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Abstract
1.	 Citizen science data are increasingly used for ecological research, biodiversity 

conservation and monitoring. However, these data often present significant 
analytical challenges due to uneven recording efforts by citizen scientists. 
Biases caused by intra-annual differences in levels of recording activity can be 
particularly severe, hindering the use of citizen science data in research areas such 
as population dynamics and phenology. Therefore, understanding the temporal 
patterns and drivers of recording activity by citizen scientists is essential.

2.	 In this study, we provide a detailed assessment of how weather and calendar-
related factors relate to levels of biodiversity recording activity by citizen scientists 
at a daily resolution. To perform this, we analyse the recording patterns for six 
tree species in the Iberian Peninsula, which maintain a consistent appearance 
throughout the year. Observation data were collected from iNaturalist, a leading 
platform for citizen science data. We used boosted regression trees (BRT) to 
compare observed recording activity patterns with those expected by chance. 
Our analysis included a comprehensive set of explanatory variables, such as the 
day of the week, the month, holidays, temperature, accumulated precipitation, 
wind intensity and snow depth.

3.	 The BRT models demonstrated good predictive performance, with the correlation 
between predicted and observed patterns of recording activity (left out of model 
training) ranging from 0.55 to 0.91, depending on the species. The day of the 
week, month of the year, and daily temperature consistently emerged as the most 
important predictors. Recording activity was higher on weekends, to some extent 
on Fridays and during the spring months. Extreme low and high temperatures 
were generally associated with lower recording activity, although there were 
exceptions. Precipitation and wind speed had relatively lower importance but 
remained relevant, with increased precipitation and wind intensity typically 
associated with reduced recording activity. In contrast, public holidays and 
accumulated snow demonstrated minimal to negligible importance.

4.	 Our findings show that citizen scientists record more frequently on weekends, 
during mild weather and in spring. By addressing these non-random patterns 
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1  |  INTRODUC TION

Currently, citizen science is an invaluable source of biodiversity 
data (Callaghan et al., 2021). These data, recorded mostly by non-
experts and often empowered by specialised smartphone apps, 
are now among the most abundant available for several taxonomic 
groups (Groom et al., 2017; Kelling et al., 2019). Thus, citizen sci-
ence data are crucial for supporting assessments of the current 
state of biodiversity (Chandler et al., 2017), monitoring the spread 
of invasive species (Gallo & Waitt, 2011; Johnson et al., 2020), and 
tracking the distribution and population trends of species (Dennis 
et  al.,  2017; Horns et  al.,  2018). Additionally, citizen science ini-
tiatives play a significant role in ecological research, conservation 
planning, and policymaking by providing large-scale, geograph-
ically diverse datasets that are otherwise difficult and expen-
sive to obtain (Callaghan et  al.,  2019; Hochachka et  al.,  2012). 
Furthermore, the engagement of the public in scientific research 
fosters a greater awareness and understanding of environmen-
tal issues, promoting conservation efforts at a community level 
(Bonney et al., 2016; Chozas et al., 2023).

Citizen science has greatly advanced biodiversity data collection 
and environmental research, but it also presents significant limita-
tions and analytical challenges. Key issues include spatial differences 
in recording effort, which influence the geographic distribution of 
observations, taxonomic gaps and biases, leading to uneven repre-
sentation of species or groups, and non-random temporal patterns 
of recording, which affect the timing and seasonality of data collec-
tion (Bird et al., 2014; Tiago et al., 2017; Troudet et al., 2017).

Temporal recording patterns, in particular, can be shaped by fac-
tors, such as weather conditions, seasonal events and participants' 
personal motivations (Hobbs & White, 2012; Peter et al., 2021), all 
of which influence the quality, consistency and completeness of 
the data. While various analytical strategies have been proposed 
to address temporal variations in citizen science recording effort 
(Bird et al., 2014; Dennis et al., 2013; Gonsamo & D'Odorico, 2014; 
Kosmala et  al.,  2016; Weiser et  al.,  2020), significant challenges 
persist. These challenges are particularly severe when studying 
seasonal phenomena requiring high temporal resolution, such as 
population dynamics and phenological shifts (Callaghan et al., 2019; 
Primack et al., 2023). Therefore, thoroughly understanding the tem-
poral patterns of citizen science recording and understanding their 
underlying factors is crucial for improving the comprehensive and 
accurate use of citizen science data. By accounting for the effects 
of these factors in data collection, the reliability and validity of con-
clusions drawn for temporally detailed assessments of ecological 

phenomena can be significantly enhanced (Mora et al., 2024; Tiago, 
Leal, et al., 2024).

Variations in the levels of biodiversity recording activity by citi-
zen scientists throughout the year reflect the interplay of two com-
ponents. The first component pertains to the seasonal dynamics of 
the actual ecological phenomena being recorded. Variations in the 
timing and magnitude of these phenomena, such as plant blooming, 
butterfly emergence in the imago stage, or bird and insect migration 
events, inherently determine the opportunities for citizens to record 
them (e.g., Monarch Larva Monitoring Project, 2024; Brenskelle 
et al., 2021). The second component involves factors external to the 
ecological phenomena determining citizen scientists' availability and 
willingness to participate, such as the day of the week, public holi-
days or the time of year (Courter et al., 2013; Di Cecco et al., 2021), 
as well as weather conditions. A common aim of researchers using 
citizen science data to study ecological dynamics is to ‘remove’ the 
influence of the later component on the temporal patterns of re-
cording activity (e.g. Capinha et al., 2024). By doing so, the resulting 
(‘unbiased’) patterns more accurately represent the true dynamics of 
ecological phenomena. However, this is often challenging because 
the effects of both components are intertwined, hindering the inter-
pretation of observed trends in the data.

Previous studies have assessed the role of external factors in 
driving the levels of activity of biodiversity recording by citizen sci-
entists. The factors assessed are predominantly calendar-related, 
such as the identified weekend bias and the week-of-the-year bias 
(Courter et al., 2013; Di Cecco et al., 2021; Díaz-Calafat et al., 2024). 
Additionally, the impact of citizen-science-specific events, such as 
‘BioBlitzes’ or the ‘City Nature Challenge’, has also been investigated 
(Di Cecco et al., 2021; Tiago, Evaristo, & Pinto, 2024). However, most 
of these assessments were based on the raw number of records con-
tributed by citizen scientists (e.g., Di Cecco et al., 2021; Díaz-Calafat 
et  al.,  2024), overlooking how variations in the timing and magni-
tude of the ecological phenomena themselves influence recording 
patterns. Moreover, to date, there has been no comprehensive as-
sessment of the role of weather-related factors, despite the well-
known influence of weather on the willingness to engage in outdoor 
activities (Tucker & Gilliland,  2007). Weather-related factors are 
plausibly relevant drivers of biodiversity recording, potentially more 
so than calendar-based ones, and their effects may be complex. For 
instance, some meteorological variables might be expected to have 
a monotonic effect, such as a consistent decrease in outdoor activity 
with increasing precipitation. On the other hand, peaks of record-
ing activity plausibly occur at moderate rather than extreme low 
or high temperatures. Ultimately, it is essential to understand the 

in recording activity, we can maximise the utility of citizen-collected data for 
research and applied purposes.
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    |  3ROSÁRIO et al.

joint effects of calendar and weather-related factors on the levels of 
activity of citizen scientists. This understanding must be developed 
using approaches that are robust to the seasonal variations of eco-
logical phenomena.

Here, we provide a detailed assessment of how calendar-related 
and weather factors are related to levels of biodiversity recording 
activity by citizen scientists. We focus on the recording patterns of a 
set of evergreen tree species that fulfil several key criteria: conspic-
uousness, ease of identification, and most importantly, consistent 
appearance throughout the year. Our core assumption is that due 
to minimal changes in their appearance, the temporal patterns of re-
cording for these ‘benchmark’ taxa primarily reflect variations caused 
by external factors. Using observation records from the Iberian 
Peninsula, we employ a well-established machine learning approach 
to assess the predictive power and the nature of the correlative re-
lationships for a comprehensive set of calendar- and weather-based 
predictors. These predictors include the day of the week, month, 
public holidays, temperature, accumulated precipitation, wind inten-
sity, and snow depth. By assessing the relative importance of each 
predictor and the type of association with recording activity, we pro-
vide a robust evaluation of the external factors shaping biodiversity 
recording efforts by citizen scientists.

2  |  METHODS

2.1  |  Species occurrence data

The analysed species observation data were collected from the iN-
aturalist platform (www.​inatu​ralist.​org). iNaturalist is a nonprofit 
social network designed for naturalists, citizen scientists, and biolo-
gists, centred around the concept of mapping and sharing biodiver-
sity observations globally. iNaturalist is accessible via its website and 
mobile applications. It features an automated species identification 
tool and fosters a collaborative approach where users collaborate in 
identifying organisms from photographs or sounds (www.​inatu​ralist.​
org/​pages/​​about​).

From iNaturalist, we collected biodiversity observations from 
seven evergreen tree species. These were five pines: Pinus halepen-
sis (Aleppo pine), P. nigra (Austrian pine), P. pinaster (maritime pine), P. 
pinea (stone pine) and P. sylvestris (Scots pine), and two oaks: Quercus 
rotundifolia and Q. suber (holm and cork oak, respectively). We se-
lected these species because they are the pine species and ever-
green oaks that are more widely distributed in the Iberian Peninsula 
and exhibit minimal variation in their appearance throughout the 
year. Our core assumption is that due to reduced seasonal changes in 
their appearance throughout the year, the temporal patterns in the 
recording of these taxa should largely reflect variations in recording 
activity itself (cf. Capinha et al., 2024). This should be particularly 
the case with pines, which maintain a similar appearance through-
out the year. They grow new leaves as they shed old ones, and their 
(female) pine cones take longer than a year to mature (e.g. one and 
a half years for P. nigra, 2 years for P. halepensis and P. pinaster, and 

3 years for P. pinea), resulting in cones of various ages and sizes 
throughout the year (Earle,  2018). For the two oak species, while 
they are also evergreen and maintain a constant appearance of their 
foliage and branches, during Autumn they produce acorns (Bonal & 
Muñoz, 2007; Pons & Pausas, 2012). The acorns may imply, to some 
extent, a slight increase in attractiveness for recording during this 
period. Interpretation of results for these taxa (below) takes this 
possibility into account.

The observation data collected from iNaturalist file included: 
geographical coordinates of the location of observation, date of 
observation, username of observer, species' scientific name, and 
quality grade. We filtered these data and kept only the records sup-
plying geographical coordinates, full date (year, month, and day) and 
a research quality grade (i.e., species identification confirmed by at 
least two identifiers). To avoid years in which observation recording 
may have been affected by anomalous factors, the 2 years of lock-
down due to the Covid-19 pandemic were excluded. In addition, the 
number of records made prior to 2017 was very reduced. Therefore, 
the observation data collected represented the periods from 2017 
to 2019 and 2022 to 2023.

2.2  |  Assembly of dependent and predictor data

To compile the data for each species for analysis, we began by re-
taining only a single record per combination of date and 0.1° × 0.1° 
(approx. 10 × 10 km) grid cell, corresponding to the spatial resolution 
of the predictor data (see below). This step aimed to avoid includ-
ing multiple records from the same recording event, such as a single 
recorder submitting multiple records of the same specimen (i.e. ‘du-
plicates’). A total of 3532 observation records were kept for Q. suber, 
4744 for Q. rotundifolia, 938 for Pinus sylvestris, 1272 for P. halepen-
sis, 2118 for P. pinea, and 1246 for P. pinaster. P. nigra was excluded 
from the analysis because there were few observations (128).

Next, for each species, we generated records with the same 
geographical coordinates and year of observation but with ran-
domly generated day and month values. These records, referred to 
as ‘temporal pseudo-absences’ (Capinha et al., 2024), represent the 
temporal distribution expected if recording events were randomly 
distributed throughout the year. To ensure comprehensive repre-
sentation of annual conditions, we generated 10 sets of pseudo-
absences for each observation record. Observation records (coded 
as ‘1’) were then combined with temporal pseudo-absences (coded 
as ‘0’) into a single dataset. This resulted in a dataset for each species 
containing both the actual observation data and data representing 
random temporal distributions.

Each record in these data sets was then characterised by a com-
prehensive set of calendar and weather-related variables, chosen for 
their potential influence on individuals' willingness to go outside and 
observe and record biodiversity. The calendar variables included the 
day of the week, the month and whether the day was a public holiday. 
The first two variables were calculated directly in R (R Core Team, 
2024) using base functions, while holidays were identified manually 
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from the website Timeanddate (www.​timea​nddate.​com). These cal-
endar variables were selected based on earlier literature assessing 
the influence of the day of the week and the time of year on species 
recording (Courter et al., 2013; Di Cecco et al., 2021). Public holidays 
were considered, as they could provide additional free time, making 
it more likely for individuals to participate in biodiversity recording.

The weather variables included the mean temperature of the 
day (°C), total accumulated precipitation of the day (mm), mean 
wind speed on the day (m/s) and snow cover depth on the day (cm). 
These values were sourced from ERA5Ag at 0.1° × 0.1° resolution 
(Boogaard et al., 2020). We selected these weather variables based 
on previous studies assessing factors that influence outdoor activ-
ities, with temperature and precipitation being the most commonly 
considered (Verbos et al., 2018). Wind and snow may also be relevant 
factors, impacting, for example, people's outings to natural parks, 
particularly in higher-altitude areas (Verbos & Brownlee, 2017).

2.3  |  Data analysis

To identify predictors of temporal variation in recording effort, we 
used BRT (Elith et al., 2008; Hijmans et al., 2017). BRTs are ensem-
bles of decision trees, where each tree is fitted iteratively to reduce 
the prediction errors of the ensemble. This algorithm effectively 
combines multiple weak learners (decision trees) to create a robust 
predictive model (Elith et al., 2008).

For each species, we built 10 BRT models, using the species' 
observation records (coded as 1) paired with a distinct, equal-
sized subset of pseudo-absences (coded as 0) as the dependent 
variable, along with the predictor variables. The models were 
implemented in R using the ‘gbm.step’ function from the ‘dismo’ 
package (Hijmans et al., 2017). This function supports automated 
tuning of the optimal number of trees to include in the ensemble 
through internal cross-validation. Additional important hyperpa-
rameters to consider for tuning are tree complexity (tc) and learn-
ing rate (lr). Tree complexity indicates the maximum number of 
interactions in each tree, while the learning rate determines the 
contribution of each tree to the overall model. Hence, for each of 
the 10 replicate models of each species, we tested combinations 
of common values of learning rates (0.0001, 0.0005 and 0.001) 
and tree complexities (3 and 6).

To evaluate model performances, we randomly set aside 30% of 
the data for comparison with predictions. The level of agreement 
between left-out data and predictions was measured using the 
Boyce index (Hirzel et  al.,  2006). In the context of our work, this 
index quantifies the correlation between the probabilities of spe-
cies recording predicted by the model and the frequency of species 
observation records across a range of probability intervals. A strong 
positive correlation indicates that the model assigns higher probabil-
ities to conditions associated with a greater number of actual species 
records, demonstrating good predictive performance. Conversely, 
values near zero suggest that predictions are no better than those 
obtained randomly.

For our data, the Boyce index is preferable to discrimination-
based metrics such as the area under the receiver operating char-
acteristic curve (AUC). This is because discrimination-based metrics 
evaluate the model's ability to correctly predict both classes in the 
dependent variable. However, in our case, pseudo-absences are 
randomly generated over time, including periods favourable for 
biodiversity recording. Therefore, considering the model's ability to 
predict these records would incorrectly deflate its performance.

We calculated the Boyce Index using the ‘ecospat.boyce’ func-
tion from the ecospat package (Di Cola et  al.,  2017). The Pearson 
correlation coefficient was used as the Boyce Index measure, rang-
ing from −1 to 1, with higher positive values indicating better model 
performance.

Using the set of parameters providing the highest mean perfor-
mance across replicate models for each species, we obtained the rel-
ative importance of each variable. These importances are based on 
the number of times a variable is selected for splitting, weighted by 
the improvement to the model resulting from each split (Friedman 
& Meulman, 2003). This is a widely used method in ecology to as-
sess the influence of predictor variables (e.g., Elith et  al.,  2008). 
Additionally, we assessed how variation in the values of each pre-
dictor relates to the propensity for biodiversity recording. This was 
performed by extracting partial dependence plots, which show the 
effect of a variable on the response after accounting for the aver-
age effects of all other variables in the model. For each species and 
variable combination, we extracted partial dependence plots from 
replicate models and calculated the mean response along with one 
standard deviation using custom-built R scripts.

3  |  RESULTS

3.1  |  Model performance

The predictive power of the models varied with the combination 
of different values of learning rate and tree complexity (Table  1). 
However, the best-performing models achieved strong to very 
strong Pearson correlation values between the predictions of spe-
cies recording effort and the periods when the species were effec-
tively recorded (min average r = 0.55 and max average r = 0.91).

3.2  |  Predictors of recording effort

Across species, three variables emerged as the most important 
predictors of timing of recording: ‘weekday’ (median average relative 
importance = 28.5%), ‘month’ (25.9%) and ‘temperature of the day’ 
(18.3%) (Figure 1). Notably, depending on the species, there is also 
some interchange in the ranking of these variables. Following these 
three main predictors are ‘precipitation’ and ‘wind speed’, with lower 
but still relevant contributions (median average importance = 13% 
and 8.7%, respectively). On the other hand, the ‘holiday’ predictor 
achieved negligible to low importance across species (median 
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average value = 2%; maximum = 6.2%), while ‘snow depth’ showed 
consistently negligible importance (maximum <1%).

Partial dependence plots describe the form of the relationship 
between the predicted probability of species recording and predic-
tor values (Figure 2). For ‘weekdays’, there is a consistent pattern of 
higher predicted probabilities of species recording on Saturdays and 
Sundays compared with weekdays. Additionally, there is also a no-
ticeably higher predicted probability of species recording on Fridays 
compared with the remaining non-weekend days.

For the ‘months’ variable, the responses are more varied, with 
only 2 months, April and May, consistently showing a higher predicted 
probability of species recording. For the two Quercus species, there 
was no evidence of higher recording activity in the autumn months, 

when acorns are produced (Figure  S1). Concerning ‘temperature’, 
distinct general trends can be observed (Figure 2). For most species, 
moderate to sharp increases in recording activity are associated with 
rising temperatures at the lower end of the temperature gradient but 
decrease steeply at higher temperatures. Exceptions to this pattern 
are observed for P. pinea and P. sylvestris. In the case of P. pinea, there 
is no consistent increase in recording activity at moderate compared 
with low temperatures, but predictions of recording activity decline 
sharply at higher temperatures. Conversely, P. sylvestris displays a 
consistent positive relationship between temperature and recording 
activity across the entire temperature gradient.

For ‘precipitation’, there is a largely consistent negative relation-
ship, with increasing accumulated precipitation values associated 

TA B L E  1  Results of Boyce index for boosted regression models using distinct combinations of learning rate (Lrate) and tree complexity 
(TC).

Lrate 0.001 0.001 0.0005 0.0005 0.0001 0.0001

TC 3 6 3 6 3 6

Pinus halepensis 0.81 (±0.13) 0.84 (±0.08) 0.67 (±0.27) 0.80 (±0.14) 0.63 (±0.33) 0.49 (±0.33)

Pinus pinaster 0.32 (±0.32) 0.41 (±0.36) 0.05 (±0.22) 0.48 (±0.37) 0.55 (±0.33) 0.37 (±0.36)

Pinus pinea 0.63 (± 0.16) 0.55 (±0.34) 0.71 (± 0.12) 0.53 (±0.28) 0.62 (±0.21) 0.40 (±0.30)

Pinus sylvestris 0.71 (±0.21) 0.53 (±0.30) 0.59 (± 0.21) 0.57 (±0.16) 0.40 (±0.31) 0.60 (±0.16)

Quercus rotundifolia 0.91 (±0.06) 0.86 (±0.14) 0.90 (± 0.04) 0.87 (±0.22) 0.57 (±0.31) 0.77 (±0.15)

Quercus suber 0.81 (±0.13) 0.84 (±0.08) 0.67 (±0.27) 0.80 (±0.14) 0.63 (±0.33) 0.49 (±0.33)

Note: Values represent the mean (± standard deviation) across 10 replicate models, each trained on a distinct subset of pseudo-absence records. 
Boyce index values correspond to Pearson correlation coefficient between predicted probabilities of species recording and the frequency of species 
records effectively made. Values range from −1 to 1, with higher positive values indicating better model performance. Best performing models for 
each combination are shown in bold.

F I G U R E  1  Relative importance of variables used for predicting the timing of recording of benchmark taxa. Boxplots represent the 
distribution of mean relative importance values across species, derived from 10 replicate models. Each replicate model was generated using 
a unique subset of pseudo-absences. Higher relative importance values indicate a greater contribution of the variable to distinguishing the 
observed timing of benchmark taxon records from random expectations over time.
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6  |    ROSÁRIO et al.

with lower recording probability. The same general negative rela-
tionship is consistently found for wind speed. The variables ‘public 
holidays’ and ‘accumulated snow’ showed low to negligible rela-
tive importance across species, and their response plots should be 

interpreted with caution. Nevertheless, a generally positive rela-
tionship with public holidays and a negative relationship with snow 
accumulation are still evident, with the former consistent across all 
species and the latter observed for most species.

F I G U R E  2  Partial dependence plots of variables used to predict the recording of benchmark taxa by citizen scientists. These plots 
illustrate the relationship between species recording and each predictor variable, with all other variables held at their mean values. Higher 
values on the y-axis indicate a greater predicted probability of species recording. The top two panels show the predictors ‘Weekday’ and 
‘Month’, with shared x-axes, showing variations in average fitted values across the six benchmark species. These averages are based on 10 
replicate models, each using a distinct subset of pseudo-absences. The lower panels show the relationships for the remaining predictors. 
Blue lines represent the average fitted relationships, while shaded areas indicate one standard deviation around the mean for each species.
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4  |  DISCUSSION

In this study, we analysed the temporal patterns of citizen science 
recordings for a set of species with minimal phenological changes 
throughout the year. Using nearly 14,000 citizen science observa-
tions of these benchmark taxa across the Iberian Peninsula, we 
identified the day of the week, month of the year and mean daily 
temperature as the most important predictors of recording activ-
ity levels in our models. Accumulated precipitation and mean wind 
intensity also emerged as relevant, albeit with slightly lower rela-
tive importance. These findings offer novel and deeper insights 
into the temporal factors driving citizen science recording activity.

Weekday was identified as the most relevant predictor across 
species, with Saturdays and Sundays (and to a lesser extent, 
Fridays) having higher levels of recording activity. This ‘weekend 
effect’ has been previously identified, particularly in studies fo-
cused on birds (Fraser, 1997; Sparks et al., 2008; Surmacki, 2005). 
Our findings can be easily explained by the greater availability of 
people to engage in citizen science activities, as most do not work 
on weekends (Perry-Jenkins & Gerstel, 2020). Weekends serve a 
crucial social function by providing shared leisure time for fami-
lies or groups of adults (Bryce, 2021). Activities such as BioBlitzes 
exemplify how weekends facilitate collective engagement in out-
door and educational activities while promoting a higher number 
of records on these days (Di Cecco et al., 2021). These events are 
typically organised to record as many species as possible within a 
specific period and are usually held on weekends to ensure greater 
community participation (e.g. Meeus et al., 2023; Tiago, Evaristo, 
& Pinto, 2024).

The time of year also had a relevant association with levels of 
recording activity, with a notable increase during April and May. This 
pattern aligns with findings by Di Cecco et al. (2021), who observed 
similar trends in global iNaturalist record submission data. These 
months correspond to spring in the study area, marking the end of 
the colder season, likely encouraging people to engage in outdoor 
activities (Tucker & Gilliland, 2007). Spring is also particularly attrac-
tive for observing certain taxonomic groups or particular phenologi-
cal events, such as the arrival of migratory birds (Greenwood, 2007), 
plants in bloom, or the emergence of insects (Daru et  al.,  2018). 
Although the species in our data are not subject to these seasonal 
fluctuations, it is likely that observers going out to observe more at-
tractive species during these months will also record other species. 
This behaviour, particularly among pan-listers or generalist record-
ers who aim to document a wide variety of taxa, could contribute 
to the observed temporal patterns in recording activity. However, 
insights into individual motivations and recording behaviours would 
be needed to assess the contribution of this factor. In addition to 
this, organised special events, often held in the spring, such as 
Fascination of Plants Day (https://​plant​day18​may.​org/​), the Spanish 
Flora Biomarathon (López-Guillén et al., 2024), the Portuguese Flora 
Bioblitz (Chozas et al., 2023), Invasive Species Week, and BioBlitzes, 
may also influence recording activity (Márquez-Corro et al., 2021; 
Tiago, Evaristo, & Pinto, 2024).

Temperature was also identified as a main predictor of record-
ing activity levels, with its relative importance across species only 
slightly lower than that of the variables ‘weekday’ and ‘time of year’. 
We found that days with extremely low or high temperatures had 
a lower probability of recording for most of our benchmark spe-
cies. These results are consistent with previous studies indicating 
that extreme temperatures affect human outdoor activity patterns 
(Chen & Ng,  2012). During very hot or very cold periods, citizens 
are less likely to engage in outdoor activities, such as wildlife obser-
vation and recording. One notable exception was found for P. syl-
vestris, where a monotonic positive relationship was found between 
daily temperatures and recording levels. This likely results from this 
species being mainly found in mountainous areas of the Iberian 
Peninsula (Earle, 2018), places where warmer temperatures should 
favour visitation.

Accumulated precipitation and wind intensity were also rele-
vant predictors of recording activity, though their relative influence 
was lower than that of temperature. Increases in the values of both 
variables were associated with a reduction in species records. These 
results align with expectations based on studies of people's predis-
position for outdoor activities. Precipitation is widely regarded as the 
most adverse condition for outdoor activities (Steiger et al., 2016; 
Wagner et  al.,  2019), and although wind is less frequently men-
tioned, it can still impact people's perception of temperature and 
increase discomfort, particularly at lower temperatures (Andrade 
et  al.,  2011). There are cases where extreme weather conditions 
can be attractive to naturalists, such as experienced birdwatchers 
seeking rare species brought by storms (Tryjanowski et  al.,  2023). 
However, this behaviour does not apply to most cases, especially 
for the benchmark taxa we assessed, which are specifically used to 
evaluate citizen scientists' responses to factors external to the re-
corded phenomena.

The other meteorological variable considered, snow depth, had 
a negligible influence in predicting the recording patterns of species. 
This is likely because snow cover in the Iberian Peninsula is relatively 
limited in both spatial extent and temporal duration, thus reducing 
its potential impact on recording activities. In other locations, such 
as Northern Europe, where snow covers large regions for extended 
periods of the year, this factor could have a relevant and more pro-
nounced effect. However, snow depth has been previously identi-
fied as having no significant influence on outdoor activities except 
for very specific cases that require snow, such as skiing or ice skating 
(Spinney & Millward, 2011).

It is somewhat surprising that public holidays showed little to 
no relevance in predicting the recording activity of most species 
studied, considering that the reasons justifying higher record-
ings on weekends could also apply to holidays. Similarly, Knape 
et al. (2022) observed a weekend effect but found that holidays in-
fluenced only bird recordings, with no such effect for insects, fungi 
or plants. These authors examined five taxonomic groups using 
data from the Swedish Species Observation System (Artportalen; 
https://​www.​artpo​rtalen.​se/​) to understand the effects of tempo-
ral patterns, such as seasons, weekdays and holidays. They found 
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that only bird records increased during holidays, attributing this 
difference to a larger sample size for bird data or different observer 
communities. For instance, if most bird observers are retirees, the 
weekday effect diminishes, whereas if they are professionals re-
cording as part of their work during the week, the effect is more 
pronounced. In our case, it is unlikely that the observers belong 
to different communities since all species are plants, specifically 
from the genera Quercus and Pinus. Another possibility is that hol-
idays are often spent with family or friends and involve specific rit-
uals, such as Christmas, Easter, Saints' festivals or Carnival (Santos 
et al., 2023; Vihalemm & Harro-Loit, 2019), leaving little time for 
activities like biodiversity recording. Díaz-Calafat et  al.  (2024) 
found a negative relationship between the number of observa-
tions and holidays, particularly during the winter. These authors 
suggested the possibility of a confounding effect between holi-
days and insect activity. This does not apply to our study, as we 
worked with species that maintain a constant level of attractive-
ness throughout the year.

Our findings have important implications for initiatives where 
the temporal dynamics of citizen science recording are relevant. 
While uneven recording patterns over time are well documented 
(e.g., Johnston et al., 2023), our results extend this understanding 
by identifying a comprehensive set of factors, such as weekdays, 
months and meteorological conditions associated with variations 
in levels of observation effort. These insights can help improve 
the reliability and utility of citizen science data. For example, in 
analyses of seasonal phenomena, these patterns can be included 
as covariates in models or addressed using methods like inverse 
probability weighting (Mansournia & Altman, 2016) to reduce bias. 
This approach is applicable to studies of diverse phenomena, in-
cluding phenology (Capinha et al., 2024; Mora et al., 2024), road 
mortality (e.g. Valerio et  al.,  2021), or habitat use (e.g. Deshwal 
et  al.,  2021). Monitoring programmes relying on opportunistic 
contributions, such as those tracking conservation-relevant (e.g. 
García et al., 2021) or harmful species (e.g. Howard et al., 2022; 
Pernat et  al.,  2021) can also benefit. By identifying periods of 
predictably lower recording activity, these programmes can im-
plement targeted strategies, such as organizing campaigns, sup-
plementing data with formal surveys, or incentivizing participation 
during underrepresented periods. These efforts can improve tem-
poral data coverage and strengthen the value of citizen science 
for ecological research and monitoring. Based on data from the 
Iberian Peninsula, our findings likely reflect the recording patterns 
observed in other temperate regions of the world. However, fu-
ture research should extend to regions with distinct climatic con-
ditions to deepen and broaden our understanding of the timing of 
citizen science activity. Furthermore, analysing temporal patterns 
of recording across varying spatial contexts could shed light on 
how factors like urbanization and the presence of protected areas 
influence the dynamics of citizen science efforts. For example, 
in urban areas, recording activities might be less dependent on 
weekdays. Cities, which maintain a high level of activity during the 
workweek, may experience increased incidental recording due to 

higher human presence, potentially mitigating the typical ‘week-
end effect’ associated with leisure time. While our findings pro-
vide a robust foundation, additional studies across diverse spatial 
and environmental contexts would significantly enhance our un-
derstanding of the dynamics of biodiversity recording by citizen 
scientists.

5  |  CONCLUSION

Citizen scientists have become an invaluable source of data for ecol-
ogy and conservation efforts. However, to harness the full potential 
of these data, it is crucial to acknowledge their inherent challenges, 
including non-random temporal patterns in recording activity. In our 
study, we found that the levels of recording activity by citizen sci-
entists are higher on weekends, on days with milder temperatures, 
with little or no precipitation and wind, and predominantly in the 
spring. Addressing these patterns (e.g. through robust statistical 
methods or targeted recording campaigns during underrepresented 
periods) can improve data coverage and representativeness, thereby 
enhancing the value of citizen science for both applied and research 
purposes. As citizen science continues to grow, understanding and 
mitigating temporal biases will be essential for maximizing its contri-
bution to ecological research and conservation.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

Figure S1: Partial dependence plots of ‘Month’ variable used to 
predict the recording of Quercus suber (a) and Quercus rotundifolia 
(b) by citizen scientists. These plots illustrate the relationship 
between species recording the month predictor variable, with all 
other variables held at their mean values. Higher values on the y-axis 
indicate a greater predicted probability of species recording.
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