inhibitors (e.g. CDKN1B/p27kip1) [310]. 

Additionally, FoxO1 is a direct transcription factor of IL7R [311, 312]. This regulation may 

provide a negative feedback loop on IL-7 signaling via Akt-mediated FoxO1 inactivation. 

The NF-κB pathway may be activated by Akt through phosphorylation and activation of 

inhibitor of NF-κB kinases (IKKs), leading to the degradation of the inhibitor of NF-κB 

(IκB) [313]. 

Increased expression of GLUT transporters and glucose uptake is a common event in 

tumors, which may provide extra energy and metabolic intermediates for cell growth [314, 

315]. Akt promotes the expression and translocation to the membrane of GLUT1, GLUT3 

and GLUT4 [316, 317]. Notably, IL-7 was shown to increase GLUT1 expression and 

glucose use in both normal and malignant T-cells in a PI3K/Akt-dependent manner [271, 

318]. 

Importantly, Akt activates mTOR, a central module in the regulation of overall cell 

growth and metabolism in the cell (Figure 4). Akt phosphorylates the tuberous sclerosis 

complex 2 (TSC2), consequently destabilizing the heterodimer TSC1/2 [319, 320]. 

Destabilization of the TSC complex activates the small GTPase Rheb and as a result 

mTORC1 becomes active [319].  
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 mTOR pathway 

mTOR pathway integrates environmental cues from within and without the cell to 

transition between anabolic and catabolic states, controlling cell metabolism, growth, 

proliferation and survival (Figure 4) [321]. 

mTOR is a serine/threonine kinase that forms two complexes: mTOR complex 1 

(mTORC1) and mTORC2. mTORC1 has 5 components: mTOR, the catalytic subunit of the 

complex; regulatory-associated protein of mTOR (Raptor); mammalian lethal with Sec13 

protein 8 (mLST8/GbL); proline-rich AKT substrate 40 kDa (PRAS40); and DEP-domain-

containing mTOR-interacting protein (Deptor). The mTORC2 complex has 6 components: 

mTOR; rapamycin-insensitive companion of mTOR (Rictor); mammalian stress-activated 

protein kinase interacting protein (mSIN1); protein observed with Rictor-1 (Protor-1); 

mLST8; and Deptor [321]. mTORC1 is sensitive to rapamycin, whereas mTORC2 is not 

[322-324]. 

The regulation and function of mTORC1 is better understood than that of mTORC2. 

Most signals impinge on regulation of TSC1/TSC2 complex and sometimes directly on 

mTORC1 (Figure 4). For instance, the canonical insulin and insulin-like growth factor 1 

(IGF1) activate PI3K/Akt and Ras/MAPK pathways. Effector kinases of each pathway, Akt, 

Erk1/2 and p90RSK, directly phosphorylate TSC1/2 [320, 325-327]. Akt may also directly 

stabilize mTORC1 by PRAS40 phosphorylation [328]. Stresses such as low energy, oxygen 

or DNA damage can input signals to mTORC1. The adenosine monophosphate-activated 

protein kinase (AMPK), in response to low energy or oxygen, can phosphorylate and 

promote TSC1/2 activity [329]. AMPK may also phosphorylate Raptor and inhibit mTORC1 

[330]. DNA damage signals to mTORC1, in a p53-dependent manner, by promoting the 

transcription of TSC2, PTEN [331, 332] and Sestrin1/2-dependent activation of AMPK 

[333]. Upstream signals appear to require the presence of aminoacids to be able to activate 

mTORC1 [334, 335]. Downstream mTORC1-regulated processes include protein synthesis 

and inhibition of the catabolic process of autophagy. mTORC1 phosphorylates and 

inactivates the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), 

promoting cap-dependent protein translation [336]. In addition, mTORC1 activates the p70 

ribosomal S6 kinase 1 (S6K1), increasing mRNA biogenesis and cap-dependent translation 

[337]. It has been known for some years that rapamycin promotes autophagy in mammalian 

cells [334]. The precise mechanism was discovered more recently. mTORC1 phosphorylates 

and inhibits the unc-51-like kinase (ULK) protein complex [338-340], which is required for 
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autophagy initiation. mTORC1 prevents AMPK, a powerful activator of autophagy, from 

activating the ULK complex [341, 342]. 

mTORC2 regulation is less understood. mTORC2 signaling does not seem dependent 

on nutrients but it is dependent on growth factors. Studies indicate that activation by growth 

factors is ribosome and PI3K-dependent [343]. Importantly, mTORC2 controls several 

kinases including Akt, serum- and glucocorticoid-induced protein kinase 1 (SGK1), and 

protein kinase Cα (PKCα). mTORC2 directly activates Akt by phosphorylating the Ser473 

site required for its maximal activation. This discovery established mTORC2 as the elusive 

PDK2 known to be responsible for Ser473 phosphorylation [300, 321].  

Notably, rapamycin promotes apoptosis in T-ALL cells [268, 344], particularly in the 

context of IL-7-induced T-ALL cell survival [268]. Moreover, oncogenic Notch activation 

was shown to promote mTOR activity in a c-Myc-dependent manner [345].   
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Figure 4. IL-7-mediated activation of PI3K/Akt/mTOR pathway and potential downstream 

effectors. Activated PI3K phosphorylates PIP2 into PIP3. PTEN antagonizes PI3K by dephosphorylation of 

PIP3 into PIP2. Generation of the second messenger PIP3 promotes activation of Akt (PKB) by PDK1. 

mTORC2 acts as PDK2 also activating Akt. Activated Akt has numerous intracellular targets. Direct targets 

include Bad, GSK-3, FoxO family, IKK and TSC1/2 complex. Akt activation also promotes surface expression 

of glucose transporters (GLUTs). Phosphorylation and consequent inactivation of the TSC1/2 complex leads 

to stabilization and activation of the mTORC1 complex, which in turn is involved in downregulation of 

autophagy via inactivation of the ULK complex. mTORC1 promotes mRNA biogenesis and translation via 

activation of S6K1 and eIF-4E. Further details and consequences of PI3K/Akt/mTOR pathway activation are 

described in the main text. 

 

 

 Jak/STAT pathway 

The Jak/STAT pathway is the canonical pathway for growth factor and cytokine 

response. This pathway, due to its simplicity and sophistication, provides very quick signal 

transduction from the membrane to the nucleus. Upon receptor engagement, activation of 

Jak tyrosine kinases trans-phosphorylate each other and the cytoplasmic tail of the receptor. 

This action recruits STAT proteins, which are phosphorylated by Jaks. Activated STATs 

homo- or heterodimerize translocate to the nucleus. There they bind DNA as dimers or 

tetramers and regulate gene transcription (Figure 5) [346].  

In mammals, there are four Jak proteins: Jak1. Jak2, Jak3 and Tyk2. Jaks selectively 

bind different receptor chains. There are seven STAT proteins: STAT1, STAT2, STAT3, 

STAT4, STAT5a, STAT5b, STAT6. Although different cytokines preferentially activate a 
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particular STAT, there is often lesser activation of other STATs. Thus, there is a promiscuity 

in the generation of homo/heterodimers or tetramers, which in turn may have qualitative and 

quantitative implications in gene transcription [346]. Important genes regulated by STATs 

include Bcl-2 family members, cyclin D1, p21cip1, IL-2Rα, and c-Myc [347-349]. The 

negative regulators of the pathway belong to three classes: suppressor of cytokine signaling 

(SOCS), protein inhibitors of activated stats (PIAS) and protein tyrosine phosphatases (PTP) 

[350, 351]. 

STAT5a/b are the main IL-7-actived STATs [214, 217]. Mice deficient in either 

STAT5a or STAT5b do not have major consequences on T or B cell development [352-355]. 

Interestingly, the initial studies on Stat5a/b double knockout mice also reached a similar 

conclusion [356, 357]. Thus, the large differences in phenotypes between the double Stat5 

knockout and mice lacking IL-7Rα, Jak3 or γC, led to the conclusion that IL-7 may regulate 

lymphocyte development in a STAT5-independent manner. Importantly, STAT gene 

targeting originated a partially functional protein be expressed, which may have accounted 

for the mild phenotype observed [358]. Subsequent studies in full Stat5a/b knockout, 

established that absence of Stat5 led to SCID and was largely similar to deficiencies in IL-

7Rα, c, and Jak3 [359]. 

 

 MAPK pathway 

The MAPK pathway has three major signaling modules: the classical extracellular 

signal-regulated kinase (Erk), the c-Jun N-terminal kinase/ stress activated protein kinase 

(JNK/SAPK) and the p38 MAPK pathways. Each family cascade is activated in a series 

typically containing three levels: a MAPK kinase kinase (MAPKKK) phosphorylates a 

MAPK kinase (MAPKK) that in turn phosphorylates a MAP kinase. Examples of MAPKKK 

members include Raf-1, B-Raf and c-MOS; of MAPKK members include MEK1 and 

MEK2; and of MAPK members include Erk-1, Erk-2, p38 and JNK1. The Erk pathway is 

activated mostly by mitogenic growth factors and cytokines, whereas the p38 MAPK and 

JNK pathways tend to be activated by stress factors and cytokines (particularly pro-

inflammatory cytokines) [326, 360].  

 

1.7.4.1 MEK/Erk pathway 

Erk-1/2 (p44/42) are activated by the dual-specificity kinases (serine/threonine-

tyrosine) MEK1/2 (Figure 5). Erk phosphorylates and activates several targets, including the 

kinases p90RSK [361], Mnk [362] and Msk [363], and important transcription factors such as 
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c-Myc, c-Fos, c-Jun and C/EBPβ [364], and promote cell cycle progression by regulating 

the expression of cyclin D1, p27kip1, p21cip1 [365].  

The role of MEK/Erk activation by IL-7 in normal T-cells is ill defined. Although, IL-

7 activates Erk-1/2 during stages of mouse B-cell development [366] it does not seem to do 

so in T-cell lines [367, 368]. In humans, IL-7 also does not seem activate the pathway in 

thymocytes [224] or peripheral blood T-cells [251, 369]. Interestingly, in T-cells from 

rheumatoid arthritis patients, IL-7 appears to potentiate TCR-mediated Erk-1/2 signaling 

[370]. Thus, more in-depth studies on the role of IL-7 in normal T-cells is required. However, 

in T-ALL blasts IL-7 is capable of activating the MEK/Erk pathway [371, 372]. In addition, 

combination of MEK and PI3K/Akt pathway inhibitors, showed a synergistic effect in 

several human T-ALL samples, including mutants in IL7R or downstream signaling 

components [372]. 

 

1.7.4.2 p38MAPK and JNK/SAPK 

p38MAPK has several isoforms (α, β, γ and δ), which are activated by MEK3/6 and to 

some extent by MEK4 [326]. Targets of p38MAPK include PLA2, Tau, and the transcription 

factors such as ATF, MEF2A, Elk-1, NF-κB, Ets-1 and p53 [373]. The protein kinase JNK 

also has multiple isoforms (JNK1/SAPKγ, JNK2/SAPKα, JNK3/SAPKβ), which are 

activated by MEK4 and MEK7 [326]. 

Crawley and colleagues [367] showed that both p38MAPK and JNK pathways may be 

activated by IL-7 in human mature T-cells and murine T-cell lines, where at least p38MAPK 

mediates IL-7-dependent proliferation. Moreover, p38MAPK is involved in IL-15- and IL-7-

dependent proliferation of memory T-cells [374]. Notably, there are no studies performed in 

developing thymocytes. However, constitutive activation of p38MAPK induces cell cycle 

arrest and blocks differentiation in DN thymocytes [375], a role that conflicts with IL-7 

activity in this stage. Moreover, in a murine IL-7-dependent thymocyte line, IL-7 withdrawal 

induced a transient stress response that contributed to cell death [376]. Thus, the role of 

stress-induced MAPK signaling pathways in IL-7-mediated functions in either normal or 

malignant T-cells remains to be fully explored.   
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Figure 5. IL-7-mediated activation of JAK/STAT5 and MEK/Erk pathways and potential 

downstream effectors. IL-7R in T-ALL activates JAK/STAT5 and MEK/Erk signaling pathways. STAT5 is 

recruited to the IL-7Rα and phosphorylated, leading to dimerization and nuclear translocation. In the nucleus, 

STAT5 dimers or tetramers bind DNA and may promote transcription of several genes, such as Bcl-2-family 

members, D-type cyclins, PIM1, MYC, CDKN1A (p21cip1) and the SOCS family of negative signaling 

regulators. IL-7 does not appear to activate MEK/Erk pathway in normal T-cells, but it does so in T-ALL. 

Erk1/2 activation may lead to phosphorylation and activation of Mnk, Msk, Rsk (involved in mRNA 

translation). In the nucleus, Erk1/2 phosphorylates and potentiates the action of transcription factors such as, 

MYC, FOS, JUN, C/EBPβ. 

 

 

1.8 Autophagy and cell metabolism 

 

 Autophagy 

Autophagy (i.e. self-eating), is a cellular process associated with the degradation of 

proteins or organelles in a cell, particularly during starvation. Important substrates include 

long-lived proteins, endoplasmic reticulum (ER), mitochondria, peroxisomes, nucleus and 

ribosomes. Degradation by autophagy promotes the recycling of nutrients and consequent 

prolonged cell survival [377]. Autophagy has a homeostatic, housekeeping, function, since 

autophagy-deficient mice accumulate misfolded and damaged proteins [378-380]. Three 

major types of autophagy exist: macroautophagy, microautophagy and chaperone-mediated 

autophagy., In this work we will focus on macroautophagy, which will be referred 

henceforth simply as autophagy. 
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Functionally, autophagy can be described as a multi-step process (Figure 6). During 

the initiation step, the phagophore assembly site (PAS) forms. In the nucleation step, there 

is assembly of the molecular machinery required for the formation of the double membrane 

characteristic of autophagy, the phagophore. During the expansion step, the autophagic 

membrane completely engulfs the autophagic cargo, forming the autophagosome. 

Subsequently, the autophagosome fuses with the lysosome, forming the autolysosome, then 

cargo is degraded and nutrients recycled [377].  

The core of the autophagic machinery includes four major components: the ULK 

complex, the Vps34 complex, the autophagy related 12 (Atg12)-Atg5-Atg16 complex and 

the microtubule-associated protein 1 light chain 3 (LC3/Atg8). The ULK complex contains 

the serine/threonine kinases ULK1/2 (Atg1), Atg13, FAK family kinase interacting protein 

of 200 kDa (FIP200/Atg17) and Atg101 [381]. This complex is negatively regulated by 

mTOR and positively regulated by AMPK [382]. The autophagy-specific Vps34 complex 

contains the class III PI3Ks Vps34 and Vps15, Beclin 1 (Atg6) and Atg14 [383]. ULK1 and 

Vps34 complexes drive the nucleation of the isolation membrane and the recruitment of 

additional ATG proteins, by phosphorylation (ULK) or production of a PI3P pool [383]. 

During the expansion phase, the Atg12-5-16 complex (an E3-like ligase) assists in the 

lipidation of LC3 and the family members GATE16 and GABA receptor-associated protein 

(GABARAP) [383]. The process continues until the completion of the autophagosome. LC3 

associated with autophagosome and facing the inner side is degraded in the autolysosome 

[383]. 

The cleavage and lipidation of pro-LC3 (LC3-I), a pool of non-autophagosome 

associated LC3, into lipidated phosphatidylethanolamine (PE)-conjugated LC3 (LC3-II) is 

a hallmark of autophagy activation and used in autophagy research. Only LC3-II is able to 

associate with autophagosomes [384]. There are a number of assays to measure and quantify 

the autophagic flux, each with its own advantages and pitfalls [384]. In this work we chose 

to use a ratio of LC3-II/LC3-I measured under incubation with the lysosomal inhibitor 

hydroxychloroquine (HCQ). This assay blocks the final steps of autophagy, promoting the 

accumulation of autophagosomes/autolysosomes in proportion to the autophagic flux [384]. 

Deletion of Atg5 in mouse T-cells decreases total thymocyte and lymphocyte numbers, 

associates with increased spontaneous apoptosis in vivo of mature CD8 T-cells and defective 

activation-induced proliferation in vitro of both CD4 and CD8 T-cells [385]. Deletion of 

different autophagy genes in early T-cell progenitors suggests that autophagy is important 

for, at least, DN thymocyte survival or proliferation [386-389]. Additionally, mature Atg3-
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deficient T-cells long-term cultured in vitro with IL-7 exhibited a higher death rate than 

autophagy-proficient T cells cultured in the same conditions [390]. 

 

In T-ALL, the role of autophagy is poorly understood. For instance, it was reported on 

several T-ALL cell lines that Akt inhibition was cytotoxic and led to upregulated autophagy 

[391, 392]. In both reports autophagy was cytoprotective. On the other hand, other studies 

suggested that autophagy may be cytotoxic. In in vitro models of T-ALL glucocorticoid 

resistance, autophagy-dependent necroptosis was required to overcome glucocorticoid 

resistance in T-ALL [393]. In another study, autophagy upregulation enhanced cell apoptosis 

in an in vitro model of ER stress induction [394]. Of note, the Jurkat cell line was used in 

two of the studies which found opposing roles for autophagy [391, 394]. It is likely that the 

intracellular mechanisms, targeted by the pharmacological inhibitors, either affected or 

required autophagy in a different manner. This should be taken into account when 

considering autophagy as a therapeutic target.    
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Figure 6. Overview of autophagy. The ULK complex is negatively regulated by mTORC1 and 

positively regulated by AMPK. Both the ULK and Vps34 complexes are required for autophagy initiation. 

ULK1 and Vps34 complexes drive the nucleation of the isolation membrane and the recruitment of additional 

ATG proteins, by phosphorylation (ULK) or production of a PI3P pool (Vps34). To participate in autophagy, 

LC3-I is cleaved and lipidated into LC3-II. During the formation and elongation phase the Atg12-5-16 assists 

in the lipidation and anchorage of LC3 to the autophagosome membrane. p62 acts an anchor between the cargo 

to be degraded and membrane-bound LC3. The process continues until the autophagosome is complete. 

Subsequently, the autophagosome fuses with the lysosome, forming the autolysosome, then the cargo is 

degraded and nutrients recycled. 

 

 

 Cell metabolism: a brief overview of aerobic glycolysis 

Deregulated cellular energetics and metabolic pathways have emerged as a new 

hallmarks of cancer [395]. 

Aerobic glycolysis (Warburg effect), is the conversion of glycose to lactate in the 

presence of oxygen when one would expect glucose to be metabolized via the tricarboxylic 

acid (TCA) cycle with oxidative phosphorylation (OXPHOS) [396]. This phenomenon was 

observed by Otto Warburg in cancer cells many decades ago. However, it is currently 

accepted that both cancer cells and normal cells may use aerobic glycolysis under specific 

circumstances, such as in periods of high proliferation. Aerobic glycolysis serves mainly to 
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replenish metabolic intermediates [396]. A schematic view of glycolysis is presented in 

Figure 7. 

Mature T-cells when transitioning from a resting to an activated state, perform a 

metabolic switch from OXPHOS to aerobic glycolysis [397, 398]. 

There is evidence that IL-7 may play a role in the regulation of glycolysis in cells. IL-

7 was shown to increase GLUT1 expression and glucose use in both normal [318] and 

malignant T-cells [271]. Also in a murine IL-7-dependent T-cell line, IL-7 upregulated 

hexokinase II (HK2), the enzyme that catalyzes the rate-limiting and first obligatory step of 

glucose metabolism [399]. 

 

 

Figure 7. Schematic view of glycolysis. Grey arrows indicate irreversible reactions; the opposite 

reaction requires a different enzyme. Two-headed arrows indicate reversible reactions. Reaction where ATP is 

produced or consumed are indicated with +ATP or –ATP, respectively. Glycolysis produces, at most, 2 

molecules of pyruvate per molecule of glucose and a gain of 2 NADH and 2 ATP. The glycolytic pathway 

proceeds as depicted in the scheme. The reverse reactions are associated with gluconeogenesis. Important steps 

are described next. Glucose is imported into the cell by glucose transporters (GLUT) residing in the plasma 

membrane, where it is rapidly phosphorylated into G6P by HK enzymes, trapping glucose in the cell. 

Phosphorylation of F6P into F1,6BP by PFK1 is a rate-limiting step and marks the first committed step of 

glycolysis. The generation of F2,6BP by the bifunctional enzyme PFK2-F2,6BPase (PFKFB) constitutes an 

important regulatory step since F2,6BP is the most potent activator of PFK1. NADH is synthesized in the 

glycolysis and consumed in gluconeogenesis by GAPDH. Pyruvate is the last metabolite of glycolysis. 

Pyruvate may by imported into the mitochondria to be incorporated into the TCA cycle or converted to lactate 
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and exported from the cell. G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; F1,6BP, fructose-1,6-

bisphosphate; F2,6BP, fructose-2,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GADP, 

glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-

phosphoglycerate; PEP, phosphoenolpyruvate; GLUT, glucose transporter; HK, hexokinase; GPI, glucose-6-

phosphate isomerase; PFK1, phosphofructokinase-1; PFK2-F2,6BPase, phosphofructokinase-2-fructose-2,6-

bisphosphatase; ALDO, aldolase; TPI, triose-phosphate isomerase; GAPDH, glyceraldehyde 3-phosphate 

dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; PK, pyruvate 

kinase; LDH, lactate dehydrogenase; 

 

 

1.9 Aims 

 

The global aim of this work is to expand the knowledge of T-ALL biology and 

pathophysiology, particularly concerning the cell-autonomous mechanisms leading to 

leukemogenesis and the cross-talk between the microenvironment and the leukemic cell. We 

put particular emphasis in IL-7/IL-7R-related events and signaling pathways. To achieve 

these goals, we used primary T-cell leukemia samples coupled with in vitro and in vivo 

analysis of relevant cell lines. 

In Chapter 2, we sought to evaluate whether IL-7Rα activating mutations exist in T-

ALL and if so, provide mechanistic insights and find whether they contribute to the 

leukemogenic process. First, we screened the coding sequence of the IL7R gene in three 

different cohorts of T-ALL samples and found that roughly 9% of the samples display IL7R 

mutations. Next, we studied the biological and clinical features associated with IL7R 

mutations by cytogenetic and gene expression analysis. We characterized the molecular 

features of IL-7R signaling by reconstitution of the IL-7R signaling machinery in cell lines 

and by assessing signaling pathway activation. In parallel, we tested the functional 

consequences of IL-7Rα signaling. We used Ba/F3 and D1 cell lines for in vitro studies. For 

in vivo studies, we used D1 cell line or bone marrow cells of animals with different deletions 

of IL-7R component genes. Finally, we tested in vitro the therapeutic potential of our 

findings using Jak/STAT pathway inhibitors.  

In Chapter 3, we sought to evaluate whether activation of the Jak/STAT5 pathway by 

IL-7 is necessary and sufficient for IL-7-mediated pro-survival and proliferative effects in 

T-cell leukemia. We used both IL-7 dependent and responsive cell lines, as well as primary 

T-ALL samples. First, we demonstrated that IL-7 activated the Jak/STAT5 signaling in T-

ALL by western blot and STAT5 DNA binding. We evaluated the functional consequences 

and molecular mechanisms of STAT5 inhibition in T-ALL upon IL-7 stimulation. For this, 

we used flow cytometry, western blot, qPCR and radioactive based assays. The results 
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obtained prompted us to evaluate the STAT5 transcriptional network elicited by IL-7 

signaling using next generation sequencing techniques, which in turn drove us to investigate 

the role of PIM1 in IL-7-mediated signaling in T-ALL. We used flow cytometry, western 

blot and radioactive based assays to test this. 

In Chapter 4, we aimed at discovering if IL-7 could regulate autophagy in T-ALL and 

exploring the functional consequences of that putative regulation. First, we evaluated 

whether IL-7 regulated autophagy in T-ALL cells, using IL-7-dependent TAIL7 T-ALL 

cells. Next, we used pharmacological inhibitors to characterize the molecular actors involved 

in IL-7-mediated autophagy. To do so, we used flow cytometry, western blot, and confocal 

and electron microscopy. With the data we obtained, we sought to understand the regulation 

of IL-7-mediated autophagy regulation in different nutrient (serum) conditions. In this part, 

we used flow cytometry and western blot analysis of TAIL7 and primary T-ALL cells. 

In Chapter 5, building upon data generated in Chapter 2, we aimed at studying cellular 

pathways affected by IL-7 signaling. We used bioinformatics tools to do so. The results 

obtained, prompted us to analyze the effect of IL-7 on glycolysis. We determined the 

glycolytic rate of TAIL7 cells stimulated with IL-7 by determining glucose consumption and 

lactate production. We used qPCR to assess the expression of genes in the glycolytic 

pathway.   
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2.1 Abstract 

 

Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (IL7R) and γc, are essential for 

normal T-cell development and homeostasis. Here, we show that IL7R is a bona fide 

oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). Nine percent of T-ALL 

patients display somatic gain-of-function IL7R exon 6 mutations. In most cases IL7R 

mutations introduce an unpaired cysteine in the extracellular juxtamembrane-

transmembrane region and promote de novo formation of intermolecular disulfide bonds 

between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and 

independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially 

resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 

rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell 

transformation and tumor formation. Overall, our findings indicate that IL7R mutational 

activation is involved in human T-cell leukemogenesis, paving the way for therapeutic 

targeting of IL-7R-mediated signaling in T-ALL. 
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2.2 Introduction 

 

Signaling mediated by IL-7/IL-7R is essential for normal T-cell development and 

homeostasis [1, 2]. Mice with IL-7 or IL-7R deficiency display an early block in thymocyte 

development and reduced numbers of non-functional peripheral T-cells [3, 4]. In humans, 

IL7Rinactivating mutations result in the development of SCID [5, 6], whereas IL7R 

polymorphisms have been shown to confer susceptibility to multiple sclerosis [7, 8]. There 

is circumstantial evidence that IL-7 and IL-7R may also partake in T-cell leukemia 

progression. IL-7 transgenic mice develop lymphomas [9, 10] and AKR/J mice, which 

develop spontaneous thymic lymphomas, display high IL-7R levels [11]. In addition, T-cell 

acute lymphoblastic leukemia (T-ALL) cells respond to IL-7 in vitro in a majority of patients 

[12-14]. Notably, IL-7R is transcriptionally upregulated by Notch [15], one of the most 

commonly mutated genes in T-ALL [16], and appears to be involved in Notch-mediated 

leukemia cell maintenance [15]. The possibility that IL-7/IL-7R-mediated signaling may 

play a role in T-cell leukemia is further supported by the observation that 18% of adult and 

2% of pediatric T-ALL patients display activating mutations in JAK1, a tyrosine kinase that 

directly binds IL-7R [17] amongst other receptors. Despite these observations, no direct 

confirmation exists that IL-7R-mediated signaling plays an active part in the T-cell 

leukemogenic process in humans.  
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2.3 Methods  

 

Cells. Primary leukemia cells were obtained from the bone marrow and/or peripheral 

blood of diagnostic pediatric T-ALL and pre-B ALL patients. Samples were enriched by 

density centrifugation over Ficoll-Paque (GE Healthcare), washed twice in culture medium 

(RPMI-1640 supplemented with 10% FBS, 2 mM L-glutamine, and 

penicillin/streptomycin), subjected to immunophenotypic analysis by flow cytometry, and 

classified according to their maturation stage (Table 1). Informed consent and institutional 

review board approval were obtained for all primary leukemia collections from Centro 

Infantil Boldrini, Campinas, SP, Brazil (Boldrini); Cooperative Study Group for Childhood 

Acute Lymphoblastic Leukemia, Germany (COALL); and Dutch Childhood Oncology 

Group, The Hague, The Netherlands (DCOG). Primary leukemia cells from patient P1 were 

cultured in culture medium as 2x106 cells/mL. Growth factor-dependent D1 and Ba/F3 cells 

were maintained in culture medium plus 50 ng/mL rmIL-7 (PeproTech) or 1% (v/v) WEHI-

3B-conditioned medium as source of mIL-3, respectively. Phoenix-Eco packaging cell line 

and 293T cells were maintained in DMEM (Mediatech or Gibco), supplemented with 10% 

FBS and penicillin/streptomycin. 

 

IL7R sequencing and mutational analysis. Total RNA was extracted and RNA 

integrity was confirmed by agarose gel electrophoresis. One microgram of total RNA was 

reverse transcribed to cDNA using the ImProm II Reverse Transcriptase (Promega). The 

complete coding sequence of IL7R and the JH2 domain of JAK1 and JAK3 were amplified 

by RT-PCR and sequenced on both strands for a total of 68, 52, and 52 T-ALL samples, 

respectively, from Centro Infantil Boldrini. The same primers were used for amplification 

and sequencing (see Supplementary Table 2). Mutations found in the IL7R were confirmed 

in the corresponding genomic DNA by PCR amplification of exon 6 coding and flanking 

intronic sequences followed by homo-heteroduplex formation analysis 32 and/or sequencing. 

Mutations in exon 6 coding and flanking intronic sequences were further investigated in 119 

T-ALL cases from DCOG and COALL patient series, by sequencing, and in 50 precursor B-

cell ALL cases from Centro Infantil Boldrini by homo-heteroduplex formation analysis. 

 

Geneset enrichment analysis (GSEA). GSEA was performed on our Affymetrix 

U133 plus 2.0 microarray expression dataset for 117 T-ALL cases [18] using 100 random 
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permutations. The microarray expression set is available at 

http://www.ncbi.nlm.nih.gov/geo/ under accession number GSE26713. Enrichment score 

and nominal p-value were obtained for genes that are upregulated in human lymphocytes 

following exposure to IL-7 as described before [19], for which probesets were present on the 

U133 plus 2.0 expression array (SOCS2, CCL4, CCL3, TNF, PMAIP1, LRP1, PIM1, AHR, 

UPP1, GARS, CCND2, DUSP5, FLT3LG, IL2RA, LIF, CEACAM1, MX1, TNFSF10, CSF2, 

CD69, CXCR4, CSF1, SOCS1, IL18R1, DPP4, CASP3, XBP1 and BCL2).  

 

Gene expression microarray analysis and unsupervised cluster analysis. RNA 

isolation for 117 pediatric T-ALL patient samples, integrity analyses of RNA, copy-DNA 

and cRNA syntheses and hybridizations to Human Genome U133 plus2.0 oligonucleotide 

microarrays have been described before [18]. Differentially expressed genes associated with 

IL7R mutations were obtained by regression analysis using the LIMMA package. 

Unsupervised cluster analyses were performed in dChip as described previously [18]. 

 

Construction of IL7R expression vectors. The coding sequence of the IL7R was PCR 

amplified from cDNA of blood mononuclear cells of a healthy donor, using primers IL7R 

3U32, and IL7R 1434L39 (see Supplementary Table 2 for primer information). The reverse 

primer did not incorporate the stop codon. The undigested PCR product was cloned into 

pGEM T-Easy (Promega) and verified by sequencing. The cloned fragment was 

subsequently digested with XmaI, treated with the Klenow fragment of DNA polymerase I, 

then digested with KpnI and cloned into the XbaI (blunted with Klenow) / KpnI sites of the 

pUC19 vector, resulting in the clone pUC19/IL7R. By doing so, a stop codon was re-

inserted, but the last C-terminal amino acids QNQ of the normal IL7R were changed to 

QNPG. A lentiviral expression vector of IL7R, #304/IL7R, was obtained by subcloning the 

IL7R EcoRI(Klenow)-SalI fragment of pUC19/IL7R in place of the LNGFR SmaI-SalI 

fragment of a pCCL.sin.cPPT.minCMV.eGFP.PGK.NGFR.WPRE lentivirus vector [20] 

(kindly provided by Dr Luigi Naldini). To obtain a retroviral expression vector, the IL7R 

fragment was amplified from pUC19/IL7R using primers hIL7R5’BglII and hIL7R3’EcoRI. 

The PCR product was digested with BglII and EcoRI and cloned into pMIG (Addgene 9044, 

contributed by William Hahn). Equal procedures were used to obtain the expression vectors 

for the mutants IL7Rs. Site-directed mutagenesis of the novel cysteine was obtained by PCR 

amplification of a BamHI-BbsI fragment spanning positions 803 to 934 of the IL7R sequence 

http://www.ncbi.nlm.nih.gov/geo/
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(NM_002185.2), using the pUC19/IL7R clone as a template, one of the following forward 

primers: hIL7R_cP1s, hIL7R_cP2s, hIL7R_cP2a, and the reverse primer hIL7R_BbsI. 

The amplified fragments were digested with BamHI and BbsI and inserted into 

pUC19/IL7R, thus replacing the IL7R fragment containing the cysteine codon. 

Subsequently, the mutants of the mutant IL7R coding sequences were cloned into the 

lentiviral and retroviral vectors, as described above. All of the above clones were verified by 

sequencing. 

 

Retroviral infection of D1, Ba/F3 and mouse bone marrow cells. Wild type or 

mutant full-length human IL7R was cloned into 

pCCL.sin.cPPT.minCMV.eGFP.PGK.NGFR.WPRE lentiviral [20] or pMIG retroviral 

vectors, both of which also drive the expression of eGFP. Where indicated, C>A or C> S 

mutations were introduced into the mutant IL7R using PCR strategies. All subcloned genes 

and constructs were verified by DNA sequencing. D1 cells were infected in Retro-Nectin 

(Takara, Santa Ana, CA)–coated plates with pMIG supernatant produced using the phoenix-

Eco packaging cell line. Ba/F3 cells were infected with either pMIG or lentiviral 

supernatants produced in 293T cells. Equivalent levels of expression of GFP and IL-7Rα 

were confirmed for all established D1 and Ba/F3 cell lines. BM cells were harvested from 

tibia and femur of Il7r/ or Il2rg/ mice and progenitors were enriched by lineage cell 

depletion kit (Miltenyi Biotec), and cultured in X-vivo 10 medium (Bio Whittaker) 

supplemented with 5% FBS, murine SCF (100 ng/ml), murine IL6 (50 ng/ml) and flt-3 

ligand (100 ng/ml) (Peprotech). After 48 h, cells were infected on RetroNectin (TaKaRa)-

coated plates overnight with different retroviral supernatant from the packaging line and the 

infection was repeated after 72 h. On the 4th day, cells were harvested, washed and cultured 

with or without IL-7. 

 

Transfection of 293T cells. pCDNA3.1 vectors (Invitrogen) bearing human JAK3, 

human C and mouse Stat5a, and pMIG-IL7R constructs were used, in the indicated 

combinations, to transfect 293T cells by calcium phosphate precipitation. Transfected cells 

were stimulated or not with IL-7 (100 ng/mL) for 15 minutes at 37ºC. Where indicated, cells 

were pretreated with 1mM 2β-Mercaptoethanol or vehicle (PBS) for 2h at 37ºC. Reactions 

were stopped by placing samples on ice.  
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siRNA transfection of 293T and Ba/F3 cells. For 293T cells, 50 pmol of ON-

TARGETplus Non-Targeting pool or ON-TARGETplus SMARTpool JAK1 siRNA 

(Dharmacon) were cotransfected with the indicated plasmid DNA constructs (600ng) using 

Lipofectamine 2000 (Invitrogen) following the manufacturer’s instructions. Cells were 

harvested 36h post-transfection and whole cell lysates were resolved by SDS-PAGE. Ba/F3 

cells were electroporated (300 V, 1500 microfarads) in a Gene Pulser II (Bio-Rad) with 200 

pmol of ON-TARGETplus Non-Targeting pool, ON-TARGETplus SMARTpool Jak1 or 

Jak3 (Dharmacon) or Silencer siRNA Il2rg (Ambion) siRNAs. At the indicated time points 

cells were harvested for viability assay and cell counts. 

 

shRNA transduction of D1 cells. The retroviral vector containing mouse Jak1 

specific 29mer shRNA expressed under U6 promoter and the puromycin selection marker 

was bought from OriGene. Retroviral supernatant from the packaging line was used to infect 

mutant IL-7Rα-expressing D1 cells on RetroNectin-coated plates overnight. At 24 hours 

post-infection, cells were put in fresh culture medium containing 50 ng/ml of mIL-7 and 5 

g/ml of puromycin (Invitrogen) for another 48h. mIL-7 and puromycin were washed away 

and cells were placed in culture without mIL-7 for 48h. Cell viability and proliferation were 

measured by MTT assay. 

 

Treatment with pharmacological inhibitors. Ba/F3 cells stably expressing mutant 

IL7Ror primary T-ALL cells bearing IL7R mutations were cultured in medium alone or with 

the indicated concentrations of Pyridone 6 (JAK Inhibitor I), STAT5 inhibitor N′-((4-Oxo-

4H-chromen-3-yl)methylene)nicotinohydrazide (both purchased from Calbiochem), 

Ruxolitinib (INCB 018424) or Tasocitinib (CP-690550) (both purchased from Axon 

Medchem) and viability determined at the indicated time by flow cytometry analysis. D1 

cells stably expressing mutant IL7R were plated in 96-well plate at a density of 1 × 105 

cells/well in IL-7 free medium and incubated for 48h with or without JAK inhibitors at the 

indicated concentrations. Cell viability and proliferation were determined by MTT assay. 

 

Immunoblotting. Cell lysates were resolved by 10% or 12% SDS-PAGE and equal 

amounts of protein were transferred onto nitrocellulose membranes, and immunoblotted 

with antibodies against: p-JAK3 (Y980), JAK3, JAK1, STAT5, C, actin, (Santa Cruz 

Biotechnology), p-STAT5a/b (Y694/Y699) (Upstate Biotechnology), p-TYK2 
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(Y1054/1055), p-JAK1 (Y1022/1023), p-JAK2 (Y1007/1008), JAK1, p-STAT5 (Y694), p-

STAT3 (Y705), p-STAT1 (Y701), p-Akt (S473), Akt, p-Bad (S112), Bad (Cell Signaling 

Technology), and IL-7Rα (R&D). Immunodetection was performed by incubation with 

horseradish peroxidase-conjugated appropriate secondary antibodies and developed by 

chemiluminescence. For the analysis of IL-7R dimer formation, whole cell lysates were 

resolved in denaturing, non-reducing SDS-PAGE, transferred onto nitrocellulose 

membranes, and immunoblotted. When indicated, lysates were incubated with 100mM DTT 

(Sigma-Aldrich) for 5 minutes at room temperature, prior to non-reducing SDS-PAGE.  

 

Cell cycle analysis. Cells were either permeabilized in 0.1% BSA, 0.01 M HEPES, 

0.1% saponin in PBS at a concentration of 1x106 cells/ml and an equal volume of detergent 

buffer containing 50 µg/ml of propidium iodide (Sigma) and 50 µg/ml of RNase (Puregene), 

or treated as described [13], and analyzed by flow cytometry. Cell cycle distribution was 

determined using ModFit LT software (Verity). 

 

Cell viability assay. Quantitative determination of cell viability was performed using 

Annexin V-based apoptosis detection kits and the manufacturers’ instructions (R&D 

Systems or eBioscience). Briefly, cells were resuspended in the appropriate binding buffer, 

stained with APC-conjugated Annexin V and propidium iodide or 7-AAD at room 

temperature for 15 minutes, and subsequently analyzed by flow cytometry.  

 

Cell counts. Ba/F3 cells were cultured as 2x105/mL in medium deprived of growth 

factors or in the presence of IL-3 conditioned medium (1%; v/v) or IL-7 (10 ng/mL). Total 

cell counts were calculated by trypan blue exclusion using a hemocytometer at the indicated 

time points. 

 

MTT assay. 8 l of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 

bromide; 5 mg/ml; Sigma) was added to each well, and cells were kept at 37°C for 4h, after 

which 100 μl of solubilization solution (Promega) was added, and cells were incubated 

overnight at 37°C. Absorbance was measured by spectrophotometry at wavelengths 590 and 

630 nm. 

 

Mice. Rag1−/− were originally purchased from The Jackson Laboratory (Bar Harbor, 

ME) and Il7−/− Rag2−/−mice were obtained from R. Murray (DNAX Research Institute, Palo 
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Alto, CA). Mice were maintained by homozygous breeding at NCI-Frederick, Maryland. 

Animal care was provided in accordance with NIH Animal Use and Care guidelines. 

Experiments were performed following protocols approved by NCI-Frederick Animal Care 

and Use Committee. All mice used were 8 to 12 weeks old.  

 

Tumor Model. Mice were treated with 0.64 mg/ml of Sulfamethoxazole (SMZ) in 

drinking water 2 days before the injection, and went up to a week after the injection. Mice 

received 3 Gy of whole body -irradiation 4 hours prior to the injection. D1 cells harboring 

the empty vector or human IL7R (2 × 106 cells in 100 l of PBS) were injected 

subcutaneously into the right flank. On day 20, mice were euthanized and tumor size was 

measured by caliper. Tumor volume was calculated by the modified ellipsoidal formula [21]: 

Tumor volume = ½ (length x width2).  

 

Statistical analysis. Fisher's exact test with Bonferroni correction was used to 

compare the frequency of IL7R mutations between T-ALL subgroups. Differences between 

populations were calculated using unpaired 2-tailed Student’s t-test. Differences were 

considered significant for p<0.05. 
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2.4 Results 

 

 Somatic IL7R mutations in diagnostic pediatric T-ALL patient samples 

Based on the evidence that IL-7/IL-7R-mediated signaling contributes to T-cell 

leukemia survival and proliferation in vitro and in vivo, and the existence of JAK1 activating 

mutations in some T-ALL cases, we hypothesized that gain-of-function mutations in IL-7R 

could be present in some T-ALL. Analysis of IL7R complete coding sequence in 68 pediatric 

diagnostic T-ALL patient samples treated in Centro Infantil Boldrini, Campinas, Brazil 

revealed that 5 (7%) of the cases had mutations in IL7R that affected exclusively exon 6. All 

mutants displayed in-frame insertions or insertions/deletions (Table 1, Fig. 1a and 

Supplementary Fig. 1), in the juxtamembrane-transmembrane domain at the interface with 

the extracellular region (Fig. 1a and Supplementary Fig. 2). The mutations were somatic, 

since they were detected at diagnosis but not in samples from the same patients in remission 

(n=5) (Fig. 1b and Supplementary Fig. 1). Subsequent analysis of IL7R exon 6 in DCOG 

and COALL patient series confirmed these results and showed the presence of mutations in 

12 out of 133 cases, with the majority of mutations targeting the same hot spot (Table 1, Fig. 

1a). In total, 17 of 201 (9%) T-ALL samples from 3 independent cohorts had IL7R exon 6 

mutations (Fig. 1c). This frequency was confirmed by a parallel study describing IL7R 

mutations in 10.5% of T-ALL cases [22]. 
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Figure 1. IL7R exon 6 somatic mutations in pediatric T-ALL. (a) Scheme of IL-7Rα protein (top) 

and predicted amino acid alterations (bottom). Indicated are the two extracellular fibronectin type III-like 

domains, containing 4 paired cysteines and a WSxWS motif, the transmembrane domain, and the cytoplamic 

tail with the Box 1 motif and the tyrosine residues involved in signal transduction. The region where the 

mutations occur is denoted by an empty box. Amino acid changes involving introduction de novo of a cysteine 

are indicated in yellow; filled boxes denote deletions-insertions and are aligned with the respective deleted 

amino acid sequence; arrows point to where simple insertions occur. (b) Representative homo/heteroduplex 

analysis of PCR products (left) and sequencing chromatograms (right) of paired diagnosis and remission 

samples indicating the somatic, tumor-associated origin of exon 6 mutations. (c) Frequency of T-ALL 

mutations in the three different patient cohorts analyzed.  
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Table 1. Mutational and immunophenotypical characteristics of IL7R mutant T-

ALL patients. 

 

Pati
ent 
# 

Cohort IL7R gene mutation 

IL-7Rα 
predicted 
aminoacid 
alterations 

NOTCH/ 
FBXW7 

mutational 
status 

PTEN       
mutational 

status 

Oncogen
etic 

group 

EGIL 
maturatio
n stage 

CD3, 
CD4, CD8 

stage 

P1 Boldrini c.[726_727insAACCCATGC] + [=] 
p.[L242_L243in

sNPC] + [=] 
WT* WT Unknown cortical TP 

P2 Boldrini c.[731_732insTTGTCCCAC] + [=] 
p.[T244_I245ins

CPT] + [=] 
Unknown WT Unknown pre-T DP 

P3 Boldrini 
c.[722_730delTCTTACTAAinsGCGC

AAACTGTGGGG] +[=] 

p.[I241_T244del
insSANCGA] + 

[=] 
HD* WT Unknown cortical TP 

P4 Boldrini 
c.[728_729insGGTATCTTGTCC] + 

[=] 
p.[L243_T244in

sVSCP] + [=] 
WT* WT Unknown cortical TP 

P5 Boldrini 
c.[731C>T; 741delTinsCCAATGG] 

+[=] 

p.[T244I; 
I247_L248insQ

W] +[=] 
WT* 

Exon 7 
mutation 

Unknown pre-T ISP4 

P6 DCOG 
c.[717_727delTCCTATCTTACinsCC

AGTCCCCCTCCTGCT] + [=] 

p.[P240_L242d
elinsQSPSC] + 

[=] 
HD WT Unknown pre-T ISP4 

P7 DCOG 
c.[721_722delATinsTG; 

726_727insGAAGGC] + [=] 

p.[I241C; 
L242_L243insE

G] + [=] 
HD/PEST WT TLX3 n.d. DN 

P8 DCOG 
c.[755_761delCTGTCGCinsGGAA] 

+ [=] 
p.[S252_254deli

nsWN] + [=] 
WT WT 

HOXA/ML
L 

pre-T DP 

P9 COALL 
c.[719_731delCTATCTTACTAACins

GGTTTTGTCCCCA] + [=] 

p.[P240_T244d
elinsRFCPH] + 

[=] 
HD WT TLX3 pre-T ISP4 

P10 COALL 
c.[719_736delCTATCTTACTAACCA

TCAinsTTAAGT] + [=] 
p.[P240_S246d
elinsLKC] + [=] 

WT WT TLX3 pre-T DN 

P11 COALL 
c.[726_730delACTAAinsTCACCCTT

TTAACTGTGGAC] + [=] 

p.[L242_T244de
linsFHPFNCGP

] + [=] 
HD WT TLX3 mature ISP4 

P12 COALL c.[730_731insTGTGCCCAA] + [=] 
p.[L243_T244is

nMCP] + [=] 
JM WT HOXA mature DP 

P13 COALL c.[757_758insGCCCATCCC] + [=] 
p.[V253delinsG

PSL] + [=] 
PEST WT HOXA pre-T DN 

P14 COALL 
c.[727_728insGACTTGAGTGCG] + 

[=] 
p.[L243delinsR

LECV] + [=] 
PEST WT 

HOXA/inv
-7 

mature DP 

P15 COALL 
c.[724_736delTTACTAACCATCAins

CCCCAGGGCGGGT] + [=] 

p.[L242_S246d
elinsPQGGC] + 

[=] 
HD/FBXW7 WT 

HOXA/SE
T-NUP214 

mature DP 

P16 COALL 
c.[719_736delCTATCTTACTAACCA

TCAinsTCCAATCAT] +[=] 
p.[P240_S246d
elinsLQSC] +[=] 

WT WT 
TAL1/LM
O2-like 

cortical DP 

P17  COALL 
c.[726_729delACTAinsTCCCCATCA

GCATTGT] + [=] 

p.[L242_L243de
linsFPHQHC] + 

[=] 
FBXW7 WT Unknown mature ISP4 

* FBXW7 mutational status not analyzed; n.d. - not determined/inconclusive.  
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 Biological and clinical features associated with IL7R mutations 

To identify possible transcriptional patterns associated with IL7R mutations in T-ALL, 

we analyzed microarray data from 8 IL7R mutated and 109 non-mutated diagnostic patient 

samples. Differential gene expression was tested by regression analysis using the LIMMA 

package. IL7R mutations were associated with upregulation of 39 probesets and 

downregulation of 41 (FDR p-value <0.05) (Fig. 2a and Supplementary Table 1). 

Importantly, gene set enrichment analysis (GSEA) of these T-ALL samples showed 

significant enrichment of a set of genes activated upon IL-7 stimulation in normal 

lymphocytes (Enrichment score= 0.67, p=0.045) [19]. These genes include SOCS1, SOCS2, 

PIM1, BCL2, DPP4/CD26 and CCND2/Cyclin D2 (Fig. 2b), all of which have been reported 

as transcriptional targets of the JAK/STAT pathway. 

T-ALL patients are categorized into several oncogenetic subgroups that are 

characterized by rearrangements and aberrant expression of transcription factors such as 

TAL1 and LMO1/2, TLX1/HOX11, TLX3/HOX11L2, HOXA, NKX2-1 or MEF2C [18]. IL7R 

mutations were predominantly found in cases belonging to the HOXA subgroup (Table 2). 

Recently, we identified unsupervised T-ALL gene expression clusters that closely 

recapitulate oncogenetic T-ALL subgroups, namely the TAL/LMO subgroup (enriched for 

TAL1/2 and/or LMO1/2/3 rearranged cases), the proliferative subgroup (enriched for TLX1 

or NKX2-1/NKX2-2 rearranged cases), the TLX subgroup (enriched for TLX3 rearranged and 

HOXA deregulated cases) and the immature/ETP-ALL cases (enriched for MEF2C 

deregulated cases) [18]. Our current analyses showed that IL7R mutations were especially 

associated with the TLX subgroup (Fig. 2a and Table 2), in agreement with the fact that this 

unsupervised gene expression T-ALL subset is enriched in HOXA deregulated cases.  

As some oncogenic rearrangements in T-ALL are associated with specific 

immunophenotypic development stages [23, 24], we evaluated whether IL7R mutations 

predominated in particular immunophenotypes. IL7R gene alterations did not associate with 

any specific T-ALL maturation stage based on EGIL criteria [25]. Although IL7R mutations 

were negatively and positively associated with CD2 and CD10 expression, respectively 

(Supplementary Fig. 3), they did not associate with CD34, CD33, CD5, CD1, CD4, CD8, 

cytoplasmic CD3, surface CD3, TCR or TCR expression.  

JAK1 and JAK3 are essential for physiologic IL-7-mediated signaling [1]. None of the 

IL7R mutants analyzed (n=5) displayed gene alterations in the JH2 pseudokinase domain of 

JAK1 or JAK3, reported to be mutated in pediatric T-ALL [17], and in breast cancer [26] 

and acute megakaryoblastic leukemia [27], respectively. PI3K/Akt signaling pathway is 
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activated by IL-7 in T-ALL cells [28], and PTEN, the major negative regulator of PI3K/Akt 

signaling pathway, is mutated in up to 20% of T-ALL cases [29-33]. Only one of the 

seventeen IL7R mutant samples showed PTEN gene alterations (Table 1). NOTCH1 is a 

major oncogene in T-ALL, with more than 60% of the cases presenting gene alterations in 

NOTCH1 or FBXW7, the E3 ubiquitin ligase that targets NOTCH for degradation [16, 34, 

35],[36]. No significant difference was observed in the distribution of IL7R mutations in 

NOTCH1/FBXW7 mutated versus non-mutated patients (Table 2). 

We also evaluated whether IL7R mutations could predict treatment response and 

clinical outcome. We did not find any association to initial in vivo prednisone response. 

Moreover, there was no difference in survival between wild-type and mutant IL7R patients. 

Disease-free (p=0.82, Log-Rank test), event-free (p=0.84) and overall survival (p=0.51; 

Supplementary Fig. 4) were similar for both groups.   
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Figure 2. Molecular signatures associated with IL7R mutation in T-ALL. (a) Heat-map diagram of 

the 80 top ranking differentially expressed genes (Supplementary Table 1) in IL7R mutants (n=8) compared to 

wild type (n=109) T-ALLs, as determined by empirical-Bayes linear models (LIMMA package; cut-off FDR 

p-value=0.05). Genes are shown in rows; each individual sample is shown in one column. The scale bar shows 

color-coded differential expression from the mean in s.d. (σ) units, with red indicating higher expression and 

blue lower expression. Unsupervised gene expression T-ALL clusters were defined as previously described 

[18] and are indicated as: T (blue), TAL/LMO; T (red), TLX; i (green), immature; P (violet), proliferative. 

Cytogenetic defects are denoted as: r, rearranged/mutated; a, aberrant expression, u, unavailable data. (b) Gene 

set enrichment analysis (GSEA) plot (top) showing that genes over-expressed in human normal lymphocytes 

following IL-7 exposure [19] were significantly enriched in IL7R mutant T-ALL cases (Enrichment 

score=0.67, p=0.045). Heat-map diagram (bottom) of the 12 top ranking genes in the leading edge. 
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Table 2. Association of IL7R mutations with genetic features of T-ALL patients. 

 

    IL7R p-value 

  mutant wild type  

Gene expression clusters * 8 (7) 101 (93)  

   TAL/LMO n=49 1 (2) 48 (98) p=0.284 

   Proliferative n=19 0 (0) 19 (100) p=1.0 

   TLX n=26 6 (23) 20 (77) p=0.008 

   Immature n=15 1 (7) 14 (93) p=1.0 

     

Genetics (Oncogenetic subgroups) 12 (9) 123 (91)  

   TAL1/2‡ n=28 0 (0) 28 (100) p=0.568 

   LMO1/2/3‡ n=19 0 (0) 19 (100) p=1.0 

   TLX3 n=25 4 (16) 21 (84) p=1.0 

   TLX1 n=8 0 (0) 8 (100) p=1.0 

   HOXA n=13 5 (38) 8 (62) p=0.016 

   NKX2-1/2-2 n=6 0 (0) 6 (100) p=1.0 

   MEF2C n=6 0 (0) 6 (100) p=1.0 

   unknown n=32 3 (9) 29 (91) p=1.0 

     

NOTCH1/FBXW7  12 (9) 122 (91)  

   mutant n=86 9 (10) 77 (90) p=1.0 

   wild type n=48 3 (6) 45 (94)   

 

* Unsupervised gene expression cluster analysis (109 T-ALL cases had known IL7R 

mutational status). Subgroups defined as in Homminga et al. [18]; ‡Two T-ALL cases have 

both TAL1/2 and LMO1/2 aberrations.   
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 IL7R mutations induce constitutive signaling, independently of IL-7, c and 

JAK3 

The high-affinity IL-7R complex is formed by IL-7R and c. Triggering of IL-7R by 

IL-7 involves recruitment of both subunits and consequent activation of the tyrosine kinases 

JAK1 (associated with IL-7R) and JAK3 (associated with c), leading to the downstream 

activation of different pathways, most prominently PI3K/Akt and STAT5 [1, 2]. We 

hypothesized that T-ALL-associated IL7R mutations should promote either constitutive 

signaling or increased responsiveness to IL-7. We first compared two primary leukemia 

samples collected at diagnosis that differed in their IL7R mutational status. In contrast to the 

wild type (WT) T-ALL case, the patient sample harboring an IL7R mutation (P1, L242-

L243insNPC; Table 1) displayed constitutive JAK1 and STAT5 phosphorylation (Fig. 3a). 

To exclude the possibility that this difference resulted from lesions other than IL7R mutation, 

we transduced the IL-7-dependent thymocyte cell line D1 [37] with retroviral vectors driving 

the expression of the human IL-7R WT chain or two of the mutants (P1; and P2, T244-

I245insCPT). Analysis of JAK/STAT and PI3K/Akt pathways showed that the IL7R 

mutations are gain-of-function, inducing ligand-independent constitutive hyperactivation of 

IL-7R-mediated signal transduction. IL7R mutations induced phosphorylation of JAK1 and 

STAT5 (Fig. 3b), STAT1 and STAT3 (Supplementary Fig 5), as well as Akt and its direct 

target Bad (Fig. 3c). Surprisingly, the mutants did not promote JAK3 phosphorylation, which 

is a hallmark of physiological IL-7-mediated signaling (Supplementary Fig 5). Similar 

results were obtained with Ba/F3 cells (Supplementary Fig. 6). Strikingly, reconstitution of 

the IL-7R machinery in 293T cells (which express endogenously only JAK1 and lack IL-

7Rα, γc and JAK3) further revealed that the IL-7R mutant proteins signal constitutively in 

a manner that is independent of c (Fig. 3d,e) and JAK3 (Fig. 3e). In contrast, knock down 

of JAK1 resulted in abrogation of mutant IL7R-dependent constitutive STAT5 

phosphorylation (Fig. 3f and Supplementary Fig. 7). Since, similar to JAK3, JAK2 and 

TYK2 are not activated by the IL7R mutants (Supplementary Fig 5), our results indicate that 

JAK1 is the only Janus kinase mandatory for signaling triggered by mutated IL-7Rα. 
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Figure 3. IL7R mutations induce constitutive signaling in a manner that is independent of IL-7, 

c and JAK3 and relies on disulfide bond promotion of homodimer formation. (a) Primary T-ALL cells 

collected at diagnostic from IL7R mutant (P1) and WT patients were analyzed by immunoblot for JAK1 and 

STAT5 phosphorylation. D1 cells expressing human WT or mutated (P1 and P2) IL-7Rα were cultured without 

IL-7 for 4 hr, stimulated or not with IL-7 for 20 min and evaluated for activation of JAK-STAT (b) and 

PI3K/Akt (c) pathway activation by immunoblot. (d) 293T cells reconstituted with JAK3, STAT5, and WT or 

mutated IL-7R, and expressing or not γc, were analyzed for constitutive and IL-7-induced (15 min. 

stimulation) STAT5 phosphorylation. (e) 293T cells were transfected with IL-7Rα P2 and the remaining 

components of the IL-7R signaling machinery as indicated, and evaluated for STAT5 phosphorylation. (f) 

293T cells were transfected with IL-7Rα P1 or P2 and siRNA against JAK1 (+) or control non-targeting siRNA 

(-) and evaluated after 36 hr for JAK1 expression and STAT5 phosphorylation. (g) Lysates from D1 cells 

expressing WT or mutant IL-7R were treated or not with the reducing agent DTT and analyzed for IL-7Rα 

expression by immunoblot. The monomeric and dimeric forms of the receptor are denoted by black and white 

arrows, respectively. (h) 293T cells expressing IL-7Rα P1 and P2 and the remaining components of the IL-7R 

signaling machinery were pretreated with β-mercaptoethanol (β-ME) and stimulated or not with IL-7 for 15 

min. and subsequently evaluated for STAT5 phosphorylation by immunoblot. (i) D1 cells expressing each of 
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the indicated IL-7R constructs were analyzed for IL-7Rα expression by immunoblot. (j) Signaling elicited by 

each indicated mutant form expressed in D1 (left) or 293T (right) cells was assessed by detection of STAT5 

phosphorylation. 

 

 

 Constitutive signaling from IL7R mutants is associated with homo-

dimerization/oligomerization via disulfide bond formation 

Most IL7R mutations (14/17; 82%) created an unpaired cysteine residue in the 

extracellular juxtamembrane/transmembrane interface region (Fig. 1a and Supplementary 

Fig. 2). Mutations that introduce cysteines in this region in receptors such as EpoR [38], 

RET [39] and Her2/Neu [40], have been implicated in intermolecular disulfide bond 

formation, with consequent homodimerization and signaling activation. A similar 

mechanism was suggested to account for the oncogenic activity of Phe232Cys mutation in 

the TSLP receptor (CRLF2), recently found in B-ALL [41]. Expression of human IL-7R 

in c-expressing D1 cells or in 293T cells, which do not express c, followed by immunoblot 

analysis under non-reducing conditions showed that the mutants are detected mostly as 

dimers/oligomers whereas WT IL-7R is found mainly in a monomeric form. In contrast, 

both WT and mutant IL-7Rs were detected essentially in the monomeric form when the 

protein lysates were resolved under reducing conditions (Fig. 3g and Supplementary Fig. 8). 

Similar results were obtained by transducing Il7r-/- BM cells (Supplementary Fig. 9). 

Accordingly, constitutive, ligand-independent, phosphorylation of STAT5 was significantly 

downregulated by pretreatment of mutant IL-7R-expressing cells with -mercaptoethanol 

(Fig. 3h). Furthermore, receptor dimerization and constitutive signaling were abrogated 

upon substitution of the mutated cysteine to alanine or serine (Fig. 3i,j). These data indicate 

that constitutive hyperactivation of IL-7R-mediated signaling in T-ALL cells results, in the 

majority of the cases, from intermolecular disulfide bond formation arising from the 

introduction of an unpaired cysteine in the extracellular juxtamembrane/transmembrane 

region of IL-7R that leads to homotypic dimerization/oligomerization.  
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Figure 4. IL7R mutations induce cell cycle progression, increase cell viability, and promote growth 

factor independence. Ba/F3 cells stably expressing WT or mutated IL-7Rwere cultured for 96 hr in medium 

and analyzed for (a) cell cycle distribution (percentage of cells in cycle, S+G2/M, is indicated for each 

condition), and (b) viability (percentage of viable, early apoptotic and late apoptotic/necrotic cells is indicated 

in the respective quadrant). (c) Ba/F3 cells stably expressing IL-7Rwere cultured in the absence of growth 

factors or with IL-3 or IL-7 and expansion was measured at the indicated time points. (d) Ba/F3 cells stably 

expressing P1 or P2 mutated IL-7Rα were transfected with siRNA against JAK1, JAK3, c (IL-2R) or with 

non-targeting (NT) control and evaluated for cell viability after 48 hr. (e) Ba/F3 cells transduced with IL-7Rα 

P2 or with the indicated introduced mutations were cultured in the absence of growth factors and expansion 

was measured at the indicated time points. Results in panels c-e represent average of triplicates ± sem.   
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 IL7R mutations induce cellular transformation in vitro and promote tumor 

formation in vivo 

We then investigated the cellular consequences of constitutive signaling emanating 

from IL-7Rα mutants. Expression of mutant, but not wild type, IL-7R into IL-7-dependent 

D1 cells and IL-3-dependent Ba/F3 cells promoted both cell cycle progression (Fig. 4a, 

Supplementary Fig. 10 and 11) and viability (Fig. 4b, Supplementary Fig. 10 and 11) 

independently of IL-7. Accordingly, mutation of IL-7R conferred growth factor 

independency to Ba/F3 cells (Fig. 4c), indicating that the IL7R mutants have transforming 

capacity. In agreement with the signaling data (Fig. 3d-f), the functional effect of the mutants 

was also independent of c and JAK3, as shown by increased survival of BM cells from 

Il2rg-/- (Supplementary Fig. 12) and Jak3-/- (Supplementary Fig. 13) mice transduced with 

two of the mutants, and reliant on JAK1, as determined by inhibition of mutant IL7R-

mediated survival in Ba/F3 and D1 cells upon JAK1, but not c or JAK3, knockdown (Fig 

4d and Supplementary Fig. 14). Furthermore, substitution of the de novo inserted cysteine 

residue to serine/alanine resulted in reversal of the transforming capacity of the IL-7R 

mutants (Fig. 4e and Supplementary Fig. 15), suggesting that intermolecular disulfide bond-

dependent homodimerization is mandatory not only for signaling but also for the functional 

effects of IL-7R mutants.  

Although IL7R mutations induced cell transformation, growth factor independence or 

immortalization in vitro does not necessarily implicate the acquisition of a malignant 

phenotype in vivo. Therefore, we next evaluated the in vivo tumorigenic potential of IL7R 

mutations. In contrast to D1 cells transduced with empty vector or the WT IL-7R, 

subcutaneous injection of mutant IL-7R-expressing D1 cells in Rag1-/- mice resulted in 

tumor formation (Fig. 5a). Notably, ill mice displayed a phenotype typical of T-ALL with 

substantial homing of mutant IL-7R-expressing cells into the bone marrow and infiltration 

into various organs that are normally affected in advanced stage disease, such as lymph 

nodes, liver and spleen (Fig. 5b-e, Supplementary Fig. 16 and data not shown). The tumors 

were transplantable into secondary recipient animals (not shown) and were not dependent 

on the presence of IL-7, since injection of mutant IL-7R-expressing cells led to tumor 

development in IL-7 deficient mice (Fig. 5f). Taken together, our results indicate that IL7R 

mutational activation is an oncogenic event involved in T-ALL. 
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Figure 5. In vivo tumorigenic effect of IL7R mutations. D1 cells expressing WT or mutated IL-7Rα 

were subcutaneously injected into Rag1-/- mice and evaluated for tumor progression and organ infiltration. (a) 

Subcutaneous tumor volume growth curves. (b) Phase contrast and fluorescence imaging of D1 cells (GFP-

positive) infiltrated into liver, spleen and bone marrow. (c) Representative images of spleens from mice culled 

at day 20 and (d) respective spleen cellularity. (e) Histological analysis (hematoxylin/eosin staining) of 

indicated organs from representative mouse transplanted with cells expressing mutant IL-7R P2; right panel: 

20x magnification of the area denoted by a square on the left panel. (f) D1 cells expressing WT or mutated IL-

7Rα were subcutaneously injected into Il7-/- Rag2-/- mice and evaluated for tumor size at day 20. Results in 

panels a, d and f represent average of triplicates ± sem. 
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 Targeting IL7R mutant cells with JAK/STAT pathway pharmacological 

inhibitors  

To test the potential therapeutic application of our findings, we reasoned that mutant 

IL-7R-expressing cells should rely on constitutive signaling downstream from the receptor. 

We first evaluated the efficacy of several JAK inhibitors, including Pyridone 6 (JAK 

inhibitor I), CP-690550 and INCB018424. The latter two are of particular relevance since 

they are in clinical trials for other rheumatoid arthritis and several cancers, including 

hematological malignancies. Importantly, all three drugs significantly downregulated JAK1 

phosphorylation and consequent downstream activation of STAT5 and Akt (Fig. 6a), and 

induced cell death in a dose- and time dependent manner (Fig. 6b,c and Supplementary Fig. 

17) in Ba/F3 cells expressing mutant IL-7R. Likewise, CP-690550, INCB018424 and 

another clinically-relevant JAK inhibitor, CYT387, inhibited the proliferation of mutant IL-

7R-expressing D1 cells (Supplementary Fig. 18). Furthermore, a STAT5-specific small 

molecule inhibitor [42] promoted significant killing of Ba/F3 cells expressing mutant IL-

7Rα (Fig. 6d and Supplementary Fig. 19). Finally, we found that primary T-ALL cells 

harboring IL7R mutation are also sensitive to JAK/STAT pathway inhibition. With the 

exception of CP-690550, the remaining drugs had differential but always significant 

cytotoxic effects on diagnostic leukemia cells (Fig. 6e). These results illustrate the potential 

therapeutic value of JAK/STAT pathway small molecule inhibitors in the context of IL7R 

mutant T-ALL.  
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Figure 6. Targeting IL7R mutants using JAK/STAT pathway inhibitors. Ba/F3 cells expressing 

mutated IL-7Rα P1 were cultured in medium alone in the presence or absence of the indicated doses of different 

JAK and STAT5 pharmacological inhibitors. (a) Cells were analyzed at 48 hr for effective JAK/STAT pathway 

inhibition by immunoblot. Cell viability was analyzed (b) at 48 hr (INCB018424) and 72 hr (CP690550 and 

Pan-JAK inhibitor) after increasing doses of each drug and (c) at different time points with a single dose of 

each inhibitor. (d) Cell viability was analyzed at 72 hr with increasing doses or at different culture time points 

with 200 µM of STAT5-specific inhibitor. (e) Primary T-ALL cells from patient P1 were cultured in the 

presence of the indicated JAK/STAT pathway inhibitors and evaluated for cell viability at 24 hr. ns p≥0.05, * 

p<0.05, ** p<0.01, *** p<0.001. Viability results panels b-e represent average of triplicates ± sem.  
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2.5 Discussion 

T-ALL is an aggressive hematological cancer resulting from leukemic transformation 

of thymocytes. Although there has been a remarkable increase in our knowledge of T-ALL 

molecular pathogenesis, the identification and characterization of the players and 

mechanisms driving proliferation and survival of leukemia T-cells remains relatively poor. 

IL-7 and its receptor are essential for normal T-cell development and have been suggested 

to play a role in T-ALL. In the present study we showed that nine percent of pediatric T-

ALL cases display IL7R exon 6 mutations that are gain-of-function and have oncogenic 

ability. Thus, our findings expand the spectrum of disease-associated IL7R genetic 

alterations to cancer. Moreover, this is the first example of an oncogene in the γc family of 

cytokine receptors, which is critically involved in numerous lymphoid cell functions [43]. 

Surprisingly, IL7R mutations do not occur in the cytoplasmic tail, which recruits 

signaling effectors, but at the extracellular juxtamembrane/transmembrane interface. The 

vast majority of IL7R mutations identified create an unpaired cysteine residue, which is 

necessary for disulfide bond-dependent IL-7Rα homodimerization and bypasses the 

requirement for ligand biding and γc heterodimerization to trigger downstream signaling. 

Moreover, all IL7R mutations insert additional amino acids rather than involving a single 

amino acid change to a cysteine. This may indicate that these additional amino acids are 

required for the optimal conformation leading to maximal signaling, perhaps by allowing for 

the most adequate alignment/exposure of the unpaired cysteine and/or by maximizing the 

interactions between downstream effectors at the cytoplasmic tail of the receptor. The three 

remaining cases originated the inclusion of either a tryptophan or an SxxxG motif in the 

transmembrane domain. Although we did not analyze the mechanisms by which these 

mutations may contribute to T-cell leukemia, tryptophan residues and SxxxG motifs have 

both been reported to promote association of transmembrane helices [44, 45] that could 

result in homo- or heterodimer formation with possibly similar outcomes to cysteine 

mutations. However, preliminary analyses of mutant P5, which has the insertion of a 

tryptophan in the transmembrane domain (Table 1), suggest that it does not form dimers 

(data not shown) and suggest that the pro-survival effect of this mutation is relatively minor: 

P5 expression in D1 cells deprived of IL-7 for 48h resulted in a 2.8-fold increase in viability 

relative to IL-7R WT versus 7.4-, 9.1-, and 6.0-fold for P1, P2 and P4, respectively. In 

accordance, P5 appears to be relatively inefficient in inducing constitutive signaling as 

compared to the other IL7R mutations (Supplementary Fig. 7). These results suggest that 
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IL7R mutations not involving cysteine insertion are not as potent, probably requiring 

additional cooperating oncogenic events, compared to those that result in the introduction of 

an unpaired cysteine, which constitute the vast majority of the cases identified in childhood 

T-ALL and characterized by our study. 

IL7R gene alterations appear to be highly predominant in T-cell as compared to B-cell 

leukemia. We did not detect exon 6 mutations in any of the 50 childhood pre-B ALL cases 

we analyzed and a recent report indicated that IL7R mutations occur in only 0.6% pre-B-

ALL cases. In contrast to T-ALL, half of the B-cell-associated mutations affect exon 5, rather 

than exclusively exon 6, and require cooperation with TSLPR/CRLF2 overexpression [22]. 

TSLPR expression is rare in T-ALL and not necessary for signaling driven by the IL7R 

mutations, as we showed here in 293T cells – which do not express TSLPR and yet display 

constitutive signaling after expression of mutated IL7R. Interestingly, the fact that IL-7Rα is 

apparently expressed in various carcinoma cell lines and breast cancer tissue [46], raises the 

intriguing question of whether mutations in IL7R may also occur in solid tumors.  

IL7R mutations were found in different T-ALL oncogenetic subgroups, but they tend 

to associate predominantly with HOXA aberrant expression. Although the exact biological 

significance of this link remains to be fully understood, it is noteworthy that Hoxa9-/- mice 

display impaired early T-cell development, with reduced Bcl-2 and IL-7Rα expression [47]. 

Curiously, IL7R gene alterations did not associate with T-ALL maturation stage or with most 

T-cell differentiation markers. These observations are reminiscent of the fact that primary 

T-ALL cells, in contrast to normal developing thymocytes, respond to IL-7 independently 

of their maturation stage [14]. 

We demonstrated that pharmacological inhibition of JAK/STAT pathway induces cell 

death of mutant IL-7Rα-expressing cells. The preliminary data on the effect of these 

inhibitors in one primary T-ALL patient sample was significant but not as striking as on cell 

lines. This may relate to the early time point at which viability was assessed (which may 

have prevented the inhibitors to have the maximal effect), to the importance of other 

alternative downstream signaling pathways in the regulation of cell survival in primary 

leukemia, and/or to higher dependence on other oncogenic defects in the leukemia cells of 

the patient analyzed. Irrespectively of these considerations, our results suggest that 

JAK/STAT pathway inhibitors are cytotoxic to mutated IL-7Rα-expressing T-ALL cells. 

Whether inhibitors of other signaling components activated by gain-of-function IL7R 

mutations, such as Akt, can be exploited, per se or in combination with JAK/STAT 

antagonists, to target IL7R mutant T-ALL cells requires further investigation. 
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The extraordinary improvement in T-ALL treatment outcome in recent years is 

mitigated by the long-term side-effects associated with current regimens and by the dismal 

prognosis of relapsed patients. Further improvement requires an in-depth understanding of 

T-ALL molecular genetics and leukemogenic pathways, which will ultimately lead to the 

identification of novel molecular players and to the development of effective targeted 

therapies. This line of reasoning has led, for instance, to the identification of CREBBP/CBP 

mutations that are associated with ALL relapse [48], or TSLPR/CRLF2 rearrangements, 

which are particularly frequent in Down syndrome ALL [49]. PTPN2 and PHF6 mutational 

loss [50, 51] are among the most recently characterized genetic lesions involved in T-ALL. 

Our present work indicates that IL7R mutational activation takes part in human T-cell 

leukemogenesis, thereby expanding the spectrum of genetic alterations in T-ALL to a long 

recognized major regulator of lymphoid biology. Importantly, our findings provide a strong 

rationale for specific targeting of IL-7R-mediated signaling as a treatment option for T-ALL.   
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Supplementary Figures 1-19, Tables 1-2 and References 
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Supplementary Figure 1. IL7R exon 6 somatic mutations in pediatric T-ALL. DNA 

chromatograms of 3 patients from the Boldrini cohort showing the mutated sequences at diagnosis and lack 

of mutation at remission. The corresponding chromatograms of the remaining 2 patients from the same cohort 

are shown in Figure 1. Highlighted are the DNA and respective amino acid sequence alterations in each 

case. Patient P5 has a SNP (c.731C>T; p.T244I) in addition to the indicated QW mutation. 
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Supplementary Figure 2. The majority of unpaired cysteines created by IL7R mutations are 

predicted to localize extracellularly at the juxtamembrane-transmembrane domain interface. 

Prediction of core transmembrane helices (TMH, boxed) and localization of mutated amino acids (red), 

using two distinct bioinformatics tools. (a) According to DAS [1] using TM- Library size of 32, the cysteine 

(cyan) is located extracellularly in 12 patients (6 at the TMH border) and at the extracellular border within 

the TMH in 2 patients. (b) According to TMPRED [2] the cysteine is located extracellularly in 11 patients 

(4 at the TMD border) and within the TMD in 3 patients (with 1 at the extracellular border). 
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Supplementary Figure 3. Association of IL7R mutations with CD2 and CD10. Distribution of 

IL7R mutations among (a) CD2 and (b) CD10 positive versus negative patient samples. P values were 

calculated using Fisher’s exact test. 

 

 

 

 

Supplementary Figure 4. Overall survival in pediatric T-ALL cases with and without IL7R 

mutation. Kaplan-Meier survival curve in pediatric T-ALL cases with (IL7R mutant, n=12) and without 

(IL7R WT, n=123) mutations in IL7R treated on DCOG ALL-7/-8 and -9 (n=66) and COALL-97 protocols 

(n=69). P value was calculated using Log-Rank test. 

  



ONCOGENIC IL7R MUTATIONS IN T-ALL 

93 

 

Supplementary Figure 5. Further characterization of JAK/STAT pathway activation in IL-

7- versus mutant IL7R-dependent signaling in D1 cells. D1 cells expressing human WT or mutated (P1 

and P2) IL-7Rα were cultured without IL-7 for 4 hr, stimulated or not with IL-7 for 20 min and evaluated 

by immunoblot for phosphorylation of (a) JAK3 and TYK2, (b) JAK2, and (c) STAT1 and STAT3. Whereas 

IL7R mutations induce constitutive phosphorylation of STAT1 and STAT3, they do not drive TYK2, JAK2 

or JAK3 phosphorylation. 
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Supplementary Figure 6. IL7R mutations induce JAK1, STAT3 and STAT5, but not JAK3, 

phosphorylation in Ba/F3 cells. Ba/F3 cells expressing human WT or mutated (P1 and P2) IL-7Rα were 

cultured without IL-3 for 4 hr and evaluated by immunoblot for phosphorylation of the indicated proteins. 

 

 

 

 

Supplementary Figure 7.  JAK1 knockdown abrogates mutant IL7R-mediated signaling. 

293T cells were transfected with WT or the indicated mutant IL-7Rα together with siRNA against JAK1 (+) 

or control non-targeting siRNA (-) and evaluated after 36 hr for JAK1 expression and STAT5 

phosphorylation. This blot further illustrates that P5, which displays a mutation not introducing a de novo 

cysteine (T244I, I247_L248insQW; Table 1) is able to promote some degree of constitutive STAT5 

phosphorylation, which is also sensitive to JAK1 knockdown. 
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Supplementary Figure 8. IL-7Rα mutant, but not wild type, proteins constitutively form redox-

sensitive dimers/oligomers in 293T cells. Lysates from 293T cells expressing wild type (WT) or mutant 

(P1 and P2) IL-7R were treated or not with the reducing agent DTT and analyzed for IL-7Rα 

expression by immunoblot. The monomeric and dimeric/oligomeric forms of the receptor are denoted by black 

and white arrows, respectively. 

 

 

 

 

Supplementary Figure 9. IL-7Rα mutant proteins constitutively form redox-sensitive 

dimers/oligomers in Il7r -/- BM cells. Lysates from BM cells from Il7r -/- mice transduced with P1 mutant 

IL7R were treated or not with the reducing agent DTT and analyzed for IL-7Rα expression by immunoblot. 

The monomeric and dimeric forms of the receptor are denoted by black and white arrows, respectively.  
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Supplementary Figure 10. IL7R mutations induce cell cycle progression and viability in 

Ba/F3 cells independently of IL-3 or IL-7. Ba/F3 cells stably expressing WT or mutated IL-7Rwere 

cultured in the absence of growth factors or with IL-3 or IL-7. (a) Cell cycle was determined at 96h. (b) 

Viability was evaluated by Annexin V/ 7-AAD staining at the indicated time points. Data represent 

average of triplicates ± sem. 
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Supplementary Figure 11. IL7R mutations induce cell cycle progression and viability in D1 cells 

independently of IL-7. (a) D1 cells transduced with empty pMIG vector (Empty), IL-7Rα wild type (WT), 

IL-7Rα P1 or IL-7Rα P2 were analyzed for cell cycle distribution after 24h of IL-7 deprivation. Percentage 

of cells in cycle (S+G2/M) is indicated for each condition. (b) Viability of D1 cells transduced with empty 

pMIG vector (Empty), IL-7Rα WT, IL-7Rα P1 or IL-7Rα P2 was assessed after 20h and 40h of IL-7 

deprivation. D1 cells cultured in the presence of IL-7 are shown as positive controls. Data represent average 

of triplicates ± sem. 
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Supplementary Figure 12. IL7R mutations induce cell viability independently of γc expression.  

Bone  marrow  cells  from  Il7r  -/-  (IL-7R  KO)  or  Il2rg  -/-  (c  KO)  mice  were 

transduced with the empty pMIG vector (Empty), IL7R (IL-7R) WT, IL7R P1 or IL7R P2 

and cultured for 96h with or without IL-7. Viability was evaluated by Annexin V/ 7-AAD 

staining. Data represent average of triplicates ± sem. 
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Supplementary Figure 13. IL7R mutations induce cell viability independently of JAK3 

expression. Bone marrow cells from Jak3 -/- mice were transduced with the empty pMIG vector (Empty), 

IL7R (IL-7R) WT, IL7R P1 or IL7R P2 and cultured for 96h with or without IL-7. Viability was evaluated 

by Annexin V/ 7-AAD staining. Mean ± sem is indicated for triplicates of each condition. 
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Supplementary Figure 14. IL7R mutations induce cell viability and proliferation in a JAK1- 

dependent manner. D1 cells expressing P1 mutant IL-7Rα were transduced with Jak1 or control shRNAs. 

After 24 hr of infection, cells were cultured with IL-7 (50 ng/ml) and puromycin (5g/ml)  for  48  hr,  

and  then  cultured  in  medium  alone  for  48  hr.  Viability/Proliferation  was analyzed by Annexin V/7-

AAD staining (a) and by an MTT assay (b). Mean ± sem is indicated for triplicates of each condition. 
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Supplementary Figure 15. Cell viability promoted by IL7R mutations depends on the presence 

of the cysteine introduced de novo. Ba/F3 cells stably transduced with pMIG vector (Empty),  IL-7Rα  WT,  

or  IL-7Rα  P2  or  the  indicated  P2  cysteine  mutants  were  cultured  in cytokine-deprived medium or in 

the presence of IL-3, and analyzed for cell viability at 48h. Viability was evaluated by Annexin V/ 7-AAD 

staining. (a) Representative dot plots of cells cultured in the absence of cytokines. (b) Mean ± sem of 

duplicates of each condition. 
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Supplementary Figure 16. Lymph node and liver infiltration in Rag1 -/- mice subcutaneously 

injected with D1 cells. (a) Lymph node cellularity and (b) representative phase contrast and fluorescence 

images of lymph nodes from Rag1-/- mice 20 days post subcutaneous transplantation of D1 cells. Mean ± 

sem is indicated for triplicates of each condition. 
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Supplementary Figure 17. JAK inhibition reduces cell viability of P2 mutant IL-7Rα- 

expressing Ba/F3 cells. Ba/F3 cells stably expressing mutant IL-7RP2 were cultured in medium alone 

with or without JAK inhibitor I at the indicated doses for 72 hr (left) or for the indicated culture periods at 

1µM (right) and analyzed for cell viability by flow cytometry. Mean ± sem is indicated for triplicates of each 

condition. 
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Supplementary Figure 18. JAK pharmacological inhibitors in clinical use reduce cell 

viability/proliferation of mutant IL-7Rα-expressing D1 cells. D1 cells stably expressing mutant IL-

7Rwere cultured in medium deprived of IL-7 with or without the indicated clinically-relevant JAK 

inhibitors and viability/proliferation (shown as O.D.) was determined at 48 hr using an MTT assay. Mean ± 

sem is indicated for triplicates of each condition. 
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Supplementary Figure 19. Dose-dependent cell death induced by STAT5 inhibition in P1, P2 

and P3 mutant IL-7Rα-expressing Ba/F3 cells. Ba/F3 cells stably expressing the indicated mutant IL-7R 

were cultured in medium alone with or without STAT5 inhibitor at the indicated concentrations for 72 hr 

and analyzed for cell viability by flow cytometry. Mean ± sem is indicated for triplicates of each condition. 
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Supplementary Table 1. Differentially expressed genes in IL7R mutant versus IL7R wild type pediatric T-ALLs (LIMMA analysis; cut-off FDR p-value=0.05). 

    Gene Title                                                                                                                    Gene Symbol                                                               ID                             P.Value              adj.P.Val               logFC 

  

similar to hypothetical protein MGC42630 /// hypothetical protein 

MGC42630 /// hypothetical LOC504188 

LOC158318 /// MGC42630 /// LOC504188 1553590_at 3,77E-09 0,000103 1,284223 

proprotein convertase subtilisin/kexin type 6 PCSK6 207414_s_at 3,54E-09 0,000103 1,435284 

--- --- 220701_at 2,07E-08 0,000378 -0,86895 

carboxypeptidase A6 CPA6 1552511_a_at 1,04E- 0,001417 1,247438 

protein kinase (cAMP-dependent,  catalytic) inhibitor alpha PKIA 204612_at 1,62E-07 0,001478 -1,70916 

interleukin 17D IL17D 227401_at 1,38E-07 0,001478 -1,51526 

dipeptidylpeptidase  4 (CD26, adenosine deaminase complexing protein 

2) 

DPP4 203716_s_at 2,35E-07 0,001839 2,149853 

BAI1-associated protein 2 BAIAP2 1556145_a_at 3,57E-07 0,002443 0,85672 

Aryl hydrocarbon receptor AHR 1559035_a_at 4,21E-07 0,002557 1,263743 

hypothetical protein LOC253982 LOC253982 214993_at 6,09E-07 0,003328 0,657823 

chromosome 2 open reading frame 23 C2orf23 204365_s_at 7,23E-07 0,003592 -0,77833 

toll-interleukin 1 receptor (TIR) domain containing adaptor protein TIRAP 1554091_a_at 1,34E-06 0,005045 -1,07611 

tight junction protein 3 (zona occludens 3) TJP3 213412_at 1,24E-06 0,005045 1,056165 

hypothetical protein FLJ13841 FLJ13841 219995_s_at 1,38E-06 0,005045 1,495932 

olfactory receptor, family 51, subfamily B, member 5 OR51B5 234775_at 1,14E-06 0,005045 -0,86369 

suppressor of cytokine signaling 2 SOCS2 203372_s_at 1,96E-06 0,006691 2,636933 

CDNA clone IMAGE:5265747 --- 1555994_at 3,03E-06 0,009742 0,923981 

F-box and leucine-rich repeat protein 16 FBXL16 227641_at 3,73E-06 0,011327 -1,11153 

chromosome 1 open reading frame 142 C1orf142 230810_at 4,01E-06 0,011552 -0,71443 

dipeptidylpeptidase  4 (CD26, adenosine deaminase complexing protein 

2) 

DPP4 211478_s_at 4,52E-06 0,012143 2,123167 

dehydrogenase/reductase (SDR family) member 9 DHRS9 219799_s_at 4,66E-06 0,012143 -0,69388 

suppressor of cytokine signaling 2 SOCS2 203373_at 5,33E-06 0,01317 2,454919 

EPH receptor B2 EPHB2 234158_at 5,54E-06 0,01317 0,806845 

spondin 1, extracellular matrix protein SPON1 209436_at 8,37E-06 0,018298 1,19454 

Acyl-Coenzyme A oxidase 3, pristanoyl ACOX3 243817_at 8,07E-06 0,018298 -0,77482 

spondin 1, extracellular matrix protein SPON1 213994_s_at 9,16E-06 0,019257 1,870146 

Xg blood group (pseudoautosomal  boundary-divided on the X 

chromosome) 

XG 1563420_at 1,23E-05 0,021793 1,451362 

spondin 1, extracellular matrix protein SPON1 209437_s_at 1,15E-05 0,021793 1,246723 

Protein kinase C, epsilon PRKCE 216753_at 1,24E-05 0,021793 -0,81188 

hypothetical protein MGC42630 MGC42630 227563_at 1,23E-05 0,021793 0,952581 

zinc finger protein 335 ZNF335 78330_at 1,18E-05 0,021793 -0,95327 

hypothetical gene supported by AK091454 LOC285382 242447_at 1,37E-05 0,023389 -0,8158 

Ryanodine receptor 3 RYR3 241901_at 1,52E-05 0,025124 -0,944 

v-ets erythroblastosis virus E26 oncogene homolog 2 (avian) ETS2 201329_s_at 1,57E-05 0,025297 1,003391 

LIM homeobox 6 LHX6 224556_s_at 1,62E-05 0,025355 0,707453 

growth arrest-specific 2 GAS2 205848_at 1,7E-05 0,02579 2,442036 

SH3-domain GRB2-like 3 --- 230959_at 1,84E-05 0,027152 1,09072 

Death-associated protein kinase 1 DAPK1 237409_at 2,1E-05 0,030229 1,255728 

family with sequence similarity 49, member A /// family with sequence 

similarity 49, member A 

FAM49A 208092_s_at 2,22E-05 0,03109 -0,89989 

hypothetical gene supported by BC028053 LOC440569 1569386_at 2,34E-05 0,03183 0,901727 

cysteinyl leukotriene receptor 2 CYSLTR2 220813_at 2,5E-05 0,03183 1,224922 

protocadherin beta 13 PCDHB13 221450_x_at 2,41E-05 0,03183 0,676771 

Adaptor-related protein complex 4, epsilon 1 subunit AP4E1 241174_at 2,46E-05 0,03183 -0,90015 

syndecan binding protein (syntenin) 2 SDCBP2 233565_s_at 2,62E-05 0,032525 -0,83116 

src family associated phosphoprotein 1 SCAP1 205790_at 2,74E-05 0,032776 -1,33791 

homeo box A9 HOXA9 209905_at 2,82E-05 0,032776 2,043246 

Rho GTPase activating protein 10 ARHGAP10 239567_at 2,78E-05 0,032776 -1,09894 

Rho GTPase-activating  protein RICS 203431_s_at 2,9E-05 0,033081 -1,34478 

enhancer of zeste homolog 2 (Drosophila) EZH2 203358_s_at 3,19E-05 0,034046 -0,65741 

defensin, alpha 6, Paneth cell-specific DEFA6 207814_at 3,3E-05 0,034046 1,288429 

chromosome 1 open reading frame 105 C1orf105 214357_at 3,17E-05 0,034046 -1,08944 

brain and acute leukemia, cytoplasmic BAALC 218899_s_at 3,24E-05 0,034046 1,652154 

chromosome 1 open reading frame 116 C1orf116 219856_at 3,17E-05 0,034046 0,519867 

Potassium voltage-gated channel, KQT-like subfamily, member 1 KCNQ1OT1 237249_at 3,36E-05 0,034049 0,77784 

olfactory receptor, family 5, subfamily U, member 1 OR5U1 234545_at 3,57E-05 0,035492 -0,88816 

hypothetical gene LOC133874 LOC133874 1554115_at 3,76E-05 0,036728 -0,59776 

spondin 1, extracellular matrix protein SPON1 213993_at 3,88E-05 0,036764 1,5679 

chromosome 1 open reading frame 165 C1orf165 219670_at 3,97E-05 0,036764 -0,95235 

Hypothetical protein LOC441168 LOC441168 228362_s_at 4,02E-05 0,036764 0,930994 

Solute carrier family 35, member F3 SLC35F3 231520_at 4,03E-05 0,036764 0,83601 

Protein kinase (cAMP-dependent,  catalytic) inhibitor alpha PKIA 1563217_at 4,17E-05 0,037264 -1,61645 

myosin, heavy polypeptide 14 MYH14 217660_at 4,23E-05 0,037264 0,906789 

CDNA clone IMAGE:4828909 --- 1563283_at 4,32E-05 0,037511 -1,00588 

down-regulated in gastric cancer GDDR GDDR 238222_at 4,48E-05 0,038288 -0,75619 

v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) SRC 1558211_s_at 4,58E-05 0,038522 -0,7583 

EPH receptor B2 EPHB2 210651_s_at 4,67E-05 0,038692 -0,68255 

CDNA clone IMAGE:4694535 --- 1564760_at 4,79E-05 0,039111 -0,8968 

Chromosome 2 open reading frame 27 C2orf27 230336_at 4,9E-05 0,039372 1,039966 

Vacuolar protein sorting 13A (yeast) VPS13A 1570295_at 4,99E-05 0,039466 -0,87781 

ethanolamine kinase 2 ETNK2 219268_at 5,05E-05 0,039466 -0,76813 

uronyl-2-sulfotransferase UST 205138_s_at 5,16E-05 0,039748 0,855043 

hypothetical protein LOC144481 LOC144481 1559315_s_at 5,42E-05 0,040594 1,169696 

thioesterase domain containing 1 THEDC1 222945_x_at 5,36E-05 0,040594 -1,00074 

UTP15, U3 small nucleolar ribonucleoprotein,  homolog (yeast) FLJ12787 221038_at 5,56E-05 0,041075 -0,9038 

Similar to ZNF43 protein --- 1565748_at 5,74E-05 0,041867 -0,69271 

SLAM family member 6 SLAMF6 1552497_a_at 6,07E-05 0,043684 -0,6851 

Four and a half LIM domains 2 FHL2 1557274_at 6,62E-05 0,046982 -0,70083 

multimerin 2 MMRN2 219091_s_at 6,8E-05 0,047662 -0,67255 

hypothetical gene supported by AK091527 FLJ34208 1566761_a_at 7,11E-05 0,048614 -0,64129 

Amyloid beta (A4) precursor-like protein 2 APLP2 208701_at 7,05E-05 0,048614 -0,91316 
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Supplementary Table 2. Primers used for IL7R, JAK1 (JH2), and JAK3 (JH2) RT-PCR, sequencing 

and cloning. 

 

Primer Sequence (5’ 3’) 
5’-3’ position 

(size) 

Fragment 

size 

IL7R_exF CCCTCCCTTCCTCTTACTCTCA 13 – 34 (22) a 
589 bp 

IL7R_exR TGGCGGTAAGCTACATCGTG 601 – 582 (20) a 

IL7R_trF AGCCAATGACTTTGTGGTGAC 515 – 535 (21) a 
606 bp 

IL7R_trR ACATCCCCTCCAAGCCTCT 1120 – 1102 (19) a 

IL7R_inF CAGAGGCTTGGAGGGGATGT 1101 – 1120 (20) a 
416 bp 

IL7R_inR AATCATCTTTGTCGCTCACGGT 1516 – 1495 (22) a 

IL7R_hapF CACTCACTGACCTGTGCTTTT 246 – 266 (21) a 
673bp 

IL7R_hapR GGAGACTGGGCCATACGATA 918 – 899 (20) a 

IL7R_ex8F TCCTATCTTACTAACCATCAGCATTT 806 – 831 (26) a 
788bp 

IL7R_ex8R GACTGTGTAGTGGGGTTTTGCT 1593 – 1572 (22) a 

Jak1JH2_aF AGGAGTGGCAGCCCGTCTA 1934 – 1952 (19) a 
485 bp 

Jak1JH2_aR GGCCAGGAGGAGGTTTTTAGT 2418 – 2398 (21) a 

Jak1JH2_bF AATTCAAAGTTGCCAAACAGCT 2321 – 2342 (22) a 
527 bp 

Jak1JH2_bR GTCCACTTCAGTTGCTGGTTTT 2847 – 2826 (22) a 

Jak3JH2_aF CGTAGATGGGGTGGCAGTG 1489 – 1507 (19) a 
526 bp 

Jak3JH2_aR CAGATAGTTGAGGGCGTAGGC 2014 – 1994 (21) a 

Jak3JH2_bF GCCTACGCCCTCAACTATCTG 1994 – 2014 (21) a 
523 bp 

Jak3JH2_bR CACCATTCCACAGCCCATC 2516 – 2498 (19) a 

IL7R_exon6F CAAAGCACCCTGAGACCCTAC 
17400 – 17420 (21) 

b 278bp 

IL7R_exon6R TTCGTGAAATGCCTTAATCCC 
17667 – 17657 (21) 

b 

IL7R 3U32 GTGGTACCCTCCCTCCCTTCCTCTTACTCTCA (32) c 
1470bp 

IL7R 1434L39 
GGGCCCGGGGTTTTGGTAGAAGCTGGACATGGTGACAT

A (39) c 

hIL7R5’BglII CGTACAGATCTCCCTTCCTCTTACTCTCA (29) c 
1476bp 

hIL7R3’EcoRI TACGGAATTCTAGCCGGGGTTTTGGTA (27) c 

hIL7R_cP1s 
AGATGGATCCTATCTTAAACCCAaGCCTAACCATCAGCA

T 799 – 829 (40) c 

151bp 
hIL7R_cP2s 

AGATGGATCCTATCTTACTAACTTcTCCCACCATCAGCAT

TTT 799 - 832 (43) c 

hIL7R_cP2a 
AGATGGATCCTATCTTACTAACTgcTCCCACCATCAGCAT

TT 
799 – 831 (42) 

hIL7R_BbsI CAAAGATGTTCCAGAGTCTTCTTATGATCGGGGAGACTG 949 – 911 (39) 

 

a 
Positions according to NCBI reference of coding sequences NM_002185.2 (IL7R), 

NM_002227.2  (JAK1), NM_000215.3 (JAK3). 
b 

Positions refer to flanking intronic regions of exon 6 according to NCBI reference of 

genomic sequence NT_006576.16 
c 
The cloning restriction sites are underlined. Nucleotide changes for site-directed mutagenesis are 

noted in small caps. Positions refer to hybridization in the coding sequences of NM_002185.2 (IL7R) 

 

  



CHAPTER 2 

108 

 Supplementary References 

 

1. Cserzo, M., et al., (2002) On filtering false positive transmembrane protein 

predictions. Protein Eng 15(9): p. 745-52. 

 

2. Hofmann, K. and Stoffel, W. (1993) TMbase: A database of membrane spanning 

proteins segments. Biol Chem Hoppe-Seyler 374, 166.  

 

 



 

 

 

 

 

 

 

 CHAPTER 3 

 

The Jak/STAT5/PIM1 axis activation is required 

for IL-7-mediated survival and growth of T-cell 

acute lymphoblastic leukemia cells 

 

Daniel Ribeiro*, Alice Melão*, Ruben van Boxtel, Cristina I. Santos, Milene C. Silva, 

Ana Silva, Bruno A. Cardoso, Luis F. Moita, Paul J. Coffer and João T. Barata 

 

* co-first authors 

 

 

 

Adapted from manuscript in preparation 

 

  



 

 

 



IL-7 AND JAK/STAT5/PIM1 AXIS IN T-ALL 

111 

3.1 Abstract 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subset of ALL, the most 

frequent childhood malignancy. Although risk-adjusted chemotherapeutic regimens are 

currently extremely effective, their efficacy is associated with significant long-term side 

effects and those cases that relapse have dismal prognosis. Interleukin 7 (IL-7) is produced 

in the bone marrow and thymus. While IL-7 is essential for normal T-cell development, there 

is also considerable evidence that it can partake in leukemia expansion. Previously, we have 

shown that IL-7 promotes T-ALL expansion in vivo and leukemia cell survival and 

proliferation in vitro by activating PI3K/Akt/mTOR signaling pathway, consequently 

downregulating p27kip1 and upregulating Bcl-2. However, it is also known that T-cell 

lymphomas arising spontaneously in IL-7 transgenic mice depend on STAT5 activity and 

IL7R gain-of-function mutations, found in around 10% of T-ALL patients, drive Jak/STAT5 

pathway activation. In the present study, we investigated whether the Jak/STAT5 pathway 

may be involved in the IL-7/IL-7R pro-leukemia effects in human T-ALL. We show that IL-

7 induces Jak1/3-STAT5 pathway activation, STAT5 DNA binding and transcriptional 

activity. Importantly, we show that inhibition of STAT5 in both TAIL7 cell line or primary 

T-ALL samples abrogates IL-7-mediated T-ALL cell viability, growth and proliferation. 

Molecularly, STAT5 inhibition results in a complete abrogation of IL-7-induced 

downmodulation of p27kip1, upregulation of cyclin A and increase in transferrin receptor 

(CD71) surface expression. Interestingly, IL-7-dependent Bcl-2 upregulation at the mRNA 

or protein level is not affected by STAT5 inhibition. Cross-analysis of STAT5 ChIP-seq and 

RNA-seq data revealed that IL-7 drives the transcription of the serine/threonine kinase PIM1 

and inhibits BCL6 via STAT5. Notably, inhibition of BCL6 mRNA and protein expression 

appear associate with transcription of an alternate variant that includes the processing of 

intron 1. Importantly, inhibition of PIM1 kinase activity abrogates IL-7-mediated T-ALL 

cell growth, viability and proliferation. Overall, our studies indicate that a 

JAK/STAT5/PIM1 axis is mandatory for IL-7/IL-7R-mediated T-ALL cell survival. 

Furthermore, these results indicate that JAK/STAT5 pathway inhibitors can eliminate T-

ALL cells and that STAT5 plays a major role in mediating IL-7/IL-7R signaling effects in 

T-ALL cells, therefore constituting a promising target for therapeutic intervention in this 

malignancy. 
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3.2 Introduction 

Interleukin-7 (IL-7) is a cytokine required for normal T-cell development [1, 2]. In 

thymocytes, IL-7 activates both the phosphatidylinositol-3-kinase/ Akt (PKB) (PI3K/Akt) 

and the Janus kinase/ signal transducer and activator of transcription (Jak/STAT) pathways 

[3, 4]. Importantly, the transcription factor STAT5 is an essential element of IL-7 signaling 

during normal T-cell development and mature T-cell function [5, 6]. 

However, IL-7 may also partake in the development of T-cell leukemia. IL-7 

transgenic mice develop B- and T-cell lymphomas [7] and overexpression of IL-7R in mouse 

thymocytes ultimately leads to leukemogenesis [8]. Moreover, IL-7 is present in the 

microenvironments where the malignant T cells develop [9]. Accordingly, most primary T-

ALL samples proliferate in vitro in response to IL-7 [10, 11], which furthermore accelerates 

human T-ALL development in vivo [12]. We have previously shown that IL-7 promotes T-

ALL cell proliferation and viability via activation of PI3K/Akt(PKB) signaling pathway [13] 

and consequent downregulation of p27kip1 and upregulation of Bcl-2 [14]. Importantly, 

STAT5 appears to be fundamental to IL-7-dependent murine lymphomagenesis [15], and 

IL7R-mutated T-ALL patient samples are sensitive to both JAK and STAT5 inhibitors [16-

18]. However, no studies have yet evaluated the relevance of STAT5 within the context of 

IL-7 stimulation of human T-ALL cells. 

In this study, we show that IL-7 activates the Jak/STAT5 pathway in T-ALL cells and 

this event is required for IL-7-mediated functional impact on leukemic cells. We observed 

that inhibition of JAK/STAT5 signaling led to a decrease in cell viability, growth and cell 

cycle progression induced by IL-7. Notably, we found that IL-7-mediated regulation of Bcl-

2 was not dependent on STAT5 activity. On the other hand, STAT5 directly downregulated 

BCL6 and promoted the expression of PIM1 kinase in an IL-7-dependent manner. 

Furthermore, we observed that PIM1 plays a major role in mediating IL-7 effects on T-ALL 

cells. 
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3.3 Methods 

 

Cell lines, primary T-ALL and cell culture. Primary T-ALL cells of pediatric 

patients at diagnosis were isolated as described in [12]. In all cases informed consent was 

obtained in accordance with the Declaration of Helsinki and under institutional ethical 

review board approval. The TAIL7 cell line, an IL-7-dependent cell line that was established 

from the peripheral blood of a pediatric T-ALL patient [19], was cultured in RPMI-1640 

medium (Life Technologies) supplemented with 5% FBS (Biowest), 2mM glutamine, 

penicillin/streptomycin (Life Technologies) and 10ng/mL of rhIL-7 (Peprotech). HPB-ALL 

cells were cultured in RPMI-1640 medium supplemented with 10% FBS, 2mM glutamine, 

and 100U/mL penicillin/streptomycin. Primary T-ALL samples were cultured in conditions 

similar to those of TAIL7.  

 

Experimental conditions and inhibitors. For all cells, in long term experiments 

(>24h) IL-7 was used at 20 ng/mL and for short term experiments (0 - 120min) at 50ng/mL, 

except where indicated otherwise. Before each experiment, TAIL7 cells were deprived of 

IL-7 for 24h; HPB-ALL were serum-starved (1% FBS) for 24h. We used the STAT5 small-

molecule inhibitor N′-((4-Oxo-4H-chromen-3 yl)methylene)nicotinohydrazide (100 µM-

TAIL7 cells; 150 μM-primary T-ALL cells) [20] and the PIM1 inhibitor Smi-4a (90μM; 

Merck/Calbiochem) [21].  

 

Immunoblotting and antibodies. Whole cell lysates prepared as described [13], 

resolved by 12% SDS-PAGE, transferred onto nitrocellulose membranes and 

immunoblotted with antibodies against p-JAK1/3 (Y1022-Y1023/Y980) (Sigma), p-Akt 

(S473), Akt, p-STAT5a/b (Y694/Y699) (Cell Signaling Technology), STAT5, BCL6, PIM1, 

ZAP-70, and Actin (Santa Cruz Biotechnology). Immunodetection was performed by 

incubation with horseradish-peroxidase–conjugated appropriate secondary antibodies and 

developed by chemiluminescence. 

 

STAT5 transcriptional activity and DNA binding. To assess STAT5 transcriptional 

activity, TAIL7 cells were transfected (nucleofected) in a Nucleofector 2b using Solution V 

(Lonza) with the pGL3-β-casein-Firefly luciferase and pGL4-SV40-Renilla luciferase. 

Briefly, upon nucleofection, cells were left to recover in RPMI 1%FBS for 12h. Cells were 
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then stimulated or not with IL-7 (20ng/mL) for 24h and harvested. Luciferase activity was 

determined using measured luminescence in an Infinite F500 luminometer (Tecan). The 

Firefly luciferase values in non-nucleofected cells were subtracted from the Firefly luciferase 

in nucleofected cells. Similar procedure was applied for Renilla luciferase. The ratio between 

Firefly luciferase and Renilla luciferase was determined for the stimulated condition and 

normalized to the control (medium) condition. In addition, nuclear extracts of unstimulated 

or stimulated TAIL7 cells with IL-7 (50ng/mL) were prepared and analyzed by 

electrophoretic mobility shift assay (EMSA) using DNA oligonucleotides containing a 

consensus STAT5a/b motif. 

 

STAT5 knockdown. Plasmids encoding lentiviruses expressing shRNAs for STAT5A 

were obtained from the RNAi Consortium [22]. Specific hairpin or scramble hairpin 

lentiviruses were produced. HPB-ALL cells were transduced by spin infection with 

polybrene plus lentivirus and viability was monitored daily thereafter. 

 

Proliferation assays. Cells were cultured in triplicates in flat-bottom 96-well plates in 

the appropriate experimental conditions. Cells were incubated with 3H-thymidine (1 

μCi/well) for the last 16h of culture before harvest. DNA synthesis, measured by 3H-

thymidine incorporation, was assessed using a liquid scintillation counter. Results were 

expressed as average and standard deviation of triplicates. 

 

Flow cytometry analysis of viability, cell size, surface and intracellular staining. 

Viability was determined using Annexin V–based apoptosis detection kits and the 

manufacturer’s instructions (R&D Systems or eBioscience). Briefly, cells were 

ressuspended in the appropriate binding buffer, stained with APC-conjugated Annexin V 

and 7-AAD at room temperature for 15 min and subsequently analyzed by flow cytometry. 

Cell size was assessed by quantitative analysis of forward scatter (FSC) versus side scatter 

(SSC) cytometry plots gated on the live cell population. Surface analysis of CD71 was done 

using PE-conjugated CD71 antibodies (eBioscience). Intracellular staining of Bcl-2 was 

performed using FITC-conjugated Bcl2 antibody (Dako). Briefly, cells were fixed using 

formaldehyde-based fixation buffer and the manufacturer’s instructions (eBioscience), 

washed in PBS, ressuspended in 1× Perm/Wash Solution (BD Biosciences), stained with 

Bcl-2 antibody, followed by cytometry analysis. All flow cytometry sample acquisition was 

performed in a FACS Calibur or an LSR Fortessa (BD Biosciences). Flow cytometry data 
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analysis was done using FlowJo software (TreeStar). Results are expressed as percentage of 

positive cells or as mean fluorescence intensity (MFI). 

 

Cell cycle analysis. Cellular DNA content was assessed by staining with propidium 

iodide followed by flow cytometry analysis. Briefly, 1-2 × 106 cells ressuspended in PBS 

were fixed and permeabilized with an equal volume of ice-cold 80% ethanol. Ribonuclease 

A was added at 50 μg/ml, and samples were incubated for 30 min at 37 ºC. Propidium iodide 

was added at a final concentration of 2.5 μg/mL, and samples were analyzed by flow 

cytometry. Cell cycle distribution was determined using ModFit LT software (Verity). 

 

RT-PCR and qPCR. Total RNA was extracted from 0.5-1 × 106 cells using trizol and 

the manufacturer’s instructions (Life Technologies). Total RNA (400ng) was reverse 

transcribed using the Superscript II reverse transcriptase and random hexamers, according 

to the manufacturer’s instructions (Invitrogen). For qPCR, cDNA (4ng/well) and the relevant 

primers were mixed in SYBR green master mix (Applied Biosystems) according to the 

manufacturer’s protocol. Reactions were performed in triplicates in a 7500 Fast or Viia7 

System instruments (Applied Biosystems). Relative expression of the mRNAs was 

normalized to 18S expression using the ddCt method. Primer pairs used were (5’-3’): 

BCL2 ATGTGTGTGGAGAGCGTCAACC and TGAGCAGAGTCTTCAGAGACAGCC; 

BCL2L1 GGAACAATGCAGCAGCCGAG and GTAGAGTGGATGGTCAGTGT; 

BCL6 GTTGTGGACACTTGCCGGAA and CTCTTCACGAGGAGGCTTGAT; 

CISH AAAACTGGTGCAGCCCTTTGTA and GCCACCAGACGGTTGATGAC; 

HRH2 TGGGAGCAGAGAAGAAGCAACC and GATGAGGATGAGGACCGCAAGG; 

IL10 CCAGTCTGAGAACAGCTGCAC and GCTGAAGGCATCTCGGAGAT; 

OSM CACAGACTGGCCGACTTAGAG and AGTCCTCGATGTTCAGCCCA; 

PIM1 CGAGCATGACGAAGAGATCAT and TCGAAGGTTGGCCTATCTGA; 

18S GGAGAGGGAGCCTGAGAAACG and CGCGGCTGCTGGCACCAGACTT. 

 

Chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing. For 

either ChIP- or RNA-seq, starved TAIL7 cells were stimulated or not with 50ng/mL of IL-

7 in RPMI 5% FBS for 24h. 50-100× 106 cells were used in each condition. A ChIP-grade 

antibody against STAT5 was used for ChIP (Santa Cruz Biotechnology). The RNA-seq 

library preparation was done to enrich for mRNAs. The protocol for ChIP-seq and RNA-seq 
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and data analysis was performed as described previously [23], using the human genome 

assembly hg19. 
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3.4 Results 

 

 IL-7 activates the Jak/STAT5 pathway in T-ALL 

To study the hypothesis that STAT5 is an important IL-7 signaling effector in 

leukemia, we began our studies by assessing JAK/STAT5 activation in response to IL-7 in 

T-ALL cells. We stimulated the IL-7-dependent human T-ALL cell line TAIL7 with IL-7 

and observed a time-dependent (Figure 1A; top) and a dose-dependent (Figure 1A; bottom) 

increase in the phosphorylation of the Jak1, Jak3 and STAT5. Similar IL-7-dependend 

STAT5 activation was observed in primary cells collected from pediatric T-ALL patients at 

diagnosis (Figure 1B). Furthermore, STAT5 phosphorylation associated with increased 

STAT5 DNA binding (Figure 1C) and transcriptional activity (Figure 1D). 

 

 
Figure 1. IL-7 induces Jak/STAT5 pathway activation in T-ALL cells. TAIL7 and primary T-ALL 

were evaluated for Jak/STAT5 pathway activation. (A) IL-7-starved TAIL7 cells were incubated with or 

without IL-7 (upper panel) for the indicated periods of time or (bottom panel) with the indicated range of IL-7 

concentrations for 15 min, followed by immunoblot analysis of JAK-STAT5 pathway activation. In the P-

JAK1/3 panel, the upper bands denote P-JAK1 and the lower bands denote P-JAK3. Results are representative 
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of at least 2 independent experiments. (B) Primary leukemia cells from one T-ALL patient were stimulated 

with IL-7 for 15 min, followed by immunoblot analysis of STAT5 activation. Data representative of 2 patients 

analyzed (C) Starved TAIL7 cells were stimulated or not with IL-7 for the indicated time points, and 

subsequently extracted the nuclear fraction for EMSA analysis using DNA oligonucleotides specific for the 

STAT5A/B consensus sequence. Indicated by () are the STAT5A/B-DNA oligonucleotide specific complex, 

by () unspecific oligonucleotide binding and by () free oligonucleotides. Results are representative of 2 

independent experiments. (D) TAIL7 cells were nucleofected with pGL3-β-casein-Firefly Luciferase vector 

and pGL4-SV40-Renilla Luciferase, followed by IL-7 stimulation for 24h. Luciferase activity from cell 

extracts was measured in a luminometer. STAT5 transcriptional activity was calculated as described in the 

‘Methods’. Results are representative of 3 independent experiments or 2 patients.  

 

 

 STAT5 is mandatory to mediate IL-7 pro-survival, growth and proliferation 

effects in T-ALL cells 

Next, to establish the role of STAT5 in the context of IL-7-mediated T-ALL cell 

stimulation, we investigated the functional consequences of STAT5 downregulation. We 

used the IL-7-responsive cell line HPB-ALL to stably transduce with lentiviral vectors 

driving the expression of STAT5A shRNA or scramble control. We confirmed the efficiency 

of STAT5A knockdown at the protein level (Figure 2A). Flow cytometry analysis showed 

that STAT5 downregulation abrogated the IL-7-mediated increase in viability and cell 

growth in HPB-ALL cells, when compared to the control (Figure 2B,C). These results 

suggest that STAT5 is required for the survival and growth effects of IL-7 in T-ALL cells. 

 

 

Figure 2. STAT5 knockdown abrogates IL-7-mediated T-ALL cell viability and cell growth. HPB-

ALL cells were stably transduced with lentiviral vectors driving the expression of STAT5A shRNA (shSTAT5) 

or scramble control (shSCR). (A) Starved transduced HPB-ALL cells were stimulated or not with IL-7 for 

15min and evaluated for knockdown efficiency (total STAT5) and STAT5 activation (P-STAT5) by 

immunoblot. (B,C) Stably transduced HPB-ALL were stimulated or remained IL-7 free for 72h and assessed 

for (B) viability and (C) cell growth. Results are representative of 3 independent experiments. Results in panels 

B,C represent average of triplicates ± sem.   
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To further dissect the functional and molecular mechanisms associated with STAT5 

inhibition and to test the potential clinical applicability of these observations, we treated 

TAIL7 and primary leukemia T-ALL cells with a specific STAT5 inhibitor (N-((4-Oxo-4H-

chromen-3-yl) methylene) nicotinohydrazide; S5i). At the functional level, treatment with 

the S5i completely abrogated IL-7-induced viability (Figure 3A) and cell growth (Figure 3B) 

in both TAIL7 cells and primary T-ALL cells. We also observed a decrease in IL-7-mediated 

cell cycle progression and proliferation in TAIL7 (Figure 3C and 3D, respectively) and 

primary T-ALL cells (Figure 3E and 3F, respectively). 
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Figure 3. STAT5 inhibition abrogates IL-7-mediated T-ALL cell viability, cell growth, cell cycle 

progression and proliferation. IL-7-starved TAIL7 or primary T-ALL cells were incubated with IL-7 alone, 

simultaneously with the S5i (100uM-TAIL7; 150uM-primary), or left untreated. At 72h cells were analyzed 

by flow cytometry for (A) viability and (B) cell size. (C,E) Flow cytometry analysis of cell cycle at 72h. (D,F) 

Proliferation assay by 3H-thymidine incorporation at 72h of culture in (D) TAIL7 cells or (F) primary T-ALL. 

Results are representative of 3 independent experiments or 4 patients. 

 

 

 

Next, we decided to dissect the molecular mechanisms associated with decreased 

viability, cell growth and proliferation. We investigated the surface expression of CD71 

(transferrin receptor), a marker associated with cell growth and proliferation [24]; the S-

phase cell cycle protein cyclin A; the cell cycle inhibitor p27kip1; and the pro-survival Bcl-2 

protein, all of which were previously shown to be regulated by IL-7 in T-ALL cells [13]. We 

found that inhibition of STAT5 prevented the IL-7-induced upregulation of CD71 in TAIL7 

and primary T-ALL cells (Figure 4A). Also, we observed complete inhibition of IL-7-

induced downmodulation of p27kip1 and upregulation of cyclin A (Figure 4B). Remarkably, 

STAT5 inhibition did not block IL-7-mediated induction of Bcl-2 expression in either 

TAIL7 or primary T-ALL cells (Figure 4C). Being STAT5 a transcription factor, we also 

checked BCL2 and BCL2L2 (Bcl-xL) mRNA expression, but it was similarly unaffected by 

STAT5 inhibition (Figure 4D). These results were surprising to some extent, because Bcl-2 

family members are known STAT5 target genes and are implicated in IL-7-mediated STAT5 

function in developing T lymphocytes and mature T-cells [25-27]. However, in leukemic T-

cells IL-7 was shown to upregulate Bcl-2 protein via PI3K/Akt pathway [13], which suggests 

that STAT5 may regulate leukemia T-cell survival by an alternative, Bcl-2-independent 

mechanism. 
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Figure 4. STAT5 inhibition abrogates IL-7-mediated T-ALL upregulation of CD71, and 

modulation of p27kip1 and Cyclin A expression, but not Bcl-2 upregulation in T-ALL cells. IL-7-starved 

TAIL7 or primary T-ALL cells were incubated with IL-7 alone, simultaneously with the S5i (100uM-TAIL7; 

150uM-primary), or left untreated. Cells were collected for flow cytometry or immunoblot analysis at 72h. (A) 

Flow cytometry of CD71 surface expression. (B) Immunoblot analysis of expression of cell cycle modulators 

Cyclin A and p27kip1. (C) Flow cytometry analysis of intracellular Bcl-2 expression. (D) Under the same 

experimental conditions, TAIL7 cells were collected at 24h for mRNA extraction followed by qPCR analysis 

of BCL2 and BCL2L1 gene expression. Fold induction is normalized to medium condition. Results are 

representative of at least 3 independent experiments or 4 patients. Results in panel D represent average of 

triplicates ± sem. 

 

 

 STAT5-dependent transcriptional network analysis of IL-7-stimulated T-ALL 

To gain insight into the STAT5-dependent transcriptional events associated with IL-7 

stimulation and try to unravel the mechanisms by which STAT5 regulates T-ALL cell 

viability, we performed STAT5 ChIP-seq and RNA-seq in the presence or absence of IL-7 

on TAIL7 cells. De novo motif analysis on the ChIP-seq data showed, as expected, a 

preferential enrichment for STAT DNA binding motifs upon IL-7 stimulation, followed by 

Runt-related transcription factor (RUNX) binding motifs (Figure 5A). No peaks were found 

enriched in the unstimulated condition. Activated STAT5 may bind DNA in a dimeric 

(requires 1 binding site) or tetrameric form (requires 2 binding sites) [28]. Notably, these 
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peaks usually contain an average of 2.3 STAT motifs per peak, suggesting that STAT5 may 

favor DNA binding as a tetrameric complex, a feature that has been associated with leukemia 

[29]. Interestingly, STAT and both RUNX motifs are present in >50% of the peaks. A more 

detailed analysis revealed that a RUNX motif typically occurs close to a STAT motif (Figure 

5B) and is particularly enriched for 1bp distance, indicating potential transcription factor 

interaction/competition.  

 

 

Figure 5. Cross-analysis of STAT5 ChIP-seq and RNA-seq data on IL-7-stimulated TAIL7 cells. 

IL-7-starved TAIL7 cells were stimulated with IL-7 or left untreated. At 24h, cells were collected for STAT5 

ChIP-seq or RNA-seq enriched for mRNA. (A) De novo motif discovery and identification on STAT5 ChiP-

seq peaks from IL-7 stimulated cells. Enrichment cut-off at 1.5. Presence denotes the relative presence of the 

motif on all peaks. Average motif/peak denotes the number of times a motif appears on the peak. (B) Graph 

showing the distance of RUNX motifs to the STAT motif in base-pair (bp) found in (A) on the horizontal axis, 

plotted against the frequency of each occurrence. (C) Venn diagram showing overlap of genes found in the 

RNA-seq analysis (purple and yellow sets) and ChIP-seq analysis (green and red sets). Analysis was performed 

with genes with a STAT5a peak within 20 kb from the transcription start site (TSS). The gene name and fold 

induction found in the RNA-seq are listed in the tables. Table on the left lists genes that were upregulated upon 

IL-7 stimulation and contained a STAT5 peak; the table on the right lists genes that were downregulated upon 

IL-7 stimulation and contained a STAT5 peak.  

 

 

Next, we made a cross-analysis of the genes identified in the ChIP-seq with a STAT5 

peak within 20kb from the transcription start site (TSS) and their differential expression 

upon IL-7 stimulation analyzed by RNA-seq (Figure 5C). We then validated identified up- 

and downregulated genes by performing qPCR analysis in IL-7-treated TAIL7 cells in the 

presence or absence of S5i (Figure 6). Gene expression measured by qPCR confirmed the 

RNA-seq results (Figure 5C and 6). In addition, pharmacological inhibition of STAT5 
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activity consistently diminished the IL-7-mediated increase in expression of genes 

upregulated by IL-7 (HRH2, CISH, OSM, PIM1) and conversely, restored or even 

potentiated the expression of genes downregulated by IL-7 (BCL6, IL10) (Figure 6).  

To understand if regulation of gene expression would translate into functional impact, 

we focused our analysis on PIM1 and BCL6, genes that were respectively up- and down-

regulated by IL-7/STAT5 and that were likely interesting IL-7/STAT5 effectors based on 

their known functions [30-34].  

 

 

 

Figure 6. Quantitative PCR validation of ChIP-seq and RNA-seq data using the S5i in TAIL7 

cells. IL-7-starved TAIL7 cells were incubated with IL-7 alone, simultaneously with the S5i or left untreated. 

Cells were collected at 24h and mRNA was extracted for qPCR analysis. Analysis of BCL6 and IL10 were 

done with cells collected at 48h. Fold change is normalized for medium condition. Results are representative 

of at least 3 independent experiments. Results represent average of triplicates ± sem. 
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 IL-7 downregulates BCL6 expression in T-ALL in a STAT5-dependent manner 

BCL6 encodes for B-cell lymphoma 6 protein (BCL6), a transcriptional repressor and 

an important oncogene in diffuse large B-cell lymphoma (DLBCL) [30]. Moreover, BCL6 

was shown to be an effector of resistance to chemotherapy in adult BCR-ABL-positive ALL 

[31], again indicating its oncogenic role. However, BCL6 can also act as tumor suppressor 

in certain cancers [35]. In immature T-cells, IL-7 was shown to repress BCL6 [36]. In 

addition, an IL-7/STAT5/BCL6 link was demonstrated in follicular helper T cell 

differentiation [37] and B-cell development [38]. However, IL-7-mediated regulation of 

BCL6 in T-ALL has not been reported. We observed that while IL-7 culture of TAIL7 cells 

sustained high STAT5 activation and low BCL6 protein expression, IL-7 withdrawal led to 

loss of STAT5 phosphorylation and increased BCL6 protein levels (Figure 7A). 

Interestingly, when we inspected the ChIP- and RNA-seq data in the BCL6 locus, we noticed 

that binding of STAT5 in the promoter region associated not only with shut-down of 

expression but also to the transcription of an alternate longer variant that included the 

processing of intron 1 into the mRNA (Figure 7B).  

 

 

Figure 7. BCL6 protein is downregulated by IL-7 and is a direct target of STAT5-mediated 

mRNA downregulation and alternative transcription. (A) TAIL7 cells were withdrawn or not from IL-7 

for 96h and collected for immunoblot analysis of BCL6, P-STAT5, STAT5 protein expression. (B) Data form 

ChIP-seq and RNA-seq was uploaded to UCSC genome browser visualization tool (top 6 tracks). The browser 

is located in the human BCL6 gene locus (hg19). Custom tracks are paired as control (Medium) and IL-7. ChIP 

STAT5 track pair represents peaks found upon STAT5 IP, the arrow indicates STAT5 binding. Input track 

represents control input for ChIP. RNA-seq track represents mRNA expression. Peak height is proportional to 

the expression. The arrow indicates a decrease in overall BCL6 gene expression and processing of intron 1 into 

the mRNA. 
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 IL-7-dependent activation of PIM1 is required for increased survival and 

proliferation of T-ALL cells 

PIM1 kinase, encoded by PIM1, is frequently overexpressed in cancer, including 

hematological malignancies [32]. Moreover, PIM1 is involved in cell cycle regulation [33] 

and apoptosis [34, 39], thereby being a possible alternative to Bcl-2-dependent prevention 

of apoptosis. Although shown to be a transcriptional target of either IL-7 or STAT5 in other 

contexts [32], its role on STAT5-dependent IL-7-mediated effects on T-ALL was never 

evaluated. Upon treatment of T-ALL cells with S5i, we confirmed that IL-7 upregulates 

protein expression in a STAT5-dependent manner (Figure 8A). In addition, knockdown of 

STAT5A prevented IL-7-dependent increase in PIM1 expression (Figure 8B). To evaluate 

the functional consequences of IL-7-dependent PIM1 upregulation, we treated TAIL7 and 

primary T-ALL cells with a specific PIM1 inhibitor (Smi4a). Treatment with Smi4a 

completely abrogated IL-7-induced viability (Figure 9A; upper), growth (Figure 9B; upper) 

and proliferation (Figure 9C) of TAIL7 and primary T-ALL cells (Figure 9A bottom, 9B 

bottom; and 9D, respectively). Molecularly, inhibition of PIM1 decreased IL-7-mediated 

CD71 upregulation in TAIL7 (Figure 9E) and primary T-ALL cells (Figure 9F). 

Surprisingly, and in contrast to STAT5, PIM1 inhibition partially prevented IL-7-dependent 

Bcl-2 upregulation on TAIL7 (Figure 10A) and primary T-ALL (Figure 10B) cells. 
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Figure 8. IL-7 upregulates PIM1 via STAT5. (A) IL-7-starved TAIL7 cells were incubated with IL-

7 alone, simultaneously with the S5i, or left untreated. At 72h cells were collected for immunoblot analysis 

STAT5 activation (P-STAT5) and PIM1 expression. (B) Serum-starved, stably transduced HPB-ALL cells 

were incubated or not with IL-7 for 24h. Cell were collected for immunoblot analysis of STAT5 activation (P-

STAT5), PIM1 expression and PI3k/Akt pathway activation (P-Akt).  
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Figure 9. PIM1 inhibition abrogates IL-7-mediated T-ALL cell viability and proliferation. IL-7-

starved TAIL7 or primary T-ALL cells were incubated with IL-7 alone, simultaneously with the PIM1 inhibitor 

Smi4a (90uM), or left untreated. At 72h cells were collected for analysis by flow cytometry of (A) viability 

and (B) cell size. (E,F) Flow cytometry of CD71 surface expression. (C,D) Proliferation assay by 3H-thymidine 

incorporation at 72h of culture in (C) TAIL7 cells or (D) primary T-ALL. Results are representative of 3 

independent experiments or 4 patients. Results in panels C,D represent average of triplicates ± sem. 
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Figure 10. PIM1 inhibition partially abrogates IL-7-mediated Bcl-2 upregulation in T-ALL cells. 
IL-7-starved TAIL7 or primary T-ALL cells were incubated with IL-7 alone, simultaneously with the PIM1 

inhibitor Smi4a, or left untreated. At 72h, cells were collected for analysis by flow cytometry of intracellular 

Bcl-2 expression. Results are representative of 3 independent experiments or 4 patients. 
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3.5 Discussion 

Despite the improvements in our understanding of T-cell leukemia molecular biology, 

detailed identification and characterization of etiological mechanisms and potential 

therapeutic targets remains relatively poor. IL-7/IL-7R signaling is essential for normal T-

cell development and has been demonstrated to play a role in T-ALL [40]. While the 

PI3K/Akt/mTOR pathway plays a critical role in mediating IL-7 effects in leukemia [13, 

14], it is essentially unknown whether the Jak/STAT5 pathway, another major signaling 

pathway activated by IL-7 in T-ALL [41, 42], may also be determinant in IL-7/IL-7R 

signaling in T-cell leukemia. Here, we demonstrate for the first time that, similar to 

PI3K/Akt/mTOR, the Jak/STAT5/PIM1 signaling axis is absolutely required for IL-7-

mediated survival, proliferation and growth of T-ALL cell lines and primary cells.  

STAT5 has been shown to induce the expression of Bcl-2 or Bcl-xL in different 

circumstances [43-45], including IL-7-dependent signaling [26, 46]. In addition, enforced 

expression of Bcl-2 in Il7r deficient mice could restore normal thymopoiesis in stages where 

IL-7 has a major pro-survival role [47]. In recent thymic emigrants (RTEs), IL-7-mediated 

activation of STAT5 is associated with increased survival, whereas activation of PI3K/Akt 

pathways is associated with increased proliferation [48]. However, in an IL-7-dependent 

mouse thymocyte cell line where IL-7R was inactivated, STAT5 could prolong cell survival 

and Bcl-2 expression, but had a more limited, temporary effect compared with full IL-7 

stimulation [27]. These observations suggest that in normal T lymphocytes STAT5-mediated 

regulation of Bcl-2/Bcl-xL, and consequent cell viability, exists elicited by IL-7 signaling, 

although the physiological regulation of Bcl-2 and survival by IL-7 may require additional 

signaling components. Thus, our observation that IL-7-mediated increase of BCL2 and 

BCL2L1 was not affected by STAT5 inhibition, was unexpected. However, our previous 

work demonstrated that, in leukemic T-cells, IL-7 regulates Bcl-2 via a PI3K/Akt-dependent 

mechanism [13]. Therefore, the evidence suggests that IL-7 regulates Bcl-2-mediated 

survival in T-ALL cells by activation of PI3K/Akt pathway and not via the Jak/STAT5 

pathway, whereas in normal T-cells appear to rely on the latter pathway for Bcl-2 

upregulation by IL-7. These subtle differences may have important therapeutic implications 

in drug design and targeted therapy. 

Interestingly, although STAT5-mediated survival was independent of modulation of 

Bcl-2 expression and that PIM1 expression was STAT5-dependent, we found that PIM1 

inhibition negatively regulated Bcl-2 protein expression. One possible explanation for this 
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conundrum is that STAT5 may trigger contradictory downstream effects that counterbalance 

each other. For instance, STAT5 may activate both positive (PIM1) and negative regulators 

of Bcl-2 expression, such that under normal circumstances the final output is neutral (no 

effect on overall Bcl-2 levels). However, when the PIM1 effector arm of STAT5 signaling 

is inhibited, the remaining, unaffected STAT5-dependent transcription may create an 

unbalance leading to downregulation of Bcl-2 expression. In this context it is should be 

highlighted that genes activated by STAT5 are not restricted to positive regulators of cell 

cycle and viability. For instance, STAT5 was shown to promote the expression of the cell 

cycle inhibitor p21WAF/Cip1 in various cells [49-51], leading to cell cycle arrest and 

differentiation. Importantly, PIM1, although being activated transcriptionally by STAT5, 

can have the opposite effect by phosphorylating and inactivating p21 [52, 53]. In a study 

using the IL-3-dependent Ba/F3 cell line, a constitutively active mutant of STAT5 could 

render Ba/F3 cells growth factor-independent [51]. However, IL-3-induced prolonged 

hyper-phosphorylation of mutant STAT5 led to overexpression of SOCS1 and p21, resulting 

in apoptosis and differentiation of Ba/F3 cells that could be rescued by PIM1 overexpression 

[51]. These experiments suggest that a balance in STAT5 signaling is required to 

consistently promote cell survival. This scenario was not tested in our work, but it is an 

attractive possibility that PIM1 activity dependent on STAT5 is required to counter-balance 

other STAT5-mediated effects that alone would be deleterious to leukemia cells, including, 

for instance, Bcl-2 downregulation. 

An interesting observation arising from the de novo motif analysis of our ChIP-seq 

data is the identification of RUNX DNA-binding motifs close to STAT motifs, with a great 

proportion being 1bp of distance (Figure 5A,B). Interaction between STAT5 and RUNX 

proteins has been shown previously and characterized as mutually inhibitory [54]. In 

addition, Runx1-/- mice have a high propensity to develop chemically induced T-cell 

lymphomas, suggesting a tumor suppressor role for Runx1 [55] that was confirmed by more 

recent reports [56, 57]. However, other studies indicate that in TAL1-overexpressing T-ALL, 

TAL1, GATA3 and RUNX1, form a positive autoregulatory loop and promote expression 

of MYB and TRIB2 genes, required for the survival of leukemia cells [58], suggesting that 

RUNX1 may be involved in promoting leukemogenesis in some cases. Notably, expression 

of IL-7Rα in thymocytes and mature CD4 T-cells was shown to be positively regulated by 

RUNX1 [59]. The heterogeneous evidence present in the literature on the role of RUNX1 in 

T-ALL and our own observations suggesting that STAT5 and RUNX1 may interact and 

thereby modulate IL-7-mediated effects in T-ALL, warrant more detailed studies, namely 
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regarding whether RUNX1 and STAT5 compete or cooperate in the context of IL-7-

dependent signaling in leukemia. 

The 2-dimensional approach we took combining STAT5 ChIP-seq with RNA-seq 

during IL-7 stimulation of T-ALL cells opens new avenues of research into the role of IL-7 

signaling in T-ALL. For example, we found the transcriptional repressor BCL6 was directly 

downregulated by STAT5. However, it was interesting to observe that the repression was 

not a simple shut-down of transcription but was accompanied by changes in an alternate 

transcript variant expression (Figure 7). We did not evaluate whether the new mRNA 

transcript produced the same or a different protein or an unstable/ untranslatable mRNA. 

Either could lead to down-regulate BCL6 protein. The mechanism by which IL-7 and 

STAT5 regulate expression of transcript variants was not investigated, but it could involve 

alternative splicing. The effects of IL-7 in alternative splicing are, to our knowledge, 

restricted to a recent report showing that in T-cells, IL-7 can regulate alternative splicing of 

CD95 (Fas) to promote memory CD4 T-cell survival [60]. Thus, assessing the importance 

of IL-7-regulated changes in transcript variants expression could bring new insights into the 

complexity of IL-7 signaling in both normal and leukemic T-cells.  

Although we focused our functional studies on PIM1, other STAT5-regulated genes 

may be of relevance as well. For instance, it is interesting that two of the top STAT5-

dependent upregulated genes in the context of IL-7 stimulation (CA6 and OSM) have 

potential to impact on the microenvironment. CA6 codes for the isozyme carbonic anhydrase 

(CA) 6, the only secreted isozyme of CA, involved in interconversion of carbon dioxide and 

bicarbonate to maintain pH balance. Expression of CA isozymes has been associated with 

tumor growth and metastasis by intra- and extra-cellular pH modulation [61-65]. OSM codes 

for the cytokine oncostatin M (OSM), a member of the IL-6 family of pro-inflammatory 

cytokines. OSM has been involved in tumor growth [66], tumor invasion and angiogenesis 

[67], hepatocyte metabolic reprogramming [68] and paracrine pro-tumoral effects in breast 

cancer [69]. The possibility that IL-7, a primary growth and survival factor for normal T-

cells and for T-ALL, may induce a cascade of secondary changes in the leukemic 

microenvironment driven by the leukemia cells themselves is intriguing. In fact, IL-7 could 

be promoting leukemia progression not only by directly affecting leukemia cells themselves 

but also by indirectly modulating the microenvironment. Further studies are required to 

assess the role of IL-7 as a possible microenvironmental modulator in T-cell leukemia and 

its therapeutic ‘targetability’.  
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Overall, this work unveiled the Jak/STAT5/PIM1 axis as mandatory for IL-7/IL-7R-

dependent T-ALL cell survival. Furthermore, our results indicate that STAT5 and PIM1 

small molecule inhibitors can eliminate IL-7-mediated pro-leukemia cell effects and 

therefore may constitute promising tools for therapeutic intervention in T-ALL. 
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4.1 Abstract 

Interleukin-7 (IL-7) is essential for normal T-cell development and mature T-cell 

metabolism. However, there is also considerable evidence that it can partake in leukemia 

expansion. Previously, we have shown that IL-7 promotes T-cell acute lymphoblastic 

leukemia (T-ALL) cell survival, growth and proliferation in vitro by activating 

PI3K/Akt/mTOR and JAK/STAT5/PIM1 signaling pathways. Moreover, IL-7 upregulates 

GLUT1 expression and glucose uptake in T-ALL cells and GLUT activity is required for 

IL-7-mediated viability of leukemic T-cells. In normal T lymphocytes, IL-7 was shown to 

upregulate glucose use, trafficking of Glut1 to the cell surface and hexokinase II (HK2) gene 

transcription. In the present study, we aimed to more broadly characterize the impact of IL-

7 on the regulation of metabolism-related genes in leukemia cells. We show, by functional 

annotation analysis of transcriptome data from IL-7-stimulated TAIL7 T-ALL cells, that IL-

7 generally regulates metabolic gene expression, in particular regarding sugar metabolism 

pathways (namely glycolysis) and oxidative phosphorylation. Functionally, IL-7 increases 

glucose use and lactate production in T-ALL cells. Additionally, we provide evidence that 

IL-7 drives very early expression of several glycolysis-related genes in T-ALL. Overall, our 

preliminary studies indicate that IL-7 has a direct impact on T-ALL cell metabolism.  
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4.2 Introduction 

Cytokines and growth factors influence cell growth and survival [1]. Lymphocytes 

require extrinsic signals to maintain their cell size and viability [2]. Importantly, interleukin-

7 (IL-7) was shown to be able to maintain cell size, metabolic activity and survival of naïve 

T-cells [3] and required to sustain basal glucose metabolism in vivo on resting T-cells [4]. 

While apoptosis induced by growth factor withdrawal, including IL-7, can be rescued by 

overexpression of pro-survival Bcl-2-family members, these cannot rescue cell growth or 

metabolic activity [1-3]. In addition, IL-7 was shown to regulate glucose use, trafficking of 

Glut1 and increase in hexokinase II (HK2) gene transcription in T lymphocytes [5, 6]. In 

fact, the knowledge on the impact of IL-7 on T-cell metabolic activity was recently expanded 

by the finding that IL-7 promotes the expression of the glycerol channel aquaporin 9 (AQP9) 

in memory CD8 T-cells leading to glycerol transport and triglyceride synthesis, which is 

essential for IL-7-mediated survival of memory CD8 T lymphocytes [7]. 

While IL-7 is essential for normal T-cell development [8, 9], there is considerable 

evidence that IL-7/IL-7R-mediated signaling can promote leukemogenesis [10, 11]. IL-7 is 

produced in the thymus and bone marrow, microenvironments where the malignant T cells 

arise and develop [12]. Previously, we showed that IL-7 contributes to T-cell acute 

lymphoblastic leukemia (T-ALL) cell survival, growth and proliferation by activating 

PI3K/Akt/mTOR signaling [13, 14] and Jak/STAT5 signaling (Chapter 3). Furthermore, 

IL7R gain-of-function mutations are found in around 9-10% of childhood T-ALL cases [15-

17]. In T-ALL, IL-7 positively modulates mTOR activity and promotes transferrin receptor 

(CD71) expression [13](Chapter 3), both proteins associated with increased T-cell 

metabolism [18, 19]. Notably, IL-7 also promotes GLUT1 expression and glucose use in T-

ALL cells [13], and GLUT activity appears to be required for IL-7-mediated upregulation of 

reactive oxygen species (which also relies on mitochondrial respiration) and T-ALL cell 

viability [20]. 

Although, accumulating evidence suggests that IL-7 may have a non-redundant role in 

metabolic regulation of both normal and leukemic T-cells, the intervening mechanisms are 

still poorly understood. In this preliminary study, we provide evidence indicating that IL-7 

has a broad impact on T-ALL cell metabolism, as judged by its ability to modulate the 

expression of genes involved in different metabolic pathways, and particularly in glycolysis 

and oxidative phosphorylation. Analysis of glucose consumption and lactate production 

suggest promotion of aerobic glycolysis by IL-7. In addition, we observed very early 
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induction of key glycolytic pathway genes in response to IL-7. Understanding the metabolic 

network elicited by IL-7 on T-ALL cells holds the promise of discovering new targets for 

therapeutic intervention. 

  



CHAPTER 4 

142 

4.3 Methods 

 

TAIL7 cell culture. The TAIL7 cell line, an IL-7 dependent cell line that was 

established from the peripheral blood of a pediatric T-ALL patient [21], was cultured in 

RPMI-1640 medium (Life Technologies) supplemented with 5% FBS (Biowest), 2mM 

glutamine, 100U/mL penicillin/streptomycin (Life Technologies) and 10ng/mL of rhIL-7 

(Peprotech). 

 

Experimental conditions. TAIL7 cells were deprived of IL-7 for 24h, followed by 

incubation in pre-warmed culture medium (37ºC) and stimulated, where indicated, with IL-

7 (50ng/mL) for the indicated time and collected for the different assays. Cells were cultured 

as 2 × 106 cells/mL. 

 

RT-PCR and qPCR. Total RNA was extracted from 0.5-1 × 106 cells using trizol and 

the manufacturer’s instructions (Life Technologies). Total RNA (400ng) was reverse 

transcribed using the Superscript II reverse transcriptase according to the manufacturer’s 

instructions and random hexamers (Invitrogen). For qPCR, cDNA (4ng/well) and the 

relevant primers were mixed in SYBR green master mix (Applied Biosystems) according to 

the manufacturer’s protocol. Reactions were performed in triplicates in a Viia7 System 

instrument (Applied Biosystems). Relative expression of the mRNAs was normalized to 18S 

expression using the ddCt method. IL-7-dependent fold change was calculated by dividing 

the expression of the gene in IL-7 stimulated by IL-7 non-stimulated condition collected at 

each timepoint. Primer pairs used were (5’-3’): 

GLUT1 TCTGGCATCAACGCTGTCTTC and CGATACCGGAGCCAATGGT; 

HK2 GAGCCACCACTCACCCTACT and CCAGGCATTCGGCAATGTG; 

PFKM AGCGTTTCGATGATGCTTCAG and GGAGTCGTCCTTCTCGTTCC; 

PFKL GTACCTGGCGCTGGTATCTG and CCTCTCACACATGAAGTTCTCC; 

PFKFB3 ATTGCGGTTTTCGATGCCAC and GCCACAACTGTAGGGTCGT; 

ENO1 TGGTGTCTATCGAAGATCCCTT and CCTTGGCGATCCTCTTTGG; 

PKM ATAACGCCTACATGGAAAAGTGT and TAAGCCCATCATCCACGTAGA 

LDHA TTGACCTACGTGGCTTGGAAG and GGTAACGGAATCGGGCTGAAT; 

BCL2 ATGTGTGTGGAGAGCGTCAACC and TGAGCAGAGTCTTCAGAGACAGCC; 

CISH AAAACTGGTGCAGCCCTTTGTA and GCCACCAGACGGTTGATGAC; 
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PIM1 CGAGCATGACGAAGAGATCAT and TCGAAGGTTGGCCTATCTGA; 

MYC GCCACGTCTCCACACATCAG and TGGTGCATTTTCGGTTGTTG; 

18S GGAGAGGGAGCCTGAGAAACG and CGCGGCTGCTGGCACCAGACTT. 

 

DAVID bioinformatics analysis and KEGG pathway mapping. The RNA-seq data 

collection and analysis was previously described (Chapter 3). Functional annotation analysis 

of enriched pathways was done using DAVID Bioinformatics Resources [22, 23]. For the 

analysis of the top 75% genes with higher mean normalized read counts were selected as 

background. For the query list, genes with fold difference in expression >1.5x and a p-value 

<0.05 were selected. DAVID functional annotation analysis was done with default settings. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database [24, 25] was used for 

global metabolism pathway mapping. The annotation data for KEGG pathway category was 

retrieved from DAVID and sorted by lowest p-value. Pathways with a Benjamini corrected 

p-value >0.001 were excluded. Gene names were collected from enriched pathways, 

converted to KEGG protein identifiers and mapped in the KEGG website in the Homo 

sapiens global metabolism atlas. 

 

Metabolite analysis. Culture cellularity was determined at the beginning of the 

experiment. Supernatants form experimental cultures were collected at 0h and 24h, 

centrifuged and frozen at -20ºC. Upon thawing, the concentrations of glucose and lactate 

were determined using an automatic analyzer YSI 7100MBS (Yellow Springs Instruments). 

The consumption/production rates of specific metabolites were determined. The variation of 

nutrient/metabolite amount during the time interval (24h) was calculated and divided by the 

time interval and the culture cellularity. Results are expressed as pmol.h-1 per cell. 
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4.4 Results 

 

4.4.1 IL-7 regulates the expression of key metabolic pathway genes in T-ALL cells 

We have previously produced and validated RNA sequencing (RNA-seq) data to 

explore the IL-7-mediated transcriptional network in T-ALL (Chapter 3), from stimulated 

human IL-7-dependent T-ALL cell line TAIL7 with or without IL-7. To digest the data, we 

performed functional annotation analysis of enriched pathways using DAVID 

Bioinformatics Resources and KEGG pathway mapping. The top 20 enriched pathways are 

shown in Figure 1A. Interestingly, we found that many of the enriched pathways were 

metabolism-related. Those include oxidative phosphorylation, glycolysis/ gluconeogenesis, 

pentose phosphate and other sugar-related pathways. KEGG Atlas representation overview 

of IL-7-modulated gene expression, pathway relationship and the potentially affected 

metabolic enzyme is shown in Figure 1B. Overall, these results indicate that IL-7 stimulates 

general cell metabolism with emphasis on particular sugar-related pathways and oxidative 

phosphorylation in T-cell leukemia. 
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Figure 1. IL-7 promotes gene expression of multiple functional pathways, with emphasis on 

metabolic and sugar-related pathways in T-ALL. (A) Differential gene expression data from RNA-seq of 

TAIL7 cells stimulated with IL-7 described in Chapter 3, was subjected to functional annotation analysis using 

DAVID tools as described in methods. Graphic represents the enriched pathways sorted by -log(p-value). 

Pathways with Benjamini-corrected p-value >0.001 were excluded. (B) Gene names from pathways found 

enriched in (A), were converted to KEGG protein identifiers and mapped in human global metabolism atlas. 

Image was trimmed to display central pathways. 
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4.4.2 IL-7 promotes glycolytic flux and early expression of glucose metabolism-

related genes in T-ALL 

Metabolic dysregulation, in particular increased glycolysis, is a common event that 

supports tumor growth [26]. In T-ALL, metabolic reprogramming has also been associated 

with resistance to therapy [27]. We evaluated whether alterations in IL-7-mediated metabolic 

pathway gene expression would functionally affect glycolytic rate in T-ALL cells. We found 

that IL-7 promoted glucose consumption from and lactate production into the culture 

medium (Figure 2A), indicating that IL-7 increased the glycolytic rate in T-ALL cells. 

However, both expression and metabolite data were acquired after 24h of IL-7 stimulation, 

where it is possible (although unlikely given the very slow doubling time of TAIL7 cells) 

that the metabolic increase could be related to IL-7-mediated increase in proliferation rather 

than a primary effect of IL-7 on metabolism. To exclude possible confounding factors, we 

assessed glycolysis-associated gene expression upon IL-7 stimulation at early time points. 

We chose genes that either were found upregulated by RNA-seq or were important glycolytic 

control points. Strikingly, we found that IL-7 induced very early expression (peak expression 

<1h) of key genes of the glucose and glycolysis metabolism (Figure 2B). We observed 

increased expression of the glucose transporter GLUT1; hexokinase II (HK2) that catalyzes 

the first irreversible step in glucose metabolism; phosphofructokinase-1 isoforms (PFKL, 

PFKM) that catalyze the first irreversible step in glycolysis; Phosphofructokinase 2-fructose 

bisphosphatase 2 isoform 3 (PFKFB3), a central glycolysis regulator; enolase-1 (ENO1); 

pyruvate kinase M (PKM) which irreversibly produces pyruvate and is an important 

regulatory point in glycolysis; and lactate dehydrogenase A (LDHA) that produces lactate. 

We used well-established IL-7 target genes (BCL2, CISH, PIM1) as positive controls. 

Interestingly these control genes did not show the same pattern of expression, and were 

upregulated at later time points (peak expression >1h), with the exception of Bcl-2, which 

presented both early and late upregulation (Figure 2B). The first genes to be expressed upon 

stimulation are expressed very early on and are thus termed immediate-early genes (IEGs). 

Their downstream targets are termed delayed-early genes (DEGs), whose families contain 

important proto-oncogenes and tumor suppressors [28]. The proto-oncogene MYC may be 

regulated by IL-7 [29, 30] and is a well-studied IEG [28, 31], thus we also included it on our 

analysis. However, MYC did not present an IEG-like pattern in IL-7-stimulated TAIL7 cells, 

although it was consistently upregulated throughout time (Figure 2B). 
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Figure 2. IL-7 increases glucose use and lactate production flux and promotes expression of key 

glycolysis-related metabolic genes in T-ALL. (A) TAIL7 cells were cultured with or without IL-7 for 24h 

and the supernatant was collected for metabolite analysis as described in the ‘Methods’. Graphics express the 

specific metabolite production/consumption as pmol.h-1 per cell. (B) TAIL7 cells stimulated or not with IL-7, 

as described in the ‘Methods’, were collected at the indicated timepoints for mRNA extraction followed by 

qPCR analysis. Fold induction is normalized to medium condition. Results are representative of 2 (A) and 3 

(B) independent experiments.  
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4.5 Discussion 

Metabolic reprogramming is a hallmark of cancer used by cells to sustain cell growth 

and proliferation [32]. A classical manifestation of metabolic reprogramming in tumors is 

the Warburg effect or aerobic glycolysis. Although aerobic glycolysis has been associated 

with tumors, it is in fact used more generally by actively proliferating cells [33]. Importantly, 

metabolic reprogramming has been incorporated as a requirement into the function of some 

cell types, such as T-cells [19, 34, 35]. IL-7/IL-7R signaling is essential in normal T-cell 

development and homeostasis, and plays a critical role in T-ALL cell survival and 

proliferation [36]. Studies demonstrated that IL-7 modulates lipid synthesis, glycolytic flux 

and gene expression in T-cells [4-7]. However, little is known about the function of IL-7 in 

metabolic modulation of T-ALL cells. So far, it was demonstrated that IL-7 promotes Glut1 

expression and glucose use in T-ALL cells in a manner that is dependent on PI3K/Akt 

pathway [13]. Here, we provide evidence that IL-7 promotes a considerably vaster increase 

in the expression of genes related to sugar metabolism and oxidative phosphorylation, 

amongst other metabolic pathways. Also, we confirmed our previous studies showing that 

IL-7 promotes an increase in glucose use [13] and revealed that IL-7 upregulates lactate 

production, consistent with an apparent increase in glycolytic flux. Furthermore, IL-7 very 

rapidly increased the expression of glucose metabolism-related genes. 

The functional annotation analysis of enriched pathways from RNA-seq data, together 

with the increase of glucose use on IL-7-stimulated cells, strongly indicates that IL-7 

stimulates metabolism in T-ALL cells. Our findings on the use of glucose and lactate 

production, indicate that their consumption/production ratio is approximately 1:2, 

respectively. This simple analysis [37] indicates that TAIL7 cells probably use aerobic 

glycolysis for ATP production mostly. Interestingly, IL-7 stimulation did not seem to alter 

the ratio but increase the use/production of the molecules. Theoretically, 1 molecule of 

glucose during glycolysis could generate at most 2 molecules of lactate. If glycolysis 

intermediates are diverted to other pathways or pyruvate is oxidized in the mitochondria, 

less lactate is generated from glycolysis [26]. It is possible that glycolysis is used by T-ALL 

cells to synthesize ATP and support NAD+/NADPH redox balance and other metabolic 

pathways, such as glutaminolysis, would support biomass production. However, 

glutaminolysis may also indirectly contribute to lactate production [26], thus complicating 

the interpretation of the data. Advanced studies of the metabolome using, for instance stable-

isotope labeling and analysis of extra parameters (e.g. the ratio of oxygen consumption rate 



T-ALL METABOLISM REGULATION BY IL-7 

149 

by extracellular acidification rate), could help discriminate the origin and fate of cell 

metabolites in the context of IL-7 stimulation [37, 38].  

Our early gene expression studies revealed that IL-7 promotes the expression of key 

glucose-related metabolism genes. Importantly, metabolic genes had an expression peak at 

<1h. Some genes (HK2, ENO1) also showed a clear second induction wave at >2h, consistent 

with previous reports [6]. Although, we did not analyze gene expression between 4h-24h of 

IL-7 stimulation it is possible that the other glycolytic-related genes also peak their 

expression within this period. The time of induction and repression of the glycolytic-related 

genes fits a IEG expression pattern (20-40min). Upon expression, IEGs will then initiate a 

second wave of transcription of the DEGs (peak 1-2h). Downstream transcription continues 

with late-response genes (LRGs) [28].  IEGs are the first genes to be transcribed upon 

extracellular stimuli, thus they do not require previous protein synthesis and their expression 

is not inhibited by protein synthesis inhibitors such as cycloheximide [28]. Additionally, 

IEGs have unique features in their mRNA and chromatin that allows their rapid induction 

[28, 39]. Time of expression per se suggests but does not demonstrate that a gene is an IEG. 

It would be important to complete our preliminary study with cycloheximide experiments to 

distinguish whether the gene expression is either IEG or DEG. By far, the most well studied 

IEGs are FOS, JUN, MYC and EGR1, all transcription factors and activated by MAPK 

pathways [28, 39]. However, there is evidence that glycolysis-related genes may be IEGs. 

PFKFB3 contains an AUUUA instability element in its mRNA. This motif confers 

instability and enhanced translational activity on mRNAs and is also found in the IEG family 

genes [40, 41]. Novellasdemunt and colleagues [42] have recently identified PKFB3 as an 

IEG activated by the p38 MAPK pathway in response to stress stimuli. Also, effector-

memory CD8 T-cells undergo an immediate-early glycolytic switch upon activation, 

mediated by PI3K/Akt/mTOR pathway [35].  

The pattern of BCL2 gene expression, in particular the early phase, similar to the 

glycolytic genes, is intriguing. One possibility is that BCL2 may have a role in IL-7-

dependent metabolic stimulation. Bcl-2 may sequester and inhibit the BH3-domain only Bcl-

2 family members of pro-apoptotic factors (e.g. Bad, Bim), thus inhibiting mitochondrial 

apoptotic pathway [43]. This may allow the cell to quickly allow the oxidative 

phosphorylation pathway to receive input from glycolysis. In a study using a model of 

cardiac ischemia [44], it was also shown that Bcl-2 could bind to voltage-dependent anion 

channels (VDAC) and prevent glycolytic ATP import into the mitochondria and subsequent 

hydrolysis. This decreased ischemic injury by preventing cytosolic acidification and non-
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productive hydrolysis of glycolytic ATP [44]. A role in metabolism for Bad has also been 

reported [45]. It was found that phosphorylated Bad associated with glucokinase (also known 

as hexokinase IV) in the mitochondria, promoting its glucokinase activity and increasing 

mitochondrial respiration in hepatocytes. Furthermore, dephosphorylated Bad dissociated 

from glucokinase, decreased mitochondrial respiration and promoted cell death [45]. These 

studies suggest that Bcl-2 family members may have direct and important roles on the 

regulation of cell metabolism and are in line with our expression data on rapid Bcl-2 

upregulation by IL-7 in T-ALL cells. Importantly, we also found that two PFK-1 (PFKM, 

PFKL) genes and PFK-2-FBPase2 (PFKFB) isoform 3 (PFKFB3) were upregulated by IL-

7. The regulation of PFK-1 activity is a major control point in glycolysis. PFK-1 catalyzes 

the production of the glycolytic intermediate fructose-1,6-bisphosphate (F1,6BP) at the 

expense of ATP, the first committed step of glycolysis and a rate-limiting step [46]. When 

ATP levels are high, PFK-1 is allosterically inhibited, thus reducing glycolytic flux [47]. 

However, the most potent activator of PFK-1, even in the presence of high ATP levels, is 

fructose-2,6-bisphosphate (F2,6BP) generated by the PFKFB family of enzymes [46]. All 

PFKFB isoforms are bifunctional kinases and phosphatases, but the highest 

kinase:phosphatase ratio is found in PFKFB3 (~700:1), making it essentially a kinase that 

promotes glycolytic flux [48]. PFKFB3 has been highly implicated in cancer, being 

overexpressed in different cancers and supporting tumor growth [40]. Also, PFKFB3 was 

shown to promote cell cycle progression via Cdk-1 activation [49]. Importantly, Akt directly 

phosphorylates PFKFB3 and decreases the affinity to phosphoenolpyruvate (PEP), an 

allosteric inhibitor [50]. Overall, IL-7-regulated signaling in T-ALL promotes the expression 

of genes that are central regulators of glycolysis and that may bridge between metabolism 

and proliferation. It The impact of inhibiting metabolic pathways on IL-7-mediated effects 

in T-ALL surely warrants investigation. 

In summary, our work supports and extends the evidence that IL-7 signaling directly 

modulates T-ALL cell metabolism. Further studies are required to advance this notion, but 

it is tempting to speculate that leukemic T-cells exposed to IL-7, very quickly upregulate 

genes required for glycolysis and other metabolic pathways, which are activated likely to 

support cell survival and, more importantly, to generate biomass for proliferation and 

consequent leukemia growth. Dissecting the molecular mechanisms and functional impact 

of IL-7 modulation of T-ALL cell metabolism may provide multiple, valuable and novel 

therapeutic targets for this disease.  
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5.1 Abstract 

T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, 

the most frequent childhood malignancy. Interleukin-7 (IL-7) is essential for normal T-cell 

development and there is considerable evidence that IL-7-mediated signaling can promote 

leukemogenesis. Previously, we showed that IL-7 promotes T-ALL cell proliferation, 

survival and metabolic activation via PI3K/Akt/mTOR pathway. Autophagy is upregulated 

in rapidly dividing cells, such as cancer cells. However, when persistent, its protective role 

may shift to what is called autophagic cell death. mTOR is recognized as the master negative 

regulator of this process, whereas MEK/Erk pathway has been associated with promotion of 

autophagy. Since IL-7 activates both mTOR and MEK/Erk we decided to explore whether 

IL-7 may regulate autophagy in T-ALL cells and elucidate its molecular mechanisms and 

functional consequences. Using the human IL-7-dependent T-ALL cell line TAIL7 and 

primary leukemia samples, we found that in optimal culture conditions (medium with serum) 

IL-7 inhibits autophagy in T-ALL, albeit in a complex manner that involves triggering both 

pro- (via MEK/Erk) and anti- (via PI3K/Akt/mTOR) autophagic signaling pathways. In this 

scenario, IL-7-mediated viability relies on the latter pathway, as previously described. In 

contrast, under serum starvation IL-7-mediated survival partially relies on autophagy 

activation and strictly requires MEK/Erk activation. Our results suggest that IL-7 makes use 

of a ‘flexible strategy’ to promote T-ALL cell viability by recruiting both pro- and anti-

autophagic pathways, which contribute to preventing tumor cell death in different 

microenvironmental conditions.  
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5.2 Introduction 

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. 

Approximately 15% of all cases present a T-cell origin (T-ALL), and are associated with 

higher risk and poorer prognosis at presentation [1]. T-ALL arises from transformed T-cell 

precursors that have undergone a block in development and carry oncogenic lesions that 

promote self-renewal, proliferation and survival [2].  

Interleukin-7 (IL-7) and its receptor (IL-7R) play a crucial role on normal thymocyte 

development and homeostasis [3-5]. However, IL-7 also promotes T-ALL cell proliferation 

in vitro [6, 7] and accelerates human leukemia expansion in vivo [8]. These effects are 

mediated by IL-7-mediated non-redundant activation of the Phosphatidylinosiol-3-kinase/ 

Akt/ mammalian Target of rapamycin (PI3K/Akt/mTOR) signaling pathway, which 

promotes T-ALL cell viability, metabolic activation and proliferation [9-11]. The 

importance of IL-7/IL-7R signaling is further illustrated by the presence of IL7R gain-of-

function mutations in around 9% of T-ALL cases [12-14]. In addition, IL-7 can activate the 

canonical cytokine signaling pathway Janus kinase/ Signal transducer and activator of 

transcription (JAK/STAT), in particular STAT5, and Mitogen-activated protein kinase 

kinase/ Extracellular-signal regulated (MEK/Erk) pathway [15].  

Macroautophagy (hereafter referred to as autophagy) is an evolutionary-conserved 

homeostatic intracellular process occurring at basal levels in normal cells and characterized 

by the sequestration of cytoplasmic compartments through double-membrane vesicles 

(autophagosomes) to promote their degradation [16]. Autophagy is upregulated during 

starvation, growth factor withdrawal, cellular stress or in rapidly dividing cells as a 

compensatory mechanism to provide nutrients and stress relief. Under these situations 

autophagy may serve as a pro-tumoral mechanism promoting stress mitigation and 

chemotherapy resistance [17, 18]. On the other hand, organisms with disrupted autophagy 

are more prone to develop tumors possibly by increased stress from misfolded proteins and 

non-functioning organelles [19, 20]. Furthermore, when persistent, autophagy can lead to 

what is termed autophagic cell death, overall suggesting that autophagy may also partake in 

tumor suppression [17]. This apparent paradox of autophagy function in cancer may be 

resolved if autophagy initially prevents tumor initiation by reducing intracellular pro-

oncogenic stresses, but once a tumor is established it helps the tumor cope with cellular and 

microenvironmental stresses leading to its development [21].  
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The mammalian target of rapamycin (mTOR) is a serine/theronine kinase and the 

master negative regulator of autophagy [22]. The mTOR complex (mTORC) integrates 

nutritional, energetical (ATP) and growth factor cues from both within the cell and the 

microenvironment, essential for proper cell growth and proliferation [23]. In the absence 

these, mTOR is inactivated, which leads to activation of the UNC-51-like kinase 1 / 

Autophagy-related 13 / 200 kDa FAK family kinase-interacting protein 

(ULK1/Atg13/FIP200) complex, a required step for autophagy initiation [24]. Whereas class 

I PI3Ks are involved in down-regulating autophagy indirectly by activating mTOR, the class 

III PI3K, Vacuolar protein sorting 34 (Vps34), complexes with Beclin 1 to directly mediate 

autophagosome formation [25, 26]. A hallmark of autophagy is the cleavage and lipidation 

(with phosphatidylethanolamine) of Microtubule-associated protein 1 light chain 3 

(LC3/Atg8), a protein required for the elongation step of the autophagosome and the most 

reliable and well studied autophagy marker to date [27]. 

Similar to other cell types, autophagy is an important process in the biology of T-cells. 

It has been shown that the autophagic process regulates normal T-cell development and 

function through its role in self-antigen presentation, intracellular organelle homeostasis and 

energy production [28]. In turn, it would not be surprising if mechanisms controlling 

autophagy could be deregulated in T-cell leukemogenesis.  

To date, no studies have specifically addressed the role of IL-7 in autophagy 

modulation. Although in a study on the role of Bim isoforms in the context of IL-7 

stimulation in lymphocytes it was found that individual Bim isoforms could affect autophagy 

differently [29]. We hypothesized that since IL-7 activates mTOR it may inhibit autophagy 

in T-ALL cells, thereby preventing its tumor suppression function and contributing to tumor 

cell expansion. Consistent with our hypothesis, we found that IL-7 regulates autophagy in a 

T-ALL cell line model to consistently promote leukemia cell survival, albeit in a complex 

manner involving the modulation of both pro- and anti-autophagic pathways.   
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5.3 Methods 

 

Cell culture and experimental conditions. Primary T-ALL cells isolated from 

pediatric patients at diagnosis and normal thymocytes were isolated as described in [8]. In 

all cases informed consent was obtained in accordance with the Declaration of Helsinki and 

under institutional ethical review board approval. The TAIL7 cell line, an IL-7 dependent 

cell line that was established from the peripheral blood of a pediatric T-ALL patient [15], 

was cultured in RPMI-1640 medium (Life Technologies) supplemented with 5% FBS, 2mM 

glutamine, 100U/mL penicillin/streptomycin and 10ng/mL of rhIL-7 (Peprotech). For 

experiments, TAIL7 cells were deprived of IL-7 and cultured in RPMI supplemented with 

or without serum for 24h, followed by set-up of experimental conditions. The culture of 

primary T-ALL samples was done in RPMI-1640 supplemented with 10% FBS, 2mM 

glutamine, 100U/mL penicillin/streptomycin and 10ng/mL of rhIL-7. For short-term 

incubations, cells were pre-treated for 1h30 with the indicated inhibitors (or DMSO), 

followed by 2h stimulation with IL-7 (50ng/mL), and collected for immunoblot analysis, 

electron or confocal microscopy, where appropriate. For long-term incubations, treatment 

with inhibitors and IL-7 was done concomitantly for the indicated time, and cells were 

collected for immunoblot analysis or flow cytometry, where appropriate. 

 

Inhibitors. We used the PI3K inhibitor LY294002 (10/20 µM; long/short-term 

incubations), the mTOR inhibitor rapamycin (100 nM), the small-molecule inhibitor of 

STAT5 N′-((4-Oxo-4H-chromen-3 yl)methylene)nicotinohydrazide (100 µM) and the 

MEK1/2 inhibitor UO126 (10/20 uM) (Merck/Calbiochem). To inhibit autophagy, we used 

the Vps34 specific inhibitor SAR405 (10µM) [30]. We used hydroxychloroquine (HCQ; 30 

µM) (Merck/Calbiochem), an autophagosome/lysosomal inhibitor, as tool to take a 

"snapshot" of the autophagic flux in the cell at a given moment [27].  

 

Immunoblotting and antibodies. Whole cell lysates were resolved by a 12% or 14% 

SDS-PAGE, transferred onto nitrocellulose membranes and immunoblotted, as described 

[9], with antibodies against p-STAT5a/b (Y694/Y699), p-Akt (S473), p-S6 (S235/236), p-

Erk1/2 (T202/Y204), LC3B (Cell Signaling Technology), p62/SQSTM1, Actin (Santa Cruz 

Biotechnology) and Tubulin (Roche).  
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Immunofluorescence and confocal microscopy. Cells were adhered to poly-L-

lysine-coated coverslips and fixed with -20ºC cooled methanol for 10 minutes, followed by 

intracellular incubation with anti-LC3B primary antibody (1:200) in PBS-Tween 20 (0.05%; 

PBSt) for 1 hour at room temperature. Secondary staining was performed with an anti-rabbit 

Alexa-488 conjugated antibody (1:400) in PBSt for 30min at room temperature. Coverslips 

were mounted with Vectashield-DAPI (Vector Labs) and acquired in a confocal microscope 

(Zeiss LSM 710). DAPI fluorescence was detected with a violet 405 nm diode laser (30 mW 

nominal output) and a BP 420-480 filter. Both EGFP and Alexa Fluor 488 fluorescence were 

detected using the 488 nm laser line of an Ar laser (45 mW nominal output) and a BP 505-

550 filter. 

 

Flow cytometry. Samples were methanol-fixed and stained as described in the 

immunofluorescence section. Briefly, cells were methanol fixed, and incubated with anti-

LC3B antibody (1:100) in PBSt, followed by secondary staining with an anti-rabbit Alexa-

488 conjugated antibody (1:200) in PBSt. Acquisition of samples was performed in an LSR 

Fortessa or FACS Calibur (BD). Flow cytometry data analysis was done using FlowJo 

software (TreeStar). Viability was determined by forward scatter (FSC) and side scatter 

(SSC) parameters and the mean fluorescence intensity (MFI) analysis of LC3 intracellular 

staining was done within the live cell population. 

 

Electron microscopy. Cells were collected by low-speed centrifugation (2000rpm), 

10min, at 4ºC in a bench-top centrifuge. The pellets were immediately carried for electron 

microscopy fixation using a previously described protocol to improve autophagosome 

detection [31].  

 

Autophagy and LC3 quantification. The autophagic flux was quantified by LC3 

turnover assay, by densitometry analysis, where the ratio between LC3-II and LC3-I. 

Densitometry analysis was performed on immunoblots using ImageJ software. 
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5.4 Results 

 

 IL-7 inhibits autophagy in T-ALL in nutrient-rich conditions 

To find whether IL-7 may regulate the autophagic process in T-ALL, we stimulated 

TAIL7 cells with IL-7 and performed immunoblot analysis of LC3 cleavage and lipidation 

(active form; LC3-II) and degradation of the early autophagic substrate p62/SQSTM1, 

hallmarks of the autophagic process. We observed that IL-7 inhibited processing of LC3 

from the inactive form (LC3-I) to its active from (LC3-II), and prevented degradation of p62 

(Figure 1A). By electron microscopy, the gold-standard for autophagy assessment, we 

observed that stimulation with IL-7 decreased the formation of 

autophagosomes/autolysosomes in the cells (Figure 1B,C). Overall, these data suggest that 

IL-7 inhibits autophagy in T-ALL cells. 

 

 IL-7-dependent activation of PI3K/Akt/mTOR pathway inhibits, whereas 

MEK/Erk promotes, autophagy in T-ALL cells 

To dissect which signaling pathways may be responsible for IL-7-dependent 

autophagy regulation, we treated TAIL7 cells for 2h with a PI3K inhibitor (LY294002), an 

mTOR inhibitor (rapamycin), or a MEK1/2 inhibitor (UO126) and evaluated their effects on 

LC3 by immunoblot analysis. Treatment with either LY294002 or rapamycin reversed IL-

7-dependent prevention of LC3 cleavage (Figure 2A), indicating that PI3K/Akt/mTOR 

mediates IL-7-dependent inhibition of autophagy in T-ALL cells. Interestingly, treatment 

with UO126 synergized with IL-7 in preventing LC3 conversion (Figure 2A). This indicates 

that MEK/Erk pathway promotes autophagy in T-ALL. Confocal microscopy analysis of 

cells cultured for 48h under the same conditions confirmed these data, showing a pattern of 

LC3 puncta formation and intensity at 48h that was in agreement with the results from the 

immunoblot analysis at 2h (Figure 2B).  

Next, we decided to analyze intracellular LC3 expression by flow cytometry. Although 

one cannot distinguish directly LC3-I from LC3-II by flow cytometry, we expected that cells 

with higher autophagic flux would have higher LC3-II expression located on 

autophagosomes which would in turn increase the mean fluorescence intensity (MFI) of the 

detected protein. We observed that the data collected by flow cytometry (Figure 3) correlated 

altogether with LC3 cleavage (Figure 2A) and LC3 puncta formation (Figure 2B). These 

data further suggest that flow cytometry may be reliably used to measure autophagy in T-
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ALL cells at the single cell level. Furthermore, we found that STAT5 does not appear to 

have a key role in IL-7-mediated regulation of autophagy in T-ALL cells, as STAT5 

pharmacological inhibition does not have a major impact on the LC3 MFI (Figure 3). 

Overall, these data suggest that IL-7 downregulates autophagy in T-ALL cells via 

activation of PI3K/Akt/mTOR pathway and promotes autophagy via activation of MEK/Erk 

pathway. Nonetheless, the inhibitory effect of mTOR on autophagy prevails over that of 

MEK/Erk signaling in cells maintained in normal (serum-rich) culture conditions (Figure 1). 
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Figure 1. IL-7 inhibits autophagy in T-ALL cells. IL-7-deprived TAIL7 cells were incubated with 

IL-7 (50ng/mL) or left untreated for 2h in the presence of HCQ (30µM). Cells were collected for either (A) 

immunoblot analysis of LC3 and p62 expression or (B) electron microscopy. (C) Quantification of number of 

autophagosomes/autolysosomes per cell from analysis of micrographs of (B). Data representative of at least 2 

independent experiments. Results in panel C represent average of triplicates ± sem.  
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Figure 2. IL-7 dependent activation of PI3K/Akt/mTOR pathway inhibits, whereas MEK/Erk pathway 

promotes, autophagy in T-ALL cells. IL-7-deprived TAIL7 cells were treated for short-term (2h) 

experiments with LY294002 (LY), rapamycin (RAP), UO126 (UO), followed by an IL-7 stimulus (2h) in the 

presence of HCQ and collected for analysis. (A) Immunoblot analysis of PI3K/Akt/mTOR, MEK/Erk, 

JAK/STAT pathway activation and LC3 cleavage. (B) Confocal microscopy analysis of LC3 puncta. Left 

panels show merge of LC3 puncta (green) and DNA stain with DAPI (blue), right panels show LC3-488 

alone. Scale bare represents 10µm. Data representative of at least 3 independent experiments.   
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Figure 3. Flow cytometric analysis of LC3 shows IL-7-dependent modulation of LC3 turnover by 

PI3K/Akt/mTOR and MEK/Erk pathways. IL-7-deprived TAIL7 cells were treated for (A) long-term (48h) 

or (B) short-term (2h) experiments with LY294002, rapamycin, UO126, STAT5 inhibitor and/or IL-7, as 

indicated. Following fixation and permeabilization, cells were incubated with an anti-LC3 primary antibody 

and stained with Alexa-488-conjugated secondary antibody. Samples were analyzed by flow cytometry for 

LC3-488 intracellular staining. Data representative of at least 2 independent experiments. Results in panel B 

represent average of triplicates ± sem.  
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 IL-7 relies on MEK/Erk activity and autophagy to promote survival in nutrient-

poor conditions 

The ability of IL-7 to activate concomitantly pro- and anti-autophagy signaling 

pathways in T-ALL cells led us to hypothesize that IL-7 may have the ability to protect 

leukemia cells from stress by positively regulating autophagy. To test this hypothesis, we 

cultured TAIL7 cells with IL-7 in normal serum conditions or under nutrient stress (no 

serum). Strikingly, we found that in the absence of serum IL-7 promoted autophagy as 

observed by LC3 turnover (Figure 4A). In accordance, preliminary densitometry analyses 

suggest that in serum-poor culture IL-7 appears to induce a shift towards higher MEK/Erk 

(pro-autophagy) pathway activation than in serum-rich culture, whereas PI3K/Akt/mTOR 

(anti-autophagy) pathway appears unaffected (Figure 4B).  

Next, we reasoned that if in serum-poor medium autophagy constituted an important 

survival mechanism, then inhibition of the pro-autophagic MEK/Erk pathway should have a 

negative impact on cell survival. We cultured TAIL7 cells with IL-7 in normal serum 

conditions or without serum. IL-7 promoted T-ALL survival in both conditions, However, 

in the presence of serum IL-7-dependent survival required PI3K/Akt/mTOR activation, 

whereas in the absence of serum MEK/Erk activation was essential for IL-7-dependent 

survival (Figure 5c; upper-panels). Interestingly, in serum-poor conditions inhibition of 

PI3K/Akt/mTOR pathway by LY294002, a condition favoring autophagy, promoted cell 

viability beyond the effect of IL-7. Similar results were found for a primary T-ALL sample 

(Figure 4C; lower-panels). 

To more directly characterize the relevance of autophagy for IL-7-mediated T-ALL 

cell survival, we cultured TAIL7 cells in the presence of the autophagy inhibitor SAR405. 

Prevention of autophagy had no significant effect on IL-7-dependent survival in the presence 

of serum (Figure 5A). In contrast, SAR partially abrogated viability of T-ALL cells cultured 

with IL-7 in the absence of serum (Figure 5B). These results indicate that autophagy is 

required, at least in part, for IL-7 to promote T-ALL cell survival under nutrient-poor 

conditions.  
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Figure 4. In serum-poor culture IL-7 promotes T-ALL cell viability by MEK/Erk-dependent 

promotion of autophagy. IL-7-deprived TAIL7 cells or primary leukemia cells were cultured in serum-rich 

(5% FBS - TAIL7; 10%FBS-primary sample) or in serum-poor (no FBS) conditions, as indicated. (A) 

Immunoblot analysis of PI3K/Akt/mTOR, MEK/Erk, JAK/STAT pathway activation and LC3 cleavage in 

TAIL7 cells. (B) Densitometry analysis of IL-7-dependent fold induction of pAkt and pErk observed in a. (C) 

TAIL7 or primary leukemia cells were cultured in serum-rich (5% FBS - TAIL7; 10% FBS - primary T-ALL) 

or in serum-poor (no FBS) conditions for 96h (TAIL7) or 48h (primary T-ALL) in the absence or presence 

with LY294002, rapamycin, UO126 and/or IL-7, as indicated. Cells were collected for flow cytometry analysis 

of viability by FSCxSSC discrimination. Results are representative of 3 independent experiments or 2 patients. 

Results in panel C (top) represent average of triplicates ± sem.   
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Figure 5. In serum-poor culture inhibition of autophagy abrogates IL-7-mediated T-ALL cell 

viability. IL-7-deprived TAIL7 cells were cultured in (A) serum-rich (5% FBS) or (B) in serum-poor (no FBS) 

conditions for 96h in the absence or presence or SAR405 (10µM) and/or IL-7 (50ng/mL), as indicated. Cells 

were collected for flow cytometry analysis of viability by FSCxSSC discrimination. Data representative of 3 

independent experiments. Results represent average of triplicates ± sem.  
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5.5 Discussion 

IL-7 is a major growth factor for both normal and leukemic T-cells, consistently 

promoting cell proliferation, metabolic activation and cell survival via inhibition of 

apoptosis [32, 33]. Autophagy is a major cellular process through which long-live proteins 

and organelles are degraded and functions as a key process for cell survival, tissue 

remodeling and stress relief. However, alterations in the autophagic process have been 

described as being involved in many pathologies [17]. In cancer, these alterations can be 

seen as a double-edged sword. On one hand, by mitigating multiple sources of cellular stress, 

autophagy may prevent normal cell transformation by avoiding excessive DNA damage and 

expression of aberrant, potentially oncogenic, proteins. On the other hand, once tumor 

initiation has occurred, tumors may exploit autophagy to resist stress and increase tumor 

fitness [18].  

Our initial hypothesis was that IL-7 could down-regulate autophagy through the 

activation of PI3K/Akt/mTOR axis. Interestingly, here we demonstrated that IL-7 modulates 

autophagy in a manner that takes into account other factors in the microenvironment. We 

found that in serum-rich conditions IL-7 down-regulates autophagy, while in serum-poor 

conditions IL-7 promotes autophagy. This may relate to the fact that IL-7 activates two 

signaling pathways with opposing roles in autophagy: PI3K/Akt/mTOR pathway inhibits 

autophagy and MEK/Erk pathway promotes autophagy. Indeed, we showed a strong 

correlation between IL-7-mediated survival of leukemia cells in optimal vs. stress culture 

conditions (serum-rich vs. serum-poor) and the requirement for active PI3K/Akt/mTOR vs. 

MEK/Erk signaling, respectively. We postulate that the signaling pathway that IL-7 uses to 

promote cell viability shifts according to the requirement the cell has on autophagy in a 

manner that is determined by other cell-autonomous and microenvironmental cues.  

Previous studies established that IL-7-mediated increase in T-ALL cell viability 

requires activation of PI3K/Akt/mTOR pathway to block apoptosis. Whereas the role of IL-

7-mediated MEK/Erk activation in T-ALL remained elusive [9, 11, 33]. However, most 

studies to date investigating the role of IL-7 in T-ALL were performed in optimal culture 

conditions. Here, for the first time we demonstrated that MEK/Erk plays a role in IL-7-

mediated leukemia cell survival and it is correlated with promotion of autophagy to prevent 

cell death upon serum withdrawal. 

The role of mTOR as a master negative regulator of autophagy is well established by 

its direct control over the ULK1/Atg13/FIP200 complex [22, 26]. The role of MEK/Erk 
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pathway is often associated with autophagy promotion, but the mechanisms are less well-

defined and may involve different layers of regulation [26]. For instance, studies suggest 

that MEK/Erk pathway may regulate the Vps34/Beclin1 complex assembly [34] or 

autophagosome vesicle maturation [35]. Conversely, Raf/MEK/Erk complexes were found 

associated with the autophagosomal membrane and autophagic activity promoted Erk 

activation [36]. Our results agree with the notion that MEK/Erk activity positively controls 

autophagy. 

The present study opens up futures avenues of research. Autophagy contributes to 

chemotherapy resistance and several clinical trials are in course testing whether autophagy 

inhibitors could complement standard chemotherapy [18]. Understanding whether IL-7 

contributes to T-ALL chemotherapy resistance and if so, what role autophagy plays in that 

context, is of particular interest. How (and which) other cues mechanistically determine the 

ability of IL-7 to promote or inhibit autophagy constitutes and exciting research track. 

Finally, the role of MEK/Erk signaling in IL-7-dependent T-ALL cell survival, growth and 

proliferation warrants further investigation. 

In summary, our data suggest that IL-7 shifts the balance of intracellular pathway 

activation to consistently promote T-cell leukemia survival according to the 

microenvironment. 
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In the present work we found and characterized new aspects of IL-7/IL-7R-mediated 

signaling in T-cell ALL. Those include the finding of oncogenic mutations in the IL7R gene 

driving constitutive signaling, the characterization of new functions for Jak/STAT5, 

PI3K/Akt and MEK/Erk signaling pathways and the involvement of IL-7 in modulating the 

cellular physiological processes of autophagy and metabolism. An overview of our findings 

is shown in Figure 1. 

 

 

Figure 1. Novel aspects of IL-7 signaling in T-ALL. In Chapter 2, we reported our discovery of gain-

of-function mutations in the IL7R gene. Most mutations led to homodimerization via insertion of an unpaired 

cysteine and drove constitutive signaling, transformation and tumor formation. In Chapter 3, we demonstrated 

that STAT5 was required for IL-7-mediated T-ALL cell viability, proliferation and growth. We also found that 

PIM1 was a major effector of STAT5 signaling. In addition, evidence suggests that STAT5 downregulated 

Bcl6 via alternative splicing. In Chapter 4, we discovered that IL-7 downregulated autophagy via 

PI3k/Akt/mTOR activation while promoting autophagy via MEK/Erk activation. We observed that depending 

on the nutritional status of T-ALL cells, IL-7 inhibited (high nutrients) or promoted (low nutrients) autophagy. 

In Chapter 5, we described our preliminary data associating IL-7-dependent increase in glucose consumption 

and lactate production with the rapid upregulation of several genes involved in glycolysis. Possible therapeutic 

strategies studied in Chapters 2, 3 and 4 are included bellow each scheme. In-depth discussion of our 

discoveries is found in the text.   
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6.1 IL-7R signaling and leukemogenesis: a new oncogene revealed 

As mentioned extensively throughout this thesis, while IL-7 [1] and IL-7R [2, 3] 

signaling are essential for normal T-cell development, there is considerable evidence that 

they may also contribute to T-ALL development. IL-7 supports T-ALL cell proliferation in 

vitro [4-7] and accelerates human leukemia in vivo [8]. In our studies (Chapter 2) we found 

that 9% of pediatric T-ALL cases have gain-of-function mutations in the exon 6 of IL7R. 

Most mutations inserted an unpaired cysteine in the extracellular juxtamembrane-

transmembrane interface domain leading to homodimerization of IL-7Rα chains. This 

created a ligand-free and γC/JAK3-independent triggering of constitutive intracellular 

signaling that was capable of cell transformation and tumor formation. Parallel independent 

studies have also demonstrated the presence of IL7R mutations [9, 10], validated by 

numerous subsequent studies in ALL [11-16], including in vivo models [17, 18].  

Interestingly, the cysteine mutation did not occur alone but required additional 

aminoacids. Model predictions suggested the additional aminoacids would confer structural 

conformation changes that allow the associated Jak1 proteins to trans-phosphorylate, 

mimicking the wild-type IL-7Rα conformational changes elicited by IL-7 and γC interaction 

[19]. The presence of cysteine disulphide bonds provides a rational for targeting mutant 

signaling with reducing agents. We showed that mutant homodimerization and signaling was 

affected by treatment with β-mercaptoethanol (β-ME) [20]. These findings were 

subsequently extended by Mansour and colleagues, who showed that administration of N-

acetyl cysteine, another reducing agent, delayed leukemia development in mice engrafted 

with IL-7Rα-mutant cell lines [21].  

The non-cysteine mutations were less prevalent and our data indicated that they are 

less potent. However, more recently it was shown that some non-cysteine mutations could 

elicit constitutive signaling and be leukemogenic [13]. IL7R mutations also occurred in B-

cell ALL (B-ALL), but were rare (<1%), however they tended to cluster with cytokine 

receptor-like factor 2 (CRLF2)-altered cases and some IL7R mutation required CRLF2 co-

operation [9]. Nonetheless their biological importance in B-ALL has been highlighted by the 

fact that they can be found in high risk cases [15]. 

It is possible that other γC family of receptors could harbor similar alterations, a 

possibility that warrants further studies. IL-2, IL-4, IL-9 and IL-15 (IL-21 has not been 

studied to date) were all shown to induce proliferation of T-ALL cells to some extent [22], 

which raises the possibility that such mutations may exist, perhaps at lower frequencies than 
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for the IL7R. Curiously, our analyses have failed to find mutations in the γC (IL2RG) in the 

Brazilian patient cohort used in Chapter 2 (data not shown). This is in line with the fact that 

none of the next generation sequencing studies published to date on B- or T-ALL patients 

has described mutations in this subunit [10-12, 15]. This is perhaps not completely surprising 

knowing that γC is not expected to provide intracellular signals by itself and merely assists 

the other subunits (such as IL-7Rα) in their signaling tasks. In the least, this appears to 

suggest that IL2RG mutations, should at the most a rare event in T-ALL.  

Curiously, some breast cancer tissue and cell lines express the IL-7R machinery [23], 

which raises the possibility that other cancer types may benefit from IL-7R signaling, 

aberrant or not [24].  

We also found that mutant IL7Rα-expressing cells were sensitive to Jak/STAT 

pathway inhibitors. However, it would be important to further investigate whether 

differences between the mutant signaling (constitutive, elevated, Jak1-dependent) and 

physiological signaling (regulated, Jak1/3-dependent) may exist from a molecular and 

therapeutic perspective.   

 

6.2 The Jak/STAT5 pathway: novel mediators of IL-7/IL-7R effector 

signaling in T-cell ALL 

The transcription factor STAT5 is an essential element of IL-7-mediated signaling 

during normal T-cell development and mature T-cell function [25, 26], but IL-7-dependent 

murine lymphomagenesis also requires STAT5 [27]. Moreover, mutant IL-7Rα-expressing 

cells are sensitive to Jak/STAT5 pathway inhibitors (Chapter 2) [17, 28]. We demonstrated 

in Chapter 3, that a Jak/STAT5/PIM1 signaling axis activated by IL-7 exists in T-ALL, is a 

required effector of IL-7-mediated signaling and constitutes a drugable target. At the 

functional level, inhibition of IL-7-dependent Jak/STAT5 or PI3K/Akt pathway activation 

has similar effects on T-ALL cell viability, proliferation and growth (Chapter 3) [29], 

indicating that both pathways are indispensable for proper IL-7 signaling and have non-

redundant effects in T-ALL. However, dissection of the molecular mechanisms used by each 

pathway revealed that, at least, the survival mechanism is notably different. Whereas 

PI3K/Akt/mTOR signaling mediates the expression of the pro-survival protein Bcl-2 

downstream from IL-7 stimulation [7, 29], STAT5 does not regulate BCL2 or BCL2L1 

expression (Chapter3). Thus, in T-cell leukemia IL-7 mediates the expression of Bcl-2 

survival protein apparently only via PI3K/Akt signaling, although survival is mediated by 
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both pathways. This sharply contrasts with IL-7-mediated signaling in normal T-cells, where 

IL-7-induced viability does not require PI3K or mTOR activation [30, 31]. In this context, 

STAT5 clearly mediates viability of some T-cell subsets (mature CD8) [32, 33], where it is 

involved in IL-7-mediated Bcl-2 expression [32]. Overall, evidence suggests that a subtle 

mechanistic difference, yet with great therapeutic potential, exists between IL-7-mediated 

signaling in normal versus leukemic T-cells. More studies exploring these differences may 

lead to novel therapeutic strategies. 

We found that PIM1 kinase was a direct downstream target of IL-7/STAT5 signaling 

and could account for STAT5-dependent survival and proliferative effects (Chapter 3). To 

our surprise, PIM1 inhibition partially abrogated Bcl-2 expression. We postulated this could 

be due to the existence of opposing arms (both promoting and inhibiting BCL2 activation) 

downstream of STAT5 with the final output being neutral effects on BCL2 transcript levels. 

Thus, upon inhibition of the PIM1 effector arm (positive regulator of Bcl-2), the remaining 

STAT5-dependent transcription was unaffected and created an unbalance leading to 

downregulation of Bcl-2 expression. Excessive STAT5 signaling has been reported to be 

deleterious [34]. Akt and PIM kinases have a high overlap in function and molecular targets 

[35, 36]. In addition, inhibition of PI3K pathway has a stronger effect on Bcl-2 expression 

[29] than inhibition of PIM1 (Chapter 3). It is possible that, in T-ALL, Akt is absolutely 

required to maintain Bcl-2 expression whereas PIM1 is an adjuvant, or that inhibition of 

PIM1 while maintaining its protein expression may have a partial dominant-negative effect 

over Akt. Both possibilities are worth considering. 

The analysis of IL-7/STAT5-dependent transcriptome data revealed potential 

interaction with RUNX transcription factors, which have been implicated in leukemia [37, 

38]. In the context of IL-7 signaling, the implications of the interactions with RUNX factors 

in T-ALL are unknown and particularly intriguing given the contradictory effects of RUNX 

family members on T-cell leukemogenesis. For instance, the reported RUNX1 tumor 

suppressor role [39] would be compatible with competition with STAT5 and consequent 

opposition against IL-7-mediated STAT5-dependent positive functional effects on T-ALL 

cells.  

Interestingly, our studies also showed IL-7-triggered STAT5-dependent 

downregulation of BCL6, apparently mediated by transcription of a possibly unstable 

alternative transcript. The exact impact of IL-7-mediated BCL6 downregulation in T-ALL 

cells requires investigation. Notably, a recent report demonstrated that BCL6 

downregulation was involved in IL-7-mediated self-renewal capacity of DN4 mouse 
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thymocytes [40]. This suggests that the leukemogenic impact of aberrant IL-7-mediated 

signaling on developing T-cells could be achieved in part via downmodulation of BCL6, 

consequent developmental blockade and self-renewal of immature thymocytes, which would 

create a pre-leukemogenic context favoring subsequent leukemogenic hits.  

 

6.3 IL-7 and T-ALL cell autophagy: a balance between PI3K/Akt/mTOR 

and MEK/Erk signaling 

Autophagy in cancer has been described as a double-edged sword. On one hand, by 

mitigating multiple sources of cellular stresses, autophagy may prevent normal cell 

transformation by, for instance, promoting metabolic homeostasis, preventing excessive 

DNA damage and expression of aberrant, potentially oncogenic, proteins. On the other hand, 

once tumor initiation has occurred, tumors may exploit autophagy to resist said stresses, or 

others, such as chemotherapy, and increase tumor fitness [41]. Our results in Chapter 4 

characterize, for the first time, the role of IL-7 signaling in T-ALL cell autophagy. We found 

that IL-7 balanced autophagy according to microenvironmental conditions and that 

PI3K/Akt/mTOR activation decreased autophagy, while MEK/Erk activation promoted 

autophagy. The regulation of autophagy by each pathway is in accordance to previously 

published data [42]. Interestingly, we demonstrated that in nutrient-rich conditions IL-7 

blocked autophagy, and in contrast, in nutrient-poor conditions IL-7 promoted autophagy 

(Chapter 4). Functionally, we found that in nutrient-rich culture IL-7 mediated survival via 

PI3K/Akt/mTOR activation, whereas in nutrient-poor culture IL-7 promoted survival via 

MEK/Erk activation. We postulated that the shift from PI3K/Akt-dependent to MEK/Erk-

dependent survival, under IL-7-stimulation, was associated with the differential capacity that 

each pathway has to regulate autophagy. For instance, in nutrient-poor conditions, autophagy 

would be beneficial to leukemic cells. In this context, a pathway that promoted autophagy 

(IL-7-mediated MEK/Erk stimulation) would play a major role in survival. Molecularly, our 

preliminary data suggest that the shift in IL-7-mediated pro- or anti-autophagic effects is 

associated with an increase in MEK/Erk pathway activation. How IL-7 increases MEK/Erk 

activity is unknown and warrants further investigation. Wang and colleagues [43] proposed 

a model where autophagic stimuli activated AMPK, which in turn activated MEK/Erk 

signaling. Elevated MEK/Erk activity destabilized mTORC, resulting in high Beclin1 levels 

which promoted autophagy. It would be interesting to test this model in our studies. These 

considerations apart, in Chapter 4, we characterized a novel function for MEK/Erk activation 
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in IL-7-mediated signaling in T-ALL, identifying for the first time a clear role for IL-7-

mediated MEK/Erk activation in leukemia T-cells. 

 

6.4 Cell metabolism in T-ALL: does IL-7/IL-7R signaling play a role? 

IL-7 promotes cell growth and metabolic activation at several levels in T-cells [30, 44-

47]. Less studies have been performed regarding T-ALL, but it has been demonstrated that 

IL-7 promotes cell growth and CD71 expression dependent on both Jak/STAT5 and 

PI3K/Akt/mTOR activation and additionally, glucose use dependent on PI3K/Akt/mTOR 

pathway (Chapter3) [29, 48]. Our subsequent transcriptome analysis of T-ALL cells 

demonstrated that IL-7 modulates the expression of multiple genes involved in key 

metabolic pathways, with emphasis on sugar metabolism (Chapter 5).  

Our investigation of glucose metabolism-related gene expression revealed that IL-7 

very quickly upregulates the expression of several genes involved in the glycolytic process. 

Some of the investigated genes had two waves of induction by IL-7 (e.g. HK2, ENO1, 

BCL2), indicating two separate expression mechanisms. Although the quick rise and fall in 

expression of glycolytic genes suggests an immediate-early gene program [49], whether they 

are true immediate-early (IEG) or instead delayed-early (DEG) genes still remains to be 

tested. Most well-known and studied IEGs are transcription factors (e.g. FOS, JUN, MYC) 

and their expression has been related to the activation of MAPK pathways [49, 50]. Notably, 

PFKFB3 expression was associated with IEG response driven by p38 MAPK pathway [51]. 

The role of IL-7-mediated MEK/Erk activation in T-ALL has only recently started to become 

apparent (Chapter 4), thus it is also worth considering a role of this pathway in early 

glycolytic gene expression.  

Akt and mTOR pathways as well as PIM kinases (all subject of IL-7 activation) have 

been associated with metabolic regulation, including glycolysis and oxidative 

phosphorylation, in T-cells [35]. In addition, the BCL6 transcriptional repressor, 

downregulated by IL-7/STAT5 signaling (Chapter 3), was found to be a direct repressor of 

the glycolytic pathway in helper T-cells [52]. Taken together, the available data strongly 

indicate that IL-7 signaling has a major role in metabolic regulation of T-ALL cells. 

Dissecting the molecular mechanisms associated with metabolism-related IL-7 effects in T-

ALL is of utmost importance. 
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6.5 Novel molecular targets with therapeutic potential against leukemia 

Advances in therapy for T-ALL throughout the years led to great improvements in 

survival. Still, relapses occur in a significant number of cases and treatments are associated 

with long-term side effects [53]. Therefore, new, more effective and specific therapies are 

required. 

In Chapter 2, we identified oncogenic gain-of-function mutations in IL-7Rα, driving 

constitutive signaling via disulphide bond-dependent homodimerization. Antibody-based 

therapy in cancer has become very successful [54]. Targeting IL-7Rα homodimers with low 

affinity antibodies, potentially allows specific homodimer recognition due to increased 

avidity, thereby allowing the selective targeting of mutant IL-7R expressing cells that should 

spare wild-type IL-7R-expressing cells. On the other hand, the use of antibodies recognizing 

both mutant and wild-type IL-7Rα, although displaying the potential caveat of targeting 

normal IL-7R-expressing cells, would have the advantage of targeting all IL-7R-dependent 

leukemia cells, therefore having probably broader application. 

In another approach, the aberrant constitutive signaling may be targeted. We have 

shown that IL-7R mutants are sensitive to Jak/STAT5 pathway inhibitors (Chapter 2). 

Mutant signaling relies on Jak1 activation. Ruxolitinib (INCB-018424), a Jak1/2 inhibitor, 

had the greatest effect on primary mutant T-ALL cells and is already approved for clinical 

use in myelofibrosis [55]. A small molecule inhibitor of STAT5 also showed promising 

effects [56]. These data are in accordance with Chapter 3, where we characterized 

Jak/STAT5 signaling as an important effector of IL-7 signaling and demonstrated that 

STAT5 small molecule inhibition abrogates viability and proliferation of T-ALL cells. 

Moreover, we demonstrated that PIM1 kinase is an important downstream effector of 

STAT5 signaling, using the PIM1 inhibitor Smi-4a [57]. The PIM1 inhibitor PIM447 [58] 

is currently in phase I trials and may be of interest in the context of T-ALL, including IL-

7/IL-7R-dependent cases. 

In Chapter 4 we provided evidence that IL-7 modulates autophagy according to 

microenvironmental conditions, associated with consistent promotion of viability. In stress 

conditions (absence of serum) IL-7 promoted autophagy in T-ALL cells. The relevance of 

autophagy in the context of cancer treatment becomes obvious in the website 

clinicaltrials.gov, whose records show multiple registered and ongoing clinical trials using 

the autophagy inhibitor HCQ as single agent or in combination with other drugs. Also, in 

our study we found that IL-7-mediated increase in autophagy relied in MEK/Erk pathway 



CHAPTER 6 

184 

activation. Furthermore, in adverse conditions IL-7 promoted viability via MEK/Erk rather 

than canonical PI3K/Akt/mTOR. Combination of both pathway inhibitors may have good 

therapeutic value in targeting leukemia cells living in different microenvironments. MEK 

inhibitors, such as GDC‑0973 or GSK1120212 in phase III trials [59, 60], could be used for 

this purpose.  

The current use of cytarabine, an anti-metabolite, and asparaginase, which catalyzes 

hydrolysis of asparagine, in therapeutic strategies in ALL [53, 61], highlights the importance 

of targeting cancer metabolism. Our preliminary metabolism studies in T-ALL suggest that 

IL-7 increases the activity of the glycolytic pathway. Targeting glycolysis may be a new 

therapeutic strategy in T-ALL. Some glycolysis pathway inhibitors have entered clinical 

trials. For example, lonidamine and 2-deoxyglucose (2-DG) are hexokinase inhibitors that 

target the initial steps of glycolysis; whereas TLN-232 is a PKM2 inhibitor that has the 

potential to reverse the Warburg effect [62, 63].  

In summary, our studies have contributed to improving the knowledge on T-ALL 

biology, particularly regarding the involvement of IL-7 and its receptor, and in doing so have 

permitted the identification of several molecular targets for potential therapeutic intervention 

in this hematological cancer.   
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