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SUMMARY 

Regulatory T Cells (Treg), constitutively expressing the transcription factor 

Foxp3/FOXP3, play a crucial role in maintaining self-tolerance, assuming particular 

relevance in the context of autoimmunity. Adoptive transfer of Treg has been shown to be 

highly efficient in the prevention and treatment of autoimmunity in rodents and clinical 

trials exploring Treg-based adoptive therapy in Type I Diabetes (T1D) are currently 

ongoing. These therapies require large numbers of Treg, stressing the importance of a 

better knowledge of the molecular and cellular requirements for human thymic and 

peripheral Treg development. Moreover, widespread application of Treg-based therapy 

dealt with several limitations regarding the stability and function of in vitro expanded 

populations for in vivo use. The creation of efficient protocols enabling stable FOXP3 

acquisition by human non-regulatory cells could overcome the limited availability of 

thymus-derived (t)Treg and would facilitate the generation of antigen-specific Treg, an 

ideal candidate in autoimmune diseases (AID) setting.  

The overall objective of this work was to provide new insights into the principles dictating 

human thymic and peripheral Treg development and homeostasis, thus facilitating the 

progress of Treg-based immunotherapy.  

First, we proposed to investigate the capacity of human non-regulatory memory CD4+ T 

cells to differentiate in vitro into bona-fide FOXP3-expressing cells and to assess the role 

of the Notch signaling pathway in modulating this conversion. We showed that stable and 

functional bona-fide Treg can be generated from memory CD4+ T cells and that Delta like 

(DL)1-mediated Notch signaling activation enhanced this conversion. We additionally 

showed that DL1 increased Treg proliferation, reinforcing the possible role of Notch in the 

homeostasis of the human peripheral Treg compartment. Importantly, we also 

demonstrated that DL1 enhanced the expression of function-related molecules within these 

cells, contributing to the maintenance of their regulatory phenotype.  

In order to better clarify the principles governing Treg development in the human thymus, 

we investigated the role of common gamma-chain (γc) cytokines in human tTreg 

differentiation. We identified interleukin (IL)-2 and IL-15 as key molecular determinants 

in this process and excluded a major function for IL-4, IL-7 and IL-21. Moreover, we 
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revealed that IL-2 and IL-15 are expressed in a non-overlapping pattern in the human 

thymus, with the former produced mainly by mature αβ and γδ thymocytes and the latter 

by monocyte/macrophages and B lymphocytes.  

Overall, this work has provided a better understading of the core mechanisms governing 

human Treg differentiation and homeostasis that should facilitate the further establishment 

of Treg-based therapies.  
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SUMÁRIO 

As Células T Reguladoras (T Regs), expressando constitutivamente o factor de transcrição 

Foxp3/ FOXP3, desempenham um papel crucial na manutenção da auto-tolerância, 

assumindo particular relevância no contexto de auto-imunidade. A transferência adoptiva 

de T Regs demonstrou ser altamente eficaz na prevenção e no tratamento de auto-

imunidade em roedores e ensaios clínicos explorando terapêuticas baseadas em T Regs na 

Diabetes Tipo I estão actualmente em curso. Estas terapias exigem um grande número de 

células, pelo que é essencial um melhor conhecimento dos requisitos moleculares e 

celulares para o desenvolvimento no timo humano e na periferia de T Regs. Além disso, a 

aplicação generalizada desta terapêutica tem ainda várias limitações no que respeita à 

estabilidade e função das populações expandidas in vitro para utilização in vivo. A criação 

de protocolos eficientes que permitam a aquisição estável de FOXP3 por células não-

reguladoras poderá ultrapassar a disponibilidade limitada de T Regs de origem tímica e 

facilitar a geração de T Regs com especificidade antigénica, potencialmente ideais no 

contexto de doenças auto-imunes. 

O objetivo global deste trabalho foi investigar os princípios que ditam o desenvolvimento 

tímico e periférico e a homeostasia das T Regs humanas, facilitando assim o progresso da 

imunoterapia utilizando T Regs. 

Em primeiro lugar, propusemo-nos investigar a capacidade das células T CD4+ de 

memória não-reguladoras para se diferenciarem in vitro em células que expressam FOXP3, 

avaliando o papel da via de sinalização Notch na modulação desta conversão. Revelámos 

que T Regs estáveis e funcionais podem ser geradas a partir de células T CD4+ de memória 

isoladas do sangue periférico de indivíduos saudáveis e que a activação de Notch mediada 

por DL1 aumenta esta conversão. Adicionalmente, demonstrámos que DL1 aumenta a 

proliferação de T Regs circulantes, reforçando o possível papel de Notch na homeostasia 

do compartimento periférico de T Regs. Mostrámos também que DL1 aumenta a expressão 

de moléculas relacionadas com a função de T Regs circulantes, contribuindo para a 

manutenção do fenótipo das T Regs. 

Com a finalidade de clarificar os princípios que regem o desenvolvimento de T Regs no 

timo humano, investigámos o papel das citocinas que utilizam um receptor com cadeia 
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gama comum na diferenciação de T Regs humanas. Identificámos as interleucinas IL-2 e 

IL-15 como determinantes moleculares chave neste processo, tendo sido excluída uma 

função de relevo para IL-4, IL-7 e IL-21. Mais ainda, revelámos que IL-2 e IL-15 são 

expressas num padrão não sobreposto no timo humano, sendo a primeira produzida 

principalmente por timócitos maduros αβ e γδ e a última por monócitos/ macrófagos e 

linfócitos B. 

Em conclusão, este trabalho proporcionou um melhor conhecimento dos mecanismos 

fundamentais que regem o desenvolvimento, a homeostasia e manipulação in vitro das T 

Regs em humanos, contribuindo para o estabelecimento das terapêuticas baseadas em T 

Regs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Palavras-Chave: Células T Reguladoras; Auto-tolerância; Doenças Auto-Imunes; 

Citocinas que utilizam um receptor com cadeia gama comum; Imunoterapia utilizando 

células T reguladoras  
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SUMÁRIO EXTENSO 

Um dos grandes desafios da Imunologia e da Medicina é, ainda actualmente, compreender 

os mecanismos subjacentes à manutenção da auto-tolerância imunológica. O controlo 

rigoroso da dimensão das respostas imunes adaptativas a antigénios próprios e não-

próprios encerra um potencial terapêutico inquestionável em diferentes cenários clínicos, 

entre eles a patologia auto-imune. 

As Células T Reguladoras (T Regs), expressando constitutivamente o factor de transcrição 

Foxp3/ FOXP3, desempenham um papel fundamental na manutenção da tolerância 

periférica. O compartimento periférico de T Regs compreende uma população de origem 

tímica e uma população convertida na periferia a partir de células T CD4+ não-reguladoras. 

Em humanos, o estabelecimento da contribuição exacta das duas populações para o 

compartimento periférico de T Regs tem sido dificultado pela inexistência de um marcador 

fiável que as distinga com precisão in vivo. As T Regs assumem reconhecidamente 

particular relevância na prevenção da auto-imunidade tanto em modelos animais como em 

humanos. Têm sido descritas deficiências qualitativas e/ou quantitativas de T Regs em 

diferentes doenças imuno-mediadas, com um interesse crescente na manipulação desta 

população celular especialmente no contexto da auto-imunidade e da transplantação. 

Assim, vários ensaios clínicos com terapêutica adoptiva de T Regs estão actualmente em 

curso com resultados promissores. Dada a necessidade de um grande número de T Regs 

para atingir eficácia clínica, tem sido feito um grande esforço para desenvolver protocolos 

clínicos adequados que permitam a expansão eficaz ex vivo de T Regs humanas. 

Os protocolos visando a expansão eficiente de T Regs para aplicação clínica têm 

enfrentado grandes desafios, em particular no que respeita a estabilidade e função das 

populações expandidas in vitro. Mais ainda, esta estratégia pode não ser ideal quando a 

população de T Reg apresenta defeitos intrínsecos, como previamente descrito no contexto 

de patologia auto-imune. A grande maioria dos estudos de indução tem utilizado células T 

CD4+ não-reguladoras naive como população original. Ainda assim, alguns grupos 

induziram FOXP3 em células T CD4+ não-reguladoras de memória in vitro, com 

resultados controversos no que respeita ao fenótipo e função da população obtida. No 

contexto particular da auto-imunidade, pensa-se que as células não-reguladoras de 
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memória possam ser enriquecidas em células T auto-reactivas, tornando esta população 

especialmente atractiva para indução de T Reg com especificidades antigénicas relevantes. 

Como tal, o desenvolvimento e optimização de estratégias para gerar T Regs a partir de 

células T não-reguladoras são essenciais para o estabelecimento de imunoterapia adoptiva 

com T Regs. Concomitantemente, um conhecimento mais profundo e detalhado do 

desenvolvimento, fisiologia e homeostasia das T Regs humanas proporcionará 

instrumentos fundamentais para a manipulação de T Regs em contexto clínico. 

Várias vias de sinalização têm sido implicadas na geração de células T reguladoras. Entre 

estas, Notch é apontado como tendo um papel crucial no desenvolvimento, expansão e 

diferenciação destas células.  

O objetivo global deste trabalho foi investigar os princípios que ditam o desenvolvimento 

tímico e periférico assim como a homeostasia das T Regs humanas, facilitando assim o 

establecimento da terapêutica adoptiva celular com T Regs, em particular no contexto de 

auto-imunidade.

Como tal, propusemo-nos investigar a capacidade das células T CD4+ não-reguladoras de 

memória de se diferenciarem in vitro em células que expressam FOXP3, avaliando o papel 

da via Notch na modulação desta conversão. Revelámos que T Regs estáveis e funcionais 

podem ser geradas a partir de células T CD4+ de memória e que a activação de Notch 

mediada por DL1 aumenta esta conversão. Os efeitos benéficos de DL1 foram também 

demonstrados na conversão de células T CD4+ “naïve” convencionais. 

Mostrámos ainda que T Regs convertidas a partir da células T CD4+ não reguladoras, na 

presença de DL1, apresentam um fenótipo estável em culturas de longo prazo e na 

presença de citocinas pró-inflamatórias, o que é particularmente relevante em cenários 

reconhecidamente inflamatórios, como no contexto de patologia auto-imune.  

Notch desempenha, como tal, um importante papel na conversão in vitro de células T 

CD4+ não reguladoras em T Regs, efeito que se estende provavelmente a cenários in vivo 

onde a geração de Treg a partir de precursores não-reguladores é fundamental para um 

melhor controlo da resposta inflamatória. 

Avaliámos também o impacto da DL1 sobre a proliferação homeostática e fenótipo de T 
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Regs circulantes estimuladas via receptor de antigénio de células T. Os nossos resultados 

mostram que a activação de Notch via DL1 aumenta a proliferação de T Reg humanas 

assim como a expressão de moléculas relacionadas com função reguladora, reforçando o 

possível papel de Notch na homeostasia e conservação do fenótipo das T Reg periféricas. 

Investigámos adicionalmente os mecanismos responsáveis pelo efeito de DL1 na 

diferenciação de T Reg a partir de células CD4+ não-reguladoras de memória. Os nossos 

dados sugerem que o impacto de DL1 na aquisição de FOXP3 por células T não 

reguladoras de memória envolve vários mecanismos, tais como a interacção cooperativa 

com via a sinalização TGF-β e a modulação transcripcional de Foxp3. 

O Lúpus Eritematoso Sistémico (LES) é uma doença auto-imune multissistémica com um 

amplo espectro de manifestações clínicas e significativo impacto na qualidade de vida dos 

doentes. A imunossupressão farmacológica neste contexto acarreta actualmente grande 

morbilidade, sendo crucial o desenvolvimento de terapias dirigidas, com potencial 

intervenção na patogénese da doença, maior eficácia clínica e menores efeitos adversos. 

Demonstrámos que a indução de T Regs a partir de células T não-reguladoras de memória 

de um doente com LES foi eficaz e potenciada na presença de DL1, validando num 

contexto auto-imune a eficácia in vitro dos protocolos previamente estabelecidos. 

O processo pelo qual as T Regs se desenvolvem no timo humano está ainda mal 

esclarecido, sendo importante compreendê-lo detalhadamente para manipular esta 

população celular de forma adequada em contextos clínicos. Com o objectivo de clarificar 

os princípios que regulam o desenvolvimento de T Regs no timo humano, investigámos o 

papel das citocinas que utilizam o receptor de cadeia gama comum na diferenciação de T 

Regs humanas. Revelámos uma importante contribuição das interleucinas IL-2 e IL-15 

para o desenvolvimento tímico das T Regs humanas, clarificando aspectos fundamentais 

do seu mecanismo de acção, padrão de expressão e populações envolvidas na sua 

produção. Revelámos que IL-2 e IL-15 (mas não IL-4, IL-7 e IL-21) aumentam a 

frequência e número de T Regs em culturas de timo humano, assim como os seu níveis de 

expressão de FOXP3 e de moléculas associadas a função reguladora. IL-2 e IL-15 

exibiram, adicionalmente, um evidente impacto sobre a sobrevivência e proliferação de T 

Regs já diferenciadas. IL-2 e IL-15 demonstaram também a capacidade de consignar 

precursores de T Regs de origem tímica à linhagem reguladora.  
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Mostrámos ainda que IL-2 e IL-15 são expressas no timo humano em nichos não 

sobreponíveis, sendo a IL-2 produzida por timócitos maduros αβ e γδ e estando a produção 

de IL-15 essencialmente confinada a macrófagos e células B.  

Assim sendo, os nossos dados suportam um modelo de duas etapas para o 

desenvolvimento no timo humano de T Regs. Neste modelo hipotético, sinais via receptor 

de antigénio de células T nos timócitos em desenvolvimento podem ser suficientes para 

induzir a expressão de CD25, permitindo que estas células respondam a IL-2 e/ ou IL-15, 

com a consequente activação de STAT5 e transcrição subsequente de FOXP3.  

Em conclusão, este trabalho proporcionou um conhecimento aprofundado do 

desenvolvimento, fisiologia e homeostasia in vivo e in vitro das T Regs humanas, 

contribuindo para o progresso da terapêutica adoptiva celular com T Regs. 
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1.1. Regulatory T Cells 

1.1.1. Regulatory T cells 

Over the last two decades, the different mechanisms by which mammalian organisms 

acquire tolerance to self have been scrutinized1. Self-tolerance is acquired through two 

types of mechanisms, “recessive” and “dominant”. The deletion of immature thymocytes 

before acquiring functional maturity in the thymic medulla and migration to the periphery, 

proposed by the studies of Burnet2, Lederberg3 and Medawar4, is recognized as a crucial 

mechanism. Concomitantly, other processes have been described that permit ectopic 

expression of peripheral tissue antigens in thymic epithelial cells (TEC) as well as 

immigration of antigen-presenting cells (APC) from peripheral tissue to the thymus5. 

These so-called “recessive mechanisms of central tolerance” are, yet, imperfect and allow 

the escape of some self-reactive cells that probably have T cell receptors (TCR) of 

relatively low affinity for self. Further “recessive peripheral tolerance mechanisms” in 

secondary lymphoid organs, such as deletion and/or anergy, have been additionally 

described6. Nevertheless, it became clear that these passive mechanisms were insufficient 

to account for self-non-self-discrimination. Thereafter, “dominant peripheral tolerance” 

accounted by “suppressor/ regulatory” cells emerged as a fundamental piece in the 

establishment of immunological tolerance. In the mid 1990's, seminal papers by Sakaguchi 

et al., using a combination of cell depletion and adoptive cell transfers, demonstrated the 

crucial role of a minor population of CD4+ T cells that coexpresses the interleukin-2 

receptor alpha chain (IL-2Rα, CD25) for preventing multi-organ autoimmunity as well as 

lethal systemic inflammatory and wasting disease7, 8. These findings opened the 

challenging field of Regulatory T Cells (Treg).  

Treg are a thymus-derived independent T cell lineage that plays a fundamental role in 

tightly controlling peripheral immune responses, promoting the maintenance of self-

tolerance and immune homeostasis9. Expression of the transcription factor box P3 

(Foxp3/FOXP3) in mice and humans, respectively, is the best available marker to identify 

Treg and is also indispensable for their development, stability and effector function10, 11. 

Loss-of-function mutations in this gene lead to Immune dysregulation, 

polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in humans and to the Scurfy 
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phenotype in mice, characterized by early and fatal autoimmunity11. Notwithstanding the 

essential role of Foxp3/FOXP3 in Treg differentiation, maintenance and function, it has 

been shown that, unlike mice, TCR-driven activation of human CD4+ T cells leads to  

FOXP3 expression, that is not necessarily associated with a regulatory phenotype12, 13, 14. 

 

Figure 1. Consequence of Treg deficiency in mice and humans. Adapted from Sakaguchi. 

Cell. 2008.15   

 

The peripheral Treg compartment consists both of thymus-derived (t)Treg and a peripheral 

population converted from CD4+CD25-Foxp3- precursors (peripheral (p)Treg)16. pTreg 

differentiation occurs particularly in the gut mucosa and inflammatory tissue sites, likely 

via a transforming growth factor β (TGF-β)-dependent mechanism16. Helios, a member of 

the Ikaros transcription factor family, has been proposed as a specific mouse and human 

tTreg marker17. However, recent findings have shown that Helios expression can be 

induced during T cell activation and proliferation and hence neuropilin 1 (Nrp-1) 

expression was suggested as a more adequate marker to distinguish tTreg from 

peripherally-generated pTreg in mice19. The lack of a reliable marker in humans to 

accurately distinguish these subsets in vivo hampers the establishment of the exact 

contribution of tTreg and pTreg subsets to the peripheral Treg pool.  

Additional regulatory T cell populations have been identified, including interleukin (IL)-

10-secreting type 1 regulatory T cells (Tr1), TGF-β-secreting type 3 regulatory T cells 

(Tr3) and CD8+CD28neg regulatory T cells, all of them lacking the Foxp3/FOXP3 

expression. However, some constraints regarding the phenotypic characterization of these 

subsets have made their contribution to self-tolerance and immune homeostasis 
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maintenance less well defined20, 21.  

1.1.2. Thymic development of Regulatory T Cells 

Human T cell development involves different intrathymic events that progress through a 

series of sequential stages defined by the surface expression of CD4, CD8 and CD3 

(Figure 2). T cell progenitors contained within the early CD3negCD4negCD8neg Triple 

Negative (TN) subset initially acquire CD4 (becoming CD4 Immature Single Positive 

cells, CD4ISP) and subsequently CD8 expression, giving rise to Double Positive (DP) 

thymocytes in the cortex. A progressive increase in surface CD3 expression occurs in 

parallel with surface TCRαβ in DP cells, followed by final differentiation into CD4 Single-

Positive (SP) and CD8SP thymocytes that mature in the medulla22. 

 

Figure 2. Schematic representation of the development of αβ T cells in the human thymus. 

Adapted from Spits H. Nat Rev Immunol. 2002.23 
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In secondary lymphoid organs, naive CD4+ and CD8+ T cells encounter antigens presented 

by professional APC, with subsequent activation and differentiation into effector 

lymphocytes and some into Treg. It has been shown that a significant proportion of Treg 

differentiate and acquire functional capacity already in the thymus. 

In the last two decades, thymic Treg development has been widely scrutinized in murine 

models.  Still, little is known about the developmental program ruling tTreg differentiation 

in the human thymus. Regarding this gap, the knowledge provided by genetic human 

disorders characterized by thymus-related disturbances has been of utmost importance. 

DiGeorge syndrome, caused by the deletion of a small piece of chromosome 22, presents 

in most cases with thymic hypoplasia, mild to moderate T-cell lymphopenia and increased 

infection and autoimmunity24, along with significant alterations in Treg compartment25, 26, 
27. Omenn Syndrome, associated with hypomorphic missense mutations in the 

recombination activating genes (RAG) 1 and 2, is characterized by a limited pool of T 

lymphocytes with a restricted repertoire and activated phenotype28. Autoimmune regulator 

gene (AIRE) controls the promiscuous expression of tisse-specific antigens in medullary 

thymic epithelial cells (mTEC), displaying a crucial role as a regulator of central 

tolerance29. In 2 patients with Omenn Syndrome, loss of cortico-medullary junction and 

Hassall’s bodies with depletion of AIRE-expressing mTEC and thymic dendritic cells 

(DC) has been described, concomitantly with a dramatic decrease of thymic Treg30, 

stressing the putative role of AIRE-expressing mTEC and/or thymic DC in their 

differentiation. Accordingly, autoimmune polyendocrinopathy-candidiasis-ectodermal 

dystrophy (APECED), resulting from loss-of-function mutations in the AIRE gene, has 

been associated with a defective circulating Treg compartment31, 32, 33. 

At the time that mature T cells are observed in the human thymus, around the 12th to 13th 

gestational weeks, human tTreg can already be found intrathymically34, 35. 

Notwithstanding, in humans expression of FOXP3 is clearly detected in post-selection DP 

thymocytes36, 37, 38, which has been shown to significantly contribute to the mature 

FOXP3+ cell pool that is largely composed of CD4SP and some CD8SP thymocytes38. 

FOXP3+DP thymocytes also express other Treg function-associated markers, such as 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD39 and glucocorticoid-induced 

TNFR-related protein (GITR), and display supressive function39, 38. It has been also 

demonstrated that human tTreg can be selected by both myeloid (mDC) and plasmocytoid 
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dendritic cells (pDC) 40, 41.  

Previous data from murine studies have shown that tTreg generation is TCR instructive, 

depending on the recognition of self-antigens in the thymus36, 37, 42, 40, 38. In humans, 

technical constraints foreclose the direct assessment of TCR role in tTreg development. 

Notwithstanding, it has been shown that human tTreg differentiation is associated with 

markers of positive selection, such as CD69 and CD2736, 37, 38, 43. Additionally, binding sites 

for the TCR downstream targets nuclear factor of activated T-cells (NFAT) and activator 

protein (AP1), directly activated by TCR stimulation, are present within the human FOXP3 

gene promoter44. Importantly, human zeta-chain-associated protein kinase 70 (ZAP70)-

deficient patients display a substantial decrease in the frequency and number of tTreg45. 

Interestingly, CD4SP CD25+ tTreg were shown to oftentimes express two functional TCR, 

in association with enhanced FOXP3 expression, suggesting that dual TCR expression may 

underly tTreg lineage commitment in humans46. Therefore, the existing data support that 

TCR signaling strength drives thymocyte commitment into the Treg lineage in humans.   

Several studies have shown other relevant factors and signaling pathways for tTreg 

differentiation and/or proliferation in the human thymus, including Jakus kinase (JAK3)/ 

signal transducer and activator of transcription (STAT)5, Notch, inducible T-cell 

costimulator (ICOS)/ inducible T-cell costimulator ligand (ICOSL), CD28:B7 

costimulation CD40:CD154 and thymic stromal lymphopoietin (TSLP)41, 40, 47, 48, 49.  

In mice, signaling through the common γ-chain (γc) receptor triggered by IL-2, IL-7 and 

IL-15, has been claimed as participating in tTreg generation50. Accordingly, by following 

the CD25+Foxp3− tTreg precursor population early in ontogeny, and denoting the critical 

roles IL-2 and TCR signaling strenght had in tTreg differentiation, Lio and Hsieh proposed 

a two-step model of tTreg differentiation51. The model suggests that functional high avidity 

TCR signals lead to the upregulation of CD25 with consequent increase in the 

responsiveness of tTreg precursor cells to IL-2 signals that facilitate the induction of Foxp3 

(Figure 3)51. A likely candidate transcription factor for direct regulation of Foxp3 

expression is, in this scenario, STAT5 since it is activated downstream of IL-2 and other γc 

cytokine receptors51. Even though, how IL-2 signaling in these immediate tTreg precursors 

instructs Foxp3 induction and tTreg differentiation is not clear37.  
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Figure 3: Two-step model for tTreg differentiation. Schematic representation of a 

hypothetical model for tTreg differentiation in the murine thymus. Adapted from Goldstein 

et al. Front Immunol. 2013.52 

 

In humans, it is well known that Treg homeostasis and function in the periphery depends 

on IL-253. Human tTreg in fact express CD25 as well as the interleukin-2 receptor beta 

chain (IL-2Rβ, CD122) that are utilised by both IL-2 and IL-1536, 38. Previous data also 

support a role for IL-2 and IL-7 in human tTreg development38. Accordingly, it has been 

shown that human FOXP3+ thymocytes, although featuring reduced levels of the α-chain 

of the IL-7 receptor (IL-7R) compared to their FOXP3neg counterparts, phosphorylate 

STAT5 in response to IL-738. Moreover, IL-2 increases CD25 and FOXP3 expression 

levels within FOXP3+DP thymocytes38. Importantly, polymorphisms in IL-2, CD25 or IL-

2R downstream signaling molecules are associated with impaired Treg number and/or 

function as well as increased risk of autoimmunity in humans53, which may be due to 

defective tTreg generation in addition to reduced peripheral Treg survival. Accordingly, 

indirect evidence supports a thymic involvement in patients undergoing IL-2 therapy, 

based on the observed expansion of Treg expressing CD45RA and the recent thymic 

emigrant marker CD3154, 55, 56.  

Despite the suggested role for these interveners, particularly γc cytokines, in tTreg 

generation, the principles governing human tTreg ontogeny and the precise contibution of 

these and aditional factors remains to be elucidated. 
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Among additional signals beyond TCR-stimulus suggested to be enrolled in tTreg 

specification, the contribution of TGF-β remained for long debatable, with studies in mice 

showing that it is both vital57 or redundant58. A recent reevaluation of this issue has 

demonstrated that intrathymically produced TGF-β derived from thymocyte apoptosis is 

crucial for murine tTreg development59, establishing an important apoptosis-TGF-β-Foxp3 

axis in the development of these cells.  

 

1.1.3. Peripheral Induction of Regulatory T Cells 

It was initially thought that Treg could only arise from the thymus through cognate 

interaction with major histocompatibility complex (MHC)/ self-peptide complexes. 

However, it has become clear that Foxp3+ Treg can also develop in the periphery from 

mature conventional CD4+ T cells under particular conditions, pTreg60, 61, 62.  

Historically, data from murine studies have suggested that extrathymic generation of Treg 

is favored in two particular contexts. The first scenario is characterized by T cell activation 

in the absence of inflammation (the so-called “subimmunogenic context”), exemplified by 

the use of non-depleting anti-CD4 antibodies, which weaken coreceptor engagement63;  

“clean” antigen (Ag) delivery by osmotic pumps64; Ag presentation by APC in the absence 

of maturation signals61;  and Ag presentation in tolerogenic microenvironments, such as 

the small intestine mucosa60. One illustrative experiment of this last category was carried 

out with chicken ovalbumin (OVA) administration to OVA-specific TCR-transgenic mice 

crossed with RAG- deficient and Foxp3-deficient mice65. In these mice, oral administration 

of Ag does not induce Foxp3+ pTreg as mice are Foxp3 deficient. However, T cells in 

these mice did not become effector T cells (Teff), even though they upregulated CD69 

which is indicative of Ag exposure62. Thus, under these noninflammatory conditions, T 

cell stimulation can generate pTreg but not Teff. In a second context, inflammatory 

conditions allow the quasi-simultaneous development of both pTreg and Teff in 

inflammatory sites, with evidence of a lower rate of pTreg generation66. Also in humans, it 

is now increasingly clear that pTreg can arise in several different conditions, constituting 

an important part of peripheral Treg compartment67, 68. 
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The lack of reliable markers and the constraints of ex vivo studies result in scarce data in 

human pTreg, with most of the knowledge resulting from murine studies. The 

requirements for the induction of pTreg are quite different from those required for thymic 

generation of tTreg. As above-mentioned, it has been postulated that murine tTreg 

development in the thymus is associated with high avidity TCR/ MHC-peptide 

interactions, while pTreg differentiation in the periphery is induced under subimmunogenic 

conditions61, 64, 69. It has also been proposed that a low dose of high affinity agonist 

peptides supports pTreg induction while low affinity peptide agonists poorly generates 

pTreg70. The clear knowledge of the signaling pathways that promote the development of 

tTreg in the thymus and that elicit conversion into pTreg in the periphery has not yet been 

completely clarified.  

Besides TCR engagement and IL-2 signaling, indispensable for the generation of all Treg, 

pTreg seem to require additional factors such as TGF-β and retinoic acid71, 72. Accordingly, 

blockade of TGF-β in vivo inhibits the differentiation of Ag-specific pTreg60. In mice 

lacking Smad3 (a TGF-β pathway downstream target) binding sites in the conserved non-

coding sequence 1 (CNS1) of the Foxp3 enhancer region, there is a lack of pTreg 

development73. Upon transfer of congenically marked Wild Type (WT) or CNS1-/- CD4+ 

Foxp3 T cells into RAG1-/- recipient mice, the induction of Foxp3 was observed only in 

WT and not in the CNS1-/- cells. In vitro assays also demonstrated a significant reduction 

in the induction of Foxp3 in naïve T cells deficient in CNS173 suggesting a dominant role 

for TGF-β signaling in extrathymic pTreg generation.  

In what concerns costimulation, it has also been claimed that tTreg and pTreg have 

different requirements. CTLA-4 has been shown to be upregulated within TGF-β in vitro 

induced (i)Treg, whereas its role in tTreg generation is still controversial74, 75. On the other 

hand, the CD28-mediated co-stimulation role in tTreg generation is well documented in 

murine studies. CD28-deficient mice indeed show markedly lower number of Foxp3+ in 

thymus and the periphery76 and it has been suggested that CD28 promotes tTreg generation 

through alteration of avidity of T cell-APC interaction, stimulation of IL-2 production or 

directly through T cell signaling and survival76.  

The role of APC in pTreg generation has also been scrutinized. In mice, APC such as lung 

resident macrophages have the ability to induce pTreg77. DC are also known to be highly 
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tolerogenic in certain circumstances and their depletion can lead to decreased Foxp3+ Treg 

numbers and increased Teff responses, suggesting a major role for DC-mediated Ag 

presentation in maintaining/ converting Treg in the periphery78, 19.  In the thymus, recent 

studies in mice have established that CD70 expression on mTEC and on DC enhances the 

positive selection of tTreg and promotes tTreg survival, suggesting an important role for 

CD27-CD70 in thymic Treg development promoted by DC and mTEC79. In sum, the 

conjuction of soluble factors in the microenvironment, namely TGF-β and IL-2, and 

antigen presentation by specialized APC seem to play play a critical role in pTreg 

generation. Illustrating the relevance of these interactions, for instance in the gut mucosa 

pTreg are generated with precise antigen specificities, resulting in a specialized pTreg 

subset able to control local inflammatory responses80.  

A large effort has been made towards the characterization of the Treg peripheral pool using 

recent identified markers. The comprehensive gene-expression analysis performed by 

Feuerer et al. to characterize murine Foxp3+ Treg generated under different conditions in 

vivo showed a remarkable heterogeneity between different populations, highlightening the 

true adaptive nature of pTreg81. Helios, an ikaros family transcription factor, was recently 

described as a specific marker for tTreg. According to Thornton et al., Helios is highly 

expressed on tTreg, responsible for approximately 70% of the peripheral Treg 

compartment17, and the authors suggested that Helios could be used to distinguish between 

tTreg and pTreg. Others have shown, however, that Helios is also upregulated in iTreg and 

pTreg as a result of T cell activation and proliferation18. Recently, Nrp1, a receptor for 

semaphorins and vascular endothelial growth factor (VEGF), has been suggested as a 

genuine marker for tTreg in mice69, 82. Functionally, the semaphorin-Nrp1 axis seems to 

play a role in maintaining Treg stability after TCR activation, by restraining Akt signaling 

via recruitment of phosphatase and tensin homolog (PTEN)83. Disappointingly, in contrast 

to murine Treg and regardless of their origin (blood, thymus, spleen, lymph node or tonsil), 

human Treg do not seem to specifically express Nrp-184. 

pTreg may have different functions from tTreg although some of them may be 

overlapping, and the features that differentiate tTreg from pTreg are not universally 

accepted. It has been previously postulated that tTreg are crucial in preventing 

autoimmunity and exaggerated immune responses whereas pTreg play a limited role in 
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these contexts. However, studies aimed directly at analyzing pTreg function in vivo have 

been few, owing to the lack of appropriate animal models. The functional analysis of 

pTreg has mostly been limited to mucosal tolerance, inflammatory responses to foreign 

antigens and animal models that may not reflect appropriate physiological conditions. In 

fact, most functional studies have utilized TGF-β-induced iTreg and have demonstated 

them to be protective85, 86. TGF-β-induced Ag-specific iTreg are highly efficient in 

controlling the onset of autoimmunity in murine model of autoimmune gastritis, through 

inhibition of DC functions and modulation of T cell trafficking87, 88. Interestingly, Haribhai 

et al. recently showed that murine tTreg were unable to suppress chronic inflammation and 

autoimmunity in the absence of pTreg89. In this model, tTreg alone were not sufficient to 

maintain tolerance when transferred into Foxp3-deficient mice. However, when 

conventional T cells were co-injected with tTreg, peripherally generated pTreg represented 

15% of Treg pool and acted in concert with tTreg to restore tolerance. Moreover, one of 

the most prominent functions of pTreg has been reported in the maintenance of fetal 

tolerance during pregnancy in murine studies. During pregnancy, pTreg are generated 

against a paternal alloantigen in a CNS1 dependent manner and enforce maternal-fetal 

tolerance. CNS1-deficient females exhibit increased embryo resorption accompanied by 

increased immune cell infiltration during allogeneic but not syngeneic pregnancy, which 

are features observed in human preeclampsia90. A similar phenomenon has been observed 

in human pregnancy, where Helios+Foxp3+ Treg are increased in the peripheral blood of 

healthy pregnant women when compared to non-pregnant controls or preeclamptic 

patients91. These results argue that pTreg serve as the predominant subset in suppressing 

the fetal-specific immune response and defects in pTreg may be central to the pathogenesis 

of preeclampsia92, 93. Recently, murine data have shown that Nrp1 deficiency impairs Treg 

stability under certain inflammatory conditions, but does not lead to spontaneous 

development of autoimmune disease94. Interestingly, it has been shown that Nrp1 is 

expressed by approximately 50% of Treg in the colon and 65% in the small intestinal 

lamina propria, suggesting a similar contribution of pTreg and tTreg to the intestinal Treg 

pool69. These findings support a more recent, conciliatory and interesting paradigm: pTreg 

are possibly generated to complement tTreg. Both populations seem to cooperate due to a 

mutual complementation of TCR repertoires, and contributions by both subsets are 

necessary to protect from disease development and maintain tolerance94.  

The different conditions in which pTreg can be generated additionally complicate the 



TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

	
  
13 

	
  

characterization of pTreg as a sole entity as well as the distinction between tTreg and 

pTreg, since heterogeneity of Treg populations may not only reflect the origin (thymus 

versus periphery) but also the context of the milieu94. Recently it has been shown that Treg 

can in fact undergo stimulus-specific differentiation regulated by transcription factors 

typically associated with the conventional CD4+ T cells differentiation. Initially interpreted 

as the result of lineage instability, these Treg seem to display unique migratory and 

functional properties, expressing transcription factors involved in regulation of the 

corresponding type of effector immune responses95. The first evidence of these specialized 

Treg came from findings showing that the expression of interferon regulatory factor (IRF) 

4, required for the differentiation of T helper (Th)2 and Th17 cells, is necessary for the 

control of Th2-driven autoimmunity96. Subsequently, different studies showed that (T-box 

transcription factor) T-bet and STAT3 expression in Treg control their migration and 

suppressive functions during Th1 and Th17 immune responses, respectively97, 98. This 

suggests the interesting possibility that the pTreg pool includes different subsets with 

unique properties, better equipped to deal with different effector immune responses.  

Finally, tissue-resident Treg, the so-called “tissular Treg”, are thought to display a unique 

phenotype that is reminiscent of the tissue microenvironment99. In the course of 

inflammation, Treg significantly increase in the relevant tissue, locally up to 50% of CD4+ 

T cells count. Tissular Tregs control inflammation locally and exhibit unique functions, 

such as limiting inflammation in the intestine and controlling insulin sensitivity in the 

fat100, 101. 	
  

At the end, a broader and accurate understanding of cellular heterogeneity and mechanisms 

of lineage stability and plasticity in human Treg may provide new insights into the role of 

Treg imbalance in disease pathogenesis and improve the development of optimized Treg-

based therapies. 

 

1.1.4. Molecular basis of Regulatory T Cells development and function 

There is substantial evidence that Foxp3, considered a master regulator of Treg function, 

unequivocally plays a critical role in the development and function of Treg10, 11. 

Notwithstanding, not all of the Foxp3+ T cells are functional suppressive Treg and Treg 
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signature molecules can be expressed, at least to a certain extent, in the absence of Foxp3. 

This suggests that Foxp3 expression per se is not the sole responsible for delineating stable 

functional Treg102. In agreement, proteomic analysis in Treg revealed that Foxp3 forms 

complexes with a number of co-factors, with a cooperative functional interaction between 

them103. Furthermore, combination of Foxp3 with several other transcription factors 

induces a common Treg-type gene expression pattern, which is not achieved solely by 

Foxp3 expression102. Recent data additionally suggests that the generation of functional 

and stable Treg requires complementary molecular events along with Foxp3 and its 

transcriptional partners expression. 

Epigenetic modifications, which include histone modifications, DNA methylation, 

microRNA (miRNA), nucleosome positioning, chromatin interaction and chromosome 

conformational changes, have been shown to play an important role in cell differentiation, 

particularly in cell-lineage stabilization104. Particularly relevant, DNA methylation and 

histone modifications, heritable through cell divisions, importantly contribute to cell-

lineage determination and maintenance. Regarding the process of methylation, genomic 

DNA is methylated by DNA methyltransferases (Dnmt) family members and it can be 

demethylated in different steps, such as methylcytosine hydroxylation mediated by ten 

eleven translocation (TET) family members 105. Histones modifications enabling gene 

activation or repression include acetylation or deacetylation, methylation or demethylation, 

and phosphorylation or dephosphorylation106. Although modifiable in the early stages of 

development, epigenetic features, particularly the DNA methylation status, become stably 

maintained throughout subsequent differentiation processes. Accordingly, particular 

specific loci epigenetic changes are also stably sustained in specific cell lineages, such as 

Treg107. 

Recently scrutinized in murine studies, Treg-specific epigenetic changes seem to cooperate 

with Foxp3 expression in lineage specification and functional stability of Treg. Work from 

several groups has established that epigenetic changes do take place in the course of Treg 

differentiation. For instance, DNA hypomethylation at the Foxp3 conserved non-coding 

sequence 2 (CNS2) has been suggested to be required for stable expression of Foxp3108. 

DNA demethylation also occurs within the genes accepted as composing the “Treg 

signature,” namely Foxp3, Ctal4, Ikzf2 (Helios), Ikzf4 (Eos), and Tnfrsf18 (GITR)108. 

Epigenetic components of Treg seem to participate in the definition of Treg-type gene 
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expression pattern, either independently of Foxp3 or cooperatively with Foxp3.  

Based on murine studies, it has been suggested that epigenetic changes specific of Treg 

development are not induced in response to TCR or TGF-β stimulation102. Accordingly, in 

vitro generated iTreg show the lack of Treg-specific DNA hypomethylation, which has 

been associated with the lack of a significant part of Treg-type gene expression and 

stability of Treg signature molecule expression102. Nevertheless, in humans it has been 

shown that iTreg with a partially methylated Treg-specific demethylated region (TSDR) 

displayed stability and suppressive function consistent with a Treg phenotype109. The role 

of epigenetic imprinting in stabilizing the Treg phenotype is, therefore, controversial. 

Accordingly, in a mouse model of autoimmunity, experimental autoimmune 

encephalomyelitis (EAE), it has been recently shown that, although the majority of 

polyclonal and Ag-specific Treg stably expressed Foxp3 during the autoimmune response, 

a substantial fraction of antigen-specific Treg with “signature” features (Foxp3hi, CD25hi, 

demethylated TSDR) downregulated Foxp3 transcription, lost Foxp3 expression and 

acquired effector T cell characteristics, such as interferon gamma (IFN-γ) production and 

pathogenic potential in vivo 110. These recent findings suggest that, although Treg-specific 

epigenetic changes contribute to Treg stability, probably they are not the sole determinants 

and even absolutely required for a stable Treg phenotype. Possibly, additional extrinsic 

signals are also important for controlling Foxp3 expression and maintaining stable and 

functional Treg, an issue requiring further clarification.  

Moving on from epigenetic intrinsic modifications to molecular extrinsic inputs, previous 

findings indicate that metabolic-signal-dependent transcriptional regulation would be 

important for lineage choices. For instance, hypoxia-inducible factor 1 (HIF-1), a key 

metabolic sensor, has been shown to participate in the balance between Treg and Th17 cell 

differentiation in mice and humans111,112. Similarly, murine data have shown that 

complement fragments also affect the balance between Th17 and Treg113. In fact, signaling 

through the G-protein-coupled receptors for the complement fragments C3a and C5a in DC 

and CD4+ T cells enhances Th17 cell induction113. Conversely, when signals from C3aR 

and C5aR are inhibited in CD4+ T cells, signal reduction in the PI3K-Akt-mTOR pathway 

and an increase in autocrine TGF-β signaling enhance Foxp3+ iTreg generation113. 

Additionally, Foxo transcription factors, which integrate extrinsic signals to regulate cell 

division, differentiation, and survival, have a pivotal role in the development of both 
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thymic and induced Treg114. Hence, extracellular stimulation seems to play an additionaly 

important role in the stability and plasticity of Foxp3+ Treg.  

Interestingly, in mice it has been demonstrated that T-bet+ Treg, a Treg subpopulation with 

particular functions, is induced in a STAT1-dependent manner upon exposure to either 

IFN-γ or IL-27 and that each cytokine has distinct roles in driving T-bet+ Treg at 

inflammation sites 115. Some authors have investigated the molecular pathway leading to 

the upregulation of T-bet within Foxp3+ Treg and the possible mechanisms by which T-

bet+ Treg function is maintained under Th1 cell-polarizing inflammatory environments in 

mice. It has been demonstrated that activation of STAT1 by IFN-γ derived from activated 

Th1 cells induced T-bet expression in Treg; notwithstanding, and despite similar induction 

of CXCR3 expression in both Foxp3+ and Foxp3− T cells via T-bet activation, the levels of 

IL-12 receptor expression were different between the two populations116. The expression 

of interleukin 12 receptor beta subunit  (IL-12Rβ2), which is induced in naive T cells upon 

STAT1 and T-bet activation, was refractory to T-bet expression in Foxp3+ Treg in part 

because of altered epigenetic status of the IL12rb2 locus in Treg. This prevents T-bet+ Treg 

from completing IL-12-STAT4-dependent Th1 cell differentiation and thereby ensuring 

the maintenance of stable Treg suppressive function116. Besides stressing the importance of 

cytokine-induced Treg differentiation in the periphery, these findings reinforce the 

importance of environmental cues on Treg differentiation through epigenetic 

modifications. Hence, changes in environmental stimuli and similar in vitro manipulation 

of non-regulatory T cells may alter the gene expression and histone modification and 

render highly differentiated Treg adaptive to the environment102.  

 

1.1.5. Homeostasis and Stability of Regulatory T Cells  

Immune tolerance depends on the adequate homeostasis of immunosuppressive Treg. The 

stability of tTreg and pTreg has crucial importance for maintaining immune homeostasis in 

a dynamic environment and has been the subject of deep controversy117, 118, 119. Recent 

work has shown that Treg numbers and function are controlled by unique signals in 

different tissue environments, suggesting a homeostatic subdivision in Treg populations 

based on their localization120.  
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A number of extrinsic factors have been identified as affecting Treg stability, some of them 

discussed in the previous chapter. The role of different cytokines in this phenotypic and 

functional balance has been widely discussed. The IL-2 axis is a key determinant for Treg 

stability, as stressed in several murine studies121. IL-2 expression is for instance altered in 

the Non-obese Diabetic (NOD) mouse model, which might contribute to Treg instability 

and autoimmune diabetes triggering121. IL-2 is known to be crucial for continued, stable 

expression of Foxp3 in murine Treg122 and polymorphisms in loci containing IL-2 

responsive genes are highly associated with Type 1 Diabetes (T1D) incidence, which may 

be a consequence of the Treg instability in the inflamed pancreas123. In humans, IL-2 has 

been also demonstrated to play a major role in Treg homeostasis. For instance, the 

presence of an IL2Rα  haplotype associated with T1D correlates with diminished IL-2 

responsiveness in Ag-stimulated CD4+ T cells and is associated with lower levels of 

FOXP3 expression by Treg and a reduced suppressive capacity124. Recently, it has been 

also shown that reduced Treg numbers in patients with primary sclerosing cholangitis are 

associated with polymorphisms in the IL2Rα  gene125. 

IL-6 is implicated in the abrogation of Treg-mediated Teff control in vitro126, by 

destabilizing Foxp3 expression within these cells127 with consequent reprogramming of 

Foxp3+ Treg into IL-17-producing cells in vivo128. The opposite effect has been reported 

for the anti-inflammatory cytokine IL-10, which is important in maintaining high Foxp3 

expression in Treg during colonic inflammation129. These are interesting observations since 

both IL-6 and IL-10 signaling depend on the activation of STAT3. In the absence of 

STAT3, Treg function is abrogated: Treg-specific STAT3 deficiency results in loss of 

immune homeostasis and the selective alteration of genes implicated in Treg suppressor 

function, such as IL-10, Ebi3 and TGF-β97. The resultant opposing effects are partially 

explained by the fact that IL-10 also induces suppressor of cytokine signaling protein 

(SOCS) 3 expression that suppresses the IL-6 signaling pathway, and is important for 

maintaining a regulatory phenotype. The relative level of expression of transcription 

factors, modulated by extracellular signals, will ultimately determine the maintenance of 

the Treg phenotype. Interestingly, germline STAT3 gain-of-function mutations in humans 

have been recently associated with secondary defects in STAT5 and STAT1 

phosphorylation and Treg compartment, resulting in lymphoproliferation and early-onset 

multiorgan autoimmunity130. 
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Other controversial issue regarding Treg homeostasis, as discussed above, is the “lineage” 

stability and maintenance of function. This issue of cell lineage stability is obviously 

critical for Treg because they readily undergo robust cell expansion upon activation in 

lymphopenic and lymphoreplete hosts, and mediate potent regulatory activity in lymphoid 

and nonlymphoid sites under a variety of inflammatory and metabolic changes. Human 

data is obviously scarce owing to in vivo studies methodological constraints. Murine 

studies have, nevertheless, provided some important insights into this controversial issue. 

Whereas some studies have observed long-lasting Treg function, recent studies suggest 

that Treg adapt to microenvironmental changes and consequently manifest functional 

plasticity by reprogramming into inflammatory T cells131, 132, 109. The potential to visualize 

in murine models cells that had previously expressed Foxp3 but lost it, the so called 

“exFoxp3” cells, was described recently133. Zhou et al., using two yellow fluorescent 

protein (YFP) reporter mouse strains, either in mixed or NOD background, showed that 

YFP+green fluorescent protein (GFP)-exFoxp3 cells could be detected in the spleen and 

lymph nodes. More importantly, the number of Treg that down-regulate GFP in the YFP+ 

exFoxp3 population was significantly increased during inflammation133. It was in fact 

reported that 10-15% of Foxp3+ cells lose Foxp3 protein expression and that a subset of 

these acquired the capacity to secrete IFNγ or IL-17. Furthermore, the YFP+ Foxp3− GFP− 

exFoxp3 cells are enriched in the inflamed pancreas of NOD mice at the onset of 

autoimmune inflammation133. Therefore, some studies have challenged the concept of a 

stable and committed Treg lineage and have suggested that Treg lineage commitment is 

not irreversible119. Still, it remains unclear whether Treg reprogramming is imprinted 

during normal T cell development or is an adaptation mechanism of subsets of cells 

responding to changes in homeostatic or inflammatory conditions in the extracellular 

environment.  

The notion that Treg can become unstable or be reprogrammed was however recently 

challenged in a study using a different Foxp3 lineage tracer mice134. In this system, GFP-

Cre-mutated human estrogen receptor fusion protein was knocked-in to the endogenous 

Foxp3 locus (Foxp3GFP-Cre-ERT2). Foxp3-driven Cre translocated to the nucleus only 

after ligand binding by tamoxifen. Thus, Cre-recombinase functioned in a temporally 

controlled manner. As a consequence of Foxp3GFP-Cre-ERT2 activation, a labeled subset 
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of Treg could be followed in terms of stability. In this setting, the investigators found 

>96% of the labeled Treg remained Foxp3-GFP+ under normal conditions and observed a 

decrease in Foxp3 expression only under a lymphopenic setting. They studied the labeled 

polyclonal Treg in an infectious model and TCR transgenic Treg in NOD mice, concluding 

that there was minimal Foxp3 loss and no inflammatory cytokine production in Treg or 

exFoxp3 cells. Therefore, and probably due to methodological constraints, the issue of 

Treg (in)stability remains quite debatable and controversial. 

It has been also proposed that Treg are a heterogeneous pool and only a minor 

uncommitted population retains the capacity to be reprogrammed. Supporting this 

hypothesis, the loss of Foxp3 expression within Treg in lymphoreplete recipients was 

suggested to be restricted to a Foxp3+ Treg subset expressing low levels of CD25 (i.e., 

Foxp3+CD25Low), in contrast to the CD25high fraction, which displayed a stable 

phenotype117. Despite reports supporting this so-called “heterogeneity model”, a more 

recent study demonstrated that Treg that maintain Foxp3 expression and resist 

reprogramming in a lymphopenic host, and therefore represent a stable population, will 

subsequently lose Foxp3 expression to the same extent as Foxp3+ ex vivo, if reintroduced 

into another lymphopenic recipient117. Future lineage fate-maping studies aimed at 

reassessing Treg reprogramming potential in different environments, are needed in order to 

further clearify this issue. 

Along with the question of Treg stability and reprogramming, the functional fate of 

reprogrammed Treg is still unclear and may depend on the conditions triggering the loss of 

Foxp3 expression. Some studies propose that such cells lose the capacity to suppress Teff 

proliferation in vitro, lose the expression of Treg markers and become effector-like (with 

the potencial to produce IL-17, IFN-γ and IL-2), contributing to pathology in different 

inflammatory settings117. This is supported by the fact that tTreg bear TCR with high 

afinity to self-antigens and therefore with the potential to become autoreactive upon loss of 

Foxp3 expression117. Contrary, other reports propose a beneficial role for newly emerged 

Foxp3low/– cells. For instance, in the gut environment and in response to environmental 

cues in Peyer's patches, reprogrammed Treg reprogram into follicular helper T cells (Tfh), 

participating in germinal center reactions and promoting immunoglobulin A (IgA) 

production in the gut135. Moreover, as stated above, recent studies have demonstrated that 

Treg use canonical Th cell-associated transcription programs in order to maintain or 
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restore immune homeostasis during polarized Th1-, Th2- and Th17-driven immune 

responses. In response to IFN-γ Treg upregulate T-bet, the Th1 lineage transcription and T-

bet+ Treg accumulate at sites of Th1-type inflammation factor136, 137. Similarly, IRF4 

expression by Treg is involved in controling IL-4 production by CD4+ T cells and is 

required for Treg mediated-control of Th2-type immune responses96. Additionally, deletion 

of the transcription factor STAT3 in Treg results in development of spontaneous fatal 

intestinal inflammation due to a selective dysregulation of Th17 responses and excessive 

IL-17 production97. 

Although the mechanisms by which T-bet, IRF4 and STAT3 control Treg performance 

during Th1, Th2 and Th17 responses are still unclear, it has been suggested that they 

probably impact on Treg migration, function and homeostasis136. In fact, Treg deficient in 

T-bet, IRF4 or STAT3 display reduced expression of chemokine receptors implicated in 

Treg migration during Th1- (CXCR3), Th2- (CCR8) or Th17- (CCR6) mediated responses, 

enfasizing the important of these effector transcriptional Treg features98, 96, 97. Moreover, 

Treg lacking T-bet, IRF4 or STAT3 show reduced expression of IL-10, suggesting that 

loss of these transcription factors may also impact on the functional properties of Treg98, 96, 
97. Finally, loss of T-bet expression resulted in impaired proliferation and accumulation of 

Treg cells during Th1-type inflammatory responses, suggesting a possible additional 

impairment in Treg survival and proliferation in a highly polarized Th1-type setting98.  

Although the teleological reason for Treg reprogramming is still under discussion, recent 

findings suggest that it possibly enables the modulation of Treg response to the different 

inflammatory contexts as well as promoting a balanced response to pathogens. It seems 

indeed that reprogrammed Treg may hence in particular contexts acquire the 

transcriptional armament of Teff not only to better control the specific effector response 

but also to produce inflammatory cytokines that will contribute to pathogen clearance 

(Figure 4). 
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Figure 4: Peripheral naïve CD4+ T cell differentiation is controlled by cytokine signaling. 

Schematic representation of the Teff transcriptional program coopted by Treg for a tailored 

suppression of immune responses. Chaudhry A. and Rudensky A. The Journal of Clinical 

Investigation. 2013.95 

 

1.1.6. Effector Mechanisms of Regulatory T Cells 

Treg are known to employ manifold contact-dependent and soluble effector mechanisms 

within the tissues and draining lymph nodes in order to inhibit both the innate and adaptive 

arms of the immune response138. Their supressive function involves several distinct 

mechanisms, such as metabolic disruption of the target cells (e.g. IL-2 and cyclic 

adenosine monophosphate (cAMP) expression), modulation of the cytokine 

microenvironment (via production of e.g. IL-10, TGF-β and IL-35), direct cytolysis of 

antigen-presenting or effector cells, or direct alteration of dendritic cell maturation and 
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activating capacity (e.g. CTLA-4 and Lymphocyte-activation gene 3 (LAG3))138, 139 

(Figure 5). These mechanisms will be further discussed below. 

 

Figure 5: Mechanisms of Treg-mediated suppression. Schematic representation of the 

different mechanisms employed by Treg to restrain effector T cell responses. Schmidt et al. 

Front Immunol. 2012.140 

 

Most of the knowledge regarding Treg effector mechanisms derives from in vitro studies. 

These mechanisms may also operate in vivo depending on the target cell type and 

activation status as well as the location, cytokine and microorganism milieu of the immune 

reaction. The relevance of each mechanism seems therefore to be context dependent and 

distinct suppressor mechanisms may predominate in particular tissue and inflammatory 

settings.  

 

IL-2 consumption by Treg, due to their high CD25 expression, has been firstly proposed as 

a major suppressive mechanism used by Treg141. Contrary to Teff, Treg don’t produce IL-
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2. However, IL-2 has been clearly implicated in Treg generation and homeostasis141.  

Lenardo et al. proposed that Treg induce IL-2 deprivation-mediated apoptosis in mouse 

Teff, relying on close proximity between the cells142. In contrast to these results, Vignali et 

al. data showed no cell death induction by Treg143. Szymczak-Workman et al., using 

responder Teff resistant to cytokine withdrawal-induced apoptosis due to either Bim 

deficiency, Bim/Puma double deficiency or Bcl-2 overexpression, showed that Treg 

suppression is independent of apoptosis induction in vitro and in vivo assays. Thornton et 

al., among others, have shown that exogenous IL-2 could arrest Treg-mediated suppression 

of proliferation and/ or of IL-2 production in vitro, which corroborates the importance of 

Treg IL-2 consumption by Treg in the suppression of effector responses144. 

Notwithstanding, Tran et al. have shown that IL-2 consumption does not result in 

suppression of proliferation during inhibition of murine Teff by human Treg145. 

Additionally, human CD25 blockage did not abrogate suppression under optimal 

stimulation conditions by human Treg145. Oberle et al. found that, although exogenous IL-2 

partially abrogated suppression of Teff proliferation by human Treg, rapid suppression of 

IL-2 transcription by human pre-activated Treg was not affected, suggesting different 

suppression mechanisms controlling proliferation and cytokine transcription. These 

discrepancies in the effect of IL-2 on IL-2 expression may depend on time, species, IL-2 

amount and cellular activation status. Overall, the role of IL-2 consumption in Treg-

mediated supression remains controversial, and probably depends on the particular 

scenario and stimulation conditions of the cells.  

In what concerns other supression mechanisms through metabolic disruption of target 

cells, additional cell-surface molecules such as CD39 and CD73, two ectoenzymes highly 

expressed on murine Treg, have also recently been implicated in Treg function. They 

mediate the generation of adenosine and the extrusion of cAMP, therefore contributing to 

the metabolic disruption of target cells146. The ectoenzyme CD39, expressed by all murine 

Treg and by about 50% of human Treg, uses the hydrolysis of extracellular adenosine 

triphosphate (ATP) to adenosine diphosphate (ADP) or cAMP as another Treg-mediated 

anti-inflammatory mechanism147. CD39 knockout Treg showed reduced suppressive 

capacities in vitro and in vivo148. In human Treg, CD39 expression was suggested to 

identify a highly suppressive Treg subset149 and suppression of Teff proliferation by this 

subset could be partially abrogated by blockage of ectonucleotidase activity149. CD73, 
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expressed by murine but not human Treg, further degrades AMP to adenosine150. 

Adenosine signaling initiated by Treg directly inhibits the proliferation of Teff and 

additionally negatively impacts the function of DC. Therefore, generation of adenosine 

seems to play an important role in the suppressive function of particular Treg subsets.  

Several secreted molecules identified by gene expression studies have been implicated in 

Treg suppressive function, including IL-10, IL-35, granzyme B, IL-9, and TGF-β146, 138. 

IL-10 is tipically associated with the imunossupressive function of other regulatory subset, 

Tr1151. Nevertheless, it is also an important effector cytokine essential for proper Treg 

function. IL-10 plays an important role in restraining overactivation of APC for instance in 

the gut129. The importance of IL-10 in Treg function in vivo has been extended to infection 

and EAE models152. Although different cell types are capable of producing IL-10, Treg 

represent an important source in the control of intestinal inflammation. Indeed, a high 

proportion of Treg in the intestine (30–50%) produce IL-10 under steady-state 

conditions153. More recent studies suggest IL-10 may also function in an autocrine manner 

to preserve Treg function154. The precise mechanism underlying the IL-10 receptor 

signaling-mediated promotion of Treg function is still not known; it may either preserve 

Foxp3 expression and thereby lineage stability under inflammatory conditions or it might 

be necessary to sustain IL-10 expression by Treg, both required for Treg-mediated control 

of pathogenic inflammatory responses, particularly in the gut155. 

IL-35 constitutes a recently discovered member of the anti-inflammatory cytokines 

secreted by murine Treg140. Although not constitutively expressed by human Treg, IL-35 

may also play a role in human immunosuppression, as treatment of naïve human or mouse 

T cells with IL-35 induced a regulatory population that mediated suppression via IL-35 but 

did not required IL-10, TGF-β or Foxp3156. Moreover, these iTreg were strongly 

suppressive in several in vivo mouse models156. 

One important mechanism through which Treg contribute to immune homeostasis is their 

capacity to secrete and activate TGF-β. TGF-β knock-out, similarly to Foxp3 deficient 

mice, develop a fatal wasting syndrome leading to early death at around 20 days of age157. 

Expression of TGF-β by CD4+ T cells is especially important at mucosal sites as mice with 

a T cell-specific deletion of the TGF-β1 gene showed a more attenuated disease phenotype, 

with later onset (6 months of age) and confinement of pathology to the colon, lung and 

liver158. Bioavailability of TGF-β is tightly regulated by secretion, cleavage and activation 
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of the TGF-β inactive precursor molecule159. Importantly, Treg themselves are capable of 

cleaving TGF-β160. Human and mouse Treg express high amounts of the integrin αvβ8, 

which enables them to activate latent TGF-β161. Particularly in the intestinal lamina 

propria, DC are capable of activating pro-TGF-β via their expression of integrin αvβ8, a 

crucial mechanism to preserve intestinal homeostasis162. Recently, it has been shown in 

murine studies that Treg-cell-specific deletion of integrin αvβ8 results in uneffective 

suppression of pathogenic T cell responses during active inflammation161.  

 

Cytolysis of target cells as a mechanism of suppression by Treg was first proposed because 

of the finding that, in human Treg, granzyme A can be induced by a combination of CD3 

and CD46 stimulation, resulting in the induction of apoptosis of activated target cells163. 

Later, several groups reported that granzyme B (but not granzyme A) is highly upregulated 

in mouse Treg. Upon activation, murine Treg can kill either responder T cells or APC in a 

granzyme B-dependent manner in vitro164. These findings have been further confirmed by 

in vivo studies in which granzyme B has been shown to be critical in maintaining Treg–

dependent long-lived skin graft tolerance as well as in Treg–mediated suppression of 

tumor clearance165, 166.  

 

Regarding direct alteration of DC maturation and activation capacity, several cell-surface 

molecules were proposed to play a role in Treg–mediated suppression. CTLA-4, a Treg–

specific molecule, is enrolled in Treg cell–mediated suppression function, additionally to 

its important cell-intrinsic role in limiting activated T cell responses146. CTLA-4 is 

constitutively expressed in murine and human Treg and exposed on the cell surface upon 

activation167, 75. A role for CTLA-4 in suppression in vivo has been suggested, since 

CTLA-4 deficiency or blockade in mice results in spontaneous autoimmunity, mitigated by 

Treg transfer168. In addition, CTLA-4 blockade abrogates the protective effects of Treg in 

murine colitis models169. Nonetheless, CTLA-4 deficient Treg are still able to suppress 

through compensatory mechanisms, involving TGF-β and IL-10 in vitro and in vivo170. 

Similarly, data in human Treg are not consentual: in some in vitro studies, CTLA-4 is not 

involved in Treg-mediated suppression171, contrary to others showing partial abrogation of 

suppression by CTLA-4 blockage172. These discordant data may rely on the possible 
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involvement of CTLA-4 in some, but not all aspects of suppression. Schmidt et al. showed 

that rapid Treg-mediated suppression of cytokine transcription in human Teff was 

unaffected by CTLA-4 blockage, irrespective of the presence of APC, while suppression of 

proliferation in the presence of APC was partially dependent on CTLA-4140. Recently, the 

molecular mechanism of Treg-mediated suppression via CTLA-4 was elucidated in more 

detail in murine models. In BALB/c mice, known for intrinsic susceptibility to various 

immune-mediated disorders, it has been suggested that the reduced suppression capacity of 

CTLA-4-deficient Treg is due to their inability to downregulate CD80 and CD86 via trans-

endocytosis173. The enzyme indoleamine 2,3-dioxygenase (IDO), responsible for 

catalyzing degradation of tryptophan to kynurenine, is expressed by some human and 

murine DC subsets, resulting in Teff starvation and direct cell cycle arrest. Concomitantly, 

IDO leads to iTreg generation174. Additionally, Treg themselves can increase IDO 

expression in DC through CTLA-4-induced signaling. The importance of CTLA-4 in Treg-

mediated suppression is therefore undisputed, although requiring cooperation with other 

suppressive mechanisms and probably different between species. In fact, it has been 

recently shown that CTLA-4 expression on Treg from Rheumatoid Arthritis  (RA) patients 

is significantly reduced and result in an abnormal Treg function175. Importantly, CTLA-4 

blockage has already shown promising outcomes in clinical trials for metastatic melanoma, 

presumably due to its effects on both Teff and Treg176.  

LAG3, a CD4 homolog that exhibits high binding affinity for MHC class II, is an 

additional molecule suggested to be required for maximal suppressive activity of both 

thymic and peripheral-derived Treg in murine studies177. Engagement of a MHC molecule 

on immature DC through LAG3 led to the inhibition of their maturation and co-stimulatory 

capacity177. The long-lasting Treg interactions with DC were also shown to be facilitated 

by Nrp1, a molecule highly expressed by most murine Treg. Moreover, blockade or 

ablation of Nrp1 alters Treg suppression function146, 178. 

Recently, it has been shown that murine Treg lacking P-selectin glycoprotein ligand-1 

(PSGL-1) expression were unable to suppress EAE and failed to inhibit T cell proliferation 

in vivo in lymph nodes179. PSGL-1-deficient Treg lost the ability to modulate T cell 

movement and failed to inhibit the T cell-dendritic cell contacts and T cell clustering, 

essential for sustained T cell activation during the late phase of the immune response179. 

However, PSGL-1–deficient Treg were still able to suppress early T cell priming soon 
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after Ag challenge, possibly meaning that Treg use phase-specific mechanisms to control 

immune responses179. Thus, PSGL-1 has been suggested as a novel phase-specific 

mechanism for Treg-mediated suppression179.  

 

Finally, plasticity between CD4+ T cell subsets might be higher than originally anticipated 

and the stability of the Treg lineage in vivo is highly controversial134. As above mentioned, 

recent studies have suggested that Treg may be specialized in the suppression of a 

particular CD4+ T cell subset by expressing its hallmark transcription factor. In this regard, 

it was shown that a Treg subset upregulated T-bet in response to IFN-γ, which was 

essential for the control of Th1-mediated inflammation98. Similarly, IRF-4 expression in 

Treg was required for suppression of Th2 responses96. Moreover, expression of STAT3 in 

Treg was crucial for the control of Th17-mediated intestinal immune responses97. 

However, the mechanism through which Treg supposedly suppress through these effector 

transcription factors is still unclear, and may involve competition for limiting factors. 

 

1.1.7. Regulatory T Cells in Autoimmune Settings 

Since long time ago, T cell-mediated suppression was suggested to be involved in the 

mechanisms that maintain immunologic tolerance and self-/ non-self-discrimination1. This 

raised the hypothesis that in autoimmune diseases autoreactive Teff responses overwhelm 

the capacity of a weakened Treg compartment, placing the regulatory subset as a crucial 

player in autoimmune pathology. A number of genetic and mechanistic defects have in fact 

been suggested to lead to defective regulation by Treg, with resulting imbalance in the 

immune system (Table 1).  
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Table 1: Potential defects leading to autoimmune disease. Adapted from Brusko. Immunol 

Rev. 2008.180 

 

Several models of systemic autoimmunity have shown that Treg impairment contributes to 

the development of autoimmune disease10. Similarly, numerous studies of phenotypic 

and/or functional characterization of Treg in several human AID (e.g. RA, Systemic Lupus 

Erythematosus (SLE), Primary Sjogren’s syndrome, anti-neutrophil cytoplasmic antibodies 

(ANCA)-associated vasculitidies, Inflammatory myopathies, Systemic sclerosis, T1D, 

Multiple Sclerosis (MS), Autoimmune Hepatitis, Psoriasis) have shown decreased Treg 

numbers or compromised function180. Studies in a variety of autoimmune scenarios have 

also shown that, besides defective Treg number and/or function, pro-inflammatory 

cytokines present at the site of inflammation may abrogate the suppressive activity of 

Treg181 or cause Teff to become resistant to suppression182. In agreement, it has been 

recently shown that Treg from MS patients expressed higher levels of toll-like receptor 

(TLR) 2 and that stimulation with the synthetic lipopeptide Pam3Cys, an agonist of 

TLR1/2, reduced Treg function and induced Th17 skewing183. 

Treg have also the capacity to halt or reverse autoimmunity in a large number of 

experimental settings184, and the first clinical trials consisting in the adoptive transfer of 

human Treg in T1D are currently ongoing, with promising preliminary results185. 
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Reinforcing the central importance of Treg in immune homeostasis and their critical role in 

regulating autoimmunity, several immune-related gene variants and pathways that increase 

the risk for autoimmunity are shared among several AID, constituting a general 

“autoimmune signature”186. Strikingly, many of these genes encode molecules involved in 

peripheral tolerance and in many cases, proteins implicated in Treg function. These include 

the IL-2/ CD25 axis, CTLA-4, and protein tyrosine phosphatase, non-receptor type (PTPN) 

22187, 188, 189. These results strongly reinforce the potential use of drug therapies that 

promote Treg generation as well as the adoptive immunotherapy of autologous Treg in 

patients with autoimmunity to correct the established immunological imbalance.  

In the spectrum of systemic autoimmune pathologies, diseases such as SLE are interesting 

potential targets for Treg intervention, evolving through periods of relapse and remission 

and making it possible to intervene at different time-points of disease severity. SLE is a 

multisystemic chronic inflammatory/ autoimmune disease in which organs and cells 

undergo damage mediated by tissue-binding autoantibodies and immune complexes. It is 

characterized by inflammation and damage of various tissues including the joints, skin, 

kidneys, heart, lungs, blood vessels and brain. Animal models of SLE have suggested that 

reduced numbers of Treg may underly the physiopathology of SLE. In humans, the 

majority of studies showed a decrease in the number of FOXP3+ T cells or a disturbancy of 

their function190, 191, 192, giving great therapeutic potential to Treg-based cellular therapies 

in SLE. Some studies have, however, described unaltered or even increased proportions of 

Treg in SLE patients. Possible reasons for these controversial observations have been 

suggested: among them, the lack of a reliable and specific Treg marker at least in humans 

and in particular under conditions of T cell activation, as well as the different methods 

used for the isolation of Treg190.  

In SLE, the interaction between environmental, transcriptional and epigenetic modulation 

targeting Treg function is also evident. Several miRNAs have been linked to the abnormal 

development and function of Treg146.  Interestingly, miRNA-155 is upregulated in Treg 

from MRL/ lpr mice as compared to non-autoimmune mice, resulting in a reversible 

phenotypic alteration and deficient suppressive capacity193. Moreover, miRNA-31 that 

negatively regulates FOXP3 expression by directly binding to the 3′ UTR of FOXP3 

mRNA is upregulated in SLE-prone mice194. Additionally, it is known that cAMP is 

critical for the suppressive capacity of Treg. Notably, miRNA-142-3p downregulates 
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adenylyl cyclase 9 mRNA and its elevated expression leads to decreased cAMP levels in 

Treg and consequently to their abnormal function195. Hence, miRNA-31, miRNA-155 and 

miRNA-142-3p contribute to SLE pathogenesis by cooperatively affecting the 

development and function of Treg. 

Thus, in autoimmune scenarios, where imbalance between autoreactive Teff and protective 

Treg has been clearly established, the adoptive use of expanded/ induced Treg can 

supersede the classical Teff blocking approach with immunosuppression and its inherent 

physiologic risks and toxicity.  

 

1.1.8. Therapeutic potential of Treg-based cellular therapies 

The potential of harnessing Treg as immunotherapy in distinct clinical settings is 

compelling. Treg application for immunotherapy is supported by solid pre-clinical data, 

with the recent emergence of safe and efficient protocols in different clinical scenarios 

requiring induction of clinical tolerance. Strategies involving the adoptive transfer of ex 

vivo expanded Treg and the in vivo manipulation to expand circulating Treg are currently 

promising approaches in order to treat inflammatory, autoimmune and alloimmune 

conditions.  

The concept of adoptive cell transfer arose in the mid- 1950s in order to manipulate 

immune responses in the field of cancer therapy196. Adoptive cellular therapies have been 

used since then in different clinical scenarios, such as human immunodeficiency virus 

(HIV) infection197 and autologous/ allogeneic stem cell transplantation198. A similar 

approach specifically involving transfer of Treg has been further employed to modify the 

immune response in autoimmune scenarios. Adoptive transfer of autologous Treg appears 

to provide most of the benefits of efficient immunossupression, without the adverse effects 

of standard imunossupressive drugs and it is, in fact, considered a method for so-called 

“intelligent imunossupression”185.  

Atopy is an intricate immune disorder characterized by Th2-predominant inflammation, 

production of allergen-specific IgE, attraction of pro-inflammatory cells and degranulation 

of effector cells (e.g., mast cells)199. Recent literature supports an important role for Treg 

in maintaining allergen tolerance in healthy individuals and an imbalance between Treg 
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and Th2 cells has been shown to drive an atopic phenotype199. In this context, the E3 ligase 

Itch has been recently pointed out as a critical protein in the control Th2 inflammation by 

Treg200 and may hence constitute a therapeutic target in atopic disease. Allergen-specific 

desensitization immunotherapy decreases allergen-specific T-cell proliferation, Th2-type 

cytokine production and inflammatory cell activity201 and it has been shown to involve the 

in vivo induction/ expansion of FOXP3+ T cells202. Although clinical trials involving the 

adoptive transfer of Treg in allergic settings are not yet in course, protocols aiming the 

expansion of allergen-specific Treg may potentially improve clinical outcomes in atopic 

patients, particularly in the ones with severe asthma non-responding to current available 

therapy. 

Graft-versus-host disease (GVHD) is the consequence of donor T cell-mediated systemic 

inflammation that prevails over immune regulatory mechanisms in the setting of allogeneic 

hematopoietic stem cell transplantation (HSCT)203. When donor (i.e., graft) cells recognize 

host cells as foreign and trigger a systemic inflammatory reaction, overt clinical disease 

emerges. Notwithstanding the routine use of post-HSCT immunosuppressive 

pharmacotherapy with the purpose of silencing T cell alloreactivity, tissue damage often 

occurs. Treg from HSCT donors are easily available, making Treg immunotherapy 

protocols particularly achievable. Accordingly, ex vivo expanded human Treg have been 

shown to prevent rejection of skin alografts, transplant arteriosclerosis and GVHD in 

humanized mouse models204. Beyond preclinical studies, Trzonkowski et al. reported the 

first two cases of ex vivo-expanded donor-derived Treg successfully treating post-HSCT 

GVHD205. Brunstein et al. demonstrated the safety profile and efficacy of human umbilical 

cord blood (UCB)-derived partially human leucocyte antigen (HLA)-matched ex vivo-

expanded Treg in reducing the incidence of grades II–IV GVHD in 23 patients compared 

with 108 controls in a phase I dose-escalation trial206. These investigators isolated Treg 

with anti-CD25 magnetic beads, expanded them with anti-CD3/ CD28 microbeads and 

recombinant human (rh)IL-2 and infused the expanded Treg at the time of HSCT (Figure 

6). Di Ianni et al. used adult expanded Treg isolated from the same HLA-haploidentical 

donor to address the efficacy and safety of this strategy in the prevention of chronic GVHD 

in 28 patients undergoing HLA-haploidentical HSCT for high-risk acute leukemia, with 

enthusiastic results207. In fact, only 2 of 28 patients developed chronic GVHD. Several 

other clinical trials exploring human Treg adoptive therapy for prevention and/ or 
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treatment of GVHD are currently ongoing. For instance, it is currently ongoing a phase 1/2 

clinical trial registered at the United States (US) National Institute of Health (NIH) for the 

treatment of steroid-refractory GVHD after an allogeneic transplant of hematopoietic 

progenitors with donor CliniMACS-selected Treg (João F. Lacerda, Instituto de Medicina 

Molecular, Lisboa). At Nanjing Medical University (Ling Lu), it is in course a trial which 

involves the generation of donor alloantigen-specific Treg from peripheral blood of pre-

transplant patients and the administration of Treg at several time-points (for graft-specific 

tolerance induction), among others. 

 

 

Figure 6: Adoptive transfer of Treg. Schematic representation of a strategy to isolate, 

expand and infuse Treg. Singer et al. Front Immunol. 2014.208 

 

Supporting the potential of targeting Treg in autoimmune pathology, this subset was 

demonstrated to be either decreased in proportion and/or dysfunctional in several 

Autoimmune Diseases (AID)10, 209. Numerous studies have demonstrated diminished 

numbers of peripheral blood Treg in patients with autoimmune conditions and an 

association of Treg deficit with disease development210. Moreover, redistribution of the 

Treg population to the tissue compartment does not completely explain the association 

between peripheral blood Treg deficiency and disease development192. Intensely 

scrutinized, failure to control islet-specific conventional T cells results in T1D. The risk of 
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T1D increases with the loss of FOXP3-expressing Treg and Treg adoptive transfer to NOD 

mice can prevent the development of T1D211. The first clinical trials with the adoptive 

transfer of human Treg in T1D are currently ongoing, with promising preliminary 

results185. In this regard, Trzonkowski et al. have revealed the first results of their work. 

They have infused ex vivo expanded Treg in 10 children with recent-onset T1D and found 

higher C-peptide levels and lower insulin requirements in treated children, with 2 

individuals remaining independent of exogenous insulin eleven months after diagnosis185. 

These results reinforce the promising expectations regarding the therapeutic use of Treg in 

autoimmune scenarios. 

  

In the context of acute inflammation, Treg adoptive transfer has been shown to limit 

fibroproliferation212. Treg also promote repair from ischemic acute kidney injury213 and 

demonstrated protective immunomodulatory effects following acute stroke214. These 

findings emphasize the importance of Treg in tissue injury repair and stress the possibility 

of Treg immunotherapy application in other acute inflammatory conditions.  

 

1.1.9. In vitro generation of Regulatory T Cells 

Recently, there has been enormous progress in developing novel immunotherapies to treat 

autoimmune diseases. However, relatively non-specific therapies (such as anti-CD3 

monoclonal antibody (mAb), thymoglobulin, cytokines, and anti-cytokines, etc.) can be 

associated with significant side effects and “off-target” effects. These studies have 

nevertheless enabled two substantial findings: first, short-term immune regulation of T 

cells can have a long- term effect on disease progression; second, many of the recognized 

immunomodulatory drugs induce Treg subsets that are likely to be responsible for the 

long-lived efficacy180. The establishment of the importance of Treg in the effective 

regulation of the basic processes that maintain tolerance has opened an important new 

weapon of therapeutic intervention in immunology and particularly on autoimmunity– 

Treg adoptive immunotherapy180.  
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Adoptive transfer of autologous or donor-derived Treg represents nowadays an exciting 

and promising immunotherapeutic approach215. Despite the unquestionable therapeutic 

potential of Treg-based cellular therapies in humans, therapeutic efficacy of this approach 

requires large numbers of Treg, which impose an additional challenge since human Treg 

constitute a minor subset of peripheral CD4+ T cells. The establishment of efficient 

protocols to expand Treg or to convert non-regulatory T cells into FOXP3+ T cells is, 

currently, a promising strategy towards the treatment of human diseases with described 

Treg defects and has been the subject of intense research. In what concerns ex vivo Treg 

expansion, protocols for adoptive transfer require isolation of Treg from the host or a 

donor, its enrichment, its expansion, and Treg re-infusion. Indeed, Treg ex vivo expansion 

strategy enables a careful cellular phenotyping and control over the dose of administered 

cells216. Notwithstanding, there are a number of clear challenges that need to be overcome 

to employ Treg in clinical settings, including: the need for isolation of pure populations of 

Treg from peripheral blood in patients; improved technologies to expand and test Treg 

function ex vivo; determining the survival and long term stability of Treg in the adoptively 

transferred host; issues related to safety, especially as it relates to potential pan-

immunosuppression with polyclonal Treg populations; and the challenges related to 

generating Ag-specific Treg for adoptive immunotherapy217.  

Despite positive results in murine models of T1D and myasthenia gravis, adoptive transfer 

of tTreg has not found full success. Adoptive transfer of tTreg had only a nominal effect on 

controlling disease progression in a collagen-induced arthritis model218 and was unavailing 

in suppressing glomerulonephritis and sialadenitis in mice with lupus219. In other Th17-

mediated autoimmune settings, tTreg showed variable performance208. The inefectiveness 

of tTreg in many autoimmune disorders may relate to pro-inflammatory cytokines that 

suppress their function126 or convert them to pathogenic T cells upon adoptive transfer. 

Additionally, activated Th17 cells possibly resist many suppressive mechanisms used by 

tTreg. In this regard, iTreg have been suggested to constitute a more appropriate subset for 

use in autoimmune immunotherapy, as data suggest that iTreg exhibit increased stability in 

highly inflammatory environments220.  

The establishment of efficient protocols enabling the in vitro generation of bona-fide 

induced iTreg could overcome the problems raised with the previous approaches, 

particularly in the specific setting of AID. Although both populations can exhibit 
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considerable heterogeneity in their genetic signatures65, iTreg induced in the presence of 

IL-2 and TGF-β share many additional characteristics with tTregs, including the 

expression of CD25, CTLA-4 and GITR, and the secretion of TGF-β and IL-10, which 

contribute to their regulatory functions65. Functionally, iTreg also display similar features 

to tTreg: they have been shown to inhibit naïve T cell proliferation in vitro and in vivo, to 

inhibit the differentiation of other helper T cell subsets as well as inhibiting effector 

functions such as IFN-γ production65. Since TGF-β-induced iTreg can be easily grown in 

vitro from abundant precursors, they are becoming attractive candidates for Treg adoptive 

therapies. 

In protocols of in vitro conversion, naive CD4+ T cells are the usual target population and 

in fact many reports, both in mice and in humans, show these cells can acquire high levels 

of Foxp3 expression associated with regulatory properties. Studies from many groups 

showed that iTreg could be induced from naïve CD4+ T cells by TCR stimulation in the 

presence of IL-2 and TGF-β221, 220, 19, 222, 223. Accordingly, previous data on models of T1D 

showed that adoptively transferred TGF-β-induced iTreg distributed throughout the 

lymphoid compartment and in the pancreas of recipient NOD mice, and were in fact able 

to prevent the localization of pathogenic Th1 cells in the pancreas. Moreover, similarly to 

tTreg, they proliferated within the islets where they mediated local control of 

inflammation, in a TGF-β-dependent maner224.  

The potential of human conventional memory CD4+ T cells to acquire in vitro a stable 

Treg phenotype remains poorly explored, although a significant proportion of the 

circulating Treg compartment is thought to result from the conversion of memory CD4+ T 

cells into Treg in response to antigenic stimulation in vivo225. Accordingly, varicella zoster 

virus-specific memory T cells and FOXP3+ Treg specific for the same antigen 

accummulate in parallel at the site of specific antigen challenge in vivo, suggesting that a 

significant proportion of Treg may be derived from memory T cells in the course of a 

localized immune response in vivo226. Treg found in the mucosa of ulcerative colitis and 

colon carcinoma patients are derived from memory conventional T cells227. Moreover, 

human Treg and memory CD4+ T cells have been shown to display, on average, 80% 

homology in their TCR Vβ usage225. Importantly, conventional memory T cells in 

autoimmune patients are likely enriched in self-reactive T-cells, making them particularly 
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relevant substrates for the induction of iTreg with relevant specificities in the setting of 

autoimmunity.  

 

Along with the several transcriptional regulators of Foxp3 expression downstream from 

TCR and IL-2R, additional signaling pathways have been involved in Treg differentiation 

and maintenance146. Among them, the Notch signaling pathway has been incrementally 

implicated in Treg homeostasis146.	
  Thus, it is currently a promising target in order to better 

understand Treg physiology and further manipulate this subset in clinical settings.    
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1.2. Notch signaling pathway 

 

1.2.1. Notch Signaling Pathway in T cell development and differentiation  

Notch is an evolutionary conserved signaling pathway involved in cell differentiation 

processes in several organs and at distinct developmental stages. Signaling is mediated by 

Notch ligand–receptor interactions between neighbouring cells. Mammals possess four 

receptors (Notch 1–4) that are bound by five ligands of the Jagged family and Delta-like 

family (Jagged (JAG)1 and JAG 2, and Delta-like (DL)1, DL3 and DL4)228. Newly 

synthesized receptors are proteolytically processed in the Golgi during their transport to 

the cell surface by a furin-like convertase, generating heterodimeric receptors present at the 

cell surface. Signaling is initiated with ligand binding to the receptors, which subsequently 

undergo two successive proteolytic cleavages (Figure 7). The first cleavage is mediated by 

disintegrin and metalloproteinase domain-containing protein (ADAM) family 

metalloproteinases at the extracellular S2 cleavage site close to the transmembrane 

domain, resulting in the shedding of the extracellular part of the receptors and their 

endocytosis by the ligand-expressing cell228. The second cleavage within the 

transmembrane domain is triggered by the γ-secretase activity of a presenilin multi-protein 

complex, resulting in the liberation of the Notch intracellular domain (NICD). This last 

proteolytic reaction is a rate-limiting step during Notch activation, susceptible to 

pharmacological blockage by small-molecule γ-secretase inhibitors229. After the liberation 

of NICD, it translocates to the nucleus and binds to the transcription factors of the 

recombination signal binding protein for immunoglobulin κJ region (RBPJ) family (also 

known as CSL in humans). After binding to RBPJ, the NICD recruits additional co-

activators, including mastermind-like (MAML) proteins 1–3 and p300 in order to induce 

transcriptional expression of downstream target genes. Notch signaling is regulated at 

multiple levels: for instance, Notch receptors undergo post-translational modifications by 

Fringe family glycosyltransferases, which results in different efficiencies or signaling 

strength of Notch receptors230, 231.  
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Figure 7: A brief overview of Notch signaling. Schematic representation of the Notch 

signaling pathway. Radtke et al. Nat Rev Immunol. 2013.228 

 

More recently, evidence suggested a non-canonical Notch signaling that does not require 

the RBPJ transcriptional mediator complex232, 233. These non-canonical signal transduction 

pathways may occur in the absence of receptor cleavage or through crosstalk with other 

signaling pathways (including the nuclear factor-κB (NF-κB), TGF-β and hypoxia-induced 

signaling pathways)232, 233.  

The Notch signaling cascade has been pointed-out as an important regulator of multiple 

cell fate decisions and differentiation processes during the development and function of the 

haematopoietic system. Among the most well established functions of Notch are its 

essential role in the specification and maturation of T cells, as well as of marginal zone B 

(MZB) cells. These processes use canonical Notch signaling and have their receptor–

ligand pairs identified by conditional genetic loss-of-function approaches: T cell lineage 
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commitment and maturation is mediated by DL4–Notch 1 interactions, whereas MZB cell 

development is mediated by DL1–Notch 2 interactions228. Bone marrow haematopoietic 

stem cells (HSC) give rise to multipotent progenitors (MPP) before differentiating into 

common myeloid progenitors (CLP). CLP migrate from the bone marrow to the thymus, 

where thymic epithelial cells (TEC) that express DL4 trigger canonical Notch 1 signaling 

in early thymic progenitors (ETP)234. This Notch 1 signal is essential for T cell lineage 

commitment and is further required during early phases of thymocyte differentiation up to 

the double-negative (DN)3 stage234. Active Notch signaling during these early stages of T 

cell development inhibits other lineage potentials, such as B cell and myeloid cell 

potential234. During β-selection, Notch signaling is turned off as a consequence of pre-T 

cell receptor signaling234. Thus, subsequent stages of T cell development exhibit very low 

levels of Notch signaling.  

In bone marrow-residing CLP, Notch signaling must be switched off to allow proper B cell 

development. After migration of immature B cells to the spleen, interaction of DL1 with 

Notch 2 (mediated by RBPJ) induces Notch signaling in transitional B (T2) cells to specify 

MZB cells, as opposed to follicular B cells234. The vast majority of DC is derived from 

common myeloid progenitors (CMP) in the bone marrow, which give rise to macrophage–

DC progenitors (MDP). Subsequently, common DC progenitors (CDP) develop into pre-

DC, seeding lymphoid and non-lymphoid organs via the bloodstream. In the spleen these 

pre-DC are specified into multiple DC subsets, including classical DC (cDC) and 

plasmacytoid DC (pDC). Splenic CD8- endothelial cell-selective adhesion molecule 

(ESAM)+ DC and CD103+CD11b+ DC in the lamina propria of the intestine also require 

Notch signaling mediated by the Notch 2 receptor228.  

Notch has been also enrolled in innate lymphoid cells (ILC) development and/or 

expansion228. ILC, that do not express antigen receptors, fulfil important functions in 

innate immune responses through their ability to generate and secrete different cytokines 

and/or to exhibit cytotoxic activity. They can be grouped into three major classes: group 1, 

group 2 and group 3, depending on whether they express Th1-type, Th2-type or Th2-type 

cytokines, respectively. Notch signaling can influence the development and/or expansion 

of the different subsets of ILC, which is probably microenvironment dependent228.  
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Genetic loss-of-function experiments also show an important role of Notch signaling in 

both Th2 cell differentiation and Th1 cell function. Experimentally, JAG or DL ligand 

expression on APC have been associated with Th2 cell and Th1 cell differentiation, 

respectively. Th1 cell-promoting signals induce the expression of DL ligands and the 

release of the NICD, which can bind to the NF-κB family proteins p50 and p65228. In 

addition, the NICD can control the release of IFNγ either directly or indirectly228. Th2 cell-

promoting signals induce the expression of JAG ligands and the release of the NICD, 

which interacts with RBPJ, converting it to a transcriptional activator. RBPJ recruits co-

activators and the complex binds and transactivates the promoter of GATA binding protein 

3 (GATA3) transcribing exon 1a. IL-4 can also initiate Th2 cell differentiation by 

triggering STAT6, which induces the transcription of Gata3. Gata3 and Il4 expression 

reinforce GATA3 expression. GATA3 modifies the conformation of the Il4, Il5 and Il13 

loci, allowing their transcription. Therefore, DL-mediated Notch signaling play a role in 

Th1 cell differentiation and function in a canonical RBPJ-mediated signaling-independent 

way and JAG-mediated Notch signaling participates in Th2 cell differentiation through 

canonical RBPJ-mediated pathway228. In what concerns Th17 cells, recent data has shown 

that Notch signaling is activated in both mouse and human in-vitro polarized Th17 and that 

blockade of Notch signaling downregulates the production of Th17-associated cytokines, 

suggesting a role for Notch signaling during Th17 differentiation235. Recently, it has been 

also shown that T cell-specific gene ablation of Notch1 and Notch2 impaired 

differentiation of Tfh cells in draining lymph nodes of mice immunized with T-dependent 

antigens or infected with parasites, impacting in germinal center development, and 

establishing Notch signaling as a major player in the development and function of Tfh 

cells236. 
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Figure 8: Notch signaling in immune cell development. Schematic representation of the 

role of Notch signaling pathway in immune cell development. Radtke et al. Nat Rev 

Immunol. 2013.228 

 

1.2.2. Notch Signaling Pathway and Regulatory T Cell development 

In mice, Notch has been shown to influence the thymic generation of Treg, their peripheral 

expansion and the in vitro conversion of non-regulatory T cells into Treg. The first 

indications that Notch signaling could be involved in Treg function resulted from studies 

showing that splenic CD4+CD25+ T cells expressed higher levels of Notch3 receptor than 

their counterpart CD4+CD25− population. Moreover, transgenic expression of 
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constitutively active intracellular domain of Notch3 in T cells induced enriched thymic and 

peripheral Treg compartments, that afforded protection against experimentally induced 

autoimmune diabetes in mice237. Further studies by the same group reported that Notch3 

promoted the development of Treg and improved their suppressive activity by upregulating 

FOXP3 expression238. In a more physiological setting, JAG2-expressing hematopoietic 

precursors isolated from mouse spleen upon appropriate mobilization, triggered Treg 

expansion through Notch3 engagement, with prevention of disease onset in an 

experimental TID model239. APC that overexpress human JAG1 promoted the expansion 

of CD4+ cells mediating active antigen-specific tolerance in mice240. Previous studies in 

mice also indicated that the Notch and TGF-β signaling pathways cooperatively regulate 

Foxp3 expression and Treg maintenance both in vitro and in vivo241. Recently, it has been 

also described a TCR-dependent, non-nuclear distribution and function of the processed 

receptor Notch, which was associated with the improved survival of murine Treg in vitro 

and in vivo, suggesting a new mechanism of Notch regulation by spatial localization242.  

 

In humans, there’s evidence suggesting an important role of Notch signaling in Treg 

differentiation and peripheral expansion. In fact, human cord-blood CD34+ cells can 

differentiate into mature Treg upon co-culture with OP9-DL1 cells49, suggesting Notch 

may be involved in human thymic development. Moreover, APC that overexpress human 

JAG1 promoted the expansion of alloantigen-specific cells with regulatory properties in 

humans243. Importantly, the Notch putative role in Treg differentiation is also supported by 

the presence of Notch-responsive elements in the mouse and human Foxp3 promoter244.  
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Regulatory T Cells (Treg) that constitutively express the transcription factor Foxp3/ 

FOXP3 are essential to the maintenance of immune homeostasis, playing a fundamental 

role in the prevention of autoimmunity. This is directly supported by the observation that 

Foxp3 null mutations, both in humans and mice, lead to early and fatal spontaneous 

autoimmunity1. Similarly, diminished frequency and/or dysfunction of Treg have been 

reported in several human and murine autoimmune diseases2, 3. Adoptive transfer of Treg 

has proved to be highly efficient both in the prevention and treatment of autoimmunity in 

rodents4, and the first clinical trials employing the adoptive transfer of Treg are currently 

ongoing, with encouraging preliminary results5. These studies have however established 

the need for large numbers of Treg to achieve therapeutic efficacy, especially in the 

presence of established autoimmunity. Since human Treg constitute only a minor subset of 

peripheral CD4+ T cells and given the underlying technical challenges of the in vitro 

expansion of this population, the establishment of novel protocols leading to the efficient 

and stable in vitro conversion of non-regulatory T cells into Treg is vital. Likewise, the 

process by which human Treg develop within the thymus is still poorly understood, a 

knowlegde that may contribute to the adequate manipulation of this subset in clinical 

settings. 

Several signaling pathways have been implicated in Treg generation. The Notch signaling 

pathway is known to be important at several stages of T cell development and 

differentiation6, 7, 8. In mice, Notch signaling enhances the thymic generation of Treg, their 

peripheral expansion and the in vitro conversion of conventional T cells into the Treg 

phenotype9, 10, 11, 12, 13. Compelling evidence suggest an important role for Notch signaling 

in human Treg differentiation and peripheral expansion14, 15, 16, although this has never 

been thoroughly investigated.  

The overall objective of this work was to provide knowledge on the principles dictating 

human thymic and peripheral Treg development as well as their homeostasis, to facilitate 

the establishment of Treg-based immunotherapy, particularly in the context of 

autoimmunity. 
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To accomplish this broad objective, the specific aims of this work were the following:  

1) to investigate the capacity of human non-regulatory memory CD4+ T cells to 

differentiate in vitro into bona-fide FOXP3-expressing cells, and assess the role of the 

Notch signaling pathway in modulating this conversion.  

2) to evaluate the role of  common-gamma chain (γc) cytokine signaling in human tTreg 

development.  
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I. In vitro differentation of human non-regulatory memory CD4 T cells 

into bona-fide  FOXP3-expressing cells and role of the Notch signaling 

pathway in modulating this conversion 

Despite the recent development of Treg-based cellular therapies using expanded Treg,  in 

vitro induced (i)Treg seem to be more stable in inflammatory environments17. Moreover, 

the generation of iTreg from non-regulatory CD4+ T cells could be the ideal target in 

patients harboring Treg with impaired effector function. In the particular context of 

autoimmune diseases (AID), the differentiation of Treg specifically from memory non-

regulatory CD4+ T cells could be also particularly interesting because of the expressed 

self-reactivities within this pool, which may facilitate the generation of antigen (Ag)-

specific Treg with relevant specificities.  

The Notch pathway is an important signaling cascade in thymocyte development. In mice, 

Notch signaling influences the thymic generation of Treg, their peripheral expansion and in 

vitro conversion of conventional T cells into Foxp3-expressing cells9, 10, 11, 12, 13. Strong 

evidence implies an important role of Notch in human Treg generation and peripheral 

expansion14, 15, 16. Therefore, we hypothesized that memory CD4+ T cells can be efficiently 

converted into bona-fide iTreg and that Notch constitutes a major signaling pathway in the 

acquisition of FOXP3 expression by human non-regulatory cells as well as in human Treg 

homeostatic expansion. 

To assess the involvement of Notch signaling in human Treg in vitro differentiation, we 

mainly used two approaches: “gain of function” experiments- via co-culture of peripheral 

non-regulatory CD4+ T cells with OP9 stroma cells expressing the Notch ligand Delta-like 

(DL)1, under optimal FOXP3-induction conditions (TCR stimulation, plus costimulation 

and TGF-β, in the presence of IL-2); and “loss of function” experiments- by inhibition of 

Notch signaling by addition of the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-1-

alanyl]-S-phenylglycine t-butyl ester (DAPT) in the established protocols of in vitro 

conversion (optimal FOXP3-induction conditions). 

In both experimental settings, we evaluated: 
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• Impact of the established protocols in the differentiation of memory conventional 

CD4+ T cells into FOXP3- expressing cells  

• Phenotype and function of the iTreg  

 

In the particular setting of “gain of function” experiments, we also assessed: 

• Stability of FOXP3 expression on the iTreg 

• Mechanisms mediating the impact of Notch signaling on the in vitro Treg 

differentiation  

We additionally evaluated the role of DL1 in modulating iTreg generation from non-

regulatory naïve CD4+ T cells and human thymocytes in the established in vitro conversion 

protocols. 

To further elucidate the putative role of Notch signaling in human Treg homeostasis, we 

assessed the impact of DL1-mediated Notch signaling on the homeostatic proliferation and 

phenotype of  TCR-stimulated human circulating Treg. 

In order to further dissect the role of Notch signaling in Treg homeostasis and in vitro 

differentiation, we investigated Notch receptor expression on sort-purified circulating Treg 

and conventional T cells.  

As a proof of principle, we evaluated whether the DL1-mediated Notch signaling impact 

could be extended to an AID context, by targeting memory CD4+ T cells isolated from a 

Systemic Lupus Erythematosus (SLE) patient in stable remission in the established in vitro 

conversion protocols. Aiming the future profiteering of immunotherapy with Ag-specific 

Treg in autoimmune settings, we further assessed the self-reactivities present in 

conventional CD4 pool of an SLE patient.  

 

The results obtained are shown in the section 1 of the Results. 
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II. Role of common-gamma chain (γc) cytokine signaling in human Treg 

development  

The principles dictating Treg development in the human thymus remain to be fully 

clarified, a gap that may hinder their proper manipulation for immunotherapy purposes. γc 

cytokine family, that shares the use of γc to generate signaling receptor complexes, 

comprises cytokines with a crucial role in the development and differentiation of immune 

cells, namely IL-4, IL-7, IL-9, IL-15, and IL-21, in addition to IL-218, 19.  It has been 

clearly shown that Treg homeostasis and function in the periphery depends on IL-218, 19. 

Importantly, human tTreg express the α- (CD25) and the β- chain (CD122) of the IL-2R 

that are utilised by IL-2 and IL-1520, 21. It has been also shown that human FOXP3+ 

thymocytes, despite showing reduced levels of the α-chain of the IL-7R compared to their 

FOXP3neg counterparts, phosphorylate STAT-5 in response to IL-721. Additonally, IL-2 

increased CD25 and FOXP3 expression levels within FOXP3+DP thymocytes21. Notably, 

polymorphisms in IL-2, CD25 or IL-2R downstream signaling molecules result in 

impaired Treg number and/or function and carry a higher risk of autoimmunity in 

humans18, possible owing to defective tTreg generation, besides reduced peripheral Treg 

survival. Accordingly, in patients undergoing IL-2 therapy it has been shown expansion of 

Treg expressing CD45RA and the recent thymic emigrant marker CD31, supporting 

thymic involvement22, 23. Overall, available data suggest that γc cytokines may also be 

involved in human thymic Treg development.  

To assess the role of common-γ chain cytokine signaling in human Treg development, we 

performed gain- and loss-of-function experiments in 3D and 2D postnatal thymic cultures, 

using recombinant cytokines, specific blocking antibodies and pharmacological inhibitors 

of their signaling pathway. 

  

The results generated are shown in the section 2 of the Results. 
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In agreement with the Decreto-Lei 388/70, art 8º, parágrafo 2, the results presented here 

were published: 

 

Mota C, Nunes-Silva V, Pires AR, Matoso P, Victorino RM, Sousa AE and Caramalho I. 

Delta-like 1-Mediated Notch Signaling Enhances the In Vitro Conversion of Human 

Memory CD4 T Cells into FOXP3-Expressing Regulatory T Cells. J Immunol 2014 

193:5854-62.  

 

Caramalho I, Nunes-Silva V, Pires AR, Mota C, Pinto AI, Nunes-Cabaço H, Foxall RB 

and Sousa AE. Human regulatory T-cell development is dictated by Interleukin-2 and -15 

expressed in a non-overlapping pattern in the thymus. J Autoimmun 2015; 56: 98-110. 
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3.1. Harnessing DL-1 for human memory CD4 conversion into iTreg 

 

Delta like-1 mediated Notch signaling enhances the in vitro conversion of human 

memory CD4 T cells into FOXP3-expressing Regulatory T Cells 
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Abstract   

FOXP3-expressing Regulatory T cells (Treg) are essential for the prevention of 

autoimmunity and were shown to be reduced and/or dysfunctional in several autoimmune 

diseases (AID). Although Treg-based adoptive transfer represents a promising therapy, the 

large cell number required to achieve clinical efficacy constitutes an important limitation. 

Therefore, novel strategies to generate bona-fide in vitro induced (i)Treg are critical. Here 

we report that human memory CD4 T cells can be efficiently converted into iTreg, and that 

Delta-like 1 (DL1)-mediated Notch signaling significantly enhances this process. The 

iTreg generated in the presence of DL1 featured higher levels of Treg function-associated 

molecules and were efficient suppressors. Importantly, these iTreg displayed a stable 

phenotype in long-term cultures, even in the presence of pro-inflammatory cytokines. 

Additionally, DL1 potentiated FOXP3 acquisition by memory CD4 cells through the 

modulation of the TGF-β signaling pathway and of Foxp3 transcription.  

Our data demonstrate that iTreg can be efficiently induced from memory CD4 cells, a 

subset enriched in relevant specificities for targeting in AID, and that DL1 enhances this 

process. DL1 also enhanced the proliferation and Treg function-associated marker 

expression of ex vivo stimulated human circulating FOXP3+ cells. Manipulation of the 

Notch signaling pathway constitutes a promising approach to boost the in vitro generation 

of iTreg and ex vivo Treg expansion, thus facilitating the establishment of effective Treg-

based adoptive therapy in AID. 



84 TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

 
Introduction  

Regulatory T cells (Treg) are crucial in the induction of self-tolerance and prevention of 

autoimmunity. These cells were shown to be decreased in number and/or to display 

compromised function in several human autoimmune diseases (AID) (1), in agreement 

with experimental animal models of autoimmunity, demonstrating that defects in the Treg 

compartment contribute to disease development (2). The potential of harnessing Treg for 

immunotherapeutic purposes in distinct clinical settings is compelling and adoptive 

transfer of Treg is considered a method for so-called “intelligent imunossupression” (3). 

Adoptive transfer of autologous Treg appears, in fact, to provide most of the benefits of 

efficient immunossupression, without the adverse effects of standard imunossupressive 

drugs (3). The adoptive transfer of Treg in experimental mouse models of autoimmunity 

lead to disease prevention and remission (2, 4) and the first clinical trials, involving the 

adoptive transfer of human Treg in Type I Diabetes, are currently ongoing, with promising 

preliminary results (3).  

However, since large numbers of Treg are required for clinical efficacy, and as they 

constitute a minor subset of peripheral CD4 T cells, a large amount of effort has gone into 

developing clinical protocols for the ex vivo expansion of human Treg. The current 

approaches have suffered some setbacks, namely: the weak proliferative potential of Treg, 

the risk of altering Treg phenotype and decreasing their immunosuppressive activity 

associated with repeated expansion, and the inadequacy of this strategy when the Treg pool 

features intrinsic defects (3, 5).  

The establishment of efficient protocols enabling the in vitro generation of bona-fide 

induced (i)Treg could overcome these problems. In protocols of in vitro conversion, naive 

CD4 T cells are the usual target population and in fact many reports, both in mice and in 

humans, show these cells can acquire high levels of FOXP3 expression associated with 

regulatory properties (6-11). FOXP3 expression is currently the best available marker to 

identify Treg and is required for their development and function (1, 2). The potential of 

human conventional memory CD4 cells to acquire in vitro a stable Treg phenotype remains 

poorly explored, although a significant proportion of the circulating Treg compartment is 

thought to result from the conversion of memory CD4 cells into Treg in response to 

antigenic stimulation in vivo (12-14). Moreover, human Treg and memory CD4 T cells 

have been shown to display, on average, 80% homology in their TCR Vβ usage (12). 
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Importantly, conventional memory T cells in autoimmune patients are likely enriched in 

self-reactive T-cells, making them particularly relevant substrates for the induction of 

iTreg with relevant specificities in the setting of autoimmunity.  

The Notch signaling pathway is an evolutionarily conserved signaling cascade involved in 

cell differentiation processes at distinct developmental stages. There is solid experimental 

data in mice demonstrating a crucial role for Notch signaling in the thymic generation of 

Treg, their peripheral expansion and function, as well as in the in vitro conversion of 

conventional T cells into iTreg (15-19). In humans, there is evidence suggesting a role of 

Notch signaling in thymic Treg development as well as in peripheral Treg expansion (20-

23), although its putative role in iTreg conversion has never been formally assessed.  

In the present study, we investigated the capacity of human non-regulatory memory CD4 T 

cells to differentiate in vitro into bona-fide FOXP3-expressing cells and the role of the 

Notch signaling pathway in modulating this conversion. Our results showed that Notch 

enhanced the conversion of memory CD4 T cells into stable and efficient iTreg, supporting 

a role, particularly for DL1, in human Treg conversion. DL1 also enhanced the 

proliferation of ex vivo stimulated human circulating FOXP3+ cells as well as their 

expression levels of molecules associated with effector function. Manipulation of the 

Notch signaling pathway may therefore constitute a promising approach to facilitate the 

establishment of Treg-based therapies. 



86 TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

 
Material and Methods  

Flow Cytometry 

The following anti-human Abs, clones in brackets, were used: CD4-alexa fluor 450 (RPA-

T4), CD39-APC (eBioA1), FOXP3-PerCP Cy5.5 (PCH101), CD8-FITC (RPA-T8), CD14-

FITC (61D3), CD19-FITC (HIB19), CD45RO-PE (UCHL1), CD127-APC-efluor 780 

(eBioRDR5), CD45RA-PercCP Cy5.5 (HI100), CD4-APC (RPA-T4), S6 (pS235/pS236)-

alexa fluor 488 (N7-548) and Akt (pS477)-alexa fluor 488  (H89-61), all from eBioscience, 

San Diego, USA; Ki67-PE (B56); CTLA-4-PE (BNI3) and CD25-PE-CY7 (clone 2A3), 

from BD Biosciences, New Jersey, USA; purified Smad2 (pSer465/467)/Smad3 

(pSer423/425) (D6G10), from Cell Signaling Technology, Danvers, USA); Bcl2-FITC 

(124), from DAKO, Glostrup, Denmark; and anti-rabbit IgG-alexa fluor 546, from 

Invitrogen. After surface staining for 30 min at 4ºC with optimal dilutions of each mAb, 

cells were fixed, permeabilized and stained for intracellular molecules using the Foxp3 

staining kit from eBioscience, according to manufacturer’s instructions. 8 to 10-parameter 

acquisition was performed on a Fortessa Flow Cytometer (BD Biosciences). For 

phosphorylation level assessment, cells were fixed and permeabilized using the BD 

Phosflow staining kit (BD Biosciences), stained for 30 min at 4ºC with optimal dilutions of 

each mAb, and acquired with a FACSCalibur (BD Biosciences). Data were analyzed using 

the FlowJo (TreeStar, Ashland, USA), after exclusion of dead cells using LiveDead 

Fixable Viability Dye (Molecular Probes, Eugene, USA) and doublets using a plot of 

forward scatter height versus amplitude. The FOXP3bright population gate was always 

defined in each experiment, using the TCR stimulation and TGF-β culture condition and 

this gate subsequently used to identify this population in all additional culture conditions 

performed. 

Cell Purification 

A negative selection kit was used to obtain CD4 T cells (RosetteSep™ Human CD4+ T cell 

Enrichment Cocktail, Stemcell Technologies, Grenoble, France) from buffy coats of 

healthy subjects, according to the manufacturer’s instructions. After surface staining, the 

following populations were sort-purified on a FACSAria cell sorter (BD Biosciences) with 

>95% purity: memory CD4+CD25-CD45RA-CD127hi, naive CD4+CD25-
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CD45RA+CD127hi and Treg CD4+CD25hiCD127lo. The study was approved by the Ethical 

Board of the Faculdade de Medicina da Universidade de Lisboa. 

OP9 Stromal Cell Line 

OP9 stromal cells expressing the human Notch ligand DL1, DL4 or Jag1 and control OP9 

cells transduced with the corresponding empty GFP vector (OP9 Empty) were cultured in 

DMEM medium  (Sigma-Aldrich, St. Louis, USA) supplemented with 15% FBS, 2mM L-

glutamine, 100U/ml penicillin-streptomycin and 50µg/ml gentamycin (all from Invitrogen, 

Carlsbad, California). OP9 monolayers were prepared 24h before their use in co-culture 

experiments by plating 10G irradiated stromal cells in 48-well culture flat-bottomed plates 

in complete DMEM medium. 

Cell Culture  

Human T cells were cultured in IMDM medium (Invitrogen) supplemented with 10% heat 

inactivated FBS, 2mM L-glutamine, 100U/ml penicillin-streptomycin, 50µg/ml 

gentamycin, 10mM HEPES, 1mM sodium pyruvate, 50µM 2-mercaptoethanol and 1% 

non-essential amino acids (IMDM complete medium). Sort-purified memory, naive and 

Treg CD4 cells were TCR-stimulated with either 1µg or 2µg/ml plate-bound anti-CD3 

mAb (clone OKT3, Ebioscience), 1µg/ml soluble anti-CD28 mAb (clone CD28.2, 

Ebioscience) and 50IU/ml IL-2 (AIDS Research and reference Program, Division of AIDS, 

NIAID, NIH), at a density of 2.5x105 cells/well in complete IMDM, for 5 days, in the 

presence or absence of 5ng/ml TGF-β (Peprotech, Rochy Hill, USA). Similar culture 

conditions were used in the presence of OP9 stromal cells, except that memory cells and 

Treg were TCR-stimulated with 2 and 1µg/ml soluble anti-CD3 mAb, respectively, plus 

soluble anti-CD28 mAb, whereas naïve CD4 cells were stimulated with CD3/CD28 

Dynabeads (Invitrogen) at 1:16, bead:T cell ratio. 

For assessment of iTreg phenotypic stability, memory cells stimulated for 5 days under 

FOXP3 inducing conditions, were washed, re-plated and cultured for 9 more days in 

complete IMDM supplemented with 50IU/ml IL-2 and 100nM Rapamycin (Sigma-

Aldrich), or restimulated with CD3/CD28 Dynabeads (1:2 ratio; beads:T cells) for 3 more 

days in medium supplemented with IL-2 12.5IU/ml only or with IL-2 12.5IU/ml, 20ng/ml 
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IL-6 (PeproTech) and 20ng/ml IL1-β (PeproTech). FOXP3 expression levels on recovered 

iTreg were evaluated by FACS. 

A C2 cell differentiation assay in the presence of OP9 cells was performed as described 

(24). 

In vitro Suppression Assay 

Memory CD4 cells stimulated for 5 days under FOXP3-favoring conditions, in the 

presence of control OP9 or OP9 DL1 cells, were washed and replated in medium 

supplemented with 50IU/ml IL-2 and 100nM Rapamycin and cultured for 5 more days, 

before use in the in vitro suppression assay. Sort-purified CD25negCD4 cells (targets) were 

re-suspended at 2.5x106/ml in serum free RPMI, stained with 2.5µM CFSE (Invitrogen) 

for 5 min at room temperature (reaction stopped by the addition of 20% FCS), washed 

once in RPMI medium (Invitrogen) supplemented with 10% FCS and stimulated either 

alone (1:0 ratio) or in the presence of the differentiated iTreg population at the ratios of 

1:1, 2:1 and 4:1 (Target:iTreg). Their CFSE-labeling intensity was assessed at day 4 of 

culture by flow cytometry. As controls, sort-purified Treg from the same healthy donor as 

the target cells were used. The inhibition index was calculated as follows: [(% proliferating 

target cells when plated alone - %proliferating target cells when co-cultured with Treg)/ % 

proliferating targets cells when plated alone]x100. 

Signaling Experiments 

For assessment of PI3K/Akt/mTOR signaling pathway modulation, sort-purified memory 

cells were stimulated at a density of 1x106 cells/ml in complete RPMI medium for 14 

hours with CD3/CD28 Dynabeads, at a 1:2 ratio (beads:T cells), in the presence of  OP9 

empty or OP9 DL1 cells. As a control, cells were left in medium alone or stimulated with 

beads and 100nM Rapamycin in the presence of OP9 control stroma. For assessment of 

TGF-β signaling pathway modulation, memory cells were cultured at 2.5x105 cells/well in 

complete RPMI medium without FBS for 3 hours. Cells were then stimulated with or 

without TGF-β (5ng/ml, PeproTech), in the presence of control OP9 or OP9 DL1 for 2 

more hours.  
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qRT-PCR 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and cDNA 

was synthesized using the Superscript III Reverse Transcriptase Kit (Invitrogen). The 

mRNA levels of FOXP3 and GAPDH were quantified in duplicates with TaqMan gene 

expression kits, according to the manufacturer's instructions, using a 7500 Fast Real-Time 

PCR System (all from Applied Biosystems, Foster City, USA). Smad-3 (forward: 5'-

TGCCTTTCACTCCCCCGAT-3' and reverse: 5'- TGCCCCGTCTTCTTGAGTTTC-3'); 

Notch1 (forward: 5'- CGGGTCCACCAGTTTGAATG-3' and reverse: 5'- 

GTTGTATTGGTTCGGCACCAT-3'); Notch2 (forward: 5'- 

TTGAGAGTTATACTTGCTTGTGTGC-3' and reverse: 5'- 

GATACACTCGTCAATGTCAATGG-3'); Notch3 (forward: 5'- 

ATGCAGGATAGCAAGGAGGA-3' and reverse: 5'- AAGTGGTCCAACAGCAGCTT-

3') and Notch4 (forward: 5'- ACCTGCTCAACGGCTTCCA-3' and reverse: 5'- 

AGCTTCTGCACTCATCGATATCCTC-3') gene expression were quantified with 

SYBR® Green PCR Master Mix (Applied Biosystems). The relative expression of 

FOXP3, Notch1 to Notch4 and Smad-3 were normalized to GAPDH expression, and the 

fold change in transcription calculated using the 2−ΔCt comparative method. 

 

Immunofluorescence 

Cells were adhered to poly-L-lysine coated slides, fixed with 4% paraformaldehyde, 

permeabilized with either 0.1% saponin (Notch ligand and receptor stainings) or 

0.5%Triton X-100 (Troponin T staining). The following primary antibodies were used 

(clones in brackets): anti-Notch1 mAb (MHN1-519; BioLegend, San Diego, USA); anti-

Notch2  (C651.6DbHN) and anti-Troponin T (CT3) mAbs (Developmental Studies 

Hybridoma Bank, USA); anti-DL1 (MHD1-314) and anti-DL4 (MHD4-46) mAbs (kindly 

provided by Dr. Hideo Yagita, Juntendo University, Japan); anti-Jag1 Ab (H-114, Santa 

Cruz Biotechnology, USA). 

Appropriate fluorochrome-conjugated secondary antibodies were obtained from 

Invitrogen, Carlsbad, California. DAPI was used as for nuclear counterstaining and slides 

were mounted in mowiol. Confocal images were acquired with a Zeiss 710 Confocal point-

scanning microscope. 
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Statistical Analysis 

Statistical analysis was performed using GraphPad Prism v5.01 (GraphPad Software Ic., 

San Diego, CA, USA), using Wilcoxon matched-pairs signed rank test. Results are 

expressed as mean±SEM. 
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Results  

DL1-mediated Notch signaling potentiates iTreg conversion from human memory CD4 

T cells.  

Our first aim was to assess whether human memory CD4 T cells are a reliable source of 

Treg precursors. With this in mind, naïve (CD4+CD25-CD127hiCD45RA+) and memory 

(CD4+CD25-CD127hiCD45RA-) CD4 T cells were sort-purified from healthy subjects and 

stimulated in vitro with increasing concentrations of plate-bound anti-CD3 mAb, in the 

presence of anti-CD28 mAb, TGF-β and IL-2. The inclusion of CD127 in the sorting 

strategy guaranteed an effective exclusion of contaminating FOXP3-expressing cells from 

the starting populations (25, 26) (Supplemental Figure 1A). A considerable proportion of 

memory as well as naïve CD4 T cells acquired FOXP3 expression (Supplemental Figure 

1A). Only FOXP3bright cells were considered for the analysis in order to ensure their 

regulatory phenotype. Of note, the anti-TCR Ab requirements for conversion of naïve and 

memory CD4 T cells were different with the lowest concentration of anti-CD3 mAb tested 

(1µg/ml) the best suited for in vitro conversion protocols using memory CD4 T cells 

(Supplemental Figure 1A). Importantly, the levels of FOXP3 expression in memory CD4 T 

cells after induction were equal if not higher to those observed in sort-purified Treg 

activated with anti-CD3 and anti-CD28 mAbs for the same length of time (Supplemental 

Figure 1B). Our induction protocol consistently resulted in the acquisition of FOXP3 

expression by a significant proportion of memory CD4 cells in all individuals tested 

(30±3.3% of cells acquiring FOXP3 expression, n=10, as compared to 40±9.2%, n=10, 

when starting with naïve CD4 T cells).  

To investigate the potential role of Notch in the in vitro conversion of human conventional 

CD4 into iTreg, we first performed loss-of-function experiments using the γ-secretase 

inhibitor N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT), a 

well-known pharmacological inhibitor of the Notch signaling pathway. Addition of 10µM 

DAPT to sorted memory CD4 T cells cultured with TCR stimulation, TGF-β and IL-2, led 

to a consistent decrease in the frequency and number of FOXP3+CD25+ cells recovered at 

day 5 (Figure 1A), as well as in their Foxp3 mRNA expression levels (22.3±4.4%, n=2). 

These results support the hypothesis that Notch signaling plays a role in the in vitro 

conversion of memory CD4 into iTreg, leading us to evaluate the impact of distinct human 
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Notch ligands, namely Delta-like 1 (DL1), Delta-like 4 (DL4) and Jagged 1 (Jag1), on the 

induction of FOXP3 expression, after confirming Notch receptor expression on T cells 

(Supplemental Figure 1C). Purified memory CD4 cells were co-cultured with either 

control OP9 cells (transduced with an empty vector) or stromal cells separately expressing 

functional DL1, DL4 and Jag1 (see Supplemental Figure 1E and 1F), in conditions 

favoring FOXP3 induction. From the ligands we tested, only DL1 systematically increased 

the efficiency of FOXP3 acquisition by conventional memory CD4 T cells, excluding a 

major role for DL4 and Jag1 (Figure 1B). Co-culture of sort-purified memory CD4 cells 

with OP9 DL1 in FOXP3-inducing conditions significantly increased both the frequency 

and number of FOXP3+CD25+ cells in the 23 individuals tested (Figure 1B). Of note, the 

comparison of OP9 empty versus OP9 DL1 revealed that DL1 neither modulated the 

survival of FOXP3neg cells (Bcl-2 MFI: 14403±1474 versus 13509±1385, n=7; cell 

recovery: 21.1x104±5x104 versus 19.6x104±3.6x104, n=23), nor their differentiation profile 

as assessed by CCR6/CXCR3 expression (data not shown). Moreover, addition of DAPT 

significantly diminished the frequency of converted FOXP3-expressing cells (27.2±2.5 in 

empty versus 34.2±3.5 in DL1 versus 24.0±5.3 in DL1+DAPT, n=6), suggesting that 

Notch receptor cleavage is required for the DL1 effect and reinforcing its role in human 

iTreg conversion using the OP9 system.  

DL1 also potentiated the iTreg generation from human naive CD4 T cells. In fact, DAPT-

mediated inhibition of Notch signaling resulted in decreased conversion efficiency (Figure 

1C), and the presence of DL1 led to an increased frequency of iTreg generated from naïve 

CD4 T cells (Figure 1D). 
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Figure 1. DL1 mediated enhancement of the in vitro conversion of memory and naïve CD4 
cells into iTreg. Sort-purified memory (CD4+CD25-CD127hiCD45RA-) and naïve (CD4+CD25-

CD127hiCD45RA+) CD4 cells were TCR-stimulated for 5 days in medium supplemented with 
TGF-β and IL-2 (TCR+TGF-β+IL-2). Cells left in medium with IL-2 alone (IL-2) were used as 
controls. (A, C) Dot-plots illustrate FOXP3 and CD25 expression in the presence or absence 
(vehicle, DMSO) of the γ-secretase inhibitor DAPT (at the indicated concentration in µM) within 
recovered live cells in memory (A) and naïve (C) CD4 cultures and graphs show the frequency and 
number of generated FOXP3+CD25+ cells (n=5 and n=6, memory and naive CD4 cultures, 
respectively). (B, D) Representative dot-plots of CD25 and FOXP3 expression on memory (B) and 
naive (D) CD4 cells stimulated in the presence of control OP9 stroma cells (Empty) or OP9 stroma 
expressing the human ligand Delta-like 1 (DL1). Co-cultures of memory CD4 cells with Delta-like 
4 (DL4) or Jagged 1 (Jag1) stroma cells are also depicted in (B). Graphs show the frequency and 
number of FOXP3+ CD25+ cells generated in the presence of OP9 DL1 or OP9 Empty (n=23 and 
n=5, memory and naive CD4 cultures, respectively).   
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Overall, these results support the feasibility of targeting human memory and naïve CD4 T 

cells in protocols of in vitro iTreg conversion and show that DL1 increases the efficiency 

of this process.  

DL1 enhances the expression levels of Treg function-associated molecules.  

Having established that DL1 enhances the in vitro conversion of memory CD4 cells into 

FOXP3-expressing cells, we next evaluated the phenotype and function of these iTreg. 

Induction in the presence of DL1 led to significantly higher levels of expression of FOXP3 

(Figure 2A), as well as of other Treg lineage-associated markers, namely CTLA-4 

(Cytotoxic T-Lymphocyte Antigen-4, Figure 2B) and CD39 (Figure 2C). 

Standard in vitro suppression assays were used to evaluate the suppressive function of 

iTreg (27), using as control population freshly-isolated circulating Treg 

(CD4+CD25hiCD127lo, 80-90% of them expressing FOXP3). The iTreg generated from 

memory CD4 cells, both in the absence and presence of DL1, efficiently inhibited the 

proliferation of target cells, in a dose dependent manner (Figure 2D). 

Similar results were obtained when targeting human naive CD4 cells, with iTreg generated 

in the presence of DL1 displaying higher levels of FOXP3 and CD39 expression (Figures 

2E and 2F, respectively) and efficient suppressive activity in vitro (data not shown).  

We also found that DL1 impacted on iTreg induction even in the absence of exogenous 

TGF-β, significantly increasing both the frequency and number of FOXP3+CD25+ cells, 

and enhancing the expression levels of FOXP3 and CD39 as well as of Foxp3 mRNA 

(Supplemental Figure 2). Importantly, DL1’s effects on iTreg conversion and phenotype 

were nevertheless more marked in the presence of exogenous TGF-β. 

We also evaluated the impact of the Notch signaling pathway on sort-purified circulating 

Treg, whose expression of Notch receptors we confirmed by qRT-PCR and 

immunofluoresence (Supplemental Figure 1D). First, we assessed the effect of Notch 

signaling pathway inhibition using DAPT, and found that it systematically decreased 

FOXP3 expression levels in TCR-stimulated sort-purified Treg (CD4+CD25hiCD127lo) 

from healthy subjects (Supplemental Figure 3A). Notably, DL1 also consistently enhanced 

the expression of FOXP3, CTLA-4 and CD39 on these cells (Supplemental Figures 3B-D). 
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Figure 2. Levels of Treg function-associated molecules and suppressive function of iTreg 
generated from memory and naïve CD4 cells in the presence of Delta-like 1. Sort-purified 
memory (CD4+CD25-CD127hiCD45RA-) and naïve (CD4+CD25-CD127hiCD45RA-) CD4 cells 
were TCR-stimulated for 5 days in medium supplemented with TGF-β and IL-2 (TCR+TGF-β+IL-
2), in the presence of OP9 cells expressing Delta-like 1 (DL1) or control OP9 stromal cells 
(Empty). (A, E) Representative histogram of FOXP3 expression and graph of FOXP3 MFI within 
generated FOXP3+ cells from memory (A) and naive (E) CD4 cultures (n=23 and n=5, memory 
and naive CD4 cultures, respectively). (B) Representative histogram of CTLA-4 expression and 
graph of CTLA-4 MFI within converted FOXP3+ cells from memory CD4 cells (n=4). (C, F) 
Illustrative dot-plots of the expression of CD39 and graph of the frequency of CD39+ cells within 
differentiated FOXP3+ iTreg from memory (C) and naive (F) CD4 cells (n=22 and n=5, memory 
and naive CD4 cultures, respectively). (D) Suppressive function of iTreg differentiated from 
memory CD4 cells, assessed after an additional 5 days resting period in medium supplemented 
with IL-2 and Rapamycin, using allogeneic target cells (CD4+CD25– cells isolated from the 
peripheral blood of a healthy subject). Representative histograms show the CFSE intensity of target 
cells when stimulated alone (1:0 ratio) or at the indicated ratios of iTreg or freshly-isolated Treg 
from the same donor of target cells. Graph shows the inhibition index of fresh Treg and iTreg 
(n=3), calculated as described in methods.  
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Overall, our data demonstrated that DL1, in addition to increasing the efficiency of 

conversion, also enhanced the expression of FOXP3 and other Treg-associated molecules 

related to effector function, both in the absence and presence of exogenous TGF-β. 

Moreover, they further support the hypothesis that bona-fide iTreg can be differentiated in 

vitro from human memory CD4 cells.  

 

Treg induced in the presence of DL1 display a stable phenotype.  

Next we evaluated the stability of the FOXP3-expressing phenotype of iTreg generated 

from memory CD4 cells, specifically in a pro-inflammatory context, which is of utmost 

importance for their therapeutic use. After 5 days stimulation in conditions favoring 

FOXP3 induction (induction period), differentiated cells were left for a further 9 days in 

medium supplemented with IL-2 and Rapamycin only (resting period), and the expression 

of FOXP3 was assessed at two separate time-points (days 5 and 9). FOXP3 expression was 

maintained in iTreg at both time-points (D5 induction: 14.9±3.8 versus 32.7±8.4; D5 

resting: 31.6±10.1 versus 38.4±6.3; D9 resting: 35.6±12.0 versus 40.2±8.7; empty versus 

DL1, n=3), suggesting a stable phenotype in long-term cultures, even in the absence of 

TCR stimulation and exogenous TGF-β (Figure 3A). Of note, the increased FOXP3 

frequency we observed in long-term cultures was not associated with the preferential 

survival of FOXP3+ cells (data not shown). In addition, we evaluated the behavior of iTreg 

in the presence of pro-inflammatory cytokines. Cells recovered after the 5-day induction 

period, were TCR-restimulated in the presence or absence of IL1-β and IL-6 for 3 more 

days. We observed that FOXP3+ expression was maintained in both culture conditions (D5 

induction: 43.4±15.4 versus 55.8±13.0; D3 restimulation, no IL1-β and IL-6: 53.9±18.6 

versus 52.2±16.1; D3 restimulation, in presence of IL1-β and IL-6: 52.7±16.2 versus 

57.3±13.5; empty versus DL1, n=3) (Figure 3B).  
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Figure 3. iTreg differentiated from memory CD4 cells exhibited a stable phenotype in long-
term cultures and in the presence of pro-inflammatory cytokines. Sort-purified memory CD4 
cells (CD4+CD25-CD127hiCD45RA-) were TCR-stimulated for 5 days in medium supplemented 
with TGF-β and IL-2 (TCR+TGF-β+IL-2), in the presence of OP9 cells expressing Delta-like 1 
(DL1) or control OP9 stromal cells (Empty). (A) Illustrative dot-plots of FOXP3 expression in cells 
recovered after the induction period as well as after 5 and 9 more days of resting, in medium 
supplemented with IL-2 and Rapamycin (n=3). (B) Illustrative dot-plots of the expression of 
FOXP3 in cells recovered after the induction period and a further 3 days TCR-restimulation in the 
presence of IL-2 alone or a combination of IL-2, IL-6 and IL-1β (pro-inflammatory cocktail) (n=3).  

 

Overall, our data indicate that iTreg generated from memory CD4 cells were stable both in 

long-term cultures and even in the presence of pro-inflammatory cytokines.  
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Mechanisms mediating DL1 enhancement of iTreg differentiation from human memory 

CD4 T cells.  

Several mechanisms may underlie the DL1-mediated enhancement of FOXP3 induction in 

memory CD4 cells. Firstly, we hypothesized that DL1 might increase the proliferation 

and/or promote the preferential survival of FOXP3+ cells during the induction period. 

However, it is unlikely that either mechanism significantly contributed, as the expression 

of Ki67 and Bcl2 in the recovered FOXP3+ cells differentiated from sort-purified memory 

CD4 cells was similar in the presence and absence of DL1 (Figure 4A and 4B, 

respectively). Similarly, the frequency of Ki67+ cells and the Bcl2 expression levels within 

FOXP3- cells were not modulated by DL1 (data not shown). The absence of a DL1 effect 

on survival was further reinforced by the similar frequency of live cells recovered at day 5 

of induction, in the presence or absence of the ligand (data not shown).  

The in vitro survival of TCR-stimulated circulating Treg was also not altered by the 

presence of DL1, as assessed by their Bcl2 levels (Supplemental Figure 3E). Notably, the 

frequency of cycling cells, estimated by the proportion of Ki67 was increased by the ligand 

(Supplemental Figure 3F), supporting the possibility that Notch signaling is involved in the 

homeostasis of the human peripheral Treg compartment. Moreover, this result suggests 

that DL1-mediated Notch signaling outcome is cell type specific.  

The PI3K/Akt/mTOR signaling pathway is known to interfere with FOXP3 induction in 

vitro and in vivo (11). The phosphorylation levels of S6, a downstream PI3K/Akt/mTOR 

target, were assessed by flow cytometry in sort-purified memory CD4 cells after TCR-

stimulation in the presence of OP9 empty or OP9 DL1 stroma. As a control, cells were 

either left in medium alone or TCR-stimulated in the presence of Rapamycin, a known 

mTOR attenuator, and OP9 control cells. We found similar levels of S6 phosphorylation in 

the presence or absence of DL1, excluding modulation of this pathway as a major 

contributor to the DL1-mediated enhancement of iTreg conversion (Figure 4C). We also 

found no impact of DL1 on S6 phosphorylation levels under sub-optimal TCR signal 

strength as well as on the Akt phosphorylation levels (data not shown). These results 

excluded the possibility that modulation of PI3K/Akt/mTOR accounted for the positive 

effects of DL1. 

The interaction between Notch and the TGF-β signaling pathway is well described (17-19, 
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28). We therefore investigated the phosphorylation levels of downstream targets of TGF-β 

signaling (Smad-2 and Smad-3) in different culture conditions. Sort-purified memory CD4 

cells were cultured in complete medium in the absence of serum for 3 hours, and then for a 

further 2 hours in the presence or absence of TGF-β with either control OP9 or OP9 DL1 

cells. We confirmed the expected phosphorylation of Smad-2/-3 in response to TGF-β 

(Figure 4D). Notably, we found that Smad-2/-3 phosphorylation levels were increased by 

DL1, even in the absence of exogenous TGF-β, suggesting that Notch cooperatively 

interacted with TGF-β signaling. Furthermore, DL1 also enhanced the Smad-3 mRNA 

expression levels (Figure 4D). Since the addition of a TGF-β blocking antibody led to a 

reduction of the Smad2/3 phosphorylation induced by DL1, its effect appeared to be at 

least partly mediated by endogenous TGF-β, possibly produced by the memory CD4 T 

cells, as supported by our Real-Time PCR data (data not shown).  

Finally, DL1 may exert its effects by direct modulation of Foxp3 gene transcription, since 

Notch signaling directly targets the Foxp3 promoter via RBP-J and Hes-1 binding sites 

within it (22). To test this possibility, we quantified Foxp3 mRNA expression levels in 

memory CD4 T cells (CD4+CD25-CD127hiCD45RA-) after 24 hours culture in conditions 

favoring FOXP3 acquisition, in the presence of control OP9 or OP9 DL1 cells. The Foxp3 

mRNA expression levels were increased in the presence of DL1 (Figure 4E), supporting 

our hypothesis.  
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Figure 4. Mechanisms mediating DL1 enhancement of iTreg differentiation from memory 
CD4 cells. (A-B) Sort-purified memory CD4 cells (CD4+CD25-CD127hiCD45RA-) were TCR-
stimulated for 5 days in medium supplemented with IL-2 and TGF-β, in the presence of OP9 DL1 
(DL1) or control OP9 stroma (Empty). Graphs show the frequency of Ki67+ (A) and Bcl2 MFI (B) 
within generated FOXP3+ iTreg (n=6). (C) Histograms show S6 phosphorylation levels, as a 
measure of mTOR activity, assessed after 14 hours TCR-stimulation in the presence of OP9 DL1 
or OP9 Empty. Cells left in medium without TCR stimulation (Unstim) or TCR-stimulated in the 
presence of the mTOR inhibitor Rapamycin (Rapa) and OP9 control stroma were used as controls. 
Graph shows the frequency of phosphorylated S6+ cells in the described conditions (n=3). (D) 
Illustrative dot-plots of Smad-2/-3 phosphorylation within sort-purified memory CD4 cells 
stimulated for 2 hours with or without TGF-β, in the presence of OP9 DL1 or OP9 empty, after a 
3h resting period in serum-free medium. Graphs show the frequency of Smad-2/-3 phosphorylated 
cells in the described condition without addition of exogenous TGF-β (n=4) and the Smad-3 
mRNA levels in sort-purified memory CD4 cells TCR-stimulated for 24h in medium supplemented 
with IL-2, in the presence of OP9 DL1 (DL1) or control OP9 stroma (Empty) (n=4).  (E) Foxp3 
mRNA levels in sort-purified memory CD4 cells stimulated for 24h as described in (A) (n=3). 
Cells left in medium with IL-2 alone (IL-2) were used as controls.  

 

Taken together, these data suggest that Notch enhances iTreg differentiation by a dual 

mechanism: cooperative interaction with the TGF-β pathway and direct modulation of 

Foxp3 transcription.  
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Discussion  

This study addressed the efficiency of the in vitro conversion of memory CD4 T cells into 

FOXP3-expressing iTreg and the role of the Notch signaling pathway in modulating this 

process. Our data demonstrated the feasibility of generating iTreg from human memory 

CD4 cells, a subset that is likely enriched in cells with auto-reactive specificities in 

autoimmune patients. Moreover, we showed that DL1-mediated Notch signaling enhances 

this conversion, offering a new target to facilitate iTreg generation with therapeutic 

potential. The beneficial DL1 effects were also extended to in vitro conversion protocols 

utilizing conventional naïve CD4 T cells. Additionally, we found that DL1 enhanced the 

expression levels of molecules associated with Treg function as well as the expansion of 

circulating human Treg, highlighting a potential role of this signaling pathway in human 

Treg homeostasis.  

A reduced and/or dysfunctional Treg compartment underlies the pathophysiology of many 

immune-mediated diseases prompting a strong interest in the manipulation of these cells 

for clinical purposes, particularly in transplantation and autoimmunity. Strategies to obtain 

sufficient Treg numbers for adoptive transfer rely on extensive ex vivo expansion of this 

subset. However, repeated expansion of Treg may alter their phenotype and function (5). 

Moreover, peripheral (p)Treg were shown to be ineffective in treating some AID in murine 

models, due to their unstable phenotype in pro-inflammatory environments (7, 29, 30). 

Conversely, iTreg have been shown to be stable in inflammatory conditions and resistant 

to Th17 conversion by IL-6 (7, 31). Thus, there is an increasing interest in iTreg 

manipulation, with non-regulatory naïve CD4 T cells being used as the starting population 

in the vast majority of induction studies performed (6-11). Notwithstanding, there is 

compelling evidence that a significant proportion of circulating Treg in humans may be 

derived from memory T cells (12-14), as indicated by the marked overlap in their TCR Vβ 

usage (12). In fact, continuous recruitment from the memory CD4 T cell compartment in 

vivo has been proposed as a major mechanism to maintain a stable pTreg pool over time 

(12). Accordingly, a few reports show successful in vitro induction of FOXP3 in memory 

CD4 cells (32-34). However there was controversy regarding their phenotype and function, 

likely due to methodological aspects, mostly related to TCR stimulation strength, 

suggesting that a suboptimal stimulation provided by lower concentrations of anti-CD3 
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mAb or Ag may be ideal for efficient iTreg generation (8, 11, 32). Indeed, our results 

extend the previous data by showing that stable and functional bona-fide iTreg can be 

generated from memory CD4 cells of healthy subjects.  

The Notch signaling pathway plays multiple roles in thymic T cell development and 

peripheral T cell differentiation (35). Accordingly, pathogen-derived signals have been 

shown to induce or modulate the expression of specific Notch ligands on APC whose 

interaction with Notch receptors on CD4 T cells have a profound impact on their 

differentiation towards particular T helper phenotypes (35, 36). The expression of Notch 

receptors and ligands is nevertheless not restricted to CD4 T cells and APC, respectively. 

For example, human DC express DL1, Jag1 and Jag2 ligands, in addition to Notch 

receptors (37).  Human Treg were also shown to express Notch1 and Notch4 as well as 

DL1, Jag1 and Jag2, and thus in principle, being capable of Notch-mediated T-T 

communication (38). Importantly, the Foxp3 promoter contains Notch-responsive elements 

(22) and the Treg-associated marker CD25 is also claimed to be a Notch target gene (39). 

Notably, Systemic Lupus Erythematosus patients with active disease failed to up-regulate 

Notch1 on T cells upon in vitro TCR stimulation, a phenomenon that correlated with 

decreased CD25 and FOXP3 expression (40).  

A role for Notch signaling in human Treg development and expansion has been previously 

suggested (20, 21, 23). In fact, human cord-blood CD34+ cells differentiate into mature 

Treg upon co-culture with OP9-DL1, suggesting that Notch is involved in human thymic 

Treg development (21). Moreover, APC over-expressing human Jag1 promoted the 

expansion of alloantigen-specific cells with regulatory properties from human naïve CD4 

cells (20). In addition, mesenchymal stem cells cultivated with human CD4+ T cells 

enhanced the recovery of FOXP3+ cells, via a Notch1-mediated mechanism (23). However, 

these studies did not discriminate whether Notch signaling was promoting Treg expansion 

and/or Treg de novo induction.  

We revealed that DL1 impacted upon TCR-stimulated pTreg by increasing their 

proliferation and expression of Treg function-associated markers, further reinforcing the 

contribution of the Notch signaling pathway in human Treg homeostasis. Additionally, we 

showed that bona-fide iTreg with a stable and functional phenotype can be efficiently 

differentiated in vitro from human memory CD4 T cells, and this process was enhanced in 
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the presence of DL1. Based on our results, we suggest that Notch plays a key role in the in 

vitro generation of iTreg, which likely reflects in vivo scenarios where their generation 

from non-regulatory precursors would allow a better control of immune responses. This is 

the case in the gut, where Notch ligands, including DL1, are highly expressed (41) and 

where TGF-β-dependent generation of pTreg takes place. Interestingly, we found that DL1 

also enhanced FOXP3 and CD39 expression on iTreg generated from conventional 

memory CD4 cells, even in the absence of exogenous TGF-β. Although we cannot exclude 

that the TGF-β produced by the T cells themselves contributes to the DL1-mediated effect, 

these results suggest that even in situations in which TGF-β is limiting, DL1 may help 

controlling the magnitude of memory CD4 T cell responses.  

The observation of a lack of significant DL4 impact on iTreg differentiation from memory 

cells is possibly unexpected. Nevertheless, DL1 and DL4 have a differential effect on early 

T cell activation and proliferation upon TCR cross-linking (42), which may affect the 

efficiency of conversion. Our monitoring of the levels of expression of each ligand on the 

OP9 stromal cells by FACS revealed a lower expression of DL4 than DL1 (Supplemental 

Figure 1E), which may have contributed to the much more striking effects of DL1. 

Concerning the mechanisms underlying the DL1-mediated enhancement of iTreg 

differentiation from memory cells, we excluded a significant impact of Notch signaling on 

iTreg proliferation and/or survival during the induction period. This was possibly 

unexpected, given the recognized role of Notch in the protection of activated CD4 T cells 

from apoptosis after an initial phase of clonal expansion, by inducing a broad anti-

apoptotic gene expression signature (43). We showed that DL1 cooperatively interacts 

with the TGF-β signaling pathway, as evidenced by increased phosphorylation of the 

downstream TGF-β signaling pathway targets Smad-2 and -3. TGF-β is a pleiotropic anti-

inflammatory cytokine required for iTreg differentiation. Although direct and indirect 

mechanisms have been implicated in TGF-β’s role in pTreg pool maintenance, recent 

studies suggest that its downstream targets, specifically Smad-3, directly activate the 

Foxp3 gene (44). The interaction between Notch and TGF-β signaling pathways has been 

repeatedly described and is probably both cell type- and context-dependent. Previous 

reports showed that Notch intracellular domain increases Smad3 protein at the 

transcriptional and post-transcriptional levels, as well as Smad nuclear translocation and its 
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transactivation at promoter sites (18, 28). Moreover, Notch ligands increase Treg 

suppressive function via the upregulation of TGF-β receptor expression and 

phosphorylation of Smad3 in effector T cells (19). We therefore hypothesize that the 

enhanced Smad-2 and -3 phosphorylation we observed in the presence of DL1, an effect 

particularly evident in the absence of exogenous TGF-β, might occur via up-regulation of 

TGF-β receptor and transcriptional/pos-transcriptional modulation of Smad3 promoted by 

the ligand. 

Direct targeting of the Foxp3 promoter by Notch is supported by the presence of RBP-J 

and Hes-1 binding sites within it, in both mice and humans (22). Accordingly, our results 

indicated increased Foxp3 mRNA expression in the presence of DL1, supporting an 

involvement of direct modulation of Foxp3 gene transcription in the Notch-mediated 

enhanced conversion of memory CD4 T cells into iTreg.  

Taken together, our data suggest that DL1 impacts on FOXP3 acquisition by memory CD4 

cells through various mechanisms, such as the cooperative interaction with TGF-β 

signaling pathway and the modulation of Foxp3 transcription. Other possibilities, such as 

direct down-regulation of the IL-6 receptor alpha chain on memory CD4 cells by DL1, as 

recently shown in human CD34+ cells (45), cannot be excluded and warrant further 

investigation.   

In conclusion, we provide evidence that manipulation of the Notch signaling pathway, both 

in Treg expansion and iTreg conversion protocols may help facilitating the use of Treg 

based-therapies. 
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Supplemental Data 

 

Supplemental Figure 1. Methodological validation of the protocol to induce iTreg from naïve 
and memory CD4 cells, characterization of these cells and the stroma cell lines used. (A) 
Purified naïve (CD4+CD25-CD127hiCD45RA+) and memory (CD4+CD25-CD127hiCD45RA-) CD4 
T cells were TCR-stimulated for 5 days with the indicated concentrations of plate bound anti-CD3 
mAb and soluble anti-CD28 mAb, in the presence of TGF-β and IL-2. Illustrative dot-plots of 
FOXP3 and CD25 expression post-sorting (D0) and after stimulation. (B) Histogram overlay 
illustrates FOXP3 and CD25 expression within memory CD4 cells after stimulation (iTreg) and in 
sort-purified Treg (CD4+CD25hiCD127lo) stimulated for 5 days with anti-CD3/anti-CD28 mAbs, 
plus IL-2 (activated Treg). (C,D) Notch receptor mRNA expression levels in freshly-isolated 
memory (CD4+CD25-CD127hiCD45RA-) CD4 cells (C) and circulating Treg 
(CD4+CD25hiCD127lo) (D). Notch1 and 2 protein expression on 24h TCR-activated memory CD4+ 
cells (C) and Treg (D), determined by immunofluorescence, is also shown. Scale bars 5µm; 
original magnification x630 and x400, in (C) and (D), respectively.  (E) Histogram shows Notch 
ligand expression levels on the OP9 stroma cells used, determined by FACS. The expression of 
DL1, DL4 and Jag1 on the corresponding stroma line, assessed by immunofluorescence, is also 
shown. Scale bar 10µm; original magnification x200.  (F) DL1, DL4 and Jag1 expressed by OP9 
cells inhibit the differentiation of C2 myoblast cells into myotubes, as indicated by Troponin T 
immunofluorescence. Scale bar 50µm; original magnification x200. 
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Supplemental Figure 2. Inducible (i)Treg generated in vitro from memory CD4 cells, in the 
absence of exogenous TGF-β . Sort-purified memory CD4 cells were TCR-stimulated in medium 
supplemented with IL-2, without addition of exogenous TGF-β, in the presence of OP9 stromal 
cells expressing the human ligand Delta-like 1 ligand (DL1) or control OP9 stroma (Empty) for 5 
days. (A) Graphs depict the frequency (n=12) and number of generated FOXP3+CD25+ cells (n=10) 
as well as Foxp3 mRNA levels after 24h stimulation (n=3). Representative histogram of FOXP3 
MFI (B) and illustrative dot-plots of CD39 expression (C) within generated FOXP3+ iTreg. Graphs 
show FOXP3 MFI and CD39 frequency within converted FOXP3+ iTreg (n=12). Cells left in 
medium with IL-2 alone (IL-2) were used as controls.  
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Supplemental Figure 3. Notch signaling impact on the phenotype, survival and proliferation 
of circulating Treg. (A) Sort-purified Treg (CD4+CD25hiCD127lo) were TCR-stimulated for 5 
days in medium supplemented with IL-2, in the presence or absence (vehicle, DMSO) of the γ-
secretase inhibitor DAPT (10µM). Histograms show FOXP3 expression and graph depicts the 
FOXP3 MFI within recovered cells (n=3). (B-F) Representative histograms, dot-plots and graphs 
show the analysis of sort-purified Treg, TCR-stimulated for 5 days in medium supplemented with 
IL-2, in the presence of OP9 cells expressing the human Delta-like 1 ligand (DL1) or control OP9 
stromal cells (Empty) for the expression of: (B) FOXP3 (n=10); (C) CTLA-4 (n=3); (D) CD39 
(n=9); (E) Bcl2 (n=4); and (F) Ki67+ (n=9) within recovered cells.  

 

  

A  

C
 

D 

B
 

E F 



108 TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

 
References 

1. Buckner, J. H. 2010. Mechanisms of impaired regulation by 

CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat 

Rev Immunol 10:849-859. 

2. Sakaguchi, S. 2004. Naturally arising CD4+ regulatory t cells for immunologic 

self-tolerance and negative control of immune responses. Annu Rev Immunol 

22:531-562. 

3. Marek-Trzonkowska, N., M. Mysliwec, J. Siebert, and P. Trzonkowski. 2013. 

Clinical application of regulatory T cells in type 1 diabetes. Pediatr Diabetes 

14:322-332. 

4. Tang, Q., K. J. Henriksen, M. Bi, E. B. Finger, G. Szot, J. Ye, E. L. Masteller, H. 

McDevitt, M. Bonyhadi, and J. A. Bluestone. 2004. In vitro-expanded antigen-

specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455-

1465. 

5. Hoffmann, P., T. J. Boeld, R. Eder, J. Huehn, S. Floess, G. Wieczorek, S. Olek, W. 

Dietmaier, R. Andreesen, and M. Edinger. 2009. Loss of FOXP3 expression in 

natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. 

Eur J Immunol 39:1088-1097. 

6. Wang, X., L. Lu, and S. Jiang. 2011. Regulatory T cells: customizing for the clinic. 

Sci Transl Med 3:83ps19. 

7. Lan, Q., H. Fan, V. Quesniaux, B. Ryffel, Z. Liu, and S. G. Zheng. 2012. Induced 

Foxp3(+) regulatory T cells: a potential new weapon to treat autoimmune and 

inflammatory diseases? J Mol Cell Biol 4:22-28. 

8. Yadav, M., S. Stephan, and J. A. Bluestone. 2013. Peripherally induced tregs - role 

in immune homeostasis and autoimmunity. Front Immunol 4:232. 

9. Schmitt, E. G., and C. B. Williams. 2013. Generation and function of induced 

regulatory T cells. Front Immunol 4:152. 



TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

	
  
109 

	
  

10. Paiva, R. S., A. C. Lino, M. L. Bergman, I. Caramalho, A. E. Sousa, S. Zelenay, 

and J. Demengeot. 2013. Recent thymic emigrants are the preferential precursors of 

regulatory T cells differentiated in the periphery. Proc Natl Acad Sci U S A 

110:6494-6499. 

11. von Boehmer, H., and C. Daniel. 2013. Therapeutic opportunities for manipulating 

T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 12:51-63. 

12. Vukmanovic-Stejic, M., Y. Zhang, J. E. Cook, J. M. Fletcher, A. McQuaid, J. E. 

Masters, M. H. Rustin, L. S. Taams, P. C. Beverley, D. C. Macallan, and A. N. 

Akbar. 2006. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid 

turnover of memory populations in vivo. J Clin Invest 116:2423-2433. 

13. Kryczek, I., K. Wu, E. Zhao, S. Wei, L. Vatan, W. Szeliga, E. Huang, J. Greenson, 

A. Chang, J. Rolinski, P. Radwan, J. Fang, G. Wang, and W. Zou. 2011. IL-17+ 

regulatory T cells in the microenvironments of chronic inflammation and cancer. J 

Immunol 186:4388-4395. 

14. Vukmanovic-Stejic, M., D. Sandhu, T. O. Sobande, E. Agius, K. E. Lacy, N. 

Riddell, S. Montez, O. B. Dintwe, T. J. Scriba, J. Breuer, J. Nikolich-Zugich, G. 

Ogg, M. H. Rustin, and A. N. Akbar. 2013. Varicella zoster-specific CD4+Foxp3+ 

T cells accumulate after cutaneous antigen challenge in humans. J Immunol 

190:977-986. 

15. Anastasi, E., A. F. Campese, D. Bellavia, A. Bulotta, A. Balestri, M. Pascucci, S. 

Checquolo, R. Gradini, U. Lendahl, L. Frati, A. Gulino, U. Di Mario, and I. 

Screpanti. 2003. Expression of activated Notch3 in transgenic mice enhances 

generation of T regulatory cells and protects against experimental autoimmune 

diabetes. J Immunol 171:4504-4511. 

16. Kared, H., H. Adle-Biassette, E. Fois, A. Masson, J. F. Bach, L. Chatenoud, E. 

Schneider, and F. Zavala. 2006. Jagged2-expressing hematopoietic progenitors 

promote regulatory T cell expansion in the periphery through notch signaling. 

Immunity 25:823-834. 



110 TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

 
17. Asano, N., T. Watanabe, A. Kitani, I. J. Fuss, and W. Strober. 2008. Notch1 

signaling and regulatory T cell function. J Immunol 180:2796-2804. 

18. Samon, J. B., A. Champhekar, L. M. Minter, J. C. Telfer, L. Miele, A. Fauq, P. 

Das, T. E. Golde, and B. A. Osborne. 2008. Notch1 and TGFbeta1 cooperatively 

regulate Foxp3 expression and the maintenance of peripheral regulatory T cells. 

Blood 112:1813-1821. 

19. Hue, S., H. Kared, Y. Mehwish, S. Mouhamad, M. Balbo, and Y. Levy. 2012. 

Notch activation on effector T cells increases their sensitivity to Treg cell-mediated 

suppression through upregulation of TGF-betaRII expression. Eur J Immunol 

42:1796-1803. 

20. Yvon, E. S., S. Vigouroux, R. F. Rousseau, E. Biagi, P. Amrolia, G. Dotti, H. J. 

Wagner, and M. K. Brenner. 2003. Overexpression of the Notch ligand, Jagged-1, 

induces alloantigen-specific human regulatory T cells. Blood 102:3815-3821. 

21. Hutton, J. F., T. Gargett, T. J. Sadlon, S. Bresatz, C. Y. Brown, H. Zola, M. F. 

Shannon, R. J. D'Andrea, and S. C. Barry. 2009. Development of 

CD4+CD25+FoxP3+ regulatory T cells from cord blood hematopoietic progenitor 

cells. J Leukoc Biol 85:445-451. 

22. Ou-Yang, H. F., H. W. Zhang, C. G. Wu, P. Zhang, J. Zhang, J. C. Li, L. H. Hou, 

F. He, X. Y. Ti, L. Q. Song, S. Z. Zhang, L. Feng, H. W. Qi, and H. Han. 2009. 

Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-

dependent mechanisms. Mol Cell Biochem 320:109-114. 

23. Del Papa, B., P. Sportoletti, D. Cecchini, E. Rosati, C. Balucani, S. Baldoni, K. 

Fettucciari, P. Marconi, M. F. Martelli, F. Falzetti, and M. Di Ianni. 2013. Notch1 

modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur J 

Immunol 43:182-187. 

24. Jarriault, S., O. Le Bail, E. Hirsinger, O. Pourquie, F. Logeat, C. F. Strong, C. 

Brou, N. G. Seidah, and A. Isra l. 1998. Delta-1 activation of notch-1 signaling 

results in HES-1 transactivation. Mol Cell Biol 18:7423-7431. 



TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

	
  
111 

	
  

25. Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. 

Solomon, W. Selby, S. I. Alexander, R. Nanan, A. Kelleher, and B. Fazekas de St 

Groth. 2006. Expression of interleukin (IL)-2 and IL-7 receptors discriminates 

between human regulatory and activated T cells. J Exp Med 203:1693-1700. 

26. Liu, W., A. L. Putnam, Z. Xu-Yu, G. L. Szot, M. R. Lee, S. Zhu, P. A. Gottlieb, P. 

Kapranov, T. R. Gingeras, B. Fazekas de St Groth, C. Clayberger, D. M. Soper, S. 

F. Ziegler, and J. A. Bluestone. 2006. CD127 expression inversely correlates with 

FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701-

1711. 

27. McMurchy, A. N., and M. K. Levings. 2012. Suppression assays with human T 

regulatory cells: a technical guide. Eur J Immunol 42:27-34. 

28. Elyaman, W., R. Bassil, E. M. Bradshaw, W. Orent, Y. Lahoud, B. Zhu, F. Radtke, 

H. Yagita, and S. J. Khoury. 2012. Notch receptors and Smad3 signaling cooperate 

in the induction of interleukin-9-producing T cells. Immunity 36:623-634. 

29. Wan, Y. Y., and R. A. Flavell. 2007. Regulatory T-cell functions are subverted and 

converted owing to attenuated Foxp3 expression. Nature 445:766-770. 

30. Xu, L., A. Kitani, I. Fuss, and W. Strober. 2007. Cutting edge: regulatory T cells 

induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the 

absence of exogenous TGF-beta. J Immunol 178:6725-6729. 

31. Zheng, S. G., J. Wang, and D. A. Horwitz. 2008. Cutting edge: 

Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant 

to Th17 conversion by IL-6. J Immunol 180:7112-7116. 

32. Long, S. A., M. Rieck, M. Tatum, P. L. Bollyky, R. P. Wu, I. Muller, J. C. Ho, H. 

G. Shilling, and J. H. Buckner. 2011. Low-dose antigen promotes induction of 

FOXP3 in human CD4+ T cells. J Immunol 187:3511-3520. 

33. Finney, O. C., E. Lawrence, A. P. Gray, M. Njie, E. M. Riley, and M. Walther. 

2012. Freeze-thaw lysates of Plasmodium falciparum-infected red blood cells 

induce differentiation of functionally competent regulatory T cells from memory T 

cells. Eur J Immunol 42:1767-1777. 



112 TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

 
34. Zhang, X., X. Chang Li, X. Xiao, R. Sun, Z. Tian, and H. Wei. 2013. 

CD4(+)CD62L(+) Central Memory T Cells Can Be Converted to Foxp3(+) T Cells. 

PLoS One 8:e77322. 

35. Radtke, F., H. R. MacDonald, and F. Tacchini-Cottier. 2013. Regulation of innate 

and adaptive immunity by Notch. Nat Rev Immunol 13:427-437. 

36. Auderset, F., M. Coutaz, and F. Tacchini-Cottier. 2012. The role of Notch in the 

differentiation of CD4(+) T helper cells. Curr Top Microbiol Immunol 360:115-

134. 

37. Perez-Cabezas, B., M. Naranjo-Gomez, P. Bastos-Amador, G. Requena-Fernandez, 

R. Pujol-Borrell, and F. E. Borras. 2011. Ligation of Notch receptors in human 

conventional and plasmacytoid dendritic cells differentially regulates cytokine and 

chemokine secretion and modulates Th cell polarization. J Immunol 186:7006-

7015. 

38. Ng, W. F., P. J. Duggan, F. Ponchel, G. Matarese, G. Lombardi, A. D. Edwards, J. 

D. Isaacs, and R. I. Lechler. 2001. Human CD4(+)CD25(+) cells: a naturally 

occurring population of regulatory T cells. Blood 98:2736-2744. 

39. Adler, S. H., E. Chiffoleau, L. Xu, N. M. Dalton, J. M. Burg, A. D. Wells, M. S. 

Wolfe, L. A. Turka, and W. S. Pear. 2003. Notch signaling augments T cell 

responsiveness by enhancing CD25 expression. J Immunol 171:2896-2903. 

40. Sodsai, P., N. Hirankarn, Y. Avihingsanon, and T. Palaga. 2008. Defects in Notch1 

upregulation upon activation of T Cells from patients with systemic lupus 

erythematosus are related to lupus disease activity. Lupus 17:645-653. 

41. Sander, G. R., and B. C. Powell. 2004. Expression of notch receptors and ligands in 

the adult gut. J Histochem Cytochem 52:509-516. 

42. Rutz, S., B. Mordmuller, S. Sakano, and A. Scheffold. 2005. Notch ligands Delta-

like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T 

helper cells. Eur J Immunol 35:2443-2451. 

43. Helbig, C., R. Gentek, R. A. Backer, Y. de Souza, I. A. Derks, E. Eldering, K. 

Wagner, D. Jankovic, T. Gridley, P. D. Moerland, R. A. Flavell, and D. Amsen. 



TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

	
  
113 

	
  

2012. Notch controls the magnitude of T helper cell responses by promoting 

cellular longevity. Proc Natl Acad Sci U S A 109:9041-9046. 

44. Xu, L., A. Kitani, C. Stuelten, G. McGrady, I. Fuss, and W. Strober. 2010. Positive 

and negative transcriptional regulation of the Foxp3 gene is mediated by access and 

binding of the Smad3 protein to enhancer I. Immunity 33:313-325. 

45. Csaszar, E., W. Wang, T. Usenko, W. Qiao, C. Delaney, I. D. Bernstein, and P. W. 

Zandstra. 2013. Blood stem cell fate regulation by Delta-1 mediated rewiring of IL-

6 paracrine signaling. Blood. 

 

 

 

 

  



114 TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

 
  



TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

	
  
115 

	
  

3.1.1. Annex 1: DL1-mediated Notch signaling impact on the differentiation of human 

non-regulatory CD4 thymocytes into FOXP3-expressing cells 

 

The Notch pathaway is an important signaling cascade in several stages of T cell 

development/ differentiation1. In mice, Notch modulates the thymic generation of Treg and 

the in vitro conversion of conventional T cells into the Treg phenotype2, 3, 4, 5, 6. In order to 

better understand the role of Notch signaling on human tTreg development, we evaluated 

its impact on the differentiation of mature non-regulatory CD4+ thymocytes into FOXP3-

expressing cells. 

With this purpose, we first performed loss-of-function experiments using the γ-secretase 

inhibitor DAPT, a pharmacological inhibitor of Notch. Addition of 10µM DAPT to sorted 

CD4SPCD25negCD127hi cells cultured with TCR stimulation, TGF-β and IL-2, led to a 

consistent reduction in the efficiency of conversion (on average 40%, n=4) as monitored 

by the frequency of CD25+FOXP3+ cells determined by FACS at day 5 (Figure 1). This 

result supported the hypothesis that Notch signaling plays a role in the differentiation of 

human non-regulatory CD4SP thymocytes into Treg.  
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Figure 1. Notch signaling inhibition decreases the in vitro differentiation of human 
thymocytes into Treg. (A) Panel represents a typical FACS profile of the frequency of FOXP3+ 

cells on live cells arising at Day 5 in cultures of sort-purified Single Positive (SP)CD4+CD3hi 
CD25-CD127hi thymocytes stimulated with plate bound anti-CD3 mAb, anti-CD28 mAb, TGF-β 
and IL-2, in the absence (-DAPT) or presence (DAPT) of the γ-secretase inhibitor DAPT. The 
proportion of FOXP3+ cells in SPCD4+CD3hi CD25-CD127hi thymocytes left for five days in 
medium supplemented with IL-2 alone (IL-2) is also shown. (B) The frequency of FOXP3+CD25+ 

cells in cultures of sort-purified SPCD4+CD3hiCD25-CD127hi thymocytes left in IL-2 alone or 
stimulated with anti-CD3 and anti-CD28 mAbs, TGF-β as well as IL-2, in the presence or absence 
of DAPT was monitored by flow cytometry at Day 5. Results correspond to a pool of four 
independent experiments.  
 
 
Sorted CD4SPCD25negCD127hi thymocytes were then co-cultured in conditions favoring 

FOXP3 induction, in the presence of either control OP9 cells (transduced with an empty 

vector) or stromal cells expressing DL1. We found that DL1 systematically increased the 

frequency and number of CD25+FOXP3+ cells in the 9 samples tested (Figure 2). Using a 

similar co-culture system, we excluded a major contribution of two other Notch ligands, 

DL4 and JAG1 and focused our attention in DL1. We also found that DL1 enhanced the 

frequency and number of FOXP3+CD25+ cells (on average 50%, n=4) even in the absence 

of exogenous TGF-β, hypothesizing that DL1 may partially substitute for TGF-β in the 

thymus. Having established that DL1 enhanced the differentiation of non-regulatory 

CD4SP thymocytes into FOXP3-expressing cells, we next evaluated the phenotype of 

these cells. Induction in the presence of DL1 led to significantly higher levels of 

expression of FOXP3 as well as of other Treg lineage-associated markers, namely CD39 

(Figure 2). 
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Figure 2. DL1 mediated enhancement of the in vitro conversion of human thymocytes into 
iTreg. (A) SPCD4+CD3hiCD25-CD127hi cells were sort-purified from mononuclear cells isolated 
from thymic tissue. Cells were cultures for 5 days in the presence of IL-2 alone. Stimulation of 
SPCD4+CD3hiCD25-CD127hi thymocytes with anti-CD3 mAb, TGF-β and IL-2 in the presence of 
control OP9 stromal cells transduced with an empty vector (Empty) or in the presence of OP9 
stromal cells transduced with Delta-like 1 (Dl1) ligand (Delta-1) was also performed. 
Representative dot plots show the frequency of CD25+FOXP3+ cells in cells recovered from each 
culture condition, as assessed by flow cytometry. The frequency (B) and number of FOXP3+CD25+ 
cells (C) arising from SPCD4+CD3hiCD25-CD127hi thymocytes stimulated in the presence of 
control OP9 stromal cells (Empty) or OP9 cells expressing Dl1 (Delta-1) was monitored at Day 5. 
The proportion of FOXP3+ cells expressing the Treg associated marker CD39 (D) and the mean 
fluorescence intensity (MFI) of FOXP3 on FOXP3+ cells (E) recovered from each culture 
condition was also determined. Results correspond to a pool of nine independent experiments. 
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3.1.2. Annex 2: DL1-mediated Notch signaling potentiates iTreg conversion from 

human memory CD4 T cells isolated from autoimmune patients 

 

Autoimmune diseases (AID) are a heterogeneous group of more than 100 chronic diseases 

that result from an imbalance between self-recognition and protection to non-self. Treg 

have been show to play a major role in the complex pathogenesis of several AID, hence 

appearing as an attractive target for use in the most recent therapeutic approaches in 

autoimmunity. 

The capacity of DL1 to enhance iTreg conversion from memory non-regulatory CD4 cells 

was evaluated in a AID context, using memory conventional CD4 cells isolated from a 

Systemic Lupus Erythematosus (SLE) patient in stable remission. 

 

                                                                                        

Figure 1. DL1-mediated enhancement of the in vitro conversion of memory CD4 cells from an 
SLE patient into iTreg. Sort-purified memory CD4 cells (CD4+CD25-CD127hiCD45RA-) from an 
SLE patient in stable remission were TCR-stimulated for 5 days in medium supplemented with 
TGF-β and IL-2 (TCR+TGF-β+IL-2). Cells left in medium with IL-2 alone (IL-2) were used as 
controls. Representative dot-plots of CD25 and FOXP3 expression on cells stimulated in the 
presence of control OP9 stroma cells (Empty) or OP9 stroma expressing the human ligand Delta-
like 1 (DL1). 

 

We confirmed that memory non-regulatory CD4+ T cells isolated from an SLE patient can 

efficiently be converted into FOXP3-expressing cells. Moreover, as observed for memory 

CD4+ T cells from healthy individuals, DL1 enhances the efficiency of iTreg conversion.  

These additional data support the feasibility of targeting human memory CD4+ T cells in 

protocols of in vitro iTreg conversion in the particular setting of autoimmune pathology, 

opening new avenues for its treatment. 
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3.1.3. Annex 3: Targeting self-reactivities in SLE patients 

 

SLE is a systemic AID where the dominant autoimmune response is the production of an 

array of autoantibodies to self-antigens including nuclear components (DNA, RNA and 

histones). In SLE, the function of Treg seems defective and their number appears to 

decrease during the active phases of disease1, 2, 3. These observations support the 

hypothesis that adoptive transfer of Treg is an attractive therapy for SLE. Importantly, in 

SLE several T cell epitopes have been identified in histones, ribonucleoproteins and anti-

DNA antibodies constituting potential specificities to be targeted in immunotherapy4. 

Thus, we aim to use self-reactivities present in conventional CD4 pool of SLE patients and 

target them to generate antigen-specific Treg for future use in SLE immunotherapy.  

In the lead-off experiment below, we sort-purified memory CD4+CD25-CD127hi cells from 

the peripheral blood of an SLE patient in remission. We thus monitored the proliferative 

response of this population to a panel of self-peptides relevant in SLE4. Irradiated PBMC 

were used as a source of APC. Our preliminary data showed significant proliferative 

response of CD25-depleted PBMC from an SLE patient to a cocktail of relevant SLE 

peptides (Figure 1).  
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Figure 1: Proliferative response to a cocktail of SLE peptides in a SLE patient.  (A) Peripheral 
blood mononuclear cells (PBMC) from an SLE patient in stable remission, with a SELENA-
SLEDAI score of 3, were depleted of CD25-expressing cells by magnetic cell sorting and cultured 
in the presence or absence of the antigen tetanus toxoid (TT) and a cocktail of SLE self-peptides 
(SmDl 83-119 peptide, H4 71-94 peptide and spliceosomal U1-70K protein 131–151 peptide). 
Proliferation was measured by tritiated thymidine incorporation at day 6. Stimulation Index (SI) 
was calculated by dividing the mean counts per minute (cpm) of cells exposed to each antigen by 
the mean cpm of cells incubated with medium alone. (B) Frequency of Ki67+ cells within gated 

CD4
+
Foxp3

- and CD4
+
Foxp3

+ T cells in PBMC of the SLE patient cultured in the absence 
(Medium) or presence of the SLE peptide cocktail for 6 days, as determined by flow cytometry.	
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3.2. Evidence for a two-step developmental program of thymus-derived 

human Regulatory T cells 

 

Human Regulatory T-cell development is dictated by Interleukin-2 and -15 expressed 

in a non-overlapping pattern in the thymus 
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Abstract    

Thymus-derived FOXP3-expressing Regulatory T-cells (tTregs) are master orchestrators 

of physiological and pathological immune responses, thus constituting ideal targets for the 

treatment of autoimmunity. Despite their clinical importance, the developmental program 

governing their differentiation in the human thymus remains poorly understood.  

Here, we investigated the role of common gamma-chain cytokines in human tTreg 

differentiation, by performing gain- and loss-of-function experiments in 3D and 2D 

postnatal thymic cultures. We identified IL-2 and IL-15 as key molecular determinants in 

this process and excluded a major function for IL-4, IL-7 and IL-21. Mechanistically, IL-2 

and IL-15 were equally able to drive tTreg precursor differentiation into FOXP3+ cells, and 

promote tTreg proliferation and survival. Both cytokines also increased the expression 

levels of molecules associated with effector function within FOXP3+ subsets, supporting 

their involvement in tTreg functional maturation. Furthermore, we revealed that IL-2 and 

IL-15 are expressed in a non-overlapping pattern in the human thymus, with the former 

produced mainly by mature αβ and γδ thymocytes and the latter by monocyte/macrophages 

and B lymphocytes.  

Our results identify core mechanisms dictating human tTreg development, with IL-2 and 

IL-15 defining specific niches required for tTreg lineage stabilization and differentiation, 

with implications for their therapeutic targeting in autoimmune conditions. 
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Introduction 

FOXP3-expressing Regulatory T-cells (Tregs) emerge as a distinct lineage through a 

process favouring the selection of thymocytes bearing self-reactive T-cell Receptors. 

Although Tregs can also be generated extra-thymically from conventional T-cells under 

specific stimulatory conditions, thymus-derived (t)Tregs are considered the major 

contributors to the peripheral Treg pool [1-3]. The transcription factor FOXP3 is essential 

for their development and effector function, as demonstrated by the clinical severity and 

associated mortality of loss-of-function mutations in the gene encoding this transcription 

factor in humans and mice [1-5]. Importantly, despite the clinical potential of Tregs in the 

context of autoimmunity, allergy and transplantation tolerance little is known about their 

ontogeny in the human thymus.  

Human T-cell development progresses through a series of sequential stages defined by the 

surface expression of CD4, CD8 and CD3. T-cell progenitors contained within the early 

CD3negCD4negCD8neg Triple Negative (TN) subset initially acquire CD4 (becoming CD4 

Immature Single Positive cells, CD4ISP) and subsequently CD8 expression, giving rise to 

Double-Positive (DP) thymocytes in the cortex. A progressive increase in surface CD3 

expression occurs in parallel with surface TCRαβ in DP cells, followed by final 

differentiation into CD4 Single-Positive (SP) and CD8SP thymocytes that mature in the 

medulla [6].  

Human Treg development appears to occur concomitantly with the generation of the 

counterpart FOXP3neg population, with these cells being documented in fetal thymus as 

early as the 13th week of gestation, prior to their appearance in peripheral sites [7, 8]. 

FOXP3 induction within developing thymocytes is driven by TCR signaling and associated 

with positive selection [7-11]. Expression of FOXP3 is indeed clearly detected in post-

selection DP thymocytes [7, 8, 11], which we have shown to significantly contribute to the 

mature FOXP3+ pool that is largely composed of CD4SP and some CD8SP thymocytes 

[11]. Others have shown that human tTregs can be selected by both myeloid and 

plasmocytoid dendritic cells (DCs) [10, 12, 13]. FOXP3+ cells accumulate in the medulla, 

where the majority of them can be found. Furthermore, FOXP3-expressing mature CD4SP 

and CD8SP display regulatory properties in both human fetal and postnatal thymus [7, 8, 

11, 14, 15].  
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Treg homeostasis and function in the periphery depends on Interleukin (IL)-2 [16, 17]. 

Here, we hypothesized that IL-2, and possibly other common-gamma chain (γc) cytokine 

family members, could play a role in human tTreg development. This family, that shares 

the use of γc to generate signaling receptor complexes, includes cytokines fundamental for 

the development and differentiation of immune cells, namely IL-4, IL-7, IL-9, IL-15, and 

IL-21, in addition to IL-2 [16, 17]. Notably, human tTreg express the α- (CD25) and the β- 

chain (CD122) of the IL-2 Receptor (R) that are utilised by IL-2 and IL-15 [8, 11]. 

Moreover, we demonstrated that human FOXP3+ thymocytes, although featuring reduced 

levels of the α-chain of the IL-7R compared to their FOXP3neg counterparts, phosphorylate 

STAT-5 in response to IL-7 [11]. Moreover, IL-2 increased CD25 and FOXP3 expression 

levels within FOXP3+DP thymocytes [11]. Thus, existing data support a role for IL-2 and 

IL-7 in human tTreg development. Importantly, polymorphisms in IL-2, CD25 or IL-2R 

downstream signaling molecules are associated with impaired Treg number and/or 

function as well as increased risk of autoimmunity in humans [16], which may be due to 

defective tTreg generation in addition to reduced peripheral Treg survival. Accordingly, 

indirect evidence supports a thymic involvement in patients undergoing IL-2 therapy, 

based on the observed expansion of Tregs expressing CD45RA and the recent thymic 

emigrant marker CD31 [18-20].  

Considerable differences exist between human and murine tTreg development. Human 

FOXP3+ thymocyte development occurs in parallel with the counterpart FOXP3neg 

population, whereas in mice their appearance is delayed [2, 7, 8]. Moreover, whereas the 

vast majority of murine tTregs arise at the CD4SP stage, increasing evidence indicates an 

earlier commitment into the Treg lineage in humans [2, 3, 7-11]. Nonetheless, data 

generated in murine models support our hypothesis [2, 3, 16, 17]. 

In this study, we investigated the role of γc cytokines in human tTreg development, by 

performing gain- and loss-of-function experiments in 3D and 2D postnatal thymic cultures, 

using recombinant cytokines, specific blocking antibodies and pharmacological inhibitors 

of their signaling pathway. We identified IL-2 and IL-15, expressed in a non-overlapping 

pattern, as key γc cytokines, both able to drive human tTreg precursor differentiation into 

FOXP3+ cells as well as to promote tTreg proliferation and survival. 
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Material and Methods 

Samples  

Thymic specimens were obtained from thymectomy during pediatric corrective cardiac 

surgery (newborns to 4-year old) at Santa Cruz Hospital, after parents´ informed consent. 

Study was approved by the Ethical Boards of the Faculty of Medicine of Lisbon, of Santa 

Maria and of Santa Cruz Hospitals. Thymocytes and Thymic Epithelial Cells (TECs) were 

isolated as described [9, 11, 21]. 

 

FACS analyses 

The following anti-human monoclonal antibodies (BD Biosciences or eBioscience, clones 

in brackets) were used: CD3 (UCHT1), CD4 (RPA-T4), CD8a (SK1), CD11c (3.9), CD14 

(61D3), CD16 (eBioCB16), CD20 (2H7), CD25 (2A3), CD31 (WM59), CD123 (6H6), αβ 

TCR (IP26), γλ TCR (B1.1), HLA-DR (L243), Bcl-2 (124), CTLA-4 (BNI3), FOXP3 

(PCH101), Ki67 (B56), ICOS (ISA-3), Epcam (1B7) and pan-cytokeratin (C-11). After 

surface staining cells were fixed, permeabilized and stained for FOXP3 and other 

intracellular molecules using the FOXP3 staining kit (eBioscience). Samples were acquired 

on a FACSCanto or LSR Fortessa (BD Biosciences) and analyses performed using FlowJo 

software (TreeStar), after stringent exclusion of cell aggregates, based on area and width 

parameters of both forward and side scatter, and dead cells by gating-out near-IR or violet 

LIVE/DEAD® fixable dye positive cells (Invitrogen). Annexin V and PI staining were 

performed with the Annexin V apoptosis detection kit (BD Biosciences). 

 

Cell sorting 

Cell sorting was performed with a FACSAria III (BD Biosciences). 

CD25negCD127hiCD4SP and CD25+CD127hiCD4SP were purified from total thymocytes 

as CD4+CD8negCD3hiCD127hi cells, subdivided according to their CD25 expression level. 

The lineage markers CD11c, CD14, CD16, CD20, CD56, CD123 and HLA-DR were 

combined with CD3, CD4 and CD8 staining to sort TN (Lineageneg CD3negCD4negCD8neg) 

and CD4ISP thymocytes (Lineageneg CD3negCD8negCD4+). γδ cells were purified as TCR-
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γδ+CD3+. Purification of B cells (CD20+HLA-DR+), pDC (CD123+HLA-DRlo), NK (CD 

56+/CD16+CD4negCD8negCD3neg) and monocyte/macrophages (CD14+) was performed 

after CD3-expressing thymocyte depletion using EasySep™ Human CD3 Positive 

Selection Kit (StemCell Tecnologies). Purity was routinely ≥95%. 

 

Cell Cultures  

The following reagents were used: anti-CD3 (clone OKT3), anti-CD28 (clone CD28.2) and 

mouse IgG1 mAbs, (eBioscience); Dynabeads® Human T-Activator CD3/CD28 

(Invitrogen); JAK-3 inhibitor CP690550 (Axon Medchem); STAT-5 inhibitor N′-((4-Oxo-

4H-chromen-3-yl)methylene)nicotinohydrazide (Calbiochem); anti-CD122 mAb (clone 

TU27, BioLegend); anti-IL-2 (clone 5334) and anti-IL-15 mAbs (clone 34593), (R&D); 

IL-2 (AIDS Research and reference Program, Division of AIDS, NIAID, NIH); IL-4 and  

IL-7 (R&D); IL-15, IL-21 and TGF-β (PeproTech). Complete RPMI and IMDM medium 

were made by supplementation of respective media with 10% FCS, L-glutamine, sodium 

pyruvate, Hepes, Non-essential aminoacids, Penicillin/Streptomycin, 2-mercaptoethanol 

and gentamicin (all from Invitrogen). Total thymocytes (2x106) were co-cultured with 

primary allogeneic TECs (4x104) in complete RPMI medium alone or supplemented with 

IL-2, IL-4, IL-7, IL-15 or IL-21. For CD25negCD127hiCD4SP thymocyte differentiation 

into FOXP3-expressing cells, sorted thymocytes (2.5x105 cells) were stimulated with 

1µg/ml plate-bound anti-CD3 mAb, 1µg/ml soluble anti-CD28 mAb and 5ng/ml TGF-β, in 

complete IMDM medium alone or supplemented with IL-2, IL-4, IL-7, IL-15 or IL-21, for 

5 days [22]; parallel cultures consisted of thymocytes TCR-stimulated in the presence of 

TGF-β and IL-2, to which either IL-4, IL-7, IL-15 or IL-21 was added. 

 

Thymic Organ Cultures (TOCs) 

Thymic tissue was cut into ~2 mm3 pieces and placed over Isopore membranes (Millipore) 

supported on Gelfoam [23, 24], under the indicated culture conditions in complete RPMI 

medium, either alone or supplemented with IL-2, IL-15, anti-IL-2 mAb, anti-IL-15 mAb, 

JAK-3 inhibitor, STAT-5 inhibitor and anti-CD122 mAb.  
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Suppression Assays 

The CD25highCD4SP populations under test were sort-purified at day 7 from co-cultures of 

thymocytes with TECs set in the presence of IL-2 (10U/ml) or IL-15 (12.5ng/ml). Control 

CD25highCD4 cells and CD25negCD4SP (targets) were sorted from an allogeneic thymus. 

To evaluate their suppressor function, each population was plated at various numbers 

together with 2.5x104 CD25negCD4SP thymocytes labeled with CFSE (2.5µM CFSE from 

Invitrogen, for 5 min at room temperature). Stimulation was provided by CD3/CD28 

Dynabeads (bead:cell ratio 1:4, Invitrogen). Proliferation was monitored at day 4 by 

analyzing target cell CFSE dilution, by FACS. 

 

RT-qPCR  

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) and cDNA was synthesized 

using the Superscript III Reverse Transcriptase Kit (Invitrogen). The mRNA levels of 

Foxp3, IL15 R alpha chain; IL-2, IL-15 and GAPDH were quantified with TaqMan gene 

expression kits, according to the manufacturer's instructions, using a 7500 Fast Real-Time 

PCR System (all from Applied Biosystems). IL-2 and IL-15 expression levels in sorted 

thymocyte populations were determined after pre-amplification with TaqMan Preamp 

Master Mix (Applied Biosystems). Bcl2 (forward: 5'-GCACCTGCACACCTGGAT-3' 

and reverse: 5'-CCAAACTGAGCAGAGTCTTCAG-3') and Bim (forward: 5'-

ATGGCAAAGCAACCTTCTGATG-3' and reverse: 5'-

TCAATGCATTCTCCACACCAGG-3') gene expression were quantified with SYBR® 

Green PCR Master Mix (Applied Biosystems). Results were analyzed using the ∆∆Ct (2-

∆∆Ct) method.  

 

Immunohistochemistry 

Thymus pieces were preserved in 4% formaldehyde and embedded in paraffin. 

Deparaffinised 3µm samples underwent antigen retrieval (Leica Buffer Ph9) by heat for 15 

min. Samples were stained with the following mAb (clone and supplier in brackets): anti-

IL-2 (5334, R&D), anti-IL-15 (34593, R&D), anti-CD20 (L26, Dako), anti-CD68 (PG-M1, 

Dako) and FOXP3 (236/E7, eBiosciences). Single and double immunohistochemistry 
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stainings were revealed by enzymatic substrate with horseradish peroxidase and alkaline 

phosphatase, in brown and red respectively. All slides were counterstained with 

Hematoxylin and mounted with Entellan (single staining) or Glycergel (double staining) 

from DakoPower. Bright-field images were acquired using a Leica DM 2500 Microscope 

equipped with a Leica Digital FireWire Camera (DFC) and HC PL FLUOTAR lenses 

using the Leica Acquire software. FIJI software was used for scaling and Adobe Photoshop 

software for contrast/brightness correction. 

 

Statistical Analyses  

Statistical analyses were performed with the 2-tailed Student’s paired test, using GraphPad 

Prism v5.01 (GraphPad Software Inc.). Data were first transformed with log (base 10) to 

account for variability between samples before the t test was performed. Comparison was 

always done with the corresponding control thymic culture. Results are expressed as 

mean±SEM. p-values below 0.05 were considered significant. 
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Results 

Role of γc cytokines in human tTreg development  

To mimic human intrathymic T-cell development in-vitro, we utilized 3D Thymic Organ 

Cultures (TOCs) [23, 24] and 2D cultures of total thymocytes with primary Thymic 

Epithelial Cells (TECs) [21], subsequently referred to as co-cultures. TECs were 

phenotypically characterized in terms of cytokeratin and EpCAM expression 

(Supplementary Fig. S1A). Consistent with T-cell differentiation, the frequency of mature 

CD4SP and CD8SP cells, assessed by FACS, progressively increased during the 7-day 

culture in both TOCs (Supplementary Fig. S1B) and co-cultures of total or CD4ISP 

thymocytes with TECs (data not shown and Supplementary Fig. S1C, respectively) set in 

medium alone.  

Firstly, we assessed whether γc cytokine signaling was required for human tTreg 

development, by evaluating the impact of pharmacological inhibition of JAK-3, a protein 

tyrosine kinase that specifically associates with γc [17]. JAK-3 blockade significantly 

reduced the frequency and number of total CD25+FOXP3+ and CD25+FOXP3+CD4SP 

cells in both culture systems (Figs. 1A and B). 

Next, we supplemented TOCs and co-cultures with increasing doses of IL-2, IL-4, IL-7, 

IL-15 and IL-21. All γc cytokines increased cell recovery and, with the exception of IL-21, 

augmented thymocyte survival at day 7 (Supplementary Fig. S2). However, whereas IL-4, 

IL-7 and IL-21 did not substantially impact upon the tTreg compartment (Supplementary 

Figs. S2C-E), IL-2 and IL-15 increased the frequency and number of recovered 

CD25+FOXP3+ and CD25+FOXP3+CD4SP cells in both TOCs and co-cultures, as well as 

the Foxp3 mRNA expression levels in thymocytes recovered from co-cultures at day 4 

(Figs. 1C and D, Supplementary Figs. S3A and B). The impact of IL-15 on Treg frequency 

and number was apparently independent of IL-2, as it was unaffected by addition of a 

neutralizing anti-IL-2 mAb (data not shown). 

A physiological role for both cytokines was further supported by the reduction in Treg 

frequency in TOCs upon neutralization of endogenous IL-2 or IL-15 (Fig. 1E and 

Supplementary Fig. S3C) and CD122 blockade (Fig. 1F and Supplementary Fig. S3D). No 

modulation of the Treg compartment was observed upon IL-7 neutralization (data not 

shown).  



TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

	
  
137 

	
  

Signaling via IL-2/IL-15R requires the downstream transcription factor STAT-5 [17]. 

Addition of a pharmacological STAT-5 inhibitor to TOCs reduced Treg recovery (Fig. 1G 

and Supplementary Fig. S3E) further supporting the hypothesis that JAK-3/STAT-5 

pathway is involved in human tTreg differentiation.  
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Figure 1: The γc cytokines IL-2 and IL-15 impact on human tTreg development. (A-B) TOC 
and co-cultures of total thymocytes with TECs were cultured for 7 days in medium alone or 
supplemented with the indicated concentrations of a JAK-3 inhibitor or DMSO (vehicle): (A) 
Representative FACS profile of CD25 and FOXP3 expression within TOC recovered cells; graph 
shows frequency of FOXP3+CD25+ cells within total and CD4SP thymocytes (n=3-4); (B) 
Frequency and number of FOXP3+CD25+ cells within total and CD4SP thymocytes in co-cultures 
(n=5-6). (C-D) TOCs and co-cultures of total thymocytes with TECs were cultured for 7 days in 
medium alone or supplemented with IL-2 (10U/ml) or IL-15 (12.5ng/ml): (C) Representative 
FACS profile of CD25 and FOXP3 expression in cells recovered from TOCs at day 7; graphs 
depict FOXP3+CD25+ cell frequency at days 4 and 7 (n=10-11);  (D) Proportion and number of 
CD25+FOXP3+ cells recovered from co-cultures at days 4 and 7 (n=12); graph on the right shows 
Foxp3 mRNA levels in cells harvested at day 4 (n=3). (E-G) Representative contour plots of CD25 
and FOXP3 expression in cells recovered at day 7 from TOCs, in medium supplemented with: (E) 
anti-IL-2 (10µg/ml), anti-IL-15 (10µg/ml) or isotype control mAbs (anti-IgG1, 10µg/ml) (n=3-4); 
(F) anti-CD122 blocking (10µg/ml) or isotype control mAbs (anti-IgG1, 10µg/ml) (n=4); (G) the 
indicated concentrations of a STAT-5 inhibitor or DMSO (vehicle) (n=4-5); graphs show the 
reduction in FOXP3+CD25+ cell frequency in each test condition at days 4 and 7, in comparison to 
the corresponding control TOC. Results are expressed as mean±SEM. *p<0.05, ** p<0.01, 
***p<0.001.  
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We and others have shown that in addition to CD4SP, FOXP3 is also expressed by a subset 

of DP and CD8SP cells in the human thymus [7-9, 11]. We thus investigated the impact of 

IL-2 and IL-15 on these subsets, and found increased FOXP3 expression in both, upon 

supplementation with IL-2 and IL-15, irrespective of the culture system used (Fig. 2), as 

well as a consistent reduction in their frequency when we neutralized endogenous IL-2 or 

IL-15 (data not shown). 

 

 

Figure 2: IL-2 and IL-15 enhance FOXP3 expression within DP, CD8SP and CD4SP 
thymocytes. (A) Representative contour plots of CD4 and CD8 expression within total 
thymocytes, together with FOXP3+ cells within gated DP, CD4SP and CD8SP thymocytes 
recovered at day 4 from TOCs in medium alone or supplemented with IL-2 (10U/ml) or IL-15 
(12.5ng/ml). Graphs show the frequency of FOXP3+ cells within DP, CD4SP and CD8SP 
thymocytes recovered from (A) TOCs (n=8-9) or (B) co-cultures (n=12) setup as in (A), at days 4 
and 7. Results are expressed as mean±SEM. *p<0.05, **p<0.01, ***p<0.001.  

 

Overall, our data indicate that IL-2 and IL-15 are the key γc cytokines involved in human 

tTreg development and that their signaling largely occurs via JAK-3/STAT-5. 
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IL-2 and IL-15 favour the development of bona-fide Treg  

We next investigated how IL-2 and IL-15 supplementation impacted on the phenotype and 

function of tTreg accumulating in co-cultures, and found that FOXP3+DP, FOXP3+CD8SP 

and FOXP3+CD4SP thymocytes featured higher expression levels of both FOXP3 and 

other Treg function-associated molecules such as CD25, CTLA-4 and ICOS, as well as 

increased frequency of HLA-DR (Fig. 3A and Supplementary Figs. S4A and B). IL-2 and 

IL-15 also increased FOXP3 and CD25 expression levels within FOXP3+ subsets in TOCs 

(data not shown).  

Notably, lower levels of FOXP3 and CD25 expression were found within FOXP3+ cells 

recovered from co-cultures and TOCs in the presence of a neutralizing anti-IL-2 or anti-IL-

15 mAb (Supplementary Fig. S4C and data not shown), further supporting a physiological 

role for these cytokines in tTreg functional maturation.  

We next evaluated the functional capacity of mature CD4SP Treg accumulating in co-

cultures, using a standard in-vitro suppression assay [22]. CD25brightCD4SP cells recovered 

at day 7 from IL-2- or IL-15-supplemented co-cultures inhibited the in-vitro proliferation 

of CD25negCD4SP targets, in a dose dependent manner, at least as efficiently as 

CD25brightCD4SP control cells (Fig. 3B), demonstrating they possess functional properties 

of bona-fide Treg.  
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Figure 3: FOXP3+ cells accumulating in IL-2- and IL-15-supplemented co-cultures display 
phenotypic and functional properties of Treg. (A) Representative histogram overlays of FOXP3 
and CD25 (numbers inside histograms indicate MFI) within FOXP3+DP, FOXP3+CD8SP and 
FOXP3+CD4SP cells recovered at day 7 from co-cultures of thymocytes with TECs in medium 
alone or supplemented with 10U/ml IL-2 or 12.5ng/ml IL-15; graphs show the data from different 
thymuses (n=12). (B) Proliferation of CFSE-labeled CD25negCD4SP thymocytes unstimulated 
(filled lines) or stimulated (open lines) with CD3/CD28 Dynabeads (1:0 ratio; Target:Treg ratio) 
for 4 days either alone or in the presence of decreasing numbers of CD25brightCD4SP cells (1:1 and 
2:1 ratio). The CD25brightCD4SP cells tested were either sort-purified from freshly-isolated 
thymocytes (control of suppression) or sort-purified from day 7 co-cultures of total thymocytes 
with TECs, cultured in the presence of exogenous 10U/ml IL-2 or 12.5ng/ml IL-15 (n=2). Numbers 
correspond to the frequency of target cells that have divided at least once during the culture period. 
Results are expressed as mean±SEM. *p<0.05, **p<0.01, ***p<0.001.  

 

IL-2 and IL-15 induce tTreg proliferation and survival  

To determine mechanism(s) underlying the IL-2 and IL-15 effect on human tTreg 

development, we first tested whether these cytokines impacted upon the proliferation of 

FOXP3+ cells, by assessing the frequency of Ki67 in cells recovered from co-cultures. 

Both cytokines considerably enhanced the proliferation of FOXP3+ cells at day 4 (Fig. 4A 

and Supplementary Fig. S5), irrespectively of whether they were DP, CD4SP or CD8SP. 

Additionally, IL-2 and IL-15 increased Bcl2 expression levels within all FOXP3+ subsets 

more efficiently than in their FOXP3neg counterparts (Fig. 4B and Supplementary Fig. S5). 

Furthermore, whereas Bcl2 mRNA levels increased with IL-2 and IL-15, Bim mRNA 

expression was unaffected by cytokine supplementation (Fig. 4C). Accordingly, IL-2 and 

A B 
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IL-15 consistently decreased the frequency of Annexin-V+ and PI+ cells within CD25+ 

thymocytes, used here as correlate of FOXP3+ cells as this readout precluded their direct 

labeling, recovered from co-cultures at 24h (Figs. 4D and E and Supplementary Fig. S5) 

but had no significant effect on their CD25neg counterparts.  

 

Figure 4: IL-2 and IL-15 favour the preferential proliferation and survival of human 
FOXP3+ thymocytes. (A, B, D) Total thymocytes were co-cultured with TECs, in medium alone 
or supplemented with either IL-2 (10U/ml) or IL-15 (12.5ng/ml). Frequency of Ki67+ cells (A) and 
Bcl-2 MFI (B) within FOXP3neg and FOXP3+ cells, at day 4 (n=3-4). (C) Quantification of Bim and 
Bcl2 mRNA levels by qPCR in total thymocytes recovered at 24 hours from co-cultures in medium 
supplemented with the indicated concentrations of IL-2 and IL-15, in comparison to control co-
cultures in medium alone (n=3). (D) Frequency of Annexin-V+PIneg and Annexin-V+PI+ cells within 
CD25neg and CD25+ cells recovered at 24 hours (n=3). Numbers in histograms correspond to either 
percentage (Ki67, Annexin-V/PI) or MFI (Bcl2). Results are expressed as mean±SEM. * p<0.05, 
** p<0.01, ***p<0.001.  

 

Collectively, our data indicate that IL-2 and IL-15 promote the preferential proliferation 

and survival of FOXP3+ cells.  

 

A B 

C D 



TOWARDS THE THERAPEUTIC USE OF REGULATORY T CELLS FOR THE TREATMENT OF HUMAN AUTOIMMUNE DISEASES 

	
  
143 

	
  

IL-2 and IL-15 drive human tTreg precursor differentiation into FOXP3+ cells 

Notably, a significant increase in the frequency of CD25+FOXP3+ cells as well as in their 

levels of FOXP3 protein and mRNA expression was already observed at 24h in co-cultures 

supplemented with IL-2 or IL-15 (Fig. 5A), a time-point at which the impact of cytokines 

upon proliferation was negligible (Fig. 5B). These results raised the possibility that IL-2 

and IL-15 could directly drive thymocyte differentiation into tTreg.   

To investigate this hypothesis, we first used a classical in-vitro assay for Treg 

differentiation in which sort-purified non-regulatory CD4SP thymocytes (sorted as 

CD25negCD127hiCD4SP) were TCR-stimulated in the presence of TGF-β [22]. Notably, 

cells cultured under these conditions did not acquire FOXP3, in media without γc 

cytokines. However, addition of either IL-2, IL-15 and to a lesser extent IL-7, but not IL-4 

or IL-21, readily promoted FOXP3 expression. Moreover, IL-4 and IL-21 seemed to 

antagonize FOXP3 acquisition in the presence of TGF-β and IL-2 (Fig. 5C). Our data 

suggest that IL-2 and IL-15 are particularly efficient at inducing FOXP3 expression in 

TCR-stimulated non-regulatory human thymocytes and demonstrate that TCR/CD28 

activation alone, even in the presence of TGF-β, was insufficient to promote acquisition of 

FOXP3 expression by these cells.  

Next, we sort-purified CD127hiCD4SP thymocytes according to their level of CD25 

expression, and showed that CD25+CD127hiCD4SP cells did not require provision of TCR 

triggering to progress to the FOXP3+ stage, a step induced equally well by IL-2 or IL-15, 

with approximately 40% of cells expressing FOXP3 at day 3 (Fig. 5D). Thus, 

CD25+CD127hiCD4SP cells (surrogates of CD25+FOXP3negCD4SP cells) are highly 

enriched in tTreg precursors prone to differentiate into FOXP3+ cells upon stimulation 

with IL-2 or IL-15 alone. We estimated that CD25+FOXP3neg cells represent 2.6±0.2% 

(n=19) of CD3hiCD4SP thymocytes and observed a trend towards a direct relationship 

between their frequency and the proportion of CD25+FOXP3+CD4SP cells (r=0.38; 

p=0.0565). Notably, the counterpart CD25negCD127hiCD4SP population lacked the 

capacity to differentiate into tTreg, failing to up-regulate FOXP3 upon exposure to IL-2 or 

IL-15 (Fig. 5D). We also found that following overnight stimulation with anti-CD3 mAb, 

alone or together with anti-CD28 mAb, roughly 2 and 19% of the CD25negCD127hiCD4SP 

thymocytes, respectively, acquired CD25 (with no concomitant FOXP3 expression) and 
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that upon further exposure to IL-2 and IL-15, only cells pre-exposed to both stimuli 

acquired expression of FOXP3 (Fig. 5E).  

 

 
 

Figure 5: IL-2 and IL-15 promote human tTreg precursor differentiation into tTreg. (A-B) 
24h co-culture of total thymocytes with TECs in medium alone or supplemented with IL-2 
(10U/ml) or IL-15 (12.5ng/ml): (A) Representative FACS profile of FOXP3 and CD25 expression 
and histogram overlay of FOXP3 expression levels within CD25+FOXP3+ cells in recovered 
thymocytes; graphs show CD25+FOXP3+cell frequency recovered (n=6), their FOXP3 expression 
levels (n=6), and Foxp3 mRNA levels in recovered thymocytes (n=5);  (B) Frequency of Ki67 
within FOXP3+ cells recovered from the 24h co-cultures (n=6). (C) Sort-purified 
CD25negCD127hiCD4SP thymocytes were stimulated for 5 days with plate-bound anti-CD3 mAb, 
soluble anti-CD28 mAb and TGF-β, in the presence or absence of the γc cytokines IL-2 (10U/ml), 
IL-4 (10ng/ml), IL-7 (10ng/ml), IL-15 (12.5ng/ml) or IL-21 (25ng/ml). Representative contour 
plots of CD25 and FOXP3 expression are shown, with graphs depicting the frequency of recovered 
CD25+FOXP3+ cells (left, n=3) and after adding 10U/ml IL-2 (right, n=3). (D) Representative 
contour plots illustrating the sorting strategy and purity of CD25negCD127hiCD4SP and 
CD25posCD127hiCD4SP cells, and their levels of CD25 and FOXP3 expression upon culture for 3 
days in medium alone or supplemented with IL-2 (10U/ml) or IL-15 (12.5ng/ml); graph shows 
differentiated CD25+FOXP3+ cell frequency (n=3-5). (E) Sort-purified CD25negCD127hiCD4SP 
were left in medium or stimulated overnight with plate-bound anti-CD3 mAb (1µg/ml) alone or in 
combination with soluble anti-CD28 mAb (1µg/ml), washed, and then cultured for 3 days in 
medium alone or supplemented with IL-2 (10U/ml) or IL-15 (12.5ng/ml); graphs show 
CD25+Foxp3+ cell frequency in each culture condition (n=4). Results are expressed as mean±SEM. 
* p<0.05, ** p<0.01, ***p<0.001. 
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Overall, our data support a 2-step model in which initial TCR and co-stimulatory signals 

give rise to CD25+FOXP3negCD4SP tTreg precursors that on subsequent exposure to IL-2 

or IL-15 differentiate into CD25+FOXP3+ cells.  

 

Non-overlapping pattern of IL-2 and IL-15 expression in the human thymus 

There are, to our knowledge, no data regarding the pattern of expression of either IL-2 or 

IL-15 in the human thymus. Using immunohistochemistry, we showed that IL-2 was 

expressed both in the cortex and medulla, with a predominantly “patchy” distribution 

(Figs. 6A-D and Supplementary Fig. S6A). IL-15 presented a more diffuse pattern, mostly 

restricted to the medulla, although a few cytokine niches were identifiable in both cortex 

and medulla (Figs. 6A, C and D and Supplementary Fig. S6A). The specificity of the 

cytokine staining was confirmed by lack of positive labeling with the isotype control Ab 

(Fig. 6B), and by its loss following pre-incubation of each anti-cytokine Ab with its 

cytokine target (Fig. 6C). Importantly, there was a mostly non-overlapping pattern of IL-2 

and IL-15 expression that was reproducibly detected in all thymuses tested (Figs. 6A and 

D). We also detected FOXP3+ cells in the vicinity of IL-2- and IL-15- enriched areas, as 

assessed by single stainings performed in sequential cuts (Supplementary Fig. S6A), since 

technical limitations precluded co-immunostaining and double immunofluorescence for 

FOXP3 and cytokines. Immunohistochemistry data also suggested that IL-2 was expressed 

at considerably higher levels than IL-15, an observation corroborated by quantitative RT-

PCR (qPCR) measurement of IL-2 and IL-15 mRNA expression in total thymocytes (Fig. 

6E), although the putative contribution of stromal cells was not evaluated here.  
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Figure 6: IL-2 and IL-15 are expressed thymus in non-overlapping niches in the human. 
Illustrative immunohistochemistry staining of paraffin-embedded serial sections of human thymus 
with: (A) human anti-IL-2 and anti-IL-15 mAbs with lower set of images corresponding to a zoom 
of the region indicated by the yellow box in the upper ones;  (B) human anti-IL-2 mAb or the 
corresponding isotype control antibody (IC: mouse IgG1); (C) anti-IL-2 mAb or anti-IL-15 mAb, 
with or without pre-incubation of the antibody with its corresponding cytokine ligand, as indicated; 
(D) human anti-IL-2 and anti-IL-15 mAbs in 4 additional thymuses to illustrate the reproducibility 
of the staining pattern. Scale bars in A, 100 and 50 µm (upper and lower images, respectively); 
original magnification x400. Scale bars in B, C and D correspond to 100 µm; original 
magnification x100.  (E) Quantification of IL-2 and IL-15 mRNA levels in total thymocytes, by 
qPCR (n=2). Results are expressed as mean±SEM.  
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We next investigated which populations within the human thymus were responsible for IL-

2 and/or IL-15 secretion. qPCR analyses of sort-purified thymocyte subsets suggested that 

mature thymocytes were the major IL-2 source, particularly CD4SP and CD8SP, but also 

indicated a contribution of γδ and NK cells (Fig. 7A). Intracellular staining for IL-2 

showed that 1.5±0.3% of thymocytes (n=13) produced IL-2 after PMA/ionomycin 

stimulation. IL-2 production was mostly confined to CD3+ thymocytes (Fig. 7B), 

particularly CD4SP (1.8±0.4%, n=13) and CD8SP (4.1±0.6%, n=13). Additionally, a 

reasonable proportion of γδ (15.7±4.7%, n=3) and NK cells (17.9±4.2%, n=6) also 

produced IL-2 (Fig. 7B), although they only constituted 0.5±0.05 and 0.2±0.09% of total 

thymocytes, respectively. Therefore, CD4SP, CD8SP and CD3brightDP thymocytes are the 

main contributors to thymic IL-2, followed by γδ and NK cells (Fig. 7C). On the other 

hand, most thymic IL-15 appeared to be produced by monocyte/macrophage CD14+ cells, 

and to a lesser extent, B lymphocytes (Fig. 7D). In accordance with a non-overlapping 

pattern of IL-2 and IL-15 expression, CD4SP and CD8SP thymocytes that constituted 

major sources of IL-2, did not express IL-15. Moreover, whereas TECs were negative for 

IL-2, they readily expressed IL-15 (Fig. 7D). Taking into consideration our 

immunohistochemistry data, we expect that IL-15 expression in TECs to be mostly 

restricted to mTECs (Figs. 6A, C, D and Supplementary Fig. S6A). Since IL-15 needs to 

be presented in trans by IL-15Rα+ cells to neighbouring IL-2Rβ-expressing cells [25], we 

confirmed by qPCR that thymic populations with the potential to secrete IL-15 expressed 

the IL-15Rα chain (Fig. 7E).  

Additionally, we performed co-immunostaining for IL-15 and the macrophage marker 

CD68, or the B cell marker CD20, due to the lack of a reliable anti-IL-15 mAb for flow 

cytometry and our inability to detect IL-15 by immunofluorescence. 

Immunohistochemistry data supported a contribution of both populations to thymic IL-15 

(Figs. 7F and G). Indeed, macrophages and B cells were found within ~90% and 33% of 

the IL-15 niches, respectively. Interestingly, whereas macrophages localized in both cortex 

and medulla, B cells were mostly found in the medulla (Supplementary Fig. S6B). No co-

localization of macrophages or B cells with IL-2 was observed (Fig. S6C), as predicted by 

our qPCR data (Fig. 7A).  
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Figure 7: Cellular sources of IL-2 and IL-15 in the human thymus. Quantification of IL-2 
mRNA levels by qPCR (A) in the indicated sort-purified thymocyte populations (n=2-4), and 
representative contour plots of IL-2 expression by flow cytometry (B) following short-time 
PMA/Ionomycin stimulation of freshly-collected thymocytes, with unstimulated total thymocytes 
shown as controls (n=3-13). (C) Contribution of the indicated thymocyte subsets to the thymic IL-2 
pool (n=3-13). Quantification of IL-15 (D) and IL-15-Ralpha (E) mRNA levels by qPCR in the 
indicated sort-purified thymocyte populations (n=2-4). Double immunohistochemistry for IL-15 
and CD68 (F) or IL-15 and CD20 (G) performed in thymic sections (n=3); the right-hand panel 
corresponds to a zoom of the indicated region, labelled in white, in the left-hand panel; scale bars, 
20 µm and 10µm in right and left panels, respectively; original magnification x400. Results are 
expressed as mean±SEM.  
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In summary, our data indicate that IL-2 and IL-15 are expressed in the human thymus in a 

mostly non-overlapping pattern, and produced by distinct populations.  
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Discussion 

In the present study we revealed the key contribution of IL-2 and IL-15 to human tTreg 

development and characterized their mechanism of action, their pattern of expression and 

the populations responsible for their production in the human thymus. 

This study is, to the best of our knowledge, the first that directly assesses the role of γc 

cytokines in human tTreg development, a still poorly defined process. Pharmacological 

JAK-3 blockade led, on average, to a 50% reduction in Treg frequency and number, 

supporting a significant contribution of γc signaling to tTreg differentiation. Of the γc 

cytokines tested, IL-2 and IL-15 had the strongest effects, both being capable of driving 

tTreg precursor differentiation into FOXP3+ cells and promoting tTreg preferential 

expansion and survival.  IL-2 and IL-15 also increased the expression level of molecules 

associated with effector function within all FOXP3+ subsets, suggesting their involvement 

in tTreg functional maturation. We also established that IL-2 and IL-15 are expressed in 

the human thymus in a mostly non-overlapping fashion and identified mature αβ and γδ 

cells or monocyte/macrophages and B lymphocytes as the main producers of IL-2 or IL-

15, respectively. These results suggest that in addition to TCR ligands, IL-2 and IL-15 

define extra niches required for human tTreg lineage stabilization and differentiation. 

Despite the differences between human and murine tTreg development, evidence also 

supports a requirement for γc cytokines in mice [2, 3, 16, 17]. In fact, γC-deficient animals 

display a dramatic decrease in T-cells, harboring almost no Foxp3+ cells [26]. Moreover, 

whereas IL-2-deficient animals feature a 50% reduction in tTregs [26, 27], mice deficient 

for both IL-2 and IL-15 or for the IL-2Rβ chain bear almost none [28]. Mechanistically, 

while some authors suggest that IL-2 and IL-15 directly drive Foxp3 expression in mice 

[29], others propose these cytokines are mainly required for tTreg survival [30, 31]. Here, 

we provide evidence that IL-2 and IL-15 are required for lineage commitment, functional 

programming, survival and proliferation of Tregs during their thymic development in 

humans. These cytokines were previously shown to enhance the proliferation and survival 

of human circulating Tregs as well as to increase their FOXP3 expression levels [32-34]. 

Our results thus suggest that the capacity of IL-2 and IL-15 to modulate the survival, 

phenotype and proliferation of human Tregs is acquired during their thymic differentiation, 

which is in agreement with their constitutive CD25 and CD122 expression. They also 

indicate that augmented thymic development may account for the increased Treg 
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frequency and number observed in humans upon IL-2 therapy in the context of 

autoimmunity, cancer therapy, hematopoietic stem cell transplantation and HIV infection 

[18-20, 35]. Our study also raises a note of caution regarding the proposed administration 

of IL-15 to boost anti-tumor immunity in humans [36], and highlights IL-21 as a safer 

therapeutic option. 

We demonstrated that the tTreg compartment was reduced by ~50% upon STAT-5 

inhibition. This dependency may explain the incapacity of IL-4 and IL-21 to positively 

impact on tTreg development, since neither is very efficient at activating STAT-5, utilizing 

instead STAT-6 or STAT-3, respectively [17]. IL-4 and IL-21 may actually antagonize the 

differentiation of CD25+FOXP3+ cells, as we observed upon TCR stimulation of 

CD25negCD127hiCD4SP cells in presence of TGF-β and IL-2. These results are in 

agreement with, and extend previous reports using human thymocytes [13] and peripheral 

cells [37, 38]. The lack of a clear positive impact of IL-7, known to efficiently activate 

STAT-5, on tTreg development is surprising. We observed that short-term exposure to IL-

7 increased Treg frequency as well as their levels of FOXP3 and Bcl2 expression  (data not 

shown), although less efficiently than IL-2 or IL-15. However, although IL-7 sustained the 

proliferation of FOXP3+ cells, its positive effect on Tregs was diluted by its preferential 

expansion of FOXP3neg cells (data not shown).  

Our findings support a TCR and co-stimulation signaling requirement for 

CD25+FOXP3negCD4SP tTreg precursor generation. We propose that, subsequently, tTreg 

differentiation enters a TCR/co-stimulation independent stage in which exposure to either 

IL-2 or IL-15 drives tTreg precursor acquisition of FOXP3 expression, with concomitant 

lineage stabilization and differentiation into mature tTreg. These results are compatible 

with a 2-step model previously proposed in mice [29], highlighting a considerable 

evolutionary conservation in key mechanisms governing human and mouse tTreg 

differentiation.  

Recent data challenge the role of CD25+FOXP3negCD4SP cells as a mandatory 

intermediate population in murine tTreg development, with an alternative pathway via 

CD25negFOXP3+CD4SP being proposed [31, 39]. We confirmed that in humans 

CD25negFOXP3+CD4SP are present (1.6±0.2% of CD4SP thymocytes, n=19). In 

agreement with the possibility they constitute an additional population of human tTreg 
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precursors, their FOXP3 MFI is lower than within CD25+FOXP3+CD4SP cells (1714±152 

versus 2465±247, respectively, n=19). Moreover, we found a direct correlation between 

their frequency and the proportion of CD25+FOXP3+CD4SP cells (r=0.680; p=0.0007). 

Unfortunately, tools currently available for humans do not allow direct testing of the 

potential of CD25negFOXP3+CD4SP to differentiate into mature CD25+FOXP3+ cells upon 

IL-2 or IL-15 stimulation. In fact, although their CD127 MFI is higher than that of 

CD25+FOXP3+CD4SP cells, it is not distinctive enough to permit their isolation. New 

tools are also required to assess the TCR repertoire of CD25+FOXP3neg, CD25negFOXP3+ 

and CD25+FOXP3+ cells within CD3hiCD4SP thymocytes in order to provide a 

characterization of tTreg precursors and establish a temporal framework for human tTreg 

development. 

Given the dependency of tTreg differentiation on IL-2 or IL-15, it was critical to identify 

their thymic source. We found that IL-2 and IL-15 are expressed in the human thymus in 

distinct locations, as reported in mice [40]. Notably, enriched areas of IL-2 and IL-15 

production designated here as cytokine niches, were present in the human thymus. A 

similar pattern of IL-2 secretion was previously reported in human tonsils [41] and in 

murine thymus [42]. We expect these niches, likely resulting from post-secretion binding 

of cytokine to extracellular matrix components [43], to locally increase cytokine 

availability and prolong their in-vivo half-life. Of physiological relevance, we show that 

tTregs are found in close proximity to IL-2- and IL-15-producing cells.  

We estimated that ~1.5% of human thymocytes had the potential to secrete IL-2 and 

identified mature αβ and γδ thymocytes as its main producers, a phenomenon conserved in 

the murine thymus [44]. We propose that the main IL-15 sources are 

monocyte/macrophages and B lymphocytes, populations shown in humans to produce IL-

15 in the periphery [45-47], as well as TECs, which in mice secrete IL-15 [48]. 

Interestingly, the majority of human CD25brightCD4SP cells express CCR8, migrating in 

response to CCL1/I-309 secreted by macrophages [49]. Moreover, B lymphocytes were 

recently shown to select tTreg in mice [50]. Another important issue for future studies will 

be the comparison of the TCR repertoire of tTreg that differentiate in presence of IL-2 or 

IL-15 and the possible role of cells that produce these cytokines in mediating tTreg 

selection.  
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Our results support the possibility of the therapeutic manipulation of tTreg by targeting IL-

2 and/or IL-15 pathways, and, in this way, potentially help control autoimmune 

manifestations. The impact of these cytokines on the human thymus has not, to our 

knowledge, been taken into account in clinical trials involving them, an aspect that 

deserves a reappraisal.  
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Conclusions 

Collectively our data suggest that following human tTreg precursor generation, subsequent 

exposure to either IL-2 or IL-15 drives their final differentiation into FOXP3+ cells. These 

cytokines then act by enhancing tTreg survival and proliferation as well as by fostering 

their functional maturation. The physiological role of these cytokines is further supported 

by our demonstration of their production in the human thymus in a non-overlapping pattern 

by distinct cell populations. Ultimately, we expect that the ability to increase tTreg output 

via administration of IL-2 or IL-15 constitutes a novel approach for the management of 

autoimmunity.  
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Supplemental Data 

 

Supplementary Fig. S1:  Human T cell development in 2D and 3D cultures. (A) Phenotype of 
primary allogeneic TECs assessed by flow cytometry at day 7 of differentiation, using anti-
EpCAM (clone 1B7) and pan-cytokeratin (clone C-11) mAbs (filled lines). Staining with the 
isotype control antibody is also shown (mouse IgG1, open lines). (B) Representative flow 
cytometric profile of CD4 and CD8 expression on thymocytes recovered from TOCs at days 0, 4 
and 7. Histogram overlay shows CD3 expression levels on thymocytes recovered at these same 
time points. (C) Sort-purified CD4ISP thymocytes were co-cultured for 5 days with primary 
allogeneic TECs. Representative contour plots show the sorting strategy and the purity after sorting 
(D0) as well as the expression of CD4, CD8 and CD3 determined by flow cytometry in cells 
recovered from co-cultures at day 5 (D5). Lin=Lineage (CD14, CD16, CD20, HLA-DR, CD11c 
and CD123).  
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Supplementary Fig. S2: IL-4, IL-7 and IL-21 do not have a major impact on Treg recovery in 
2D cultures. Total thymocytes were cultured with primary TECs in medium alone or 
supplemented with the indicated concentrations of IL-2 (A), IL-15 (B), IL-7 (C), IL-4 (D) or IL-21 
(E). Frequency and number of live cells recovered determined by flow cytometry at day 7 (n=3-12) 
as well as frequency and number of CD25+FOXP3+ cells recovered at days 4 and 7 in co-cultures 
are depicted (n=3-12); graphs on the right show the Foxp3 mRNA levels in thymocytes recovered 
at day 4 (n=2-3). Results are expressed as mean±SEM. * p < 0.05, ** p < 0.01, ***p<0.001. 
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Supplementary Fig. S3: IL-2 and IL-15 enhance human Treg differentiation/expansion in 2D and 3D 
cultures. (A) Representative FACS profile of CD25 and FOXP3 expression in CD4SP thymocytes recovered 
at day 7 from TOCs cultured in medium alone or supplemented with the indicated concentrations of IL-2 or 
IL-15; graphs show the frequency of CD25+FOXP3+ cells within CD4SP recovered from TOCs at days 4 and 
7 (n=7-11). (B) Proportion of CD25+FOXP3+ cells within CD4SP thymocytes and number of 
CD25+FOXP3+CD4SP cells recovered at days 4 and 7 in co-cultures of total thymocytes with TECs in 
medium alone or supplemented with the indicated concentrations of IL-2 or IL-15 (n=12). (C-F) 
Representative contour plot of CD25 and FOXP3 expression within total (C) or CD4SP thymocytes (D-F) 

recovered at day 7 from co-cultures (C) or TOCs (D-F) in medium supplemented with: (C) anti-IL-2 mAb 
(1µg/ml) or isotype control anti-IgG1 mAb (1µg/ml) (n=11-12); (D) anti-IL-2 mAb (10µg/ml), anti-IL-15 
mAb (10µg/ml) or isotype control anti-IgG1 mAb (10µg/ml) (n=3-4); (E) anti-CD122 blocking mAb 
(10µg/ml) or control anti-IgG1 mAb (10µg/ml) (n=4); (F) the indicated concentrations of the STAT-5 
inhibitor or DMSO (vehicle control) (n=4-5). Graphs show the reduction in the frequency of FOXP3+CD25+ 
cells within total (C) or CD4SP thymocytes (D-F) in each test condition at days 4 and 7, in comparison to the 
corresponding control culture. In (C) reduction in number of FOXP3+CD25+ cells is also depicted.  Results 
are expressed as mean±SEM. *p < 0.05, **p < 0.01, ***p<0.001. 
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Supplementary Fig. S4: IL-2 and IL-15 enhance the expression of molecules associated with 
Treg function. (A) Representative histogram overlays of CTLA-4 and ICOS expression (numbers 
inside histograms correspond to MFI) within FOXP3+DP, FOXP3+CD8SP and FOXP3+CD4SP 
cells recovered at day 7 from co-cultures of thymocytes with TECs in medium alone or 
supplemented with either 10U/ml IL-2 or 12.5ng/ml IL-15; graphs show the data from different 
thymuses in comparison with control co-cultures set in medium alone (n=3). (B) Frequency of 
HLA-DR+ cells within FOXP3+DP, FOXP3+CD8SP and FOXP3+CD4SP cells recovered at day 7 
in co-culture of total thymocytes with TECs in medium alone or supplemented with 10U/ml IL-2 or 
12.5ng/ml IL-15 (n=3). (C) Graphs represent the fold change in FOXP3 and CD25 expression 
levels within the indicated FOXP3+ thymocyte subsets at day 7 in co-cultures set in the presence of 
an anti-IL-2 (1µg/ml) or an anti-IL-15 blocking mAb (1µg/ml) in comparison to control thymic 
cultures (anti-IgG1 mAb, 1µg/ml) (n=10-12). Results are expressed as mean±SEM. *p < 0.05, **p 
< 0.01. 
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Supplementary Fig. S5: IL-2 and IL-15 impact on the proliferation and survival of human 
FOXP3+DP, FOXP3+CD4SP and FOXP3+CD8SP thymocytes. Analysis performed within total 
thymocytes (A), DP (B), CD4SP (C) and CD8SP (D) thymocytes after co-culture of total 
thymocytes with TECs, in medium alone or supplemented with the indicated concentrations IL-2 
and IL-15 for 4 days; graphs show the frequency of Ki67+ and Bcl2 MFI in gated FOXP3+ cells as 
well as the frequency of Annexin-V+PIneg and Annexin-VnegPI+ cells in gated CD25+ cells, 
recovered at day 4 (Ki67 and Bcl2) or 24h (Annexin-V/PI) (n=3-4). Results are expressed as 
mean±SEM. *p < 0.05, **p < 0.01, ***p<0.001. 
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Supplementary Fig. S6: IL-2 and IL-15 expression in the human thymus. Illustrative 
immunohistochemistry staining in fixed serial thymic sections with: (A) anti-IL-2 or anti-IL-15, 
and anti-FOXP3 mAbs; (B) anti-CD68 mAb or anti-CD20 mAb; and (C) anti-IL-2 mAb or anti-
CD68 mAb, as well as anti-IL-2 mAb or anti-CD20 mAb. In (A) the lower set of images 
correspond to a zoom of the region indicated by the yellow box in the upper ones. Scale bars, 100 
and 50 µm (upper and lower images, respectively); original magnification x100. In (B) scale bar 
corresponds to 100 µm; original magnification x100. In (C) scale bars correspond to 20µm, 
respectively; original magnification x400.  
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The understanding of the mechanisms that underly immunological self-tolerance 

establishment and maintenance is still one of the major challenges of immunology and 

medicine. The precise control of the quality and magnitude of adaptive immune responses 

to self and non-self antigens holds an unquestionable therapeutic potential in several 

clinical scenarios such as allergy, transplantation, cancer, chronic infection and 

autoimmunity.  

Regulatory T Cells (Treg) have emerged as key effectors of peripheral tolerance, with 

particular relevance in the prevention of autoimmunity, both in mice and in humans1, 2, 3, 4. 

There is cumulative evidence that a reduced and/or dysfunctional Treg compartment 

underlies the pathophysiology of several immune-mediated diseases. Therefore, there is a 

strong interest in manipulating this subset to achieve targeted immunosuppression, 

particularly in the fields of transplantation tolerance and autoimmunity5, 6, 7, 8, 4. 

Accordingly, several clinical trials using Treg-based immunotherapy are currently 

ongoing5, 6, 7, 8, 4. Since large numbers of Treg are required for clinical efficacy and they 

constitute a minor subset of peripheral CD4+ T cells, a large effort has gone into 

developing clinical protocols for efficient ex vivo expansion of human Treg.  

Protocols aiming the efficient expansion of Treg for clinical application face great 

challenges. First, it has been difficult to unequivocally identify and isolate human Treg 

from patients because of the lack of unique marker(s), as isolation based on FOXP3 

expression precludes the obtention of viable cells9. Second, Treg exibit a weak 

proliferative potential, and repeated expansion has been associated with the risk of altering 

their phenotype and function10. Third, thymus-derived (t)Treg, particularly from 

autoimmune patients, have been demonstrated to feature considerable plasticity, and hence 

may acquire a pathogenic effector phenotype upon ex vivo expansion11, 12, 13. Finally, this 

strategy may not be ideal when the Treg pool features intrinsic defects, as is often the case 

in autoimmune contexts4. Therefore, novel and optimized strategies to generate bona-fide 

in vitro induced (i)Treg are a promising approach towards the establishment of Treg 

adoptive immunotherapy. At the same time, a deeper and more detailed knowledge of 

human Treg development, physiology and homeostasis will assuredly provide major 

progress in Treg manipulation for clinical purposes. 
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The overall aim of this work was to adress the efficiency of the in vitro conversion of 

memory CD4 into FOXP3-expressing cells and the role of the Notch signaling pathway in 

regulating this process. Additionally, this project intends  to contribute to a better 

understanding of the rules dictating human Treg thymic development and peripheral 

homeostasis. Ultimately, we aimed not only to extend our knowledge on human Treg 

physiology but also, through this goal, to facilitate and improve Treg-based 

immunotherapy, particularly in autoimmune contexts. 

 

In section 1 of the chapter of Results, we showed that stable and functional bona-fide 

iTreg can be generated from memory CD4+ T cells of healthy subjects and that Delta-like 

(DL)1-mediated Notch signaling activation enhances this conversion. The benefical DL1 

effects were also extended to conventional naïve CD4+ T cells, supporting the feasibility of 

differentiating iTreg from human non-regulatory CD4+ T cells in order to facilitate the 

establishment of adoptive Treg-based cellular therapies. 

Treg reduction and/or dysfunction underlies the pathophysiology of several imune-

mediated diseases in different clinical settings. Therefore, a great interest has arised in 

manipulating this subset for clinical purposes. As with any clinical intervention, safety is a 

major concern when considering immunotherapy with Treg. The strategies currently 

employed for Treg adoptive transfer rely on extensive ex vivo expansion of this subset, a 

strategy that faces a wide range of constraints. Some groups reported that repeated 

expansion of Treg alters their phenotype and function10. Moreover, tTreg were shown to be 

innefective in treating some autoimmune diseases (AID) in murine models, likely as a 

consequence of their unstable phenotype in pro-inflammatory environments14, 15. 

Importantly, iTreg have been shown to be stable in inflammatory conditions and resistant 

to Th17 conversion by interleukin (IL)-611, 16. There is therefore a raising interest on iTreg 

induction from non-regulatory subsets, for use in the appropriated clinical scenarios. For 

instance, there is currently ongoing a United States (US) National Institute of Health 

registered phase I single center dose escalation study to determine the efficacy and 

tolerability of in vitro generated iTreg in adult patients undergoing non-myeloablative 

human leucocyte antigen (HLA)-identical sibling donor peripheral blood stem cell 

transplantation for the treatment of a high risk malignancy (NCT01634217, Masonic 

Cancer Center, University of Minnesota).  
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The vast majority of the induction studies used naïve non-regulatory T cells as the starting 

population. Nonetheless, a significant proportion of the circulating Treg compartment is 

thought to result from the conversion of memory CD4+ T cells into Treg in response to 

antigenic stimulation in vivo17, 18, 19. Accordingly, human Treg and CD4+ T cells have been 

shown to display, on average, 80% homology in their T cell receptors (TCR) Vβ usage17. 

Also, few groups reported successful in vitro induction of FOXP3 on memory CD4+ T 

cells20, 21, 22, with controversial results regarding their phenotype and function. Possible 

technical reasons may explain the previous generation of unstable and ineffective 

transforming growth factor beta (TGF-β)-induced iTreg in previous studies, namely the 

strength of TCR signaling, with data suggesting that a suboptimal stimulation provided by 

lower concentrations of anti-CD3 monoclonal antibody (mAb) or antigen (Ag) is probably 

ideal for efficient iTreg generation23, 24, 20. Importantly, in the particular setting of 

autoimmunity, conventional memory T cells are thought to be enriched in self-reactive T 

cells, rendering this subset as the ideal substrate for the induction of iTreg with relevant 

specificities. Our results show for the first time that bona-fide iTreg can be consistently 

generated from memory CD4+ T cells of healthy subjects, displaying a stable and 

functional phenotype. 

The Notch signaling pathway has undoubtedly been shown to play crucial roles in thymic 

and peripheral T cell differentiation, as well as in the modulation of T cell-mediated 

immune responses25. In this regard, the induction of specific Notch ligands by pathogen-

derived signals in antigen presentig cells (APC) and their interaction with Notch receptors 

in CD4+ T cells are clearly involved in the differentiation towards particular T helper 

phenotypes25.  

Interestingly, it has been previously shown that human Treg express Notch1 and Notch4 as 

well as DL1, Jagged (JAG)1 and JAG226. Our data have shown that human Treg express 

Notch1 and 2. Moreover, loss-of-function experiments using DAPT, a well-known 

pharmacological inhibitor of the Notch signaling pathway, in cultures of sorted memory 

CD4 T cells with TCR stimulation, TGF-β and IL-2 and no extrinsic Notch ligands, led to 

a consistent decrease in the frequency and number of recovered iTreg. Therefore, Notch-

mediated T-T communication seems to take place in the differentiation and homeostasis of 

Treg. Supporting a role for Notch signaling in Treg physiology, the Foxp3 promoter has 
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Notch-responsive elements27, and the Treg-associated marker CD25 is claimed to be a 

Notch target28.  

We showed that the human Notch ligand DL1 increases the efficiency of conversion of 

conventional memory and naïve CD4+ T cells into iTreg, in agreement with previous 

reports suggesting an important role for Notch signaling in murine iTreg differentiation29, 

30.  

Additionally, we showed that DL1 enhanced the in vitro differentiation of human memory 

CD4 T cells into bona-fide iTreg with a stable and functional phenotype. These striking 

results suggest that Notch plays a key role in the in vitro generation of iTreg, with likely 

relevance in vivo. Notch ligands including DL1 are in fact highly expressed in the gut31, 

where TGF-β-dependent generation of pTreg has been fully established. In human 

inflammatory bowel disease, Notch1 mucosal expression was shown to differ in inflamed 

and non-inflamed mucosa and to increase in response to beneficial anti-tumor necrosis 

factor α (TNFα) treatment32. Moreover, hepatitis B virus infection was shown to increase 

Notch1 and Foxp3 expression in intrahepatic T cells33. It has also been shown that Notch 

signaling regulation of T cell proliferation in T-cell acute lymphoblastic leukemia is 

related to Foxp3 expression34. Additionally, Systemic Lupus Erytemathosus (SLE) patients 

with active disease failed to upregulate Notch1 on T cells upon in vitro TCR stimulation, a 

phenomenon that correlates with decreased CD25 and FOXP3 expression35. Interestingly, 

we found that DL1 also enhanced FOXP3 and CD39 expression on iTreg generated from 

memory CD4 T cells, even in the absence of exogenous TGF-β. Assuming the possibility 

that the TGF-β produced by the T cells themselves contributes to the DL1-mediated effect, 

these results raise the appealing hypothesis that even in situations in which TGF-β is 

limiting, DL1 may help controlling the magnitude of local immune responses.  

We thus postulate that Notch plays a proeminent role in the in vitro conversion of iTreg, 

likely extended to in vivo scenarios where the generation of Treg from non-regulatory 

precursors is required for a better control of immune/ inflammatory responses. 

One major hurdle facing the clinical usage of Treg, particularly in autoimmune settings, is 

the problem of their stability. The ultimate goal in Treg immunotherapy is the generation 

of stable iTreg that lack the plasticity to convert to pathogenic effector cells. This is 
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particularly important in autoimmune settings because of the constant threat of reemerging 

autoimmunity. We showed that iTreg converted from memory CD4+ T cells in the 

presence of DL1 displayed a considerable stable phenotype in long-term cultures and in the 

presence of pro-inflammatory cytokines, which is particularly relevant for clinical 

purposes in the setting of highly inflammatory scenarios as autoimmunity. It has been 

proposed that the Treg-specific demethylated region (TSDR) on TGF-β-induced iTreg but 

not on tTreg is methylated, contributing for their instability36. However, it was recently 

shown that the methylation status within the Foxp3 loci does not exclusively account for 

Treg stability and/or function37, since efficient human TGF-β induced iTreg displaying a 

methylated Foxp3 locus were shown to be successfuly supressive38. It would be, 

nevertheless, relevant to assess the methylation status on our iTreg in further studies. 

Notably, it was recently shown that Notch1 activation converted high-grade adenoma into 

low-grade adenoma via suppression of Wnt target gene expression in cancer cells through 

epigenetic modification recruiting histone methyltransferase SET domain bifurcated 1, 

demonstrating an uncovered function of Notch signaling in mediating epigenetic 

modulation39. 

Despite the initial enthusiasm generated by clinical trials employing the adoptive transfer 

of expanded Treg, the aimed widespread application of Treg-based therapy encountered 

limitations related to the technical difficulty of expanding an homogenous and functionally 

stable population for in vivo use11. In fact, the recent evidence that human circulating Treg 

can lose FOXP3 expression and acquire a T cell effector phenotype during in vitro 

expansion has been hampering the potential of this approach10. We therefore assessed the 

impact of DL1 on the homeostatic proliferation and phenotype of TCR-stimulated 

circulating Treg. Our results show that DL1 increases Treg proliferation, reinforcing a 

possible role of Notch in the homeostasis of the human peripheral Treg compartment. 

Importantly, we also demonstrated that DL1 enhances the Treg expression of function-

related molecules, contributing to the maintenance of their phenotype, a property worth to 

be explored in protocols aiming the efficient Treg expansion for immunotherapy purposes.  

We have also investigated the mechanisms accounting for the DL1-mediated enhancement 

of iTreg differentiation from memory cells. Our results suggest that DL1 cooperatively 

interacts with the TGF-β signaling pathway, as evidenced by increased phosphorylation of 
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the TGF-β pathway downstream targets Smad-2 and -3. In fact, Notch intracellular domain 

increases Smad3 protein at transcriptional and post-transcriptional level40, 41, 42. Notch1 

activation also enhances TGF-β signaling by increasing Smad nuclear translocation and its 

transactivation at promoter sites43. Moreover, Notch ligands significantly increase Treg 

suppressive effect on effector T cells via the upregulation of transforming growth factor 

beta receptor (TGF-βR)II expression and phosphorylation of Smad343. We therefore 

hypothesize that the enhanced Smad-2 and -3 phosphorylation observed in the presence of 

DL1 (and absence of exogenous TGF-β) might occur via upregulation of TGF-βR and 

transcriptional/ pos-transcriptional modulation of Smad3 promoted by the ligand. 

The direct targeting of the Foxp3 promoter by Notch has been supported by presence of 

recombination signal binding protein for immunoglobulin kJ region (RBPJ) and Hes-1 

binding sites within the murine and the human promoters27. Accordingly, our results 

demonstrate increased Foxp3 mRNA expression in the presence of DL1 supporting that 

direct modulation of Foxp3 gene transcription is involved in the Notch-mediated enhanced 

conversion of memory CD4+ T cells into iTreg. Taken together, our data suggest that the 

DL1 impact on FOXP3 acquisition by memory CD4+ T cells involves multiple 

mechanisms, such as the cooperative interaction with TGF-β signaling pathway and the 

modulation of Foxp3 transcription. Other possibilities, such as the downregulation of 

proinflammatory cytokine receptors (namely IL-6 receptor α (IL-6R α), on memory CD4+ 

cells by DL-1 were not excluded and may be worth to be investigated44.   

Taken together, these data indicate that bona-fide iTreg can be differentiated in vitro from 

human memory CD4 cells and that DL1 increases the efficiency of this conversion, 

associated with a stable and functional phenotype.  

The work of Maillard’s group and others has firmly established an impact of Notch 

signaling on hematopoietic progenitors and alloimmune T cell regulation in the settings of 

allogeneic bone marrow and hematopoietic cell transplantation. Ex vivo culture of 

multipotent blood progenitors with immobilized DL ligands induces supraphysiological 

Notch signals that enhance progenitor expansion45, attenuate myelosuppression and 

enhance T cell reconstitution in preclinical models. At the same time, Notch inhibition in 

donor-derived T cells or transient blockade of DL ligands after transplantation have been 

shown to markedly decrease graft-versus-host-disease (GVHD) incidence and severity in 
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mouse allo-hematopoietic stem cell transplantation (HSCT) models46. These distinct, not 

mutually exclusive interventions, with Notch manipulation in the immune system are a 

mirror of the different expected effects of Notch modulation according to the cell-type and 

context. In GVHD scenario much effort has gone into manipulating Notch in the 

perspective of its effects on pathogenic alloimmune T cells, which does not contradict the 

promising results obtained with the modulation of Notch for Treg manipulation47.  

SLE is a chronic multisystemic AID with a wide spectrum of clinical manifestations and 

substantial negative impact on the quality of life, resulting in a significant healthcare cost. 

Recent studies in Europe and the US indicate an increase in the incidence and 

improvement of survival rates in SLE, with concomitant increase in the prevalence of the 

disease48. Despite the improved survival of SLE patients in recent years, life-expectancy 

remains low compared to that of age and sex-matched populations48. In addition to 

mortality associated with disease activity, cardiovascular and infectious diseases associated 

largely with therapeutic regimens, in particular with broad immunosuppression, are a 

major complication49. Therefore, the development of targeted therapies, with potential 

intervention in disease pathogenesis, clinical efficacy and reduction of adverse effects 

associated with indiscriminate imunossupression, is crucial. There is increased evidence 

that a disturbed T-cell homeostasis plays a critical role in the development of SLE and, 

although studies on Treg in the peripheral blood of SLE patients have generated some 

conflicting data inherent to the the large heterogeneity in study methodologies, Treg 

function in SLE has been reported to be defective and their numbers appear to be 

decreased during the active phases of disease1, 50. These observations support the 

hypothesis that adoptive transfer of Treg would be an appropriate approach regarding SLE 

treatment. In fact, it is currently ongoing  a clinical trial  to evaluate the safety and 

effectiveness of autologous ex vivo selected and expanded polyclonal Treg in adults with 

cutaneous lupus (NCT02428309, Maria Dall'Era, National Institute of Allergy and 

Infectious Diseases, University of California). In this regard, to validate the in vitro 

efficacy of the protocols we previously established in a relevant AID setting, we purified 

peripheral memory non-regulatory CD4+ T cells from an SLE patient in clinical remission 

and applied the previously optimized protocol for FOXP3 induction. Our results showed 

that the induction of Treg from memory non-regulatory cells from an SLE patient was 

effective and it was enhanced in the presence of the Notch ligand DL1. The iTreg 
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generated in the presence of DL1 expressed higher levels of CD39, a feature particular 

interesting in this setting since CD39-expressing Treg have been described as nearly absent 

in a subset of lupus patients with untreated minimally active disease presenting reduced 

adenosine-dependent Treg-mediated supression51. Furthermore, FOXP3 expression within 

induced iTreg appeared to be stable, validanting our approach in a relevant autoimmune 

scenario (data not shown). 

As previously discussed, there are several distinct pathologies in which immunotherapy 

with polyclonal Treg may play a protective role. In the particular setting of AID, there is 

however clear evidence that Ag-specific Treg can be more effective52. The decision to use 

polyclonal or Ag-specific Treg will depend not only on the autoimmune disease in 

question but also on the autoimmune patient immunological profile. Organ-specific 

autoimmune diseases usually target well-known autoantigens, which would clearly favour 

the use of Ag-specific Treg2. In systemic autoimmune diseases such as SLE, a myriad of 

diffuse antigens and different cell types are targeted, likely making polyclonal adoptive 

Treg an adequate and effective approach. Notwithstanding, several T cell epitopes have 

been identified in SLE patients, such as histones, ribonucleoproteins and anti-DNA 

antibodies53, making these attractive specificities to be targeted in optimized 

immunotherapy strategies using Ag-specific Treg. 

The major challenge in Ag-specific Treg therapy is dictated by the difficulty in isolating 

sufficient numbers of Ag-specific Treg, given their reduced frequency in the periphery, 

further impaired by the limited availability of appropriate peptide–MHC multimers2. 

Despite these challenges, several groups are developing protocols aiming the utilization of 

Ag-specific Treg immunotherapy in autoimmunity. Arbour et al.54 are currently 

investigating conditions for the expansion of myelin-specific T cells isolated from patients 

with Multiple Sclerosis (MS) as a possible source of Ag-specific Treg for clinical trials. 

Research is also underway to examine the use of Ag-specific Treg in the treatment of Type 

1 Diabetes (T1D)55. In fact, Tarbell et al. successfully used antigen-loaded dendritic cells 

(DC) to expand islet-specific Treg, which upon transfer were capable of reversing 

hyperglycemia in 50% of treated diabetic mice56.  

The current technology still doesn’t provide a robust and effective method for isolating and 

expanding a sufficient number of Ag-specific Treg for clinical use. Therefore, in the future 
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we propose to use self-reactivities present in the conventional CD4 pool of autoimmune 

patients and target them in in vitro conversion protocols to generate Ag-specific Treg.  

Finally, it will be fundamental to evaluate the stability and function of the generated iTreg 

populations in preclinical humanized animal models, before any attempt of  translation in 

humans.  

Altogether, we expect our work to foster the development of cellular therapy employing 

Treg particularly in the setting of autoimmunity, providing a better therapeutic approach to 

the current immunosuppression.  

 

In section 2 of the chapter of Results, we revealed the major contribution of IL-2 and IL-

15 to human tTreg development, with clear insights into their mechanism of action, their 

pattern of expression and the populations responsible for their production in the human 

thymus. 

Our results showed that pharmacological inhibition of JAK3, required for γc cytokine 

signaling, markedly reduced Treg development in thymic organ cultures (TOC) and co-

cultures of thymocytes with primary thymic epitelial cells (TEC). In gain of function 

experiments, addition of exogenous IL-2 and IL-15 (but not IL-4, IL-7 and IL-21) to thymic 

cultures increased the frequency and number of Treg as well as their FOXP3 expression 

level, both at protein and transcriptional level. Moreover, the effects of IL-2 and IL-15 on 

tTreg development required signal transducer and activator of transcription (STAT)5 as 

well as the IL-2 receptor β chain.  

Importantly, Treg arising in IL-2 and IL-15 supplemented cultures expressed higher levels 

of function-associated molecules and displayed efficient suppressor function. IL-2 and IL-

15 additionally impacted on the survival and proliferation of differentiated tTreg. Notably, 

IL-2 and IL-15 also were also capable of commiting tTreg precursors into the Treg lineage. 

Hence, our results clearly establish IL-2 and IL-15 as two crucial common gamma chain 

(γc) cytokines in human tTreg development, with direct impact on lineage commitment, 

functional maturation, survival and proliferation. 

Remarkably, we showed that IL-2 and IL-15 are expressed in the human thymus in non-
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overlapping niches, with mature thymocytes and γδ cells appearing as the main IL-2 source 

whereas IL-15 production is mostly confined to macrophages and B cells. 

We hence propose that human thymic Treg development follows a two step-model, 

highlighting a considerable evolutionary conservation in the key mechanisms governing 

human and mouse tTreg differentiation57. In this hypotetic model, TCR signals on 

developing thymocytes may be sufficient to induce CD25 expression, allowing these cells 

to respond to either IL-2 and/or IL-15, with consequent STAT5 activation and FOXP3 

transcription. FOXP3 expression would then act in conjunction with STAT5, ensuring the 

stabilization of the Treg lineage program.  

In the future, it will interesting to compare the TCR repertoire of tTreg that differentiate in 

presence of IL-2 or IL-15 and to further investigate the possible role of the thymic celular 

populations that produce these cytokines in mediating tTreg selection. 

The role for IL-2 in human tTreg development antecipated by our results can explain the 

observed increase in CD45+CD31+ Treg upon administration of IL-2 in several contexts58, 

59, 60, 61. Indeed, IL-2 has recently become a promising immunotherapeutic agent in 

different scenarios62. IL-2 is known to promote both effector T cells (Teff) and Treg 

responses. Notwithstanding, several proof-of-concept clinical trials have demonstrated that 

low-dose IL-2 specifically expands and activates Treg without boosting Teff responses, 

presumedly because Treg are more sensitive to IL-262. The first clinical trial with IL-2 

administration in Hepatitis C Virus (HCV)-induced vasculitis63 has shown low doses of IL-

2 to be safe, and to be associated with a marked increase in the proportion and number of 

Treg that correlated with clinical improvement, with no obvious impact upon conventional 

CD4+ T cells. Importantly, in chronic GVHD low-dose interleukin-2 has been safely 

administered with preferential Treg expansion and clinical amelioration60,61. Many other 

clinical trials with IL-2 administration for selective expansion of Treg in diferent 

pathologies (e.g. T1D and alopecia areata) are currently ongoing with encouraging 

preliminary results. Recently, TRANSREG proposes to assess the safety and biological 

efficacy of low-dose IL2 as a Treg inducer in a set of eleven autoimmune and auto-

inflammatory diseases (Rheumatoid Arthritis, Ankylosing Spondylitis, SLE, Psoriasis, 

Behcet's Disease, Wegener's Granulomatosis, Takayasu's Disease, Crohn's Disease, 

Ulcerative, Colitis, Autoimmune Hepatitis, Sclerosing Cholangitis), with the objective of 

selecting diseases in which further therapeutic will be beneficial (NCT01988506, 
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Assistance Publique - Hôpitaux de Paris). Thus, in a phase of increasing clinical 

applicability, it is essential to scrutinize the role of IL-2 in thymic Treg development and 

peripheral homeostasis. 

Importantly, our results also question the adequacy and safety of IL-15 administration to 

boost anti-tumor imune responses in humans64, and suggest that IL-21 is probably a safer 

therapeutic choice. In fact, several clinical trials are currently ongoing with recombinant 

IL-15 administration in haematologic and solid tumors65. Notwithstanding, IL-15 has been 

shown paradoxically to participate in the development of some leukemias and solid 

tumors, namely by inhibiting apoptosis of tumor cells and supporting their survival, 

proliferation and migration66, 65. The IL-15’s impact on tTreg development and 

differentiation may contribute to this effect.  

Overall, our work has provided important insights into human tTreg development, 

proposing IL-2 or IL-15 administration as a novel approach for the treatment of 

autoimmunity.  

 

In conclusion, as with any proposed therapy, numerous arguments can be made for and 

against cellular therapy with Treg, and safety is always a major concern. Notwithstanding, 

and particularly in the context of autoimmunity, it is extremely important to maintain the 

pursuit for better targeted therapies, associated with greater efficacy and fewer adverse 

effects. Importantly, we have shown that memory conventional CD4+ T cells are a reliable 

source of stable and efficient bona-fide iTreg and that Notch signaling manipulation 

through DL1 enhances the efficiency of this conversion. We additionally clarified some of 

the molecular and cellular requirements for human thymic Treg development, which 

should facilitate the manipulation of this subset for clinical applications. Altogether, this 

work has contributed to a better understading of the intricate in vivo and in vitro Treg 

physiology, contributing to the progress of Treg based-therapies.  
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