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Abstract: Mosquitoes serve as vectors for many arthropod-borne viruses (arboviruses) that are respon-
sible for millions of human infections and thousands of deaths each year. Among these arboviruses,
O’nyong-nyong virus (ONNV) is an African alphavirus mainly transmitted by Anopheles mosquitoes.
ONNV can be detected through serological or molecular tests, the first showing cross-reactivity
to co-circulating alphaviruses and requiring technically demanding confirmation, while the latter,
usually based on real-time PCR, are costly and demand specific equipment. Isothermal amplification
approaches, such as Loop-Mediated Isothermal Amplification (LAMP), should therefore provide a
cost-effective, sensitive, and specific alternative for virus detection, suitable for the resource-limited
regions where ONNV circulates up to the present time. Here, we describe the development and
optimization of a rapid and highly sensitive (10 pfu/reaction) RT-LAMP assay for ONNV detection.
Additionally, we demonstrate that it is possible to bypass the RNA extraction step, reducing sample
handling time and costs. The final RT-LAMPONNV is a promising field detection tool for ONNV,
enabling a better understanding of its impact and serving as a point-of-care diagnostic method.

Keywords: arboviruses; isothermal amplification; loop-mediated isothermal amplification (LAMP);
O’nyong-nyong; RT-LAMP assay

1. Introduction

Vector-borne diseases are responsible for the deaths of millions of people each year [1].
In particular, mosquitoes are hematophagous arthropods with the heaviest direct and
indirect impacts on human health, being the main vectors of well-known viruses such
as dengue (DENV), Chikungunya (CHIKV), yellow fever (YFV), and Zika (ZIKV) [2,3].
These viruses are collectively known as arboviruses, which are biologically transmitted by
systemically infected arthropods and represent an important public health issue [4,5].

Climate change, marked by rising global temperatures and shifting precipitation
patterns, can impact vector development, pathogen replication, and breeding sites [6,7].
Combined with sociodemographic and economic factors, these environmental changes
influence the distribution and frequency of disease vectors [8]. Consequently, climate
change expands vector habitats [9], extending virus distribution from tropical regions to
temperate areas like Europe [10], posing a global public health threat.

Arboviruses can cause from asymptomatic infections to those characterized by a wide
range of symptoms, from mild to potentially life-threatening consequences, leading to con-
siderable short- and long-term morbidity and mortality [11,12]. The most prevalent viruses
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affecting humans in such group are DENV, CHIKV, ZIKV, Japanese encephalitis (JEV), and
West Nile (WNV) [3], with recent increases in Oropouche virus infections [13]. Less preva-
lent viruses include Mayaro (MAYV), Sindbis (SINV), Rift Valley (RFV), and O’nyong-nyong
(Alphavirus onyong) (https://ictv.global/taxonomy/, accessed on 11 August 2024) [14].
O’nyong-nyong virus (ONNV) is a single-stranded positive-sense enveloped RNA virus
belonging to the genus Alphavirus, family Togaviridae [15,16]. It was originally isolated in
Uganda in 1959 during a major epidemic that affected at least 2 million people between
1959 and 1962 [17]. This mosquito-borne virus is the only arbovirus known to be primarily
transmitted by Anopheles mosquitoes, particularly through the bite of Anopheles funestus
and Anopheles gambiae [18]. ONNV is phylogenetically close to CHIKV, both belonging to
the Alphavirus Semliki Forest antigen complex [15,17], and is typically detected through
serological tests. Nevertheless, its genetic proximity with other co-circulating alphaviruses,
especially CHIKV, often leads to cross-reactivity [19,20]. Currently, there are no reports of
endemic cases from the WHO, CDC, or even local agencies, only sporadic imported cases
to Europe [21], which suggests that the similarity to CHIKV could lead to a significant
number of ONNV cases being misdiagnosed as CHIKV. Considering the limitations of
serological tests, other methods, such as the plaque reduction neutralization test (PRNT),
the gold standard for confirming virus identity, may be used to specifically identify ONNV,
especially after presumptive serological identification [15]. However, ONNV detection
cannot rely solely on PRNT due to several challenges, including the need of laboratory fa-
cilities equipped to handle viruses, dedicated equipment, qualified trained technicians, and
adequate financial resources, which are often lacking in regions where ONNV circulates,
particularly in Africa [15]. Molecular approaches like qRT-PCR (real-time/quantitative
PCR preceded by reverse transcription), known for their sensitivity and specificity, could
mitigate cross-reactivity issues [15] but require samples from acute infections collected
during the viremic period and involve high costs and specialized equipment [15]. Thus,
developing a more affordable alternative to qRT-PCR that maintains similar sensitivity and
specificity is essential.

Isothermal amplification is a technical approach that supports nucleic acid amplifi-
cation at a constant temperature with high specificity and sensitivity [22,23]. It encom-
passes several different possible techniques that do not require a temperature-changing
system, making it suitable for use in regions with limited laboratory resources [24]. There
are several isothermal amplification technologies, including Rolling Circle Amplification
(RCA), Recombinase Polymerase Amplification (RPA), Strand Displacement Amplification
(SDA), Helicase-Dependent Amplification (HDA), Nucleic Acid Sequence-Based Amplifi-
cation (NASBA), and Loop-Mediated Isothermal Amplification (LAMP), among others [25].
LAMP is a technique that uses a set of four to six primers, giving rise to the characteris-
tic LAMP dumbbell-shaped DNA [24]. Overall, this method stands out from others by
combining the best characteristics of isothermal amplification for on-field diagnosis: it
is fast, highly efficient, and its reaction temperature range ensures high specificity to the
target [26]. Since the amplification is performed using a specific enzyme that has strong
strand displacement activity—Bst DNA polymerase [27]—there is no necessity for a DNA
denaturation phase. When the template is RNA, it is possible to perform RT-LAMP, like
qRT-PCR. In this case, RT-LAMP is initiated by template reverse-transcription before a
polymerase is added, or by using a modified version of a Bst DNA polymerase (Bst 3.0) that
combines strand displacement and reverse transcriptase activities [28,29]. Additionally, RT-
LAMP can be applied to non-pure samples bypassing template purification steps, resulting
in a faster and more cost-effective methodology [30]. Consequently, an exponential highly
sensitive and specific amplification occurs, making it an excellent alternative to RT-qPCR,
particularly for point-of-care diagnosis in resource-limited settings [31].

This paper presents, for the first time, a simple, rapid, highly specific, and sensitive
RT-LAMP assay (RT-LAMPONNV) for ONNV detection using a Bst 3.0 polymerase directly
in viral lysate samples. By eliminating complex sample processing steps and incorporating
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SYBR Green I for straightforward detection, this method represents a significant advance
toward on-field diagnostic capabilities for ONNV.

2. Materials and Methods
2.1. Phylogenetic Analysis

The phylogenetic analysis of alphaviruses was conducted using two sequence datasets.
The first included, when possible, two different complete genome accessions from each
virus belonging to the Alphavirus genus. This dataset was created with randomly chosen
(from NCBI Virus; https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/, accessed on 10
November 2023) representative sequences identifying the different viral genetic lineages,
with varying dates of collection and diverse geographic origins. Two genomes from salmon
pancreas disease virus (SPDV) were used as outgroups. A second phylogenetic analysis
was conducted using an alternative sequence dataset including all available genomes of
ONNV and 5 complete genomes of each CHIKV lineage. Multiple alignments of nucleotide
(nt) sequences were performed for both datasets, using the iterative G-INS-1 method as
implemented in MAFFT v7 [32], followed by trimming with GBlocks [33] to remove poorly
aligned or divergent regions from the alignment, but making sure codon alignment was
maintained. Phylogenetic reconstruction was carried out using the maximum likelihood
(ML) optimization criteria as implemented in IQ-TREE [34]. For the alphavirus phylogenetic
analysis (dataset 1), the best-fitting evolutionary model used was GTR + F + I + G4, as
suggested by IQ-TREE. For the phylogenetic analysis exclusively for CHIKV and ONNV
(dataset 2), the best-fitting evolutionary model used was GTR + I + F, again as indicated
by IQ-TREE. The stability of the resulting ML trees was evaluated using both the classical
bootstrap and SH-aLRT (Shimodaira–Hasegawa approximate likelihood ratio test), each
conducted with 1000 resamplings of the original data. Bootstrap and aLRT values greater
than 75% were considered significant. The phylogenetic trees were visualized using FigTree
v1.4.3 software [35].

2.2. Cell Culture and Infection Dynamics

An O’nyong-nyong virus stock (UgMP 30/NR-51661, also known as the Gulu Strain)
was obtained through BEI Resources-NIAID-NIH (https://www.beiresources.org, accessed
on 19 October 2023). To examine the infection dynamics, Vero E6 cells (African green
monkey epithelial cells) were seeded in Dulbecco’s minimum essential medium (DMEM)
(Gibco®, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal calf
serum (FCS; Sigma-Aldrich, St. Louis, MO, USA), 2.5% HEPES (Sigma-Aldrich, St. Louis,
MO, USA), 2% penicillin-streptomycin (Sigma-Aldrich, St. Louis, MO, USA), and 2%
L-glutamine (Sigma-Aldrich, St. Louis, MO, USA), at 37 ◦C and 5% CO2 in humidified
conditions. Monolayers at 90–95% confluency were infected with the virus at a multiplicity
of infection (MOI) of 0.1 in a T25 culture flask (Corning® Costar®, Corning Incorporated,
Corning, NY, USA). Adsorption was allowed to occur for 1 h and 30 min (with intermittent
shaking), after which the monolayers were washed with sterile phosphate-buffered saline
(PBS), followed by the addition of DMEM (Gibco®, Thermo Fisher Scientific, Waltham,
MA, USA) cell culture medium supplemented with 2% FCS, 2.5% HEPES, 2% penicillin-
streptomycin, and 2% L-glutamine. A mock infection was performed by replacing the
viral inoculum with culture media. After infection, the cell morphology was periodically
observed, and the cytopathic effects (CPEs) were registered at 0, 24, 48, 72, and 96 h
post-infection (hpi) and compared to a mock infection (Supplementary Figure S1). A
virus stock was obtained after one passage at 96 hpi, and the supernatant was stored in
aliquots diluted 1:1 with calf serum, as suggested in the ATCC virology guide (available at
https://www.atcc.org/resources/culture-guides/virology-culture-guide, accessed on 20
December 2023) for another arbovirus (Japanese encephalitis virus), at −80 ◦C until use for
RNA extraction.

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
https://www.beiresources.org
https://www.atcc.org/resources/culture-guides/virology-culture-guide
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2.3. RNA Extraction

The total RNA was extracted from 150 µL of virus culture supernatant using a ZR Viral
RNA kit™ (Zymo Research, Irvine, CA, USA), according to the manufacturer’s protocol.
Viral RNA was eluted from the extraction column in a total volume of 15 µL, and the
extracted RNA was kept at −80 ◦C until it was used.

2.4. RT-LAMP Primer Design

ONNV genome sequences were downloaded from the NCBI GenBank nt database
(https://www.ncbi.nlm.nih.gov/genbank/, accessed on 23 December 2023). To maximize
the in silico specificity of the ONNV amplification primers, all available complete ONNV
genome sequences were compared with at least one sequence from each of the West African,
East/Central/Southern African, and Asian lineages of CHIKV (given its phylogenetic and
serological proximity to ONNV), as well as with SINV sequences, an alphavirus circulating
extensively in the Old World. A multiple nt sequence alignment obtained with MAFFT
vs. 7 (as mentioned above) was manually examined using BioEdit, identifying a region of
interest (see Results for details) for primer design, the latter corresponding to one where
the alignment of CHIKV/SINV was characterized by the presence of gaps when compared
to the aligned ONNV genomes. To ensure that gaps were not artificially introduced by the
alignment program, an alignment was also performed with amino acids (aas). RStudio
(version 2023.12.1 + 402) was used to visualize the nt multiple sequence alignment detailed
above. A plot from the MSA was drawn using the function msavisr from the package seqvisr
(version 0.2.7) (https://rdrr.io/github/vragh/seqvisr/, accessed on 23 December 2023).

The RT-LAMPONNV primer design was based on the genomic sequence of the ONNV
Gulu strain (GenBank accession number M20303.1), the same strain used in the infection
dynamics experiments. The RT-LAMPONNV primer set, containing six primers—the outer
primers (F3 and B3; or forward and reverse primers, respectively), the inner primers (FIP
and BIP), and the loop primers (LB and LF)—was designed using the PrimerExplorer V5
program (Eiken Chemical Co., Ltd., Tokyo, Japan; https://primerexplorer.jp/e/, accessed
on 13 February 2024). Whenever possible (see Section 3 for details), the limit of a ∆G value of
≤−4 kcal/mol (the ideal stability of the primer ends) was not exceeded. All DNA primers
were purchased from STAB VIDA (Caparica, Portugal) with HPLC purification quality.

2.5. Optimization of the RT-LAMPONNV Assay

Before establishing the RT-LAMPONNV assay, several reaction conditions were opti-
mized, including different concentrations of MgSO4 (2 mM, 4 mM, 6 mM, 8 mM), various
reaction temperatures (60 ◦C, 64 ◦C, 66 ◦C, 68 ◦C, 70 ◦C), different reaction times (10, 20,
and 30 min), different outer/inner/loop primer ratios (1:8:2, 1:4:2, 1:4:1, 1:8:0, 1:4:0), and the
effect of adding betaine to the reaction mixture. After optimization, unless stated otherwise,
RT-LAMP reactions were performed with a final concentration of 0.2 µM for the F3 and
B3 primers, 1.6 µM for the FIP and BIP primers, and 0.4 µM for the loop primers. The
reaction mixtures also included 1.4 mM dNTP (1.4 mM each), 8 U of Bst 3.0 polymerase
(NEB), 0.5 M of betaine, 4 mM of MgSO4, 1× of Isothermal Amplification Buffer II (20 mM
Tris-HCl, 10 mM [NH4]2SO4, 150 mM KCl, 2 mM MgSO4, 0.1% Tween® 20, pH 8.8 at 25 ◦C;
commercially available at NEB), and 1 µL of the RNA extract, in a total reaction volume of
25 µL. The amplification reactions were set at 64 ◦C for 30 min, unless specified otherwise.
The readout of a positive or negative result was determined by the emission of fluorescence
in the tubes after the addition of 1 µL of DMSO (Sigma-Aldrich, St. Louis, MO, USA) and
1 µL of SYBR Green I (NZYtech, Lisbon, Portugal). Additionally, the validation of positive
or negative amplifications in RT-LAMPONNV reactions was conducted by loading a 5 µL
aliquot of the RT-LAMP products in a 2% agarose gel stained with ethidium bromide,
which was then electrophoresed for 40 min at 110 V. Following electrophoresis, the gel
was examined under a UV-transilluminator (ChemiDoc™ Bio-Rad, Hercules, CA, USA).
Successful amplifications were identified by the presence of ladder-type DNA bands.

https://www.ncbi.nlm.nih.gov/genbank/
https://rdrr.io/github/vragh/seqvisr/
https://primerexplorer.jp/e/
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2.6. Limit of Detection of RT-LAMPONNV

Ten µL of the original ONNV viral extract (from BEI Resources, with a titer of
1.2 × 107 pfu/mL) was initially diluted in 90 µL of PBS, and this dilution was then sub-
jected to heating at 95 ◦C for 5 min, bypassing the RNA extraction step. The limit of
detection of the RT-LAMPONNV assay was determined using 10-fold serial dilutions of this
heated sample. For each corresponding reaction, 1 µL of each 10-fold serial dilution was
used to perform the RT-LAMPONNV assay.

2.7. Specificity of RT-LAMPONNV

To evaluate the specificity of the RT-LAMPONNV assay, RNA extracted from virus
stocks, produced by infecting Vero E6 cells with ONNV (see Section 2.2), was used as the
template. Additionally, three other alphaviruses—namely, CHIKV (strain S-27; laboratory
stock), SINV (strain EfAr339; laboratory stock), and MAYV (strain TRVL-4675, laboratory
stock recently prepared after obtaining the virus through BEI Resources-NIAID-NIH)—all
belonging to the Semliki Forest serological complex (all stored at −80 ◦C after replication
on VeroE6 cells) were used for viral RNA extraction and included in the assay’s specificity
evaluation. Each extracted RNA sample was diluted 1:1000 in nuclease-free water, and
1 µL of each RNA extract was used as the template for RT-LAMPONNV. ONNV was used
as a positive control, and water was used as a negative control (NTC).

3. Results
3.1. Phylogenetic Analysis of Alphavirus

Using a comprehensive dataset of 58 complete alphavirus genomes, we employed
multiple sequence alignment followed by phylogenetic tree construction using the maxi-
mum likelihood method to place ONNV in the context of its attributed genus, including its
placement on the branch indicating the antigenic Semliki Forrest serocomplex (Figure S2).
In a general analysis, three major clades were identified in the obtained phylogenetic
tree: one corresponding to the so-called Old-World alphaviruses, another to New-World
alphaviruses, and a third one including aquatic alphaviruses, with the latter corresponding
to the tree outgroup. As expected, ONNV was positioned within the Old-World alphavirus
clade, where its phylogenetically closeness to CHIKV, to which it shares common ancestry,
became evident. In a more detailed analysis, we observed that ONNV is also phylogenet-
ically close to MAYV, both positioned within the Old-World alphavirus clade, although
MAYV is, indeed, a New-World alphavirus (Figure S2). Considering this result, when
designing primers and assessing the specificity of RT-LAMPONNV, other alphaviruses
circulating in the same regions as ONNV, such as CHIKV, needed to be considered along
with MAYV.

3.2. RT-LAMPONNV Primer Design

The primers used in the course of this work were designed for the Gulu strain of
ONNV (Table 1).

A multiple sequence alignment (MSA) of nucleotides was performed with all available
complete genomes of ONNV, three genomes of SINV, and a representative genome of each
lineage of CHIKV (except for the West Africa lineage, where all available genomes were
included since it is the region where ONNV also circulates). The MSA revealed (Figure 1a)
that a potential region of interest (ROI) was suitable for primer design, as it had two key
characteristics potentially contributing to the intended high specificity of RT-LAMPONNV:
it was a highly polymorphic region, and it appeared to be specific only for ONNV genomes
(Figure 1b).
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Table 1. Designed primers for the detection of ONNV through RT-LAMPONNV. 5′∆G and 3′∆G
correspond to Gibbs free energy of the 5′ and 3′ end, respectively. This parameter should be less than
−4 kcal/mol, considering the ideal stability of the primer ends.

Primer 5′∆G 3′∆G Sequence (5′–3′)

F3 −3.12 −4.27 AACTATGGACTGGCCCTCTA

B3 −7.08 −5.00 TGCCGTTCTGAGCTGGTT

FIP - - TCTGGAGCCACTATACTCGCTG-TCGGCACCGTATCAACAAG

BIP - - TAGTGACGGCGGACGTGCAT-CTGGACAGCGACAGCATT

LF −4.15 −4.16 TCAGATGAGTCGTGTCTTTGT

LB −6.41 −4.84 GCACCAATGTACGCACATTCG
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Figure 1. Multiple alignment overview of the design of primers. (a) Multiple alignment scheme
of ONNV, SINV, and CHIKV genomes, showing each position of the genomes, whether they are a
match, mismatch, or gap relative to the reference genome ONNV Gulu strain. The region of interest
for LAMP primer design is shown in red. (b) Detailed view from Bioedit of the region of interest. Bars
with arrows represent each primer design for RT-LAMPONNV. The gap between genomes relative
to the reference genome ONNV Gulu strain is shown in red. Each subclade of ONNV (reference
Figure S2) is represented by subclade 1 (•) and subclade 2 (••).

This region, which stands out in the alignments of ONNV/CHIKV/SINV genomes as
part of a gap, does not seem to be an artifact of the alignment process, but rather results
from the larger size of the ONNV genome in this region. This observation was confirmed
using an MSA of amino acid sequences that showed that the encoded polyprotein of CHIKV
and SINV is, indeed, smaller than that of ONNV, which makes this ROI specific to the
ONNV genome (Figure 1).

After identifying the ROI, the LAMP primers were designed using Primer Explorer
V5 software. The goal was to define not only the four necessary primers (F3 and B3—outer
primers; FIP and BIP—inner primers) for the intended RT-LAMP, but also to design loop
primers (LF and LB) that simultaneously enhance the reaction efficiency and decrease the
reaction time. The first attempt, using the default conditions defined in the Primer Explorer
V5 software, resulted in the design of the F3, B3, FIP, BIP oligonucleotides, yet it was
impossible to find matching loop primers. Alternatively, we decreased the minimum length
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of each primer to 18 base pairs and decreased the minimum Tm value to 63 ◦C for F1c/B1c
(which constitutes part of FIP and BIP). This adjustment allowed the design of the F3, B3,
FIP, and BIP primers. To design the loop primers to match the corresponding four LAMP
oligonucleotides, the conditions of the program were further adjusted by decreasing the GC
rate to a minimum of 30%, setting the length of the primers to a minimum of 10 base pairs,
and finally, decreasing the Tm value to a minimum of 58 ◦C. Even though one of the key
factors in designing RT-LAMPONNV primers is the stability at the end of the primers, where
the free energy should be −4 kcal/mol or less, two of them (F3 and B1c) had free energy
values slightly higher than −4 kcal/mol. This compromise was accepted due to the high
specificity of the targeted ONNV genome region by these primers.

3.3. Optimization of Assay Conditions for RT-LAMPONNV

To investigate the optimal conditions for the RT-LAMPONNV assay, six parameters were
tentatively optimized: the MgSO4 concentration, reaction temperature, outer/inner/loop
primer ratio, reaction time, enzyme quantity, and use of additives (betaine in this case).
The RT-LAMPONNV reaction was performed under basal conditions: 2 mM of MgSO4 (the
concentration present in the buffer), 60 ◦C for 30 min, a 1:8:2 primer ratio, and 8 U Bst 3.0,
with no betaine added.

We began by optimizing the MgSO4 concentration, as Bst 3.0 activity is highly de-
pendent on it. Four different MgSO4 concentrations, ranging from 2 mM to 8 mM, were
tested. As shown in Figure 2a, no reaction occurred with the minimum concentration of
2 mM. Although positive reactions were observed at higher concentrations (Figure 2a), the
most intense ladder-type DNA bands appeared at 4 mM. Consequently, all subsequent
RT-LAMPONNV reactions were performed with 4 mM MgSO4.

Next, to determine the optimal reaction temperature, the RT-LAMP assay was per-
formed using a temperature gradient ranging between 60 and 70 ◦C (Figure 2b). The ONNV
genome was detected at every reaction temperature, but the band intensity was slightly
greater at 64 and 66 ◦C (Figure 2b).

To find the best outer/inner/loop primer ratio for RT-LAMPONNV performance, seven
ratios were tested, covering the presence/absence of loop primers and variations of the
inner primer concentration (Figure 2c). The ratio used as the basal condition (1:8:2) yielded
the best results, with strong amplification intensity (Figure 2c). Notably, the absence of loop
primers affected the reaction efficiency, resulting in weaker (1:8:0) or even negative (1:4:0)
amplification results (Figure 2c). However, even with half the amount of inner primers
(1:4:2), the inclusion of loop primers in the reaction mixtures enhanced amplification,
yielding positive results with strong band intensity (Figure 2c). This indicated that the
optimal primer ratio for the RT-LAMPONNV assay was 1:8:2.

On the other hand, to reduce the reaction time, RT-LAMPONNV was performed at 64
and 66 ◦C with reaction times of 10 and 20 min (Figure 2d). The amplification of ONNV
sequences was not observed if the reaction time lasted only 10 min, but 20 min was sufficient
to produce unambiguously positive amplification results at both temperatures (Figure 2d).
Therefore, subsequent reactions were conducted at 64 ◦C for 20 min.

In addition, to determine if enzyme usage could be reduced while still producing
positive results, RT-LAMPONNV was performed using half the recommended 8 U of Bst
3.0 enzyme and with all the conditions optimized until this point (Figure 2e). No positive
amplification results were observed on the agarose gel (Figure 2e), indicating that 8 U of
Bst 3.0 was, indeed, necessary.

Finally, since adding betaine to a LAMP reaction can increase its specificity [36], we
tested the effect of adding different betaine concentrations (0.5 M, 0.8 M, and 1 M) on the
performance of RT-LAMPONNV. As shown in Figure 2f, there were no significant visual
differences between the DNA amplified in the presence or absence of betaine, regardless of
its concentration.
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Figure 2. Optimization of RT-LAMPONNV conditions. (a) Effect of varying concentrations of MgSO4

on the RT-LAMPONNV reaction; (b) different reaction temperatures to determine the optimal tem-
perature for the RT-LAMPONNV reaction; (c) agarose gel analysis of the impact of different ratios of
outer/inner/loop primers on the RT-LAMPONNV reaction; (d) agarose gel analysis for comparison
of the results of the RT-LAMPONNV reaction at two temperatures (64 ◦C and 66 ◦C) over different
reaction times; (e) agarose gel analysis of the effect of varying concentrations of Bst 3.0 polymerase
on the RT-LAMPONNV reaction; (f) agarose gel analysis of the impact of different concentrations of
betaine on the RT-LAMPONNV reaction; (g) effect of adding betaine and DMSO to reaction result vi-
sualization with SYBR Green I. M: Molecular marker—GeneRuler 1 kb Plus DNA Ladder (Invitrogen,
Carlsbad, CA, USA); NTC: Negative control; +/−: Positive/negative RT-LAMPONNV result.
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Although successful LAMP amplification can be confirmed by inspecting the char-
acteristic dumbbell-shaped DNA in agarose gels, colorimetric or turbidimetric detection
provides quicker results and reduces the risk of cross-contamination from aerosol formation
during tube handling. Therefore, we decided to use SYBR Green I to distinguish between
a positive and a negative amplification result. However, the visualization using SYBR
Green I did not yield the best results due to the background noise produced by self-primer
dimers (Figure 2g), which were visible in the agarose gels. To overcome this issue, we
decided to still use it in the reaction mixtures, even though it did not significantly impact
RT-LAMPONNV performance (see above). Adding 0.5 M of betaine enhanced the visual
difference between positive and negative results with SYBR Green I, improving assay sensi-
tivity and specificity (Figure 2g). We also reduced the primer concentration by lowering the
primer ratio to 1:4:1, which decreased the likelihood of self-primer dimers. Furthermore,
adding 1 µL of DMSO at the end of the reaction, which destabilizes nonspecific primer
interactions, improved the visualization and differentiation between positive and negative
results (Figure 2g), making it possible to apply the assay for on-field testing.

After optimization, the RT-LAMPONNV conditions were defined as 4 mM of MgSO4,
64 ◦C, a 1:4:1 outer/inner/loop primer ratio, a 20 min reaction time, 0.5 M of betaine, and
8 U of Bst 3.0.

3.4. Establishing Limit of Detection Thresholds and Evaluation of RT-LAMPONNV Assay Specificity

The limit of detection of the RT-LAMPONNV assay was determined using 10-fold serial
dilutions of the original viral stock from BEI Resources, which was diluted in PBS and
heat-treated (see Materials and Methods, Section 2.6 for details) (Figure 3a,b). Starting with
a 10−2 dilution (meaning 105 pfu/reaction) of the heat-treated viral stock, we prepared
additional serial dilutions to assess the detection limit of the RT-LAMPONNV assay, enabling
the potential detection of as few as 1 pfu of ONNV per reaction.
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Figure 3. Comparison of the limit of detection of RT-LAMPONNV between two different reaction
times and specificity of RT-LAMPONNV. (a) Limit of detection for a 20 min reaction time. (b) Limit
of detection for a 30 min reaction time. (c) Agarose gel electrophoresis analysis of the specificity of
the assay to detect ONNV, when performed with RNA of CHIKV, MAYV, and SINV. M: Molecular
marker—GeneRuler 1 kb Plus DNA Ladder (Invitrogen). NTC: Negative control. RNA: ONNV
RNA extract.
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As the reaction time had been optimized to 20 min (see above), initially, the definition
of the RT-LAMPONNV detection limit was carried out accordingly (Figure 3a), resulting in
a limit of detection of 103 pfu/reaction. However, to explore the impact of extending the
reaction time by 10 min—from 20 to 30 min—on the assay detection limit, we tested this
change despite its minimal effect on amplification efficiency with purified RNA, and as
shown (Figure 3b), this extension allowed the detection of ONNV at concentrations as low
as 10 pfu/reaction, establishing this as the RT-LAMPONNV assay’s limit of detection. Thus,
the final conditions for performing this RT-LAMPONNV were as described in Section 3.3,
except for the reaction time, which was increased to 30 min, improving the limit of detection
(Figure 4).
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To evaluate the specificity of the RT-LAMPONNV assay, we compared it with three
other viruses, CHIKV, MAYV, and SINV (Figure 3c).

As shown, no positive amplification was visible in the agarose gel for CHIKV, MAYV,
and SINV (Figure 3c). In contrast, ONNV showed a clear and intense positive signal
(Figure 3c). This indicates that the RT-LAMPONNV assay is specific to ONNV and can
effectively distinguish it from other closely related viruses, particularly the phylogenetically
close CHIKV.

4. Discussion and Conclusions

In recent years, the spread of vectors transmitting human pathogenic viruses such as
CHIKV, ZIKV, and DENV has expanded in temperate regions like Europe [37–39], where
these viruses can be either potentially fatal or have severe health consequences. This trend is
largely driven by climate change, which creates optimal conditions for vector reproduction,
leading to their establishment [40]. Along with globalization and shortened travel times,
the risk of viral outbreaks has risen as infected individuals can rapidly transport viruses
across continents, potentially introducing them to new regions as patients.

The increasing presence of these vectors has highlighted the urgent need for effective
diagnostic tools. These tools are crucial not only in new regions where viruses spread
but also in their areas of origin, where their circulation often goes undetected. Many
infections caused by arboviruses are either asymptomatic or present with no specific
symptoms when clinically manifested, making diagnosis challenging. Furthermore, in
malaria-endemic regions, viral infections are often either misdiagnosed as malaria or
mistaken for bacterial infections [41]. Even when a viral infection is implicated, laboratory
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confirmation is rare and typically relies on serologic methods. These methods often suffer
from cross-reactivity, especially in areas where antigenically related viruses co-circulate,
with confirmation requiring expensive and technically demanding approaches (such as
PRNT), which must be carried out under adequate biocontainment conditions. On the other
hand, molecular identification typically requires expensive equipment and highly trained
personnel. As a result, ONNV, an alphavirus virus closely related to CHIKV, often suffers
from misidentification due to serological cross-reactivity and the lack of rapid, relatively
less technically demanding molecular alternatives.

Isothermal amplification techniques, such as LAMP (or RT-LAMP if the target of de-
tection is RNA rather than DNA, as in the case of the genomes of human arboviruses), have
emerged as promising solutions due to their simplicity and effectiveness. Over the years,
numerous virus-specific RT-LAMP techniques have appeared in the literature [27,42–46],
none of which require expensive equipment or intensive technical training, making them
particularly suitable for virus detection in low-resource regions. To address this, we de-
veloped a rapid, highly sensitive, and specific RT-LAMP assay for ONNV detection. The
assay, named RT-LAMPONNV, was optimized to detect approximately 10 pfu/reaction in
minimally processed samples, showing high specificity to ONNV with no cross-reactivity
to other alphaviruses, particularly CHIKV.

The design of LAMP primers is critical and more challenging than for PCR, requiring
four to six primers for a small region of interest [47]. Based on the features of a region of
interest, where the genome of ONNV differs sufficiently from that of other alphaviruses
such as SINV or the closely related CHIKV, and in the performance of the PrimerExplorer,
we designed the needed primers for a LAMP-type amplification, including the reacting
efficiency-boosting loop primers, specific to ONNV. The primers were designed specifically
for the only available strain of ONNV (the Gulu strain). However, as shown in Figure S1,
ONNV genomes are phylogenetically classified into two subclades, indicating that the ad-
ditional optimization of primers may be needed (through degeneration) to cover the entire
genetic variability of ONNV and ensure the detection of all circulating strains/variants
with high sensitivity. Indeed, Figure 1b shows polymorphisms between the two subclades
but their impact on RT-LAMPONNV sensitivity could not be assessed.

We utilized the Bst 3.0 polymerase for its strand displacement and reverse transcriptase
activities, which minimize tube manipulations and reduce contamination risks, a significant
issue given the assay’s high sensitivity [36]. To mitigate possible cross-contamination, we
compartmentalized the workflow, conducting different steps in separate areas. Indeed,
cross-contamination may be a vulnerability of the assay, if applied to on-field diagno-
sis, given the power of the technique. RT-LAMPONNV also simplified the RNA extrac-
tion process. Despite ONNV’s lipid envelope [48] and structured capsid [49], we used
heat-mediated lysis on untreated viral suspensions to release RNA, eliminating the RNA
extraction step, and allowing a more accurate assessment of the RT-LAMPONNV limit
of detection.

The RT-LAMPONNV performance characteristics indicated its potential to significantly
enhance ONNV detection and support rapid response efforts during outbreaks or for rou-
tine viral surveillance. This is particularly valuable in regions where ONNV co-circulates
with related alphaviruses and in resource-limited settings impacted by climate change.
For point-of-care diagnosis, where the clear visualization of a positive result is crucial
for on-field application, we selected a simple method of positive/negative visualization
using SYBR Green I. Although we encountered issues with self-primer dimer formation,
a common problem with this technique [50], the use of betaine and DMSO helped re-
solve this, allowing us to employ the end-point visual detection of LAMP products for
on-field diagnosis.

Comparison with other ONNV detection methods is challenging because ONNV
remains an under-studied arbovirus, with limited available information. However, some
methods do exist. For instance, a multiplex detection assay using antibodies [51] offers
high specificity, although there are no data available regarding its cost, reaction time,
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sensitivity, or limit of detection (LOD). Another available detection method is RT-PCR [52],
which has a similar LOD to our RT-LAMPONNV. However, the cost associated with RT-
PCR, including equipment, reagents, and specialized personnel, makes it impractical for
field diagnostics in countries where ONNV is endemic. In conclusion, RT-LAMPONNV
presented here offers a promising tool for the specific, rapid, and sensitive detection of
ONNV. Further optimization and field testing could expand its applicability, contributing
to better management and control of viral outbreaks in diverse settings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens13100892/s1, Figure S1: Cytopathic effects in Vero E6
cells inoculated with ONNV Gulu strain. [I] Mock-infected and infected Vero E6 cells with ONNV
Gulu strain for 96 h. [II] Detailed observation of the cytopathic effects in Vero E6 cells produced by
the ONNV infection, including cell rounding and detachment (shown with red arrows); Figure S2:
Phylogenetic analysis. (a) Maximum likelihood phylogenetic analysis of Alphaviruses. The position
of ONNV is highlighted in bold. Each color represents the classification of the virus: Old-World
alphaviruses (green), New-World alphaviruses (red), and aquatic alphaviruses (blue), with the aquatic
alphaviruses serving as the outgroup. (b) Maximum likelihood phylogenetic analysis of ONNV and
5 representative genomes of each CHIKV lineage. Each color represents a CHIKV lineage: Asia lineage
(dark blue), IOL lineage (orange), ESCA lineage (green), Americas lineage (blue), and West Africa
lineage (red). For the clade of ONNV, each subclade is represented by subclade 1 (•) and subclade 2 (••).
At branches, * indicates those supported by aLRT or a bootstrap value >75% (of 1000 data resamplings),
whereas ** indicates both aLRT/bootstrap support.
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