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Abstract  

 

Infectious diseases caused by viruses, parasites and bacteria are currently the second 

cause of mortality worldwide. One of these parasites is Leishmania sp., the protozoa 

responsible for leishmaniasis, which is highly susceptible to oxidative stress where 

trypanothione reductase is an enzyme that plays a crucial role in the antioxidant defense. 

Endoperoxide compounds such as tetraoxanes are known to be reductively activated by 

iron(II)–heme to form carbon-centered radicals that will create oxidative stress in the 

parasite. Following this concept, new tetraoxane compounds intended as antileishmanial 

drugs were designed and synthesized. The synthesis reaction occurred in two steps: first 

the suitable ketones or aldehydes were treated with hydrogen peroxide and formic acid to 

give the corresponding gem-dihydroperoxide; then, trans-cynnamaldehyde and Re2O7 

were added to complete conversion into 1,2,4,5-tetraoxane. Two novel tetraoxanes (23 

and 24) were synthesized, characterized and loaded in solid lipid nanoparticles in order to 

improve the targeting capacity and effective delivery to infected macrophages. These 

nanosystems, composed of natural triacylglycerols are among the most promising 

nanostructured particulate carriers with proven in vivo efficacy in the treatment of 

experimental leishmaniasis, while reducing adverse side effects in non-target organs. 

Solid lipid nanoparticles were prepared by emulsion-solvent evaporation method, using 

tripalmitin as the lipid component and sodium deoxycholate, Tween® 20 and lecithin as 

surfactants. Particle mean diameters of solid lipid nanoparticles loaded with compounds 

23 and 24 were 118 nm and 125 nm, respectively. A narrow polydispersity index and a 

negative surface charge were achieved for both formulations, which is suitable for their 

physical stability and desirable for macrophage targeting. Particle mean diameter, 

polydispersity index and surface charge remain unchanged after storage during 20 days at 

4ºC. Encapsulation efficiencies of 87% and 88% were obtained for compounds 23 and 24, 

respectively. The in vitro study showed a very promising activity of formulation loaded 

with compound 23 against leishmania infected THP-1 cells when compared with the 

standard anti-leishmanial drug miltefosine. Using this strategy, new therapeutically active 

tetraoxanes were synthesized and loaded in solid lipid nanoparticles, demonstrating their 

potential as anti-leishmanial agents. 

 

Keywords: Leishmaniasis; Tetraoxanes; Solid lipid nanoparticles; in vitro evaluation. 
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Resumo 

 

As doenças infeciosas causadas por vírus, bactérias e parasitas são atualmente a segunda 

causa de mortalidade em todo o mundo. Um destes parasitas é a Leishmania sp., o 

protozoário responsável pela doença leishmaniose. Embora seja reportada como a nona 

doença infeciosa mais grave em todo o mundo, a leishmaniose continua a fazer parte do 

grupo das doenças negligenciadas, afetando sobretudo as regiões equatoriais mais pobres 

do globo. 

Segundo a Organização Mundial de Saúde, 98 países são endémicos para a leishmaniose 

onde estão cerca de 350 milhões de pessoas em risco de contraírem a doença, gerando 

aproximadamente 2 milhões de novos casos todos os anos. 

São conhecidas mais de 20 espécies de Leishmania infeciosas para o Homem sendo as 

mais comuns as seguintes: L. donovani, L. infantum, L. siamensis, L. braziliensis and L. 

guyanensis. A doença é transmitida através da picada de uma mosca fêmea do género 

phlebotomine.  

Existem principalmente três formas de leishmaniose: i) leishmaniose visceral, que 

constitui a forma mais severa da doença e que tem uma taxa de mortalidade a rondar os 

100% na falta de medicação adequada; ii) leishmaniose cutânea, que representa a forma 

mais comum da doença; iii) leishmaniose mucocutânea que é a forma mais destrutiva da 

doença.  

Durante mais de 70 anos, a primeira linha de tratamento nos países mais afetados foram 

os injetáveis de antimônio pentavalente (Pentostam® and Glucantime®). No entanto, este 

tratamento é doloroso, potencialmente tóxico, de longa duração e tornou-se ineficaz em 

algumas regiões, devido ao aparecimento de resistências. A pentamidina, a paromomicina 

e anfotericina B fazem parte dos fármacos de segunda linha usados no tratamento da 

leishmaniose, mas a sua utilização é limitada devido à toxicidade e também ao 

aparecimento de resistências. O medicamento mais atrativo e eficaz é a formulação 

lipídica da anfotericina B, o Ambisome®, que apesar do índice terapêutico elevado e 

ausência de efeitos secundários é bastante caro e, desta forma, inacessível para os países 

endémicos, que são na sua maioria pobres. Finalmente, o primeiro fármaco eficaz de 

administração oral, a miltefosina, está associada a teratogenicidade e atividade 

hemolítica, e o seu tempo de semi-vida é muito longo, o que pode também originar o 

aparecimento de resistências. Por estas razões, e na ausência de uma vacina eficaz e 
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barata, a necessidade de novos medicamentos eficazes contra a leishmaniose é mais 

urgente que nunca. 

A Leishmania é muito suscetível ao stress oxidativo, situação em que a enzima 

tripanotiona redutase desempenha um papel fundamental na defesa antioxidante. 

Compostos com função endoperóxido como os tetraoxanos, inicialmente desenvolvidos 

para o tratamento da malária, são conhecidos por serem redutivamente ativados pelo ferro 

(II)-heme para formarem radicais centrados no carbono e espécies reativas de oxigénio 

(ROS) que irão criar stress oxidativo no parasita.  

Seguindo este conceito, foram sintetizados novos tetraoxanos destinados a atuarem como 

fármacos antileishmaniose através de um mecanismo de ação duplo. Sendo assim, após a 

ativação do tetraoxano pelo ferro (II), por quebra da ligação peroxídica, irão formar-se 

dois compostos: uma primeira molécula radicalar, altamente reativa, que poderá alquilar 

biomoléculas essenciais para a sobrevivência do parasita, ao mesmo tempo que contribui 

para o aumento do stress oxidativo; forma-se também uma segunda molécula com um 

carbonilo α,β-insaturado na sua estrutura, que funcionará como possível inibidor da 

enzima tripanotiona redutase. 

Para obtenção dos compostos pretendidos recorreu-se a um processo de síntese que 

ocorreu em duas etapas: em primeiro lugar compostos carbonílicos (cetonas ou aldeídos) 

reagiram com peróxido de hidrogénio na presença de ácido fórmico, à temperatura 

ambiente, para formar o correspondente gem-dihidroperóxido; de seguida este 

intermediário reagiu com aldeído trans-cinâmico com catálise de Re2O7, a 0oC, para 

completar a conversão no 1,2,4,5-tetraoxano. Dois novos tetraoxanos (23 e 24) foram 

assim sintetizados, purificados e caracterizados. O rendimento final da reação de síntese 

do composto 23 foi de 71% e o do composto 24 foi de 47%. Ambos os compostos foram 

caracterizados por ressonância magnética nuclear de protão (1H-RMN), de carbono (13C-

RMN) e por técnicas bidimensionais (COSY, HMQC, HMBC), espectroscopia de 

infravermelho, análise elementar e ponto de fusão. 

Os valores de análise elementar estão de acordo com os valores teóricos calculados e os 

pontos de fusão são 132-135oC e 96-100oC para os compostos 23 e 24, respetivamente e 

foram concordantes em duas técnicas diferentes (método de fusão instantâneo e DSC). 

Desde que foram descritas, no início dos anos 90, as nanopartículas lipídicas sólidas são 

vistas como uma excelente alternativa, eficaz e não tóxica, aos transportadores de 

fármacos coloidais mais conhecidos, como por exemplo, os lipossomas. As 

nanopartículas lipídicas podem ser preparadas com lípidos normalmente utilizados como 
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excipientes farmacêuticos. As duas primeiras formas de produção destes transportadores 

foram a homogeneização a alta pressão e a microemulsão.  

A natureza coloidal e de libertação controlada permitem a proteção dos fármacos 

encapsulados pelas nanopartículas lipídicas sólidas, e a administração parentérica e não 

parentérica. Estes nano-sistemas combinam as vantagens dos lipossomas e das 

nanopartículas poliméricas numa só tecnologia farmacêutica. 

Os novos tetraoxanos foram então encapsulados em nanopartículas lipídicas sólidas, com 

o objetivo de melhorar a veiculação controlada e direcionada até aos macrófagos 

infetados. Estes nano-sistemas, constituídos por triacilgliceróis naturais estão entre os 

veículos mais promissores, com eficácia comprovada in vivo no tratamento da 

leishmaniose, reduzindo os efeitos secundários em órgãos não infetados.  

As nanopartículas lipídicas sólidas foram preparadas pelo método de emulsão e 

evaporação de solvente, utilizando a tripalmitina como componente lipídica e o 

desoxicolato de sódio, Tween® 20 e lecitina como tensioativos. O diâmetro médio das 

partículas para as formulações com os compostos 23 e 24 encapsulados foi de 118 nm e 

125 nm, respetivamente. Foi obtido um índice de polidispersão baixo e potencial zeta 

negativo para ambas as formulações. Estes valores são adequados para a sua estabilidade 

física, e desejáveis para vectorização para os macrófagos. O diâmetro médio das 

partículas, o índice de polidispersão e o valor de potencial zeta permaneceram inalterados 

após o armazenamento durante 20 dias a 4ºC. Após esterilização por autoclave o diâmetro 

médio das partículas baixou consideravelmente, assim como a carga de fármaco. Este 

fenómeno foi identificado por DLS, uma vez que quando a temperatura se elevava acima 

do ponto de fusão da tripalmitina os tetraoxanos saíam do interior da matriz lipídica, 

resultando na redução do diâmetro médio das partículas. Foram obtidas eficiências de 

encapsulação de 87% e 88% para os compostos 23 e 24, respetivamente. Os estudos de 

libertação comprovaram que a formulação com o composto 23 é mais estável aos valores 

de pH testados (7.4 e 1.0) mas que ambas têm de ser melhoradas de forma a aumentar a 

gastro resistência, uma vez que estas formulações têm como fim a administração oral.  

Os estudos de viabilidade celular mostraram que ambos os compostos não têm toxicidade 

associada. O estudo in vitro em células THP-1 infetadas com L. infantum revelou 

atividade bastante promissora, do composto 23 encapsulado, quando comparado com a 

miltefosina (fármaco aprovado com atividade antileishmaniose). Esta estratégia permitiu 

a descoberta de novas formulações lipídicas com tetraoxanos encapsulados, como 

potenciais candidatos a fármacos contra a leishmaniose. 
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Palavras-chave: Leishmaniose; Tetraoxanos; Nanopartículas lipídicas sólidas; Avaliação 

in vitro. 
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Chapter 1 – State of the Art 

 

1. Leishmaniasis 

 

Infectious diseases caused by viruses, parasites and bacteria are currently imposing a 

substantial burden of morbidity round the globe, more predominantly in less developed 

countries [1,2]. 

Protozoa parasites of the genus Leishmania are responsible for the leishmaniasis group of 

tropical infectious diseases. Although leishmaniasis is reported as the ninth largest 

infectious disease burden worldwide, it remains as one of the world's most neglected 

diseases, largely affecting the poorest equatorial areas of the globe [3,4]. 

Over 20 Leishmania species are known to be infective to humans, the most common of 

which are L. donovani, L. infantum, L. siamensis, L. braziliensis and L. guyanensis[3]. 

The disease is transmitted by the bite of an infected female phlebotomine sand fly [3]. 

There are four main types of leishmaniasis clinical syndromes [3]: i) visceral 

leishmaniasis (VL), often known as kala-azar, representing the most serious form of the 

disease, which has a mortality rate around 100% in the absence of appropriate treatment. 

The VL affects the vital organs of the body and is characterized by irregular bouts of 

fever, weight loss, enlargement of the spleen and liver, and anemia [3,5]; ii) cutaneous 

leishmaniasis (CL), the most common, causes ulcers on exposed parts of the body, 

leading to disfigurement, permanent scars, stigma and in some cases disability [3,6,7]; iii) 

mucocutaneous leishmaniasis (MCL), that is the most destructive form of the disease, 

causes partial or total mutilation of mucous membranes in the nose, mouth and throat [3]; 

iv) post kala-azar dermal leishmaniasis (PKDL), which occurs months or years after the 

successful treatment of VL and is a cutaneous condition characterized by a macular, 

depigmented eruption found mainly on the face, arms, and upper part of the trunk [3]. 

Leishmaniasis affects mainly agricultural areas and suburban regions in Africa, Asia, 

Latin America the Mediterranean Basin. However, anthroponotic CL, where humans are 

the major reservoir of the parasite, is predominantly urban and periurban, showing 

patterns of spatial clustering similar to those of anthroponotic VL in South Asia. The 

disease is usually characterized by large outbreaks in densely populated cities, especially 

in war and conflicts zones, refugee camps and in settings where there are large-scale 
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migration of populations [3,7]. In any case, the disease is highly associated with 

malnutrition, population displacement, poor housing, weak immune system and lack of 

resources. Leishmaniasis affects humans, livestock and pets, and the latter two can act as 

reservoirs for the parasites [3,8]. Until 2013 the World Health Organization (WHO) 

statistics shows that over 98 countries are endemic for leishmaniasis, in which 350 

million people are considered at risk of contracting the disease, generating approximately 

2 million new cases each year. Approximately 0.3 million of these are new VL cases, of 

which 0.2 million result in death [9]. More than 90% of global VL cases occur just in the 

six countries, i.e. Bangladesh, Brazil, Ethiopia, India, South Sudan and Sudan (Figure 1). 

In these particular countries 310 million people are at risk of infection, corresponding to 

90% of the total population [3,6]. 

 

 

 

Of the several types of leishmaniasis, CL is more widely distributed, with about one-third 

of cases occurring in each of three epidemiological regions, the Americas, the 

Mediterranean basin, and Western Asia from the Middle East to Central Asia (Figure 2). 

In this type of leishmaniasis there are also countries with more estimated incidence 

(Afghanistan, Algeria, Brazil, Colombia, Costa Rica, Ethiopia, Iran, Peru, Sudan and 

Syria), accounting for 70 to 75% of global estimated CL incidence [3,7]. However, the 

Figure 1- World map representing the status of endemicity of VL until 2013. Adapted from 

http://gamapserver.who.int/mapLibrary/Files/Maps/Leishmaniasis_2013 04/04/2016. 
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Figure 2- World map representing the status of endemicity of CL until 2013. Adapted from 

http://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html 04/04/2016. 

epidemiology of CL in the American continent is complex, with intra and inter-specific 

variation in transmission cycles, reservoir hosts, sand fly vectors, clinical manifestations 

and response to therapy, and multiple circulating Leishmania species in the same 

geographical area [3]. 

 

2. Leishmania spp. life cycle 

 

The Leishmania parasite exists in two morphological forms designated amastigotes and 

promastigotes, being the former the intracellular form, and the latter the extracellular 

bodies. 

The parasite is transmitted indirectly by two genera of hematophagous sand flies, 

Phlebotomus and Lutzomyia, although the first one was more abundant in the old world 

rather the second, which is more abundant in the new world [10].  

In the human phase (Figure 3, blue arrows), when an infected sand fly takes a blood meal 

of a naïve mammalian, it regurgitates promastigotes at the bite site, from its alimentary 

tract [3,10]. The promastigotes are thus introduced into the skin. The parasites, still in the 

promastigote form, are taken up by the host´s dermal dendritic cells and macrophages, 

No autochthonous cases reported 

Previously cases reported 

Not applicable  

Endemic countries 

http://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html
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where they survive, multiply and differentiate into amastigotes within phagolysosomes, 

while resisting lysosomal enzymatic degradation [3,10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The uptake of promastigotes and respective transformation into amastigotes can be 

completed between twelve and twenty four hours [10]. After lysis of infected 

macrophages and dendritic cells, the amastigotes disperse via the circulatory and 

lymphatic system, proceeding to infect other macrophages of the mononuclear phagocytic 

system (MPS). Thereafter the parasite remains in the amastigote form for the whole 

duration of the mammalian phase of the life cycle. This phase is chronic and can last from 

months to years, even a lifetime, depending on the host species involved [10]. 

Furthermore, the duration of the infection can vary widely between individuals, as there is 

a strong influence of host genetics on susceptibility to infection [10]. The location of 

infected host cells varies with the type of leishmaniasis. In CL the amastigotes remain 

confined in the skin provoking papules or ulcers. In VL there may be an initial skin 

lesion, but usually the first explicit symptoms are the onset of fever and other clinical 

Figure 3- Life cycle of Leishmania parasites. Adapted from 

http://www.cdc.gov/dpdx/leishmaniasis/index.html 04/04/2016. 

http://www.cdc.gov/dpdx/leishmaniasis/index.html
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evidences of visceral infection [10]. Finally the infected hosts serve as reservoirs and can 

infect another sand fly, beginning the sand flies stage (Figure 3, red arrows), when this 

insect feeds. Sand flies possess cutting mouthparts that slice into the mammalian skin and 

then they feed from a pool of blood that emerges from the wound. If the flies happen to 

feed on a cutaneous lesion they acquire parasites that cause cutaneous disease while 

visceral parasites are acquired from the blood itself [4,9].  

The principal pathological events of VL occur in main MPS organs, the spleen and liver, 

where the host cells remain resident. Other sites of infection are the lymph and bone 

marrow. The bone marrow is a major site of hematopoiesis and blood monocytes infected 

with amastigotes are released into the peripheral circulation and thus made available to 

the sand flies. Nevertheless, in most endemic foci the acquisition of Leishmania parasites 

by individual flies is a rare event however the few infected flies are efficient vectors. Flies 

that acquire a Leishmania infection remain infected for life. Then the ingested 

amastigotes that can be inside of a macrophage or in its free form transform into 

promastigotes exclusively in the insect gut. The ultimate form of the development cycle 

are the mammalian infective metacycle promastigotes, which accumulate in the anterior 

mid gut and foregut of the sand fly, where they remain until the next cycle begins [10].  

 

2.1. Amastigotes morphology  

 

The amastigotes are the intracellular form of the parasite. This eukaryotic cell is smaller 

when compared with promastigotes, with 3-6 μm length and 1.5-3 μm in width (Figure 4). 

The external membrane is a conventional unit membrane under which lies a corset of 

microtubules, serving as a form of cytoskeleton.  Although amastigotes are usually 

referred as a non-flagellum form, they actually have one. However it does not protrude 

beyond the body surface so it cannot be seen by light microscopy. This flagellum is not 

functional, making the amastigotes non-motile, and it can be found inside of a flagellar 

pocket created by an infolding of the surface membrane. The flagellar pocket is 

topological external to the cell although contained within it. In addition to anchoring the 

flagellum the main function of the pocket is to serve as a site of endocytosis and 

exocytosis processes, which can be explained by the presence of the Golgi complex in the 

vicinity of the flagellar pocket. As the amastigotes belong to the kinetoplastea class they 
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Figure 4- Illustration of promastigotes (A) and amastigotes (B) morphology with schematic 

representation and identification of the various cellular compartments. Adapted from: 

Protein turnover and differentiation in Leishmania [11]. 

have a kinetoplast, a dense mass of mitochondrial DNA, adjacent to nucleus. They divide 

by longitudinal binary fission at 37oC (Figure 4) [10,11]. 

 

2.2. Promastigotes morphology  

 

The promastigotes are the extracellular form of the Leishmania parasite that develops 

inside the gut of the invertebrate sand fly - Phleobotomus spp. and Lutzomyia spp. -where 

they multiply by longitudinal binary fission at 27oC. Promastigotes have an elongated 15-

30 μm body and 5 mm width. These extracellular bodies are motile due to their anterior 

flagellum. Desmossomal plaques anchor the flagellum to the cell body as it emerges from 

the flagellar pocket. The structural elements of promastigotes are the same as those 

described for amastigotes (Figure 4) [10,11]. 
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3. Current leishmaniasis treatments 

 

In this section we will review the drugs that are currently in use and promising 

approaches for the treatment of VL, which include paromomycin, pentamadine, 

pentavalent antimonials, miltefosine, ketoconazole, allopurinol, formulations of 

amphotericin B, and the more recently studied by our investigation group dinitroanilines 

[4,8]. Some of these drugs are also used for the treatment of CL and MCL. It is also 

important to notice that the treatment of VL varies from one endemic region to another 

not only due to the appearance of resistances or different causative species but either 

because of the treatment regimes recommended by WHO or the inadequate current 

treatment options [3,9]. 

 

 3.1. Pentavalent antimonials 

 

In 1915 Di Cristina and Carania in Italy and Rogers in India reported the first use of 

antimonials for the treatment of VL, however, trivalent antimonials were already used to 

treat CL [3]. Afterwards antimonials were found to be highly toxic and exhibited side 

effects such chest pain, cough and depression, although in 1925 Brahmachari made a key 

finding when he synthesized the pentavalent antimony compound urea stibamine (1, 

Figure 5), an effective chemotherapeutic agent against VL [3,13]. This breakthrough 

saved millions of lives in India where several villages were depopulated by VL 

epidemics. New advances were made in antimony therapy of VL through the synthesis of 

antimony gluconate (Glucantime®, Sanofi-Aventis) (2, Figure 5) in 1937 and sodium 

stibogluconate (Pentostam®, GlaxoSmithKline) (3, Figure 5) in 1945. These two drugs 

were the first line of treatment for more than 70 years in most endemic countries [4,9]. 

Both Pentostam® and Glucantime® have poor oral absorption so they are given via 

intramuscular injections or intravenous infusions. In addition, the treatment with these 

two compounds is lengthy, potentially toxic and painful. Common side effects of these 

specific pentavalent antimonials include prolonged QTc interval, ventricular premature 

beats and ventricular fibrillation. These cardiovascular conditions are often associated 

with fatal cardiac arrhythmias [3,14]. Arthralgia and myalgia, elevated hepatic enzymes 

and pancreatitis are other common adverse events [4,9]. 
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Figure 5- Structures of the most common pentavalente antimonials: 1- urea stibamine; 2- gluconate; 3- stibogluconate. 

 

Over the years treatment with pentavalent antimonials has become ineffective in parts of 

India and Nepal, as resistance has developed. Therefore, in 1992 the recommendation 

dose to treat VL in India was enlarged from 10 mg/kg to 20 mg/kg a day for 28−30 days. 

In the beginning of the XXI century, in some regions of India 60% of the VL cases whore 

refractory to this treatment. This antimony resistance is apparently due to the 

contamination of drinking water by arsenic, which can be chelated by the pentavalent 

antimonials, thus decreasing the effective dose [3,13]. Even though, pentavalent 

antimonials continue to be efficacious in other parts of Southeast Asia, and the WHO 

currently recommends a combination of pentavalent antimony and paromomycin as the 

first line therapy options in this region [9].  

Pentavalent antimonials still are the first choice for the treatment of VL in South America 

where the species that cause VL is the L. infantum rather than L. donovani, and so there is 

no evidence of resistance [14]. Likewise, in the Mediterranean countries, although it is a 

rare disease, VL is also caused by L. infantum. During the 1990s, antimonials were the 

first-line of treatment in most countries of this region (e.g. France, Greece, Italy, Malta, 

Spain, Portugal, Albania, Israel, Turkey, Morocco, Algeria, and Tunisia) with cure rates 

above 95%. Nevertheless, more recently, pentavalent antimonials have been replaced by 

AmBisome® (Gilead Sciences) as the first line of treatment in European countries [15]. 

It is important to refer as well that antimonials have also been used extensively as the 

primary treatment option for CL and ML with high disparity of cure rates that can balance 

between 20% and 100%, depending on country, genetics and parasite species [7].  

Although pentavalent antimonials have a long history of use in human medicine, their 

molecular and cellular mechanisms of action are not yet well understood. It is not even 

clear whether the final active form is Sb(V) or Sb(III) [13]. The cell transporter, which 
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allows the entry of pentavalent antimonials is at the date unknown although speculation 

indicates that Sb(V) enters into the amastigote form of the parasite via a protein that 

recognizes a sugar moiety-like structure shared with gluconate [13]. Three main models 

could be proposed regarding the mechanism of action of pentavalent antimonials [13].  

 

Prodrug Model – This model is based on the principle that Sb(V) is less active against 

Leishmania than Sb(III). According to this model Sb(V) behaves as a prodrug, which 

undergoes biological reduction to the much more active, but also more toxic trivalent 

form of antimony – Sb(III). However, the site (amastigote or macrophage) and 

mechanism of reduction (enzymatic or nonenzymatic) remain controversial. The likely is 

that the reduction occurs inside the amastigote with active participation of thiol 

compounds from de mammalian host and the ones of parasite origin such glutathione and 

trypanothione, respectively. Once the reduction happen trypanothione reductase (TR) and 

zinc finger proteins are both potential molecular targets of Sb(III) [13]. 

 

Intrinsic Antileishmanial Activity Model - Intrinsic antileishmanial activity of sodium 

stibogluconate – Sb(V), but not Sb(III), specifically inhibits type I DNA topoisomerase, 

thus inhibiting of unwinding and cleavage. It is believed that Sb(V) may form a complex 

with adenine nucleosides, which is kinetically favored in acidic biological compartments 

such as the inside of parasite amastigotes [13]. 

 

Host Immune Activation Model - According to this model antimonials have the ability to 

eliminate intracellular Leishmania parasites via activation of host immune system. The 

action of sodium antimonials is multifaceted and so they can activate both innate and 

adaptive immunity, thereby inducing effective antileishmanial immune response. This not 

only improves the existing infection but also protects from relapse [13]. 

 

3.2. Pentamidine 

 

Pentamidine (Figure 6) is an aromatic diamidine and is formulated as a salt. It was first 

implemented for the treatment of human african trypanosomiasis (sleeping sickness). The 

first reports of pentamidine use are dated from 1949 and 1950 in India and Spain 

respectively. The selective accumulation of pentamidine by the parasite, rather than the 
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host cell, is a major reason for the pentamidine selectivity [3]. Most regimens are based 

on intramuscular injection or intravenous infusion of 4 mg/kg/day of pentamidine usually 

during 30 days (Pentacarinat®, Sanofi-Aventis). Side effects include hypoglycemia, 

hypotension, fever, myocarditis and renal toxicity. When pentavalent atimonials were not 

effective, pentamidine was the second choice of therapy for treatment of VL, however its 

toxicity and rapidly emerging resistance led to its replacement by amphotericin B in the 

1990s. Evidence of the emerging resistance were very notable at the time; in fact, during 

the early years of increased pentamidine use in India, 10 injections were sufficient to cure 

almost 100% of the patients, whereas about 10 years later 15 or more injections were 

required in order to cure only 65%-77% of patients [3]. However, in French Guiana and 

Suriname pentamidine is still the first line of treatment for CL caused by L. guyanensis 

with highly cure rates [16]. 

 

 

 

 

 

 

 

 

Several mechanisms of action have been suggested but the precise manner in which 

pentamidine acts, and its major macromolecular targets, have not been entirely elucidated. 

So far it is clear that pentamidine is selectively accumulated by pathogenic protozoa 

through high affinity pathogen membrane transporters [14,15] 

 

3.3. Amphotericin B 

 

Amphotericin B (Figure 7) is a polyene antibiotic with antifungal activity, isolated from 

Streptomyces nodosus in 1953 [19]. Santos in 1960 reported for the first time in vitro 

activity of amphotericin B on Leishmania [3]. Three years later in Brazil the first patients 

with VL were treated successfully with amphotericin B [3]. The drug major advantage 

relies in the fact that increases membrane permeability by binding to ergosterol present in 

the Leishmania plasma membrane [16,17]. Amphotericin B is insoluble in aqueous 

Figure 6- Structure of pentamidine. 
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solutions at pH=7 and for this reason the original formulation used sodium deoxycholate 

in order to improve solubility, thus amphotericin B can be used in complex with 

deoxycholate or with lipid formulations, mainly liposomes, for intravenous infusion. It is 

also important to refer that amphotericin B has a very long elimination half-life, with 

substantial levels accumulating in the liver and spleen and to a lesser extent in the lungs 

and kidneys [16,17,21]. 

Amphotericin B deoxycholate was used largely to treat ML and the first clinical trials for 

the treatment of VL were performed at the beginning of the 1990s [3]. It demonstrated 

response rates of closely 100% as first line treatment, and cure rates above 90% in those 

cases where antimonials had previously failed [22]. However, the deoxycholate form of 

the drug has many adverse effects including infusion reactions, nephrotoxicity, 

hypokalemia, and myocarditis [23]. In addition to the side effects, amphotericin needs 

close monitoring and hospitalization for 4−5 weeks, conditions hard to keep in countries 

with low income settings [3]. 

In order to attenuate its toxicity and increase the therapeutic potential, alternative 

formulations of amphotericin B have been developed and incorporated into regular 

clinical use. The molecular structure of amphotericin B deoxycholate, has poor water 

solubility and excellent lipid solubility, which makes the drug an ideal candidate for 

incorporation into lipid-based preparations [20]. Lipid formulations of amphotericin B are 

in fact very effective at lower doses and have reduced toxicity, but the high cost 

complicates treatment of patients in the less development countries that happens to be the 

more affected with Leishmania epidemics [22]. 

AmBisome® (Gilead Sciences) is a liposomal formulation of amphotericin B 

for injection. Initially developed by NeXstar Pharmaceuticals, it was a huge step in the 

fight against Leishmania in low-income countries that have been received access to 

reduced-price liposomal amphotericin B through the Gilead/WHO AmBisome donation 

programme [24]. Attempts have been made to develop inexpensive lipid-containing 

amphotericin B deoxycholate, particularly by mixing it with commercially available 

emulsions for parenteral nutrition, while other lipid-based amphotericin B formulations 

have been licensed (Abelcet®, Teva Pharma) [20]. Due to the effectiveness of 

AmBisome® treating VL, this liposomal formulation is considered the reference drug in 

the Mediterranean countries and is the alternative in the low incoming countries when the 

first line of treatment fails [3].  

 

https://en.wikipedia.org/wiki/Injection_(medicine)
https://en.wikipedia.org/w/index.php?title=NeXstar_Pharmaceuticals&action=edit&redlink=1
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Liposomal amphotericin B has affinity for fungal and protozoa membrane cells, 

penetrating through the wall and entering into the cytoplasm due to its lipid composition 

[21]. The proper mechanism responsible for the membrane disruption and parasite cell 

death is unclear. However it is believed that when amphotericin B binds with ergosterol, a 

transmembrane channel is formed, causing monovalent ion (K+, Na+, H+ and Cl−) leakage, 

which is thought as the primary effect leading to cell death. Recently researchers have 

found new evidence that channel formation is not the only mechanism responsible for cell 

death [25].  

 

3.4. Paromomycin 

 

Paromomycin (Humatin®, Pfizer) (Figure 8) is a broad-spectrum aminoglycoside 

antibiotic first isolated in the 1950s from Streptomyces krestomuceticus [4,23]. It is 

soluble in aqueous solutions and can be administrated by intramuscular injection, capsule 

or in topical cream [27]. CL is the type of leishmaniasis that is mostly cured by 

paromomycin with very efficacious cure rates and the most common adverse effect is 

pain in the site of injection [14,25]. About 5% of patients can experience reversible 

ototoxicity and a rise of hepatic transaminases [29,30]. Paromomycin showed inferior 

cure rates when compared with amphotericin B, miltefosine and antimonials treating VL, 

nevertheless its affordability is the main advantage [3]. 

 

 

Figure 7- Structure of amphotericin B. 
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The uptake of paromomycin by Leishmania cells occurs upon association with a highly 

negatively charged lipophosphoglycan, a major component of their cell surface. This 

structure is greatly reduced in amastigotes when compared with promastigotes which can 

be seen as a disadvantage since the main target should be the intracellular form of the 

parasite [31]. Moreover, paromomycin is a protein synthesis inhibitor and acts by binding 

to 16S ribosomal RNA and disrupting translocation of tRNA during translation in non-

resistant cells [26]. This mechanism has been well studied in non-Leishmania parasites 

and bacteria but its mode of action is not well understood in Leishmania spp. However, it 

has been proposed that it might alter membrane fluidity, interact with ribosomes, interfere 

with the mitochondrial membrane potential and inhibit respiration [32]. 

 

3.5. Miltefosine 

 

Miltefosine (Figure 9) was initially developed as an experimental anticancer drug 

(Miltex®, Baxter) but is actually a broad-spectrum phospholipid antimicrobial drug [3]. In 

the 1990s several laboratories discovered that miltefosine has antileishmanial activity, 

and in 2002, it was approved in India as the first  oral treatment of VL [3,33,34]. In 2002 

a phase III trial with miltefosine in India resulted in a 94% cure rate, and thus it was 

selected for the VL elimination program in India, Nepal, and Bangladesh [35]. A study in 

2012 suggests that miltefosine efficacy is starting to decline and the cure rate has been 

substantially reduced [36]. In the most affected regions of Africa miltefosine efficacy was 

found to be equivalent to the antimonials treatment [37]. Nowadays miltefosine is 

considered to be the first effective oral treatment regimen for CL, with greater 

accessibility and lower toxicity compared to antimonials [38]. The most common adverse 

Figure 8- Structure of paromomycin. 

https://en.wikipedia.org/wiki/Phospholipid
https://en.wikipedia.org/wiki/Antimicrobial
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events include gastrointestinal side effects and occasional hepatotoxicity and 

nephrotoxicity [36]. Another miltefosine limitation is teratogenicity. There is evidence 

that the adverse effects are more severe in women and young children[39]. In 2014 it was 

approved by the FDA to treat cutaneous or mucosal leishmaniasis (Impavido®, Paladin). 

 

 

 

 

 

 

Being first developed to act as an anticancer drug, most data about miltefosine’s 

mechanism of action were obtained in tumor cell lines where this compound can trigger 

apoptosis [40]. Concerning its antileishmanial effect, the mechanism of action is only 

partly known and some authors have shown evidence that the promastigotes treated with 

miltefosine present an apoptosis-like death. How this compound can induce apoptosis is 

not entirely clear either in mammalian cells or parasites.  It has been suggested that 

miltefosine inhibits the production of phosphatidyl choline, an essential molecule in the 

synthesis and integrity of cellular membranes and a source of signaling molecules [40]. 

 

3.6. Ketoconazole 

 

Ketoconazole (Figure 10) is an imidazole antifungal used orally and topically. Its 

terapeuthical potential activity against Leishmania spp. has been explored as an 

alternative to conventional first- and second-line therapy for VL and CL [41]. The 

efficacy of ketoconazole varies depending on species and the tests against CL resulted in 

a 75% cure with mild side effects in patients infected with L. braziliensis, and almost 

90% of the patients afflicted with CL caused by L. mexicana [3,42]. Among the main 

existing imidazole antifungals - fluconazole, itraconazole, ketoconazole – only the latter 

was found to be consistently efficacious and is now used as the first choice for treatment 

of CL infections caused by L. mexicana [3]. 

 

Figure 9- Structure of miltefosine. 
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Azoles are oral antifungal drugs that also interfere with the fungal and protozoa synthesis 

of ergosterol at the lanosterol demethylase step resulting in the accumulation of 14 α-

methyl sterols that are metabolized by the target of ketoconazole, the cytochrome P450 14 

α-methylase [43].  

 

3.7. Allopurinol 

 

Domestic dogs are the most important urban reservoirs of L. infantum, for this reason is 

important to refer the first line of treatment against leishmaniasis for infected dogs. 

Pentavalent antimonials were the first line treatment for dogs in Europe since the XX 

century. However this treatment does not promote parasitological cure in infected dogs, 

leading to frequent relapses and needing continuous administration of these drugs poorly 

tolerated and expensive drugs [44].  

Allopurinol (Figure 11) is a purine analog and its anti-leishmanial activity was first 

described in 1974 by Pfaller and Marr [45]. It emerged as an alternative orally active drug 

presenting low toxicity, low cost, lack of known resistance, effectiveness in reverting the 

clinical signs of canine VL, and prevents recurrence of the disease [46]. However, 

allopurinol is the only drug recommended by the WHO for the treatment of canine 

leishmaniasis, although it does not lead to complete elimination of the parasite. In 

veterinary medicine it is currently considered the major first line drug for long term 

treatment of canine leishmaniasis, often in combination with pentavalent antimonials or 

miltefosine for the first month and then continued alone [47]. 

 

Figure 10- Structure of ketoconazole. 
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Allopurinol’s antileishmanial activity is attributed to the inhibition of the enzyme 

hypoxanthine-guanine phosphoribosyl transferase present in purine salvage pathway of 

Leishmania parasite. Herein allopurinol is phosphorylated and most likely incorporated 

into nucleic acids, leading to disrupted protein translation and selective parasite death 

[46]. 

 

3.8. Dinitroanilines 

 

Dinitroanilines are derived from both aniline and dinitrobenzenes, representing a group of 

very promising antiparasitic agents with proven efficacy against several parasitic 

protozoa, such as Trypanosoma spp., Plasmodium falciparum, Toxoplasma gondii and 

Leishmania spp [48,49,50,51,52]. 

Trifluralin and oryzalin (10 and 11, Figure 12) are the most well studied compounds 

belonging to this class of herbicides that are commercially available since the 1960s [53]. 

The recent investigation of trifluralin and oryzalin as potential antileishmania agents 

relies on their advantages when compared with the first line of treatment drugs. 

Trifluralin and related compounds are inexpensive to manufacture, their traits are well 

characterized, including their toxicities and shelf-lives [54]. They showed to be non-

carcinogenic, non-teratogenic, and non-mutagenic [54]. Nevertheless, their use as 

antileishmania therapeutic agent is limited by their low water solubility and low vapor 

pressure associated with an in vivo rapid clearance, causing heterogeneous results in 

biological assays [12].  

 

 

 

Figure 11- Structure of allopurinol. 
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Carvalheiro et al. successfully developed liposomal formulations of trifluralin which 

demonstrated superior antileishmanial activity when compared to the free drug either in a 

murine model of VL (L. donovani) and in the treatment of experimental canine 

leishmaniasis (L. infantum) [54,55]. These liposomal formulations showed advantages in 

reducing parasite loads in mice, without the need of toxic solvents in the administration 

step while in the treatment of canine leishmaniasis they were effective in improving the 

clinical condition of the dogs by reducing parasite density and immunomodulating the 

generation of a potential protective immune response [54,55]. 

Lopes et al. reported the incorporation of oryzalin in appropriate liposomal formulations. 

These formulations enabled an increase of oryzalin solubility and delivery of the drug to 

the main affected organs of leishmanial infection [57]. These authors also developed a 

solid lipid nanoparticle (SLN) formulation of tripalmitin and lecithin containing oryzalin 

with the aim for leishmaniasis treatment [12]. A comparative study of liposomes versus 

SLN both loaded with oryzalin showed that in vitro both systems caused a reduction of 

oryzalin cytotoxicity, abolished the hemolytic activity while maintaining its 

antileishmanial intracellular activity [58]. The same study concluded that in vivo the 

incorporation of oryzalin in liposomes and in SLN clearly improved its pharmacological 

performance without no significant differences between both nanoformulations, except 

for the preferential activity found in each target organs that is the liver for liposomes and 

the spleen for SLN [58].  

Dinitroanilines exert their herbicide effect causing multinucleation, accumulation of cells 

at the metaphase, and the loss of microtubules [54]. This antimitotic activity determined 

by the capacity of dinitroanilines binding to tubulin - the main structural component of 

microtubule - in a highly specific manner resulting in their despolymerization [49]. The 

nitrile group of dinitroanilines binds to amino acid residues, generally, lysine or arginine, 

located between tubulin subunits preventing further cell division [59]. This interaction is 

Figure 12- Structures of trifluralin and oryzalin. 
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specific in a way that these compounds efficiently just bind to the tubulins of plants and 

protozoa parasites and not employ any to the animal tubulins despite an extremely high 

level of similarity between their sequences [48]. 

 

Table 1- Overview of existing drugs for VL treatment. 

 

Drug Efficacy Advantages Limitations Cost 

Pentavalent 

Antimonials 
35-95% 

Low cost 

Effective against L. infantum 

Can be co-administered 

FDA approved 

Drug resistance for L. 

donovani in India 

Fatal cardiac arrhythmias 

Depression 

50-70$ 

Pentamidine 70-80% 

Potential use in combinatorial 

therapy 

Also effective against CL 

FDA approved 

Fever 

Renal toxicity 

Drug resistance 

High cost 

100$ 

Liposomal 

amphoterecin B 

(Ambisome) 

≈100% 

Effective with low toxicity 

profile 

No evidence of resistance 

Selectivity for parasite membrane 

FDA approved 

High half-life 

High cost 

Renal toxicity 

Fever and rigor during 

infusion 

280$ 

Paramomycin 45-95% 
Low cost 

FDA approved 

Inferior cure rates 

Pain at injection site 
10$ 

Miltefosine 95% 

Highly potent 

First oral treatment for CL and 

VL 

FDA approved 

Highly toxic 

Evidence of resistance 

Renal toxicity 

70$ 

 

4. Leishmania iron 

 

Once the infection is established, the parasites replicate as amastigotes within acidic 

phagolysosomes of macrophages, creating a harsh acidic environment [60]. Most 

microorganisms are destroyed in this hostile acidic environment, but the intracellular 

stages of Leishmania have a plant-like adaptive mechanism that allow them to survive 

and acquire essential nutrients and minerals from the host cell [8]. One of such essential 

nutrients is iron that can be obtained within the phagolysosomes as inorganic iron or in 

the form of iron-containing porphyrins such as the heme [8]. It is the iron that allows 

triggering the mechanism of action of the tetraoxanes specifically designed for this work. 

It is known that Leishmania has the ability to expresses specialized membrane proteins in 

the acquisition of iron or heme from the host, even thought iron can be toxic in high 

amounts due to its redox potential [61]. Recent studies have been made with the purpose 

of determining how Leishmania acquires and utilizes iron but so far these processes 

remain unclear.   
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Inorganic iron is available as the ferric insoluble (Fe3+) form at physiological pH in the 

host cells. Mammalian hosts control the free iron levels in biological fluids, and transport 

it using the carrier protein transferrin. When binding to transferrin receptors, the iron-

containing protein is internalized by the host cell via endocytosis. At this point, iron (III) 

is released when it reaches an acidified intracellular compartment. In order to cross the 

parasite membranes iron (III) must be first reduced to the highly reactive and toxic iron 

(II). Being extremely harmful for cells, iron (II) transport must be tightly controlled. 

Therefore the majority of iron (III) that enters in cells complexed to tranferrin is reduced 

to iron (II) by a host ferric reductase (LFR1/FRO2) and then translocated to the cytosol 

by the ferrous iron transporter LIT1/IRT1 (Figure 13). However, a small amount of 

transferrin can keep moving deeper into the endocytic pathway and reach Leishmania 

phagolyosomes, where iron (II) becomes available for acquisition by the parasites 

[8,61,62].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13- Schematic representation of iron acquisition pathways in Leishmania. Leishmania utilizes a ferric 

reductase (LFR1/FRO2) to reduce iron and a ferrous iron transporter  (LIT1/IRT1) to transport it into the cytosol. 

In Leishmania, there are no identified iron transporters in the lysosome, but a mitoferrin-like protein (MFLP) may 

transport iron into the mitochondria for storage in association with a frataxin-like protein  (FLP). Iron-containing 

heme can be acquired by Leishmania in two ways. Hemoglobin may bind to a hexokinase (HbR/HK) and traffic to 

the parasite’s lysosome, where it is degraded releasing heme which is translocated to the cytosol by the ABC 

transporter, LABCG5. Heme is also transported directly into the cytosol by the heme transporter, LHR1. Adapted 

from: Pathways of iron acquisition and utilization in Leishmania [8]. 
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Figure 14- Chemical structure of 12- Artemisinin; 13- 1,2,4-trioxane; 14- 1,2,4,5-tetraoxane. 

These findings were very important for the purpose of the present work on the account 

that our group has ongoing investigation studies with tetraoxane compounds with 

potential activity against the malaria parasite and specifically designed to be activated by 

malaria iron. Thus we designed specific tetraoxanes with potential activity against 

Leishmania, which also present a structure able to be activated by iron (II) that enters 

Leishmania phagolysosomes.  

 

5. Tetraoxanes 

 

The discovery of antimalarial properties of artemisinin (12, Figure 14) and the 

identification of its pharmacophore, the 1,2,4-trioxane (13, Figure 14,) allowed the 

exploration of new approaches for combating the disease [64]. Thus, in the past 50 years 

several synthetic and semisynthetic peroxide compounds intended as antimalarials have 

been developed. Some of the most promising compounds that emerged from these studies 

were 1,2,4,5-tetraoxanes (14, Figure 14) [63,64,65]. 

 

 

 

 

 

 

 

 

 

To the best of our knowledge there are no studies reporting to tetroxanes with the purpose 

of assessing their potential antileishmanial activity, so there is no information concerning 

structure-activity relationship. However, it is established that high steric hindrance 

tetraoxanes prevent the activation by iron radicals by inhibition of electron transfer from 

the heme or other species of iron and for this reason the activity decreases [63,64]. 

Docking studies suggest that the proximity between iron (II) atom and tetraoxane’s 

oxygen favors the activity of such compounds, and therefore supports the electron 

transfer of the peroxidic bond, which is crucial to trigger the mechanism of action [67]. 
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Subsequent studies revealed that functional groups such as alkenes, alkynes and ethers 

allow more potent tetraoxanes since such functions help to stabilize the radical formed 

after rupture of the peroxidic bond [64]. The adamantane group seems to employ higher 

stability peroxidic bond, because it is metabolically stable [63,65]. 

 

 5.1. Mechanism of action 

 

Tetraoxanes are activated by the iron or heme present inside the parasite by scission of 

the peroxidic bond [67]. The iron coordinates with the less steric hindrance oxygen of the 

peroxidic bond (15, Scheme 1) which leads to the formation of oxy radicals that undergo 

a rearrangement - β-scission - resulting in carbon-centered radicals (16, Scheme 1)  

[65,67]. This intermediate decomposes into two fairly toxic molecules for the parasite: 17 

and 18, the product of the specific design of the synthesized tetraoxanes in this work. The 

critical step of tetraoxane decomposition is the alkylation of parasite biomolecules. This 

structure, with the radical positioned in the carbon, is highly reactive and may alkylate the 

parasite biomolecules essential for his survival, and simultaneously contributes to 

increase oxidative stress (Scheme 1). The increase of oxidative stress creates a quite 

harmful environment that makes very difficult for Leishmania spp. to survive [4]. With 

this new approach another molecule is formed, an α,β-unsaturated carbonyl, a potential 

inhibitor of the enzyme TR (18, Scheme 1). The sulfur atom of cysteine present in the 

active center of TR act as a nucleophile capable of reacting with the α,β-unsaturated 

carbonyl formed before [69]. Being the sulfur molecules usually soft nucleophiles they 

react preferentially at the β carbon, hence the importance of the specific utilization of an 

α,β-unsaturated carbonyl as reagent in the synthesis process. 

 

 

 

 

 

 

 

 

Scheme 1- Activation of the peroxidic bond by free Fe2+ or heme leads 

to a β-scission, resulting in a carbon centered radical which have the 

potential to alkylate parasite biomolecules thus forming an α,β-

unsaturated carbonyl compound susceptible to be attacked by proteins 

containing active cysteines like TR. Adapted from: From hybrid 

compounds to targeted drug delivery in antimalarial therapy [87]. 
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6. Trypanothione reductase 

 

All living organisms contain high levels of two classes of low-molecular weight 

compounds: aliphatic nitrogenous bases, known as polyamines, and thiol-containing 

compounds, of which glutathione is the most ubiquitous [70]. 

In mammalians, the major intracellular thiol-protecting agent is indeed glutathione. This 

substract of glutathione reductase (GR) plays an important role in cell defenses against 

oxidative stress induced by oxygen and nitrogen derived reactive species [71].  

Leishmania contains an unusual form of this antioxidant compoundconsisting of two 

molecules of glutathione joined by a spermidine linker, forming trypanothione [71,72].  

Trypanothione was discovered as a result of studies on an apparently unusual glutathione 

reductase activity in the African trypanosome, Trypanosoma brucei brucei. These 

discovery was performed by Alan Fairlamb in 1985 and the compound was named 

trypanothione because it was uniquely found in parasitic protozoans of the suborder 

Trypanosomatina [73,72]. 

The trypanothione biosynthesis reaction is catalyzed by glutathionyl 

spermidine/trypanothione synthetase with consumption of ATP [75]. Leishmania spp. 

contains high concentrations of trypanothione for maintenance of an intracellular 

reducing environment and here lies trypanothione’s major function, i.e. protection against 

oxidative stress of the Kinetoplastida class of parasites where the presence of this thiol is 

exclusive [75].  

Like other organisms living in an aerobic environment, Leishmania parasites are exposed 

to reactive oxygen intermediates such as superoxide anion, hydrogen peroxide and 

hydroxyl radical. These compounds are generated internally and externally by the host’s 

immune defense system. Reactive oxygen species can then cause lethal damage by 

reacting with cellular components such as DNA and membrane lipids. At this point no 

enzymatic removal is possible, so the low molecular-weight radical scavengers, such 

trypanothione and glutanothione, become extremely important by trapping the reactive 

species. These mechanisms of trapping hydroxyl radical and other free radicals can be 

regarded as the last line of defense since the general cellular strategy is to minimize 

hydroxyl radical formation by keeping the levels of their precursors as low as possible by 

enzymatic means [73]. 

 

https://en.wikipedia.org/wiki/Kinetoplastida
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Figure 16- GR-catalyzed reduction of (21) glutathione disulfide - GSSH - to two (22) thiol glutathione -GSH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 shows the structure of trypanothione disulfide (T[S]2) and its two-electron 

reduced form, dihydrotrypanothione (T[SH]2). At physiological pH values, both forms are 

zwitterions with a net charge of +1 – resulting from three positive amines and the two 

negative carboxylic acids. In contrast, glutathione (GSH) and glutathione disulfide 

(GSSG) have a net charge of -2 (Figure 16). This may be one of the main reasons for the 

substrate-discriminatory properties of TR and human GR discussed below [73]. 

The characterization of Leishmania metabolism has suggested biochemical pathways 

sufficiently different from human metabolic pathways where chemical intervention might 

prove a viable route to control the infection. One such pathway uses TR, the enzyme that 

regulates an intracellular reducing environmental. 

 

 

Figure 15- TR-catalyzed reduction of trypanothione disulfide (TS2) (19)  to the dithiol trypanothione (T(SH)2) (20). 

Adapted from: Trypanothione Reductase: A Target Protein for a Combined In Vitro and In Silico Screening 

Approach [70]. 

19 20 
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TR mediates the elimination of various reactive species, like GR in mammalian, via 

electron transfer cascade which contains other enzymes such tryparedoxin and 

tryparedoxin peroxidase [73]. 

The low molecular mass thiols such trypanothione and redox enzymes protect the 

parasites from reactive derivatives and facilitate adaptation to various aerobic 

metabolisms and environmental conditions. In the course of this protective role TR 

reduces trypanothione with the transfer of the hydrogen from NADPH reducing 

trypanothione [75]. 

TR and GR are closely related enzymes. They are both homodimeric and belong to the 

FAD-dependent NADPH oxidoreductase family, with a subunit molecular weight of 

approximately 52 kDa [72]. They catalyze the transfer of electrons from NADPH to their 

specific substrates via a FAD prosthetic group and a redox active cysteine disulfide [73].  

Trypanothione reductase shares close structural similarities with glutathione reductase, 

lipoamide dehydrogenase and eukaryotic thioredoxin reductase. Although TR's and 

mammalian GR's share approximately 40% sequence identity and the residues involved in 

catalysis are conserved, the enzymes are mutually exclusive with respect to disulfide 

substrate specificity which makes TR a key drug target enzyme [69,72]. 

TR of Leishmania donovani was first purified and characterized in 1995 by Mark 

Cunningham and Alan Fairlamb, however there is no available crystalline structure in the 

Protein Data Bank for TR of this Leishmania species [62]. Structural features and crystal 

structures of TR from trypanosomatids – brucei and cruzi (A, Figure 17), Crithidia 

fasciculate and L. infantum were solved.  

This enzyme has in its active center a highly preserved active cysteine which promotes 

the catalysis - Cys52 and Cys57 in L. infantum, Cys53 and Cys58 in Trypanosoma cruzi 

(B, Figure 17) and Crithidia fasciculate [68,72]. 

 

 

 

 

 

 

 

 



Chapter 1 

27 
 

Figure 17- Ribbon drawing of the trypanothione reductase dimer. Elements of secondary structure are shown as 

spirals for α-helices, arrows for β-strands. Domains are colored as follows: yellow, FAD-bonding domain; green, 

NADPH-binding domain; red, interface domain – A; View into the disulfide substrate binding site and catalytic 

center. Residues implicated in binding of substrate or involved in catalysis are shown and labeled - B. Adapted 

from: The crystal structure of TR from the human pathogen Trypanosoma cruzi at 2.3 A resolution [69]. 

 

 

 

 

 

 

 

The importance of the gene that codes for TR was studied by knocking it out in 

Leishmania donovani and major. In the absence of such gene the parasites showed a 

decreased capacity to survive inside host macrophages, growth arrest, loss of viability and 

virulence. These works indicate that TR is an essential enzyme for parasite survival and 

thus a very promising target for new drug development for treating leishmaniasis [72,76]. 

Thereby the absence of trypanothione in mammalian metabolisms makes TR an attractive 

target for novel drug candidates thus enabling almost exclusive therapeutic selectivity.  

 

7. Nanoparticulate Drug Carriers 

 

Particulate drug carriers have been a topic widely investigated for many years because of 

the advantageous characteristics of such transporters systems. These drug carriers include 

oil-in-water emulsions, liposomes, microparticles and nanoparticles based on synthetic or 

natural polymers, or natural molecules such as lipids [78]. 

They can be tailored to incorporate lipophilic drugs with poor oral distribution or reduce 

systemic exposure of molecules that are easily degradable. These systems are also 

commonly used for controlling the drug release and carry it to the site of action [78]. 

There are several examples of studies that can show the impact of particulate drug 

carriers. The oil in water (o/w) emulsions have been introduced successfully to the clinic 
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for parenteral nutrition in the fifties and it was based on these o/w emulsions that 

formulations containing diazepam and etomidate were developed [79]. The main purpose 

of these emulsions was to reduce drug side effects, pain of injection and inflammation at 

the injection site, however such carriers are thermodynamically unstable and therefore, 

emulsions often tend to agglomerate or even break, rapidly releasing the drug as soon as 

they  reach the blood stream [79]. 

Another example are the well established and extensively investigated liposomes 

discovered in 1965 by Alec Bangham. This particulate carrier system consists of one or 

more phospholipid bilayers separated by internal aqueous compartments [80]. The 

attractiveness in the application of liposomes resides on the compatibility of their 

constituent components with the body system, thereby presenting low inherent toxicity 

and therefore, liposomes have been successfully employed for the controlled release and 

site specific drug delivery [78].   

Liposomes were first found their way to the cosmetic market, in 1983, incorporating the 

anti-aging product Capture® (Dior) which smoothed the way for liposome-based 

pharmaceutical products. Then in the eighties and beginning of the nineties new 

pharmaceutical products with this delivery system came to the market and include the 

synthetic lung surfactant Alveofact® (Dr Karl Thomae GmbH/Biberach, Germany) for 

pulmonary instillation; Epi-Pevaryl® (Janssen-Cilag), a topical product for antimycotic 

therapy; and other products for intravenous injection, such as the above mentioned 

amphotericin-containingAmbisome®, and doxorubicin-containing Doxil® (Janssen 

Products) and Daunoxome® (Galen US, Inc) [79]. However, the total number of products 

on the market is still limited and the main reason for this is the non-availability of a 

‘cheap’ pharmaceutical liposomal formulation [79]. 

Finally we reach the second generation of colloidal carriers that deserve a highlight in this 

work: the solid lipid nanoparticles (Figure 18).   

Since the beginning of the nineties, when R.H. Muller and M.R. Gasco, by two different 

methods, first described SLN, attention from various research groups have focused on this 

efficient and non-toxic alternative lipophilic colloidal drug carrier prepared either with 

physiological lipids or lipid molecules used as common pharmaceutical excipients 

[64,65]. The two main production techniques for SLN were independently established by 

Muller and Gasco: the high pressure homogenization and the microemulsion-based 

technique respectively [78]. SLN production methods do not necessarily need to employ 

organic solvents thus minimizing the toxicological risk [78]. 

https://en.wikipedia.org/wiki/Alec_Douglas_Bangham
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Their colloidal nature and the controlled release behavior enable drug protection and 

administration by parenteral and non-parenteral routes thus emphasizing the versatility of 

this nanoparticulate carrier [78]. 

The SLNs combine the advantage of polymeric nanoparticles, fat emulsions, and 

liposomes in one pharmaceutical technology. These advantages emerge mainly due to 

SLN better stability profile, ease of scalability and commercialization, easy to sterilize 

and relative cost effective [64,65]. The nano-scale size, relatively narrow size 

distribution, particulate nature and inherent structure SLNs provide unique biological 

opportunities for site-specific drug delivery along with controlled release of active drug 

over a long period, especially in the treatment of parasitic infections such leishmaniasis 

since the SLN are rapidly cleared by the mononuclear phagocyte system (MPS) leading to 

passive targeting to liver and spleen which are the critical affected organs by Leishmania 

amastigotes [12,57].  

In order to overcome the drawbacks of SLN, the nanostructured lipid carriers (NLC) have 

been introduced at end of the nineties. NLC are composed of blends of solid and liquid 

lipids thus improving drug loading and firmly retaining the drug during storage [81]. NLC 

matrix shows a melting point depression when compared to the original solid lipid but the 

matrix remains solid at body temperature. By giving the lipid matrix a less ordered 

nanostructure, the drug loading is enhanced while the expulsion phenomenon during 

storage is limited by preventing the formation of perfect crystals [82]. 

Notwithstanding liposomes are still used more frequently used on parasitic diseases, the 

value of SLN has been increasing in this research field by the incorporation of known 

Figure 18- Solid lipid nanoparticle general structure with the main components highlighted. Adapted from: 

Recent Techniques and Patents on Solid Lipid Nanoparticles as Novel Carrier for Drug Delivery [88]. 
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Figure 19- Tetraoxanes specific designed for the purpose of this work. 23- (E)-3-phenyl-6-styryl-1,2,4,5-

tetraoxane; 24- (E)-3-styryl-1,2,4,5-tetraoxaspiro [5.5] undecane; 25- (1r,5R,7S)-4'-((E)-

styryl)spiro[adamantane-2,1'-cyclohexane] 

antileishmaniasis and antimalaria agents as demonstrated by the following studies using 

amphotericin B [80,81], artemether [85], miltefosin [52] and curcuminoids [86]. 

 

8. Work's aim 

 

Currently there are several alternatives for the treatment of leishmaniasis. However, due 

to the appearance of resistance, host genetics, globe region and specific infective specie, 

lack of conditions for the suitable treatment process or/and the high cost of efficacious 

drugs for countries with low incoming settings, the treatment and elimination of the 

disease namely VL seems to fail over the years. 

Efforts have been made in order to discover new alternatives or reducing side effects and 

toxicity of the existing approved drugs by combined them with polymeric or lipid-based 

particulate drug carriers, such as liposomes or nanoparticles. 

To the best of our knowledge the strategy we want to employ in this work is innovative 

and aims at designing and synthesizing three completely new tetraoxane molecules 

(Figure 19) intended for encapsulation in tripalmitin nanoparticles.  

 

 

 

 

 

 

 

A possible drawback of these tetraoxanes may be related to some toxicity due to the α,β-

unsaturation in the starting material trans-cinnamaldehyde. Therefore they may be 

potentially mutagenic and carcinogenic for their susceptibility to be attacked by DNA and 

other biomolecules at the β carbon. These compounds are also not soluble in water. 

Therefore the encapsulation of such compounds seems to be the right approach to 

increase their efficacy, specificity, tolerability and therapeutic index. With the 
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encapsulation of this hybrid compounds in SLN we aim to obtain high selectivity and less 

toxicity since SLN are rapidly cleared by the MPS – as mentioned before - leading to 

passive targeting to liver and spleen which are the critically affected organs by 

Leishmania amastigotes.  

These tetraoxanes were design to act against Leishmania in two different ways: the 

original molecule is activated by Leishmania iron, and then decomposes into two 

compounds with different but supportive roles inside the parasite: the structure with the 

carbon center radical will contribute to increase the oxidative stress and will alkylate the 

parasite biomolecules, whereas the α,β-unsaturated aldehyde will act as inhibitor of TR.  

Shortly, our goal was to synthesize and characterize three tetraoxane compounds followed 

by their encapsulation into tripalmitin SLN and all the associated processes of 

optimization and characterization. The studies included physicochemical stability 

evaluation and in vitro assays in order to assess the activity of the tetraoxanes 

encapsulated in SLN against Leishmania parasites within infected macrophages. 
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Chapter 2 – Synthesis and characterization of 1,2,4,5-tetraoxanes 

derived from trans-cinnamaldehyde  

 

1. Introduction 

 

As referred in chapter 1, the discovery of artemisinin as a potent antimalarial agent and 

the identification of its peroxidic pharmacophore led to the synthesis and posterior 

biological assays of numerous compounds with a peroxide group as part of their structure 

[1,2]. One of the most promising class which emerges from these studies was 1,2,4,5-

tetraoxane [3,4,5,6]. The peroxide core is reductively activated by iron (II) to form 

carbon-centered radicals and reactive oxygen species (ROS). Our lab have shown that 

1,2,4,5-tetraoxane degrade to carbonyl species in tandem with free radical production [7].  

Our goal is to translate this proved model from the malaria parasite to the Leishmania 

parasite, since Leishmania spp, acquire their iron from host cells, and are dependent on 

TR as protection against oxidative stress. TR is a flavoenzyme which defends the 

Leishmania parasite against oxidative stress, by neutralizing hydrogen peroxide produced 

by macrophages during infection [8].  

Thus, our innovative compounds have the potential to disrupt the redox balance through 

two different, but synergistic mechanisms leading to ROS production and, ultimately, to 

parasite’s death by inhibition of TR [7,8].  

 

 

 

 

 

 

 

 

 

 

 

Figure 1- Tetraoxanes compounds designed for this study. 23- (E)-3-phenyl-6-styryl-1,2,4,5-

tetraoxane; 24- (E)-3-styryl-1,2,4,5-tetraoxaspiro [5.5] undecane; 25- (1r,5R,7S)-4'-((E)-

styryl)spiro[adamantane-2,1'-cyclohexane] 
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In this chapter our aim is to develop new tetraoxane-based compounds (figure 1) that can 

be selectively activated inside the parasite using a Fe (II) -based triggering mechanism in 

order to increase the concentrations of ROS in Leishmania parasites and suppress the 

antioxidant defense mechanism of the parasite by inhibiting TR.  

These compounds have the particularity of having trans-cinnamaldehyde that can act as 

TR inhibitor.  

The phenyl, cyclohexane and adamantyl groups contribute to increase lipophilicity of the 

final tetraoxanes, which is an important physical property to account, once these 

compounds were synthesized with the purpose of lipid nanoencapsulation. Therefore, a 

higher log P means better tetraoxane-lipid interaction – table 1. 

 

Table 1- Theoretical Log P calculated by software http://www.molinspiration.com/services/logp.html. 

 

Compound cLog P 

23 3.955 

24 4.349 

25 5.214 

 

 

Figure 2 illustrates the retrosynthetic analysis of the three selected tetraoxanes and the 

scheme 1 represents the synthetic route followed. 

In addition to trans-cinnamaldehyde, the other three starting reagents were selected taking 

into consideration their contribution to stability, lipophilicity and more importantly 

antiparasitic activity. Benzaldehyde, cyclohexanone and 2-adamantanone, figure 2, are all 

lipophilic molecules, which is an important property when exploring the 

nanoencapsulation route.  

 

 

 

 

 

 

 

http://www.molinspiration.com/services/logp.html
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According to Kumar et al tetraoxanes derived from cycloalkanones were the first to show 

antimalarial activity similar to the one found in artemisinin. Therefore, we selected 

cyclohexanone to be one of the moieties of our tetraoxanes [3]. Kim et al reported 

antimalarial activity of 3,6-disubstituted tetraoxanes, where phenyl ring was part of the 

active pharmacophore. However, some of the compounds showed poor antimalarial 

activity. This activity was significantly lower than the tetraoxanes derived from 

cycloalkanones [10,11]. The major advantage of choosing benzaldehyde when compared 

to cyclohexanone is the opportunity to have structural diversity, since this class of 

compounds is easier to functionalize than cyclic ketones. Thus a tetraoxane derived from 

the non-substituted benzaldehyde was also synthesized.  

Figure 2- Tetraoxanes retrosynthetic scheme. 26- trans-cinnamaldehyde; 27- benzaldehyde; 

28- cyclohexanone; 29- 2-adamantanone. 

Scheme 1- Synthetic procedure used to obtain the Tetraoxanes compounds. Reagents and conditions: i) 

HCO2H, CH3CN, H2O2 50%, r.t.; ii) Re2O7, CH2Cl2, 0oC. R1, R2, R3 and R4 are representing aldehydes or 

ketones. 
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Finally, the synthesis of a tetraoxane derived from 2-adamantanone was tried because 

reports from antimalarial studies showed that the introduction of this group not only 

increases the stability of tetraoxane group but also improves its activity extensively and 

provides protection from metabolization [13]. 

 

2. Materials and methods 

 

2.1. Reagents  

 

All the reagents used during the experimental synthesis section were provided by Sigma-

Aldrich, Alfa Aesar, and Merck. 

 

2.2.  Solvents 

 

Analytical grade solvents were used in the synthesis of all compounds. 

Dichloromethane (DCM) and acetonitrile (ACN) were distilled at atmospheric pressure in 

the presence of sodium carbonate. 

Ethyl acetate and hexane, used for compounds purification, were also distilled in the 

presence of sodium carbonate. 

CDCl3 - Merck, with a degree of purity higher than 95%, was used for NMR analysis. 

 

2.3.  Chromatography 

 

All chromatography columns were prepared with silica gel 60 M, 0.040-0.063 mm 

(Merck). The thin layer chromatographies were carried out on silica gel plates - Merck 

Kieselgel F254, 0.25 mm thickness - and reveled using a CAMAG UV lamp at a 

wavelength of 254 nm, or alternatively, using N,N-dimethyl-p-diphenylenediamine or p-

anisaldehyde. 
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2.4.  Equipment 

 

Melting points were determined on a Kofler Bock Monoscop M. camera by the Ph. Eur. 

2.2.16. instantaneous method. 

Infrared spectra (IR) were performed on a Nicolet Impact 400 FTIR spectrophotometer 

using potassium bromide tablets. 

The 1H-NMR, 13C-NMR and 2D-NMR spectra were recorded on a Bruker 300 Ultra 

Shield. The chemical shift values δH and δC are reported in ppm relative to d3-chloroform 

and coupling constants (J) are in Hz. The spectra analysis were done at the software 

MestReNova, version: 6.0.2-5475 from © 2009 Mestrelab Research S.L. 

 

2.5.  General procedures for the synthesis of the tetraoxanes 

 

2.5.1.  (E)-3-phenyl-6-styryl-1,2,4,5-tetraoxane (23)  

 

To a stirring solution of benzaldehyde (1.89 mmol) in dry acetonitrile (ACN) (2.60 mL) 

and formic acid (2.60 mL) at 0oC, was added hydrogen peroxide 50% (1.30 mL). After 

about 2-3 h of stirring at room temperature, it was added a new refill of hydrogen 

peroxide 50% and then the bishydroperoxide was extracted with DCM (3 x 15 mL). If at 

the moment of the extraction the two separation phases were not clear, it was added brine 

solution.  The organic phases were combined, dried with anhydrous sodium sulfate, 

filtered and concentrated under reduced pressure. The concentrated bishydroperoxide was 

added to a solution of trans-cinnamaldehyde (3.78 mmol) in dry DCM (3.20 mL) with 

rhenium (VII) oxide (0.05 mmol) at 0oC. The formation of product was followed by TLC 

and after about 2-3 h the reaction mixture was filtered with a plug of silica and the solvent 

evaporated. Purification was carried out by column chromatography on silica using ethyl 

acetate:n-hexane (3:97) as eluent.  
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Yield: 71%; white crystal; m.p 132-135oC; νmax/cm-1 997.24 (-

O-O-), 1066.68 (-O-O-). 1H NMR (300 MHz, CDCl3): δH/ppm 

7.51-7.34 (m, 10H, Ar), 7.03 (d, J=16.3 Hz, 1H), 6.81 (s, 1H), 

6.59 (dd, J=6.3, 0.6Hz, 1H), 6.02 (dd, J=16.3, 6.3 Hz, 1H). 13C NMR (75 MHz, CDCl3): 

δC/ppm 140.64 and 116.76 (CH=CH), 131.46-127.43 (Ar(CH)), 134.86 and 131.13 

(Ar(C)), 108.19 and 107.32 (CH-O-O-CH). Elemental Analysis: calcd- C, 71.1 %; H, 

5.2 %; O, 23.7 %; Found- C, 71.6 %; H, 5.2 %; O, 23.2 %. 

 

2.5.2.  (E)-3-styryl-1,2,4,5-tetraoxaspiro [5.5] undecane (24) 

 

To a stirring solution of cyclohexanone (2.04 mmol) in dry ACN (2.80 mL) and formic 

acid as catalyst (2.80 mL) at 0oC, was added hydrogen peroxide 50% (1.40 mL). After 

about 2-3 h of stirring at room temperature, it was added a new refill of hydrogen 

peroxide 50% and then the bishydroperoxide was extracted with DCM (3 x 15 mL). If 

necessary it was added brine solution.  The organic phases were combined, dried with 

anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The 

concentrated bishydroperoxide was added to a solution of trans-cinnamaldehyde (3.27 

mmol) in dry DCM (3.50 mL) with rhenium (VII) oxide (0.05 mmol) at 0oC. The 

formation of product was followed by TLC and after about 2-3 h the reaction mixture was 

filtered with a plug of silica and the solvent evaporated. Purification was carried out by 

column chromatography on silica using ethyl acetate:n-hexane (2.5:97.5) as eluent.  

 

Yield: 47%; white crystal; m.p 96-100oC; νmax/cm-1 974.09 (-O-

O-), 1060.89 (-O-O-). 1H NMR (300 MHz, CDCl3): δH/ppm 

7.43-7.32 (m, 5H), 6.93 (d, J=16.3 Hz, 1H), 6.33 (d, J=6.2 Hz, 

1H), 5.97 (dd, J=16.3, 6.1 Hz, 1H), 2.36 (t, 2H), 1.7-1.49 (m, 8H). 

13C NMR (75 MHz, CDCl3): δC/ppm 139.84 and 117.46 (CH=CH), 135.00 (Ar(C)), 

127.35-129.54 (Ar(CH)), 108.78 (CyHex(C)), 107.01 (O-CH-O), 32.03-22.01 

(CyHex(CH)). Elemental Analysis: calcd- C, 68.7 %; H, 6.9 %; O, 24.4 %; Found- C, 

68.7 %; H, 7.2 %; O, 24.1 %. 
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2.5.3. Attempt to synthesize (1r,5R,7S)-4'-((E)-styryl)spiro[adamantane-2,1'-

cyclohexane] (25) 

 

Method A- To a stirring solution of trans-cinnamaldehyde (0.33 mmol) in dry ACN (1.00 

mL) and rhenium (VII) oxide (0.02 mmol) as catalyst at 0oC, was added hydrogen 

peroxide 50% (0.26 mL). After about 2-3 h of stirring at 0oC, it was added a new refill of 

hydrogen peroxide 50 % and then the bishydroperoxide was extracted with DCM (3 x 7.5 

mL). If necessary it was added brine solution. The organic phases were combined, dried 

with anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The 

concentrated bishydroperoxide was added to a solution of 2-adamantanone (0.57 mmol), 

in dry DCM (1.50 mL) with rhenium (VII) oxide (0.007 mmol) as catalyst at 0oC. The 

formation of product was followed by TLC and after about 2-3 h the reaction mixture was 

filtered with a plug of silica and the solvent evaporated. Purification was carried out by 

column chromatography on silica using ethyl acetate:n-hexane (2:98) as eluent.  The 

compound was not synthesized by this procedure. A complex mixture without the desired 

compound was obtained. 

Method B- To a stirring solution of 2-adamantanone (0.33 mmol) in dry ACN (1.00 mL) 

and rhenium (VII) oxide (0.02 mmol) as catalyst at 0oC, was added hydrogen peroxide 

50% (0.26 mL). The remaining protocol is equal to method A but in the second step it 

was added trans-cinnamaldehyde (0.54 mmol). The compound was not synthesized by 

this procedure. A complex mixture without the desired compound was obtained. 

Method C- Equal to method A but the first catalyst was formic acid (1.00 mL) and the 

second was phosphomolybdic acid (PMA) (0.038 mmol) and (MgSO4). Both reactions 

occurred at room temperature. The compound was not synthesized by this procedure. A 

complex mixture without the desired compound was obtained. 

Method D- Equal to method C but the first catalyst was PMA (0.0076 mmol) and the first 

solvent was ethylic ether (1.00 mL). The compound was not synthesized by this 

procedure. A complex mixture without the desired compound was obtained. 

Method E- Equal to method C but the second reaction occurred at room temperature. The 

compound was not synthesized by this procedure. A complex mixture without the desired 

compound was obtained. 
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3. Results and discussion 

 

3.1.  Synthesis methodology 

 

Bishydroperoxides are the intermediates derived from aldehydes and ketones with a 

major role in the synthesis of several classes of peroxides where tetraoxanes are included. 

From the different methodologies described in literature to synthesize the tetraoxanes, a 

method described by O’Neill and optimized in our research group was used in this work 

[14]. In the first step a carbonyl compound is oxidized with hydrogen peroxide resorting 

to acidic catalysis, followed by cyclization of the bishydroperoxide with another 

carbonilic compound using Re2O7 catalysis, thus forming the tetraoxane (Mechanism 1). 

  

 

 

The bishydroperoxide intermediate was produced starting with trans-cinnamaldehyde or, 

alternatively, with benzaldeyde, cyclohexanone or 2-adamantanone (table 2 and scheme 

2).  

 

 

 

Scheme 2- Schematic illustration of the approach used for the synthesis reactions of the desired tetraoxanes. R I and 

R II represent the order of reagent addition. i) HCO2H, CH3CN, H2O2 50%, r.t.; ii) Re2O7, CH2Cl2, 0oC. R1 and R2 are 

representing aldehydes or ketones. 

 

Mechanism 1- Proposed reaction mechanism for the synthesis of the desired tetraoxanes. 
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It was observed that the formation of bishydroperoxide intermediate was not favored 

using trans-cinnamaldehyde as starting material because the reaction led to several 

secondary products and low yield of the final product. In contrast, when the 

bishydroperoxide intermediate was synthesized from benzaldehyde or cyclohexanone the 

final tetraoxanes were obtained in good yields, and were easily purified.  

Tetraoxane 25 was not obtained either forming the intermediate from 2-adamantanone or 

in trans-cinnamaldehyde. Both tetroxanes 23 and 24 were purified by column 

chromatography with final yields of 71% and 47% respectively – table 2.  

 

Table 2- Summary of the synthesis reactions where R I (Reagent 1) and R II (Reagent 2) are the reaction 1 and reaction 

2 in scheme 2 respectively. 

 

 

 

 

 

 

 

 

 

All compounds were characterized by 1H-NMR, 13C-NMR, 2D-NMR, infrared 

spectroscopy, elemental analysis and melting point. The methodology with better reaction 

yield was selected to scale-up, in order to proceed to the nanoencapsulation studies. 

 

3.1.1. Optimization of adamantane-tetraoxane synthesis 

 

From experience in our research group and from literature it is known that forming the 

bishydroperoxide from 2-adamantanone is a very difficult process. Therefore, in order to 

R I R II Product Yield (%) 

  

 

71 

  7 

  

 

47 

  20 

  

 

- 

  - 
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synthesize the tetraoxane with the adamantyl group, the reaction was performed using 

trans-cinnamaldehyde as starting material to form the corresponding bishydroperoxide 

intermediate.  

When the reaction was performed starting with trans-cinnamaldehyde (Reagent I, table 

2), despite the low yield for tetraoxanes 23 and 24, the desired compounds were obtained 

(table 2). However, in this case there was no final tetraoxane at all. It can be rationalized 

that the bishydroperoxide is formed from trans-cinnamaldehyde with a final low yield 

and, therefore the non formation of adamantane tetraoxane is most likely being affected in 

the second step (i.e. when used as Reagent II, table 2). Thus to optimize the adamantane 

tetraoxane synthesis reaction it was assumed that would be more correct if trans-

cinnamaldehyde was the RI since the first step of the reaction which involves the 

formation of the bishydroperoxide intermediate in the trans-cinnamaldehyde carbonil 

could be followed by thin-layer chromatography by rf comparison with the other 

synthesis. There was no evidence that the bishydroperoxide intermediate may be formed 

in 2-adamantanone. All significant changes are explicit in table 3 and the followed 

reaction is summarized in scheme 3. 

 

 

  

 

 

 

 

 

 

Scheme 3- Schematic illustration of the approach used to optimize the synthesis reactions of the adamantane-

tetraoxane. RI and RII represent the order of reagent addition. 



Chapter 2 

53 
 

Table 3- Conditions used for the different reactions with the aim of synthesized the adamantane-tetraoxane. R I- 

Reagent 1; R II- Reagent 2; T1- temperature in the first step; T2- temperature in the second step; r.t.- room 

temperature. 

 

 

 

 

 

 

 

Once again, the synthesis of the adamantane tetraoxane was not succeeded and therefore 

the nanoencapsulation studies were performed only for molecules 23 and 24. 

 

3.2. Benzaldehyde-tetraoxane (23) characterization  

 

The aromatic protons display a rather complex pattern of signals between 7.35 and 7.50 

ppm, corresponding to both phenyl groups. The two vinylic protons represented in red 

and blue in figure 3 appear as a duplet and the double duplet at 7.05 and 6.02 ppm 

respectively. The signal at 7.05 ppm is more deshielded because is the nearest to the 

phenyl group.  

 

 

 

 

 

 

 

 

 

 

RI RII Catalyst 1 Catalyst 2 Solvent T 1 (oC) T 2 (oC) 

  Re2O7 Re2O7 ACN 0 0 

  Re2O7 Re2O7 ACN 0 0 

  HCO2H PMA(MgSO4) ACN r.t. r.t. 

  PMA PMA(MgSO4) Et2O r.t. r.t. 

  HCO2H PMA(MgSO4) ACN r.t. r.t. 
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Figure 4- Benzaldehyde-tetraoxane (23) 13C-NMR spectra. 

 

 

 

 

 

 

 

 

 

 

These protons also have the same couple constant of 16.3 Hz, which is a characteristic 

value of the trans configuration. The singlet at 6.81 ppm corresponds to H9 and the 

duplet at 6.59 ppm is from H8 (see COSY spectrum in annex 1). All signals have 

adequate integrals to fit the 14 protons of tetraoxane 23.    

 

 

 

 

 

 

 

 

 

 

 

H H 

H10 

H9 

Figure 3- Benzaldehyde-tetraoxane (23) 1H-NMR spectra. 
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C10 C8 

C11 C6 



Chapter 2 

55 
 

 

Tetraoxane 23 has 16 carbons in total but in the 13C-RMN spectra only 12 signals are 

expected since the pairs C1-C5, C2-C4, C12-C16 and C13-C15 are equivalent and 

belonging to both aromatic rings. There was indeed 12 signals in the 13C-NMR even 

though two of them are overlapped (figure 4, enlargement). In order to attribute all the 

carbons in tetraoxane 23 there was performed 2D heteronuclear correlation NMR 

spectrums (HMQC and HMBC, figure 5 and annex 2).  

Secondary and quaternary carbons are the signals pointed down in the spectra and the 

primary and tertiary carbons are the signals pointed up. Tetraoxane 23 only has 

quaternary and tertiary carbons so the two quaternary carbons in the spectra are from C6 

(134.86 ppm) and C11 (131.13 ppm). At 107.32 ppm is the C9 signal and at 108.19 ppm 

C10 signal. The two vinyl carbons also can be identified by HMQC, at 140.64 ppm 

appears C7 signal and at 116.76 ppm is the signal corresponding to C8. 

 

 

 

 

 

 

 

 

 

 

 

 

Resorting to HMBC (annex 2) it was possible to assign the two quaternary carbons. C11 

is coupled at 2 bounds distance with the nearest aromatic protons and with H10, while C6 

is also coupled at 2 bounds distance with the nearest aromatic protons and with the closest 

vinyl proton (red hydrogen, figure 5). 

Figure 5- Benzaldehyde-tetraoxane (23) HMQC spectra. 

H H 

H10 

H9 

C10 

C9 

C8 

C7 
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The bands in the infrared spectrum at 997.24 cm-1 and 1066.68 cm-1 confirm the presence 

of the peroxidic bonds in the structure of tetraoxane 23 (annex 3). The elemental analysis 

is in agreement with the calculated values.  

 

3.3.  Cyclohexane-Tetraoxane (24) characterization 

 

 

 

 

 

 

 

 

 

 

Figure 6 illustrates the tetraoxane 24 1H-NMR spectra where we can identify six different 

types of protons. At high field two signals belonging to the cyclohexane protons. The 

most deshielded signal (triplet at 2.35 ppm) may correspond to the equatorial protons 1 

and 5. The signal of these two protons is more deshielded probably due to the 

conformation of the cyclohexane ring, which approaches them to the nearest oxygen 

atoms of the peroxidic bond.  

The double duplet at 5.97 ppm and the duplet 6.94 ppm are from trans-vinylic protons 

(blue proton and red proton respectively in figure 6). The coupling constant is according 

to the characteristic trans configuration and is 16.3 Hz for both of these protons. 

 

Figure 6- Cyclohexane-tetraoxane (24) 
1H-NMR spectra. 

H 

H 

H7 
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The complex signal between 7.30 ppm and 7.43 ppm results from the five aromatic 

protons. 

 

 

 

Resorting to HMQC spectra, the carbons in tetraoxane 24 can be identified via H-C 

coupling. C1 and C5 should intercept two signals being the first interception at 2.35 

which correspond to the equatorial protons and then a second interception at 1.60, in the 

multiplet zone, for the axial protons. Thus following this argument, there were expected 

five signals corresponding to the cyclohexane’s carbons (C1; C2 and C4; C3; C5 and C6). 

C6 is clearly suffering the electronegativity effect of oxygen atoms belonging to the 

peroxidic bond, therefore, this signal should be more deshielded when compared with the 

other cyclohexane’s carbons and for this reason it will appear at low field. 

Regarding the HMQC analysis of the tetraoxane 24 (figure 7), the carbon at 107.01 ppm 

is coupled with the duplet corresponding to the H7, so this signal is from C7. At 117.46 

ppm the carbon is coupled with the double duplet from H8, and therefore it corresponds 

to C8. The most deshielded carbon at 139.84 ppm is the closest to the phenyl group and 

corresponds to C9 that is coupled with the duplet corresponding to the red proton. The 

other four signals are from the aromatic carbon atoms. The quaternary carbon of the 

phenyl group, C10, is at 135 ppm. The remaining three signals are from C11, C12, C13, 

Figure 7- Cyclohexane-tetraoxane (24) HMQC spectra. 
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C14 and C15. Because of the molecule’s symmetry the pairs C11-C15 and C12-C14 

correspond to two signals and C13 to one. 

In order to prove the anterior assessment which refers that C6 signal will appear at low 

field an HMBC experience was performed. Looking at HBMC spectra – annex 5 - at 

108.78 ppm one of the quaternary carbons is coupling with the most deshielded 

cyclohexane’s proton. This signal corresponds to C6. 

The infrared spectrum bands at 974.09 cm-1 and 1060.89 cm-1 confirm the presence of the 

peroxidic bonds in the structure of tetraoxane 24 (annex 6). The elemental analysis is 

according with the calculated values.  
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Chapter 3 - Lipid nanoparticles containing tetraoxanes for the 

treatment of leishmaniasis 

 

1. Introduction 

 

Infectious diseases caused by viruses, parasites and bacteria are the second cause of 

mortality around the globe, more predominantly in the developing countries. They impose 

a substantial burden of morbidity, which is particularly serious for a group of 15 parasitic 

and bacterial diseases classified by the WHO as neglected diseases, including, among 

others, leishmaniasis [1].  

For more than 70 years, the first-line of treatment in most affected countries has been 

injectable pentavalent antimonials - Pentostam® and Glucantime®. The treatment is 

painful, potentially toxic, very lengthy, and has become ineffective in some regions of 

India and Nepal, as resistance has developed. Second-line drugs include pentamidine, 

paromomycin and amphotericin B, but their use is limited due to toxicity and also due to 

the emergence of resistance [2]. A very high therapeutic index, short treatment courses 

and the absence of side effects make lipid formulations of amphotericin B - AmBisome® - 

the most attractive existing treatment for VL. However, AmBisome® is currently too 

expensive and, therefore, inaccessible for most endemic and low incoming countries [3]. 

In addition, the first effective oral drug for VL treatment  - miltefosine - is associated with 

teratogenicity and haemolytic activity, while its long half-life time also might encourage 

the emergence of resistance [4]. For these reasons, and in the absence of an effective and 

cheap vaccine, there is an urgent need of new antileishmanial drugs [5]. 

One of the strategies currently being used to overcome these drawbacks is to take 

advantage of the existing and well studied pharmacophores that already are efficient 

against other parasites, which cause the ‘neglected diseases’ and transpose them to other 

parasite targets with similar metabolism. In this context, the present work studies the use 

of the tetraoxanes trigger mechanism by iron and their known antiparasitic activity, 

combined with the advantages of using SLN, with the purpose to develop a new efficient 

antileishmanial oral formulation. 

In recent years it has become evident that the development of new active substances is 

often not enough to secure new pharmacological therapies. One of the most promising 

strategies, which allow overcoming this problem, is to find suitable vehicles to carry and 
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protect the drugs up to their site of action.  In the beginning of the 90’s several research 

groups started to study alternative drug carriers such as SLN [6]. As mentioned in chapter 

1, SLN formulations combine the advantage of polymeric nanoparticles, fat emulsions, 

and liposomes in a single nanoparticulate entity [7]. The SLN provide unique biological 

opportunities for site-specific drug delivery along with controlled release of active drug 

over a long period, especially in the treatment of parasitic infections, such as 

leishmaniasis, since they are rapidly cleared by the MPS. This leads to passive targeting 

to liver and spleen, which are the critically organs affected by Leishmania amastigotes 

[8]. Although SLN production and scale up are fairly simple, relatively cheap and 

reproducible [7], there are some obstacles preventing the widespread use of SLN: the low 

encapsulation efficiency, resulting from the transformation of polymorphic lipid matrix, 

which can cause the expulsion of drug molecules from the SLN matrix [9], and; physical 

instability of SLN due to aggregation and fusion, as well as chemical instability, which 

can include hydrolysis reactions, surfactants oxidation, premature drug release and 

reactivity during storage [10]. These parameters can be improved by lyophilization, 

which eliminates the aqueous phase in which the SLN are suspended, enabling 

furtherhandling of colloidal systems and ensuring their long-term stability. The process 

usually involves the use of crioprotectants to preserve drug stability, drug loading and 

prevent particle aggregation. Nevertheless, lyophilized nanoparticles should maintain 

unchanged the main physical and chemical characteristics [11]. Sterilization is also an 

important step in SLN production especially when the formulation is intended for 

parenteral administration. The sterilization process step must not change the formulation 

physicochemical and pharmaceutical properties like average particle diameter and zeta 

potential. In this context, the proper selection of surfactants  agents, is crucial to reduce 

temperature-induced modifications [12]. Although high temperatures affect the mobility 

and hydrophilicity of surfactants it has been proved that natural surfactants such as 

lecithin are suitable stabilizing SLN formulations intended for moist heat sterilization [8].  

The main goal of this chapter was to optimize the encapsulation of the tetraoxanes 23 and 

24 in SLN using either the hot high-shear homogenization or the emulsion-solvent 

evaporation methods. This study also involves the evaluation of relevant parameters such 

as the encapsulation efficiency, average particle diameter, polydispersity index (PdI), and 

zeta potential. The stability of the SLN was also studied using dynamic light scattering 

(DLS), differential scanning calorimetry (DSC) and transmission electron microscopy 
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(TEM). Studies also included the effect of moist heat sterilization and in vitro release 

studies in physiological and acidic medium. Finally cytotoxicity was studied using THP-1 

cell viability testing while in vitro activity assessment studies were performed using THP-

1 cells infected with L. infantum promastigotes.  

 

2. Materials and methods  

 

2.1. Reagents 

 

Tetraoxanes 23 and 24 were synthesized in our laboratories, as part of this work, as 

described in Chapter 1. Glyceryl tripalmitate (tripalmitin, purity ⩾85%, melting point 

66°C), sodium deoxycholate and polyoxyethylenesorbitan monolaurate (Tween® 20) were 

obtained from Sigma–Aldrich (Spain) and soya lecithin (Lipoid S100) from Lipoid 

(Ludwigshafen, Germany). Glyceryl bibehenate (Compritol® 888 ATO; m.p. 70ºC) and 

glyceryl palmitostearate (Precirol® 5 ATO; m.p. 56ºC) were a kind gift from Gatefossé 

(Lyon, France). Distilled water was of Milli-Q quality (Millipore, Bedford, MD, USA). 

All other reagents were of analytical grade and were used without further purification. 

  

2.2. Solubility of tetraoxanes in the lipid matrix  

 

A preliminary solubility study of tetraoxanes 23 and 24 in molten tripalmitin, Compritol® 

888 ATO or Precirol® 5 ATO was performed following a procedure described elsewhere, 

with slight modifications [13]. Briefly, the tetraoxanes were melted at a temperature 10oC 

above their respective melting point in a controlled temperature water bath. Small 

amounts of the solid lipids were then successively added until the tetraoxanes were 

completely dissolved in the lipid. Each determination was carried out in triplicate (n=3). 
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2.3. Preparation of SLN 

 

The SLN were prepared by emulsion solvent evaporation method using tripalmitin as the 

lipid component and sodium deoxycholate, Tween® 20 and soya lecithin as cosurfactants 

[8]. Briefly, tripalmitin and lecithin were dissolved in dichloromethane - organic phase (1 

mL) - and then added to the aqueous phase (5 mL) containing the Tween® 20 and sodium 

deoxycholate. The dispersion step was performed during a 3 min period of sonication 

(Branson Sonifier 250, Danbury, USA). Afterwards, this dispersion was homogenized for 

5 min at 125,000 rpm using a Silverson HighSpeedMixer L4RT (Silverson Machines, 

Chesham, UK). The nanoparticles dispersion was then kept under stirring for overnight at 

room temperature until complete evaporation of the dichloromethane. Tetraoxanes 23 (3 

and 5 mg) and 24 (3 and 5 mg) were incorporated to the organic phase. 

 

2.4.SLN characterization  

 

2.4.1. Measurement of particle size and zeta potential  

 

SLN mean diameter (Ø) and polydispersity index (PdI) were determined by quasi-elastic 

laser light scattering in a Malvern Zetasizer 2000 (Malvern Instruments; UK). The surface 

charge (zeta potential, ζ) was determined by laser Doppler anemometry in a Zetasizer 

2000 (Malvern Instruments, UK). All samples were measured with n=3. Samples were 

diluted appropriately with purified water for the measurements. The data was recorded 

and analyzed using the Zetasizer Software, 7.11 (Copyright© 2002-2014 Malvern 

Instruments Ltd.). 

 

2.4.2. Determination of tetraoxanes encapsulated in SLN 

 

 

The amount of tetraoxanes encapsulated in SLN was dosing by UV/Vis 

spectrophotometry (FLUOstar Omega, BMG Labtech). The analysis was performed by 

UV detection at a fixed wavelength of 262 and 260 nm for tetraoxanes 23 and 24 
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respectively. For both tetraoxanes standard curves were constructed with five different 

concentrations (see examples in figure 1) 

 

 

2.4.3. Encapsulation efficiency and drug loading  

 

After preparation, non-incorporated tetraoxanes were separated from the SLN dispersion 

by size exclusion chromatography in a PD-10 column (Bio-Rad Laboratories, California, 

USA) and the amount of incorporated tetraoxanes inside the SLN was quantified by 

ultraviolet/visible spectrophotometry (UV/Vis), using the method described above 

(section 2.4.2.). The encapsulation efficacy (EE) and drug loading capacity (DL) were 

determined using the following equations: 

 

 

𝐸𝐸 (%) =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑒𝑡𝑟𝑎𝑜𝑥𝑎𝑛𝑒 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑆𝐿𝑁

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑒𝑡𝑟𝑎𝑜𝑥𝑎𝑛𝑒
 × 100 

 

 

𝐷𝐿 (%) =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑒𝑡𝑟𝑎𝑜𝑥𝑎𝑛𝑒 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑆𝐿𝑁

 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑟𝑖𝑝𝑎𝑙𝑚𝑖𝑡𝑖𝑛
 × 100 

 

 

 

Figure 1- (A) Calibration curve for the estimation of tetraoxane 23 by UV/Vis spectrophotometry at 262 nm (n=3). (B) 

Calibration curve for the estimation of tetraoxane 24 by UV/Vis spectrophotometry at 260 nm (n=3). 
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2.5. Stability studies  

 

Stability of SLN suspensions was evaluated in different conditions: at 4±3°C and after 

sterilization in autoclave (121°C, 15 min).  

 

2.5.1. Stability in suspension  

 

The SLN suspensions were stored at 4°C for at least 20 days and mean particle diameter, 

PdI and zeta potential were determined. Stability evaluation was also performed in terms 

of drug loading after separation of non-incorporated tetraoxanes by size exclusion 

chromatography (please refer to section 2.4.3.).  

 

2.5.2. Effect of sterilization  

 

 

The SLN formulations were divided into two aliquots of equal volume after preparation. 

One aliquot was autoclaved at 121°C for 15 min while the other one (reference) was kept 

at 4°C for comparative evaluation of physical properties (particle diameter, PdI, zeta 

potential and DL). 

 

2.6.Differential scanning calorimetry (DSC) studies  

 

 

Measurements were performed on a calorimeter DSC Q200 (TA Instruments, DE, USA). 

Amounts between 3 and 15 mg of SLN dispersions and bulk materials (tripalmitin, 

lecithin, tetraoxanes, Tween® 20 and sodium desoxycholate) were weighted into 

aluminium pans, which were hermetically sealed and then measured against an empty 

reference pan. The pan was heated and the thermograms were recorded at temperature 

range from -20 to 250°C at a heating rate of 10°C/min. The heat flow was measured. 
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2.7. Dynamic light scattering (DLS) studies 

 

The influence of temperature on the physical stability of SLN suspensions was assessed 

using DLS (Zetasizer Nano S; Malvern Instruments, UK). Samples were appropriately 

diluted with purified water in a quartz cell and particle size analysis was performed while 

heating the sample from 25°C up to 90°C at a rate of 0.5°C/min and subsequently 

followed by cooling from 90°C to 25°C at a rate of 0.5°C/min. Particle size 

measurements were made every 0.5°C. For each sample, measurements were carried out 

in triplicate (n=3). 

 

2.8.Transmission electron microscopy (TEM) 

 

SLN morphology analysis was made by transmission electron microscopy using a Hitachi 

H-8100 (Japan) microscope equipped with a energy dispersive spectroscopy X-ray (EDS) 

microanalysis system with light elements detector - ThermoNoran (USA). An aliquot of 

the SLN suspension was applied on a copper grid and dried at room temperature. 

Analyses of TEM were held at Instituto Superior Técnico of Lisbon University. 

 

2.9. In vitro Release Study 

 

A 50 μL aliquot of purified SLN was dispersed in 950 μL phosphate-buffered saline 

(PBS) buffer, pH 7.4, and a 100 μL aliquot of purified SLN was dispersed in 900 μL of 

hydrochloric acid (HCL) buffer, pH 1.0. Three samples in individual Eppendorf tubes 

were used for each time point studied – 0.0 h, 0.5 h, 1.0 h, 1.5 h and 2.0 h. Empty SLN 

was the assay reference. The tubes were kept in an incubator with stirring at a temperature 

of 37oC. At the predetermined time points, the solutions were centrifuged at 18000 rpm at 

4oC. The supernatant was removed and the loaded SLN in the pellet were lysed with 500 

μL of ACN. The amount of non-released tetraoxane compounds was quantified by the 

method described in section 2.4.2. This amount was subtracted to the initial known loaded 

amount in order to calculate the real released tetraoxane.  
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2.10. Cell viability study 

 

Cell viability was assessed after 24 h and 48 h incubation of THP-1 cells (human acute 

monocytic leukaemia cell line) with different concentrations of free tetraoxanes (0.03–

500 μg/mL) in RPMI medium with 2% of dimethyl sulfoxide (DMSO). After incubation 

time at 37oC, with 5% CO2, cells were exposed to a 20 μL of 3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) + phenazine 

methosulfate (PMS) solution for 3 h at 37oC. The MTS is converted, by living cells, into a 

dark, water insoluble, blue formazan product. The plates were transferred to the 

microplate reader (Tecan infinit N200, Tecan, Austria) to measure the absorbance of the 

solution, at 630 nm and 490 nm. Cell viability (%) was calculated and compared with the 

untreated control. 

 

2.11. In vitro activity studies 

 

The in vitro activity studies were performed according to the method described by Babu 

LT et al. [14]. Both the free tetraoxanes and their respective SLN formulations were 

incubated for 48 h with L. infantum infected THP-1 cells at different concentrations – 1.6-

25 μg/mL. As positive control was used Triton 1%. After the incubation time, cells were 

exposed to a 20 μL of MTS + PMS solution for 3 h at 37°C. The MTS is converted, by 

living cells, into a dark, water insoluble, blue formazan product. The plates were 

transferred to the microplate reader (Tecan infinit N200, Tecan, Austria) to measure the 

absorbance of the solution, at 630 nm and 490 nm. Parasite viability (%) was calculated 

and compared with the untreated control. 
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3. Results and discussion 

 

3.1. Development of SLN formulations as carriers for tetraoxanes 23 and 24 

 

Although several methodologies, for SLN preparation, could be applied to tetraoxane 

nanoencapsulation, the emulsion-solvent evaporation technique was selected. This 

method involves the utilization of an organic solvent, which is of major relevance not 

only in terms of the rising importance of “green chemistry”, but mainly because organic 

solvents should be avoided for safety concerns. This choice was mainly due to the 

solubility testing of the tetraoxanes 23 and 24 in three solid lipids previously studied in 

our research group (tripalmitin, Compritol® 888 ATO and Precirol® 5 ATO), which 

revealed that only tetraoxane 24 was soluble in tripalmitin (<0.32 w/w), while compound 

23 was not soluble in the lipids tested. At this point the potentially more suitable method 

(hot high-shear homogenization) was excluded because it involves, as a critical step, the 

dissolution of the tetraoxanes in the lipid, at high temperatures, for subsequent 

emulsification. 

As this could not be performed, the emulsion-solvent evaporation method was used as an 

alternative. As mentioned above, tripalmitin and the tetraoxanes were dissolved in 

dichloromethane and the resulting mixture was emulsified in an aqueous solution of the 

surfactants. Dichloromethane is a good solvent for both the tetraoxanes and the lipids. 

Particles were formed upon dichloromethane evaporation. Although the process has the 

advantage of being performed at room temperature, dichloromethane is a class 2 solvent 

for which the maximum residual concentration allowed in final medicinal products is 600 

ppm [15]. Nevertheless, previous NMR studies confirmed that the final dichlorometane 

residues in nanoparticles are well below 600 ppm [16]. 

So, the SLN formulations were prepared using the emulsion solvent evaporation method 

with tripalmitin as the lipid component. For this method there were fewer restrictions 

concerning the choice of the lipid, but tripalmintin appeared as the right choice because 

tetraoxane 24 can be dissolved in this well studied lipid in SLN formulations [8]. 

The protocol was carefully optimized before the present study because the selection of the 

surfactant system is of great importance for the preparation of SLN in order to maintain 

the colloidal state of the formulation during storage and upon administration [17]. 
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Previous works showed that Tween® 20 - non-ionic surfactant - alone or in combination 

with lecithin does not provide the desired particle size and PdI ranges [14,17]. Therefore, 

the inclusion of sodium deoxycholate - ionic co-surfactant – is essential for particle 

stabilization and preparation of SLN with a low particle size of about 100–130 nm and a 

narrow PdI of about 0.2. Tween® 20 should contribute for the reduction of the surface 

tension, which enables the internal phase dispersion during the emulsification step and 

participates in the coverage and stabilization of newly formed surfaces [14,17]. The 

inclusion of lecithin enables concentration-dependent particle size reduction. Increasing 

the amount of lecithin is also an important factor for the stabilization process and thus 

preventing particle aggregation due to uncovered lipid surfaces. Lecithin’s influence on 

particle size was already described in the literature [8,15,17]. However, the amount of 

surfactant available may be not sufficient to cover and stabilize all particle surfaces if the 

concentration in tripalmitin is extremely high, because this would lead to an increase of 

surface area due to an increase in the number of particles. In this case higher amounts of 

surfactants would be necessary to stabilize the SLN or larger particles and more 

heterogeneous particle populations will be formed.  

 

3.2. Characterization of SLN formulations 

 

For the preparation of tetraoxane-containing SLN all the parameters studied were 

compared with empty-SLN. The qualitative composition of SLN 23 and SLN 24 

formulations are showed in Table 1.  

 

Table 1- Composition of SLN 23 and SLN 24 formulations 

 

Formulation 
Tetraoxane (mg) Lipid (mg) Surfactants (%, v/v) 

23 24 Tripalmitin Lecithin Sodium deoxycholate Tween® 20 

1 5 5 50 3.6 0.6 0.5 

2 3 3 50 3.6 0.6 0.5 
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Both tetraoxanes were successfully incorporated in the SLN with an EE >44% (w/w). The 

characterization of formulation 1 is showed in table 2 for SLN 22 and SLN 24. 

 

Table 2- Characterization of formulation 1 for SLN 23 and SLN 24 (meanSD, n=3). EE- encapsulation efficacy; DL- 

loading capacity; Ø- mean particle diameter; PdI- polydispersity index; ζ- zeta potential. 

 

Formulation EE (%) DL (%) Ø (nm) PdI ζ (mV) 

Empty SLN - - 1231  0.280.01  -231 

SLN 23 584 6.170.38 1132 0.250.01 -161 

SLN 24 445 5.090.54 1441 0.460.01 -181 

 

Although EE for both molecules was lower than expected for lipophilic drugs (logP = 

3.96 for compound 23 and 4.35 for compound 24) the formulations presented particle 

mean diameters and PdI within the values described in the literature for this lipid matrix 

and preparation method [8], except for SLN 24, which presented a PdI higher than 

desired (Table 2). Concerning zeta potential, the magnitude of the surface charge 

decreased when the tetraoxanes were introduced in the formulation, suggesting the drugs 

may be at least partially located at the SLN surface. These values (ca. -16 and -18 mV) 

are below the ideal threshold to ensure the physical stability of colloidal dispersions, and 

may be responsible for some aggregation, thus resulting in higher PdI values (0.46 for the 

SLN 24). A minimum zeta potential of ≥-60 mV is required for excellent and ≥-30 mV 

for a good physical stability [9]. Nevertheless, in combination with a steric stabilizing 

effect of Tween® 20, the obtained values may still be enough for ensuring physical 

stability and desirable for macrophage targeting [9,16,21,22].  

As an attempt to improve the EE of both compounds a new SLN formulation (formulation 

2) was developed with lower amounts of each tetraoxane for the same quantity of 

tripalmitin, i.e. the initial drug:lipid ratio was changed from 3.0:10 to 1.6:10 for both 

compounds 23 and 24. Taking into consideration the low EE of the previous formulations 

(EE <44%), these modifications intended to reduce drug waste. This alteration improved 

EE to values ≥87% (w/w), thus yielding DL values similar to those of obtained with the 

previous formulations (Table 3). The new composition resulted in similar physical 

characteristics, including a slightly higher mean particle diameter for SLN 23 and a lower 
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PdI. In both cases the surface charge resulted in more negative values, more compatible 

with stable colloidal dispersions, and more desirable for macrophage targeting (Table 3).  

 

Table 3- Characterization of formulation 2 for SLN 23 and SLN 24 (meanSD, n=3). EE- encapsulation efficacy; DL- 

loading capacity; Ø- mean particle diameter; PdI- polydispersity index; ζ- zeta potential. 

 

Formulation EE (%) DL (%) Ø (nm) PdI ζ (mV) 

Empty SLN - - 1231  0.280.01  -231 

SLN 23 873 5.220.18 1181 0.250.01  -211 

SLN 24 883 5.310.20 1252 0.260.01 -231 

 

The mean particle diameter of SLN 23 was consistently lower with those of empty SLN 

and SLN 24, which is in agreement with the fact that this tetraoxane is not soluble in 

tripalmitin, recrystallizing upon solvent evaporation and staying mainly entrapped within 

the lipid matrix. It should be noticed that tripalmitin presents a purity degree of only 85%, 

thus forming less perfect crystals, with many imperfections that allow to accommodate 

tetraoxane 23 crystals [21,22]. 

In the case of SLN 24, the tetraoxane is soluble in tripalmitin. Therefore, the presence of 

certain amount of drug in the lipid matrix will produce an increase in particle size 

compared to empty SLN. 

These SLN formulations containing ca. 6% (w/w) of drug were then submitted to further 

characterization studies using techniques such as DLS, DSC, TEM, in vitro release 

studies and cell viability and in vitro activity studies with THP-1 cells.  

 

3.3. TEM study 

 

In order to get information about the morphology of the SLN and also confirm the 

particle size distribution, the SLN were analyzed by TEM (Figure 2). The images 

demonstrate that both SLN formulations consist of spherical nanoparticles. The diameter 

average particle slightly decreased which is normal due to the dry process before the 

analysis. SLN 24 seems to have tendency to aggregate while SLN 23 are apparently 

widely dispersed.  
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3.4. DSC study 

Thermograms were set between -20°C and 240°C. Figure 3 shows 0°C as starting 

temperature because data between -20°C and 0°C was thought irrelevant for the analysis.  

The thermogram of pure tripalmitin showed a melting peak of 63°C. Similarly, the 

thermogram of pure tetraoxane 23 shows a distinguished peak at about 135°C, whereas 

tetraoxane 24 showed a sharp melting endotherm at approximately 100°C (Figure 3). 

Both endotherm peaks are in agreement with the melting points reported in chapter 2. 

 

 

 

 

 

 

SLN 23 SLN 23 

SLN 24 

Figure 2- SLN formulations photos obtained by TEM. 
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However, thermograms of both freeze-dried SLN 23 and SLN 24 preparations did not 

show the melting peak of their respective tetraoxanes, but only that of the lipid. The 

absence of tetraoxanes melting in the SLN thermograms can be assigned to the 

amorphous or molecularly dispersed structure of both tetraoxanes in the lipid matrix. It 

may also be due to the low drug:lipid ratio of the formulations. In all formulations, the 

melting point of tripalmitin was depressed (61.5°C for empty SLN; 60.7°C for SLN 23; 

61.0°C for SLN 24) when compared to the melting point of the bulk lipid (64.0°C). 

To understand this effect it is important to recognize that for less ordered crystals or 

amorphous solids, the melting of the substance requires much less energy than crystalline 

substances that need to overcome lattice forces. This same effect was reported before by 

Lopes et al. [8] and was attributed to the creation of lattice defects onto the lipid matrices 

following a decrease in  crystallinity in comparison to their bulk counterparts. Another 

explanation for this phenomenon of melting point depression might also be related to the 

small particle size - nano scale – which means that their surface area or the presence of 

surfactants significantly increases [24,22,26]. Therefore and in spite of the observed 

reduction on tripalmitin’s melting point in the SLN, no significant effect was observed on 

lipid matrix thermal behaviour pattern after tetraoxane’s incorporation. 

 

Figure 3- DSC thermograms of bulk samples. (a) free tetraoxane 23; (b) lecithin; (c) Tween® 20; (d) free 

tetraoxane 24; (e) tripalmitin; (f) sodium deoxycholate; (g) empty SLN; (h) SLN 24 and (i) SLN 23. 

 

Temperature (oC) 

Endo 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
(g) 

(h) 
(i) 
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3.5. Physical stability 

 

The ability of the SLN to retain the incorporated tetraoxanes and to keep their 

physicochemical properties during storage was assessed at 4°C during 20 days. The 

stability of SLN 23 and SLN 24 was evaluated in terms of particle mean diameter, PdI 

and surface charge (Table 4).  

 

Table 4- Characterization of formulation 2 for SLN 23 and SLN 24 after 20 days at 4°C (meanSD, n=3). Ø-mean 

particle diameter; PdI- polydispersity index; ζ- zeta potential. 

 

Formulation Ø (nm) PdI ζ (mV) 

Empty SLN 1211  0.270.01  -231  

SLN 23 1223 0.260.01  -212  

SLN 24 1244 0.260.03  -201  

 

 

No relevant changes were observed on mean particle diameter, PdI and surface charge for 

empty SLN or for SLN 23 and SLN 24. The SLN dispersions were physically stable 

during 20 days at 4°C. 

However, it is important to assess whether the preparations may stand further harsh 

pharmaceutical processing involving drastic conditions such as high temperatures and 

pressures. Therefore, SLN 23, SLN 24 and empty SLN were submitted to autoclaving at 

121°C/15 min, i.e., the most common moist heat terminal sterilization process, and the 

effects on  mean particle diameter and PdI, surface charge and DL were assessed (Table 

5). 

 

Table 5- Characterization of formulation 2 for SLN 23 and SLN 24 after sterilization by autoclaving (meanSD, n=3). 

DL- loading capacity; Ø- mean particle diameter; PdI- polydispersity index; ζ- zeta potential. 

 

Formulation DL (%) Ø (nm) PdI ζ (mV) 

Empty SLN - 801  0.240.01  -271 

SLN 23 0.390.04 911 0.240.01  -201 

SLN 24 1.960.98 922 0.240.01 -211 
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After sterilization by autoclaving the mean particle diameter decreased slightly, thus 

confirming the results of the DLS studies (section 3.6.). PdI and surface charge remain 

unchanged. However the DL decreased more than 90% for SLN 23 and almost 65% for 

SLN 24.  Tripalmitin presents a melting point of about 66°C, so the SLN lipid core will 

melt during the autoclaving and will recrystallize during cooling. This phenomenon is 

responsible for the significant reduction of DL, mainly in the case of SLN 23, where the 

tetraoxane is not soluble in tripalmitin. So when the lipid core melts the majority of 

tetraoxane 23 disperses because this compound never truly mixes with tripalmitin and at 

the time of lipid recrystallization the absence of DCM prevents the formation of an 

emulsion. Therefore, the drug tends to partition into, or even precipitate in the aqueous 

phase.  Concerning tetraoxane 24, the DL also decreases in spite of its solubility in 

tripalmitin, probably due to drug to partition of the drug into the aqueous phase. Both 

formulations did not stand sterilization by autoclaving, showing their instability by the 

significantly decrease of DL. For this reason, these formulations are only suitable for oral 

administration.   

Throughout this process, particle stability is highly dependent on the composition of the 

SLN formulation, particularly the stabilizing surfactants that surround the lipid core [19, 

20]. 

 

3.6. DLS study 

 

The effect of temperature on the mean particle diameter was evaluated by DLS (Figure 

4). SLN 23 shows an initial increase in particle size, about 20 nm in the first 5°C of 

heating reaching a maximum of 146 nm. The mean particle diameter remains stable until 

it decreased at the melting point of tripalmitin.  
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This is the same phenomenon during sterilization by autoclaving. The melting of 

tripalmitin enabled the loss of tetraoxane 23, reducing the SLN size. Another baseline 

was observed from the melting temperature of tripalmitin up to 90ºC. In the cooling 

phase, the mean particle diameter suffers a slight variance, but never recovered the 

original starting mean particle diameter because of the losses of tetraoxane compound 

during the melting of tripalmitin and its recrystallization.   

 

 

 

 

 

 

 

 

 

Although the SLN 24 formulation has shown a similar behavior, when compared to SLN 

23, the initial mean particle diameter increase was almost insignificant, reaching a 

maximum of 125 nm (Figure 5). There was also a decrease due to with the melting of 

Figure 5- Variation of the average diameter of SLN 24 formulation: (●) 25-90°C and (■) 90-

25°C (meanSD, n=3). 

Figure 4- Variation of the average diameter of SLN 23 formulation: (●) 25-90°C and (■) 90-25°C 

(meanSD, n=3). 
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tripalmitin. In the cooling phase the initial particle size was not recovered, although it was 

less evident than that observed with SLN 23, because tetraoxane 24 is soluble in 

tripalmitin. So when this lipid recrystallizes, a larger amount of compound 24 stays 

within the nanoparticle. As expected this formulation was thermally more stable, with 

mild changes of the mean particle diameter.  

 

3.7. In vitro Release study  

 

Since the major objective of the SLN preparation was to achieve optimal formulations for 

future oral administration, drug release was study, as well as formulation stability under 

physiological pH and stomach pH. As the formulations have as their major targets both 

the spleen and the liver macrophages, release studies were carried out in order to assess 

whether the two synthesized tetraoxanes remained inside the SLN between the time of 

administration and the organs referred before. As both tetraoxanes are hydrophobic 

molecules, a diffusional release profile was thought as improbable, so most of the drugs 

would remain inside the SLN as their affinity for the lipophilic tripalmitin matrix was 

theoretically higher.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

The release profiles of tetraoxane 23 from the SLN formulation at both pH values 

presented the same trend (Figure 6). However, at pH 1.0 the SLN 23 is apparently more 

stable, releasing about 15% less than at neutral pH. In this case drug release reaches a 

maximum of 40%, while at pH 7.4 about 60% of drug were released. Drug release is slow 

Figure 6- Release studies of SLN 23 dispersed in aqueous buffers of different pH: (●) 

release at pH 7.4 and (■) release at pH 1.0 (meanSD, n=3). 
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in both media, with no burst effect. Nevertheless, release acidic medium shows that SLN 

23 is not gastroresistant, an important feature if the formulation is intended for oral 

administration. This release study also shows that although not being soluble in 

tripalmitin, tetraoxane 23 remains entrapped inside the lipid matrix because of its 

hydrophobic chemical structure. However, there is room for formulation improvement if 

these SLN are intended for oral administration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the release profile (Figure 7) of tetraoxane 24 is quite different that of 

23. In this case, a burst release of about 50% was observed in both media and after 30 min 

all drug was released from the SLN. So the SLN 24 seemed to be much less stable than 

the SLN 23 at the pH values herein studied. This was unexpected because their different 

solubility in tripalmitin would predict that the majority of compound 24 would remain 

entrapped inside the nanoparticle matrix. As for compound 23 this formulation is not 

gastroresistant, requiring further optimization towards stability in aqueous media in order 

to maintain the initial drug loading upon oral administration. 

Briefly, after the administration, almost entirely the content of the compound 24 inside 

the SLN vehicle is lost before it reaches the spleen and/or liver macrophages.   

 
 

 

 

 

Figure 7- Release studies of SLN 24 dispersed in aqueous buffers of different pH: (●) 

release at pH 7.4 and (■) release at pH 1.0 (meanSD, n=3). 
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3.8. Cell viability studies 

 

In vitro cell viability studies are essential in the development of suitable formulations, 

particularly considering they will submit to in vivo studies by the oral route in a suitable 

therapeutic animal model of leishmaniasis. Since human-monocyte transformed 

macrophages are one of the most widely used models for testing drugs against 

leishmaniasis, the cytotoxicity of the synthesized tetraoxanes 23 and 24 was evaluated 

against THP-1 cells - human acute monocytic leukaemia cell line. The cytotoxicity of 

empty SLN as well as SLN 23 and SLN 24 were not tested since recently Lopes et al. [8] 

studied the effect of similar SLN formulations on the viability of THP-1 cells. The empty 

SLN and drug-loaded SLN used in that study had the same lipid and surfactant 

composition as those SLN presented in this work. These authors concluded that both 

empty SLN and drug-loaded SLN were non-cytotoxicity, demonstrating a rather 

protective role of SLN formulations to the mammalian cells. Therefore, in the present 

work cell viability studies were performed only with both tetraoxanes, since empty SLN 

have already been proved as non-cytotoxic towards THP-1 cells at the concentrations 

herein tested. Figure 8 shows the survival percentage of THP-1 cells at 24 h after 

treatment with different concentrations of both tetraoxanes 23 and 24.  

 

 

 

 

 

 

 

 

Both compounds are non-toxic for THP-1 cells at tested concentrations when incubated 

for 24 h. In both cases the cell viability is always above 50% which corresponds to EC50 > 

Figure 8- Cellular viability of THP-1 cells after 24 h of incubation with different 

concentrations of both free compounds 23 and 24: (■) tetraoxane 23 and (■) tetraoxane 24 

(meanSD, n=3). 
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500 μg/mL. Nevertheless the two compounds seem to start decrease cell viability 

consistently at 7.80 μg/mL.  

The survival percentage of THP-1 cells was also evaluated at 48 h after treatment with the 

tetraoxanes in study at the same range of concentrations as the previous assay (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

After 48 h of incubation tetraoxane 24 appears to be more toxic when compared with 

compound 23. Both compound showed be toxic to THP-1 cells at 125 μg/mL where the 

cell viability is for the first time below 50%. Similarly to the effect at 24 h, THP-1 cell 

viability starts to decrease above 7.80 μg/mL. At 48 h compounds 23 and 24 had EC50 

values of 73.0 μg/mL and 65.0 μg/mL, respectively. The EC50 values are summarized in 

Table 6.  

 

Table 6- Cellular toxicity of free tetraoxanes 23  and 24 at different incubation times. 

 

Compound Incubation time (h) EC50 (μg/mL) 

23 
24 > 500  

48 73.0 

24 
24 > 500  

48 65.0 

  

Figure 9- Cellular viability of THP-1 cells after 48 h of incubation with different 

concentrations of both free compounds 23 and 24: (■) tetraoxane 23 and (■) 

tetraoxane 24 (meanSD, n=3). 
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3.9. In vitro activity studies 

 

Tetraoxane-loaded SLN and free-tetraoxanes were evaluated in vitro for their 

antileishmanial activity, against the L. infantum intracellular form, using infected 

macrophages. The results were compared to the standard antileishmanial drug 

miltefosine. As positive control (lysis of all cells) Triton-X-100 (1%) was used, and as 

negative control were used non-treated infected THP-1 cells with L. infantum parasites. 

The insoluble free tetraoxanes were solubilized using DMSO as a co-solvent to avoid 

precipitation in the cell medium. The SLN formulations were incubated without any co-

solvent which is a considerable advantage when we want to maintain the cell assays as 

real as possible and without the interference of organic solvents.  

  

 

 

 

 

 

 

 

 

 

Figure 10 shows the activity of the synthesized tetraoxanes against the L. infantum 

parasite and the comparison with miltefosine. At the studied concentrations miltefosine 

kills always about 60% of the parasites. Tetraoxane 23 has an initial activity a little less 

potent than miltefosine but above 3.10 μg/mL, its activity is about 60%, i.e. the same 

activity of the standard antileishmanial drug miltefosine, thus showing a very promising 

in vitro activity against L. infantum parasite.  

The free form of compound 24 demonstrated less potency for the tested concentrations 

when compared with both tetraoxane 23 and miltefosine. Its activity is still increasing 

Figure 10- Activity against L. infantum parasite of the free tetraoxanes 23 and 24 

when compared with miltefosine after 48 h of incubation: (■) miltefosine; (■) 

tetraoxane 23 and (■) tetraoxane 24 (meanSD, n=3). 
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throughout the concentration range tested, which means that it did not yet reached a 

plateau. Therefore, higher concentrations of this compound could be even more potent 

than its counterpart and miltefosine. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows the activity against L. infantum parasite of the nanoencapsulated 

tetraoxanes 23 and 24. Neither of SLN formulations stabilized into a baseline for tested 

concentrations, demonstrating they can be even more potent than the free form 

compounds if further concentrations had been tested.  

For the same concentrations both formulations showed to be less potent than the 

respective free drugs. Compound 23 killed about 60% of the parasites at 3.10 μg/mL 

while a dose of 25.0 μg/mL was needed to achieve the same results for the SLN 

formulation. However, a 25 μg/mL dose of free tetraoxane only killed more 4% of the 

parasites, when compared with the same dosage of SLN 23, and more 2% when 

compared with miltefosine, which means that at the highest concentration tested (25 

μg/mL) either the free compound 23 and SLN 23 have almost the same activity as an 

approved antileishmanial.  

Formulation SLN 24 followed the same tendency of its free form, but was much less 

potent within the concentrations herein tested. At 25 μg/mL the parasite viability was 

about 80%, i.e. more 10% when compared to its free form, and more 30% compared with 

miltefosine.  

Figure 11- Activity against L. infantum parasite of SLN 23 and SLN 24 when 

compared with miltefosine after 48 h of incubation: (■) miltefosine; (■) SLN 23 

and (■) SLN 24 (meanSD, n=3). 
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SLN 23 showed a very good activity against L. infantum parasites being in fact the better 

formulation of the two. At 25 μg/mL this formulation has the same activity of the already 

approved drug miltefosine. The advantages when compared with its free form are the 

theoretical better targeting of the macrophages employed by the tripalmitin’s nanosystems 

and the non-utilization of DMSO as co-solvent for solubilization because the two 

tetraoxanes compounds are hydrophobic and not suitable for any kind of administration 

by its free form. Additionaly for incubation times longer than 24 h, when both free forms 

of the tetraoxanes are already cytotoxic, the SLN act as protective vehicles preventing 

cellular death and delivering the compounds to the site of action of the parasites. 

Summing up, these are two very promising compounds with similar activity as 

antileismanial when compared to miltefosine. SLN 23 showed to be more potent at 

studied concentrations and its free form is also less toxic when incubated for longer than 

24 h.  
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Chapter 4 - Concluding remark and future work 

 

1. Concluding remarks 

 

Summarizing the chemical synthesis research work developed in this thesis, there are 

some concluding remarks to be noted. The two final compounds 23 and 24 were 

successfully synthesized and characterized by infrared spectroscopy, unidimensional – 

1H-NMR, 13C-NMR - and bidimensional NMR – COSY, HMBC, HMQC. Thereby, it 

was possible to identify all characteristic protons from the two tetraoxane compounds, 

such as the trans-vynilic protons, the aromatic protons as well as the protons of the 

tetraoxane ring. The elemental analysis study was in agreement with the calculated values 

and the melting points determined using two different techniques (the Ph. Eur. 2.2.16. 

instantaneous method and DSC) were similar. 

Concerning the formulation research work, a proven stable SLN formulation was used, 

based on tripalmitin as the lipid component and three surfactants acceptable for 

administration - Tween® 20, soya lecithin and sodium desoxycholate. Either SLN 23 or 

SLN 24 presented suitable physicochemical properties (diameter, surface charge and 

polydispersity index) as well as high encapsulation efficiencies. Preliminary stability 

studies showed that SLNs could be stored at 4oC for at least 20 days without any change 

of their properties. The DSC analysis showed that both tetraoxanes are entrapped in the 

lipid matrix of the SLN. However, SLN 24 is more stable under the effect of temperature, 

although but both formulations suffer recrystallization upon cooling below the melting 

point of tripalmitin, leading to a marked decrease in DL, as observed throughout 

autoclaving. Irrespective of the release medium tested, tetraoxane 24 is released at a faster 

rate and higher amount that tetraoxane 23, probably due to the different structure of the 

lipid matrix resulting from the differences in solubility between both drugs. Finally, both 

tetraoxanes may be considered as non cytotoxic, while SLN 23 showed a good in vitro 

activity against leishmania infected THP-1 cells, when compared with the standard 

antileishmanial drug miltefosine.  

Overall, this strategy allowed achieving new compounds-loaded SLN that are promising 

candidates as antileishmaniasis agents.  
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2. Future work 

 

As this work is a completely novel approach, with the introduction of tetraoxane 

compounds as potential dual acting agents in the treatment of leishmaniasis, including 

their nanoencapsulation in solid lipid particles, the upcoming work is still of great 

importance.  

The introduction of other groups in the tetraoxane skeleton seems to be the next logical 

step in order to obtain structure variability and possible new interactions moieties with 

TR. This step will normally lead to the structure-activity relationship studies that must be 

made in order to understand which functions are essential to, or are able to improve the 

activity as TR inhibitor. After the tetraoxane activation (referred in chapter 1) the final 

α,β-unsaturated molecule, which acts as TR inhibitor, is the trans-cinnamaldeyde, 

therefore, is essential to assess the activity and cytotoxicity of this compound. It also can 

be performed docking studies in order to understand the interactions between the 

compounds and the enzyme.  

The tetraoxane derived from the 2-adamantanone still needs to be synthesized because the 

literature refers that the adamantyl group gives stability to the final tetraoxane. It is 

important to explore new methodologies that enable the formation of the 

bishydroperoxide intermediate either in the 2-adamantanone or in the trans-

cinnamaldehyde with a higher yield in the first step of the reaction.  

A stable and promising antileishmaniasis SLN formulation of compound 23 was 

achieved. However, further optimizations are needed to increase drug loading, the 

stability under harsh formulation procedures and modulate drug release at both studied 

pH values while maintaining its physicochemical properties. Although SLN 24 

formulation is even more stable under temperature variations and after throughout 

autoclaving when compared with SLN 23, after 30 min tetraoxane 24 is completely 

released, indicating the need to improve this formulation towards gastroresistance. The 

optimization of all these crucial parameters may certainly involve the inclusion of 

different triacylglocerols and the investigation of liophilisation as a stabilizing technique 

that will allow increasing storage time of such formulations.  

The next logical step in this area will be the in vivo studies to determine whether the SLN 

formulations remain active against Leishmania parasite or not, and if they act as vehicles 

trough passive targeting, as they should carry and protect the tetraoxanes to the MPS. The 
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cell localization in vitro and in vivo can be confirmed using probes with fluorescent tags 

synthesized by the uprising bioorthogonal chemistry. 
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Chapter 5 - Annexes 

 

Annex 1 
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Annex 1- Benzaldehyde-tetraoxane (23) COSY specter. 

Annex 2- Benzaldehyde-tetraoxane (23) HMBC specter. 
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Annex 3- Benzaldehyde-tetraoxane (23) infrared specter. 

Annex 4- Cyclohexane-tetraoxane (24) COSY spectra. 
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Annex 5- Cyclohexane-tetraoxane (24) 
13C-NMR spectra. 

Annex 6- Cyclohexane-tetraoxane (24) HMBC spectra. 
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Annex 7- Cyclohexane tetraoxane (24) infrared spectra. 


