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Abstract 

Chronic stress and ageing are closely linked to a dysfunction in the hypothalamic 

pituitary adrenal axis (HPA-axis) that leads to higher circulating levels of stress 

hormones. This has deleterious effects on brain function such as neuronal loss, synaptic 

plasticity impairments and cognitive deficits, all actions related to activation of 

glucocorticoid receptors (GR). Adenosine A2A Receptors (A2AR) are constitutively 

activated G-protein coupled-receptors, and one of the main brain targets of the 

homeostatic neuromodulator adenosine. Upon aging and stress an imbalance in the 

levels of adenosine receptors was observed, and recent results indicate that their 

blockade could prevent stress effects. However, it was still unknown the extent to 

which A2AR were involved in neuronal dysfunction and in stress mediated effects. 

Therefore the goal of this thesis was first, to evaluate if A2AR blockade could revert 

stress induced deficits, clarifying the role of A2AR in the deleterious effects of stress; 

second, to assess if an increase in A2AR is sufficient to drive hippocampal deficits and 

third, if A2AR could directly modulate GR, being this the mechanism by which they are 

triggering neuronal dysfunction.  

By treating maternal separated rats with a selective antagonist of A2AR, orally 

delivered for one month, it was shown that the blockade of these receptors can: 

overcome memory deficits evaluated in the Morris Water Maze task; reestablish 

synaptic plasticity impairments, recorded as Schaffer collaterals-CA3 long-term 

potentiation; and finally recover CA1 pyramidal neuronal branching in stressed 

animals. This was accompanied by a reestablishment of the HPA-axis function, 

quantified as circadian oscillation of corticosterone plasma levels.  These results 

revealed the instrumental role of A2AR in stress effects and their effectiveness as 

therapeutic targets.  

To further explore if A2AR were the trigger for hippocampal dysfunction the effects of 

overexpressing A2AR under the control of calcium calmodulin protein Kinase II 
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(CaMKII) promoter were evaluated. A2AR overexpression in rats lead to a shift in 

adenosine neuromodulation, from a protein kinase C-  to a protein kinase A- dependent 

signaling, much similar to what is observed upon aging. This was also present in 

stressed animals and reverted by blocking A2AR, providing the first evidence that an 

abnormal A2AR signaling can be the trigger to pathology. Additionally it was shown 

that the neuronal increase in A2AR is sufficient to drive hippocampal dependent 

memory impairments and to modify synaptic plasticity in an age-like manner. 

Interestingly, A2AR overexpression also induces a dysfunction in HPA-axis by 

increasing circulating corticosterone levels, revealing again, an involvement of A2AR in 

the control of stress response.  

Finally it was shown that A2AR blockade decreases GR/GRE (glucocorticoid 

receptor/glucocorticoid response element) transcriptional activity in a neuroblastoma 

cell line. This is probably due to their ability to modify GR nuclear translocation 

induced by the GR analogue, dexamethasone, since we observed a prevention of this 

translocation by blocking A2AR. This has important consequences for synaptic 

plasticity: the impairments in hippocampal synaptic plasticity induced by GR 

activation are more profound under A2AR overexpression and are prevented if A2AR are 

blocked. Additionally, A2AR blockade therapy in vivo increased hippocampal histone 

H3 acetylation of the Nr3c1 gene encoding GR and GR mRNA levels.  

Globally it is now possible to conclude that A2AR dysfunction, depending on their 

levels and signaling targets, has an instrumental role in stress and aging, driving 

memory and synaptic plasticity impairments. Together, these results suggest that A2AR 

directly modulate GR, unveiling an important therapeutic alternative to GR antagonists 

for clinical applications. These findings are significant for the treatment of not only 

psychopathologies but can also be extended to the multiple age-related conditions 

where glucocorticoid response is impaired.  
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Resumo 

O stresse crónico e o envelhecimento estão ambos associados a um aumento dos níveis 

plasmáticos de corticosterona e a uma disfunção do eixo hipotalâmico hipofisário 

(HPA, do inglês Hypotalamic-Pituitary-Adrenal). Estas alterações têm efeitos 

deletérios para a função cerebral com comprometimento da função neuronal, da 

plasticidade sináptica estando frequentemente associadas a danos cognitivos, tudo isto 

consequência da activação dos receptores de glucocorticóides (GR, do inglês 

glucocorticoid receptors). Os receptores A2A de adenosina (receptores A2A) são 

receptores acoplados a proteínas G constitutivamente activados e, no cérebro, um dos 

principais mediadores da resposta ao neuromodulador homeostático, a adenosina.  Ao 

longo do envelhecimento e com o stresse, ocorre um desequilíbrio dos níveis destes 

receptores e alguns estudos sugerem que o seu bloqueio pode mesmo prevenir os 

efeitos do stresse. Contudo, não era ainda conhecido até que ponto os receptors A2A 

estariam envolvidos na disfunção neuronal e nos efeitos mediados pelo stresse. Assim, 

os objectivos desta tese foram: em primeiro lugar,  avaliar se o bloqueio dos receptores 

A2A poderia reverter os efeitos deletérios originados pelo stresse, clarificando deste 

modo a importância destes receptores; segundo, avaliar se um aumento dos receptores 

A2A seria suficiente para originar défices ao nível do hipocampo e em terceiro lugar, se 

os receptores A2A poderiam modular os efeitos dos GR, sendo este o mecanismo pelo 

qual estariam a conduzir ao dano e à disfunção neuronal. 

Submetemos ratos Wistar machos a um paradigma de stresse por separação maternal. 

Neste protocolo, os animais são separados das mães durante 3 horas por dia, do dia 2 

ao dia 14 de vida. Quando avaliados na idade adulta às 8 semanas, estes animais 

apresentam um comprometimento da memória dependente do hipocampo e da 

plasticidade sináptica.  Para estudar o envolvimento dos receptores A2A nestes défices e 

o seu potencial terapêutico, os animais foram tratados com KW6002, um antagonista 

selectivo dos receptores A2A, a partir das 6 semanas de vida, durante pelo menos um 

mês, período após o qual foram avaliados em testes de comportamento animal.  A 

administração de KW6002 reverteu os défices de memória e o comportamento ansioso 
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apresentado por estes animais. As alterações na plasticidade sináptica, avaliadas na 

sinapse fibras de Schaffer/dendrites de CA3 do hipocampo, e na arborização dendrítica 

foram também revertidas. A função do eixo HPA foi também avaliada: os animais 

sujeitos a separação maternal não apresentaram uma variação circadiária fisiológica 

dos corticosteróides, com níveis de corticosterona no plasma elevados 

permanentemente. Após o tratamento, os níveis plasmáticos desta hormona reduziram 

e a variação circadiária foi reestabelecida.  Estes resultados revelam assim um papel 

instrumental dos receptores A2A nos danos causados pelo stresse e o seu potencial 

terapêutico para diversas patologias.  

Com o objectivo de explorar em maior detalhe o papel dos receptores A2A na origem da 

disfunção do hipocampo, que ocorre tanto com o envelhecimento como com o stresse, 

os efeitos que advêm da sobreexpressão deste receptor foram avaliados. Utilizaram-se 

ratos transgénicos com sobreexpressão do receptor A2A humano controlada pelo 

promotor da CaMKII, abundante em neurónios do córtex e hipocampo. A 

sobreexpressão de receptores A2A alterou a neuromodulação adenosinérgica de forma 

muito semelhante ao envelhecimento.  Isto também foi observado em animais sujeitos 

a separação maternal e revertido com o tratamento com o antagonista dos receptores 

A2A. Adicionalmente, demonstrou-se que o aumento neuronal dos receptores A2A é 

suficiente para gerar défices na memória dependente do hipocampo e para modificar a 

plasticidade sináptica de forma similar à que ocorre no envelhecimento. É interessante 

notar que todos estes efeitos ocorrem associados a uma disfunção dos eixo HPA, 

também consequência do aumento destes receptores. Isto revela novamente um papel 

importante dos receptores A2A no controlo da resposta ao stresse.  

Era então fundamental compreender se a acção dos receptores A2A na modulação dos 

efeitos do stresse se devia:  

1) apenas a um efeito indirecto na função do hipocampo, e como consequência no eixo 

HPA (O hipocampo tem um importante papel inibitório do eixo HPA como resposta a 

níveis plasmáticos elevados de corticosterona); ou 2) a uma acção directa nos GR. O 
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efeito de activar ou bloquear os receptores A2A na actividade transcripcional e 

localização nuclear dos GR foram avaliados. O bloqueio dos receptores A2A  diminuiu 

a actividade transcripcional dos GR e impediu a sua translocação nuclear induzida por 

um agonista selectivo. As consequências desta interacção para fenómenos de 

plasticidade sináptica foram também avaliadas. Observou-se que os efeitos deletérios 

de activar os GR são prevenidos pelo bloqueio dos receptores A2A e aumentados 

quando estes são sobreexpressos. Assim estes resultados revelam um papel crucial dos 

receptores A2A nos efeitos dos GR sugerindo até que possa ser este o mecanismo pelo 

qual o seu bloqueio se tem revelado benéfico em patologias tão diversas. 

Globalmente é agora possível concluir que alterações nos receptores A2A, ao nível quer 

da densidade quer da sinalização, têm um papel instrumental nos efeitos do stresse e do 

envelhecimento na memória e na plasticidade sináptica. Estes dados apoiam a 

utilização terapêutica de antagonistas dos receptores A2A em inúmeras patologias. Os 

resultados agora apresentados constituem também a primeira evidência de que os 

receptores A2A tem um papel directo no controlo dos efeitos dos glucocorticoides e na 

função do eixo-HPA, sendo esta uma explicação totalmente nova do mecanismo 

subjacente aos efeitos benéficos dos antagonistas A2A. 
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Preface 

In the following pages you will find the description of the work leading to this PhD 

dissertation. First, a brief background that I consider essential to lay the foundations of 

this work is presented, which is Chapter 1. It is not exhaustive, since my aim is solely to 

transmit the scientific knowledge that gave rise to the work performed, as well as 

provide tools to understand the work itself. For this reason I divided the background in 

two sections, one being the state of the art and the second, the technical approaches. 

The first will hopefully help the reader to contextualize the work, understand its 

importance and the reasons why it was performed. The second aims at giving the reader 

the tools required to understand the methodological approach and the reasons of choice. 

Then, I present the results in the form of three scientific papers, which constitute 

Chapters 2, 3 and 4: 

- Chapter 2: Adenosine A2A receptor blockade reverts hippocampal stress-

induced deficits and restores corticosterone circadian oscillation 

Pages 27 to 54 - published in Molecular Psychiatry (2013) 

- Chapter 3: Aging-like hippocampal deficits driven by overexpression of 

adenosine A2A receptors in forebrain neurons 

Pages 55 to 76 – Submitted for publication 

- Chapter 4: A novel role of adenosine A2A receptor in the modulation of the 

stress glucocorticoid receptor in the brain 

Pages 77 to 101  - Submitted for publication 

 

In the end, I included a ‘General Discussion’ integrating all the data and finally, a more 

personal perspective of the impact of the research data obtained and future directions 

under ‘Future Perspectives’. 
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State of the art 

The brain, like all other organs from the simplest to the most complex organism, is 

composed of cells. These cells communicate between each other and are organized in 

circuits. Which are, in turn, organized in areas with specific functions. This is a 

simplified image of the brain. However, as science addresses each one of these 

“simple” dogmas, one understands that brain is all but simple. Whenever it was clear 

that only neurons communicated, data show that astrocytes also have an active role in 

neuronal communication. When a circuit was thought to be “isolated”, evidence reveals 

that it is constantly receiving inputs from other circuits. And rarely one brain area is 

restricted to a function or a function requires solemnly one brain area. The most 

exciting thing about the brain is its complexity. And the more we know the more 

complex it becomes. 

Memory and the hippocampus 

Memory can be very complex, as in humans, that can even recall events that never 

happened and were only thought, or can be very simple, like conditioned behavior, that 

is present in the simplest brains as in those of flyes (Quinn et al., 1974). The concept 

that multiple types of memory could exist and be attributed to different brain areas was 

very controversial (Gabrieli, 1992; Squire, 1992; Warrington, 1979), however it is now 

known and accepted that many different types of memory exist and that they are 

associated in a large extent with the use of specific brain areas (Squire, 2004). While 

explicit memory, as spatial memory, largely relies in the hippocampus, implicit 

memory, as working memory, relies mostly on dorsal striatum (Milner et al., 1998).   

One of the most widely studied types of memory is the hippocampal-dependent spatial 

memory.   

The hippocampus, or cornu ammonis as was previously named, is located on the 

medial temporal lobe of the cerebral cortex in close contact with the lateral ventricles. 

With its unique and organized structure this brain area closely interacts with many 
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different and distinct areas of the brain, receiving inputs from all the sensory areas of 

the cortex and also from limbic structures (Lopes da Silva et al., 1990). The first studies 

regarding the organization of the hippocampal formation are from Cammilo Golgi 1886 

(Golgi, 1989). However it was Santiago Ramon Y Cajal that in 1893 described the 

stratification of the different afferent pathways as well as the different types of neurons 

in each region of the hippocampus.  Later the hippocampus was divided in different sub 

areas: the DG (Dentate Gyrus) the CA3 (corpus ammonium 3), CA2 (corpus ammonium 

2) and CA1 (corpus ammonium 1). These areas form a mainly unidirectional circuit, in 

which glutamate is the main neurotransmitter and that integrates the inputs from the 

different areas of the brain (Lopes da Silva et al., 1990; Teyler and DiScenna, 1985). 

Most of this inputs come from the entorinal cortex that channels the information from 

the cingulate cortex, temporal lobe cortex, amygdala, orbital cortex, and olfactory bulb 

(Sewards and Sewards, 2003). This structure has a pivotal role in different types of 

memory has olfactory memory or fear memory, however its main function is the spatial 

location and thus the spatial memory. There is now scientific evidence for the existence 

of what are called place cells, hippocampal neurons that encode for a given spatial 

location and that are activated when the animals are in that specific location (O'Keefe 

and Conway, 1978; O'Keefe and Dostrovsky, 1971) .  

Interestingly, the hippocampus is one of the brain areas most susceptible to external 

insults, being one of the most and primarily affected brain areas upon normal ageing. 

Hippocampal dependent tasks, as spatial memory, are one of the first to be 

compromised by ageing, and changes in hippocampal excitability are also widely 

described to occur (Barnes, 1988; Rosenzweig et al., 2003).. Finally, multiple 

pathologies characteristically affect this brain area, such as epilepsy or Alzheimer 

Disease (AD). Despite having a totally distinct etiology and outcome, both have a 

profound impact in the brain by drastically modifying hippocampal function (impairing 

hippocampal dependent memory tasks), excitability (impairing both neuronal properties 

and circuit excitability) and neuronal survival and morphology (Lado et al., 2002; 

Marchetti and Marie, 2011). 
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There are many common features between normal ageing and pathologies, such as AD, 

concerning their impact in the brain and particularly on hippocampal formation. Both 

are, for example, associated with memory and synaptic plasticity impairments, dendritic 

retraction or even cell death (Keller, 2006).  Moreover both present elevated plasmatic 

corticosterone levels (Lupien et al., 1998; Rothman and Mattson, 2010) and increased 

brain adenosine levels (Mackiewicz et al., 2006). Knowing that stress and stress 

hormones, as corticosterone, also have a profound impact in hippocampal formation 

(Reviewed by Miller and O'Callaghan, 2005) and that adenosine is crucial to regulate 

brain homeostasis in the next pages I would like to focus on stress and the main 

mediators of stress response, the glucocorticoids, and also on adenosine.  

Stress and the HPA-axis system 

Stress has been studied due to its importance in the adaptative response of the organism 

to the environment. Any type of threat that compromises homeostasis, requiring a 

compensatory response of the organism to return to equilibrium can be defined as 

stress. Therefore, stress plays an important role in all physiological systems through 

neuronal and endocrine mechanisms (McEwen, 2007). It is recognized that stressful 

events may have a role in the 

development and/or susceptibility for 

psychiatric disorders (McKinney, 1984; 

Willner et al., 1997) such as anxiety, 

depression or posttraumatic stress 

disorders.  

Stressful events are present throughout 

life, triggering peripheral and central 

physiological responses coordinated by 

the central nervous system, mostly 

through the activation of the 

Hypothalamic-Pituitary-Adrenal axis system (HPA-axis, Figure 1.1), (Herman and 

Figure 1.1: Schematic representation of the HPA-
axis. The hypothalamus releases CRH that will 
activate pituitary neurons to release ACTH. This 
hormone will enter the bloodstream and induce 
the release of corticosterone by the adrenal 
glands.  
(Adapted from learn.genetics.utah.edu 
/content/epigenetics/rats) 

corticosterone 
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Cullinan, 1997). In a stressful situation, the paraventricular nucleus of the 

hypothalamus is activated and releases corticotrophin-releasing-hormone (CRH), which 

in turn will induce Adrenocorticotrophin (ACTH) secretion by pituitary neurons into 

the bloodstream. Circulating ACTH will stimulate the secretion of glucocorticoids from 

the adrenal cortex (cortisol in humans and corticosterone in rodents) being the latter the 

key mediators of the stress response (Tsigos and Chrousos, 2002). Glucocorticoids are 

stress hormones and play a vital role in stress response, mobilizing energy stores, 

suppressing non-essential physiological systems, modulating behavioral responses to 

the stressful stimuli, and regulating the stress response system itself through negative 

feedback inhibition (Johnson et al., 1992). In addition to the peripheral effects in the 

immune response or metabolism, glucocorticoids have important effects on the brain, 

particularly in the hippocampus (reviewed by Joels, 2008; McEwen, 2012).  

Physiological actions of glucocorticoids are mediated by two different types of 

corticosteroid receptors: the Type I, high-affinity, mineralocorticoid receptor (MR) and 

the Type II, low-affinity, glucorticoid receptor (GR). These are classically 

cytoplasmatic receptors that upon binding to its ligand translocate to the nucleus and act 

as transcription factors (Zalachoras et al., 2013). Interestingly corticosteroid receptors 

present a distinctive distribution pattern among brain areas. Whereas GR are 

ubiquitously distributed in neurons and glial cells, being present in higher levels in the 

hippocampus, MR are mostly expressed in hippocampal and septal neurons and have 10 

times more affinity for corticosterone than GR (Reul and de Kloet, 1985). This different 

affinities will lead to a particular pattern of activation of GR and MR: while MR are 

tonically activated by circulating glucocorticoids (70% occupancy of MR versus 10% 

occupancy of GR), GR activation only occurs when the cytoplasmatic levels of these 

hormones increase (both receptors can reach an occupancy of 90%), as in stressful 

situations or during the circadian peak (Joels, 2006; Sandi, 1998; Tsigos and Chrousos, 

2002). This differential activation of corticosteroid receptors will lead to biphasic 

effects of stress hormones (Figure 1.2). For low or short term increases in 

corticosteroids there is an increase in general performance, memory, cognition and 
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attention; whereas for higher or prolonged exposure to glucocorticoids the effects are 

deleterious (Joels, 2006, Figure 1.2). Overall, the individual properties, distribution and 

density of both MR and GR (and particularly their ratio) will lead to distinct effects of 

stress hormones in different cell populations, depending on the activation status of the 

HPA-axis (Reviewed by Joels, 2006; Sousa et al., 2008).  

 

 

 

 

 

 

 

 

The control of the HPA-axis activity is essential to maintain a functional and adaptative 

response to stress and multiple inhibitory pathways were developed to achieve that. 

Stress response can be limited either by a direct feedback inhibition mediated by the 

GR, present in hypothalamic and pituitary neurons that will decrease the release of 

ACTH and CRH, or by neuronal pathways projected from other brain areas (Herman 

and Cullinan, 1997). The most studied neuronal pathway-mediated inhibition of the 

HPA-axis is the one that arises from the hippocampus.  Lesions of the hippocampus 

lead to higher circulating levels of corticosteroids whereas it’s stimulation decreases 

HPA-axis activity probably due to GR activation (Jacobson and Sapolsky, 1991). 

Therefore the increased plasma glucocorticoid levels, that result from stress, can impair 

the function of this brain area and consequently the stress response system can also be 

affected. Given the susceptibility of the hippocampal formation to stress, the control of 

the HPA-axis is particularly susceptible to situations that are characterized by 

persistently high levels of glucocorticoids, such as chronic stress, aging or in 

A) B) 

Figure 1.2: Schematic representation of the stress effects. A) presents the relationship between the 
levels of corticosterone and the differential occupation and activation of MR and GR. B) represents the 
outcome of this, the first beneficial effects of stress and the latter, deleterious effects, if corticosterone 
levels remain high for prolonged periods of time. Adapted from 
http://www.mindtools.com/stress/UnderstandStress/StressPerformance.htm and (Yau and Seckl, 2012) 
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psychopathologies (Pardon and Rattray, 2008). Interestingly all of these three situations 

induce morphological and functional changes in the hippocampus (McEwen, 2007) and 

later on impact in the stress response system. 

Stress and the hippocampus  

The hippocampus was the first higher brain center to be recognized as a target for stress 

hormones (McEwen et al., 1968). Latter, the effects of stress on hippocampal plasticity 

were explored by Foy and co-workers when studying stress–induced impairments in 

Long-Term Potentiation (LTP) (Foy et al., 1987). Nowadays multiple observations 

sustain that the permanent activation of hippocampal GR can have profound deleterious 

effects on this brain structure at both cellular and molecular levels (reviewed by Kim et 

al., 2006).  

Different biphasic effects of stress and stress hormones in the hippocampus were 

already described. Stress and corticosterone have been shown to impact upon 

neuroexcitability, regulation of glutamate release and response, synaptic plasticity, 

neuronal morphology and learning and memory. Stress has been shown to increase 

basal glutamate levels (Lowy et al., 1993) to induce neuronal death (Sapolsky, 1985) as 

well as neuronal atrophy of apical dendrites (Magarinos et al., 1996) and also to impair 

adult neurogenesis (Dagyte et al., 2009). Moreover stress was also shown to impair 

LTP while increasing long term depression (LTD) (Kim et al., 1996; Xu et al., 1997), 

the most characterized molecular models of memory. Changes in the levels of 

neurotransmitters receptors were also reported. The levels of GABAA and NMDA 

receptors can be decreased (Caldji et al., 2000b; Roceri et al., 2002) and the subunits 

content of AMPA receptor are also changed (Pickering et al., 2006). Changes in 

neurotrophins were observed in stressed animals, such as lower levels of brain-derived 

neurotrophic factor (BDNF) (Smith et al., 1995). All these profound changes, together 

with the acute effects mediated by GR activation, have implications for learning and 

memory. This is confirmed by the observed learning deficits (Diamond et al., 1999; 

Okuda et al., 2004; Sousa et al., 2000) and anxious behavior (Caldji et al., 2000a) 
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Figure 1.3: Schematic representation of the stress effects in the hippocampus. Changes in the balance 
between MR and GR activation will trigger cellular and molecular changes in the hippocampus, 
ultimately leading to behavioral impairment, adapted from Sousa (2008). 

characteristic of stressed animals. Figure 1.3 presents a summarized representation of 

the stress effects in the hippocampus (Sousa et al., 2008). Besides glucocorticoids, other 

molecules have an important role in the modulation of brain function, being one of 

them adenosine. 

 

 

 

 

 

 

Adenosine and Adenosine A2A receptors 

Adenosine is a purine nucleotide that is mainly produced upon the degradation of ATP 

and therefore is present in all cells as a metabolite (Stone et al., 1985). In situations of 

compromised energy status or when cells require an augmented consume of ATP, the 

production of adenosine increases and this metabolite acts with an homeostatic role in 

the control of cellular metabolism (Arch and Newsholme, 1978). Adenosine has many 

important functions at cellular level in all tissues, but has broader modulatory roles in 

particular systems, such as the immune or nervous systems. 

In the brain, adenosine has important neuromodulatory actions, not only in the 

regulation of neurotransmitter release and post-synaptic excitability, but also 

modulating the response of other receptors in several brain structures (reviewed by 

Sebastiao and Ribeiro, 2009). Adenosine exerts its action through the activation of 
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different membrane receptors with opposite actions. Therefore the net effect of 

adenosine depends on the expression pattern of these receptors and differs among brain 

areas, cell type and even with ageing or pathology. The neuromodulatory role of 

adenosine in the brain is mediated by a balance between the inhibitory and excitatory 

actions of adenosine, via A1 and A2A receptors (A1R and A2AR) respectively. Adenosine 

can also activate adenosine A2B and A3 receptors; however those receptors are mostly 

involved in the peripheral effects of adenosine (for a review see Cunha, 2001; Sebastiao 

and Ribeiro, 2009).  

Adenosine receptors are metabotropic, G-protein coupled receptors. A1 receptors are 

usually coupled to adenylate cyclase inhibitory G proteins (Gi/Go) and A2A receptors to 

adenylate cyclase excitatory G proteins (Gs) (Linden, 2001). However some protein 

kinase C (PKC) dependent effects were already described (Lopes et al., 1999a), thus 

pointing also to a Gq coupling of A2AR. The distribution of adenosine receptors in the 

brain is crucial to understand adenosine differential modulation (Figure 1.4). While A1 

receptors are widely distributed, being more abundant in the cortex, cerebellum and 

hippocampus (Reppert et al., 1991), A2AR display a more restricted expression pattern. 

High expression levels of A2AR  are observed at the olfactory bulb and striatum (Jarvis 

and Williams, 1989), whereas in the neocortex and hippocampus they are present at 

very low levels (Cunha et al., 1994a; Kirk and Richardson, 1995).  

 

 

 

 

 

 

 

 

Figure 1.4: Schematic representation of the distribution of adenosine receptors in the brain. The 
hippocampus presents high levels of adenosine A1 receptors and low levels of adenosine A2A receptors. 
(Adapted from Ribeiro et al., 2003) 
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In the hippocampus, the effects of adenosine under physiological conditions are mostly 

mediated by A1R activation and consequent inhibition of glutamate release. Adenosine 

has therefore a tonic inhibitory effect on hippocampal synaptic transmission (Sebastiao 

et al., 1990). Interestingly, in spite of the low expression and density of A2AR in the 

hippocampus, these receptors also play an important role in the modulation of synaptic 

transmission. Different effects resulting from A2AR activation were observed, not only 

in neurons but also in astrocytes (reviewed by Sebastiao and Ribeiro, 2009). The first 

evidences of A2AR mediated effects on the hippocampus revealed a presynaptic 

modulatory effect of A2AR upon A1R inhibitory actions, resulting in a facilitatory effect 

on synaptic transmission (Cunha et al., 1994b; O'Kane and Stone, 1998). In neurons, 

other pre-synaptic effects were observed later in the modulation of release or uptake of 

different neurotransmitters, such as glutamate (Lopes et al., 2002), GABA (Cristóvão-

Ferreira et al., 2009; Cunha and Ribeiro, 2000) or acetylcholine (Cunha et al., 1994b). 

Post-sinaptically, A2A receptors are implicated in the modulation of AMPA mediated 

currents (Dias et al., 2012). Evidences also expand A2AR modulatory actions to 

neurotrophins. A crosstalk between A2AR and TrkB receptor (neurotrophin receptor) 

was described; with important implications for brain derived neurotrophic factor 

(BDNF) effects (Assaife-Lopes et al., 2013; Diogenes et al., 2007; Diogenes et al., 

2004; Tebano et al., 2008). In astrocytes, A2AR are involved in the modulation of 

glutamate release (Nishizaki et al., 2002) and GABA uptake (Cristovao-Ferreira et al., 

2013).  

Adenosine A2A receptors pathology 

The extracellular levels of adenosine are crucial for adenosine signaling. Under 

physiological conditions adenosine concentrations range from 140 to 200nM 

(Dunwiddie and Diao, 1994). However different noxious brain conditions, as hypoxia, 

ischemia, epilepsy, or other brain insults, raise these values from 3 to 10 fold 

(Reviewed by Dale and Frenguelli, 2009). In such situations A2AR are activated 

(Fredholm, 1997) and A1R desensitized (Fernandez et al., 1996). If this is prolonged, 
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the levels of adenosine receptors may change. In different chronic noxious brain 

conditions the levels of A2AR in the hippocampus are usually increased, whereas those 

of A1R are decreased (reviewed by Cunha, 2005). These changes in adenosine receptor 

levels may not only impact on the overall effect of adenosine, but also have 

consequences for the signaling pathway operated by these receptors. Aged animals, 

which also present high basal levels of adenosine and an imbalance in the levels of its 

receptors (Cunha et al., 1995), display changes in the transduction mechanisms 

associated to these receptors (Lopes et al., 1999a), suggesting that the balance between 

A1 and A2A receptors is crucial to adenosine response. In aged rats, A2AR dependent 

activation of glutamate release becomes more pronounced and shifts from a PKC 

mediated signaling to protein kinase A (PKA), c-AMP dependent effects (Lopes et al., 

1999a). Moreover this effect, that in young animals is dependent on A1R activation, is 

observed even when these receptors are blocked revealing an effect that is independent 

of A1R (Lopes et al., 1999a). In summary, A2AR are over activated in deleterious brain 

conditions and being so, the blockade of these receptors has been proposed to be 

therapeutically useful in such situations (see Figure 1.5). A2AR blockade has been 

shown to prevent amyloid-beta (Aβ) toxicity in the hippocamapus (Dall'Igna et al., 

2007), as well as the memory impairments induced by infusion of this peptide in the 

brain (Canas et al., 2009; Cunha et al., 2008a). It was also shown to improve memory 

performance and decrease Aβ levels in different animal models of Alzheimer disease 

(Arendash et al., 2006; Espinosa et al., 2013). Finally, it has also been proven 

beneficial in Parkinson’s disease (PD) models, and A2AR antagonists were already in 

clinical trials for the treatment of this pathology (Lopes et al., 2011; Muller, 2013). In 

other models of pathology, as in convulsive episodes (Cognato et al., 2010), LPS 

administration (Rebola et al., 2011b) or hypoxia (Pugliese et al., 2009; Von Lubitz et 

al., 1995), A2AR blockade can prevent or even revert the deficits observed.  
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Figure 1.5: Effects of aging in adenosine neuromodulation and the effects of caffeine, an adenosine 
A2AR antagonist. A) In Young animals adenosine neuromodulation is based mainly in A1R mediated 
inhibition and A2AR mediated excitation. B) Along the aging process, the increase in the levels of both 
Adenosine and A2AR, shifts this balance into a stage in which more excitation occurs and thus 
excitotoxicity is observed. C) Whenever caffeine is present, and by blocking A2AR, it will decrease 
excitation and thus protect from brain damage.(Marques et al., 2011) 

 

 

 

 

 

 

 

 

 

Adenosine A2A receptors and stress 

The first observation that adenosine and stress where linked came from the work of 

Scaccianoce and collaborators (1989) showing that adenosine could modulate ACTH 

production, probably in the anterior pituitary, as was later confirmed (Chau et al., 

1999). However, the evidence that stress could change adenosine neuromodulatory 

system comes only in 2006. Cunha and co-workers observed that one episode of sub-

chronic stress could lead to an imbalance in the levels of adenosine receptors in a 

similar pattern to what happens in noxious brain conditions (Cunha et al., 2006). In this 

model the blockade of A2AR has been shown to prevent the synaptic loss presented by 

stressed animals (Cunha et al., 2006). Interestingly, both stress and adenosine are being 

implicated in psychiatric disorders as depression, anxiety, post-traumatic stress 

dirsorder, among others. Adenosine receptors are being studied as possible therapeutic 

B) C) 

A) 
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targets for its treatment (Cunha et al., 2008b); and several stress related animal models 

are being validated for the study of these disorders (Kalueff and Tuohimaa, 2004). The 

stress models that are more accepted for the study of psychiatric disorders are those 

where stress is induced early in life. The induction of stress in a period of massive brain 

development will lead to permanent changes in the central nervous system (Heim et al., 

1997) and interfere in brain and behavioral development. As a consequence, brain 

circuits are more susceptible to further challenges and consequently predisposed to 

pathology (Caldji et al., 2000a). These models mimic, among others, one of the main 

features of psychopathologies, a dysfunctional stress response system that leads to a 

tonic activation of hippocampal GR due to permanent high circulating levels of 

corticosteroids. 

As mention above many evidences are accumulating for a role of hippocampal 

A2AR in stress induced deficits however it is not yet clear how this is taking place. 
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Technical Approaches 

Maternal separation stress model 

Maternal separation (MS) protocol is a neonatal chronic stress model that has been 

proposed for the study of mood disorders. There are multiple models of maternal 

separation that vary according to multiple factors: the duration of each separation from 

(15 min to 24 hours); the number of separations (only once or repeatedly); the duration 

of the protocol (2 weeks or 3 weeks for instance) or the starting date (post natal day 2 or 

1 week old for instance). Depending on the model used the effects are different 

(Reviewed by Marco et al., 2011; Nishi et al., 2013). For example, 15 min to 180 min 

separations have been described to be beneficial (Banihashemi et al., 2011), while 

separations longer than 180min are deleterious (Marco et al., 2011).  These models are 

based on the modification of the natural behavior of the mother, the liking/grooming 

behavior, induced by the separation (Newport et al., 2002). When the separation is short 

(15 min), maternal care increases, if it is prolonged (180 min), the periods of 

linking/grooming are decreased. Natural differences in the periods of licking/grooming 

have also been described to change stress susceptibility, with increased anxiety 

associated with lower licking/grooming periods (Champagne et al., 2003). One of the 

most robust models is the daily separation of the litter from their mother for 180 

minutes each day during postnatal days 2–14 (Ladd et al., 2000). In this model the 

parent offspring interaction is altered, not only the pups are deprived from maternal 

care reducing the linking/grooming period, maternal behavior also remains aberrant 

after the reunion.  

Among different stress models, MS is the one thought to be more physiological, since 

stress is induced by modifying maternal care which can be transposed to humans 

(Newport et al., 2002). In fact, different clinical observations have been linking many 

adulthood psychiatric disorders with stressful childhood events. A significant 

coincidence was found between the occurrence of an early trauma as parental loss, 

sexual abuse or physical assault in childhood, and the chance of developing affective 
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disorders later in life (Heim and Nemeroff, 2001; Sullivan et al., 2006). Chronic 

neonatal stress will culminate in an over-activation of the HPA-axis that persists in the 

adult life leading to permanently higher levels of corticosterone and to cognitive 

deficits. Increased corticosterone levels in this period of brain development lead to 

permanent changes at the levels of gene expression, neurochemistry, electrophysiology, 

and morphology that are particularly profound in hippocampal formation (Bakshi and 

Kalin, 2000; Kaufman et al., 2000). 

Learning and memory behavioral assessment 

The Morris water maze (MWM) test is used to investigate hippocampal-dependent 

spatial memory in rodents and relies on the use of distal cues to navigate in an open 

swimming arena with the aim of locating a submerged platform (Sweatt, 2003). It was 

first described by Richard Morris (Morris, 1981), and has been applied with different 

modifications to multiple means throughout the years (D'Hooge and De Deyn, 2001; 

Terry, 2009).  In the classical paradigm the device consists of a large circular pool filled 

with water, made opaque to hide the escape platform. The pool is positioned in a room 

with external distal cues, visible to the swimming animal, to allow his spatial location. 

The animals are trained to find the hidden platform with 4 

trials/day (60 seconds maximal duration/ trail) for several 

days, the latency to find the platform evaluates learning 

performance. Latter a probe test is performed to evaluate 

memory retrieval, in this test the platform is removed and 

the time spent searching for the platform in its location 

(in a 60 second trial) is indicative of memory retention 

and requires information retrieval. In Figure 1.6 is a 

schematic representation of the MWM apparatus.

Several characteristics of this test contributed for its 

widespread use, it presents several advantages not only in terms of experimental 

constrains but also of applicability. This test is highly reliable across procedures or 

Figure 1.6: Graphic 
representation of the MWM 
swimming arena with the 4 
quadrants signed, the 
plataform and the visual ques 
used for spatial orientation. 
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Figure 1.7: Graphic representation 
of the Y maze apparatus. 

species, even humans (Kallai et al., 2005), and is relatively immune to motivational or 

locomotor differences. MWM learning impairments are independent on locomotor 

effects since land-based locomotor changes do not affect the swimming speed. 

Moreover, even if the learning curve is affected by the swimming speed, the probe test 

is insensitive to this parameter (Fitzgerald and Dokla, 1989). This task has been 

extensively validated as a measure of hippocampal dependent spatial navigation and 

reference memory and has been closely linked with hippocampal long-term-potentiation 

(LTP) and NMDA receptor function (Morris et al., 1986), therefore this is the test of 

excellence to study hippocampal function. 

The Y maze test is a memory test that evaluates Spatial Recognition Memory and is 

based on the innate tendency of rats to explore novelty. It was first developed in 1992 

by Dellu (Dellu et al., 1992) mainly because of its simplicity. It’s a two trial test, 

performed in a Y shaped maze (see figure 1.7 for a 

schematic representation). In the first trial the 

animal is allowed to explore two of the Y-maze 

arms, the 3rd arm is blocked. After a delay period 

(from 15 min to 6h) the animal performs the second 

trial with all the three arms available. It is then 

possible to evaluate the discrimination between the 

novel and the familiar environment, revealing or not the recognition of the spatial 

locations already visited. Since the three arms of the maze are identical the 

discrimination between novel and familiar relies on the different aspects of the 

environment that the animal can perceive.  Therefore, this task tests both working and 

spatial memory (Dellu et al., 2000; Dellu et al., 1997; Dellu et al., 1992). There are 

many advantages of this test, the fact that it does not require the learning of a rule 

enables the specific testing of working memory. Moreover, because it is based in innate 

behavior, unlike most other memory tests, it is less affected by motivational or 

emotional states like food deprivation, water avoidance or foot shock (Dellu et al., 

2000; Dellu et al., 1997; Dellu et al., 1992). Again, because it evaluates working 
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memory and its retention does not last longer than some hours, the same animal can be 

tested multiple times if the delay is sufficient to extinguish the memory. Finally, the 

influence of locomotor activity is minimized since the main parameter is the choice 

between the novel and the familiar arms; still locomotor activity is evaluated by 

measuring the total number of transitions (Dellu et al., 2000; Dellu et al., 1997; Dellu et 

al., 1992). 

Exploratory behaviour and anxiety 

The Open Field test (OF) was first described for the study of emotional behavior in 

rats, by evaluating the amount of time that animals spent in the periphery of the 

apparatus (Hall, 1934). The test is based on the evaluation of the spontaneous activity 

of the animal, in an open arena that is a novel environment to the animal (Prut and 

Belzung, 2003). The normal behavior, average speed and time spent in the periphery 

(preferable environment) versus the center (avoidable environment) are evaluated for a 

given period of time (usually 5 minutes) and evaluated for gross changes in animal 

locomotion or anxiety state (Crawley, 1985; Prut and Belzung, 

2003; Stone, 1932). Figure 1.8 presents a schematic 

representation of the arena and the different areas that are used 

to evaluate thigmotactic behavior (time spent In the periphery 

of the maze). Nowadays, this test is mostly used to evaluate 

locomotor and exploratory behavior, since emotional 

behaviors, as anxiety or depression like behavior, can be more 

precisely evaluated by other tests. 

The Elevated Plus Maze (EPM) is probably the most popular 

of all currently available tests to evaluate anxiety in animal models. One of its great 

advantages is the fact that it is based on an unconditioned or spontaneous behaviour, 

namely the natural tendency that rodents display of avoiding bright open spaces and 

preferring dark closed spaces. This type of behavior was first described by 

(Montgomery, 1958) but the actual plus maze was only designed later (Handley, 1984) 

Figure 1.8: Graphic 
representation of the 
Open Field arena 
with the different 
zones delimitated. 
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and has now been validated by different pharmacological tests. Namely, the 

administration of anxiolytic drugs produces a reduction of anxious behavior in the EPM 

(Pellow et al., 1985). It was also shown that once exploring the open arms, the 

corticosterone levels in the plasma rise, an indication that this is indeed a stressful 

environment (File et al., 1994; Rodgers et al., 1999). 

The maze consists of two open arms and two closed arms disposed in a plus sign shape 

(Figure 1.9). The animals naturally prefer the closed arms, however due to their 

tendency to explore the environment, they also display an 

exploratory behavior towards the open arms. If the 

animals are more anxious then they will spent less time in 

the open, avoidable, bright arms. The percentage of time 

spent in the open arms is therefore used as a measure of 

the anxiety state. To evaluate effects in locomotor 

performance the total number of entries in the open and 

closed arms is evaluated (Reviewed in Walf and Frye, 2007). Evidences that subsequent 

testing in the same environment lead to an abolishment of anxious behavior in a second 

trial (File et al., 1990; Lister, 1987; Pellow et al., 1985) raised the hypothesis that EPM 

behavior is not restricted to anxiety and can require other memory strategies. To 

overcome this, the validity of the test is only guaranteed in a single trial testing of 5 

minutes (see Rodgers and Dalvi, 1997; Walf and Frye, 2007). Since the test is based on 

variation of the baseline anxious behavior of the animals many factors can influence the 

testing, namely those that affect directly the stress response, as animal housing or 

handling prior to testing (Reviewed in Hogg, 1996). 

Electrophysiological recordings 

The discovery that the function of the nervous system was tightly linked with electrical 

activity was made back in the 1700’s by Galvani (Piccolino, 1998). Since then, the goal 

of many scientists was to be able to measure that electrical activity. Electrophysiology 

is what made it possible, the ability to study the electrical properties of cells and tissues 

Figure 1.9: Graphic 
representation of the 
Elevated Plus maze. 

http://en.wikipedia.org/wiki/Cell_(biology)�
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by measuring voltage changes or electrical current. Nowadays electrophysiological 

techniques allow scientists to measure from single channel conductivities to whole cells 

and cell population responses. It was the development of electrophysiology that allowed 

many of the now basic concepts of neuroscience to be discovered and its trough 

electrophysiological techniques that many are still revealed. To be able to develop these 

techniques it was necessary to have cells and circuits available, and for this the 

discovery of the brain slice preparation was crucial. Back in the 1950’s McIlwain was 

able to show, for the first time, that under controlled conditions it was possible to keep 

brain slices alive, metabolic active and with healthy neurons (Li and Mc, 1957). From 

that time onwards scientists used brain slices as a tool to study neuronal properties and 

responses in an accessible and controlled environment. However, the understanding of 

synaptic connectivity and neuronal communication was only possible after the 

introduction and development of the hippocampal slice preparation by Skrede and 

Westgaard in 1971 (Skrede and Westgaard, 1971). They showed that 400-500 μM 

hippocampal slices present a preserved circuitry and remain alive for several hours if 

kept in oxygenated artificial cerebrospinal fluid. As previously mentioned (page 9) the 

hippocampus has a very particular structure that is composed by a major unidirectional 

circuit (Lopes da Silva et al., 1990 - Figure 1.10). The information input arises from the 

entorrhinal cortex (EC), which neurons project into the hippocampal dentate gyrus 

(DG) granule cells. These, in turn, send afferent fibers (mossy fibers) into the CA3 

pyramidal cells which through the Schaffer collaterals innervate CA1 neurons. These 

cells project back to the enthorrinal cortex, closing the hippocampal circuitry. There are 

other intermediate pathways; however is through this mainly unidirectional circuitry 

that it is proposed that information is integrated and stored into the nervous system, 

namely spatial information. With this preparation, and due to its organized structure, it 

is possible to stimulate the different afferent fibers, as the Schaffer collaterals, and 

record in the innervated cells, in this case CA1 cells, either single cell recording, by 

patch clamp techniques, or extracellularly, thus performing extracellular recordings. In 

figure 1.10 is a schematic representation of the hippocampus and how the electrodes are 
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positioned when performing extracellular recording of field excitatory post-synaptic 

potentials (fEPSP) in the CA3-CA1 synapse.  

 

 

 

 

 

 

 

 

 

To perform extracellular recordings the recording electrode is placed in the dendritic 

area of the innervated cells and the response of the population of cells that is being 

stimulated is measured. The result is a fEPSP (Figure 1.10). The main neurotransmitter 

released by hippocampal neurons is glutamate. Therefore, the fEPSP obtained when 

performing extracellular recordings in the hippocampus, results from the depolarization 

of the post-synaptic population as a result of ion influx caused by the glutamate release. 

In figure 1.10 it is possible to observe a typical waveform of the fEPSP. It has mainly 

three components, the stimulus artifact (1), followed by the “fiber volley” (2) and 

finally the (EPSP) itself (3) and (4). This is composed by two phases, the first (3), a 

result of the post-synaptic response to glutamate and the second (4) the repolarization 

part of the EPSP in which the main neurotransmitter involved is GABA. The “fiber 

volley” (2) results from the presynaptic action potential arriving at the recording site, 

and is therefore the first to be recorded. This can give an indication of how healthy are 

the slices, since a small fiver valley amplitude means that less afferent fibers are being 

recruited to obtain a given fEPSP. The EPSP itself is the manifestation of the post-

Figure 1.10: Schematic representation of the simplified circuitry of the hippocampus. Left: DG: 
Dentate Gyrus; MF: mossy fibers; SC: Schaffer Collaterals; CA3: cornu ammonis 3; CA1: cornu 
ammonis 1, Adapted from  (Kesner, 2013). Two independent stimulation pathways are signed as S0 
and S1 as well as the recording electrode in CA1 dendritic area. Right: a representative field 
Excitatory Post Synaptic Potential (fEPSP). The Slope and the Amplitude are the parameters normally 
used to evaluate synaptic transmission. (1) Stimulus artifact; (2) Fiber volley; (3) early EPSP; (4) late 
EPSP. 
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synaptic depolarization induced by the glutamate released from the stimulated fibers 

and its slope and amplitude can be used to evaluate glutamate release. Usually the 

parameter evaluated is the slope since the peak amplitude of the fEPSP is more prone to 

contamination and more affected by the GABAergic contribution. (Sweatt, 2003). This 

technique is widely used to evaluate the efficiency of synaptic transmission, and the 

way it is modified in different situations. The evaluation of basal synaptic transmission 

is mainly achieved by performing input-output curves. In this protocol the response of 

the circuitry to step by step increments in intensity of stimulation is evaluated: thus, for 

higher stimulations a bigger fEPSP will be obtained, until a plateau is reached. It is then 

possible to infer how efficiently the information is being transmitted.  

Another property of the nervous system that was crucial to the development of 

neurosciences was the concept of synaptic plasticity, that is, the idea that a synapse is 

not static, that it is modified by different stimuli. This was first proposed by Konorski 

(1948) however only in 1973 Tim Bliss and Terje Lomo reported long lasting changes 

in synaptic efficiency (Bliss and Lomo, 1973). In the following years different 

electrophysiological paradigms for synaptic plasticity arise, namely long-term 

potentiation (LTP) and long-term depression (LTD). These are thought to be the 

molecular basis for learning and memory and evidence shows that learning and memory 

require processes as LTP or LTD (Cantarero et al., 2013; Fedulov et al., 2007) and 

impairments in this paradigms are usually associated with poorer memory performances 

(For ex. Kinney et al., 2009). The first protocol described for LTP induction was using 

high frequency stimulation, 100 pulses at a 100Hz during 1s frequency. However, 

nowadays, multiple paradigms for LTP induction arose, with different types of 

stimulation, namely the Theta-burst stimulation that is thought to be more similar to the 

physiological process of learning and memory. It has also been debated that depending 

on the age of the animals, or the type of stimulation, the mechanisms underlying this 

permanent potentiation of synaptic transmission are different. Some are protein 

synthesis dependent, and in theory more stable and prolonged in time, others are not, 

and usually the potentiation originated is smaller and lasts for a shorter period of time 
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(Park et al., 2014). The great advantage of these molecular models for memory is that 

they allow the in vitro assessment of how plastic the brain is and this can in turn be 

correlated with learning and memory performance. 
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1.2) Aim 

 

Chronic stress is known to induce a dysfunction in the HPA-axis leading to higher 

circulating levels of stress hormones, which has deleterious effects on brain function. 

The hippocampus is one of the primary brain areas affected by stress hormones, leading 

to memory and synaptic plasticity deficits. Since the blockade of A2A receptors was 

proven beneficial against synaptic loss associated to acute stress in the hippocampus, 

one can imagine a deleterious contribution of A2A receptors to stress-related 

impairments. However, this has never been tested directly. 

I now tested the hypothesis that A2A receptors are directly controlling stress-mediated 

effects, possibly by interacting with glucocorticoid receptor (GR). To clarify this, three 

specific tasks were designed: 

- Evaluate if A2A receptors are involved in the effects of chronic stress, using an 

early-life stress model in rodent, and evaluating the outcome in hippocampal-

dependent function.  

 

-  Test whether A2A receptors overexpression drives stress/ageing like modifications 

in memory performance and synaptic plasticity, by using a transgenic approach. 

 

-  Assess whether A2A receptors can directly control GR-mediated effects.  
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Abstract 

Maternal separation (MS) is an early-life stress model that induces permanent changes 

in the central nervous system, impairing hippocampal long-term potentiation (LTP) and 

spatial working memory. There are compelling evidences for a role of hippocampal 

adenosine A2A receptors in stress-induced modifications related to cognition, thus 

opening a potential window for therapeutic intervention. Here we submitted rats to 

maternal separation and evaluated the long lasting molecular, electrophysiological and 

behavioural impairments at adult age. We then assessed the therapeutic potential of 

blocking endogenous activation of A2A receptors, by administering a selective 

antagonist, KW6002, orally for one month to stress-impaired animals. We report that 

the blockade of A2A receptors was efficient in reverting the behaviour, 

electrophysiological and morphological impairments induced by MS. In addition, this 

effect is associated with the reestablishment of the Hypothalamic-Pituitary-Adrenal axis 

function, since both the plasma corticosterone levels and hippocampal glucocorticoid 

receptor expression pattern returned to physiological-like status after the treatment. 

These results reveal the involvement of A2A receptors in the stress-associated 

impairments and directly in the stress response system. Moreover, provide the first 

evidence that the dysfunction of the HPA-axis as well as the long-lasting synaptic and 

behavioural effects of MS can be reverted by targeting adenosine A2A receptors. These 

findings provide a novel evidence for the use of adenosine A2A receptor antagonists as 

potential therapy against psychopathologies. 
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Introduction  

Exposure to stress has deleterious effects on brain structure and function, which could 

be manifested either immediately after stress(McEwen, 1999a), as a long term 

vulnerability to cognitive deficits (McEwen, 1999b) or even as an increased 

susceptibility to neuropsychiatric disorders, where stress plays a major role (McKinney, 

1984; Willner, 1997).  

Mother-infant interaction is a key factor for brain maturation and disease susceptibility 

which in humans can manifest in cognitive and behavioural disorders later in life (Heim 

and Nemeroff, 2001; Sullivan et al., 2006). In rats, the daily separation of the litter from 

their mothers for 180 minutes each day during postnatal days 2-14 will result in an 

alteration of maternal behaviour, namely with a significant reduction licking/grooming 

duration (Ladd et al., 2000). During this period the hippocampus, which is critically 

involved in long-term memory formation (Morris, 2003)  and is also a primary target 

for stress hormones in the central nervous system (de Kloet et al., 1999; McEwen, 

1999a) goes through great development. The majority of hippocampal granule neurons 

develop and extend their axons between postnatal day (PND) 1 and 21 (Amaral and 

Dent, 1981) and the peak period of neurogenesis and mossy fiber outgrowth overlaps 

with the stress hyporesponsive period (PND 4-14) in neonatal rats (Sapolsky and 

Meaney, 1986). This will induce changes that persist throughout adult life at the level 

of gene expression, neurochemistry, electrophysiology proprieties, and morphology 

(Bakshi and Kalin, 2000; Kaufman et al., 2000) with behavioural and neuroendocrine 

signs of cognitive deficits and over-activation of the Hypothalamic-Pituitary-Adrenal 

axis (HPA-axis) as adults (Aisa et al., 2007; Anisman et al., 1998; Ladd et al., 2000; 

Lehmann et al., 2000).  

Adenosine receptors in the hippocampus are important modulators of synaptic 

transmission and neuronal excitability. Glutamatergic synaptic transmission in 

physiological conditions is controlled negatively by the dominant adenosine A1 

receptors, and positively to a lesser extent by A2A receptors (Cunha et al., 1994a). 

Interestingly, this pattern appears to be modified in the aged hippocampus, with a 
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marked increase in the expression of A2A receptors and a decrease in the expression of 

A1 receptors (Cunha et al., 1995; Lopes et al., 1999b). These changes are accompanied 

by a strong direct facilitatory effect of A2A receptors on the release of glutamate 

(Rebola et al., 2003). This is also observed in other situations associated to neuronal 

dysfunction, such as epilepsy, acute stress or animal models of Alzheimer’s disease 

(Cunha, 2005), which suggests a deleterious contribution of A2A receptors to these 

conditions. The blockade of A2A receptors was proven beneficial against synaptic loss 

associated to acute stress in the hippocampus (Cunha et al., 2006). Interestingly 

cognitive impairments also occur when excessive levels of corticosteroids are attained 

due to disease, or due to hypersecretion in response to a stressor (Belanoff et al., 2001a; 

Belanoff et al., 2001b).  

However, it is still unknown the extent to which A2A receptors are involved in the long-

term effects of early life stress. Here we submitted rats to maternal separation and 

evaluated the long lasting molecular, electrophysiological and behavioural impairments 

at adult age. We then assessed the therapeutic potential of blocking endogenous 

activation of A2A receptors, by administering a selective antagonist, KW6002 

(istradefylline), orally for one month to stress-impaired animals. We report that the 

blockade of A2A receptors was efficient in reverting the long-lasting behaviour, 

morphological and electrophysiological impairments induced by MS. We also show 

that this effect is associated with the reestablishment of the HPA-axis activity, since 

both the plasma corticosterone levels and hippocampal glucocorticoid receptor 

expression pattern returned to physiological-like status after the treatment.  
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Material and methods 

Animals: Pregnant Wistar rats were purchased (Harlan, Barcelona) in mid-gestation and 

were due in our animal facility. All animals were handled according to European 

Community guidelines and Portuguese law on animal care (1005/92). The animals that 

were sacrificed by decapitation were anesthetized under halothane atmosphere.  

Maternal Separation Protocol: The protocol used has been previously validated and 

described (Daniels et al., 2004). Wistar dams and their litters were assigned either to the 

control (CTR – non-separated) or to the maternal separated (MS) groups as described 

before (Lopes et al., 2008). To exclude artifacts from genetic background, at post natal 

day (PND) 2 all the litters were collected together, gender assessed and the pups were 

randomly distributed to foster dams (gender proportion maintained). MS pups were 

removed from their cages as a group from PND 2 to 14, for 180 minutes, daily, at 9 am, 

and placed in an isolation cage in an adjacent room kept at 32.0±0.5ºC. At the end of 

the separation period, pups were returned to their home-cage and rolled in the soiled 

home cage bedding before reuniting with the mother. CTR pups were not handled and 

were maintained in their home-cages until weaning. At day 21 the pup’s gender was 

confirmed, they were weaned and housed in groups of 5-8 animals per cage until use at 

adult age (8-14 weeks; according to diagram in Figure S2.1). 

Oral administration of the drug: KW6002 (istradefylline), a selective adenosine A2A 

receptor antagonist (Yang et al., 2007) was orally administered diluted in the drinking 

water, being continuously available. The weight of the animals and the volume intake 

were assessed twice a week and the concentration of the solution adjusted so that the 

drug intake was maintained at 3mg/Kg/day. Animals were divided in 4 groups: CTR or 

MS, drinking vehicle (0.025% methylcellulose) and CTR KW or MS KW drinking 

KW6002 (3mg/kg/day, 0.025% methylcellulose). The treatment started at 4 – 6 weeks 

old, and was prolonged for one month until sacrifice. The KW6002 administration was 

kept throughout the behavioural assessments.   
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Corticosterone quantification: Blood was extracted from the tail, in animals previously 

handled to minimise stress and without anaesthesia, at two different time points, 8 am 

(nadir) and 8 pm (zenith). The plasma was isolated by centrifugation at 2000g, 4ºC for 

15 minutes and corticosterone quantified by radioimmunoassay using the rat 

corticosterone 3H kit from MP Biomedicals, UK according to the manufacturer’s 

protocol. 

Behavioural assessments: CTR, MS, CTR KW, MS KW were first handled for five 

days before testing in the behaviour assays, that were performed in the following 

sequence: open-field (OF), Elevated plus maze (EPM) and Morris water maze (MWM) 

(Morris et al., 1982): Rats were given spatial acquisition training consisting of four 

trials/day for four consecutive days, as performed before (Diogenes et al., 2011). On the 

fifth day a probe test was given in which the platform was removed and animals were 

allowed to swim freely for 60s while recording the percentage of time spent on each 

quadrant. The latency to found the plataform during acquisition and the percentage of 

time in the platform quadrant in probe test were used to evaluate hipppocampal 

dependent memory. Elevated plus maze: The maze is shaped like a plus sign and 

consists of two “open” and two “closed” arms, arranged perpendicularly, and elevated 

50 cm above the floor. Each animal was placed on the center of the equipment, facing 

an open arm. Each test lasted 5 minutes and all testing sessions were performed 

between 10:00 am and 17:00 pm in a sound attenuated room. The maze was cleaned 

with a 70% ethanol solution between each animal. The total time spent in the open arms 

and the total arms entries (number of entries in open + closed arms) were used as 

anxiety and locomotor measures (Pellow et al., 1985). Open field: The animals were 

placed in the center of the arena (66x66 cm) and allowed to explore for 5 minutes. 

Changes in mean speed and path length of the subjects were continuously monitored by 

an automated tracking system (Smart 2.5, PanLab, Barcelona). The maze was cleaned 

with a 70% ethanol solution between each animal. Histological procedures: The day 

after the last testing session, five rats from each experimental group were perfused 

transcardially with PBS, under deep pentobarbital anesthesia. Brains were removed and 
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split into two hemispheres, and processed either for stereology, or for Golgi-Cox 

staining according to the procedures previously described (Gibb and Kolb, 1998; 

Keuker et al., 2001). Briefly, for stereology the left hemispheres were included in 

glycolmethacrylate (Tecnovit 7100; Heraeus Kulzer, Werheim, Germany) and every 

other microtome-cut section (30 μm) was then collected on a gelatinized slide, stained 

with Giemsa, and mounted with Entellan New (Merck, Darmstadt, Germany). The 

shrinkage factor was calculated according to Madeira et al (1990) (Madeira et al., 

1990). For 3D neuronal reconstructions, hemispheres were removed and immersed in 

Golgi-Cox solution (a 1:1 solution of 5% potassium dichromate and 5% mercuric 

chloride diluted 4:10 with 5% potassium chromate (Glaser and Van der Loos, 1981)) 

for 14 days; hemispheres were then transferred to a 30% sucrose solution (3 days), 

before being cut on a vibratome. Coronal sections (200 μm thick) were collected in 6% 

sucrose and blotted dry onto gelatin-coated microscope slides. They were subsequently 

alkalinized in 18.7% ammonia, developed in Dektol (Kodak, Linda-a-Velha, Portugal), 

fixed in Kodak Rapid Fix (prepared as manufacturer instructions), dehydrated through a 

graded series of ethanols, and cleared in xylene before being mounted and coverslipped. 

Slides were coded before morphometric analysis in both sets. 

Region and layer boundaries: We analyzed the following regions of the hipocampal 

formation (HF): the dentate gyrus (including polymorphic, granule cell layer, and 

molecular layer), CA1 (strata oriens, pyramidale, radiatum and lacunosum-moleculare) 

and CA3 (strata oriens, pyramidale, lucidum and radiatum). The above mentioned 

regions were outlined according to the atlas of Paxinos and Watson (Paxinos and 

Watson, 1998), based on noticeable cytoarchitectural differences (Palomero-Gallagher 

and Zilles, 2004). 

Stereological procedures: Volume estimations were performed using StereoInvestigator 

software (MicroBrightField, Williston, VT) and a camera (DXC390; Sony, Tokyo, 

Japan) attached to a motorized microscope (Axioplan 2; Zeiss, Oberkochen, Germany). 

Cavalieri’s principle (Gundersen et al., 1988) was used to assess the volume of each 

region. Briefly, every 10th section was used and its cross-sectional area was estimated 
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by point counting at a final magnification of 112x. For this, we randomly superimposed 

onto each area a test point grid in which the interpoint distance, at tissue level, was as 

follows: (1) 150μm for the three layers of the dentate gyrus, (2) 250 μm for the three 

layers of CA1 and CA3. The volume of the region of interest was calculated from the 

number of points that fell within its boundaries and the distance between the 

systematically sampled sections. 

Dendritic tree analysis: Three-D reconstructions of representative Golgi-impregnated 

neurons from CA1 were made. The criteria used to select neurons for reconstruction 

were as follows: (i) full impregnation of the neurons along the entire length of the 

dendritic tree; (ii) dendrites without significant truncation of branches; (iii) relative 

isolation from neighboring impregnated neurons to avoid interference with the analysis; 

(iv) no morphological changes attributable to incomplete dendritic impregnation of 

Golgi–Cox stain. Golgi-impregnated pyramidal-like neurons of the CA1 region were 

readily identified by their characteristic pyramidal or piriform soma, spine-sparse 

primary dendrites and spine-dense secondary dendrites (Fig. 2e for representative 

reconstructions). For each selected neuron, all branches of the dendritic tree and the 

location of all dendritic spines were reconstructed at 600X magnification, using a 

motorized microscope (Carl Zeiss Axioplan 2, Hamburg, Germany, with oil-

objectives), attached to a camera (DXC-390, Sony Co., Japan) and Neurolucida 

software (Microbrightfield, VT, USA). Three-D analysis of the reconstructed neurons 

was performed using NeuroExplorer software (Microbrightfield). In each hemisphere, 

10 CA1 pyramidal neurons were reconstructed; as a result in this study we have 

analyzed 200 neurons. Several aspects of dendritic morphology were examined. To 

assess overall changes, total dendritic length, number of ramifications and number of 

dendrites were compared between groups. Sholl analysis was performed to assess 

changes in the ramification pattern. 

Electrophysiological recordings: After decapitation the brain was rapidly removed and 

the hippocampi were dissected free in ice-cold Krebs solution composed of (mM): 

NaCl 124; KCl 3; NaH2PO4 1.25; NaHCO3 26; MgSO4 1; CaCl2 2; and glucose 10, 
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previously gassed with 95% O2 and 5% CO2, pH 7.4. 400 µM slices were obtained 

with a McEwen tissue shopper and Field excitatory postsynaptic potentials (fEPSPs) 

were recorded as previously (Diogenes et al., 2011) in stratum radiatum of the CA1 

area.  Input output curves and long term potentiation (LTP, 100 Hz, 1s, 100 pulses 

induced at 0.5mV/ms; <50% max) were recorded as previously.  The second 

hippocampus was rapidly frozen in liquid nitrogen for further analysis. 

Tissue processing: Samples were homogenized either in Immunoprecipitation-Assay 

(RIPA) buffer (50 mM Tris, 1 mM EDTA,150 mM NaCl 0,1% SDS, 1% NP 40, pH 8; 

(Palacios et al., 2004) or in 0.32 M sucrose solution with 50 mM Tris at pH 7.6 (Lopes 

et al., 1999b) supplemented with protease inhibitors (ROCHE). The first were 

centrifuged at 14000g during 15 minutes, and the second at 1000g during 10 minutes, at 

4ºC. The supernatant was collected, corresponding to whole tissue lysate and whole 

tissue homogenate respectively. For membrane isolation the whole tissue homogenate 

was centrifuged at 14 000g during 12 minutes, at 4ºC, the pellet is the membrane 

fraction. Protein was quantified using the BioRad Protein or DC Protein based on 

procedures previously described (Bradford, 1976; Lowry et al., 1951).  

Saturation binding assays: The radioligand binding experiments were performed as 

described (Lopes et al., 1999a) with membrane fractions. Briefly, [3H]ZM 241385 

binding (0-10 nM) was for 1 hour with 20-35 µg of protein/well for striatum 

membranes and [3H]DPCPX (0-10 nM) binding was for 2 hours with 40-60 µg 

protein/well of hippocampal, 60-100 µg protein/well of cortex and 20-40 µg 

protein/well of striatum membranes. Specific binding was determined subtracting the 

non-specific binding, measured in the presence of 2 µM of XAC and normalized for 

protein concentration. Radioactivity was determined after 12 hours with an efficiency 

of 55-60% for 2 minutes. All binding assays were performed in triplicate. 

Immunoblotting: Lysates or homogenates were denatured with 5x sample buffer (350 

mM Tris pH 6.8, 30% glycerol, 10% SDS, 600 mM DTT and 0,012% Bromophenol 

blue, pH6.8) and heated either at 95º for 5 minutes or at 60-70ºC for 30 minutes, 

respectively, and further processed as before (Diogenes et al., 2011). A2AR and 
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GABAAR antibodies (Upstate/Millipore, 05-717 and 05-474) were at 1:2000, GR, MR 

(Sta. Cruz Biotechnology, sc-1004and sc-11412) at 1:1000 and 1:200, NMDAR2B 

(Cell Signaling, D15B3) at 1:1000 and GluR1 (Millipore, 05-855) at 1:6000. Optical 

density was determined with Image-J software and normalized to the respective β-actin 

or α-tubulin band density. 

Drugs:A2AR selective antagonist, 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-

e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261) and the non-selective adenosine 

receptor antagonist 8-(4-[(2-minoethyl)amino]carbonylmethyloxyphenyl)xanthine 

(XAC) were purchased from Tocris Cookson, UK. These solutions were diluted in the 

assay solution from 5 mM stock aliquots made in DMSO stored at -20ºC. A2AR 

selective antagonist, (E)-8-[2-(3,4-dimethoxyphenyl)vinyl]-1,3-diethyl-7-methyl-3,7-

dihydropurine-2,6-dione (KW6002, istradefylline) was synthesized according to a 

published procedure (Hockemeyer et al., 2004). The purity of the product was 

determined by HPLC analysis coupled to electrospray ionization mass spectrometry and 

was greater than 98%. Adenosine deaminase (ADA, from calf intestine 10 mg/2 mL, 

EC 3.5.4.4) was from ROCHE; A1R selective antagonist, [propyl-3H]8-cyclopentyl-1,3-

dipropylxanthine ([3H]DPCPX, specific activity 100 Ci/mmol) was from Amersham, 

Buckinghamshire UK, and A2AR selective antagonist, 4-(2-[7-Amino-2-(2-

furyl)[1,2,4]triazolo[2,3-a] [1,3,5]triazin-5-ylamino]ethyl)phenol, ([3H]ZM 241385, 

specific activity 27.4 Ci/mmol) was from ARC Inc, St. Louis, USA. All these drugs 

were diluted directly in the incubation solution each day. HRP-coupled secondary 

antibodies were from Santa Cruz Biotechnology. All other reagents used were of the 

highest purity available either from Merck, Germany or Sigma Aldrich, Spain. 

Statistics: Values presented are mean ±SEM of n experiments. To test the significance 

of the differences between CTR and MS groups, an unpaired Student’s t test was used. 

When comparing CTR, MS, CTR KW and MS KW groups a one-way ANOVA was 

used, followed by a Bonferroni’s Multiple Comparison post hoc test. For the Sholl 

analysis of reconstructed neurons a repeated measures analysis was used. For the 

saturation binding curves an F-test was used to determine whether the competition 



Reversion of stress effects by A2AR blockade 

Interaction between glucocorticoid and adenosine A2A receptors  39 

curves were best fitted by one or two independent binding site equation and if the 

parameters obtained from the CTR and MS saturation curves (Bmax and KD) were 

different. For the analysis of the Morris water maze acquisition curve and 

corticosterone circadian oscilation the statistical differences were evaluated using two-

way ANOVA repeated measures test. Values of P<0.05 were considered to be 

statistically significant. 
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Results 

Maternal separation induces long-lasting regional effects in the brain. 

Maternal separation induces numerous changes in the brain particularly in the 

hippocampus (Aisa et al., 2009; Pickering et al., 2006). The balance between 

mineralocorticoid and glucocorticoid receptors (MR and GR respectively) can 

determine the impact of stress in different brain areas (Joels, 2006).  We quantified the 

levels of GR and MR in the hippocampus, cortex and striatum of adult animals 

previously subjected to maternal separation (Figure 2.1 a). Maternal separation has lead 

to a long lasting decrease of the GR levels that was more evident in the hippocampus 

(0.74 ± 0.04 of CTR, n=8, P<0.05) than in cortex (0.86 ± 0.03 of CTR, n=4, P<0.05) or 

striatum (0.90 ± 0.03 of CTR, n=4; P<0.05). MR levels were not modified in any of the 

brain areas analyzed (Figure 2.1 b). Concomitant changes on the levels of adenosine 

receptors were observed. Comparing to CTR, MS animals presented a 1.49 ± 0.04 fold 

increase (n=9; p<0.05) in the levels of A2AR that was restricted to the hippocampus 

(Figure 2.1 c). A hippocampal specific decrease in the A1R levels was also observed; 

Bmax values were of 1202 ± 33 fmol/mg protein (n=4) for CTR animals and 1073 ± 23 

fmol/mg protein for MS animals, (n=4; P<0.05; Figure 2.1 d). MS animals also 

presented a sustained increase in plasmatic corticosterone levels (Figure 2.1 e).  
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Figure 2.1 - Region specific effects of Maternal Separation.  
MS induced region specific changes in, GR (a) MR (b) A2AR (c) and A1R (d) and an increase in plasmatic 
corticosterone levels (e). Protein levels of GR, MR (in all brain areas) and A2AR (in hippocampus and 
cortex) were evaluated by western blotting. Specific immunoreactivity was normalized to that of β-
Actin or α-tubulin. For A2AR immunoreactivity 5µg of striatum were used as positive control. Results 
are the mean ±SEM  of 3 to 9 experiments; (*):P<0.05, comparing to CTR, calculated using an 
unpaired Student t-test. A1R levels in all areas and A2AR levels in striatum were measured by 
saturation binding curves with the A1 or A2A receptor selective antagonist [3H]DPCPX or [3H]ZM 24135 
respectively. [3H]DPCPX or [3H]ZM 24135 (7 nM) were incubated with 20-100 µg of membranes in a 
final volume of 300 µL for 2h/1h at room temperature. The ordinates represent the specific binding 
obtained upon subtraction of the non-specific binding, determined in the presence of 2 µM of XAC, 
from total binding. Values are the mean ± SEM of 4-5 experiments performed in triplicate. (*): P<0.05 
calculated using an F-test compared to control. Corticosterone levels in the morning period (8 am) 
were measured by radioimmunoassay using the rat corticosterone [3H] kit. Results are mean ±SEM of 
9 experiments; (*):P<0.05 obtained using a unpaired Student t-test.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adenosine A2A receptors are involved in synaptic changes induced by MS. 

To evaluate the impact of stress in synaptic transmission and plasticity, field excitatory 

postsynaptic potentials were measured in the CA1 area of the dorsal hippocampus. 

Basal synaptic transmission was accessed by performing Input-output (I/O) curves, 

whereas synaptic plasticity was evaluated by LTP induced by High Frequency 

Stimulation (HFS, 100Hz,1s).  
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The I/O curve was not modified by maternal separation (Figure 2.2 a, n=3). However, 

LTP magnitude (Figure 2.2 b) was reduced in MS animals to 34.4 ± 2.7 % from 50.7 ± 

3.4 % of potentiation obtained in CTR (n=7, P<0.05). 

To evaluate if the increase in A2A adenosine receptors was involved in the impairments 

observed in synaptic plasticity, LTP was induced in the presence of SCH58261 (50 

nM), a selective A2AR antagonist. The ex vivo blockade of A2AR reverted the LTP 

deficits induced by maternal separation without affecting LTP magnitude in control 

animals (53.1±3.7% and 57.3 ±1.7% of potentiation respectively, n=4-7, P>0.05; Figure 

2.2 c). 

Moreover, the in vivo administration of the A2A selective antagonist KW6002 for one 

month to adult MS animals was also able to revert the LTP deficits observed 

(47.6±3,9% of potentiation in MS KW animals, n=4, P>0,05 versus CTR; Figure 2.2 d). 

In order to better characterize the plastic changes observed in the electrophysiological 

studies, a 3D morphological analysis of dendritic arborizations of CA1 pyramidal 

neurons was performed. Data revealed a significant treatment effect in the total length 

of apical dendrites of pyramidal neurons (F = 7.371, P < 0.001), and in the total number 

of apical dendrite ramifications (F = 9.272, P < 0.001); post-hoc analysis showed that 

MS induced a significant decrease in the total length of apical dendrites when compared 

to CTR (P<0.05) (Figure 2.2 e). Similarly, MS pyramidal neurons had significantly less 

ramifications in apical dendrites when compared to CTR (P <0.05). Both parameters 

were restored by KW6002 treatment (P>0.05 vs CTR). There were no significant 

differences in the structure or number of basal dendrites. Sholl analysis showed 

coherent changes in the pattern of ramification (F = 5.691, P<0.001). The changes in 

apical dendrite arborizations observed in MS animals when compared to CTR (P<0.05) 

were reverted by KW6002 (Figure S2.2).  

To further evaluate the consequences to the overall morphology we undertook an 

estimation of hippocampal formation volumes. Our data revealed that neither MS nor 

KW6002 treatment significantly affected volumetric estimates (Table S2.1).  
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Figure 2.2. Involvement of adenosine A2A receptors in the synaptic changes induced by maternal 
separation.  
(a) Input-output curves performed to evaluate synaptic transmission in CTR and MS animals and (b) LTP 
(HFS,100 Hz,1 s), used to evaluate synaptic plasticity. Representative recordings of the fEPSPs obtained 
both for CTR and MS animals prior LTP induction and in the last 10 minutes are presented. The effect of 
SCH58261 (50 nM) application for 30 minutes prior to LTP induction and throughout the protocol in 
shown in (c). The outcome of KW6002 treatment upon LTP is in (d) with representative recordings of the 
fEPSPs obtained for CTR, MS and MS+KW6002 animals, prior to LTP induction and one hour after LTP. 
Bar graphs are obtained by making the average of the last 5 timepoints of each experiment. Results are 
the mean ±SEM of 3 (a) or 4-7 experiments (*):P<0.05, comparing to CTR. (e) Administration of KW6002 
reverses dendritic atrophy induced by MS in CA1 pyramidal neurons.  Upper panel depicts 
representative schematics of 3D reconstructions of CTR, MS, CTR KW and MS KW CA1 neurons.  
(*):P<0.05, comparing to CTR, (#):P < 0.05, comparing to MS, calculated using a 1way ANOVA  followed 
by a Bonferroni's Multiple Comparison Test. 
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Oral administration of a selective A2A receptor antagonist reverts the stress 

induced anxious behaviour and learning-deficits. 

We then evaluate the extent to which A2AR are involved in the stress induced behaviour 

alterations, by the administration of the A2AR selective antagonist, KW6002, to adult 

MS animals.  

Anxious behaviour and hippocampal dependent memory were evaluated by the elevated 

plus maze (EPM) and the Morris Water Maze (MWM) paradigms, respectively. In the 

EPM, MS animals presented a higher anxious related behaviour (spent less time in the 

open arms, 11.4 ±2.0% versus 28.9± 5.3% in CTR, n=8-11, P<0.05), validating the MS 

stress induction. The hyperanxious behaviour in MS animals, was reverted upon 

treatment with KW6002 (time in open arms: 27.3±4.4%, n=8, P>0.05 versus CTR; 

Figure 2.3 a). KW6002 treatment by itself had no effect in the anxious behaviour of 

CTR animals (26.5±3%, n=7, P>0.05), neither had an impact in locomotor performance 

in EPM (Figure 2.3 b). On the MWM, the learning ability (Figure 2.3 c) of MS animals 

was impaired, so that at day 3 MS performed worse than CTR animals (F(3,132)=8.56, 

n=6, P<0.0001). These deficits were reverted by blocking A2AR in vivo (n=10, P<0.05). 

The retention ability of MS animals was also compromised, since in the probe test MS 

animals spent less time in the platform quadrant than CTR (36.8±3.9%, n=8; P<0.05 

versus 51.3±5.0%, n=7; Figure 2.3 d). When treated with the A2AR antagonist the 

retention ability of MS animals was restored (52.8±4.2% of the time in the platform 

quadrant; n=8, P>0.05; Figure 2.3 d). KW6002 by itself had no effect in the 

performance of CTR animals.  

A2AR are highly abundant in striatum exerting important effects in motor control 

(Janusz and Berman, 1992). To evaluate directly locomotor activity, the open field 

arena test was used. In accordance with data obtained in the EPM, neither MS nor the 

KW6002 treatment induced changes in the locomotor performance of the animals, since 
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Figure 2.3 Administration of KW6002 reverts the stress induced anxious behaviour and learning 
deficits.  
Anxious behaviour (a,b) and locomotor activity (e) were evaluated by the elevated-plus-maze-test and 
open-field, respectively. Hippocampal dependent memory performance was assessed by the Morris 
water maze test, in which acquisition (c) and retention (d) were evaluated. Results are the mean ±SEM 
of 6-9 animals; (*):P<0.05, comparing to CTR, (#):P<0.05 comparing to MS, calculated using 2way 
ANOVA repeated measures (a) or 1way ANOVA followed by a Bonferroni's Multiple Comparison Test.  
 
 
 

no alterations were observed in the mean speed on the open field arena (Figure 2.3e). 

 

 

  

 

Oral administration of a selective A2A receptor antagonist reestablishes stress-

induced modifications on synaptic markers. 

Given the positive effects of the in vivo KW6002 treatment in behaviour, in ex vivo 

synaptic plasticity and in neuronal morphology, we next explored the molecular 

changes that could underlie the observed therapeutic effects. The levels of A2AR and 

GR were measured in the hippocampus of CTR and MS animals treated with KW6002. 

Given the role of AMPA, GABAA and NMDA receptors in synaptic transmission and 

plasticity, AMPA-GluR1, GABAA-β2/3 and NMDAR2B subunits levels were also 

evaluated. AMPA-GluR1 levels in MS animals were significantly decreased comparing 

to CTR (0.81± 0.02, n=9, P<0.05; Figure 2.4 a). These values were reestablished by 
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Figure 2.4. Administration of KW6002 reverts the synaptic changes induced by MS.   
The effects of the treatment with KW6002 in the levels of GluR1 subunit of AMPA receptors (a), β2/3 
subunit of GABAA receptors (b), NMDAR2B (c), A2AR (d), and GR (e) were evaluated by Western 
blotting. Specific immunoreactivity normalized to that of α-tubulin. Results are the mean ± SEM of 4 
to 9 experiments; (*):P<0.05, comparing to CTR and (#):P<0.05, comparing to MS, calculated using a 
1way ANOVA  followed by a Bonferroni's Multiple Comparison Test. 
 
 

KW6002 (0.98 ± 0.03, n=4,P>0.05 versus CTR). GABAA-β2/3 levels decreased in MS 

animals (0.78± 0.02, n=8; P<0.05; Figure 2.4 b) and increased to 1.15 ± 0.06 of CTR 

(n=6, p<0.05) upon KW6002 treatment. The levels of the NMDAR2B subunit were not 

altered by MS nor by KW6002 treatment (n=5; Figure 2.4 c). Furthermore, the 

increased levels of A2AR observed in MS animals (1.49 ± 0.04 fold to CTR, n=9; 

p<0.05) were maintained in MS KW animals (1.56± 0.05 fold to CTR, n=5, P>0.05; 

Figure 2.4d). The KW6002 administration alone increased the levels of A2AR to 1.25± 

0.09 of CTR (n=5, P<0.01; Figure 2.4 d), as could be expected from a chronic 

administration of receptor antagonist. The GR levels (Figure 2.4 e) were not changed by 

KW6002 in CTR animals (n=7, P>0.05); however when KW6002 was administered to 

MS animals the levels of GR increased to values similar to CTR (1.033 ± 0.04, n=6, 

P>0.05) 
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Figure 2.5. The KW6002 administration reestablishes the corticosterone circadian oscillation. 
Corticosterone levels in the plasma measured at nadir and zenith. Results are mean of 6-9 
animals.(*):P<0.05, comparing to CTR, (#):P<0.05 comparing to MS, (φ):P<0.05, comparing to a.m 
values, calculated using a 1way ANOVA  followed by a Bonferroni's Multiple Comparison Test.  
 
 
 

The A2AR antagonist reestablishes the corticosterone circadian oscillation. 

Since the blockade of A2AR reestablishes the GR levels in the hippocampus, we 

hypothesized that this could involve a regulation of the HPA-axis function, which is 

compromised due to the early life stress (Aisa et al., 2007). HPA-axis activity was 

evaluated by measuring circadian changes in plasmatic corticosterone levels (Figure 

2.5). 

CTR animals had the expected circadian oscillation, with corticosterone levels 

significantly elevated at 8 p.m comparing to those measured at 8 a.m.  MS animals 

present significantly higher corticosterone levels already at 8 am (234 ± 13 ng/mL 

versus 142±27 ng/mL; P<0.05, n=9) comparing to CTR at the same time of the day, and 

the absence of a circadian oscillation. Animals treated with KW6002 had a restored 

circadian variation, with plasmatic corticosterone levels at 8 am similar to CTR (63±5 

ng/mL), (F(3;24)=9.04, P=0.0003). KW6002 alone did not affect corticosterone levels, 

neither at zenith nor at nadir. 
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Discussion 

The data now reported reveal that adenosine A2A receptor activation is directly involved 

in the stress deleterious effects in the brain. We show, for the first time, that the 

administration of a selective adenosine A2A receptor antagonist reverts the long-lasting 

consequences of stress on spatial memory, synaptic plasticity and neuronal morphology 

in the hippocampus. Moreover our data indicate that these effects are associated with 

the reestablishment of the HPA-axis activity. 

An imbalance in adenosine receptors has been observed in multiple conditions (Cunha, 

2005),  particularly with progressive aging (Cunha et al., 1995; Lopes et al., 1999b), 

which has consequences to their modulatory effects (Lopes et al., 1999a, b). In the aged 

rat brain, adenosine A1 receptor density is decreased (Meerlo et al., 2004), particularly 

in hippocampus and cortex (Cunha et al., 1995). However, A2A receptor levels are 

differently affected: they decrease in striatum, but in contrast there is an increase in 

their expression in cortical and hippocampal areas (Cunha et al., 1995). As we now 

show, the changes in adenosine receptor levels induced by MS, follow a close pattern to 

the one occurring in the aged brain, i.e., an increase in A2A and a decrease in A1 

receptor levels. The modifications observed are however restricted to the hippocampus, 

probably due to the changes in GR levels that are more profound in this brain area. 

Thus, as observed in aging(Lopes et al., 1999b; Pardon and Rattray, 2008), MS induces 

a decrease in GR levels, increasing the MR/GR ratio, an increase in plasma 

corticosterone levels and changes in adenosine receptor levels. Thereupon our data 

reinforce the hypothesis that stress is associated with an early aging in the hippocampal 

area (McEwen, 1999b; Miller and O'Callaghan, 2005). Different brain regions have a 

distinct vulnerability to stress due to the differential expression of GR and MR in the 

brain (Reul and de Kloet, 1985). In the hippocampus, corticosterone is able to trigger 

signaling pathways activated by both GR and MR due to their particular high affinity 

ratio for GR, which does not occur in other brain areas (Reul and de Kloet, 1985). This 

confers to the hippocampus a particular susceptibility to stress effects and consequent 

deficits. Additional region-specific effects were reported previously, such as stress-
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induced alterations in GABAA receptor levels and MAP kinase activity (Gruen et al., 

1995; Meller et al., 2003).  

We have observed a sustained increase in the plasmatic levels of corticosterone, a 

feature that is also shared with ageing (Mizoguchi et al., 2009). Such an increase is 

usually associated to a down-regulation in GR (Sapolsky et al., 1984; Sapolsky and 

Meaney, 1986; Sapolsky et al., 1985), as a way to limit their action. This is generally an 

isolated and reversible effect, reverted whenever the plasma levels of corticosterone 

return to baseline (Sapolsky et al., 1984). However, as we show, MS animals exhibit 

elevated plasma corticosterone levels throughout life and an associated sustained 

downregulation of GR in the hippocampus. These receptors regulate memory and 

synaptic plasticity (Joels, 2006; Sousa et al., 2008). Accordingly, we found that long-

term potentiation (LTP) is impaired in MS animals and this is accompanied by a poorer 

performance in a spatial memory task, the Morris water maze. The observed changes in 

synaptic plasticity can be related to the altered levels in GABAA and AMPA receptors, 

reported here. Others have described that MS induces a decrease in markers of synaptic 

plasticity, such as NCAM or synaptophysin (Aisa et al., 2009), as well as in the levels 

of NMDAR2B, AMPAGluR1 and GluR2 (Pickering et al., 2006) in the hippocampus. 

Changes now observed in glutamate receptor levels had, however, no impact upon basal 

synaptic transmission, possibly because they are accompanied by a decrease in GABAA 

receptors, which will result in a final compensatory balance in order to maintain 

homeostasis.  

The observed impairments in LTP were overcome by blocking adenosine A2A receptors. 

These receptors are known to have stimulatory effects on basal synaptic transmission in 

the hippocampus (Cunha et al., 1994a; Lopes et al., 1999b) by promoting glutamate 

release (Lopes et al., 2002), and were recently shown to potentiate LTP when 

exogenously activated (Dias et al., 2012). Accordingly, the acute treatment of slices 

with the A2A receptor antagonist, SCH58261, may instead cause a LTP drop, in 

particular under overexcitability conditions, such as ageing, in which LTP is enhanced 

(Costenla et al., 2011; Diogenes et al., 2011); due to an age-induced shift in A2A 
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receptor signaling (Lopes et al., 1999a, b). However, in chronic patho-physiological 

situations, in which LTP is decreased, SCH58261 is able to promote its restoration 

(Rebola et al., 2011a), in accordance with what we now report for stress-induced 

deficits. More importantly, the chronic administration of a selective A2A receptor 

antagonist, KW6002, for one month, clearly reestablished the MS-driven impairment in 

LTP, while not affecting LTP in CTR animals. This suggests that, rather than having a 

direct effect on glutamatergic transmission, A2A receptors may be instead modulating 

the GR-mediated effects. Indeed we have recent data showing the ability of A2A 

receptors to influence GR transcriptional activity and nuclear translocation (Batalha et 

al., 2011), suggesting that the chronic blockade of A2A receptor may decrease GR 

transcriptional activity and thereby the overall GR driven effects. 

Genetic deletion of A2A receptors affects anxiety and aggressive behaviour (Ledent et 

al., 1997), and this constituted the first evidence that A2A receptors could be implicated 

in stress. The subsequent report that A2A receptor antagonists applied prior and during a 

single episode of acute stress prevented synaptic loss (Cunha et al., 2006), suggested 

that A2A receptors overactivation could underlie the genesis of stress-induced changes. 

Nonetheless, the question whether this overactivation is a consequence of the stress 

paradigm or a triggering factor to the observed deficits has never been addressed 

before.  

We now explored the possibility that blocking the action of A2A receptors would restore 

pre-existing stress-associated impairments. The advantage of using KW6002 over other 

antagonists for A2A receptors is its enhanced bioavailability, permeability to the brain 

blood barrier, having a longer half-life and high affinity and selectivity towards A2A 

receptors (Yang et al., 2007). Additionally, KW6002 has undergone clinical trials for 

Parkinson’s and therefore its safety has been established (Hauser et al., 2003).  We now 

report that oral administration of KW6002, for one month, to adult animals previously 

subjected to MS, reestablishes impaired hippocampal dependent memory, synaptic 

plasticity and morphology, and reverts the anxious behaviour.  The learning ability of 

MS animals was restored by the treatment, as well as the retrieval, evaluated by the 
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time spent in the previous retained platform quadrant. This is associated with a 

reestablishment of the hippocampal CA1 induced-LTP. The insertion of AMPA 

receptors containing glutamate receptor one (GluR1) subunit is a constitutive part of 

LTP induction (Andrasfalvy et al., 2003) and is modulated by GR (Martin et al., 2009). 

We found that GluR1-subunit is decreased by maternal separation, which may explain 

the decreased LTP. Moreover, the LTP reestablishment is accompanied by a 

concomitant restoration of GluR1 levels upon KW6002 treatment. Accordingly, MS 

leads to a decrease in apical dendritic length, as described using other stress models 

(Bessa et al., 2009), but this structural effect is reverted by the blockade of A2A 

receptors. 

The HPA-axis maintains the physiological circadian oscillation of corticosterone levels, 

which reach their maximum at zenith (8 pm) and the minimum at nadir (8 am), for 

rodents (Allen and Kendall, 1967). The hippocampus is crucial in the negative feedback 

required to limit HPA-axis activation, particularly in stressful situations (McEwen, 

1999a, b). However this function can be compromised when glucocorticoid levels are 

persistently high as in chronic stress, aging or in psychopathologies (Pardon and 

Rattray, 2008). The observation that the A2A receptor antagonist was able to reestablish 

the decreased GR levels in the hippocampus lead us to test whether the observed effects 

were related to a modification of the HPA axis, by measuring the circadian levels of 

corticosterone in plasma. MS animals present not only higher plasmatic levels of 

corticosterone, but also an impaired circadian fluctuation. Corticosterone levels were 

chronically higher in MS animals and did not decrease along the night. This is probably 

associated to an impaired inhibition of the HPA-axis, which is consequence of a 

decrease in hippocampal GR levels. Interestingly, by blocking A2A receptors, the basal 

levels of corticosterone were reestablished, so as the circadian rhythm and the GR 

levels in the hippocampus. Altogether these data suggest that A2A receptors have a role 

in the regulation of the HPA-axis, either directly or by regulating hippocampal function. 

This effect may be due to interference with the release of corticotrophin releasing 

hormone (CRH), adrenocorticotrophin (ACTH), which is known to be affected by 
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adenosine (Anand-Srivastava et al., 1989), or by modulating glucocorticoids. The 

beneficial effect resulting from A2A receptor antagonism may derive instead from a 

reestablishment of hippocampal excitability, which in turn would restore the inhibitory 

tonus onto the HPA-axis.  Overall the blockade of adenosine A2A receptors by KW6002 

has a beneficial effect in overcoming the hippocampal related deficits induced by MS. 

Interestingly, this effect of KW6002 in vivo does not result from a decrease in A2AR 

levels which remain high in MS animals under KW6002. Indeed it would be unlikely 

that KW6002 would cause a decrease in A2AR levels since prolonged blockade of 

receptors usually leads to either no change or upregulation of receptor levels due to 

compensatory mechanisms following restraining from receptor activation by the 

endogenous ligand. Remarkably, the findings that blockade of A2AR overcomes the 

synaptic and memory deficits associated to MS, strongly suggests that A2A receptors 

overactivation is the cause rather than the consequence of the herein reported changes 

associated with chronic stress.  

In conclusion, our results show, for the first time, that the changes induced by stress are 

reverted by the in vivo blockade of A2A receptors. Moreover they imply a role of A2AR 

in the HPA-axis regulation revealing that its blockade is efficient in reestablishing the 

compromised HPA-axis, which has clinical implications for the treatment of 

psychopathologies. This provides a potential alternative to the established therapies 

against stress related pathologies, by targeting a modulatory system rather than 

interfering directly with neurotransmitters, and thereby limiting the associated side 

effects. 

 

  



Reversion of stress effects by A2AR blockade 

Interaction between glucocorticoid and adenosine A2A receptors  53 

Figure S2.1: Schematic timeline of the MS protocol and KW6002 treatment. 

 

 

Figure S2.2: Sholl analysis data of apical (a) and basal (b) dendrites of CA1 neurons. MS induces a 
significant change (P < 0.001) in the structure of apical dendrites which is reversed by KW6002. (*):P < 
0.05, comparing to CTR, (#):P < 0.05, comparing to MS, calculated using a 1way ANOVA  followed by a 
Bonferroni's Multiple Comparison Test. 
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Table S2.1. Estimates of volumes of hippocampal formation subregions (in mm3). No significant 
differences were found in any of the assessed subregions. All data presented as Mean ± SEM. CA1 LMol – 
CA1 molecular layer; CA1 Or – CA1 stratum oriens; CA1 Pyr – CA1 stratum pyramidalis; CA1 Rad – 
CA1 stratum radialis; CA3 Or – CA3 stratum oriens; CA3 Pyr – CA3 stratum pyramidalis; CA3 Rad – 
CA3 stratum radialis; CA3 – stratum lucidum; DG Gr – dentate gyrus granular cell layer; DG Mol – 
dentate gyrus molecular layer; DG Pol – dentate gyrus polymorphic layer 

 

 CTR MS CTR KW MS KW F Sig. 

CA1 LMol 4,691 ± 0,70 4,619 ± 0,54 4,180 ± 0,06 3,888 ± 0,15 1,378 0,297 

CA1 Or 3,761 ± 0,55 2,945 ± 0,19 2,955 ± 0,30 3,008 ± 0,12 1,403 0,29 

CA1 Pyr 1,945 ± 0,21 2,089 ± 0,26 2,147 ± 0,24 2,213 ± 0,09 0,291 0,831 

CA1 Rad 6,662 ± 0,61 6,556 ± 0,61 6,413 ± 0,45 6,431 ± 0,22 0,055 0,982 

CA3 Or 4,185 ± 0,07 3,494 ± 0,10 3,366 ± 0,03 3,484 ± 0,02 2,881 0,08 

CA 3 Pyr 2,243 ± 0,02 2,247 ± 0,07 2,159 ± 0,04 2,322 ± 0,03 0,22 0,881 

CA3 Rad 2,668 ± 0,15 2,605 ± 0,34 2,103 ± 0,23 2,675 ± 0,05 0,886 0,476 

CA3 SLu 1,074 ± 0,20 0,954 ± 0,31 0,918 ± 0,24 0,838 ± 0,03 1,119 0,38 

DG Gr 1,637 ± 0,08 1,865 ± 0,26 1,840 ± 0,10 1,830 ± 0,07 0,463 0,713 

DG Mol 7,943 ± 0,10 7,124 ± 0,23 6,788 ± 0,12 6,601 ± 0,04 1,025 0,416 

DG Pol 1,882 ± 0,25 1,877 ± 0,48 1,861 ± 0,21 1,656 ± 0,08 0,267 0,848 
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Chapter 3:Aging-like hippocampal deficits 

driven by overexpression of adenosine A2A receptors 

in forebrain neurons. 
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Abstract 

Ageing is associated with cognitive decline both in humans and animals. Among brain 

structures, the hippocampus is particularly vulnerable to senescence and degeneration. 

Adenosine A2A Receptors (A2AR) are constitutively activated G-protein coupled-

receptors, and the main brain targets of the homeostatic neuromodulator adenosine. Our 

team and others have found recurrent cortical and hippocampal upsurge of A2AR 

expression/function associated to cognitive deficits and alterations in their signaling 

properties. We recently reported in an early-aging model, with increased A2AR 

hippocampal expression, that A2AR blockade could restore synaptic and cognitive 

dysfunction. However the question whether A2AR overexpression is also present in the 

human aged brain and if it is the trigger rather than the consequence of cognitive 

dysfunction remains to be addressed. We have now generated transgenic rats 

overexpressing the human A2AR under the control of the calcium calmodulin dependent 

Protein Kinase II (CamKII) promoter. We describe for the first time that a forebrain 

neuronal selective increase in A2AR drives aging-like hippocampal deficits, such as 

impairments in memory tasks and synaptic plasticity, and impacts on adenosine 

receptor signaling. More importantly, human brain from aged and demented subjects 

presents a clear A2AR overexpression compared to young subjects. Finally we show that 

changes in A2AR signaling can be the trigger for the observed hippocampal deficits and 

that upon A2AR blockade normal A2AR signaling is reestablished. 

 

  



 

Interaction between glucocorticoid and adenosine A2A receptors  59 

Introduction 

Ageing is associated with cognitive decline both in humans and animals. Among brain 

structures, the hippocampus appears to be particularly vulnerable to senescence and 

degeneration. Importantly, ageing is the main risk factor for Alzheimer’s disease (AD) 

(Reitz et al., 2011), which targets primarily the temporal lobe and hippocampal 

formation. Age and AD-related cognitive impairments are accompanied by structural 

and functional alterations in the hippocampus, that directly affect neural plasticity 

(Burke and Barnes, 2006), leading to synaptic dysfunctions and, subsequently, memory 

deficits (Diogenes et al., 2011). 

A2A Receptors (A2AR) are one of the main brain targets of the homeostatic 

neuromodulator adenosine (Fredholm et al., 2007). A2AR are constitutively activated G-

protein coupled-receptors, preferentially expressed by the striatopallidal medium spiny 

striatal neurons (Blum et al., 2003; Schiffmann and Vanderhaeghen, 1993b). They 

exhibit however a very distinct pattern of expression in the hippocampus and cortex 

where their expression is very low in physiological conditions (Cunha et al., 1995). Our 

team and others have found compelling evidence of cortical and hippocampal upsurge 

of A2AR expression/function associated to cognitive deficits. Specifically, in the 

hippocampus of aged rats, A2AR expression is nearly two fold than of young ones 

(Cunha et al., 1995; Lopes et al., 1999b). More importantly, the A2AR-dependent 

activation of glutamate release becomes more pronounced as ageing progresses and 

shifts from a protein kinase C-mediated signaling to a cAMP-dependent effect (Lopes 

et al., 1999a; Rebola et al., 2005). This is accompanied by clear behavioural deficits in 

hippocampal-dependent tasks, such as spatial memory in rats (Diogenes et al., 2011; 

Sousa et al., 2014). Interestingly, other detrimental conditions associated to cognitive 

impairments, such as hypoxia, diabetes, stress or epilepsy share similar A2AR 

overactivation (Batalha et al., 2013; Lopes et al., 1999a; Lopes et al., 2011). Recently, 

we described impairments in long-term potentiation (LTP) and hippocampal dependent 

tasks in an early-aging model, in association with increased A2AR hippocampal 

expression (Batalha et al., 2013). Strikingly, in adults, we were able to restore synaptic 
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and cognitive dysfunction by blocking A2AR with the selective antagonist KW6002 

(Batalha et al., 2013) orally administered for one month. This supports an instrumental 

role of A2AR dysregulation in the genesis of synaptic dysfunction underlying cognitive 

impairments. However, the mechanism involved or whether A2AR upsurge is sufficient 

to accelerate hippocampal aging is yet unknown. 

We have now generated transgenic rats expressing the human A2AR driven by the 

CaMKII promoter. We describe for the first time that a forebrain neuronal selective 

increase in A2AR impacts on receptor signaling and drives aging-like hippocampal 

deficits, such as impairments in memory task and synaptic plasticity deficits. More 

importantly, we probed human brain from aged and demented subjects and found a 

clear A2AR overexpression compared to young subjects. Furthermore, we found that the 

rescue of synaptic and memory impairments achieved by blocking A2AR activation is 

due to the reestablishment of adenosine neuromodulation and downstream A2AR 

signaling in the hippocampus. 
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Material and methods 

Human samples: Human AD samples were provided by Valerie Buée (INSERM U735 

“Alzheimer & Tauopathies”) Jean-Pierre Aubert (Research Centre Univ. Lille-Nord de 

France, France) or collected by Beatriz S. da Silva (National Institute of Legal 

Medicine and Forensic Sciences, Coimbra, Portugal) and prepared by Paula M. Canas 

(CNC-Center for Neurosciences and Cell Biology, Univ. Coimbra, Coimbra Portugal). 

Animals: Animal procedures were performed in accordance with the European 

Community guidelines (Directive 2010/63/EU), Portuguese law on animal care 

(1005/92), and approved by the Instituto de Medicina Molecular Internal Committee 

and the Portuguese Animal Ethics Committee (Direcção Geral de Veterinária). 

Environmental conditions were kept constant: food and water ad lib, 21±0.5°C, 

60±10% relative humidity, 12 h light/dark cycles. Male rats were killed by decapitation 

after anesthesia under halothane atmosphere.  

Maternal separation and KW6002 treatment: Maternal separation protocol and 

treatment was performed as described before, (Batalha et al., 2013). Briefly  Wistar 

dams and their litters were assigned either to control (CTR – non-separated) or to  

maternal separated (MS) groups at post natal day (PND) 2 all the litters were collected 

together, gender assessed and the pups were randomly distributed to foster dams 

(gender proportion maintained). MS pups were removed from their cages as a group 

from PND 2 to 14, for 180 minutes, daily, at 9 am, and placed in an isolation cage in an 

adjacent room kept at 32.0±0.5ºC. At the end of the separation period, pups were 

returned to their home-cage and rolled in the soiled home cage bedding before reuniting 

with the mother. CTR pups were not handled and were maintained in their home-cages 

until weaning. At day 21 the pup’s gender was confirmed, they were weaned and 

housed in groups of 5-8 animals per cage. At 4-6 weeks one started the oral 

administration of KW6002 (istradefylline), a selective adenosine A2A receptor 

antagonist (Yang et al., 2007) at 3mg/Kg/day. Animals were divided in 4 groups: CTR 

or MS, drinking vehicle (0.025% methylcellulose) and CTR KW or MS KW drinking 

KW6002 (3mg/kg/day, 0.025% methylcellulose).  



A2AR as the trigger for hippocampal dysfunction 

62 Interaction between glucocorticoid and adenosine A2A receptors 

Generation and maintenance of transgenic animals: Transgenic rats with an 

overexpression of adenosine A2A receptors (A2AR) under the control of the CaMKII 

promotor, tg(CaMKII-hA2AR), were generated by microinjection of a linearized DNA 

construct into the male pronucleus of Sprague–Dawley rat zygotes with established 

methods (Popova et al., 2002). The construct contained a full-length human A2A cDNA 

cloned into an expression vector with the 8.5 kb mouse CaMKIIα promoter (Mayford et 

al., 1996) and a polyadenylation cassette of bovine growth hormone (see Fig. 3.1A). 

Sprague Dawley wild type (WT) rats were used as controls. Genotyping: Transgenic 

rats were identified by PCR (30 cycles, 58 °C annealing temperature) of their genomic 

DNA isolated from ear biopsies by the use of the following transgene-specific primers: 

CaMKII-hA2A and rat Act-B  primers as an internal control (Invitrogen, UK, see Table 

3.1 page 70). 

In situ hybridization: The in situ hybridization technique was adapted from previously 

described methods (Schiffmann and Vanderhaeghen, 1993a). The sections mounted on 

RNAse free poly-L-lysine-coated slides were fixed in freshly prepared 4% 

paraformaldehyde solution for 30 min and rinsed in 0.1 M phosphate buffered saline 

(PBS:130 mM NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4). All sections were dehydrated 

and dipped for 3 min in chloroform. After air drying, the sections were incubated 

overnight at 42°C with 0.35x106 cpm per section of 35S-labelled probes diluted in 

hybridization buffer, which consisted of 50% formamide, 4xSSC (1xSSC: 0.15 M 

NaCl, 0.015 M sodium citrate, pH 7.4), 1 x Denhardt’s solution (0.02% 

polyvinylpyrrolidone, 0.02% bovine serum albumin-BSA, 0.02% Ficoll, 1% sarcosyl, 

0.02 M sodium phosphate at pH 7.4, 10% dextran sulfate, 500 μg/mL yeast tRNA, 100 

μg /mL salmon sperm DNA, and 60 mM dithiothreitol). After hybridization, the 

sections were rinsed for 4x15 min in 1xSSC at 55°C, dehydrated and covered with 

Hyperfilm-βmax film (Amersham, Belgium) for 2 or 3 weeks. The oligonucleotide 

probes were synthesized on an Applied Biosystems 381A DNA synthesizer or 

Eurogentec (Belgium) with a GC to AT ratio between 45 and 65%. The human A2AR 

oligonucleotide probe (CAGCCCTGGGAGTGGTTCTTGCCCTCCTTTGGCTGACC-
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GCA) is complementary to nucleotides 123-166 in a partial human cDNA sequence 

(Libert et al., 1989) and has been previously used on human brain sections (Schiffmann 

et al., 1991). The rat A2AR probe (CCGCTCCCCTGGCAGGGGCTGGCTCTCCATC-

TGCTTCAGCTG) is complementary to nucleotides 604–645 of the rat cDNA sequence 

(Fink et al., 1992). Oligonucleotides were labelled with α-35S dATP (DuPont-NEN, 

Belgium) at their 3’ end by terminal DNA deoxynucleotidylexotransferase (Gibco, 

Belgium) and purified with a G50 column (Pharmacia, Belgium) according to the 

manufacturer’s instructions.  

RNA extraction and quantitative real-time PCR analysis (RT-qPCR): Total RNA was 

extracted and purified using the RNeasy Lipid Tissue Mini Kit (Qiagen, Maryland, 

USA). RNA quality was assessed by NanoDrop 2000 (Thermo Scientific) analysis 

(A260/A280 ≈ 2; 260/235 >1.8). Total RNA (2 µg) was reverse-transcribed using 

random primers and SuperScript™ First-Strand Synthesis System for RT-PCR 

(Invitrogen, USA). RT-qPCR analysis was performed on a Corbett Rotor-gene 6000 

apparatus (Qiagen, Germany) using Power SYBR Green PCR Master Mix (Applied 

Biosystems, UK), 0.2 µM of each primer and 1/20 dilutions of total cDNA (final 

concentration 0.4 ng/µl). The thermal cycler conditions were 10 min at 95°C, 40 cycles 

of a two-step PCR, 95°C for 15 s followed by 60°C for 25 s with a final thermal ramp 

from 72 to 95ºC. Primer efficiencies (E=1±0.02) were obtained from standard curves of 

serial dilutions (slope and R2 respectively around -3.3 and 0.99). Sequences of primers 

used (all from Invitrogen, UK, HPLC purified) are listed in the Table 3.1 below. 

Reference genes were PPIA (cyclophilin A) and β-actin for human tissues and PPIA, 

Rpl13A (ribosomal protein L13A) and Pgk1 (phosphoglycerate kinase 1) for rat tissues. 

Amplifications were carried out in triplicate in two independent runs, and according to 

the MIQE guidelines (Bustin et al., 2009). The relative expression of target genes was 

determined by the comparative CT method (Schmittgen and Livak, 2008).  
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Table 3.1: Primers used for genotyping and qPCR. 

Primer Target Gene Organism Forward Primer Reverse Primer Amplicon 
Size 

CypA PPIA peptidylprolyl isomerase A (cyclophilin A) rat, human TATCTGCACTGCCAAGACTGAGTG CTTCTTGCTGGTCTTGCCATTCC 126bp 
Rpl13A Ribosomal protein L13A rat GGATCCCTCCACCCTATGACA CTGGTACTTCCACCCGACCTC 130bp 

Pgk1 Phosphoglycerate kinase 1 rat ATGCAAAGACTGGCCAAGCTAC AGCCACAGCCTCAGCATATTTC 103bp 
hACTB Human Actin-β human GGACTTCGAGCAAGAGATGG AGCACTGTGTTGGCGTACAG 233bp 
A2AH  Human Adenosine A2A Receptor  human AACCTGCAGAACGTCAC GTCACCAAGCCATTGTACCG 245bp 

A1 Adenosine A1 Receptor  rat ACCTCCGAGTCAAGATCCCT TTGGCTCTCCAGTCTTGCTC 160bp 
Act-B Actin-β rat AGCCATGTACGTAGCCAT CTCTCAGCTGTGGTGGTGAA 228bp 

CaMKII
-hA2A 

calmodulin-dependent protein kinase II promoter 
and human Adenosine Receptor A2A transgene GACTAAGTTTGTTCGCATCCC GTGACACCACAAAGTAGTTGG 450bp 

Behavioural assessments: WT and transgenic animals with 10-14 weeks were first 

handled for 5 days before testing in the behavior assays. For the Morris water maze 

(MWM) (Morris et al., 1982), rats were given spatial acquisition training consisting of 

four trials/day for four consecutive days, as performed before (Batalha et al., 2013); on 

the fifth day a probe test was given in which the platform was removed and animals 

were allowed to swim freely for 60 s while recording the percentage of time spent on 

each quadrant; the latency to find the platform during acquisition and the percentage of 

time in the platform quadrant during the probe test were used to evaluate hippocampal-

dependent memory. The Y-maze was performed in a two-trial recognition test in a Y-

shaped maze with 3 arms (each with 35 cm length x 10 cm width x 20 cm height), 

angled at 120º; on the first trial (learning trial), the animal explored the maze for 10 min 

with only two arms opened (start and other arm); after 1 h, the animal is exposed to the 

maze for 5 min (test trial) with the novel arm available, the preference for the novel arm 

is considered a measure of short-term reference memory. The number of transitions was 

used to evaluate motor performance. The maze was cleaned with a 70% ethanol 

solution between each animal. Rat tracings were continuously monitored by an 

automated tracking system (Smart 2.5, PanLab, Barcelona) in both learning tasks.  

Electrophysiological recordings: After decapitation the brain was rapidly removed and 

the hippocampi were dissected free in ice-cold Krebs solution. 400 µM slices were 

obtained with a McIIwen tissue shopper and field excitatory postsynaptic potentials 

(fEPSPs) were recorded as previously in stratum radiatum of the CA1 area. For drug 

effects, CGS58261 (30nM), DPCPX (100nM), CPA (30nM), H89 (1µM) or 

GF109203X (1µM) were added to de perfusion after obtaining a stable 10 minutes 
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baseline. Long term potentiation (LTP, 100 Hz, 1s, 100 pulses induced at 0.5mV/ms) 

was recorded as previously (Batalha et al., 2013) . Recordings were performed at 

30.5ºC, 3mL/min. 

Samples preparation for Western blotting: Tissue was homogenized by sonication 

using RIPA buffer (50mM Tris, 1mM EDTA, 150mM NaCl, 0.1% SDS, 1% NP40, pH 

8). The protein concentration was determined using a BioRad DC Protein assay Kit 

(based on Lowry, (1951) due to the high levels of detergents present in the sample).  

Western blotting: The appropriate volume of each sample was diluted in water and 

sample buffer (350 mM Tris pH 6.8, 30% glycerol, 10% SDS, 600 mM DTT and 

0.012% Bromophenol blue). The samples were denatured at 70°C for 20 minutes. 

Based on the protocol of Towbin et al. (Towbin et al., 1979). Samples and molecular 

weight markers were separated by SDS-PAGE (10% for resolving and a 5% for 

stacking gels) in denaturing conditions and electro-transferred to PVDF membranes 

(Millipore). Membranes were blocked with 5% non-fat dry milk for 1 hour, washed 

with TBS-T 0.1% (Tris Buffer Saline with 0.1% Tween-20 solution, 200 nM Tris, 1.5 

M NaCl) and incubated with primary antibody (diluted in TBS-T, 3% Bovine Serum 

Albumin and 0.1% NaN3) overnight at 4°C. After washing with TBS-T for 30 minutes, 

the membranes were incubated with horseradish peroxidise (HRP, EC 1.11.1.7) 

conjugated secondary antibody (in 5% non-fat dry milk) for 1 hour at room 

temperature. Primary antibodies were mouse anti-A2AR (1:2000, Upstate/Millipore - 05-

717, Darmstadt, Germany), rabbit anti α-Tubulin specific (1:2000, abcam, ab4074) and  

rabbit anti-pan-cadherin (1:20000, abcam ab6529, UK). Secondary antibodies were 

goat anti-rabbit and anti-mouse (Santa Cruz Biotechnology, Heidelberg, Germany). 

After 40 minutes of washing with TBS-T, chemoluminescent detection was performed 

with ECL  western blotting detection reagent (GE Healthcare) using X-Ray films 

(Fujifilm). Optical density was determined with Image-J software and normalized to the 

respective pan-chaderin band density. 
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Drugs: A2AR selective antagonist, 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-

e][1,2,4]triazolo[1,5-c]¬pyrimi¬din-5-amine (SCH58261), A2AR selective agonist 4-[2-

[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-

yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680), A1 selective 

agonist N6-cyclopentyladenosine (CPA), A1R selective antagonist 8-Cyclopentyl-1,3-

dipropylxanthine (DPCPX) and PKC inhibitor 2-[1-(3-Dimethylaminopropyl)indol-3-

yl]-3-(indol-3-yl) maleimide (GF 109203X) were purchased from Tocris, Bristol, UK. 

PKA inhibitor N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 

dihydrochloride (H89) was purchased from Sigma Aldrich, Spain. These drugs were 

diluted in the assay solution from 5 mM or 1mM stock aliquots made in DMSO stored 

at -20ºC. A2AR selective antagonist, (E)-8-[2-(3,4-dimethoxyphenyl)vinyl]-1,3-diethyl-

7-methyl-3,7-dihydropurine-2,6-dione (KW6002, istradefylline) was synthesized 

according to a published procedure (Hockemeyer et al., 2004). The purity of the 

product was determined by HPLC analysis coupled to electrospray ionisation mass 

spectrometry and was greater than 98%. HRP-coupled secondary antibodies were from 

Santa Cruz Biotechnology. All other reagents used were of the highest purity available 

either from Merck, Germany or Sigma Aldrich, Spain.  

Statistics: Values presented are mean ± SEM of n independent experiments. In 

statistical analysis for every two comparisons a Student T-test was used while for three 

or more conditions, a one way ANOVA test followed by a Bonferroni's Multiple 

Comparison post hoc test was used. For the analysis of the Morris water maze 

acquisition statistical differences were evaluated by using two-way ANOVA test while 

for the probe test and for the Y maze a one way ANOVA test followed by a 

Bonferroni's Multiple Comparison post hoc test was used within groups. Values of 

p<0.05 were considered as statistically significant. 
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Figure 3.1: Tg(CAMKII-hA2AR) rats overexpress hA2AR mainly in the forebrain. 
A) Construct used to generate tg(CaMKII-hA2AR) rats. B) These animals present an overexpression of 
A2AR in the forebrain visible by in situ hybridization C) confirmed by qPCR. The endogenous (right axis; 
rA2AR mRNA) levels were not modified in the hippocampus. D) A2AR protein levels increase from 2 
weeks old onwards in the hippocampus, but E) no changes were detected in Adenosine A1R mRNA 
levels at 12-16 weeks old. Results were analyzed using an unpaired Student t-test for each brain area or 
gene, *P<0.05 compared to CTR.  

 

 

Results 

Hippocampal spatial memory deficits induced by neuronal increase in A2AR  

To test whether A2AR upsurge by itself is able to induce hippocampal deficits we 

generated animals that present a neuronal selective overexpression of human A2AR 

under the control of the CaMKII promoter (Figure 3.1 A - tg(CaMKII-hA2AR). 

Overexpression is more evident in the forebrain areas (Figure 3.1 B and C), mainly in 

the hippocampus and cortex, though we also detected increased A2AR mRNA levels in 

other areas (Figure 3.1 C). These animals have the great advantage of overexpressing 

A2AR from 2 weeks-old onwards. This is visible by the increased A2AR 

immunoreactivity along age in the hippocampal area (Figure 3.1 D). No changes in 

hippocampal adenosine A1 receptor (A1R) levels were observed upon overexpression of 

A2AR (Figure 3.1 E).   
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We then evaluated hippocampal dependent spatial memory using the Morris water 

maze (MWM) test. Transgenic animals presented a slower learning during acquisition 

(Figure 3.2 A) and lack of preference by the target quadrant during probe test (Figure 

3.2 B). Accordingly, when tested for short term working memory, using the Y-maze 

test, tg(CaMKII-hA2AR) animals performed worse than WT, revealing no preference 

for the novel arm (Figure 3.2 D). No changes were observed at a locomotor level that 

could compromise the tests either in the swimming speed (Figure 3.2 C) or in the total 

number of transitions (Figure and 3.2 E).  

 

Changes in synaptic plasticity induced by neuronal increase in A2AR  

To further explore the consequences of A2AR overexpression for hippocampal function 

we then evaluated long-term potentiation (LTP), a form of synaptic plasticity that has 

been associated to different forms of learning (Lynch, 2004). Strikingly, A2AR 

overexpressing animals displayed enhanced LTP when compared with WT animals 

(Figures 3.2 F-H). To further confirm that this was dependent on A2AR overactivation 

LTP was induced in the presence of a selective antagonist for A2AR, SCH 58261 (50 

nM). This blockade of A2AR reverted the LTP back to WT-like levels (Figures 3.2 F-H).  

  



 

Interaction between glucocorticoid and adenosine A2A receptors  69 

Figure 3.2: Overexpression of A2AR induces hippocampal deficits.  
In the morris water maze Tg(CaMKII-hA2AR) animals present: A) a slower learning performance to find 
the hidden platform (open squares) than WT (closed circles), results analyzed using a TWO-way anova 
(n=6/8, F(1, 44)=4.66,* P=0.036); B) no preference for the plataform quadrant during probe test (n=7, 
P>0.05) while WT clearly prefer the Q quadrant (n=5, P<0.05 comparing all quadrants) results analyzed 
using a One-way ANOVA followed by a Bonferroni’s multiple comparison post hoc test within groups; 
and C) no changes in swimming speed during probe test, results analyzed using a unpaired Student t-
test (n=5/7 P>0.05). In the Y maze test D) Tg(CaMKII-hA2AR) animals present no preference by the novel 
arm (n=7, P>0.05 comparing to the other arm) while WT animals prefer the novel arm (n=6, P<0.05 
comparing to the other arm). Results were analyzed using a One-way ANOVA followed by a Bonferroni’s 
multiple comparison post hoc test within groups and E) no changes in the total number of entries were 
observed, results analyzed using unpaired Student t-test (n=6/7, P<0.05). Long term potentiation (LTP) 
was induced by High frequency stimulation (HFS: 100Hz, 1s) and used to evaluate synaptic plasticity in 
hippocampal rat slices. Tg(CaMKII-hA2AR) animals (n=4) present a higher increase in fEPSP after HFS 
than WT (n=7) an effect that was prevented by superfusion of the A2AR antagonist SCH 58261 (n=4). F) 
Raw data of HFS, G) quantification of the magnitude of changes of the fEPSP in the last 10 minutes of 
LTP and H) representative tracings prior and in the last 10 minutes of LTP,  results were analyzed using a 
one-way ANOVA followed by a Bonferroni’s multiple comparison post hoc test. *P<0.05 comparing to 
WT and #P<0.05 comparing to Tg(CaMKII-hA2AR) . 
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Figure 3.3: Increased levels of A2A receptors in aged and AD human brain.  
A) Representative image of the western blot for A2AR in human prefrontal cortex and the internal 
control Pan-cadherin. B) A2AR immunoreactivity in young, aged and AD human cortex (n=2/3), results 
were analyzed using a one-way ANOVA followed by a Bonferroni’s multiple comparison post hoc test, 
*P<0.05 compared to young subjects. C) Increase in A2AR mRNA in AD human brain when compared 
with age-matched control subjects (n=3), results were analyzed using an unpaired Student t-test 
#P<0.05 compared to age-matched subjects. 

 

 

Increased levels of A2AR in human aged and Alzheimer’s disease brain 

Our findings suggest that upregulation of A2AR triggers neuronal dysfunction.  We 

tested whether this upsurge is detectable in human brain. A2AR immunoreactivity was 

measured in young (20-40 years old), aged (50-60 years old) and AD (50-60 years old, 

Braak stages 5-6) human cortex. Aged brains have a clear upregulation of A2AR levels, 

that was further enhanced in AD brains (Figure 3.3 A and B). We also confirmed this 

increase by comparing A2AR mRNA levels from AD to aged-matched healthy brains. 

(Figure 3.3C) 
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Neuronal increase in A2AR induces a PKC-PKA shift in signaling 

Associated with ageing and with an upregulation of A2AR it was observed a shift in 

A2AR signaling pathways from PKC to PKA activation (Lopes et al., 1999a). We 

further explored the A2AR signaling and efficiency associated to the observed 

hippocampal dysfunction to evaluate if it followed an age like pattern. The effect of 

CGS 21680, a selective A2AR agonist on basal synaptic transmission was much higher 

in transgenic than in WT animals (Figure 3.4 A and B). This effect was abolished in the 

presence of H89, a PKA blocker, but not by GF 109203x, a PKC blocker (Figure 3.4 

C). To evaluate if A2AR effect is mediated by A2AR alone or requires A1R activation, we 

activated A2AR while blocking A1R with a selective antagonist, DPCPX. A1R blockade 

did not prevent A2AR effect on basal synaptic transmission (Figure 3.4 D). Finally we 

explored if the A2AR crosstalk with A1R, shown to disappear in normal ageing (Lopes et 

al., 1999a; Rebola et al., 2005), is lost in the rats that overexpress A2AR. While in WT 

animals A1R activation by CPA causes a strong inhibition of synaptic transmission that 

is attenuated when A2AR are simultaneously activated with CGS 21680; in transgenic 

animals, the A2AR activation did not modify A1R mediated effects (Figure 3.4 E and F). 
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Figure 3.4: Overexpression of A2AR induces age like modification in adenosine neuromodulation.  
A) The A2AR selective agonist CGS58261, 30nM, has an effect on basal fEPSP slope, B) for row data, 
results were analyzed using a unpaired Student t-test (n=7/4,*P<0.05 comparing to CTR). C)The effect 
of CGS58261, 30nM is blocked by H89 (1µM), a PKA antagonist, but not GF (1µM) a PKC antagonist, 
results were analyzed using One-way ANOVA followed by a Bonferroni’s multiple comparison post hoc 
test (n=3/6, #P<0.05 comparing with Tg(CaMKII-hA2AR). D)The effect of A2AR activation is the same in 
the presence or absence of the A1 selective antagonist DPCPX (100nM) an A1R selective antagonist 
(n=3/4, P>0.05 using a unpaired Student t-test analysis). E) The effect of CGS58261 upon CPA, 30nM, 
on fEPSP is lost in Tg(CaMKII-hA2AR) animals, results were analyzed using a paired Student t-test 
comparing to CPA alone (n=4/7, *P<0.01 in WT animals comparing to CPA alone). F) Representative 
row data of one experiment for WT (left panel) and Tg(CaMKII-hA2AR) (right panel). 
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Figure 3.5: Stress induces age like modifications in adenosine neuromodulation that are reverted 
by chronic in vivo treatment with KW6002 a selective A2AR antagonist.  
A) The increased effect of CGS58261 30nM, a selective A2AR agonist, on fEPSP observed in MS is 
reverted in MS KW animals, results were analyzed using a one-way ANOVA followed by a 
Bonferroni’s multiple comparison post hoc test (n=6/8,*P<0.05 comparing to CTR; #P<0.01 
comparing to MS). B)The effect of CGS58261 upon CPA on fEPSP is lost in MS animals and recovered 
in MS KW animals, results were analyzed using a paired Student t-test comparing to CPA alone 
(n=5/6, *P=0.008 in CTR animals; δP=0.01 in CTR KW animals; φP=0.0003 in MS KW animals).  
 

 

A2AR blockade reestablishes A2AR/A1R crosstalk 

Previously, we were able to restore synaptic and cognitive dysfunction induced by 

chronic stress, which leads to A2AR overexpression, by blocking A2AR with the 

selective antagonist KW6002 (Batalha et al., 2013) orally administered for one month. 

We now evaluated whether these benefits would be associated with a signaling shift and 

A2AR underactivation. So, we tested A2AR function in control (CTR) and chronically 

stressed animals, using the same maternal separation stress paradigm as before (Batalha 

et al., 2013). Interestingly, in maternally separated (MS) animals, A2AR activation by 

CGS 21680 has a higher effect on basal synaptic transmission compared to CTR 

(Figure 3.5 A). Moreover, the characteristic A2AR-induced attenuation of A1R function 

is lost (Figure 3.5 B). To evaluate if this was due to the A2AR overactivation, MS 

animals were treated for 1 month with an A2AR antagonist (KW 6002; 3 mg/Kg/day) 

and the same parameters evaluated. MS treated animals (MS KW) recovered from the 

A2AR overactivation (see Figure 5A), whereas treatment in CTR animals did not affect 

function (CTR KW). More interestingly, the A1R/A2AR crosstalk was reestablished in 

treated animals (Figure 5B, MS KW), since CPA effect was again attenuated in the 

presence of CGS 58261, similar to the CTR situation, which was absent in MS animals.  
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Discussion 

Here we show for the first time that the A2AR upsurge described in different 

pathological situations in rodent models, such as hypoxia, ischemia, stress, diabetes and 

even upon ageing, is also characteristic of the human aged brain and is aggravated in 

AD. Moreover, we give the first evidence that an increase in neuronal A2AR is sufficient 

to drive deficits in synaptic plasticity and impairments of hippocampal-dependent 

learning and memory. The present results also indicate that a shift in A2AR signaling is 

associated to pathological situations. 

Multiple pathologies displaying cognitive deficits are associated with increased levels 

of A2AR. Namely, in acute or chronic stress (Batalha et al., 2013; Cunha et al., 2006), in 

rodent models of Parkinson’s Disease (PD) (Varani et al., 2010) or even in normal 

ageing (Cunha et al., 1995). However, there was no evidence that this upsurge of A2AR 

was instrumental in driving pathology. We now show, not only that a forebrain 

selective neuronal increase in A2AR is sufficient to drive memory impairments, but also 

that A2AR are increased also in human aging and pathology. Previously, it has been 

shown that increasing A2AR under the control of the neuron-specific enolase promoter 

could lead to working memory deficits (Gimenez-Llort et al., 2007). However, in that 

report the promoter drives A2AR overexpression since embryonic stage and throughout 

the whole brain. So a definite conclusion that the A2AR overexpression is triggering 

memory deficits was not possible.  Now, we generated A2AR overexpressing animals 

under the control of a CaMKII promoter. This renders A2AR overexpression selectively 

in forebrain neurons and only postnatally. Importantly, the fact that the observed 

alterations in synaptic plasticity are reverted when A2AR are blocked, reinforces A2AR 

involvement in the observed deficits. 

The magnitude of long-term potentiation (LTP) in CA1/CA3 hippocampal synapses has 

been correlated with memory performance for a long time (Lynch, 2004). However, and 

being learning a highly complex process, sometimes data contradict this paradigm. 

Indeed, it has already been described an increase in LTP magnitude associated with 

age-related memory deficits (Diogenes et al., 2011). Interestingly, tg(CaMKII-hA2AR) 
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animals present a very similar profile, that is memory impairments in behavioral tasks 

together with an increase in LTP magnitude. Furthermore, the features of adenosine 

neuromodulation evaluated in tg(CaMKII-hA2AR) also follow a similar pattern to that 

observed upon aging suggesting that A2AR upregulation mimics hippocampal aging. 

Indeed this hypothesis is supported by the observation that  A2AR activation in 

tg(CaMKII-hA2AR) animals has a direct effect in basal synaptic transmission, which is 

no longer PKC mediated as in WT, and is independent on A1R inhibition, which is only 

observed upon aging (Lopes et al., 1999a). Additionally we’ve shown that in a chronic 

stress model of maternal separation, that present increased levels of A2AR in the 

hippocampus plus memory deficits, A2AR blockade restoration of memory deficits 

(Batalha et al., 2013) was accompanied by a reestablishment of adenosine 

neuromodulation. Indeed,  MS animals treated with the A2AR selective antagonists 

present a reestablishment of a normal A2AR signaling via A1R inhibition, and loss of 

A2AR direct effect on basal synaptic transmission. Taken together, the results now 

presented reveal that an increase in neuronal A2AR is sufficient to drive changes in 

adenosine neuromodulation. This imbalance is associated with impaired synaptic 

plasticity, sustaining an instrumental role of adenosine neuromodulation in learning and 

memory processes, particularly those related to ageing. 

The therapeutic interest of using selective A2AR antagonists against multiple 

pathologies is increasing (Lopes et al., 2011; Muller, 2013). Some adenosine-based 

drugs were already in clinical trials for PD (Lopes et al., 2011; Muller, 2013), however 

the lack of knowledge on their mechanism of action compromised their acceptance for 

clinical use. In AD, multiple groups have shown protective effects of A2AR blockade 

(Rivera-Oliver and Diaz-Rios, 2014). Caffeine consumption, a non-selective A2AR 

antagonist, has been reported to decrease the risk of developing AD (Arendash and Cao, 

2010; Maia and de Mendonca, 2002). Recent work also revealed that in humans,  A2AR 

antagonists can even have pro-cognitive effects (Borota et al., 2014). Finally, A2AR 

antagonism was also proposed for the treatment of depression and anxiety-like 

disorders (Batalha et al., 2011; Cunha et al., 2008b). However, there was so far no 
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direct evidence that A2AR overactivation could trigger or increase the susceptibility for 

this multiple pathologies. Our results show that A2AR overexpression and consequent 

overactivation shifts adenosine neuromodulation towards a pathology-related status, 

leading to impairments in synaptic plasticity and consequent deficits in memory 

outcome. 

The targeting of A2AR always generated some controversy since A2AR activation 

promotes Brain derived neurotropic factor (BDNF) actions (Diogenes et al., 2007; 

Diogenes et al., 2004) which could be beneficial. Therefore some observations point 

A2AR activation rather than its blockade as the solution. By now showing that an 

alteration in adenosine signaling is associated with dysfunction, and that upon blockade 

of A2AR with KW6002, the physiological actions of A2AR are reestablished without any 

side effects in control animals, we offer a new possibility for research. The challenge is 

now in developing new antagonists or to evaluate the already available regarding their 

selectivity for A2AR according to their different signaling and effects.  

In summary, we report that a post-natal, neuronal selective, overexpression of A2AR 

drives age-like alterations in hippocampal function. This is associated with an altered 

adenosine neuromodulation, LTP dysfunction and memory deficits. These observations 

are crucial at clarifying the instrumental role A2AR in pathology and strongly support 

the development of new A2AR antagonists in therapeutics. 
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Abstract 

The hippocampus was the first higher brain area to be recognized as a target for stress 

hormones. It is known that corticosteroids by activating glucocorticoid receptor (GR) 

receptors have a great impact on synaptic plasticity, learning and memory in this brain 

area. 

We have recently revealed that oral administration of an adenosine A2A receptor (A2AR) 

blocker restores hippocampal morphological, behavioral and synaptic deficits induced 

by HPA-axis dysfunction in rodents. However, there is no evidence for a direct role of 

A2AR in GR effects, or whether the benefits of blocking A2AR are mediated by a GR-

dependent effect.  

We generated transgenic rats that overexpress A2AR under the control  of the CaMKII 

promoter, tg(CaMKII-hA2AR), in order to evaluate its impact on HPA-axis and GR-

dependent effects. A2AR overexpression in forebrain neurons was sufficient to induce 

HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation. 

Moreover, A2AR overactivation modulated GR-induced deficits in hippocampal 

synaptic plasticity, increasing susceptibility to activation by the GR agonist, 

dexamethasone. Conversely, blockade of A2AR prevented dexamethasone-induced GR 

transcriptional activity and nuclear translocation. Finally we show that A2AR blockade 

therapy in vivo increased histone H3 acetylation of the Nr3c1 gene encoding GR 

therefore impacting in GR mRNA levels. 

Together, our results suggest that A2AR directly modulate GR, unveiling an important 

therapeutic alternative to GR antagonists for clinical applications. These findings are 

significant for the treatment not only of psychopathologies but can also be extended to 

the multiple age-related conditions where glucocorticoid response is impaired.  
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Introduction 

Stressful events have a role in the development and/or susceptibility for psychiatric 

disorders (McKinney, 1984; Willner, 1997; Willner et al., 1997) such as anxiety, 

depression or posttraumatic stress disorders. These events are present throughout life, 

triggering peripheral and central physiological responses coordinated by the central 

nervous system, mostly through the activation of the Hypothalamic-Pituitary-Adrenal 

axis system (HPA-axis) (Herman and Cullinan, 1997) and consequent production of 

glucocorticoids, which are stress hormones and play a vital role in stress response.  

Physiological actions of glucocorticoids are mediated by two different types of 

corticosteroid receptors: the Type I, high-affinity, mineralocorticoid receptor (MR) and 

the Type II, low-affinity, glucorticoid receptor (GR). These are classically cytoplasmic 

receptors that upon ligand binding, translocate to the nucleus and act as transcription 

factors (Zalachoras et al., 2013). 

The hippocampus was the first higher brain area to be recognized as a target for stress 

hormones (McEwen et al., 1968). It is known that corticosteroids by activating GR 

receptors have a great impact on synaptic plasticity, learning and memory in this brain 

area (reviewed by Kim et al., 2006). 

Adenosine is an important neuromodulator that acts through the activation of the G 

coupled receptors A1 and A2A (A1R and A2AR). In the recent years multiple evidences 

suggest an association between adenosine modulation and stress response, mainly by 

A2AR mediated effects. A2AR activation seems to contribute to stress response, by 

inducing corticosterone secretion (Chen et al., 2008) and mimicking GR effects 

(Okonkwo et al., 2006). Moreover we have recently revealed that oral administration of 

an antagonist for the receptor, which blocks A2AR activation, is able to restore 

morphological, behavioral and synaptic deficits induced by HPA-axis dysfunction in 

rodents (Batalha et al., 2013). Multiple situations where A2AR are overactivated or 

overexpressed are associated with impaired GR function in the brain. In Alzheimer’s 

disease (AD) both A2AR and GR antagonists ameliorate cognitive deficits and decrease 
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amyloid-β levels (Arendash et al., 2006; Baglietto-Vargas et al., 2013). This supports 

the instrumental role of A2AR in GR response and suggests that A2AR effects may be 

mediated by reestablishing GR dysfunction. 

However, there is no evidence so far for a direct role of A2AR in GR effects, or that the 

beneficial effects achieved by blocking A2AR in multiple pathologies are mediated by a 

GR-dependent effect. Since A2AR-GR interaction is not exclusive of the nervous 

system, such an interaction could have far reaching implications in many clinical 

situations where corticosteroids play a pivotal role.  

We therefore evaluated whether A2AR overactivation impacts on HPA-axis function and 

GR effects upon transcriptional activity and synaptic plasticity. We report, for the first 

time, that A2AR overexpression in forebrain neurons is sufficient to induce HPA-axis 

dysfunction, namely loss of plasmatic corticosterone circadian oscillation. We show 

that A2AR blockade prevents GR transcriptional activity and nuclear translocation. 

Moreover, A2AR activation modulates GR-induced deficits in hippocampal synaptic 

plasticity, increasing susceptibility to GR activation. 
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Material and methods 

Animals: Animal procedures were performed in accordance with the European 

Community guidelines (Directive 2010/63/EU), Portuguese law on animal care 

(1005/92), and approved by the Instituto de Medicina Molecular Internal Committee 

and the Portuguese Animal Ethics Committee (Direcção Geral de Veterinária). 

Environmental conditions were kept constant: food and water ad lib, 21±0.5°C, 

60±10% relative humidity, 12h light/dark cycles. The animals were killed by 

decapitation after anesthesia under halothane atmosphere. Transgenic rats with an 

overexpression of adenosine A2A receptors (A2AR) under the control of the Calcium 

calmodulin dependent Protein Kinase II (CaMKII) promoter, tg(CaMKII-hA2AR), were 

generated by microinjection of a linearized DNA construct into the male pronucleus of 

Sprague–Dawley rat zygotes with established methods (Popova et al., 2002). The 

construct contained a full-length human A2A cDNA cloned into an expression vector 

with the 8.5 kb mouse CaMKIIα promoter (Mayford et al., 1996) and a polyadenylation 

cassette of bovine growth hormone (see Fig. S4.1). Sprague Dawley wild type (WT) 

rats were used as controls. 

Genotyping of rats: Transgenic rats were identified by PCR (30 cycles, 58 °C annealing 

temperature) of their genomic DNA isolated from ear biopsies by the use of the 

following transgene-specific primers: CaMKII-hA2A and rat Act-B as an internal 

control (Invitrogen, UK, see Table below). 

Primer Target Gene Organism Forward Primer Reverse Primer Amplicon 
Size 

Act-B Actin-β rat AGCCATGTACGTAGCCAT CTCTCAGCTGTGGTGGTGAA 228bp 

CaMKII
-hA2A 

Calcium calmodulin dependent Protein Kinase II 
promoter 

and human Adenosine Receptor A2A 
transgene GACTAAGTTTGTTCGCATCCC GTGACACCACAAAGTAGTTGG 450bp 

Cell culture:  N1E-115 mouse neuroblastoma cells (CRL-2263) were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) without Pyruvate supplemented with 

10%(v/v) fetal bovine serum (FBS), 100 U/mL penicillin-streptomycin, and 2 mM L-

glutamine (Gibco). For transfections, cells were plated into 6 well plates  for 24h to 

reach 60% confluency before transfection with Exgene 500 (Euromedex, France). 

Briefly 4ug of pGL3(GRE)3_TK_Luc (GRE_Luc) plasmid were mixed in 400μL of 
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non suplemented DMEM with 20μL of Exgene 500 (the mix volume/well) and 

incubated for 15 minutes at room temperature. Cells were incubated for 3h with the 

transfection mix before completing the volume to 3mL. Drug treatments were 

performed 24h after transfection. Primary neuronal cultures. Cortical neurons from 18 

days Sprague Dawley rat embryos (Harlan, Barcelona) were cultured according to 

Valadas (2012). Briefly the embryos were collected in Hanks’ Balanced Salt Solution 

(HBSS) and rapidly decapitated. Meninges and white mater were removed and whole 

cortices were fragmented and cells were isolated by trypsinization  HBSS Ca2+/Mg2+ (1 

mM/ 1 mM, 0.025% trypsine) and centrifugation at  200 rpm. Cells were washed with 

HBSS Ca2+/Mg2+ supplemented with 10% FBS and resuspended in Neurobasal 

Medium. Cells were plated on poly-L-lysine-coated coverslips in 6-well plates at 

density of 1x106 cells/well. Neurons were grown in Neurobasal medium with 2% B-27 

supplement, glutamate 25 μM, glutamine 0.5 mM and 2U/mL Penicillin/Streptomycin, 

in the absence of any positive selection for neurons.  Medium was totally replaced at 

day 4 (without glutamate). Drug treatments were performed at day 8, 1 hour after 

replacing the medium by neurobasal without B27. All cells were kept in a 5% CO2 

humidified incubator at 37 °C.  

Dissection and tissue collection: After decapitation the brain was rapidly removed and 

the hippocampi were dissected free in ice-cold Krebs solution composed of (mM): 

NaCl 124; KCl 3; NaH2PO4 1.25; NaHCO3 26; MgSO4 1; CaCl2 2; and glucose 10, 

previously gassed with 95% O2 and 5% CO2, pH 7.4). One hippocampi was used for 

electrophysiological recordings, the remaining tissue was separated by areas and rapidly 

frozen in liquid nitrogen for further analysis. 

Sample preparation: Tissue homogenates of WT and tg(CaMKII-hA2AR) were prepared 

from frozen samples. Briefly samples were homogenized by sonication in 

immunoprecipitation-assay (RIPA) buffer (50 mM Tris, 1 mM EDTA, 150 mM NaCl 

0.1% SDS, 1% NP 40, pH 8.0) (Palacios et al., 2004). Protein was quantified using the 

BioRad Protein DC assay based on (Lowry et al., 1951). The appropriate volume of 

sample was completed with water and 5x sample buffer. Nuclear/cytoplasmic fraction 
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enrichment was performed by differential centrifugation. Samples were homogenized 

with a 28G syringe and centrifuged at 1000 g for 10 min. The supernatant is the 

cytoplasmic fraction; the pellet was resuspended in 100 μL of sucrose buffer (0.32 M 

sucrose, 50 mM Tris, pH 7.6), homogenized and centrifuged again to ensure a 

minimum contamination with cytoplasm. 150 μL of 1.5x sample buffer (350 mM Tris, 

30% glycerol, 10% SDS, 600 mM dithiothreitol and 0,012% bromophenol blue, pH 6.8) 

were added to the nuclear fraction and 15 μL were used for immunoblot detection. The 

cytoplasmic fraction was prepared with 20 μL of sample and 5 μL of 5x sample buffer. 

Western Blotting: Samples were denatured by heating at 95ºC for 5 minutes or at 70º 

for 30 minutes for A2AR. Samples and molecular weight markers were resolved by 

SDS-PAGE (8% or 10% for resolving and a 5% for stacking gels) in denaturing 

conditions and electro-transferred to PVDF membranes (Millipore). Membranes were 

blocked with 5% non-fat dry milk in TBS-T 0.1% (Tris Buffer Saline with 0.1% 

Tween-20 solution, 200 nM Tris, 1.5 M NaCl). After washing with TBS-T 0.1% 

membranes were incubated with primary antibody in 3% Bovine Serum Albumin  

(BSA). Secondary antibody incubation was in 5% non-fat dry milk in TBS-T 0.1%. 

Primary antibodies were rabbit anti-GR M20 (1:750/1:1000 sc-1004, Santa Cruz 

Biotechnology, Heidelberg, Germany), Rabbit anti-Lamin A/C (1:2000, cell signaling – 

2032, Danvers, MA, USA) mouse anti-A2AR  (1:2000, Upstate/Millipore - 05-717, 

Darmstadt, Germany), mouse anti-GAPDH (1:1000, ambion AM4300) and rabbit anti-

αTubulin (1:2000, abcam, ab4074, UK ), secondary antibodies conjugated with 

horseradish peroxidase were goat anti-rabbit and anti-mouse (Santa Cruz 

Biotechnology, Heidelberg, Germany). Chemoluminescent detection was performed 

with ECL-PLUS western blotting detection reagent (GE Healthcare) using X-Ray films 

(Fujifilm). Optical density was determined with Image-J software. 

Corticosterone quantification: Blood was collected from the tail in animals previously 

handled to minimize stress and without anesthesia at two different time points, 8 AM, 

and 8 PM (as in Batalha et al., 2013). The plasma was isolated by centrifugation at 

2000 g, 4ºC for 15 min and corticosterone quantified by radioimmunoassay using the 
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rat corticosterone 3H kit (MP Biomedicals, UK), according to the manufacturer’s 

protocol.  

Drug treatments: Cell treatments were performed as in Valadas et al. (2012). Briefly, 

N1E115 cells were treated with dexamethasone 100 nM for 24 h; antagonists 

(SCH58261 10-100 nM, KW6002 30 nM and RU486 50 mM) were applied 15-20 min 

before treatment and agonists (CGS21680, 10-50 nM) were co-applied with 

dexamethasone. After treatment cells were washed in ice-cold PBS and processed for 

luciferase assay. Primary neuronal cultures were treated with dexamethasone 100 nM 

for different periods of time 0, 5, 10, 15, 30, 60, 90 min; the A2AR antagonist 

SCH58261 (50 nM) was applied 15-20 min before dexamethasone. After treatment, 

cells were washed with ice-cold PBS and resuspended in 200 μL of sucrose solution 

(0.32 M sucrose, 50 mM Tris, pH 7.6) supplemented with protease inhibitors 

(ROCHE). Hippocampal slices were incubated with dexamethasone 100 nM for 20 min 

or 1 h at 32ºC. Antagonists (50 nM SCH58261; 50 mM RU486) were applied 15-20 

min before treatment and agonists (CGS21680, 30 nM) at the same time. In vivo 

therapy: KW6002 (istradefylline, a selective A2AR antagonist) or vehicle were orally 

administered in the drinking water (3 mg/kg) to WT male rats as before (Batalha et al., 

2013).  

Luciferase assay: Luciferase activity was evaluated with the luciferase assay system 

(Promega, USA) according to the manufacture procedure. Briefly, N1E115 cells were 

lysed in 150 μL of luciferase cell culture lyses reagent for 15 min at 4ºC. The 

supernatant was collected after 2 min, centrifuged at 12,000 g at 4ºC and 5 μL were 

used for the assay. Luciferase activity was measured on a Mithras Microplate Reader 

LB 940 (Berthold Technologies). 

Electrophysiological recordings: Slices (400 µm thick) were obtained with a McIlwain 

tissue chopper, left to recover for at least 1 h at 32ºC in Krebs solution and field 

excitatory postsynaptic potentials (fEPSPs) were recorded as previously described 

(Diogenes et al., 2011) in the CA1 stratum radiatum.  Long term potentiation (LTP, 

100 Hz, 1s) was recorded as previously described (Batalha et al., 2013).  Slices were 
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incubated with different drugs or as a control at 32ºC and kept at 32ºC until recording. 

All recordings were performed at 32ºC with a constant flux of 3mL/minute. 

Chromatin and methyl DNA immunoprecipitation: Samples (1 hippocampus) were cut 

into small pieces (1x1 mm) and incubated for 30 min with 1% formaldehyde. After 

washing with PBS, the sample was lysed in SDS lysis buffer (0.05 M Tris, 1% SDS 

1%, 0.01 M EDTA), 200 µL of the lysate were used for phenol/clorophorm DNA 

extraction and 400 µL aliquots were used for chromatin immunoprecipitalion (ChIP). 

Purified DNA and ChIP samples were fragmented by sonication until DNA size was 

200-500 kb. Chromatin IP (ChIP) was performed as previously described (McFarland et 

al., 2012). Briefly, fragmented DNA/protein complexes were incubated with 5 µg of 

AcH3K9K14 (Millipore 06599) and magnetic beads overnight at 4ºC. After washing, 

the immunoprecipitated DNA/protein complexes were digested with proteinase K and 

the DNA purified for downstream analysis. Methyl DNA immunoprecipitation (meDIP) 

was performed using MethylMiner™ Methylated DNA Enrichment Kit (Invitrogen) 

according to manufacturer’s instructions. Briefly, beads were incubated with MBD 

(methyl-CpG-binding domain) protein for 1 h at room temperature (RT); after washing, 

the beads-MBD protein complexes were incubated with 1 µg of DNA for 1 h at RT, the 

non-captured DNA was recovered and the methylated DNA was eluted with high salt 

solution (2M NaCl) and purified for downstream analysis (UltraClean PCr Clean-Up 

Kit, Mo Bio laboratories, inc). Following ChIP or meDIP, gene specific changes were 

evaluated by qPCR targeting two specific CpG islands of the Nr3c1 gene (CpG147 and 

CpG11, found using the UCSC genome browser) using the following primer sequences: 

CpG147 forward: CGGAGAAGGAAGTCAACAGT; reverse: GGTGACTTTCAGCG-

CTAGG, and CpG11 forward: CGGTCTGGCTTTTTCGATTT; reverse: CAGAG-

AACCCCAAGAGTTCA.  Threshold amplification cycle numbers (Tc) using iCycler 

software were used to calculate IP DNA quantities as percentage of corresponding 

inputs.  

Drugs: A2AR selective antagonist, 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-

e][1,2,4]triazolo[1,5-c]-pyrimidin-5-amine (SCH58261), A2AR selective agonist 4-[2-
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[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] 

benzene propanoic acid (CGS21680) and the GR antagonist (11β,17β)-11-[4-

(Dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486) 

were purchased from Tocris Cookson, UK. These drugs were diluted in the assay 

solution from 5 mM or 100mM (for RU486) stock aliquots made in DMSO stored at -

20ºC. GR agonist (11β,16α) -9-Fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-

3,20-dione, 9α-Fluoro-16α-methyl-11β,17α,21-trihydroxy-1,4-pregnadiene-3,20-dione, 

9α-Fluoro-16α-methylprednisolone (Dexamethasone) was purchased from Sigma 

(Spain), diluted to 10mM stock in DMSO and stored at -20ºC. A2AR selective 

antagonist, (E)-8-[2-(3,4-dimethoxyphenyl)vinyl]-1,3-diethyl-7-methyl-3,7-

dihydropurine-2,6-dione (KW6002, istradefylline) was synthesized according to a 

published procedure (Hockemeyer et al., 2004). The purity of the product was 

determined by HPLC analysis coupled to electrospray ionization mass spectrometry and 

was greater than 98%.  For in vitro assays a stock solution at 10mM in DMSO was 

prepared and used only for 1 week and stored at -20ºC. All other reagents used were of 

the highest purity available either from Merck, Germany or Sigma Aldrich, Spain.  

Statistics: Values presented are mean ±SEM of n experiments. To test the significance 

of the differences between groups in Western Blotting experiments, a paired Student’s 

T test was used. In all other experiments, when comparing 3 or more groups a one-way 

ANOVA was used, followed by a Bonferroni’s Multiple Comparison post hoc test. For 

the analysis of the primary neuronal cultures results and corticosterone levels, a two-

way ANOVA followed by a Bonferroni’s Multiple Comparison post hoc test was used. 

Values of P<0.05 were considered to be statistically significant.  
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Results 

Overexpression of A2AR in forebrain neurons impairs HPA-axis 

A possible explanation for the beneficial effects achieved by blocking A2AR is the 

reestablishment of the HPA-axis function and the circulating levels of corticosteroids 

(Baglietto-Vargas et al., 2013; Coogan et al., 2013), as observed upon the treatment of 

chronic stressed animals with the A2AR antagonist KW6002 (Batalha et al., 2013). We 

therefore evaluated if the overexpression of A2AR alone was sufficient to drive a 

dysfunction of the HPA-axis. 

We generatered transgenic rats that overexpress A2AR under the control of the CaMKII 

promoter, tg(CaMKII-hA2AR). tg(CaMKII-hA2AR) animals present an overexpression 

of A2AR in the hippocampus, hypothalamus and pituitary (Figure 4.1 A - C) compared 

to WT. A2AR overexpression drives a decrease in hippocampal GR levels in the 

hippocampus and an increase in hypothalamus and pituitary gland (Figure 4.1 D - F). 

To assess if the stress response was compromised, blood was collected from 

tg(CaMKII-hA2AR) and wild-type animals at two time points to evaluate plasmatic 

corticosterone levels (Figure 4.1 G). Control animals present a normal variation of 

corticosterone levels throughout the day, whereas tg(CaMKII-hA2AR) present elevated 

corticosterone levels in the morning and loss of normal circadian oscillation (58±8 

ng/mL in WT at a.m comparing with 92±12 in tg(CaMKII-hA2AR)).  
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Figure 4.1. Neuronal overexpression of adenosine A2A receptor (A2AR) disrupts HPA-axis function.  
A2AR overexpression in tg(CaMKII-hA2AR) was confirmed in the A) hippocampus, B) hypothalamus and 
C) pituitary gland by Western Blotting. D) GR protein levels are decreased in the hippocampus (n=5) 
and increased in the E) Hypothalamus (n=5) and F) pituitary gland (n=4) of Tg(CaMKII-hA2AR) 
compared to WT animals.  G) Corticosterone levels evaluated at 8 a.m and 8 p.m are elevated in 
Tg(CaMKII-hA2AR) and do not oscillate in a circadian manner (n=6-9). Results are presented as mean ± 
SEM of n experiments.. *P<0.05 compared to WT, #P<0.05 compared with WT at a.m, calculated using 
a paired Student  or a Two-way ANOVA followed by a Bonferroni’s multiple comparison post hoc test. 
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Adenosine A2AR activation induces GR transcriptional activity 

We then tested whether A2AR could directly modulate GR transcriptional regulation. 

So, N1E115 cells were transiently transfected with the plasmid pGL3(GRE)3_TK_Luc 

(GRE_Luc) that contains the glucocorticoid response element (GRE:promoter region at 

which GR bound to regulate gene transcription) coupled to the luciferase gene. To test 

the luciferase response to GR activation, cells were incubated for 24 hour with 

dexamethasone (100 nM). Upon exposure to dexamethasone, luciferase expression 

increased (212.5±20,2%, n=17, P<0.0001), an effect that was blocked by the GR 

antagonist RU486 (100 nM) (n=8, P<0.0001, Figure 4.2 A). To assess whether A2AR 

activation could modulate GR, A2AR agonist or antagonist were applied together with 

dexamethasone. A2AR blockade with SCH58261 (10 – 100 nM) reduced dexamethasone 

induced increase in luciferase expression, an effect also observed when a different 

antagonist, KW6002, was used (Figure 4.2 B). On the other hand, activation of A2AR 

with the agonist CGS21680 (10-50 nM), increased dexamethasone induced luciferase 

expression in a concentration-dependent manner (Figure 4.2 C).  

To evaluate the A2AR effect on endogenous GR activity, A2AR agonist and antagonist 

were applied in the absence of GR activation by dexamethasone. Even in the absence of 

exogenous GR activation, A2AR increased luciferase expression (Figure 4.2 D) whereas 

A2AR blockade decreased it (Figure 4.2 E). This effect of A2AR was prevented in the 

presence of RU486 (Figure 4.2 F). 
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Figure 4.2: Adenosine A2A receptors (A2AR) modulate glucocorticoid response element (GRE) 
regulated luciferase expression in N1E115 cells. A) Dexamethasone induced increase in luciferase 
activity (n= 8-17) B) is decreased upon A2AR blockade by two antagonists, SCH 58261 (10-100 nM) and 
KW 6002 (50 nM) (n=5-11) C) and increased upon direct A2AR activation with CGS 21680 (10-50 nM) 
(n=3-9). Activation of A2AR alone is sufficient to modulate endogenous GR transcriptional activity, D) 
A2AR antagonist decreases luciferase activity (n=6-14) while E) A2AR agonist increases it (n=3-11). F) 
A2AR effects are prevented by the Glucocorticoid Receptor (GR) antagonist, RU 486 (100 nM, n=5-10). 
Results are presented as Mean ± SEM of n experiments. *P<0.05 compared to control, #P<0.05 
compared with dexamethasone induced luciferase activity, calculated using a one-way ANOVA 
followed by a Bonferroni’s multiple comparison post hoc test. 
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Figure 4.3: Adenosine A2A receptors (A2AR) promote dexamethasone induced Glucocorticoid 
Receptor (GR) translocation to the nucleus.  
Left panel illustrates the gradual enrichment of GR in nuclear fraction of neuronal cultures over time 
of exposure to dexamethasone (100nM, n=2-4). This increase is totally prevented by blocking A2AR 
with SCH 58261 (50nM, in right panel). Results are presented as Mean ± SEM of n experiments. 
*P<0.05 compared to control, #P<0.05 compared with dexamethasone calculated using Two-way 
ANOVA followed by a Bonferroni’s multiple comparison post hoc test. 
 

Adenosine A2AR promote GR nuclear translocation 

To further explore the A2AR modulation of GR transcriptional activity and to extend the 

observed effects to neuronal cells, the nuclear translocation of the GR was evaluated in 

primary cortical neuronal cultures. Dexamethasone induced a significant enrichment of 

GR in the nuclear versus cytoplasmatic fraction along time, which was maximal after 

90 minutes. This effect was totally prevented by A2AR blockade (Figure 4.3). 
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Figure 4.4: Dexamethasone induced deficits in synaptic plasticity are prevented by adenosine A2A 
receptor (A2AR) blockade.  
High frequency stimulation (HFS: 100 HZ, 1s) was used to evaluate synaptic plasticity in hippocampal 
rat slices.  A) and C) Incubation of slices with dexamethasone (100 nM) for 1h decreases LTP 
magnitude. B) and C) This effect is prevented by SCH58261 (50nM), n=4-8. D) and E) quantification of 
the Dexamethasone and SCH effect and the dependency on GR activation since it is prevented by 
RU486 (100 nM), n=3-8. Results are presented as Mean ± SEM of n experiments. *P<0.05 compared to 
control. #P<0.05 compared with dexamethasone calculated using a one-way ANOVA followed by a 
Bonferroni’s multiple comparison post hoc test. 

A2AR blockade rescues dexamethasone effects on synaptic plasticity 

Different observations have shown that activation of GR can lead to impairments in 

memory and synaptic plasticity (Kerr et al., 1994; Krugers et al., 2005; Lee et al., 2014; 

Wuppen et al., 2010). We then evaluated if A2AR impacted on GR effects in synaptic 

plasticity. Exposure of hippocampal slices to dexamethasone (100 nM) for 60 min, 

significantly abolished long-term potentiation (LTP) induced by high-frequency 

stimulation (55.4±5.2% in control versus 12.2±1.5% after 60 min of dexamethasone – 

Figure 4.4 A, C and D). This effect was prevented by the GR antagonist (RU486, figure 

4.4 D). Blockade of A2AR with SCH 58261 (50nM) prevented dexamethasone induced 

LTP deficits (53.0±5.3%, Figure 4.4 B, C and E), while having no effect in control 

(non-treated) slices (Figure 4.4 E).  
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Figure 4.5: Adenosine A2A receptor (A2AR) overexpression increases LTP susceptibility to 
dexamethasone.  
High frequency stimulation (HFS: 100HZ, 1s) was used to evaluate synaptic plasticity in hippocampal 
slices of WT and tg(CaMKII-hA2AR) animals. A) and B) Incubation of slices with dexamethasone 
(100nM) for 20 minutes has no effect on LTP magnitude in WT animals (n=3/8), whereas C) and D) in 
Tg(CAMKII-hA2AR) animals a 20 minute incubation is sufficient induce a significant decrease in LTP 
magnitude (6-9). E) is the bar plot of the effects of dexamethasone and F) the prevention of the LTP 
reduction by the GR antagonist RU486 (3-9). Results are presented as Mean ± SEM of n experiments 
analysed using an unpaired Student t-test for comparisons within WT or Tg(CAMKII-hA2AR) and one-
way ANOVA followed by a Bonferroni’s multiple comparison post hoc test for drug effects. *P<0.05 
compared to control, #P<0.05 compared with dexamethasone 20 min, φP<0.05 compared with 
dexamethasone 60 min. 
 

Overexpression of A2AR increases susceptibility to dexamethasone 

Since GR blockade was able to prevent dexamethasone effect, we then evaluated the 

effects of A2AR overactivation on susceptibility to dexamethasone. Slices from wild- 

type (WT) and transgenic rats overexpressing A2AR in the forebrain neurons 

(Tg(CaMKII-hA2AR)) were incubated for 20 min with dexamethasone. Long-term 

potentiation (LTP) was induced 90 min later by high-frequency stimulation (HFS) 

(Krugers et al., 2005). Incubation with dexamethasone had no impact on LTP 

magnitude in wild-type animals (63.9±9.0% versus 58.0±9.0% Figure 4.5 A, B and E). 

However, in Tg(CAMKII-hA2AR) animals, exposure to dexamethasone for 20’ 

significantly decreased LTP magnitude (61.8±4.3% versus 30.3±5.5%, P<0.05, Figure 

4.5 C, D and E), an effect that was prevented by the GR antagonist RU486 (figure 4.5 

F).  
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Figure 4.6 - Adenosine A2A receptor blocking therapy promotes histone H3 acetylation  
A) Increased mRNA levels encoding GR in rats treated with KW6002. B) Effect of KW6002 treatment on 
DNA methylation of two CpG islands (CpG147 and CpG11 according to UCSC genome browser) within 
the Nr3c1 gene in the rat hippocampus and C) effect of KW6002 treatment on histone H3 acetylation 
of the Nr3c1 gene. Results are the mean ± SEM  of 4 to 7 experiments; (*)P<0.05, compared to wt.  
 

A2AR blocking therapy promotes histone H3 acetylation but not DNA methylation 

of Nr3c1 

We next investigated if an in vivo long-term therapy with an A2AR antagonist might 

influence GR mRNA expression in the hippocampus. The treatment of WT rats for 1 

month with the selective A2AR antagonist, KW6002 [3 mg/kg/day, orally, the same dose 

shown to rescue GR expression in stressed rats; (Batalha et al., 2013)], increased the 

hippocampal GR mRNA levels (Figure 4.6 A). To assess if epigenetic mechanisms 

could account for this A2AR-mediated control of the Nr3c1 gene encoding GR, we 

measured alterations in DNA methylation in the hippocampus at two different CpG 

islands within the Nr3c1 gene (CpG147 and CpG11) in response to KW6002 treatment. 

We report that A2AR blockade did not alter DNA methylation at either CpG island 

(Figure 4.6 B). Since increases in histone H3 acetylation are associated with increased 

transcription (McFarland et al., 2012), we next measured alterations in histone H3 

acetylation (H3K9K15ac2; AcH3). We found a significant increase of the association of 

AcH3 with the Nr3c1 gene upon A2AR blockade in the hippocampus, an association that 

seems specific to the Nr3c1 gene since it did not occur for the control GAPDH gene 

(Figure 4.6 C). Thus, these AcH3 increases emerge as a possible mechanism underlying 

the increase of GR mRNA levels following A2AR antagonist treatment (Figure 4.6A). 
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Discussion 

Our findings demonstrate for the first time that A2AR modulate GR transcriptional 

activity and nuclear localization, thereby critically affecting GR function and impacting 

in HPA-axis.  Furthermore, the combined evidence that A2AR overexpression increases 

the susceptibility to GR agonists and that A2AR blockade prevents the deleterious 

effects of GR activation on synaptic plasticity, leads to the conclusion that A2AR play a 

critical role in the control of memory dysfunction by directly modulating GR 

expression and activation. Overall the present results provide the first evidence that 

A2AR do play a role in stress effects by directly modulating GR receptors, either in their 

actions or its expression. This novel A2AR-GR interaction may have far-reaching 

implications in multiple pathologies that are alleviated by A2AR antagonists and where 

corticosteroids play a pivotal role. 

Stress hormones and HPA-axis dysfunction has long been recognized as a critical 

feature underlying brain aging and pathology (Porter and Landfield, 1998). Indeed, 

altered cortisol levels are observed in post-traumatic stress syndrome or major 

depression (Gerritsen et al., 2011) and elevated salivary levels of cortisol were found to 

be correlated with poor cognitive function in a large study of humans aged 50–70 years 

(Lee et al., 2007). Increased glucocorticoid activity has a predominant impact in the 

hippocampus, which plays an inhibitory role in regulating the HPA axis (Jacobson and 

Sapolsky, 1991) and controls mood and memory (Fanselow and Dong, 2010). Thus, 

chronic exposure to glucocorticoids leads to cell death and hippocampal atrophy 

(Knoops et al., 2010; Sapolsky and Meaney, 1986) and is associated with memory 

impairment in the elderly (Lupien et al., 1998). Accordingly, recent evidence supports a 

pivotal role of stress hormones in neurodegenerative diseases, namely in Alzheimer’s 

disease (AD) (Rothman and Mattson, 2010). This is re-enforced by the following 

observations: 1) administration of the GR antagonist, RU486, exacerbates AD 

pathology (Baglietto-Vargas et al., 2013); 2) repeated stress worsens AD-induced 

deficits (Joshi et al., 2012); 3) elevated cortisol levels are associated with a faster 

disease progression in AD (Csernansky et al., 2006); 4) systemic administration of 
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glucocorticoids or stress potentiate memory impairments, hippocampal damage, β-

amyloid formation and Tau accumulation in transgenic AD mice (Chadwick et al., 

2011; Green et al., 2006; Yao et al., 2011).  

Interestingly, in many pathologies where a dysfunction of the HPA-axis is present, 

aging included, there is also an upsurge of A2AR in the hippocampus (Batalha et al., 

2013; Lopes et al., 1999b) and their blockade has proven to be beneficial (Arendash et 

al., 2006; Batalha et al., 2013). We now show that A2AR neuronal overexpression 

disturbs HPA-axis function and elevates plasma corticosterone levels. This provides a 

tentative connection between the adenosine neuromodulation system and the control of 

GR signaling, in agreement with previous reports that A2AR activation in a model of 

spinal cord injury mimicked the effects of GR activation in attenuating neuronal 

damage (Okonkwo et al., 2006). Notably, we directly showed that A2AR modulate GR 

transcriptional activity, which is prevented by a GR antagonist. Furthermore, we 

showed that A2AR blockade was sufficient to prevent the gene expression-dependent 

deleterious impact of a GR mimetic (dexamethasone) on hippocampal synaptic 

plasticity and that the in vivo A2AR blockade affected the association of acetylated 

histone H3 with the Nr3c1 gene encoding GR. Altogether, these findings provide the 

first direct demonstration that A2AR can directly control GR expression and suggest that 

A2AR are acting through modulation of GR. This tight A2AR-GR interaction prompt a 

new perspective on how HPA-axis dysfunction may emerge, and also supports the 

therapeutic utility of A2AR antagonists as an important alternative to GR antagonists to 

reestablish HPA-axis dysfunction present in different clinical conditions (Batalha et al., 

2013). 

In fact, the therapeutic interest of using selective A2AR antagonists against multiple 

pathologies is increasing and A2AR antagonists have been recently approved as co-

adjuvant therapy for Parkinson’s disease (Chen et al., 2013). Various studies also 

support the ability of caffeine and A2AR blockade to prevent memory impairment in 

multiple conditions (Cunha and Agostinho, 2010), and recent work revealed that A2AR 

antagonists can even have pro-cognitive effects (Borota et al., 2014). A2AR antagonism 
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was also proposed for the treatment of depression and anxiety-like disorders (Cunha et 

al., 2008b) in agreement with the decreased incidence of depression in individuals 

consuming caffeine (Lucas et al., 2011). However, the lack of knowledge in regards to 

the mechanism of action of A2AR antagonists compromised their acceptance for clinical 

use. The present report shows that A2AR not only regulates HPA-axis function, but also 

directly modulates GR, which represent key findings for understanding the mechanisms 

by which A2AR antagonism is effective, in agreement with our previous demonstration 

that A2AR blockade overcame stress effects by reestablishing the HPA-axis and GR 

levels in the hippocampus (Batalha et al., 2013). These findings are critical, not only for 

the treatment of the memory dysfunction associated with psychopathologies, but can 

also be extended to aging and other circumstances in which the glucocorticoid response 

is impaired. 

One aspect that is not clarified in the present study is the transducing pathways 

recruited by A2AR to trigger GR/GRE transcriptional activity. This largely stems from 

the complexicity of A2AR signaling (Fredholm et al., 2007) and its engagement in 

numerous signalosome protein complexes (Keuerleber et al., 2011). Although A2AR can 

recruit multiple signaling pathways, the most common in the hippocampus are the c-

AMP/PKA/CREB and the PKC and MAPK pathways (Ribeiro and Sebastiao, 2010). A 

possible hypothesis may be that modulation of CREB, which is known to interact with 

GR, and regulates gene expression through the activation of a non-canonic “composite” 

GRE (Diaz-Gallardo et al., 2010). Alternatively, a direct PKA modulation of GR 

binding to GRE is also possible, as previously described (Rangarajan et al., 1992). Two 

other broad questions emerged from our study and remain to be addressed, namely the 

mechanism by which A2AR control the epigenome and the more global consequences 

related to this A2AR-mediated control of transcriptional activity. 

Finally there is an apparent paradox that rises from the present study: the fact that stress 

and A2AR upregulation decrease GR levels in the hippocampus while simultaneously 

potentiating GR activation. The former is however reconciled by the fact that GR 

activation is an important pathway to decrease GR expression and activation effects 
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(Oakley and Cidlowski, 1993; Ramamoorthy and Cidlowski, 2013; Surjit et al., 2011)  

particularly upon chronic exposure to glucocorticoids (Herman and Spencer, 1998), as 

in chronic stress. Therefore, A2AR by increasing GR nuclear location and mediated 

transcription, are not only increasing the susceptibility to stress but also, through the 

same pathway, contributing to the downregulation of GR. Even if the levels of GR are 

lower, they become more prone to activation. If this is due to a higher affinity to DNA 

or to a faster kinetics is not yet known, however the data regarding epigenetic 

regulation seem to indicate that A2AR might directly affect DNA availability to GR 

binding. Additionally, a redistribution of GR receptors in hippocampus was also 

observed after exposure to corticosteroids (Herman and Spencer, 1998) which may also 

account for a modified susceptibility upon higher circulating corticosterone levels. 

Although the specific mechanisms for A2AR/GR interaction are not yet clarified, the 

present results show that this has implications in the stress-mediated responses. A2AR 

overexpression disrupts HPA-axis function and increases dexamethasone susceptibility 

of hippocampal slices. Conversely, their blockade prevented GR deleterious effects on 

synaptic plasticity. This suggests A2AR as good therapeutic targets for the treatment of 

pathological conditions that impact on memory and synaptic plasticity. Moreover, it 

provides mechanistic data on how A2AR blockade is effective, which is by suppressing 

GR mediated effects and reestablishing HPA-axis function.  

In summary, our results provide the first evidence for an interaction between GR and 

A2AR, revealing that A2AR can modulate GR transcriptional activity and nuclear 

location. We also show that this impacts on GR mediated effects on synaptic plasticity 

and that, by modulating A2AR, GR deleterious effects can be prevented. These 

observations strengthen the rationale for A2AR blockade as therapeutic application, 

providing a novel transversal mechanistic possibility for its success. 
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Supplementary information 

 

Figure S4.1:Construct used to generate tg(CaMKII-hA2AR) rats. 
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The first evidence that adenosine A2A receptors (A2AR) could be implicated in stress 

comes from the observation that genetic deletion of A2AR affects anxiety and aggressive 

behaviour (Ledent et al., 1997). The subsequent report that A2AR antagonists applied 

prior and during a single episode of acute stress could prevent synaptic loss (Cunha et 

al., 2006), suggested that A2AR might have a far more important role in the control of 

stress response that the one considered so far. On the other hand increased hippocampal 

levels of A2AR were reported in multiple pathologies associated with cognitive decline, 

and their blockade was revealed to be beneficial (Batalha et al., 2013; Cunha et al., 

2006) ref de AD e PD). However, it was still unclear the extent to which A2AR were 

involved in hippocampal dysfunction. The work developed in these four years and 

presented in the present dissertation, aimed at clarifying the involvement of A2AR in 

stress response, to reveal their importance in hippocampal function and to obtain data 

supporting their potential as therapeutic targets for multiple pathologies. 

By taking advantage of a stress model that induces permanent changes in brain function 

(Sousa et al., 2014), it was possible to show that the stress effects can be reverted by 

blocking A2AR. The administration of a selective A2AR antagonist (KW6002) reverted 

the long-lasting consequences of stress on spatial memory, synaptic plasticity and 

neuronal morphology in the hippocampus. These findings strongly suggest that A2AR 

overactivation may be the cause rather than the consequence of the herein reported 

hippocampal deficits resulting from chronic stress. This was later confirmed by 

overexpressing A2AR in the forebrain and evaluating the consequences for memory 

performance. Neuronal selective overexpression of A2AR in the forebrain neurons 

triggered hippocampal dysfunction, inducing alterations similar to what is observed 

upon aging: increased long term potentiation and decreased memory performance. The 

results have also shown that is a shift in A2AR signaling, whenever over-activated, that 

induces hippocampal dysfunction. The signaling mediated by A2AR, either in stressed 

animals or upon overexpression, follows the same pattern as the one observed in aging 

and is reestablished together with the reestablishment of hippocampal function in 

stressed animals, when treated with the A2AR antagonist. These findings unequivocally 
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support the use of A2AR antagonists as novel therapeutic approach, not only to stress 

related pathologies but also to other in which hippocampal dysfunction and adenosine 

deregulation are present.  

The reversion of stress-induced deficits was not restricted to the hippocampus. A2AR 

blockade was also able to reestablish the normal function of the stress response system. 

This indicated that A2AR might have a broader role in modulating stress effects. 

Additionally, A2AR overexpression under CaMKII promoter impaired the stress 

response system. These observations constitute the first evidence that A2AR can control 

hormonal circadian oscillation. However, if this is due to the 

reestablishment/impairment of hippocampal function, or instead, due to a direct effect 

of A2AR,  still needs to be clarified.  

Since A2AR were shown to have an important effect in controlling the stress response, it 

was crucial to understand if there was a direct regulation of the glucocorticoid receptor 

(GR) effects. The data now presented reveal that A2AR activation increases GR 

transcriptional activity and nuclear location, thus affecting GR effects. More 

importantly, it was shown that A2AR can increase the susceptibility to GR agonists, and 

their blockade can prevent its effects, thus supporting the instrumental role of A2AR in 

triggering hippocampal dysfunction. Moreover, this novel interaction may explain the 

beneficial effects of the A2AR antagonists and their role in pathology. The A2AR/GR 

loop may actually be the trigger for hippocampal dysfunction (Fig 5.1) and constitute 

the underlying mechanism for the effectiveness of A2AR blockade. In fact, increased 

plasmatic levels of stress hormones are observed in association with increased 

hippocampal A2AR levels, in aging, stress models or Alzheimer disease. 

Finally, the results now presented not only strongly support the use of A2AR antagonists 

therapeutically, since they are effective in reverting already established deficits, but also 

provide original data on a novel transversal mechanism underlying pathology. It is 

important to note that until now, there were no scientific data explaining how A2AR 

blockade was beneficial and how A2AR were involved in pathology. Here a novel 

mechanism is revealed, not exclusive from stress, on how A2AR, by modulating GR 
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Figure 4.6 – Schematic representation of the interaction between A2AR and GR in pathological 
conditions and its outcome for hippocampal function.  
Upon stress or aging there is an impairment of the HPA-axis and as a consequence, the levels of 
corticosterone are increased. This is accompanied by an increase is adenosine levels and upregulation 
of A2AR, as well as decreased GR levels in the hippocampus. Is such situations, A2AR reinforce GR 
actions contributing to hippocampal dysfunction namely dendritic retraction, memory and synaptic 
plasticity impairments. In situations where A2AR are blocked, the hippocampal function is 
reestablished, resulting in restored  HPA-axis function,  memory performance and synaptic plasticity . 
 

actions, can induce damage (increased susceptibility to dexamethasone by A2AR 

overexpression) and how A2AR blockade can prevent GR effects (dexamethasone effect 

in synaptic plasticity is totally prevented by blocking A2AR). 

In summary, the present work unraveled a novel mechanism by which A2AR by 

modulating the stress receptors GR, can be instrumental in the development of 

hippocampal dysfunction. This knowledge is crucial for the therapeutic use of A2AR 

antagonists, but can also have important consequences for other biological 

circumstances in which an A2AR / GR crosstalk is involved. 
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Future perspectives 

Research aims at reaching to conclusions. However, most of the times it opens more 

doors that those that were closed and launches new questions. 

These results indicate that A2AR overexpression/overactivation can indeed be the trigger 

to neuronal dysfunction and unravel a novel mechanism by which this might be 

occurring. However it is still to be proven if the A2AR deleterious effects are mediated 

by promoting GR actions. In my opinion, it is crucial to understand whether the effects 

of A2AR overexpression could be prevented if GR effects were blocked. Recent work 

has found beneficial effects of a GR antagonist in a triple transgenic model to 

Alzheimer disease (Baglietto-Vargas et al., 2013), with improvements in memory 

performance and decreased amyloid beta levels, similar to what had been previously 

observed with A2AR antagonism in other models (Arendash et al., 2006; Espinosa et al., 

2013). However, it is not yet clear if:  

1) It is the hippocampal dysfunction, driven by A2AR overexpression that impairs 

HPA-axis function? or;  

2) It is the A2AR overexpression that impairs HPA-axis function and the 

consequent increased corticosterone levels that drive hippocampal dysfunction? 

But then again, will science ever be able to answer what was born first: the egg or the 

chicken? It is nonetheless an indisputable fact that hippocampal A2AR overexpression 

and HPA-axis dysfunction are observed in association in aging, stress related 

pathologies and AD.  

The increase in A2AR was accompanied by alterations in their signaling and 

impairments in hippocampal function. Moreover, the reestablishment of hippocampal 

function by A2AR blockade was observed together with a reestablishment of normal 

A2AR signaling. This strongly supports that a shift in A2AR signaling is driving the 

deleterious effect of A2AR. However there are no data on the exact mechanism by which 

this might be happening. It is crucial to understand if the molecular entity of A2AR is 

different upon overexpression. The coupling of A2AR to different signaling pathways 
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can be due to post-transcriptional modifications, different membrane locations or 

different protein/protein interactions. Understanding this, will be a key finding to better 

target A2AR and to understand how their increase is driving pathology. In addition, if 

we take these evidences together with the modulatory action of A2AR upon GR, there is 

still a question that needs to be answered: is the A2AR modulation of GR effects the 

same in control conditions or upon overexpression; and whether there are specific A2AR 

that modulate GR. This can have important implications for other systems where A2AR 

interfere with GR and would constitute an enormous therapeutic advantage, since the 

molecular target would be exclusive of pathological situations reducing unwanted side 

effects. 

The role of A2AR in controlling GR actions has important consequences for the nervous 

system. However GR have much broader actions in different systems. GR can mediate 

important immunosuppressive actions, regulate metabolism and affect cell division and 

differentiation (Kadmiel and Cidlowski, 2013). Adenosine is present in all cells and is 

produced particularly in situations of high metabolic demand or oxygen deprivation and 

has also important roles in inflammation with immunosuppressive actions being 

mediated by A2AR activation (Hasko and Cronstein, 2013). Surprisingly, there are no 

data on how adenosine might modulate GR actions in other contexts. The expansion of 

this interaction to the immune response, cell proliferation, tumor response and other 

cellular functions that imply GR or corticosteroids use in therapeutics, could have an 

enormous clinical impact. 

Finally, the divergence between A2AR activation and A2AR blockade in different disease 

contexts and physiological systems has been discussed. A2AR have been shown to 

mediate immunosuppressive actions in the periphery (Hasko and Cronstein, 2013) and 

to have paradoxical pro-inflammatory and anti-inflammatory actions  in the central 

nervous system (Dai and Zhou, 2011). Once again these clues suggest the existence of 

different signaling pathways, different targets and different effects mediated by A2AR.
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Adenosine A2A receptor blockade reverts hippocampal
stress-induced deficits and restores corticosterone
circadian oscillation
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Maternal separation (MS) is an early life stress model that induces permanent changes in the
central nervous system, impairing hippocampal long-term potentiation (LTP) and spatial
working memory. There are compelling evidences for a role of hippocampal adenosine A2A

receptors in stress-induced modifications related to cognition, thus opening a potential
window for therapeutic intervention. Here, we submitted rats to MS and evaluated the long-
lasting molecular, electrophysiological and behavioral impairments in adulthood. We then
assessed the therapeutic potential of KW6002, a blocker of A2A receptors, in stress-impaired
animals. We report that the blockade of A2A receptors was efficient in reverting the behavior,
electrophysiological and morphological impairments induced by MS. In addition, this effect is
associated with restoration of the hypothalamic-pituitary-adrenal axis (HPA-axis) activity, as
both the plasma corticosterone levels and hippocampal glucocorticoid receptor expression
pattern returned to physiological-like status after the treatment. These results reveal the
involvement of A2A receptors in the stress-associated impairments and directly in the stress
response system by showing that the dysfunction of the HPA-axis as well as the long-lasting
synaptic and behavioral effects of MS can be reverted by targeting adenosine A2A receptors.
These findings provide a novel evidence for the use of adenosine A2A receptor antagonists as
potential therapy against psychopathologies.
Molecular Psychiatry advance online publication, 28 February 2012; doi:10.1038/mp.2012.8

Keywords: adenosine A2A receptors; corticosterone; hippocampus; HPA-axis;
maternal separation; stress

Introduction

Exposure to stress has deleterious effects on brain
structure and function, which could be manifested
either immediately after stress,1 as a long-term
vulnerability to cognitive deficits2 or even as an
increased susceptibility to neuropsychiatric disor-
ders, where stress has a major role.3,4

Mother–infant interaction is a key factor for brain
maturation and disease susceptibility which in
humans can manifest in cognitive and behavioral
disorders later in life.5,6 In rats, the daily separation of
the litter from their mothers for 180min each day
during postnatal days (PNDs) 2–14 will result in an
alteration of maternal behavior, namely with a

significant reduction in licking/grooming duration.7

During this period, the hippocampus, which is
critically involved in long-term memory formation8

and is also a primary target for stress hormones in the
central nervous system,1,9 goes through great devel-
opment. The majority of hippocampal granule neu-
rons develop and extend their axons between PND 1
and 2110 and the peak period of neurogenesis and
mossy fiber outgrowth overlaps with the stress
hyporesponsive period (PND 4–14) in neonatal rats.11

This will induce changes that persist throughout
adult life at the level of gene expression, neurochem-
istry, electrophysiology proprieties and morphol-
ogy12,13 with behavioral and neuroendocrine signs
of cognitive deficits and over-activation of the
hypothalamic-pituitary-adrenal axis (HPA-axis) as
adults.7,14–16

Adenosine receptors in the hippocampus are
important modulators of synaptic transmission and
neuronal excitability. Glutamatergic synaptic trans-
mission in physiological conditions is controlled
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negatively by the dominant adenosine A1 receptors,
and positively to a lesser extent by A2A receptors.17

Interestingly, this pattern appears to be modified in
the aged hippocampus, with a marked increase in the
expression of A2A receptors and a decrease in the
expression of A1 receptors.18,19 These changes are
accompanied by a strong direct facilitatory effect of
A2A receptors on the release of glutamate.20 This is
also observed in other situations associated to
neuronal dysfunction, such as epilepsy, acute stress
or animal models of Alzheimer’s disease,21 which
suggests a deleterious contribution of A2A receptors to
these conditions. The blockade of A2A receptors was
proven beneficial against synaptic loss associated
with acute stress in the hippocampus.22 Interestingly,
cognitive impairments also occur when excessive
levels of corticosteroids are attained due to disease, or
due to hypersecretion in response to a stressor.23,24

However, it is still unknown the extent to which
A2A receptors are involved in the long-term effects of
early life stress. Here, we submitted rats to maternal
separation (MS) and evaluated the long-lasting mole-
cular, electrophysiological and behavioral impair-
ments at adult age. We then assessed the therapeutic
potential of blocking endogenous activation of A2A

receptors, by administering a selective antagonist,
KW6002 (istradefylline), orally for 1 month to stress-
impaired animals. We report that the blockade of A2A

receptors was efficient in reverting the long-lasting
behavior, morphological and electrophysiological im-
pairments induced by MS. We also show that this
effect is associated with the re-establishment of the
HPA-axis activity, as both the plasma corticosterone
levels and hippocampal glucocorticoid receptor ex-
pression pattern returned to physiological-like status
after the treatment.

Materials and methods

Animals
Pregnant Wistar rats were purchased (Harlan, Barce-
lona, Spain) in mid-gestation and were due in our
animal facility. All animals were handled according
to European Community guidelines and Portuguese
law on animal care (1005/92). The animals that were
killed by decapitation were anesthetized under
halothane atmosphere.

MS protocol
The protocol used has been previously validated and
described.25 Wistar dams and their litters were
assigned either to the control (CTR—non-separated)
or to the MS groups as described before.26 To exclude
artifacts from genetic background, at PND 2, all the
litters were collected together, gender assessed and
the pups were randomly distributed to foster dams
(gender proportion maintained). MS pups were
removed from their cages as a group from PND 2 to
14, for 180min, daily, at 9 am, and placed in an
isolation cage in an adjacent room kept at
32.0±0.5 1C. At the end of the separation period,

pups were returned to their home-cage and rolled in
the soiled home cage bedding before reuniting with
the mother. CTR pups were not handled and were
maintained in their home-cages until weaning. At day
21 the pup’s gender was confirmed, males weaned
and housed in groups of 5–8 animals per cage until
use at adult age (8–14 weeks; according to diagram in
Supplementary Figure S1).

Oral administration of the drug
KW6002 (istradefylline), a selective adenosine A2A

receptor antagonist27 was orally administered diluted
in the drinking water, being continuously available.
The weight of the animals and the volume intake were
assessed twice a week and the concentration of the
solution was adjusted so that the drug intake was
maintained at 3mgkg–1 per day. Animals were
divided in four groups: CTR or MS, drinking vehicle
(0.025% methylcellulose) and CTR KW or MS KW
drinking KW6002 (3mgkg–1 per day, 0.025% methyl-
cellulose). The treatment started at 4–6 weeks old,
and was prolonged for 1 month until sacrifice. The
KW6002 administration was kept throughout the
behavioral assessments.

Corticosterone quantification
Blood was extracted from the tail, in animals
previously handled to minimize stress and without
anesthesia, at two different time points, 8 am (nadir)
and 8 pm (zenith). The plasma was isolated by
centrifugation at 2000 g, 4 1C for 15min and corticos-
terone quantified by radioimmunoassay using the rat
corticosterone 3H kit from MP Biomedicals, UK
according to the manufacturer’s protocol.

Behavioral assessments
CTR, MS, CTR KW, MS KW were first handled for 5
days before testing the behavior assays, that were
performed in the following sequence: open-field (OF),
Elevated plus maze (EPM) and Morris water maze
(MWM):28 Rats were given spatial acquisition training
consisting of four trials/day for 4 consecutive days, as
performed before.29 On the 5th day a probe test was
given in which the platform was removed and
animals were allowed to swim freely for 60 s while
recording the percentage of time spent on each
quadrant. The latency to found the platform during
acquisition and the percentage of time in the platform
quadrant in probe test were used to evaluate hipppo-
campal-dependent memory. EPM: The maze is
shaped like a plus sign and consists of two ‘open’
and two ‘closed’ arms, arranged perpendicularly, and
elevated 50 cm above the floor. Each animal was
placed at the center of the equipment, facing an open
arm. Each test lasted 5min and all testing sessions
were performed between 10:00 am and 17:00 pm in a
sound-attenuated room. The maze was cleaned with a
70% ethanol solution between each animal. The total
time spent in the open arms and the total arms entries
(number of entries in openþ closed arms) were used
as anxiety and locomotor measures.30 Open field:
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The animals were placed at the center of the arena
(66� 66 cm) and allowed to explore for 5min.
Changes in mean speed and path length of the
subjects were continuously monitored by an auto-
mated tracking system (Smart 2.5, PanLab, Barcelona,
Spain). The maze was cleaned with a 70% ethanol
solution between each animal.

Histological procedures
The day after the last testing session, five rats from
each experimental group were perfused transcardially
with phosphate-buffered saline, under deep pento-
barbital anesthesia. Brains were removed and split
into two hemispheres, and processed either for
stereology, or for Golgi-Cox staining according to the
procedures previously described.31,32 Briefly, for
stereology the left hemispheres were included in
glycolmethacrylate (Tecnovit 7100; Heraeus Kulzer,
Werheim, Germany) and every other microtome-cut
section (30 mm) was then collected on a gelatinized
slide, stained with Giemsa, and mounted with
Entellan New (Merck, Darmstadt, Germany). The
shrinkage factor was calculated according to Madeira
et al.33 For 3D neuronal reconstructions, hemispheres
were removed and immersed in Golgi-Cox solution (a
1:1 solution of 5% potassium dichromate and 5%
mercuric chloride diluted 4:10 with 5% potassium
chromate34) for 14 days; hemispheres were then
transferred to a 30% sucrose solution (3 days), before
being cut on a vibratome. Coronal sections (200mm
thick) were collected in 6% sucrose and blotted dry
onto gelatin-coated microscope slides. They were
subsequently alkalinized in 18.7% ammonia, devel-
oped in Dektol (Kodak, Linda-a-Velha, Portugal),
fixed in Kodak Rapid Fix (prepared as manufacturer
instructions), dehydrated through a graded series of
ethanols, and cleared in xylene before being mounted
and coverslipped. Slides were coded before morpho-
metric analysis in both sets.

Region and layer boundaries
We analyzed the following regions of the hipocampal
formation: the dentate gyrus (including polymorphic,
granule cell layer and molecular layer), CA1 (strata
oriens, pyramidale, radiatum and lacunosum-mole-
culare) and CA3 (strata oriens, pyramidale, lucidum
and radiatum). The above-mentioned regions were
outlined according to the atlas of Paxinos and
Watson,35 based on noticeable cytoarchitectural
differences.36

Stereological procedures
Volume estimations were performed using StereoIn-
vestigator software (MicroBrightField, Williston, VT,
USA) and a camera (DXC390; Sony, Tokyo, Japan)
attached to a motorized microscope (Axioplan 2;
Zeiss, Oberkochen, Germany). Cavalieri’s principle37

was used to assess the volume of each region. Briefly,
every 10th section was used and its cross-sectional
area was estimated by point counting at a final
magnification of � 112. For this, we randomly super-

imposed onto each area a test point grid in which the
interpoint distance, at tissue level, was as follows: (1)
150mm for the three layers of the dentate gyrus, (2)
250mm for the three layers of CA1 and CA3. The
volume of the region of interest was calculated from
the number of points that fell within its boundaries
and the distance between the systematically sampled
sections.

Dendritic tree analysis
Three-D reconstructions of representative Golgi-im-
pregnated neurons from CA1 were made. The criteria
used to select neurons for reconstruction were as
follows: (i) full impregnation of the neurons along the
entire length of the dendritic tree; (ii) dendrites
without significant truncation of branches; (iii)
relative isolation from neighboring impregnated neu-
rons to avoid interference with the analysis; (iv) no
morphological changes attributable to incomplete
dendritic impregnation of Golgi–Cox stain. Golgi-
impregnated pyramidal-like neurons of the CA1
region were readily identified by their characteristic
pyramidal or piriform soma, spine-sparse primary
dendrites and spine-dense secondary dendrites (Fig-
ure 2e for representative reconstructions). For each
selected neuron, all branches of the dendritic tree and
the location of all dendritic spines were reconstructed
at �600 magnification, using a motorized microscope
(Carl Zeiss Axioplan 2, Hamburg, Germany, with oil-
objectives), attached to a camera (DXC-390, Sony,
Tokyo, Japan) and Neurolucida software (Microbright-
field). Three-D analysis of the reconstructed neurons
was performed using NeuroExplorer software (Micro-
brightfield). In each hemisphere, 10 CA1 pyramidal
neurons were reconstructed; as a result in this study
we have analyzed 200 neurons. Several aspects of
dendritic morphology were examined. To assess
overall changes, total dendritic length, number of
ramifications and number of dendrites were com-
pared between groups. Sholl analysis was performed
to assess changes in the ramification pattern.

Electrophysiological recordings
After decapitation the brain was rapidly removed and
the hippocampi were dissected free in ice-cold Krebs
solution composed of (mM): NaCl 124; KCl 3;
NaH2PO4 1.25; NaHCO3 26; MgSO4 1; CaCl2 2; and
glucose 10, previously gassed with 95% O2 and 5%
CO2, pH 7.4. 400mM slices were obtained with a
McEwen tissue shopper and field excitatory post-
synaptic potentials (fEPSPs) were recorded as pre-
viously29 in stratum radiatum of the CA1 area. Input–
output (I/O) curves and long-term potentiation (LTP,
100Hz, 1 s, 100 pulses induced at 0.5mV/ms; < 50%
max) were recorded as previously. The second
hippocampus was rapidly frozen in liquid nitrogen
for further analysis.

Tissue processing
Samples were homogenized either in radio immuno-
precipitation-assay buffer (50mM Tris, 1mM EDTA,
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150mM NaCl, 0.1% SDS, 1% NP 40, pH 8;38 or in
0.32M sucrose solution with 50mM Tris at pH 7.619

supplemented with protease inhibitors (ROCHE,
Mannheim, Germany). The first were centrifuged at
14 000 g for 15min, and the second at 1000 g for
10min, at 4 1C. The supernatant was collected,
corresponding to whole-tissue lysate and whole-
tissue homogenate, respectively. For membrane iso-
lation the whole-tissue homogenate was centrifuged
at 14 000 g for 12min, at 4 1C, the pellet is the
membrane fraction. Protein was quantified using the
BioRad Protein or DC Protein based on procedures
previously described.39,40

Saturation-binding assays
The radioligand-binding experiments were performed
as described41 with membrane fractions. Briefly,
[3H]ZM 241385 binding (0–10nM) was for 1h with
20–35mg of protein/well for striatum membranes and
[3H]DPCPX (0–10nM) binding was for 2h with
40–60mg protein/well of hippocampal, 60–100mg
protein/well of cortex and 20–40mg protein/well of
striatum membranes. Specific binding was deter-
mined subtracting the non-specific binding, measured
in the presence of 2mM of XAC and normalized for
protein concentration. Radioactivity was determined
after 12h with an efficiency of 55–60% for 2min. All
binding assays were performed in triplicate.

Immunoblotting
Lysates or homogenates were denatured with 5�
sample buffer (350mM Tris pH 6.8, 30% glycerol, 10%
SDS, 600mM DTT and 0.012% Bromophenol blue, pH
6.8) and heated either at 951C for 5min or at 60–70 1C
for 30min, respectively, and further processed as
before.29 A2AR and GABAAR antibodies (Upstate/
Millipore, Temecula, CA, USA; 05–717 and 05–474)
were at 1:2000, GR, MR (Santa Cruz Biotechnology,
Heidelberg, Germany; sc-1004 and sc-11412) at 1:1000
and 1:200, NMDAR2B (Cell Signaling, Danvers, MA,
USA; D15B3) at 1:1000 and glutamate receptor one
(GluR1) (Millipore, 05–855) at 1:6000. Optical density
was determined with Image-J software and normalized
to the respective b-actin or a-tubulin band density.

Drugs
A2AR-selective antagonist, 2-(2-Furanyl)-7-(2-phenyl-
ethyl)-7H-pyrazolo(4,3-e)(1,2,4)triazolo(1,5-c)pyri-
midin-5-amine (SCH58261) and the non-selective
adenosine receptor antagonist 8-(4-((2-minoethyl)
amino)carbonylmethyloxyphenyl)xanthine (XAC) were
purchased from Tocris Cookson, UK. These solutions
were diluted in the assay solution from 5mM stock
aliquots made in DMSO stored at �20 1C. A2AR-
selective antagonist, (E)-8-(2-(3,4-dimethoxyphenyl)-
vinyl)-1,3-diethyl-7-methyl-3,7-dihydropurine-2,6-dione
(KW6002, istradefylline) was synthesized according
to a published procedure.42 The purity of the product
was determined by HPLC analysis coupled to electro-
spray ionization mass spectrometry and was >98%.

Adenosine deaminase (from calf intestine 10mg/2ml,
EC 3.5.4.4) was from ROCHE; A1R-selective antago-
nist, (propyl-3H)8-cyclopentyl-1,3-dipropylxanthine
([3H]DPCPX, specific activity 100 Ci per mmol) was
from Amersham, Buckinghamshire UK, and A2AR-
selective antagonist, 4-(2-(7-Amino-2-(2-furyl)(1,2,4)-
triazolo(2,3-a) (1,3,5)triazin-5-ylamino)ethyl)phenol,
([3H]ZM 241385, specific activity 27.4 Ci per mmol)
was from ARC, St Louis, MO, USA. All these drugs
were diluted directly in the incubation solution each
day. HRP-coupled secondary antibodies were from
Santa Cruz Biotechnology. All other reagents used
were of the highest purity available either from Merck
or Sigma Aldrich, Madrid, Spain.

Statistics

Values presented are mean±s.e.m. of n experiments.
To test the significance of the differences between
CTR and MS groups, an unpaired Student’s t test was
used. When comparing CTR, MS, CTR KW and MS
KW groups a one-way ANOVAwas used, followed by
a Bonferroni’s Multiple Comparison post hoc test. For
the Sholl analysis of reconstructed neurons a repeated
measures analysis was used. For the saturation
binding curves an F-test was used to determine
whether the competition curves were best fitted by
one or two independent binding site equation and if
the parameters obtained from the CTR and MS
saturation curves (Bmax and KD) were different. For
the analysis of the MWM acquisition curve and
corticosterone circadian oscilation, the statistical
differences were evaluated using two-way ANOVA
repeated measures test. Values of P<0.05 were
considered to be statistically significant.

Results

MS induces long-lasting regional effects in the brain

MS induces numerous changes in the brain particu-
larly in the hippocampus.43,44 The balance between
mineralocorticoid and glucocorticoid receptors (MR
and GR, respectively) can determine the impact of
stress in different brain areas.45 We quantified the
levels of GR and MR in the hippocampus, cortex and
striatum of adult animals previously subjected to MS
(Figure 1a). MS has lead to a long-lasting decrease of
the GR levels that was more evident in the hippo-
campus (0.74±0.04 of CTR, n=8, P<0.05) than in
cortex (0.86±0.03 of CTR, n=4, P<0.05) or striatum
(0.90±0.03 of CTR, n=4; P<0.05). MR levels were
not modified in any of the brain areas analyzed
(Figure 1b). Concomitant changes on the levels of
adenosine receptors were observed. Comparing with
CTR, MS animals presented a 1.49±0.04-fold in-
crease (n=9; P<0.05) in the levels of A2AR that was
restricted to the hippocampus (Figure 1c). A hippo-
campal-specific decrease in the A1R levels was also
observed; Bmax values were of 1202±33 fmol per mg
protein (n=4) for CTR animals and 1073±23 fmol per
mg protein for MS animals, (n=4; P<0.05; Figure 1d).
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MS animals also presented a sustained increase in
plasmatic corticosterone levels (Figure 1e).

Adenosine A2A receptors are involved in synaptic
changes induced by MS
To evaluate the impact of stress in synaptic transmis-
sion and plasticity, fEPSPs were measured in the CA1
area of the dorsal hippocampus. Basal synaptic
transmission was accessed by performing I/O curves,
whereas synaptic plasticity was evaluated by LTP
induced by high frequency stimulation (100Hz, 1 s).

The I/O curve was not modified by MS (Figure 2a,
n=3). However, LTPmagnitude (Figure 2b) was reduced
in MS animals to 34.4±2.7% from 50.7±3.4% of
potentiation obtained in CTR (n=7, P<0.05).

To evaluate whether the increase in A2A adenosine
receptors was involved in the impairments observed in
synaptic plasticity, LTP was induced in the presence of
SCH58261 (50nM), a selective A2AR antagonist. The ex
vivo blockade of A2AR reverted the LTP deficits
induced by MS without affecting LTP magnitude in
CTR animals (53.1±3.7% and 57.3±1.7% of potentia-
tion, respectively, n=4–7, P>0.05; Figure 2c).

Moreover, the in vivo administration of the A2A-
selective antagonist KW6002 for 1 month to adult MS
animals was also able to revert the LTP deficits
observed (47.6±3.9% of potentiation in MS KW
animals, n=4, P>0.05 versus CTR; Figure 2d).

In order to better characterize the plastic changes
observed in the electrophysiological studies, a 3D
morphological analysis of dendritic arborizations of
CA1 pyramidal neurons was performed. Data revealed
a significant treatment effect in the total length of
apical dendrites of pyramidal neurons (F=7.371,
P<0.001), and in the total number of apical dendrite
ramifications (F=9.272, P<0.001); post-hoc analysis
showed that MS induced a significant decrease in the
total length of apical dendrites when compared with
CTR (P<0.05) (Figure 2e). Similarly, MS pyramidal
neurons had significantly less ramifications in apical
dendrites when compared with CTR (P<0.05). Both
parameters were restored by KW6002 treatment
(P>0.05 versus CTR). There were no significant
differences in the structure or number of basal
dendrites. Sholl analysis showed coherent changes
in the pattern of ramification (F=5.691, P<0.001).
The changes in apical dendrite arborizations
observed in MS animals when compared with CTR
(P<0.05) were reverted by KW6002 (Supplementary
Figure S2).
To further evaluate the consequences to the overall

morphology we undertook an estimation of hippo-
campal formation volumes. Our data revealed that
neither MS nor KW6002 treatment significantly
affected volumetric estimates (Supplementary
Table S1).

Figure 1 Region-specific effects of MS. MS induced region-specific changes in, GR (a) MR (b) A2AR (c) and A1R (d) and an
increase in plasmatic corticosterone levels (e). Protein levels of GR, MR (in all brain areas) and A2AR (in hippocampus and
cortex) were evaluated by western blotting. Specific immunoreactivity was normalized to that of b-Actin or a-tubulin. For
A2AR immunoreactivity 5mg of striatum were used as positive control. Results are the mean±s.e.m. of 3–9 experiments;
*P<0.05, comparing with CTR, calculated using an unpaired Student t-test. A1R levels in all areas and A2AR levels in
striatum were measured by saturation-binding curves with the A1 or A2A receptor selective antagonist [3H]DPCPX or [3H]ZM
24135, respectively. [3H]DPCPX or [3H]ZM 24135 (7 nM) were incubated with 20–100 mg of membranes in a final volume of
300 ml for 2 h/1h at room temperature. The ordinates represent the specific binding obtained upon subtraction of the non-
specific binding, determined in the presence of 2 mM of XAC, from total binding. Values are the mean±s.e.m. of 4–5
experiments performed in triplicate. *P<0.05 calculated using an F-test compared with CTR. Corticosterone levels in the
morning period (8 am) were measured by radioimmunoassay using the rat corticosterone [3H] kit. Results are mean±s.e.m. of
nine experiments; *P<0.05 obtained using a unpaired Student t-test.
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Oral administration of a selective A2A receptor
antagonist reverts the stress-induced anxious
behavior and learning-deficits

We then evaluate the extent to which A2AR are
involved in the stress-induced behavior alterations,
by the administration of the A2AR-selective anta-
gonist, KW6002, to adult MS animals.

Anxious behavior and hippocampal-dependent
memory were evaluated by the EPM and the MWM

paradigms, respectively. In the EPM, MS animals
presented a higher anxious-related behavior
(spent less time in the open arms, 11.4±2.0% versus
28.9±5.3% in CTR, n=8–11, P<0.05), validating the
MS stress induction. The hyperanxious behavior in
MS animals was reverted upon treatment with
KW6002 (time in open arms: 27.3±4.4%, n=8,
P>0.05 versus CTR; Figure 3a). KW6002 treatment
by itself had no effect in the anxious behavior of CTR

Figure 2 Involvement of adenosine A2A receptors in the synaptic changes induced by MS. (a) I/O curves performed to
evaluate synaptic transmission in CTR and MS animals and (b) LTP (high frequency stimulation, 100Hz,1 s), used to evaluate
synaptic plasticity. Representative recordings of the fEPSPs obtained both for CTR and MS animals before LTP induction and
in the last 10min are presented. The effect of SCH58261 (50nM) application for 30min before LTP induction and throughout
the protocol is shown in (c). The outcome of KW6002 treatment upon LTP is in (d) with representative recordings of the
fEPSPs obtained for CTR, MS and MSþKW6002 animals, before LTP induction and 1h after LTP. Bar graphs are obtained by
making the average of the last five timepoints of each experiment. Results are the mean±s.e.m. of 3 (a) or 4–7 experiments
*P<0.05, comparing with CTR. (e) Administration of KW6002 reverses dendritic atrophy induced by MS in CA1 pyramidal
neurons. Upper panel depicts representative schematics of 3D reconstructions of CTR, MS, CTR KW and MS KW CA1
neurons. *P<0.05, comparing with CTR, #P<0.05, comparing with MS, calculated using a one-way ANOVA followed by a
Bonferroni’s Multiple Comparison Test.
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animals (26.5±3%, n=7, P>0.05), neither had an
impact in locomotor performance in EPM (Figure 3b).
On the MWM, the learning ability (Figure 3c) of MS
animals was impaired, so that at day three MS
performed worse than CTR animals (F(3,132) = 8.56,
n=6, P<0.0001). These deficits were reverted by
blocking A2AR in vivo (n=10, P<0.05). The retention
ability of MS animals was also compromised, as in the
probe test MS animals spent less time in the platform
quadrant than CTR (36.8±3.9%, n=8; P<0.05 versus
51.3±5.0%, n=7; Figure 3d). When treated with the
A2AR antagonist the retention ability of MS animals
was restored (52.8±4.2% of the time in the platform
quadrant; n=8, P>0.05; Figure 3d). KW6002 by itself
had no effect in the performance of CTR animals.

A2AR are highly abundant in striatum exerting
important effects in motor control.46 To evaluate
directly locomotor activity, the open-field arena test
was used. In accordance with data obtained in the
EPM, neither MS nor the KW6002 treatment induced
changes in the locomotor performance of the animals,
as no alterations were observed in the mean speed on
the open-field arena (Figure 3e).

Oral administration of a selective A2A receptor
antagonist re-establishes stress-induced modifications
on synaptic markers
Given the positive effects of the in vivo KW6002
treatment in behavior, in ex vivo synaptic plasticity

and in neuronal morphology, we next explored the
molecular changes that could underlie the observed
therapeutic effects. The levels of A2AR and GR were
measured in the hippocampus of CTR andMS animals
treated with KW6002. Given the role of AMPA,
GABAA and NMDA receptors in synaptic transmission
and plasticity, AMPA-GluR1, GABAA-b2/3 and
NMDAR2B subunits levels were also evaluated.
AMPA-GluR1 levels in MS animals were significantly
decreased comparing with CTR (0.81±0.02, n=9,
P<0.05; Figure 4a). These values were re-established
by KW6002 (0.98±0.03, n=4, P>0.05 versus CTR).
GABAA-b2/3 levels decreased in MS animals
(0.78±0.02, n=8; P<0.05; Figure 4b) and increased
to 1.15±0.06 of CTR (n=6, P<0.05) upon KW6002
treatment. The levels of the NMDAR2B subunit were
not altered by MS nor by KW6002 treatment (n=5;
Figure 4c). Furthermore, the increased levels of A2AR
observed in MS animals (1.49±0.04-fold to CTR, n=9;
P<0.05) were maintained in MS KW animals
(1.56±0.05-fold to CTR, n=5, P>0.05; Figure 4d).
The KW6002 administration alone increased the
levels of A2AR to 1.25±0.09 of CTR (n=5, P<0.01;
Figure 4d), as could be expected from a chronic
administration of receptor antagonist. The GR levels
(Figure 3e) were not changed by KW6002 in CTR
animals (n=7, P>0.05); however, when KW6002 was
administered to MS animals the levels of GR increased
to values similar to CTR (1.033±0.04, n=6, P>0.05).

Figure 3 Administration of KW6002 reverts the stress-induced anxious behavior and learning deficits. Anxious behavior
(a, b) and locomotor activity (e) were evaluated by the elevated-plus-maze-test and open-field, respectively. Hippocampal-
dependent memory performance was assessed by the MWM test, in which acquisition (c) and retention (d) were evaluated.
Results are the mean±s.e.m. of 6–9 animals; *P<0.05, comparing with CTR, #P<0.05 comparing with MS, calculated using
two-way ANOVA repeated measures (a) or one-way ANOVA followed by a Bonferroni’s Multiple Comparison Test.
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The A2AR antagonist re-establishes the corticosterone
circadian oscillation

As the blockade of A2AR reestablishes the GR levels in
the hippocampus, we hypothesized that this could
involve a regulation of the HPA-axis function, which
is compromised due to the early life stress.14 HPA-axis

activity was evaluated by measuring circadian
changes in plasmatic corticosterone levels (Figure 5).
CTR animals had the expected circadian oscilla-

tion, with corticosterone levels significantly elevated
at 8 pm comparing with those measured at 8 am MS
animals present significantly higher corticosterone
levels already at 8 am (234±13ngml–1 versus
142±27ngml–1; P<0.05, n=9) comparing with CTR
at the same time of the day, and the absence of a
circadian oscillation. Animals treated with KW6002
had a restored circadian variation, with plasmatic
corticosterone levels at 8 am similar to CTR
(63±5ngml–1), (F(3,24) = 9.04, P=0.0003). KW6002
alone did not affect corticosterone levels, neither at
zenith nor at nadir.

Discussion

The data now reported reveal that adenosine A2A

receptor activation is directly involved in the stress
deleterious effects in the brain. We show, for the first
time, that the administration of a selective adenosine
A2A receptor antagonist reverts the long-lasting con-
sequences of stress on spatial memory, synaptic
plasticity and neuronal morphology in the hippocam-
pus. Moreover, our data indicate that these effects are

Figure 4 Administration of KW6002 reverts the synaptic changes induced by MS. The effects of the treatment with KW6002
in the levels of GluR1 subunit of AMPA receptors (a), b2/3 subunit of GABAA receptors (b), NMDAR2B (c), A2AR (d), and GR
(e) were evaluated by western blotting. Specific immunoreactivity normalized to that of a-tubulin. Results are the
mean±s.e.m. of 4–9 experiments; *P<0.05, comparing with CTR and #P<0.05, comparing with MS, calculated using a one-
way ANOVA followed by a Bonferroni’s Multiple Comparison Test.

Figure 5 The KW6002 administration re-establishes the
corticosterone circadian oscillation. Corticosterone levels in
the plasma measured at nadir and zenith. Results are mean
of 6–9 animals.*P<0.05, comparing with CTR, #P<0.05
comparing with MS, fP<0.05, comparing with am values,
calculated using a one-way ANOVA followed by a Bonfer-
roni’s Multiple Comparison Test.
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associated with the re-establishment of the HPA-axis
activity.

An imbalance in adenosine receptors has been
observed in multiple conditions,21 particularly with
progressive aging,18,19 which has consequences to
their modulatory effects.19,41 In the aged rat brain,
adenosine A1 receptor density is decreased,47 parti-
cularly in hippocampus and cortex.18 However, A2A

receptor levels are differently affected: they decrease
in striatum, but in contrast there is an increase in
their expression in cortical and hippocampal areas.18

As we now show, the changes in adenosine receptor
levels induced by MS, follow a close pattern to the
one occurring in the aged brain, that is, an increase in
A2A and a decrease in A1 receptor levels. The
modifications observed are, however, restricted to
the hippocampus, probably due to the changes in GR
levels that are more profound in this brain area. Thus,
as observed in aging,19,48 MS induces a decrease in GR
levels, increasing the MR/GR ratio, an increase in
plasma corticosterone levels and changes in adeno-
sine receptor levels. Thereupon our data reinforce the
hypothesis that stress is associated with an early
aging in the hippocampal area.2,49 Different brain
regions have a distinct vulnerability to stress due to
the differential expression of GR and MR in the
brain.50 In the hippocampus, corticosterone is able to
trigger signaling pathways activated by both GR and
MR due to their particular high-affinity ratio for GR,
which does not occur in other brain areas.50 This
confers to the hippocampus a particular susceptibility
to stress effects and consequent deficits. Additional
region-specific effects were reported previously, such
as alterations in GABAA receptor levels and MAP
kinase activity.51,52

We have observed a sustained increase in the
plasmatic levels of corticosterone, a feature that is
also shared with ageing.53 Such an increase is usually
associated to a downregulation in GR,11,54,55 as a way
to limit their action. This is generally an isolated and
reversible effect, reverted whenever the plasma levels
of corticosterone return to baseline.55 However, as we
show, MS animals exhibit elevated plasma corticos-
terone levels throughout life and an associated
sustained downregulation of GR in the hippocampus.
These receptors regulate memory and synaptic plas-
ticity.45,56 Accordingly, we found that LTP is impaired
in MS animals and this is accompanied by a poorer
performance in a spatial memory task, the MWM. The
observed changes in synaptic plasticity can be related
to the altered levels in GABAA and AMPA receptors,
reported here. Others have described that MS induces
a decrease in markers of synaptic plasticity, such as
NCAM or synaptophysin,43 as well as in the levels of
NMDAR2B, AMPAGluR1 and GluR244 in the hippo-
campus. Changes now observed in glutamate receptor
levels had, however, no impact upon basal synaptic
transmission, possibly because they are accompanied
by a decrease in GABAA receptors, which will result
in a final compensatory balance in order to maintain
homeostasis.

The observed impairments in LTP were overcome
by blocking adenosine A2A receptors. These receptors
are known to have stimulatory effects on basal
synaptic transmission in the hippocampus17,41 by
promoting glutamate release,57 and were recently
shown to potentiate LTP when exogenously acti-
vated.58 The protective effect of administering A2A

receptor antagonists in vivo has already been de-
scribed.21 By contrast, we have observed before that,
in particular conditions, the acute treatment of slices
with SCH58261 may instead cause a LTP drop. This is
particular to overexcitability conditions, such as
ageing, in which LTP is enhanced29,59 due to an age-
induced shift in A2A receptor signaling.19,41 However,
in more chronic patho-physiological situations, in
which LTP is decreased, the SCH58261 is able to
promote its restoration,60 in accordance with what we
now report for stress-induced deficits.
More importantly, the chronic administration of a

selective antagonist, KW6002, for 1 month, clearly re-
established the MS-driven impairment in LTP. How-
ever, the A2A receptor antagonist did not alter LTP in
CTR animals, whereas clearly promoting the recovery
of the impaired LTP, but only in MS animals. This
suggests that, rather than having a direct effect on
glutamatergic transmission, A2A receptors may be
instead modulating the GR-mediated effects. Indeed,
we have recent data showing the ability of A2A

receptors to influence GR transcriptional activity
and nuclear translocation.61 Thus, the chronic block-
ade of A2A receptor may decrease GR transcriptional
activity and thereby the overall GR-driven effects.
Genetic deletion of A2A receptors affects anxiety

and aggressive behavior,62 and this constituted the
first evidence that A2A receptors could be implicated
in stress. The subsequent report that A2A receptor
antagonists applied before and during a single
episode of acute stress prevented synaptic loss,22

suggested that A2A receptors overactivation could
underlie the genesis of stress-induced changes. None-
theless, the question whether this overactivation is a
consequence of the stress paradigm or a triggering
factor to the observed deficits has never been
addressed before.
We now explored the possibility that blocking the

action of A2A receptors would restore pre-existing
stress-associated impairments. The advantage of
using KW6002 over other antagonists for A2A recep-
tors is its enhanced bioavailability, permeability to
the brain blood barrier, having a longer half-life and
high affinity and selectivity towards A2A receptors.27

Additionally, KW6002 has undergone clinical trials
for Parkinson’s and therefore its safety has been
established.63 We now report that oral administration
of KW6002, for 1 month, to adult animals previously
subjected to MS, reestablishes impaired hippocam-
pal-dependent memory, synaptic plasticity and
morphology, and reverts the anxious behavior. The
learning ability of MS animals was restored by the
treatment, as well as the retrieval, evaluated by
the time spent in the previous retained platform
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quadrant. This is associated with a re-establishment
of the hippocampal CA1-induced LTP. The insertion
of AMPA receptors containing GluR1 subunit is a
constitutive part of LTP induction64 and is modulated
by GR.65 We found that GluR1-subunit is decreased by
MS, which may explain the decreased LTP. Moreover,
the LTP re-establishment is accompanied by a con-
comitant restoration of GluR1 levels upon KW6002
treatment. Accordingly, MS leads to a decrease in
apical dendritic length, as described using other
stress models,66 but this structural effect is reverted
by the blockade of A2A receptors.

The HPA-axis maintains the physiological circa-
dian oscillation of corticosterone levels, which reach
their maximum at zenith (8 pm) and the minimum at
nadir (8 am), for rodents.67 The hippocampus is
crucial in the negative feedback required to limit
HPA-axis activation, particularly in stressful situa-
tions.1,2 However, this function can be compromised
when glucocorticoid levels are persistently high as in
chronic stress, aging or in psychopathologies.48 The
observation that the A2A receptor antagonist was able
to re-establish the decreased GR levels in the
hippocampus lead us to test whether the observed
effects were related to a modification of the HPA axis,
by measuring the circadian levels of corticosterone in
plasma. MS animals present not only higher plas-
matic levels of corticosterone, but also an impaired
circadian fluctuation. Corticosterone levels were
chronically higher in MS animals and did not
decrease along the night. This is probably associated
to an impaired inhibition of the HPA-axis, which is
consequence of a decrease in hippocampal GR levels.
Interestingly, by blocking A2A receptors, the basal
levels of corticosterone were re-established, so as the
circadian rhythm and the GR levels in the hippocam-
pus. Altogether, these data suggest that A2A receptors
have a role in the regulation of the HPA-axis, either
directly or by regulating hippocampal function. This
effect may be due to interference with the release of
corticotrophin-releasing hormone, adrenocorticotro-
phin, which is known to be affected by adenosine,68

or by modulating glucocorticoids. The beneficial
effect resulting from A2A receptor antagonism may
derive instead from a re-establishment of hippocam-
pal excitability, which in turn would restore the
inhibitory tonus onto the HPA-axis. Overall, the
blockade of adenosine A2A receptors by KW6002 has
a beneficial effect in overcoming the hippocampal-
related deficits induced by MS. Interestingly, this
effect of KW6002 in vivo does not result from a
decrease in A2AR levels, which remain high in MS
animals under KW6002. Indeed, it would be unlikely
that KW6002 would cause a decrease in A2AR levels
as prolonged blockade of receptors usually leads to
either no change or upregulation of receptor levels
due to compensatory mechanisms following restrain-
ing from receptor activation by the endogenous
ligand. Remarkably, the findings that blockade of
A2AR overcomes the synaptic and memory deficits
associated to MS, strongly suggests that A2A receptors

overactivation is the cause rather than the conse-
quence of the herein reported changes associated with
chronic stress.
In conclusion, our results show, for the first time,

that the changes induced by stress are reverted by the
in vivo blockade of A2A receptors. Moreover, they
imply a role of A2AR in the HPA-axis regulation
revealing that its blockade is efficient in re-establish-
ing the compromised HPA-axis, which has clinical
implications for the treatment of psychopathologies.
This provides a potential alternative to the estab-
lished therapies against stress-related pathologies, by
targeting a modulatory system rather than interfering
directly with neurotransmitters, and thereby limiting
the associated side-effects.
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Abstract
In situations of hypoxia, glutamate excitotoxicity induces
neuronal death. The release of extracellular adenosine is also
triggered and is accompanied by an increase of the stress
mediator, corticotrophin-releasing factor (CRF). Adenosine
A2A receptors contribute to glutamate excitoxicity and their
blockade is effective in stress-induced neuronal deficits, but
the involvement of CRF on this effect was never explored. We
now evaluated the interaction between A2A and CRF receptors
(CRFR) function, upon glutamate insult. Primary rat cortical
neuronal cultures (9 days in vitro) expressing both CRF1R and
CRF2R were challenged with glutamate (20–1000 lM, 24 h).
CRF1R was found to co-localize with neuronal markers and
CRF2R to be present in both neuronal and glial cells. The
effects of the CRF and A2A receptors ligands on cell viability
were measured using propidium iodide and Syto-13 fluores-
cence staining. Glutamate decreased cell viability in a

concentration-dependent manner. Urocortin (10 pM), an ago-
nist of CRF receptors, increased cell survival in the presence
of glutamate. This neuroprotective effect was abolished by
blocking either CRF1R or CRF2R with antalarmin (10 nM) or
anti-Sauvagine-30 (10 nM), respectively. The blockade of A2A

receptors with a selective antagonist SCH 58261 (50 nM)
improved cell viability against the glutamate insult. This effect
was dependent on CRF2R, but not on CRF1R activation.
Overall, these data show a protective role of CRF in cortical
neurons, against glutamate-induced death. The neuroprotec-
tion achieved by A2A receptors blockade requires CRF2R
activation. This interaction between the adenosine and CRF
receptors can explain the beneficial effects of using A2A

receptor antagonists against stress-induced noxious effects.
Keywords: adenosine A2A receptors, corticotrophin-releasing
factor (CRF), CRF1R, CRF2R, hippocampus, neuroprotection.
J. Neurochem. (2012) 123, 1030–1040.

Adenosine is a neuronal modulator that binds to different
G-protein coupled receptors (Fredholm et al. 2001). Among
them, the adenosine A2A receptors are attractive pharmaco-
logical targets because of their contribution to neuronal
excitability, by increasing the release of glutamate (Lopes
et al. 2002). In situations, where the release of glutamate is
exacerbated, neuronal death either by apoptotic or necrotic
processes can be detected (Nicotera et al. 1999).
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In noxious brain conditions, such as accumulation of
amyloid-b peptide (Ab), hypoxic events or upon aging, there
is an increase of both extracellular adenosine and adenosine
A2A receptors levels in the brain (Latini and Pedata 2001;
Rebola et al. 2005a; Cunha et al. 2006). In such situations,
the blockade of A2A receptors can prevent the evoked
neurotoxicity (Monopoli et al. 1998; Chen et al. 1999;
Dall’Igna et al. 2003; Canas et al. 2009). Moreover, memory
impairments caused by Ab are prevented by A2A receptors
antagonists (Canas et al. 2009). However, the mechanism by
which the blockade of A2A receptors is effective in reverting
these stressful effects remains unknown.
Stress response, in mammals, is dependent on the activation

of the hypothalamic–pituitary–adrenal (HPA) axis. In the
sequence of a stress stimulus, such as neurotoxicity induced by
glutamate, the corticotrophin-releasing factor (CRF) is
released from the hypothalamus, leading to HPA axis
activation (Vale et al. 1981). CRF, a 41 amino acid peptide,
has also important effects in extrahypothalamic sites, namely
in thalamus, amygdala, hippocampus, frontal cerebral cortex,
striatum, and cerebellum (Fischman and Moldow 1982;
Swanson et al. 1983). In the hippocampus, CRF is released
from inhibitory interneurons (Chen et al. 2001), binds to
CRF1R abundant in dendritic spines of pyramidal neurons
(Chen et al. 2004a, b), and modulates neuronal function and
cognition (Radulovic et al. 1999). CRF1R is expressed in
forebrain glutamatergic and c-aminobutyric acid-containing
(GABAergic) neurons as well as in midbrain dopaminergic
neurons. CRF also binds to CRF2R (Chen et al. 1993;
Lovenberg et al. 1995). These are predominantly Gs-coupled
proteins that use cAMP as intracellular signalingmolecule, but
they also signal through Gi/o and Gq proteins, with minor
involvement (Chen et al. 1986; Grammatopoulos et al. 2001).
CRF receptors are expressed in several brain regions that

include hypothalamic and extrahypothalamic areas (Chalmers
et al. 1995; Bittencourt et al. 1999). The actions of CRF in
extrahypothalamic areas are still poorly explored. Although
CRF1R receptor expression is very high in neocortical,
cerebellar, and sensory relay structures, CRF2R receptor
expression is generally confined to subcortical structures. The
highest levels of CRF2R receptor mRNA in brain are evident
within the lateral septal nucleus, the ventromedial hypotha-
lamic nucleus and the choroid plexus. CRF2R -expressing
cells are also evident, albeit in much lower density in the
hippocampal formation and anterior and lateral hypothalmic
areas. This heterogeneous distribution of CRF1R and CRF2R
receptor mRNA suggests distinctive functional roles for each
receptor in CRF-related systems (Chalmers et al.1995).
Noteworthy, CRF has a similar effect to that achieved by

A2A receptor blockade, by counteracting classic neuronal
insults as excitatory amino acids, hypoxia or amyloid-b25-35
peptide in cortical neurons (Fox et al. 1993; Pedersen et al.
2001), but neither the mechanism or subtype of receptor
involved are known.

In this study, we investigated the relationship between the
neuroprotective effects of adenosine A2A receptors blockade
and activation of the two subtypes of CRF receptors. This
was assessed using a glutamate insult, a major stress
condition that reproduces the excitotoxic events following
hypoxia/ischemia or during stroke. We found that, in cultured
cortical neurons, CRF avoids cell death induced by gluta-
mate, an effect dependent on the simultaneous activation of
both CRF receptors, CRF1R and CRF2R. Blockade of A2A

receptors is neuroprotective and requires activation of
CRF2R. This interaction between the adenosine and CRF
receptors can explain the beneficial effects of using A2A

receptor antagonists against stress-induced noxious effects.

Methods

Pharmacological agents

Urocortin and Antalarmin were purchased from Sigma (Madrid,
Spain). 4-[2-[[6-Amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-
purin-2-yl]amino]ethyl] benzene propanoic acid (CGS 21680), 2-(2-
Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]
pyrimidin-5-amine (SCH 58261), L-Glutamic Acid, Anti-sauvagin-
30 and Astressin were purchased from Tocris (UK). Ab25-35
peptide was from Bachem (Bubendorf, Switzerland). These drugs
were diluted in the assay solution from stock aliquots made in water
or dimethyl sulfoxide stored at �20°C. All other reagents used
were of the highest purity available and suitable for cell culture.

Primary rat cortical cultures

Cortical neurons were cultured from 18 days Sprague Dawley rat
(Harlan, Barcelona, Spain) embryos according to Pedersen et al.
2002. Briefly, pregnant rats were handled according to the
Portuguese law on animal care and European Union guidelines
(86/609/EEC), and decapitated under deep anesthesia with Halo-
thane. The embryos were collected in Hanks’ Balanced Salt Solution
and rapidly decapitated. Meninges and white mater were removed
and whole cortices were incubated for 15 min in Hanks’ Balanced
Salt Solution (Calcium 1 mM and Magnesium 1 mM) and 0.025%
trypsin. Cells were centrifuged three times and washed with Hanks’
Balanced Salt Solution (with Calcium 1 mM and Magnesium 1 mM,
10% fetal bovine serum) and finally re-suspended in Neurobasal
Medium. After counted, cells were plated on poly-L-lysine-coated
coverslips in 24-well plates at density of 8 9 104 cells/well. Neurons
were grown for 9 days at 37°C in a 5% CO2 humidified atmosphere
in Neurobasal medium with 2% B-27 supplement, glutamate 25 lM,
glutamine 0.5 mM, and 2 U/mL Penicillin/Streptomycin, in the
absence of any positive selection for neurons. Medium was totally
replaced at day 4 (without glutamate) and 60 min before drug
treatment (without glutamate and B-27 supplement). Pure neuronal
cultures were obtained by addition at day 3 in culture of 2 lM
cytosine arabinoside (Ara-C) and used at day 9.

RT-PCR

Quantitative real time RT-PCR (qPCR) was performed using RNA
extracts from pure neuronal cultures. Briefly, neuronal cultures were
washed with phosphate buffer saline (PBS) scraped and collected in
0.5 mL Eppendorf vials containing lysis buffer for RNA extraction.

© 2012 International Society for Neurochemistry, J. Neurochem. (2012) 123, 1030--1040

Neuroprotection afforded by CRF2R and A2AR crosstalk 1031



Total RNA was extracted using the RNAspin Mini RNA isolation
kit (GE Healthcare, Buckinghamshire, UK) according to the
manufacturer’s instructions. RNA quantification was determined
with nanoDrop 2000 software (Thermo scientific, Wilmington, DE,
USA). Reverse transcription was carried out with the SuperScriptTM

First-Strand Synthesis System for RT-PCR (Invitrogen, Life tech-
nologies, Carlsbad, CA, USA) according to the manufacturer’s
instructions, using both 50 ng/lL random hexamers and 0.5 lg/lL
oligo(dT)12-18 in a final volume of 20 lL. Negative controls were
made without reverse transcriptase and confirmed the absence of
signal. qPCR was carried out with SYBR green PCR Master mix
(Applied Biosystems, Warrington, UK), using 2 lL of cDNA in a
final volume of 25 lL (4.6 ng/lL of total cDNA), containing
0.3 lM of A2AR primer, 0.2 lM of b-actin primer (reference
gene), or 0.4 lM of CRF2 primer. qPCR was performed with a
Rotor-Gene 6000 Real Time Rotary Analyzer (Corbett Research,
Cambridge, UK) for 45 cycles of 95°C for 20 s, 58°C for 5 s, and a
final step of 10 s at 72°C.

The primers used in qPCR include: forward 5′-AACGGCAT
CAAGTACAACACGAC-3′ and reverse 5′-CGATTCGGTAATG
CAGGTCATAC-3′for CRF2 (product size 142 bp, Invitrogen),
forward 5′-ATTCCACTCCGGTACAATGG-3′ and reverse 5′-
AGTTGTTCCAGCCCAGCAT-3′ for A2AR (product size 115 bp,
Invitrogen) and forward 5′-AGCCATGTACGTAGCCATCC-3′ and
reverse 5′-CTCTCAGCTGTGGTGGTGAA-3′ for b-actin (product
size 228 bp, Invitrogen). The qPCR products were analyzed by
electrophoresis on a 2% agarose gel containing GelRedTM Nucleic
Acid Gel Stain (Biotium, Hayward, CA, USA).

Immunocytochemistry

To characterize the primary cortical neuronal cultures with 9 days
in vitro, cell medium removed, cells were washed with phosphate
buffer saline (PBS: NaCl 137 mM, KCl 2.7 mM, KH2PO4 1.8 mM
and Na2HPO4 10 mM, pH 7.4) and fixed for 10 min at 20–23°C
with 4% paraformaldehyde in PBS. After washing with PBS, cells
were permeabilized with 0.1% Triton-X in PBS, blocked for 30 min
with 0.25% gelatine in PBS, washed with PBS 0.05% Tween-20 and
incubated for 1 h at 20–23°C with primary antibodies diluted in
PBS 0.1% gelatine (mouse anti-MAP2 1 : 200, Millipore-Billerica,
MA, USA-MAB3418, rabbit anti-GFAP 1 : 100, Sigma G9269,
mouse CD11b 1 : 250, Serotec-Oxford, UK-MCA275R, Goat anti-
CRF1R 1 : 25, Santa Cruz Biotechnology-Santa Cruz, CA, USA-sc
12381 and rabbit anti-CRF2R 1 : 25, Novus biologicals-Cambridge,
UK-nbp1-00767, mouse anti-A2AR 1 : 50, Santa Cruz sc 32261.
After washes (PBS 0.05% Tween-20), cells were incubated with
secondary antibodies diluted in PBS 0.1% gelatine (anti-mouse
Alexa Fluor 568 and anti-rabbit Alexa Fluor 488, both from
Invitrogen). 4′,6-diamidino-2-phenylindole (DAPI, 70 lg/mL;
Sigma) was used to label cell nucleus (5 min incubation). Cover-
slips were mounted with MOWIOL (Sigma), and cells were
observed either with an Axiovert 200 fluorescence microscope
(Carl Zeiss light microscopy, Gottingen, Germany) or Zeiss
confocal LSM 710 microscope (Carl Zeiss MicroImaging GmbH,
Jena, Germany).

Cell treatment

Glutamic acid (or glutamate) was used as neurotoxic insult,
concentrations ranging from 20 to 1000 lM were applied for 24 h
in primary cultured neuronal cells with 8 days in vitro (Tamura

et al. 1993). Amyloid-b25-35 peptide (Ab, 25 lM) was used as
positive control for apoptosis (Estus et al. 1997). CRF and
adenosine A2A receptors antagonists were applied 15 min before
initiating cell insult, while their agonists were added to cell medium
immediately prior to glutamate. A2A receptors ligands were used as
in Rebola et al. (2005b), while CRF receptors agonist and
antagonists’ use was based on Pedersen et al. (2002), Elliott-Hunt
et al. (2002), and Gulyas et al. (1995) reports. Dimethyl sulfoxide
concentration in cell medium was always kept below 0.001%.

Propidium iodide and Syto-13 uptake assay

Cells were washed with KREBS-HEPES (NaCl 117 mM, KCl
3 mM, Glucose 10 mM, NaHCO3 26 mM, Na2HPO4 1.25 mM,
HEPES 10 mM, CaCl2 2 mM, MgCl2 1 mM), incubated with Syto-
13 (4 lM, emits preferentially at 509 nm when excited at 488 nm)
and propidium iodide (PI, 5 lg/mL, absorbing preferentially at
535 nm and emitting at 617 nm) for 3 min at room temperature and
directly observed on Axiovert 200 fluorescence microscope. Three
to four arbitrary photographs from each coverslip were shot and an
average of 1400 cells was counted per condition in each experiment.
Viable cells presented homogeneous cell body labeled with Syto-13,
whereas primary and secondary apoptotic cells showed fragmented
or condensed nucleus (labeled with Syto-13 or PI). Necrotic cells
appeared as diffuse blots, emitting in propidium iodide range (Canas
et al. 2009). After cell counting (see Fig. 1c), cell viability is
presented as the ratio between the number of living cells and the
number of total cells counted.

Western blotting

Cells from primary cultures with 9 days in vitro were washed with
cold PBS. Using NP-40 lysis buffer pH 8.0 (1% Nonidet P40,
150 mM NaCl, 50 mM Tris-base, 1 mM EDTA, 5 mM dithiothre-
itol, proteases inhibitors - Complete, EDTA-free Protease Inhibitor
cocktail tablets; Roche, Manheim, Germany) cells were mechan-
ically scarped. The resulting solution was centrifuged at 16 000 g
during 10 min at 4°C and pellet was discarded and the supernatant
used for western blot. The protein concentration was determined
using a BioRad DC Protein assay Kit (based on Lowry et al. 1951)
because of the high levels of detergents present in the sample. The
appropriate volume of each sample was diluted in water and sample
buffer (350 mM Tris pH 6.8, 30% glycerol, 10% sodium dodecyl
sulfate, 600 mM dithiothreitol and 0.012% Bromophenol blue). The
samples were denatured at 95°C for 5 min.

Based on the protocol of Towbin et al. (1979), samples and
molecular weight markers were separated by sodium dodecyl sulfate
–polyacrylamide gel electrophoresis (10% for resolving and 5% for
stacking gels) in denaturing conditions and electro-transferred to
polyvinylidene difluoride membranes (Millipore). Membranes were
blocked with 5% non-fat dry milk for 1 h, washed with TBS-T
0.1% (Tris Buffer Saline with 0.1% Tween-20 solution, 200 nM
Tris, 1.5 M NaCl), and incubated with primary antibody (diluted in
TBS-T, 3% Bovine Serum Albumin and 0.1% NaN3) overnight at
4°C. After washing again with TBS-T for 30 min, the membranes
were incubated with horseradish peroxidise (HRP, EC 1.11.1.7)
conjugated secondary antibody (in 5% non-fat dry milk) for 1 h at
20–23°C, (primary and secondary antibodies: mouse anti-A2A

receptor (Upstate/Millipore 05-717), goat anti-CRF1R (Santa Cruz
Biotechnology sc 12381), rabbit anti-CRF2R (Novus biologicals
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nbp1-00767), rabbit anti-caspase-3 (Santa Cruz Biotechnology sc-
7148), rabbit anti-tubulin (abcam, Cambridge, UK, ab4074), goat
anti-rabbit-HRP (Santa Cruz Biotechnology sc-2004), goat anti-
mouse-HRP (Santa Cruz Biotechnology sc-2005), and donkey
anti-goat-HRP (Santa Cruz Biotechnology sc-2020). After 40 min
of washing with TBS-T, chemoluminescent detection was per-
formed with ECL-PLUS western blotting detection reagent (GE
Healthcare) using X-Ray films (Fujifilm, Dusseldorf, Germany).
Optical density was determined with Image-J software (NIH,
Bethesda, MD, USA).

Statistics

The values presented are mean ± SEM of n independent
experiments, corresponding to different cell cultures. In statistical
tests between three or more conditions, a one-way ANOVA was
used, followed by a Bonferroni’s multiple comparison post-hoc
test. Values of p < 0.05 were considered to be statistically
significant.

Results

Characterization of the primary neuronal cell cultures

Primary cortical cultures with 9 days in vitro were labeled
with anti-MAP2 (microtubule-associated protein 2 – neuronal
marker) and anti-GFAP (glial fibrillary acidic protein –
mature astrocytic marker) antibodies (Fig. 1a). Approxi-
mately, 50% of cells were labeled red (MAP2 expression).
The presence of astrocytes was less than 20% (green labeled
GFAP positive cells). The remaining cells are microglia that
express CD11b, a selective marker (labeled in red, Fig. 1b).
The cell culture expresses both CRF1R and CRF2R, and
adenosine A2A receptors (Fig. 1d). CRF1R are mainly co-
localized with neuronal markers (Fig. 1e see also figure S1
panel A), whereas CRF2R are present in both neuronal and
glial cells (astrocytes, Fig. 1f see also figure S1 panel B). We
also detected co-expression of mRNA encoding for A2A

receptors and CRF2R in pure neuronal cultures and further
confirmed the co-localization of the respective receptor
protein by immunocytochemistry (Fig. 1g–h, see also figure
S1 panel C).

Cell viability upon glutamate insult
Cell survival upon glutamate insult was evaluated by
simultaneous labeling with propidium iodide and Syto-13.
The cultures were treated for 24 h with five different
glutamate concentrations (20, 50, 100, 500, and 1000 lM)
covering several degrees of cell injury which can induce
either apoptosis or necrosis (Lipton and Rosenberg 1994;
Bonfoco et al. 1995). Although propidium iodide is incor-
porated through the disrupted membrane of dying or dead
cells exclusively, emitting red light, Syto-13 is capable of
labeling all cells (dead or living cells, emitting green light).
Apoptotic cells present either condensed or fragmented
nucleus and are labeled in green or red; necrotic cells appear

as characteristic red dots. Cell viability was accessed by the
percentage of cells that does not present any apoptotic or
necrotic markers (see Fig. 1c).
As shown in Fig. 2, incubation for 24 h with glutamate

resulted in a reduction of cell viability, in a concentration-
dependent manner, with the lowest viability of
66.5 ± 4.23% of control (p < 0.001, n = 4) produced by
the higher glutamate concentration used (1000 lM). This
insult was considerably lower when compared to amyloid-
b25-35 peptide (Ab, 25 lM), which increases cell death by
apoptosis (Estus et al. 1997; Kemppainen et al. 2012) that
caused a 43.1 ± 2.53% reduction in cell viability. We further
confirmed that cell death in our experimental conditions
occurs mainly in neurons, as illustrated in Fig. 2b (see also
figure S2). The density of MAP2 positive cells is decreased
in glutamate treated cultures, and 90% of the remaining
neurons (350 out of 400 counted neurons) present clear
neuronal atrophy visible by a decrease in the number and
length of the neuritis.
As observed in Fig. 3, the apoptotic marker caspase-3

increased with increasing glutamate concentrations, reaching
a maximum level at 50 lM (468 ± 20.3% of control,
p < 0.001, n = 3). For higher concentrations of glutamate,
caspase-3 levels slightly decreased in relation to the maxi-
mum level.

Effect of corticotrophin-releasing factor on glutamate

neurotoxicity

Urocortin, a peptide belonging to the CRF family, activates
both subtype 1 and 2 of CRF receptors, CRF1R and CRF2R
(Vaughan et al. 1995). Urocortin 10 pM was applied to cell
medium immediately before glutamate (20 to 1000 lM
range). In a similar model, this urocortin concentration
provides a maximum neuroprotective effect against an Ab
stimulus (Pedersen et al. 2002). As shown in Fig. 4,
urocortin increased cell survival in the presence of 50 lM
(from 77.8 ± 0.95% to 88.5 ± 0.97%, p < 0.05, n = 4) and
100 lM (from 78.3 ± 1.37% to 88.7 ± 1.43%, p < 0.001,
n = 8) glutamate. For lower (20 lM) and higher concentra-
tions of glutamate (500 and 1000 lM), urocortin was not
able to improve cell viability. Activation of CRF receptors in
the absence of glutamate insult did not alter cell viability by
itself (94.0 ± 2.18% of CTR, p > 0.05, n = 4, Fig. 4).
Glutamate 100 lM was used in subsequent experiments
because of the higher degree of neuroprotection induced by
urocortin in this condition.
To distinguish the subtype of CRF receptors underlying

the protection afforded by urocortin, the selective CRF1R
and CRF2R antagonists, antalarmin 10 nM (Ant), and
anti-Sauvagine-30 10 nM (a-Sau), as well as a non-
selective antagonist for CRF receptors, astressin 10 nM
(Ast), were used. As shown in Fig. 5a, the protection by
urocortin was lost by blocking either both receptors
simultaneously (with astressin, from 88.7 ± 1.43% to
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74.5 ± 1.94%, p < 0.01, n = 4) or by blocking selectively
CRF1R with antalarmin (from 88.7 ± 1.43% to
74.0 ± 4.46%, p < 0.01, n = 8) or CRF2R with anti-
Sauvagine-30 (from 88.7 ± 1.43% to 72.0 ± 2.50%,
p < 0.01, n = 8). Both antalarmin and anti-Sauvagine-30

decrease cell viability in cells treated with glutamate
(from 78.3 ± 1.37% to 68.1 ± 2.81% and 68.2 ± 4.97%,
respectively, p < 0.05, n = 3). None of these drugs
significantly altered cell viability, when applied in the
absence of glutamate (p > 0.05, n = 3, Fig. 5b).

(b)(a)

(c)

(e)

(g) (h)

(f)

(d)

Fig. 1 Characterization of neuronal cultures. (a) The primary cortical

cultures at 9 days in vitro are composed mostly by neurons (glial
contamination is less than 20%). Neurons, in red, are labeled with anti-
microtubule-associated protein 2 (MAP2) antibody coupled to a red
fluorophore, whereas astrocytes, in green, are probed with anti-glial

fibrillary acidic protein (GFAP) antibody coupled to a green fluorophore.
Cell nucleus, in blue, is labeled with 4′,6-diamidino-2-phenylindole
(DAPI). The photograph is from a control condition of one representative

cell culture; (b) Microglial cells are labeled with anti-CD11b antibody, in
red. Cell nucleus, in blue, is labeled with DAPI. The photograph is from a
control condition of one representative cell culture; (c) Representative

images of cultured cells labeled with propidium iodide (PI) and Syto-13.
Cells were classified in 4 classes: (1) living cells, which emit green light
and presents a homogeneous cell body; (2) primary apoptotic cells,

cells labled green with fragmented or condensed nucleus; (3) second-

ary apoptotic cells that emit red light and presents fragmented (3′) or
condensed (3″) cell nucleus; and (4) necrotic cells, observed as diffuse
red dots; (d) Western blots of cultured cells probed for the presence of
CRF receptor subtype 1 (CRF1R), CRF receptor subtype 2 (CRF2R),

and Adenosine A2A receptors; (e) Cell culture with triple labeling for
CRF1R, MAP2, and DAPI; (f) Cell culture with triple labeling for CRF2R,
MAP2 and DAPI or CRF2R, GFAP and DAPI; (g) Cell culture with triple

labeling for A2AR and CRF2R and DAPI; (h) qPCR products run in an
agarose gel showing expression of A2AR (115 bp) and CRF2 (142 bp)
receptors in pure neuronal cultures, b-actin (228 bp) was used as

housekeeping control and RT-minus control yielded no appreciable
bands in the expected band size for the primers used. Individual color
channels for figures e, f and g are available in suplemental Figure S1.
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Involvement of adenosine A2A receptors on CRF
neuroprotection

In view of the involvement of adenosine A2A receptors in
excitotoxicity phenomena, we then evaluated the possible
interaction between the neuroprotection mediated by A2A

receptors blockade and the consequence of activating CRF
receptors.
The blockade of A2A receptors by its selective antagonist,

SCH 58261 (50 nM), did not change the neuroprotection
induced by urocortin (n = 6, Fig. 6). However, SCH 58261
(50 nM) alone prevented the cell death induced by gluta-
mate (78.3 ± 1.37% to 88.5 ± 1.60%, p < 0.01, n = 4).
Interestingly, neuroprotection obtained by the CRF receptor
agonist, urocortin, was not additive with that achieved by

the A2A receptor antagonist, SCH 58261 (Fig. 6) suggesting
a common mechanism of action. In contrast, A2A receptor
activation with the selective agonist, CGS 21680 (30 nM),
did not altered cell death alone (76.4 ± 3.62%, p > 0.05,
n = 6), or in the presence of urocortin (from 88.7 ± 1.43%
with urocortin, to 82.4 ± 2.45% with CGS 21680, n = 8,
Fig. 6).
Furthermore, as presented in Fig. 7, the neuroprotective

effect achieved by the blockade of A2AR (in the presence of
urocortin) was lost by selective CRF2R blockade
(71.5 ± 2.52%, p < 0.001 compared with SCH 58261 plus
urocortin, n = 6) or the blockade of both CRF receptors
simultaneously (70.4 ± 2.34%, p < 0.001 compared with
SCH 58261 plus urocortin, n = 4). Selective blockade of
CRF1R did not affect neuroprotection obtained with SCH
58261 plus urocortin (86.0 ± 1.57%, n = 6).

Discussion

The release of adenosine that occurs as a consequence of
hypoxic events (Andiné et al. 1990) is accompanied by an
increase in the levels of the stress regulator, corticotrophin-

Fig. 3 Glutamate insult (20 to 1000 lM) increases caspase-3 levels
in primary cortical cell homogenates. Specific caspase-3 immunore-

activity was normalized to pro-caspase-3 in each condition. Ab25-35
peptide 25 lM was used as positive control for pro-caspase-3
fragmentation. Each bar is the mean ± SEM of three to four

experiments. *p < 0.05; ***p < 0.001 compared with control calcu-
lated using a one-way ANOVA test, followed by a Bonferroni’s multiple
comparison post-hoc test. The top panel shows a representative

western blot.

(a)

(b)

Fig. 2 Glutamate-induced decrease in cell viability is concentration-
dependent. Cultures were exposed to glutamate for 24 h. Amyloid-
b25-35 (Ab, 25 lM)-induced cell death during a similar period was

used as a positive control. Using propidium iodide and Syto-13
labeling cells are distinguished between: living cells, if they are
labeled by Syto-13, in green; or dead cells, if propidium iodide

crosses the membrane, labeled in red. (a) Glutamate (20 lM to
1000 lM) decreases cell viability in a concentration-dependent.
Results are mean ± SEM of four to eleven experiments. *p < 0.05

and ***p < 0,001 compared with control, calculated using a one-way
ANOVA test plus a Bonferroni’s multiple comparison post-hoc test. (b)
Primary cortical cultures 9 days in vitro in control conditions (CTR) and

after treatment with glutamate (Glu100 lM) were labeled with the
neuronal marker anti-microtubule-associated protein 2 (MAP2) antibody,
cell nuclei were visualized with 4′,6-diamidino-2-phenylindole (DAPI).
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releasing factor (CRF) in the brain (Chen et al. 2004a, b). In
addition, the in vivo modulation of adenosine A2A receptors
is responsible for reversion of stress-induced effects in the
hippocampus (Batalha et al. 2012), suggesting an involve-
ment of these receptors in the stress response system. This
raises the question whether A2A receptors regulate the levels
or the function of the main stress mediators, either CRF or
glucocorticoids. We now explored the neuroprotective
effects of A2A receptors blockade and activation of CRF
receptors, under stressful conditions (glutamate insult), to
disclose a possible interaction between the mechanisms
operated by both receptors.
The major finding of this work is that the protective action

of urocortin, a CRF agonist, against a glutamate insult is
dependent on both CRF receptor subtypes, CRF1R and
CRF2R. Moreover, we show for the first time that the
neuroprotection achieved by blockade of A2A receptors is
effective only if CRF2R are active.
In hypoxic or ischemic events, the massive release of

glutamate induces damage to the surrounding neuronal
population, both by necrosis and apoptosis (Nicotera et al.
1999). As expected, glutamate increased cell death in a
concentration-dependent manner for concentrations higher
than 20 lM, which is in accordance with previous reports
(Choi et al. 1987). Urocortin, a peptide belonging to the CRF
family that has equivalent affinity to CRF1R and CRF2R,
prevented cell death induced by glutamate (50–100 lM). For

higher glutamate concentrations, urocortin seems to be
inefficient in reverting cell death most probably because of
the severe cell necrosis that occurs for such concentrations.
On the other hand, for lower glutamate concentrations, the
evoked cell death is probably not enough to allow a
significant and measurable increase in cell viability induced
by urocortin. The concentration of glutamate (100 lM) used
in most of the experiments was enough to induce measurable
cell death without causing cell detachment because of
necrosis, as known to occur for high glutamate concentra-
tions (Ankarcrona et al. 1995). On the other hand, this
glutamate concentration is able to induce apoptosis, as can be
concluded by the increase in apoptotic marker caspase-3.
CRF1R and CRF2R are present in neuronal cells (Pedersen

et al. 2002). CRF1R but not CRF2R were shown to be
involved in the neuroprotection against oxidative stress, by
testing various insults in cortical neurons (Pedersen et al.
2002). Urocortin 2, a CRF2R agonist, is not able to revert
cell death caused by radical oxygen species, whereas
urocortin, a non-specific CRF receptor agonist is able to
protect neuronal cells from an equivalent insult, by activat-
ing CRF1R (Pedersen et al. 2002). The different subtypes of
CRF receptors have different functions in HPA axis and
neuroprotection (Pedersen et al. 2002; Rissman et al. 2007).
To determine which CRF receptor subtype is underlying the
urocortin-induced neuroprotection against the glutamate
insult, we analyzed the neuroprotective effect mediated by

(a)

i ii iii iv

(b)

Fig. 4 Corticotrophin-releasing factor

(CRF) receptor activation prevents cell
death induced by glutamate. (a)
Representative images of several

conditions: (i) Ab 25 lM; (ii) CTR; (iii)
Glutamate 100 lM; (iv) Glutamate
100 lM + urocortin (CRF agonist; 10 pM).

Scale bar: 50 lm. (b) Dark gray bars
represent the effects of glutamate alone,
gray pattern bars represent the effects of
glutamate in the presence of urocortin

10 pM. Ab was used as a positive control
for cell death. Results are mean ± SEM of
four to eleven experiments. ‡p < 0.05,
‡‡‡p < 0.001, for the two selected
conditions, calculated using a one-way
ANOVA test plus a Bonferroni’s multiple

comparison post-hoc test.
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selective agonists and by urocortin in the presence of
selective antagonists for each receptor subtype. As we show
here, CRF receptor activation by urocortin is neuroprotective
against glutamate insults only when both CRF1R and CRF2R
are active, as the blockade of either of the receptors
selectively was sufficient to prevent the neuroprotective
effect of urocortin. This data suggest a common mechanism
of action of both CRF receptors in neuroprotection against a
glutamate insult and that both of them are required to afford
neuroprotection.
Adenosine A2A receptors are modulatory targets against

neurologic insults, as A2A receptor blockade is known to be

neuroprotective (reviewed by de Mendonça et al. 2000).
Besides the common intracellular signaling pathways
(Blank et al. 2003; Fredholm et al. 2005), CRF receptors
also share an ability to interfere with neuroprotection, (Fox

(a)

(b)

Fig. 5 Both corticotrophin-releasing factor (CRF) receptors are
involved in urocortin-induced neuroprotection. (a) Cell viability was
assessed in the presence of glutamate 100 lM, the CRF receptor

agonist (Urc 10 pM) and antagonists (Ant 10 nM, a-Sau 10 nM, Ast
10 nM). (b) CRF has endogenous neuroprotective effects, as CRF
receptors blockade decreases cell viability in presence of glutamate.

Cell viability was assessed in the presence of glutamate 100 lM and
the CRF receptor antagonists (Ant 10 nM, a-Sau 10 nM). Lines at
100% and 78.3% represent viability values for control and glutamate

100 lM, respectively. Results are mean ± SEM of four to eleven
experiments. ***p < 0.001 compared with control; ‡p < 0.05,
‡‡p < 0.01 and ‡‡‡p < 0.001 when comparing the selected conditions,
calculated using a one-way ANOVA test followed by a Bonferroni’s

multiple comparison post-hoc test.

Fig. 6 The blockade of A2A receptors increases cell viability upon a

glutamate insult. A2A receptors blockade (SCH 58261) increased cell
viability, whereas A2A receptor activation (CGS 21680) did not
change cell viability in the presence of glutamate 100 lM. Lines at
100% and 78.3% represent viability values for control and glutamate

100 lM. Results are mean ± SEM of four to eleven experiments.
***p < 0.001 compared with control; ‡p < 0.05 and ‡‡p < 0.01 when
comparing the selected conditions calculated using a one-way ANOVA

test followed by a Bonferroni’s multiple comparison post-hoc test.

Fig. 7 The neuroprotection induced by A2A receptor blockade
requires CRF receptor of subtype 2 (CRF2R). A2A receptor blockade
(by SCH 58261) increases cell viability, only if CRF2R are not blocked.

Lines at 100% and 78.3% represent viability values for control and
glutamate 100 lM. Results are mean ± SEM of four to eleven
experiments. ***p < 0.001 compared with control; ‡‡‡p < 0.001 when

comparing the selected conditions; #p < 0.05 and ##p < 0.01
compared with glutamate 100 lM, calculated using a one-way ANOVA

test followed by a Bonferroni’s multiple comparison post-hoc test.
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et al. 1993). Therefore, we explored a possible interaction
between these two receptors by studying their functional
role in the prevention of cell death induced by a glutamate
insult. Blockade of A2A receptors by SCH 58261 reverted
cell death induced by glutamate (100 lM), as previously
observed (Popoli et al. 2003). We then tested the combined
actions of CRF receptors activation and A2A receptors
blockade upon the glutamate insult. Remarkably, the
neuroprotection afforded by A2A receptor blockade, was
not additive to that provided by urocortin, suggesting a
common downstream signaling pathway, shared by both
receptor subtypes. Both A2A receptors and CRF receptors
are able to alter gene expression. Whereas blockade of A2A

receptor is neuroprotective, probably by reducing cAMP-
dependent protein kinase A (PKA) and protein kinase C
(PKC) phosphorylation activity (Fredholm et al. 2005),
CRF receptor activation leads to an increase in PKA activity
(Bayatti et al. 2005). Indeed, PKA and PKC phosphoryla-
tion leads to insertion of NMDA and AMPA receptors in
the cell membrane (Tan et al. 1994; Leonard and Hell
1997; Dias et al. 2012), and this may exacerbate the
excitotoxicity induced by glutamate (Leveille et al. 2008).
Involvement of p38 in the neuroprotection afforded by A2A

receptors blockade has also been reported (Melani et al.
2006), whereas a mechanism by which CRF receptors
may affect p38 is presently unknown and awaits further
investigation.
In the presence of urocortin, the neuroprotective effects

of A2A receptor blockade by SCH 58261 were abolished by
CRF2R but not by CRF1R blockade, suggesting that the
A2A receptors role in the control of cell viability is
dependent on CRF2R, but independent of CRF1R. This
least investigated receptor, CRF2R, has been linked to
neuroprotection against glutamate insults in retinal cells
(Szabadfi et al. 2009). This is the first report regarding
neuroprotection mediated by CRF2R, in the brain. Depend-
ing on the type of insult CRF may require different
contributions of CRF1R and/ or CRF2R to the neuropro-
tection. Earlier reports in cell cultures have focused on
necrosis-inducing insults, in which CRF1R seem to be the
main contributors to the neuroprotection achieved by
urocortin. On the contrary, a non- CRF1R dependent
protection by urocortin was only observed when apopto-
sis-mediated cell death also occurred (see Pedersen et al.
2002). The neuroprotective role of urocortin herein
described could clearly be ascribed to CRF2R activation.
Both CRF2R and A2A receptors were found to be

expressed in neurons and to co-localize in the same cells in
our mixed cell cultures (Fig. 1g–h). These data suggest that
receptor cross talk is the most likely mechanism, but we
cannot fully preclude the possibility that A2A receptor
activation by glutamate-induced adenosine release could
modulate CRF levels. However, the absence of significant
changes in cell viability upon direct activation of A2A

receptors with the agonist CGS 21680, does not seem to
favor the latter possibility.
Overall, the data points to a new role of CRF against

glutamate-induced neuronal death either by direct activation
of CRF receptors, or modulation of A2A receptor-mediated
actions. The observed neuroprotection achieved by A2A

receptor blockade requires CRF2R activation. This interac-
tion between the adenosine and CRF receptors can explain
the beneficial effects of using A2A receptor antagonists
against stress-induced noxious effects.
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a b s t r a c t

Exposure to chronic stress during the neonatal period is known to induce permanent long-term changes
in the central nervous system and hipothalamic-pituitary-adrenal axis reactivity that are associated with
increased levels of depression, anxiety, and cognitive impairments. In rodents, a validated model of early
life stress is the maternal separation (MS) paradigm, which has been shown to have long-term conse-
quences for the pups that span to adulthood. We hypothesized that the early life stress-associated effects
could be exacerbated with aging, because it is often accompanied by cognitive decline. Using a MS model
in which rat pups were separated from their mothers for 3 hours daily, during postnatal days 2e14, we
evaluated the long-term functional consequences to aged animals (70-week-old), by measuring synaptic
plasticity and cognitive performance. The baseline behavioral deficits of aged control rats were further
exacerbated in MS animals, indicating that early-life stress induces sustained changes in anxiety-like
behavior and hippocampal-dependent memory that are maintained much later in life. We then inves-
tigated whether these differences are linked to impaired function of hippocampal neurons by recording
hippocampal long-term potentiation from Schaffer collaterals/CA1 synapses. The magnitude of the
hippocampal long-term potentiation induced by high-frequency stimulation was significantly lower in
aged MS animals than in age-matched controls. These results substantiate the hypothesis that the
neuronal and endocrine alterations induced by early-life stress are long lasting, and are able to exac-
erbate the mild age-associated deficits.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Stressful life events play a crucial role in the pathogenesis of
debilitating human psychiatric disorders, such as chronic anxiety
and depression (Muscatell et al., 2009). Abnormal neonatematernal
care is a key environmental stressor with lasting consequences for
the developing brain (Francis & Meaney, 1999).

It has been widely observed in rodent models that during early
development, abnormal maternal behavior manifested by impaired
licking and/or grooming of the pups creates a chronic stressful
environment that generates long-term zadverse effects upon
stress-mediating pathways, leading to chronic affective disorders
later in life (Francis & Meaney, 1999; Joëls & Baram, 2009). Early

studies have developed several rodent maternal separation (MS)
paradigms, which induce a stressful environment in both dam and
pups (Plotsky & Meaney, 1993). Although the adverse effects of the
maternal separation protocols appear not to be linked with reduced
levels of maternal care, they are likely caused by the absence of the
dam and the handling of the animals (Macrí et al., 2004). Thus, the
rodent MS model is a valid and useful paradigm to induce higher
susceptibility of the hypothalamic-pituitary-adrenal axis to acute
stress in adult life, which is linked to several long-term epigenetic
and neuronal changes (Kaufman et al., 2000; Meaney, 2001; Zhang
& Meaney, 2010).

The hippocampus is a preferential target of action of stress
hormones because of its abundant expression of glucocorticoid re-
ceptors (McEwen, 1999a; McEwen, 1999b). In addition, hippocam-
pal glucocorticoid receptors form an important part of the
retrograde mechanism responsible for inhibiting glucocorticoid
release during a response to stress (Sapolsky et al.,1984). Both stress
and the exposure to high levels of glucocorticoids in early life have
been associated to learning and memory deficits in adulthood (Aisa
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et al., 2007; Batalha et al., 2013; Champagne et al., 2009; Ivy et al.,
2010; Meaney et al., 1988), and to hippocampal atrophy (Sapolsky
et al., 1985). This may be largely attributed to the susceptibility of
the hippocampus to ongoing neuronal and circuit maturation in the
early postnatal stages (Altman & Das, 1965; Bayer, 1980).

Several age-related factors contributing to hippocampal func-
tional decline have been described (Brunson et al., 2005; Burger,
2010; Lupien, et al., 2005). One relevant mechanism is associated
with hypersecretion of glucocorticoids (Sapolsky et al., 1983), which
was shown to contribute to the loss of neurons in the hippocampus
(Sapolsky et al., 1985). Accordingly, we have recently shown that
early-life stress leads to hippocampal-dependent memory impair-
ments in adult animals (Batalha et al., 2013), which suggests a
premature aging-like phenomenon (Diogenes et al., 2011). How-
ever, it is not known whether early-life stress impacts on the hip-
pocampal function and synaptic plasticity in aged rats. In this work,
we aimed to show how the negative effects of MS during the critical
hippocampal development period are exacerbated in senescence,
and how this correlates to hippocampal synaptic plasticity changes.

We found that MS aggravates age-related behavioral deficits,
indicating that early-life stress induces sustained changes in
anxiety-like behavior and hippocampal function that are main-
tained throughout life. The magnitude of hippocampal long-term
potentiation (LTP) in aged MS animals was significantly lower
than in age-matched controls, which suggests that the cognitive
deficits resulting from early-life stress may be associated with
reduced neuronal plasticity.

2. Experimental procedures

2.1. Animals

PregnantWistar rats in mid-gestationwere ordered fromHarlan
Iberica (Barcelona, Spain) and housed in the animal facility with a
normal 12 hour light and/or dark cycle, with lights on at 7 AM.
While the possibility of transportation-associated prenatal stress
cannot be excluded, the observed results indicate statistically sig-
nificant functional differences despite both control and MS animals
having experienced the same prenatal environmental conditions
(Batalha et al., 2013). Animal procedures were performed in
accordance with the guidelines of the European Communities
Council and approved by the Instituto de Medicina Molecular In-
ternal Committee and the Portuguese Animal Ethics Committee
(Direcção Geral de Veterinária). Animals were first habituated to
handling during 5 days before testing began. According to the hu-
mane euthanization procedures indicated by our ethical committee,
animals were quickly anesthetized in a cage with halothane at-
mosphere before decapitation.

2.2. Maternal separation protocol

The protocol used has been previously validated and described
(Batalha et al., 2013). Wistar dams and their litters were assigned
either to the control (CTRenon-separated) or to the MS group. To
exclude artifacts from genetic background, pups from all litters
were randomly cross-fostered between the dams at postnatal day
(PND) 2, maintaining identical litter sizes and gender distribution.
Control and MS litters were briefly handled for a period under
5 minutes, once for cross-fostering and weighing at P2, and for a
second weighing at P14. Control litters were otherwise maintained
undisturbed in their home-cages until weaning, while MS litters,
pups were daily removed from their cages at PND 2e14 for
180 minutes at approximately 9 AM, and placed in an isolated cage
in an adjacent room kept at 32.0 � 0.5 �C. At the end of the sepa-
ration period, pups were returned to their home-cage. At PND 21

the pup’s gender was assessed, theywereweaned and onlymales to
be used in subsequent experiments were housed in groups of 5e8
animals per cage until testing at desired age group.

2.3. Experimental design

Experiments were performed in 2 separate cohorts of male an-
imals. The first cohort which consisted of 12 control, and 13MS rats,
fromwhich 6 of each group were tested at PND 40 of age to control
for positive stress effects by MS. The remaining were then left and
tested in the electrophysiology experiments when animals reached
70weeks of age. The second cohort consisted of 8 control and 10MS
rats, was used at 70 weeks of age as the “aged” group in the
behavioral experiments. From these, 5 from each group were tested
at PND40 for effective stress control purposes.

2.4. Corticosterone quantification

At PND 40, blood was extracted from the tail, in animals previ-
ously handled to minimize stress and without anesthesia, at 8 AM.
The plasma was isolated by centrifugation at 2000g, 4 �C, for
15 minutes and corticosterone quantified by radioimmunoassay
using the rat corticosterone 3H kit from MP Biomedicals, UK ac-
cording to the manufacturer’s protocol.

2.5. Elevated plus maze

The 4 arms in the maze were each 5 cm � 29 cm, and elevated
50 cm above the floor, 2 armswith nowalls (open), and 2 arms with
29 cm high walls (closed), arranged perpendicularly. The test began
with each animal at PND 40 or 70-week-old, being placed on the
center of the maze, facing the open arm. The test consisted of a
single trial of 5 minutes, and an experienced experimenter manu-
ally scored the time spent in the open arms, and the total arms
entries (as described in Batalha et al., 2013). Between each trial, the
maze was cleaned with a 70% ethanol solution.

2.6. Morris water maze

The Morris water maze test was used to measure hippocampal-
dependent spatial reference memory, as described before
(Diógenes et al., 2011). The maze consisted of a large circular tank
(1.8m in diameter, 0.6m in height) ofwater (temperature, 25�1 �C)
made opaque with the addition of a small quantity of nontoxic,
water-basedblackpaint. Anescapeplatform(10cm indiameter)was
submerged 1 cmbelow thewater. Several visual cueswere placed on
the walls of the testing room, to be used by the animals as spatial
references. An automated tracking system (Smart 2.5, PanLab,
Barcelona)monitored all performances in the followingparameters:
swim pathlength, escape latency, average speed, and percentage of
time spent in each quadrant. Rats aged 70-week-oldwere first given
spatial (acquisition) training consisting of 4 trials/d for 5 days, in
which the platformwas placed at afixedposition in the centerof one
of the 4 quadrants of the tank (N, S, E, W). The starting position, at
which subjects were placed in the tank facing the wall, differed
randomly across trials. The intertrial intervalwas 15minutes, during
which animals were towel-dried and placed in a heated incubator
(25 �C) to prevent hypothermia. The maximum trial duration was
60 seconds, after which animals were manually guided to the plat-
form if they failed to locate it. Once animals reached the platform,
they were allowed to remain on it for 20 seconds. A probe test in
which the platform is removed and animals allowed to swim freely
for 60 seconds was given after the last trial on day 5 of the acquisi-
tion. The results are expressed inmean� standard error of themean.
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2.7. Electrophysiological recordings

After decapitation, the brain of 70-week-old animals was rapidly
removed and hippocampi were dissected free in ice-cold Krebs
solution of the following composition (mM) NaCl 124, KCl 3,
NaH2PO4 1.25, NaHCO3 26, MgSO4 1, CaCl2 2, glucose 10, pH 7.4,
previously gassed with 95% O2 and 5% CO2. The hippocampi were
cut in 400 mm slices, perpendicularly to the long axis with a McIl-
wain tissue chopper and allowed to recover for 1 hour in Krebs
solution at room temperature (22 � 1 �C) before recording. One
slice was transferred to a submerged recording chamber (1 mL
capacity), where it was continuously superfused at a rate of 3 mL/
min with the same gassed solution at 30.5 �C. Field excitatory
postsynaptic potentials (fEPSPs) were recorded as previously
described (Costenla et al., 2001) in Stratum radiatum of the CA1 area
through an extracellular microelectrode (2e4 MU). Stimulation
(rectangular 0.1 ms pulses, once every 20 seconds) was delivered
through a bipolar concentric wire electrode placed on the Schaffer
collateral-commissural fibers in the Stratum radiatum near the CA3-
CA1 border. The intensity of the stimulus (80e200 mA) was initially
adjusted to obtain a large fEPSP slope with a minimum population
spike contamination. Recordings were obtained with an Axoclamp
2B amplifier and digitized (Axon Instruments, Foster City, CA, USA).
Individual responses were monitored, and averages of 8 consecu-
tive responses were continuously stored on a personal computer
with the LTP program (Anderson & Collingridge, 2001). The pro-
tocols were performed after obtaining a stable recording of fEPSP
for at least 30 minutes. LTP was induced by High Frequency Stim-
ulation (HFS), consisting of 1 train of 100 pulses at 100 Hz within
1 second (Costenla et al., 2001). LTP magnitude was quantified as
the percentage of change in the average fEPSP slope taken from
50e60 minutes after LTP induction in relation to the average fEPSP
slope in the 10 minutes that preceded the induction protocol.

2.8. Statistics

The significance of differences between the 2 experimental
conditions (corticosterone levels, elevated plus maze [EPM] and LTP
recordings) was tested using unpaired Student’s t test. Body weight
for each age was also analyzed using unpaired Student’s t test
because of uneven number of subjects for each age. Values of
p < 0.05 were considered statistically significant. Repeated mea-
sures 2-way analysis of variance, followed by Dunnett or Tukey post
hoc tests, as indicated, were used to compare performance pa-
rameters across time in Morris water maze analyses. The 2-way
analysis of variance and post hoc tests were performed using the
Predictive Analytics Software 18.0 (SPSS Inc, an IBM Company,
Chicago, IL, USA). GraphPad Prism 5.0 (GraphPad Prism Software
Inc, San Diego, CA, USA) was used for all other statistical tests. All
values are presented as mean � standard error of the mean of the
indicated number of experiments.

3. Results

3.1. Control for effective MS stress establishment

As indicated by the measurements taken at PND 2, 14, 60, 90,
and 490 (70-week-old) (Fig. 1A), there were no significant effects of
rearing on body weight during development and adulthood (p >

0.05; n ¼ 20 in PND 2 and 14; n ¼ 8 in PND 60 and n ¼ 12 in PND
490). To control that the MS protocol was effective across the
different cohorts of animals, we quantified the corticosterone levels
in plasma of animals in adulthood and we tested them in the EPM,
at the same age (PND 40) as described previously (Batalha et al.,

Fig. 1. MS induced a significant increase in plasmatic corticosterone levels and
anxious-related behavior at PND 40. (A) Body weight in grams at 4 age points from
neonatal to aging in control and MS animals. Compared with controls, animals sub-
jected to MS did not show differences in body weight (p > 0.05, Student t test; n ¼ 20
for PNDs 2 and 14, n ¼ 8 for PND 60, and n ¼ 12 for PND 490). (B) Corticosterone levels
in the morning period (8 AM) were measured by radioimmunoassay using the rat
corticosterone [3H] kit at PND 40. Results are mean � SEM of 7 experiments in CTR and
4 experiments in MS animals; * p < 0.05 obtained using a unpaired Student t test.
(C) Percentage of time spent in the open arms of the elevated plus-maze. A significant
effect of MS in reducing percentage of time in open arms was observed (n ¼ 5 for CTR
and n ¼ 8 for MS). * p ¼ 0.034, ** p ¼ 0.033 Student t test. Abbreviations: CTR, control;
MS, maternal separation; PND, postnatal day.

V.C. Sousa et al. / Neurobiology of Aging 35 (2014) 1680e16851682



Author's personal copy

2013) (Fig. 1B and C). The corticosterone levels in plasma were
significantly elevated as a result of the maternal separation,
compared with control animals, at PND 40 (p¼ 0.034; n¼ 7 for CTR
and n ¼ 4 for MS, Student t test).

In the elevated-plus maze, the percentage of time spent in the
open arms of the maze (Fig.1C) reveals a significant effect of rearing
(p ¼ 0.034; n ¼ 5 for CTR and n ¼ 8 for MS) in anxious behavior at
PND 40. The total number of arm entries (not shown), did not
change between groups.

3.2. Aged MS rats show deficits on hippocampal-dependent
learning and memory, when compared with aged control rats

We then evaluated whether this MS-induced anxious behavior
displayed in adulthood was accompanied by cognitive deficits in
late life, by testing the animals at 70 weeks of age in the spatial
reference memory task of the Morris water maze (Fig. 2).

In aged rats, both CTR (n ¼ 6) and MS (n ¼ 8) groups showed
significant learning by improved latency (F4,56 ¼ 15.07, p < 0.0001,

Fig. 2D) and reduced pathlength (F4,56 ¼ 15.03, p < 0.0001, data not
shown) to reach the platform. We found no major significant differ-
ences between groups in the escape latency (F1,56 ¼ 0.23, p > 0.05).
However, a memory retention deficit in the aged MS group was sta-
tistically significant when animals performed the probe trial: theMS
rats (n¼8) spent significantly less time in theplatformquadrant than
control animals (n ¼ 6; p ¼ 0.035, Student t test, Fig. 2E).

In the EPM, aged MS animals still presented a higher anxious-
related behavior (spent less time in the open arms, 15.5 � 4.2% in
MS (n ¼ 8) vs. 33.7 � 6.3% in CTR (n ¼ 6), p ¼ 0.004, Fig. 2F). The
total number of arm entries (not shown), did not change between
groups.

3.3. LTP induced by HFS stimulus is impaired in aged MS animals

We then evaluated if the impairments driven by MS in the
hippocampal dependent-memory of aged animals, were associated
with changes in synaptic plasticity (Fig. 2A). Field excitatory post-
synaptic potentials were measured in the CA1 area of the dorsal

Fig. 2. LTP and spatial memory is aggravated in aged MS animals. High frequency stimulation (HFS)-induced long-term potentiation (LTP) is significantly lower in rats subjected to
maternal separation (MS). (A) Averaged time course changes in field excitatory post-synaptic potential (fEPSP) slope induced by HFS in hippocampal slices taken from 70-week-old
MS and control rats. (B) Representative recordings of the fEPSPs obtained both for aged CTR and MS animals before LTP induction (pre HFS, dotted line) and in the last 10 minutes
(post HFS, solid line) are presented. (C) Percentage of change in magnitude of LTP (fEPSP slope average at 50e60 minutes). * p ¼ 0.035, Student t test, n ¼ 4/5. The recording setup
arrangement is depicted in the upper right panel. Influence of maternal separation (MS) and aging upon spatial memory, as measured by (D) the escape latency and (E) percentage of
time spent in the platform quadrant in probe trial, which was conducted 1 hour after the last training trial at day 5, in the absence of escape platform. Note that MS experience
affected memory recall in aged animals, as the MS group spent significantly less time in the platform quadrant in the probe trial (* p ¼ 0.041, Student t test, n ¼ 6 for CTR and n ¼ 8
for MS). (F) Percentage of time spent in the open arms of the elevated plus-maze. A significant effect of MS in reducing percentage of time in open arms was observed in aged rats.
(** p ¼ 0.004, Student t test, n ¼ 6 for CTR and n ¼ 8 for MS). Abbreviation: CTR, control.
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hippocampus and LTPmagnitude quantified in both control andMS
groups from aged animals (70-week-old) (Fig. 2B). The HFS stimu-
lation induced a statistically significant LTP in slices taken from
control animals (open circles) of 146.0 � 7.8%, n ¼ 4 (Fig. 2C). In
contrast, in hippocampal slices from MS rats (filled circles) the
magnitude of LTP decreased to 115.4 � 9.3%, n ¼ 5, * p ¼ 0.035,
Student t test (Fig. 2C).

4. Discussion

In the present work, we show that adult anxious behavior and
spatial memory deficits induced by MS persist into old age, where
we observed that senescent MS animals have an associated lower
magnitude of hippocampal LTP. These results substantiate the hy-
pothesis that the neuronal and endocrine alterations induced by
early-life stress are long lasting, and are able to exacerbate the mild
age-associated deficits observed in normal aged animals.

Hippocampal synaptic plasticity is widely considered to be the
mechanism associated with learning and memory (Bliss &
Collingridge, 1993). Stress affects spatial learning and memory in
theMorris water maze (de Quervain et al., 1998); accordingly, stress
affects hippocampal LTP (Foy et al., 1987), facilitates long-term
depression (Kim et al., 1996) and exposure to glucocorticoids re-
duces hippocampal LTP (McEwen, 1999a). The glucocorticoid
cascade hypothesis (Sapolsky et al., 1986) suggests that elevated
levels of glucocorticoids cause decreased levels of hippocampal
glucocorticoid receptors and neuronal loss. It is known that aged
rodents have elevated levels of plasma corticosterone (Landfield
et al., 1978). Furthermore, elevated glucocorticoid levels have
been linked to cognitive deficits (McEwen, 1999a). However, it
remained to be determined the impact of MS on synaptic plasticity
in aged animals.

In the present work, we observed that aged (70-week-old) ani-
mals subjected to neonatal stress have significantly lower magni-
tude of hippocampal LTP than the age-matched controls. Because
neonatal stress induces long lasting increases in corticosteroids
(Batalha et al., 2013) the observed hippocampal dysfunction in aged
animals is in agreement with the known susceptibility of the hip-
pocampus to elevated levels of circulating corticosteroids (Jacobson
& Sapolsky, 1991).

In humans, altered cortisol levels are observed in individuals
with posttraumatic stress syndrome or major depression (Gerritsen
et al., 2011). Increased glucocorticoid activity has also been asso-
ciated with greater hippocampal atrophy and memory impairment
in the elderly (Lupien et al., 1998), and with a quicker progression of
Alzheimer’s disease (AD) (Csernansky et al., 2006). Notably, a large
longitudinal study of human subjects aged 50e70 years, found that
elevated salivary levels of cortisol were correlated with poor
cognitive function across a broad range of domains including lan-
guage, eye-hand coordination, executive function, verbal learning,
memory, and visual memory (Lee et al., 2007). Furthermore, sys-
temic administration of glucocorticoids was shown to exacerbate
memory impairments, hippocampal damage, b-amyloid formation,
and tau accumulation in rodents (Green et al., 2006; Yao et al.,
2011). Conversely, administration of an antagonist of the re-
ceptors for corticotropin-releasing hormone immediately after the
stress period improved memory performance later in life (Ivy et al.,
2010). Interestingly, administration of an adenosine A2A receptor
antagonist to adult animals subjected to MS reverted elevated
plasma corticosterone levels and restored hippocampal glucocor-
ticoid receptor expression pattern toward values similar to those
detected in control rats. Furthermore, the A2A receptor antagonist
effectively reverted the behavioral, electrophysiological, and
morphologic impairments induced by early-life stress (Batalha
et al., 2013). It thus becomes evident that early-life stress induces

a hypothalamic-pituitary-adrenal axis dysregulation that continues
throughout the life span of the individuals and that, as we now
show, impacts in memory dysfunction and synaptic plasticity
impairment in aging.

Furthermore, although aged MS animals did not perform worse
than age-matched controls in the acquisition phase, they showed
significant memory retrieval deficits, as indicated by their signifi-
cantly poorer performance in the probe test. These observations are
in line with existing evidence on the consequences of early-life
stress upon aging (Ivy et al., 2010; Lehmann et al., 2002; Oitzl
et al., 2000; Solas et al., 2010).

The mechanisms underlying the effects of high corticosterone
levels are largely unknown. One relevant effect of glucocorticoid
receptor activation that has been linked with memory function
(Schaaf et al., 2000) is the suppression of brain-derived neuro-
trophic factor (BDNF) expression and reduced activation of insulin
pathways (Cosi et al., 1993; Solas et al., 2010). Namely, the levels of
insulin receptor, phosphorylated insulin receptor, and markers of
downstream signaling pathways (pAkt, pGSK3b, pTau, and pERK1
levels) were significantly decreased in MS aged rats. Glucocorti-
coids are elevated in rodents with experimental diabetes
(Magariños and McEwen, 2000) and it has been suggested that
cognitive impairment in diabetes may result from glucocorticoid-
mediated deficits in neurogenesis and synaptic plasticity
(Stranahan et al., 2008). Furthermore, early work demonstrated an
absolute requirement for ERK activity in induction of LTP and
memory consolidation (Eckel-Mahan et al., 2008). As BDNF
signaling activates the ERK1/2 pathway, it could be suggested that
the inhibition of ERK cascade in MS aged rats could be related to
both a lower BDNF levels and reduced insulin pathway activation.
Moreover, we have previously shown an exacerbated tonus of
endogenous BDNF leading to a facilitation of LTP (Diógenes et al.,
2011). Whether the now reported deficits in synaptic plasticity in
the MS aged animals may therefore result from a deficit in
endogenous BDNF signaling or/and insulin pathway dysfunction,
awaits further research.

The present study provides evidence for an early aging like
phenomenon occurring to adult animals subjected to MS. More-
over, it implies that stress induced early in life might increase the
susceptibility to cognitive deficits associated with aging. This evi-
dence is thus important for the consideration of the psychosocial
environment in early life as a susceptibility factor for age-related
affective and cognitive dysfunction.
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Abstract
AD (Alzheimer’s disease) is the most prevalent form of dementia in the aged population. Definitive diagnosis
of AD is based on the presence of senile plaques and neurofibrillary tangles that are identified in post-
mortem brain specimens. A third pathological component is inflammation. AD results from multiple genetic
and environmental risk factors. Among other factors, epidemiological studies report beneficial effects of
caffeine, a non-selective antagonist of adenosine receptors. In the present review, we discuss the impact of
caffeine and the adenosinergic system in AD pathology as well as consequences in terms of pathology and
therapeutics.

Alzheimer’s disease pathology
AD (Alzheimer’s disease) is the most frequently encountered
form of dementia. In most cases, AD appears as a sporadic
multifactorial disease resulting from the interaction of differ-
ent environmental, epigenetic and genetic factors [1]. Various
epidemiological studies have allowed the identification of
‘risk factors’ and ‘protective factors’. High blood pressure,
diabetes and obesity are detrimental factors [2–4], whereas
physical and intellectual activities, as well as fish consumption
have protective effects ([5], and references therein, [6]).

The definitive diagnosis of AD is based on the
observation of characteristic brain lesions: senile plaques
and neurofibrillary tangles. Senile plaques are characterized
by the extracellular accumulation of the Aβ (amyloid β-
peptide), whereas neurofibrillary degeneration is due to the
pathological accumulation in the neurons of the naturally
present tau protein. Aβ derives from a precursor called
APP (amyloid precursor protein) through the combined
action of two distinct proteolytic enzymatic activities, β-
and γ -secretase releasing N- and C-terminal fragments of Aβ

respectively [7,8]. Notably, soluble Aβ oligomers are thought
to be the most neurotoxic species driving the detrimental
impact of amyloid pathology ([9] and references therein).
Neurofibrillary degeneration arises from the intraneuronal
accumulation of proteinaceous fibrils in PHFs (paired
helical filaments) made of hyperphosphorylated tau proteins,
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forming flame-shaped neurons (for reviews, see [10,11]). Tau
is a neuronal protein located within the axonal compartment,
essential for the organization, stabilization and dynamics
of microtubules [10,11], but tau has additional important
neuronal functions at the dendritic and nuclear levels [12–
14]. The physiological and pathological functions of tau
are also regulated by post-translational modifications, such
as phosphorylation. Changes in tau phosphorylation may
affect multiple tau functions and facilitate tau aggregation
[10,11]. Importantly, spreading of the neurofibrillary lesions
in the cortex (first entorhinal cortex, then hippocampus
and lastly neocortex), corresponds to the progression of
the symptoms [15]. This supports the hypothesis that tau
pathology is instrumental in cognitive alterations as stressed
by observations that it impairs various forms of synaptic
plasticity and cognitive tasks in mouse models [16–21].
Finally, neuroinflammatory processes are considered as a
third pathological component in AD as recently pointed
out by several genetics studies [13,22]. Although their
respective contribution to the amyloid and tau sides of AD
remain unclear so far, astrogliosis and neuroinflammatory
events, especially those mediated by microglial cells, have an
instrumental role in AD. An extensive description of their
role in AD is beyond the scope of the present paper, but has
been reviewed elsewhere [23,24].

Caffeine and Alzheimer’s disease: from
epidemiology to pathophysiology
The methylxanthine caffeine (1,3,7-trimethylxanthine) is the
world’s most popular psychoactive drug. The reason for this
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popularity lies in its psychostimulant properties combined
with the absence of substantial negative side effects. Caffeine
is contained in coffee, tea, soft drinks and chocolate. Overall,
the psychostimulant properties of caffeine are due to its
ability to interact with neurotransmission in different regions
of the brain, thereby promoting behavioural functions,
such as vigilance, attention, mood and arousal as well as
improvement of cognition [25].

In humans, cognitive benefits of caffeine have been
reported [26]. Brief exposure improves memory and cognitive
function in paradigms of scopolamine-induced impairments
[27]. Caffeine also improves attention and information
processing [28]. In rodents, evidence from the last few years
support the cognition-enhancing properties of caffeine in
a variety of behavioural tasks that evaluated learning and
memory [29]. Different longitudinal studies have investigated
the relationship between coffee consumption, cognitive
decline or dementia/AD. In the FINE (Finland, Italy and The
Netherlands Elderly) Study, among elderly men, drinking
three cups of coffee per day was associated with the least
10-year cognitive decline [30]. Furthermore, results from the
Three City Study among 65-year-old persons indicated that a
consumption over three cups per day was associated with
less decline in verbal memory and, to a lesser extent, in
visuospatial memory among women [31].

Interestingly, other studies support the hypothesis that
caffeine consumption might prevent AD. A retrospective
study has shown an inverse correlation between coffee
intake and the occurrence of AD later on in life since
patients with AD had an average daily caffeine intake of
73.9 ± 97.9 mg during the 20 years that preceded diagnosis
of AD, whereas the controls had an average daily caffeine
intake of 198.7 ± 135.7 mg during the corresponding 20 years
of their lifetimes [32]. In the prospective CSHA (Canadian
Study of Health and Aging), daily coffee drinking decreased
the risk of AD by 31% during a 5-year follow-up
[33]. In line with those findings, another study from the
CAIDE (Cardiovascular Risk Factors, Aging and Dementia)
population reports that coffee drinkers at midlife had lower
risk of dementia and AD later in life compared with
those drinking no or only little coffee. The lowest risk
(65% decreased) was found in people who drank three
to five cups per day [34]. Finally, recent prospective data
indicated that high plasma caffeine levels were associated
with a reduced risk of dementia or a delayed onset in
patients with MCI (mild cognitive impairment) [35]. It is
noteworthy that in a recent study from the Honolulu–Asian
Aging Study, authors did not find a significant association
between caffeine intake and dementia risk [36]. However,
interestingly, they reported that, at autopsy, patients in the
highest quartile of caffeine intake (>277.5 mg/day) were less
likely to have any of the neuropatholgical lesions, such as
AD-related lesions, microvascular ischaemic lesions, cortical
Lewy bodies, hippocampal sclerosis or generalized atrophy.
Therefore the available epidemiological data support the
hypothesis that caffeine consumption is able to slow down
cognitive decline in the elderly and reduces the risk of

developing AD. Of note, although this also looks to be the
case in Parkinson’s disease [37], caffeine has been recently
suggested to exhibit detrimental effects in Huntington’s
disease [38], suggesting that caffeine is not protective in all
neurodegenerative conditions and that its effects depends on
underlying instrumental mechanisms.

Several scientific studies support the hypothesis that
caffeine is also beneficial in animal models which mimic the
amyloid or tau sides of AD. Caffeine mitigates cognitive
decline induced by Aβ and reduced the amyloid burden
in transgenic mice overexpressing mutant APP (APPSw) in
preventative, but also in therapeutic paradigms. Indeed,
APPSw mice chronically treated from 4 to 9.5 months of age
with caffeine (300 mg/l by drinking water) were cognitively
improved in several behavioural tasks that evaluated working
and spatial memory and exhibited reduction of hippocampal
Aβ1–40 and Aβ1–42 [39]. Importantly, a similar treatment of
APPSw mice at late pathological stages (18–19 months) for
4–5 weeks reversed memory deficits and reduced amyloid
deposition as well as soluble Aβ levels in both entorhinal
cortex and hippocampus [40]. Such beneficial effects of
caffeine against Aβ production were recently confirmed by
a different group using an experimental model of sporadic
AD based on feeding rabbits with cholesterol-enriched diet
that elevates both Aβ levels and tau phosphorylation in the
brain [41]. In this study, rabbits fed on the cholesterol-
enriched diet were treated with low doses of caffeine
(0.5–30 mg/day) through drinking water, corresponding
to a maximal 60 mg/day consumption in humans (i.e.
approximately one cup of coffee). In this paradigm, caffeine
significantly decreased Aβ production in accordance with
the results of Arendash et al. [39,40]. Interestingly, reduced
production of Aβ1–40 and Aβ1–42 was also observed in a
neuroblastoma model overexpressing mutant APP following
treatment with concentrations of caffeine below 10 μM
[39], supporting further the notion that caffeine affects
mechanisms underlying Aβ production. In accordance,
chronic caffeine treatment of APPSw mice has been associated
with decreased PS1 (presenilin 1) and BACE1 (β-site APP-
cleaving enzyme 1) protein expression as well as increased
IDE (insulin-degrading enzyme) levels, the latter presumably
contributing to enhanced Aβ degradation [39,41]. The effect
of caffeine on BACE1 expression could relate to its ability to
reduce c-Raf1 activity, possibly through PKA (protein kinase
A) activation [40]. In addition, caffeine would reduce GSK3
(glycogen synthase kinase 3) expression and/or activity and
thereby influencing Aβ production [40]. However, a direct
effect of caffeine on γ -secretase activity remains elusive, and
mechanisms linking caffeine and Aβ production/clearance
deserve further evaluation. It is finally noteworthy that,
although the beneficial effects of coffee on cognitive decline
and decreased AD risk in humans has been mostly ascribed to
caffeine, other coffee constituents may also play an important
role towards amyloid pathology. Indeed, two recent studies
have shown that non-caffeine components of coffee display
neuroprotective effects in Drosophila melanogaster and
Caenorhabditis elegans amyloid models through activation
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Brain Disorders Across the Lifespan: Translational Neuroscience from Molecule to Man 3

of the Nrf2 (nuclear factor-erythroid 2-related factor 2)
detoxification pathway [42,43]. Interestingly, recent data
indicate that caffeine may also have an impact on tau
phosphorylation. Indeed, cultured neuronal cells exhibited
reduced tau phosphorylation under caffeine treatment [44].
Although caffeine doses used are far above the levels
normally obtained following habitual consumption, this
indicates a possible relationship to tau. In accordance,
we observed recently that chronic caffeine consumption
by tau transgenic animals (THY-Tau22 strain) developing
neurofibrillary lesions, prevented memory alterations as well
as decreased tau phosphorylation in the hippocampus [45].

Caffeine targets and Alzheimer’s disease:
the role of adenosine receptors
Only at high millimolar concentrations, which are irrelevant
for normal consumption, can caffeine act at the level of ryan-
odine receptors and cyclic nucleotide phosphodiesterases, but
it is now well established that, under normal habitual caffeine
consumption, the effects exerted in the brain by caffeine
depend on its ability to block adenosine A1 and A2A receptors
[25]. Adenosine receptors have a crucial neuromodulatory
role and regulate both synaptic transmission and plasticity
either by directly modulating synaptic responses or by
interfering with other receptors [46].

During aging, we and others have found compelling
evidence of cortical and hippocampal upsurge of A2A receptor
expression/function. Specifically, in the hippocampus of
aged rats, A2A receptor expression is nearly 2-fold higher
compared with young rats [47,48]. More importantly, the A2A

receptor-dependent activation of glutamate release becomes
more pronounced as aging progresses, and shifts from
PKC (protein kinase C)-mediated signalling to cAMP-
dependent effects [48,49]. This is accompanied by clear
behavioural deficits in hippocampus-dependent tasks, such as
spatial memory in rats [50]. Accordingly, rats overexpressing
hippocampal A2A receptors also exhibit behavioural deficits
including spatial memory defects as well as LTP (long-
term potentiation) impairments ([51], and L.V. Lopes et al.,Q1

unpublished work). Interestingly, other detrimental condi-
tions associated to cognitive impairment, such as hypoxia,
diabetes or epilepsy share similar A2A receptor overactivation
([48,52], and for a review, see [53]). Recently, we demonstrated
decreased adult hippocampal LTP and cognitive/memory
impairment in a chronic-stress-induced aging-like model,
generated by maternal separation during the early postnatal
period, in association with increased hippocampal A2A

receptor expression [52]. Strikingly, we observed, in adults,
a normalization of synaptic and cognitive dysfunctions
following A2A receptor blockade with the selective antagonist
KW6002 [52], indicating an instrumental role of A2A

receptor dysregulation in the genesis of synaptic dysfunctions
underlying cognitive impairment within such aging context.

Importantly, additional convergent data indicate that
caffeine protects against the synaptoneurotoxicity induced

by Aβ through blockade of A2A receptors. In primary
cultures of cerebellar granule cells, low doses of caffeine (1–
25 μM), comparable with those achieved following caffeine
treatment in animals or moderate coffee consumption in
humans [25], are able to counteract Aβ25–35 toxicity, an effect
mimicked by ZM241385, an A2A receptor antagonist, but
not CPT (8-cyclopentyltheophylline), a selective A1 receptor
antagonist [54]. These protective effects were confirmed
in vivo. Subchronic treatment with caffeine at 30 mg/kg
was shown protective against aversive and working memory
deficits induced by i.c.v. (intracerebroventricular) injection
of Aβ25–35 in mice [55] and mimicked by administration of
SCH58261, a selective A2A receptor antagonist. A2A receptor
blockade, through intraperitoneal injection of SCH58261
and KW6002 or genetic knockout, was also shown to
prevent working memory impairment as well as synaptic
loss induced by i.c.v. injection of Aβ1–42 [56,57]. Working
memory improvement observed following A2A receptor
blockade was thought to be related to the prevention of
synaptotoxicity promoted by Aβ through modulation of p38
MAPK (mitogen-activated protein kinase) and mitochondrial
function [57]. Interestingly, it has been demonstrated that
memory improvement promoted by A2A receptor blockade
following i.c.v. injection of Aβ was not observed in amnestic
conditions induced by MK801 or scopolamine [56]. A2A

receptor blockade would then mitigate detrimental synaptic
effects of Aβ. To date, no studies have been published on
the impact of A2A receptor modulation upon tau pathology
in AD. However, we demonstrated recently the beneficial
impact of A2A receptor deletion in a transgenic mouse model
of AD-like tau pathology [45].

Besides its direct action on synapses, the effects of A2A

receptor modulation upon AD pathophysiology could be
non-neuronal. The role of A2A receptors expressed by
astroglial and microglial cells is far from understood (for a
review, see [58]). However, a few studies indicate that A2A

receptors are up-regulated in both microglial and astroglial
cells treated by Aβ [59,60]. A2A receptors may promote
activation and proliferation of astroglial cells [61,62], and
thereby regulate their ability to release glutamate [63] by
controlling glutamate uptake [60], or affect the homoeostasis
of the endogenous neuroprotectant adenosine via adenosine
kinase [64]. Astroglial A2A receptor up-regulation may thus
contribute to the pathophysiology of AD. This idea is in line
with the observation of the reinstatement of glutamate uptake
in Aβ-treated glial cells following A2A receptor blockade [60].
In addition, it has been shown that A2A receptor stimulation
causes microglial activation [59] and potentiates the release
of nitric oxide (NO) as well as prostaglandin E2 release
from these cells [65,66]. Different experimental evidence
supports the anti-inflammatory effect of A2A receptor
blockade in different neuropathological situations [67–69].
Furthermore, A2A receptor blockade mitigates LTP defects
as well as microglial activation and IL-1β (interleukin 1β)
release following LPS (lipopolysaccharide) administration
[69]. Then, blocking microglial A2A receptor could be
beneficial in AD. However, as microglia may play a Janus
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role in AD [24], this conclusion needs further evaluation. In
particular, the role of A2A receptor activation towards the
pathophysiology of AD will require further in vivo studies
with appropriate and reliable cell-type-specific models.

Conclusion
Although recent data indicate that perinatal caffeine may
impair interneuron migration and hippocampal network
function [70], epidemiological and pre-clinical data, including
ours, support the notion that caffeine might be not only
a cognitive enhancer, but also a disease modifier in AD.
The qualities of caffeine as a safe [71], inexpensive and
brain-penetrating agent deserves the translation of these
findings into a pilot clinical trial in AD patients. Despite
epidemiological data on the effects of caffeine in aged and
AD subjects, and data from animal studies, no clinical trials
have been performed to date to evaluate the extent by
which caffeine can slow down disease progression in patients
that have already developed AD. In addition, encouraging
preliminary experimental data have been obtained related to
the role of A2A receptors in AD. Although more work is still
needed to uncover specific A2A receptor functions in AD,
all findings to date indicate that antagonists tested in human
trials, even when not optimal in terms of efficacy, have reliably
been shown to be safe and tolerable ([72], for reviews, see
[73,74]). Therefore A2A-based trials will be feasible in the
future, if we are able to better delineate the function of A2A

receptors in the pathophysiology of AD.
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