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Abstract

Ecological niche models (ENMs) are a powerful tool to predict the spread of invasive alien species (IAS) 
and support the implementation of actions aiming to reduce the impact of biological invasions. While 
calibrating ENMs with distribution data from species’ native ranges can underestimate the invasion 
potential due to possible niche shifts, using distribution data combining species’ native and invasive 
ranges may overestimate the invasion potential due to a reduced fitness and environmental tolerance 
of species in invaded ranges. An alternative may be using the increasingly available distribution data of 
IAS as they spread their invaded ranges, to iteratively forecast invasions as they unfold. However, while 
this approach accounts for possible niche shifts, it may also underestimate the species’ potential range, 
particularly at the early stages of the invasion when the most suitable conditions may not yet be repre-
sented in the distribution range data set. Here, we evaluate the capacity of ENMs to forecast the distri-
bution of IAS based on distribution data on invaded ranges as these data become available. We further 
use dispersion models to assess the expansion process using the predicted potential distributions. Spe-
cifically, we used the common waxbill (Estrilda astrild) in the Iberian Peninsula as a model system. We 
built ENMs with 10×10 km grid cells distribution records cumulatively for each decade from 1960 to 
2019, and yearly bioclimatic variables, to forecast the species potential range in the coming decades. 
Then, we assessed the performance of the models for each decade in forecasting the species’ observed 
range expansion in the following decades and evaluated how the number of distribution records de-
termined the quality of the forecasts. Finally, we performed dispersal estimates (based on species traits, 
topography, climate and land cover) to analyse the prediction capacity of models as their uncertainty 
may be reduced when projecting them to the next decades. Our results show that invasion-only ENMs 
successfully forecasted the species’ range expansion over three decades after invasion, while dispersion 
models were not important in forecasting common waxbill expansion. Our study highlights the impor-
tance of constantly monitoring alien species, suggesting that iterative updating of ENMs with observed 
distribution data may accurately forecast the range expansion of alien species.
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Introduction

Biological invasions are among the most worrisome environmental problems in 
modern times (Díaz et al. 2019). The spread of invasive alien species (IAS) worldwide 
has been responsible for population declines of native species, changes in commu-
nity composition (Bellard et al. 2016, 2021), alterations of ecosystem processes and 
functioning (Ehrenfeld 2010), disruptions of socio-economic activities (Diagne et al. 
2021) and public health issues (e.g. Naeem et al. 2009; Fournier et al. 2019; Ogden 
et al. 2019). In a globalised world, the number of IAS is expected to increase (Seebens 
et al. 2021), as well as their potential impacts (Fournier et al. 2019; Essl et al. 2020), 
promoted by the increasing international wildlife trade and global changes (Scheffers 
et al. 2019; Naimi et al. 2022). As a response to this urgency, several international 
regulations and mechanisms have been implemented in recent decades to prevent the 
introduction and spread of IAS. This includes the establishment of a legal framework 
with specific legislation, such as the EU Regulation 1143/2014 on IAS (Regulation 
EU 2014). However, the successful implementation of these mechanisms requires 
the anticipation of new invasion areas which have been hampered by the lack of 
monitoring data on species distributions at adequate spatial and temporal resolutions 
(Santana et al. 2023). There is thus a need for a continuing effort to develop ap-
proaches, which may include ecological modelling tools, to accurately predict IAS ex-
pansion, in order to reduce both the ecological and socio-economic impacts of IAS.

Modelling and projecting the realised niche of IAS in the geographical space 
allows the identification of the areas at risk of invasion (Jiménez-Valverde et al. 
2011; Guisan et al. 2014). The realised niche is part of the fundamental niche, i.e. 
the abiotic environmental space where a species can maintain a viable population 
and persist over time without immigration, which is then further limited by biotic 
interactions, dispersal capacity, or historical aspects (Soberón and Peterson 2005). 
This assessment is often done through correlative ecological niche modelling 
(ENM) (Peterson and Vieglais 2001; Jeschke and Strayer 2008; Jiménez-Valverde 
et al. 2008; Capinha and Anastácio 2011; Venette 2015; Sillero et al. 2021), which 
quantify species-environment relationships based on observed patterns of species 
distributions and environmental predictors (Franklin 2010; Peterson et al. 2011; 
Guisan et al. 2019; Sillero et al. 2021). A procedure of key practical importance 
concerns the geographical areas used to calibrate the ENMs. For IAS, these models 
can be calibrated using distribution data from the species’ native range (Peterson 
et al. 2003), thus assuming that the species native distribution represents the en-
tire suite of suitable environments (i.e., distributional equilibrium; Guisan and 
Zimmermann 2000; Araújo and Pearson 2005; Araújo et al. 2005), or at least, all 
suitable habitats where the species can disperse (i.e. pseudo-equilibrium; Anderson 
and Raza 2010; Sillero et al. 2021). However, species’ realised niches may shift in 
new areas or periods (i.e. niche shift sensu Guisan et al. 2014), which implies that 
IAS will not be necessarily circumscribed to areas that are environmentally anal-
ogous to their native ranges (Peterson 2003; Jeschke and Strayer 2008; Elith and 
Leathwick 2009). This is because, when the environmental conditions change, or 
the species arrives in a new area, the drivers limiting the species’ realised niche can 
change (e.g. the new area lacks a competing species or the species can now disperse 
to new habitats), enabling the exploration of new areas inside its fundamental 
niche (Sillero et al. 2022). Some IAS have shown marked climatic niche shifts 
during invasion (i.e., a divergence between climatic conditions in native and alien 
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ranges; sensu Broennimann et al. 2009), likely driven by adaptive changes enabling 
species to endure conditions that were previously unsuitable (Blossey and Notzold 
et al. 1995), i.e., a shift in its realised climatic niche (Sillero et al. 2022).

Considering the potential for realised niche shifts, previous studies have rec-
ommended calibrating ENMs using distribution data of IAS in both native and 
invasive ranges (Fitzpatrick et al. 2006; Broennimann 2007; Broennimann and 
Guisan 2007; Urban et al. 2007; Beaumont et al. 2009; Pili et al. 2020). While 
this approach potentially captures niche shifts as they emerge in invaded areas, 
the combination of native and invasive distribution data raises relevant practical 
and conceptual issues. The existence of higher-quality distribution data for the 
species in one range versus the other (Vanette et al. 2010), may require a reduc-
tion in spatial resolution, leading to information loss when merging both data 
frames (Jarnevich et al. 2022). Although spatial downscaling can be employed to 
enable modelling at a coarse resolution and projection at a higher resolution, this 
approach introduces uncertainty due to assumptions regarding the consistent rela-
tionships between coarse and fine-resolution data within the area, on the employed 
methods (Keil et al. 2013). On the other hand, and perhaps more importantly, the 
use of native distribution data may overestimate invasion ranges. This is because 
there are circumstances where invasive species may not be able to colonise simi-
lar environmental conditions to their native areas. Factors such as novel negative 
interspecific interactions (e.g., predators, parasites, competitors) (Sih et al. 2010; 
Dostal et al. 2013; Carthley and Banks 2018), genetic bottlenecks and founder 
effects, can drive a reduction in the species’ environmental tolerances, and species 
dispersal capacity. These factors cannot be included directly in the native-based 
model, which will provide the maximum extent of the species distribution in the 
invasive range if the environmental conditions are the same (Jarnevich et al. 2022).

Invasion monitoring efforts are producing high-quality spatiotemporal data of 
spread for a large number of IAS in invaded ranges (e.g. Groom et al. 2019; How-
ard et al. 2022). Hence, given the challenge of reconstructing the invasive process 
over time for most species, an alternative is to use spatiotemporal invasion data 
to iteratively forecast invasions as they unfold. The issues raised by using native 
distribution data are overcome by restricting the calibration of ENMs to the re-
gion being invaded. However, any approach relying only on invasive distribution 
data for calibrating ENMs must acknowledge the likely underestimation of species’ 
potential ranges, particularly at early stages of invasion, when most suitable condi-
tions may not yet be represented in the distribution range data set. In this context, 
it is pivotal to clarify the data requirements to ensure accurate ENM for IAS, and 
particularly, the extent to which invasion-only distribution data can be used to 
accurately predict the expansion of IAS. Modelling the invasion over time will pro-
vide information about the routes used by the species during the expansion process.

Here, we evaluate the capacity of iterative calibration of ENM models based on 
invasion-only distribution data to predict the invasion potential and analyse the ex-
pansion process of IAS. We specifically explore the relationship between the number 
of species distribution records since establishment and the capacity of models to in-
form about the species’ invasion potential. We also assessed the importance of ac-
counting for the dispersal capacity of species to predict their expansion. To achieve 
these aims, we considered one of the most studied and successful avian invasive alien 
species, established in different environments and biogeographic regions worldwide: 
the afro-tropical common waxbill (Estrilda astrild). This species was first introduced to 
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Portugal in 1964, and has spread across much of the country and into part of Spain fed 
by further introductions (Reino and Silva 1998; Silva et al. 2002). Common waxbill is 
a small-sized (<12 cm) granivorous finch that forages in low grass vegetation, typically 
found in open agricultural fields near water bodies (Payne et al. 2020; Ribeiro et al. 
2020). The invasive success of this gregarious, non-territorial species may be attributed 
to its breeding biology and interspecific relations (Ribeiro et al. 2020), including: i) 
a variable breeding season (Sanz-Aguilar et al. 2015; Payne 2020); ii) the ability to 
produce several broods a year (Burton and Burton 2002); iii) vagrant movements in 
search of suitable habitat (flight range<37 km) (Payne 2020); and iv) the lower preva-
lence of parasites in non-native ranges compared to native regions (Lopes et al. 2018).

Using a unique, high-quality, database on spatial dispersion of the common wax-
bill through the Iberian Peninsula over six decades (Reino and Silva 1998; Silva et al. 
2002; Reino 2005; Sullivan et al. 2012), we applied a backcasting approach, fitting 
ENMs using distribution data available until the end of each decade and using the 
resulting model to project the distribution for the next decade. Then, we analysed 
how the number of observation records used in each ENM was related to the perfor-
mance of the forecasts of species dispersal over time. Finally, because ENMs do not 
account for species’ dispersal per se (Sillero et al. 2021; Sillero et al. 2022), we also 
implemented a species dispersal model over time considering a comprehensive set of 
species traits and climatic and landscape variables (Engler et al. 2012). We discuss 
these results in light of the amount of distribution data (i.e. length of the time series 
since establishment) needed for invasion-only ENMs and dispersal analyses to pre-
dict the invasion potential of IAS and iteratively forecast future invasions.

Materials and methods

Study area

The Iberian Peninsula (southwestern Europe), covers an area of 582,860 km2 and 
mainly includes the continental territories of Spain and Portugal (Fig. 1). It is 
bordered to the southeast and east by the Mediterranean Sea and to the south, 
north and west by the Atlantic Ocean, and is separated from the rest of Europe by 
the Pyrenees in the northeast. The Peninsula has a high diversity of climatic con-
ditions, influenced by both the Atlantic Ocean and the Mediterranean Sea, with 
a longitudinal gradient of precipitation and a latitudinal gradient of precipitation 
and temperature (Capel 1981). While the Mediterranean climate dominates most 
of the area, the Oceanic climate occurs primarily in major mountain ranges and 
isolated southern mountains (Sillero et al. 2009).

Common waxbill distribution data

We gathered historical data on the common waxbill expansion in the Iberian Pen-
insula since its first introduction in the 1960s. For this, we obtained presence data 
of the species in the continental territories from Sullivan et al. (2012), including 
the national and regional breeding bird atlases from Portugal and Spain, updated 
with all-year-round information from the eBird database (eBird 2019) and au-
thors unpublished data (L. Reino). Presumed new human-mediated introductions 
were considered whenever an isolated presence of the species was identified or 
when introduction events were documented through publications or personal 
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Figure 1. Location of the study area in the Iberian Peninsula, southwest Europe (upper panel) and distribution of the common waxbill 
Estrilda astrild in each decade from 1960 to 2019 (bottom panel) and the accumulated number of presences for each decade (n = #, bottom 
right of each map).
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communications. Following data compilation, we mapped all records onto a 
10×10 UTM km grid of Portugal and Spain (Fig. 1). We then aggregated the data 
by decade, from 1960 to 2019. Therefore, we represented the species expansion 
over six decades: 1st - 1960–1969 (9 UTM grid cells), 2nd - 1970–1979 (57 cells), 
3rd - 1980–1989 (163 cells), 4th - 1990–1999 (340 cells), 5th - 2000–2009 (760 
cells) and 6th - 2010–2019 (1128 cells) (Fig. 1, Suppl. material 1).

Environmental data

We obtained yearly climate data for the temporal period covered by the distribu-
tion data from the EuMedClim Database (http://gentree.data.inra.fr/climate/; Fré-
javille and Garzón 2018), which provides yearly climate data between 1901–2014 
at 1 km resolution for Europe and the Mediterranean Basin. We considered the 
seven bioclimatic variables available from this source: bio1 - annual mean tempera-
ture; bio2 - mean diurnal temperature range; bio5 - Maximal temperature of the 
warmest month; bio6 - minimal temperature of the coldest month; bio12 - annual 
precipitation; bio13 - precipitation of the wettest month; bio14 - precipitation of 
the driest month). From these variables, to minimise cross-correlation between 
variables, we kept four variables that had an absolute value of Pearson correlation 
coefficient below 0.7 (Suppl. material 2: table S1, fig. S1): mean diurnal tempera-
ture range (bio2), minimal temperature of the coldest month (bio6), precipitation 
of the wettest month (bio13) and precipitation of the driest month (bio14). As our 
species occurrences were available at 10×10 UTM km grid squares, we aggregated 
the values of these variables to match this resolution.

Ecological niche models

We estimated the realised niche of the species (sensu Sillero 2011) every decade, 
considering, for each model, the species distribution data cumulatively since the 
first introduction in 1960 (Fig. 1, Suppl. material 2: fig. S2). For this, we assumed 
that there were no extinctions, which is a reasonable expectation given the 10×10 
km resolution, allowing us to use the climate data from the corresponding decade. 
Then, we projected each model to the following decades (Suppl. material 2: fig. 
S2). For example, we used the model calibrated with data from the first decade 
(1960–1969) to project the species’ potential distribution in each of the following 
decades, i.e., 1970–1979, 1980–1989, 1990–1999, 2000–2009 and 2010–2019.

We calculated realised niche models using Maxent v.3.4.4 (Phillips et al. 2006, 
2017) following standard procedures (Sillero and Barbosa 2021; Sillero et al. 2021). 
All Maxent models used the same parameterization. Specifically, we used presence/
background data representing the spectrum of environmental conditions available 
to the species as dependent variables (Phillips et al. 2009; Guillera-Arroita et al. 
2014). Background data consisted of 9196 randomly generated points distributed 
throughout the entire study area, including pixels where the species occurred. Thus, 
background points are not equivalent to pseudo-absences (Phillips et al. 2009; Guil-
lera-Arroita et al. 2014). Maxent output represents habitat suitability, ranging from 
0.0 (not suitable) to 1.0 (suitable), in Cloglog format (Phillips, et al. 2017). Because 
Maxent includes stochasticity in the training data random selection, different model 
runs can lead to slightly different outcomes (Phillips et al. 2006, 2017). For this rea-
son, we used the average of 10 distinct modelling events to obtain the final suitability 

http://gentree.data.inra.fr/climate/
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values for each decade, randomly selecting 70% of the occurrence records as training 
data and 30% as test data. The models used auto features, where different distribu-
tion functions are used depending on the sample size (Phillips et al. 2006, 2017).

We measured model discrimination performance using the area under the curve 
(AUC) of the receiver operating characteristics (ROC) plots (Liu et al. 2005) and 
True Skill Statistics (TSS; Allouche et al. 2006). The ROC plot was calculated by 
representing the sensitivity against 1-specificity for all possible thresholds. It mea-
sures the proportion of true positives against the proportion of false positives, i.e., 
the likelihood that the model will rank a randomly chosen presence higher than a 
randomly chosen absence. The AUC is an integral of the ROC curve. The AUC dis-
criminates a species’ model from a random model, with a value equal to or close to 
0.5 corresponding to an accuracy similar to that of a random model and a value of 1 
corresponding to a perfect discrimination accuracy. TSS is equal to sensitivity + spec-
ificity - 1 (Allouche et al. 2006). TSS ranges from − 1 to 1, with 0 corresponding to 
random classification. AUC and TSS increase with the extent of the study area and 
are correlated (Leroy et al. 2018). Additionally, we calculated a set of null models fol-
lowing the methodology by Raes and ter Steege (2007). For this, we generated 100 
different datasets with the same number of random points as each dataset following 
a Poisson distribution. We calculated a Maxent model for each of these random data-
sets and obtained the AUC values of the ROC plots. Then, we compared the training 
AUC values of the species models with the ones calculated for the null models using 
the non-parametric Wilcoxon test. We calculated the null models in R 3.4.4 (R Core 
Team 2020) with the ‘dismo’ package (Hijmans et al. 2017). As AUC and TSS are 
correlated (Leroy et al. 2018), we calculated the null models using only the AUC.

We used the Boyce Index (Boyce et al. 2002; Hirzel et al. 2006) to measure the 
level of agreement between predictions generated by the model and actual obser-
vations (proportion of presences). The Boyce Index is specifically designed for pres-
ence-background algorithms and measures the extent to which model predictions 
differ from a random distribution of the observed presences across the prediction 
gradients (Hirzel et al. 2006). The index calculates the proportion between the 
number of presences predicted by the model that fall into a particular class and 
the number of presences expected under a random classifier, plotted against the 
corresponding suitability category. The habitat suitability range is divided into b 
classes (or bins) to calculate a predicted-to-expected (P/E) ratio (Fi), where P is the 
predicted frequency of evaluation points and E is the expected frequency of evalu-
ation points. If the model is well calibrated, low suitability classes should contain 
fewer evaluation presences than expected by chance (Fi < 1) and high suitability 
classes should contain more evaluation presences than expected by chance (Fi > 1). 
A good model should have a monotonically increasing curve when P/E is plotted 
against the mean habitat suitability of each class. The index ranges between -1 
and +1: positive values indicate a model where predicted presences are consistent 
with the distribution of presences in the evaluation dataset; values close to zero 
mean that the model is not statistically different from a random model; negative 
values indicate counter predictions, i.e., predicting lower suitability in areas where 
presences are more frequent. We calculated the Boyce index with ModEvA 3.10 R 
package (Barbosa et al. 2013).

We determined the contribution of each climatic variable in explaining the spe-
cies’ distribution using a jackknife resampling based on: (1) values of the training 
and test gain; and (2) of AUC values. The jackknife resampling comprises two 
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steps: (1) the generation of a model with all climatic variables except one; and (2) 
the generation of univariate models, each using only one climatic variable. In each 
step, the jackknife analysis measures the change in training and test gain, and the 
AUC determines the importance of each variable. Using the results from each of 
these procedures, Maxent calculated an average percentage contribution of each 
climatic variable. We also calculated the permutation importance: for each envi-
ronmental variable in turn, the values of that variable on training presence and 
background data are randomly permuted. The model is re-evaluated on the per-
muted data, and the resulting drop in training AUC is calculated, and normalised 
to percentages (Phillips et al. 2006). When variables interact, the variable con-
tributions and the permutation importances are not equally ordered, preventing 
individual responses for each variable.

Ecological niche models validation over time

We further validated the ENMs for each decade and their respective projections by 
counting the number of presences classified as presences or as absences. For this, 
we categorised the continuous models into two categories by applying the thresh-
old ‘Maximum training sensitivity plus specificity’ for the Cloglog output. We 
used the presence records of each decade and previous decades, i.e., cumulatively. 
The total number of presences used to validate the projections of each model was 
the same (9, 114, 160, 334, 752, 1120, see Suppl. material 2: table S4). We also 
validated the projections of all the models using the presences from the last decade 
(i.e. 2010’s; 1120 presences, see in Suppl. material 2: table S5).

Dispersal analyses

Accounting for dispersal barriers/capacity has been pointed out as important to re-
duce uncertainty in future projections of species distribution (Engler et al. 2012). 
We estimated dispersal movements over time with the R package ‘MigClim’ (En-
gler et al. 2012), a cellular automaton model that simulates the dispersal of species 
in the landscape. MigClim uses ENMs as indicators of landscape permeability: 
the higher the habitat suitability index, the higher the permeability. We applied 
MigClim to each decadal Maxent model and respective projections (Suppl. ma-
terial 2: fig. S2). Therefore, Migclim modelled how the species dispersed between 
Maxent models, i.e. from the first model to the next projections. The MigClim 
model considers short-distance and long-distance dispersal events, the type of dis-
persion through the landscape (using a continuous or a categorical Maxent mod-
el), propagule production probability, initial maturity age, and the presence of 
barriers. We considered three possible scenarios: i) no dispersal barriers; ii) weak 
barriers (i.e. barriers that can be transposed), and iii) strong barriers (i.e. barriers 
that cannot be transposed) (Table 1). We assessed the significance of dispersion 
models in forecasting the expansion of the common waxbill by visually inspecting 
the maps produced for each scenario.

Dispersal barriers were represented by elevation, land cover, and hydrological 
factors (Fig. 2). We obtained elevation data from the Shuttle Radar Topography 
Mission (https://www.earthdata.nasa.gov/sensors/srtm; Farr et al. 2007) at 90 m 
and aggregated it to 10×10 km cell resolution. Following the results obtained in 
previous studies in Iberia (e.g. Silva et al. 2002), we considered elevations higher 

https://www.earthdata.nasa.gov/sensors/srtm
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than 800 m as barriers to dispersion. We obtained land cover from the Global 
Land Cover 2000 dataset with 250 m of spatial resolution from the European En-
vironmental Agency (https://www.eea.europa.eu/data-and-maps/figures/global-
land-cover-2000-250m). We considered the land cover classes including tree cover 
as barriers to the dispersal, as E. astrild is mostly associated with open habitats 
(Payne et al. 2020; Ribeiro et al. 2020) (Suppl. material 2: table S2). To represent 
hydrological configuration, we considered the vectorial dataset of free-flowing riv-
ers in Europe from the European Environmental Agency (https://www.eea.europa.
eu/data-and-maps/figures/free-flowing-rivers-in-europe). River hierarchy ranged 
from 1 to 8, with a value of 8 corresponding to large watercourses such as main 
rivers and 1 to small, often intermittent streams. We calculated the average hierar-
chy of watercourses in each grid cell of 10×10 km. For this variable, we considered 
as barriers those grid cells with a hierarchy of 1, reflecting the species’ association 
with permanent water courses (Ribeiro et al. 2020). The final layer of barriers 
corresponded to the combination ((elevation + land cover) x river hierarchy) of 
all barrier layers, resulting in a layer classified as 0 (without dispersal barriers) or 
1 (with barriers) (Fig. 2). The parameters used in MigClim are shown in Table 1.

Figure 2. Variables (elevation, land cover, and river hierarchy) used to define the barriers to dispersal through the landscape, and the 
barriers used in MigClim to measure the dispersion across the landscape. Blue means barrier; white means no barrier.

https://www.eea.europa.eu/data-and-maps/figures/global-land-cover-2000-250m
https://www.eea.europa.eu/data-and-maps/figures/global-land-cover-2000-250m
https://www.eea.europa.eu/data-and-maps/figures/free-flowing-rivers-in-europe
https://www.eea.europa.eu/data-and-maps/figures/free-flowing-rivers-in-europe
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Results

Common waxbill expansion patterns

The current geographic distribution of the common waxbill in the Iberian Peninsu-
la spans most of the Iberian Atlantic coast, but also through large areas in Southern 
and Eastern Iberia extending to the Mediterranean coast, as far as Catalonia (Fig. 1). 
Although this species was initially introduced around the Lisbon region (Central 
Portugal) during the 60’s, it rapidly spread in all directions during the following de-
cade. Its geographic expansion was also enhanced by more recent and independent 
introductions, as in the Algarve (southern Portugal), during the 70’s, and Andalucia 
(southern Spain) and later in other regions in eastern Spain, during the 80’s (Fig. 1).

The expansion process was faster in the Central and Northern regions of Por-
tugal (70’s), whereas the spread in the south seemed to have been boosted by an 
additional introduction event in the Algarve in the same decade that enabled the 
colonisation of western Andalucia during the following decade (Fig. 1). This event 
appears to underlie the colonisation of almost all Iberian southwestern coasts, uni-
fying the northern population - which had also started to colonise Alentejo (Portu-
gal) from the Sado River valley in the 80’s - with the southern population (Fig. 1). 
Spread eastwards was slower, and several areas remain uncolonized to the present, 
namely the mountainous regions of Northern and Central Spain (Fig. 1). Spanish 
populations have arisen from independent introductions and the expansion of Por-
tuguese populations directly from the extensive area bordered by the Minho River 
in Galicia in the 80’s, and through the Tagus and Guadiana River valleys in the 
Southern and Central regions by the 90’s (Fig. 1).

Temporal changes in ecological niche projections

ENMs had test AUC values higher than 0.8 and significantly differed from ran-
dom (Table 2, Suppl. material 2: table S3). All test TSS values were higher than 0.6 
(Table 2). The Boyce index exceeded 0.85 for all decades, except the first (0.02). 
This indicates a consistent prediction of presences by the models, aligning closely 
with the distribution of presences in the evaluation dataset for all but the first de-
cade, to which the model is not statistically different from random.

The variable with the highest contribution for the first decade (1960–1969), was 
the mean diurnal temperature range (bio2), whereas the minimum temperature of 

Table 1. Parameters and values used in dispersal models.

Parameter Value

Continuous mode 0

Number of environmental change steps to perform 6

Number of dispersal steps to perform within each environmental change step 10

Dispersal kernel: probability of colonising a directly adjacent cell 1

Long-distance dispersal frequency 0.0001

Minimum distance for long-distance dispersal in pixels 2

Maximum distance for long-distance dispersal in pixels 4

Initial maturity age of newly colonized cells 1

Propagule production probability as a function of cell age 1

Number of replicates 100

Barriers No barriers / Weak / Strong
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the coldest month (bio6) was the variable with the highest contribution in the 
following decades (Table 3). The permutation importance of variables maintained 
the same order as the variable contributions (Table 3).

The areas identified as suitable widened over time, from the coastal areas to-
wards the interior of the Iberian Peninsula (Fig. 3). Suitable areas based on data 
from the first decade (1960–1969) were enclosed within the vicinity of the intro-
duction area around Lisbon (Portugal, Fig. 3). There was an abrupt change in the 
extent of suitable areas between the third and the fourth decades (1980–1989 and 
1990–1999, Fig. 3). The increment in suitable areas stabilised in the fourth decade 
after introduction (1990–1999, Fig. 3).

Ecological Niche Models validation

Validation of the ENMs of each decade projected to the remaining periods (Fig. 4, 
Suppl. material 2: table S4) indicated the proportion of the presences correctly 
classified is >80% for the projections of all models, except for the projections for 
the last decade based on the models using distribution data of the first and second 
decades (44% and 50%, respectively). The same pattern was observed in the mod-
els using data from the past decade, so the results are presented only in the Suppl. 
material 2: fig. S3, table S5.

Table 3. Contributions and permutation importance of the bioclimatic variables (mean diurnal temperature range (bio02), minimal 
temperature of the coldest month (bio06), precipitation of the wettest month (bio13) and precipitation of the driest month (bio14) of the 
Maxent models. Highest values of variable contribution and permutation importance for each model are highlighted in bold. Temperature, 
and particularly the minimal temperature, was the most important variable affecting the distribution of common waxbill for all models.

Decade
Variable contribution Permutation importance

bio02 bio06 bio13 bio14 bio02 bio06 bio13 bio14

1960–1969 50.97 19.75 0.06 29.22 39.97 3.74 0.14 56.15
1960–1979 4.59 72.24 6.58 16.60 0.90 84.85 4.54 9.710
1960–1989 2.76 79.67 7.62 9.95 1.18 80.53 5.82 12.47
1960–1999 6.06 76.36 8.40 9.18 5.74 78.30 10.46 5.501
1960–2009 4.90 68.36 15.33 11.41 5.37 64.04 21.40 9.19
1960–2019 5.14 67.70 15.10 12.06 5.69 62.53 17.63 14.16

Table 2. Results of AUC, TSS, and Boyce index for models considering the accumulated presences since the first introduction.

Decade Training n Test n AUC TSS Boyce index

1960–1969 4 1 0.99 ± 0.010 0.83 ± 0.09 0.06
1960–1979 24 10 0.98 ± 0.010 0.91 ± 0.03 0.86
1960–1989 73 31 0.95 ± 0.010 0.80 ± 0.03 0.98
1960–1999 171 73 0.92 ± 0.010 0.71 ± 0.02 0.99
1960–2009 432 184 0.88 ± 0.010 0.63 ± 0.01 0.99
1960–2019 639 273 0.86 ± 0.010 0.60 ± 0.01 0.99

Dispersal analyses

The species’ potential range accounting for dispersal capacity increased over time, driv-
en by the results of ENM projections. In the first decade, the range deemed susceptible 
to colonisation was narrow, and almost all of the Iberian Peninsula was beyond reach. 
On the other hand, for the last decade, these areas were much wider (Fig. 5). Similarly 
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to what was verified for the ENM, the spatial patterns of the dispersal models have 
remained quite stable since the fourth decade (1990–1999). Visual inspection of the 
maps reveals that there were some differences when barriers were introduced in the 
dispersal models compared to when they were not (Fig. 5), but the results with weak 
or strong barriers are very similar. Dispersal models thus confirmed that the species 
was able to disperse over time following suitable areas identified by ENM.

Discussion

This study evaluates the use of increasingly available spatiotemporal data on IAS spread 
to iteratively forecast invasions as they unfold. The backbone of these forecasts were 
ENMs using detailed distribution data of the common waxbill expansion through the 
Iberian Peninsula over six decades. Our projections, based on invasion-range data, were 

Figure 3. Results of cumulative ecological niche models projecting habitat suitability to the next decades. The suitability maps are organ-
ised as in Suppl. material 2: fig. S2: each decade is a row; models (light blue background) and projections (yellow background) are placed 
in columns. Habitat suitability ranges from dark blue (low suitability) to red (high suitability), following the turbo palette.
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successful in forecasting the species’ current distribution after three decades following 
its introduction. These results support the idea that ENMs can successfully forecast 
the species’ range expansion, although they may have limited utility in the early stages 
of invasion, supporting the use of an iterative approach (Dietze et al. 2018), where 
models are recurrently updated with the species’ most recent distribution data. This 
implies the need to constantly monitor IAS, which despite receiving long-standing 
support in invasion science and policy (Genovesi and Shine 2004; Büyüktahtakın and 
Haight 2018), depends strongly on the availability of resources (Groomet al. 2019).

Our results are in line with previous studies arguing that ENMs may under-
estimate the species’ potential ranges (Liu et al. 2020), particularly at the early 
stages of the invasion when the most suitable conditions may not yet be repre-
sented in the distribution range dataset. The common waxbill is a tropical species 
sensitive to low temperatures (<15 °C) and wet weather conditions and inhabits 
open fields with tall grasses, often near water (Ribeiro et al. 2020). While detailed 
information on the distribution data in the native area is not available for analysis, 
existing data suggest that the distribution range of common waxbill in the invaded 
area generally falls within the climatic variation of its native African range, with 

Figure 4. Percentage of presences incorrectly (red) and correctly (green) classified over time, for each model (blue background) and 
projection (yellow background). Validation for each model was conducted using the number of cumulative presences from the previous 
decade(s) (for details see Suppl. material 2: table S4). Our backcasting approach showed a high forecast capacity of EMNs after the 3rd 
decade following the common waxbill establishment (high % of correctly classified presences).
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Figure 5. Results of dispersal models per decade and type of barriers (no barriers, weak barriers, and strong barriers). The colour sequence 
Blue -> Green -> Light Green -> Yellow indicates the dispersal of species over time in each decade. Yellow indicates areas where the species 
did not have time to arrive. Purple indicates areas where the species cannot occur because habitat suitability predicted by ENMs was low.

Legend:

Non 
occupied

No barriers Weak barriers Strong barriers

Occupied

Dispersion probability 
for Estrilda astrild 

1.0

0.5

0.0

19
60

 - 
19

69
19

60
 - 

19
79

19
60

 - 
19

89
19

60
 - 

19
99

19
60

 - 
20

09
19

60
 - 

20
19



123NeoBiota 95: 109–132 (2024), DOI: 10.3897/neobiota.95.122335

Joana Santana et al.: Predicting the expansion of invasive species

expansions observed into colder and rainier areas in Northern Iberia in recent de-
cades (Ribeiro et al. 2020). Our projections based on invasion-only data failed to 
forecast the current species distribution using data from the first two decades after 
species introduction, likely because the species range was still not representative 
of the species’ suitable environmental conditions (Araújo and Pearson 2005). The 
actual niche overlap of the species is probably contributing to the model accuracy 
of the last decades. However, the AUC has slightly decreased in the models for the 
last three decades probably due to the increment in the presences: as the species 
distribution range increases, the species has a more generalist character, making it 
harder to predict (Guisan and Thuiller 2005; Sillero et al. 2021).

Models disregarding the species’ global distribution provide worse results than 
full distribution models (Barbet-Massin et al. 2010; Capinha et al. 2011; Jarnevich 
et al. 2022). This is because ENM algorithms assume that the species distribution 
data used is a good representation of the species’ environmental requirements (Sille-
ro et al. 2021). In other words, the algorithm assumes that the data used represents 
a species in equilibrium with the environment, i.e. the species occupies all available 
suitable habitats where it can disperse (Guisan and Thuiller 2005; Anderson and 
Raza 2010; Sillero et al. 2021). Distributional data representing only a portion 
of a species’ global range may fail to capture all the suitable conditions where the 
species can thrive, potentially leading to an underestimation of its potential range. 
Therefore, modelling the realized niche of an expanding alien species presents sig-
nificant challenges (Ficetola et al. 2005). It is expected that the ENM for a par-
ticular period will fail to forecast imminent range expansion stages, although this 
does not mean that the ENM is inaccurate (Barbet-Massin et al. 2018). The ENM 
for that particular period can be accurate, but the ENM does not have enough 
information to predict the upcoming dispersion process. This was our case: the in-
crement of new suitable areas in ENM projections stabilised from the third decade 
after introduction (1990–1999), i.e., only after three decades of dispersion, the 
species’ occurrence data were representative of the species’ environmental require-
ments. The abrupt change between the third and fourth decades might be strongly 
influenced by new introduction events in the third decade that occurred in regions 
environmentally different from previous ones, particularly in the East of the Ibe-
rian Peninsula. These results thus suggest that modelling expansion based on the 
early stages of introduction may provide limited results, demanding the interactive 
recalibration of models as new distribution data becomes available.

Contrary to expectations, our results suggest that barriers to dispersion were not 
insuperable by the common waxbill, although they might be important for other 
species with lower dispersal capacity. MigClim considers long dispersal events where 
the species reaches new locations without human intervention. In that case, the spe-
cies only needs to arrive at a pixel with enough suitability. The few differences found 
in the projections using the ENM-only and dispersion models (with strong and weak 
barriers) indicate that the species was able to disperse over time following the suitable 
areas predicted by ENMs. In line with the commonly observed lag period during the 
invasion process (generally attributed to the exponential growth process, stochastic 
extinction of propagules, or an evolutionary modification of species following estab-
lishment, Sakai et al. 2001), previous studies have suggested that the dispersion ca-
pacity of the common waxbill across Iberia was very low in the first decades after the 
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first introduction (e.g., Silva et al. 2002; Reino 2005). Justifications for this lag peri-
od for the common waxbill relied on the stochastic extinction of propagules due to 
the absence of favourable habitat conditions (i.e. agricultural fields near water bodies, 
Ribeiro et al. 2020) out of the areas where the species was first introduced. This was 
based on the slower colonisation process in the southern regions of Portugal, where 
initial populations were very small and limited to the Tagus valley around Lisbon 
and the westernmost region of Iberia (Portugal) and an acceleration after the 80s. Ac-
cording to these studies, the additional introductions across Iberia might have jointly 
fostered higher dispersion rates to new areas, suggesting that the dispersal capacity of 
the common waxbill in Iberia is a combination of both habitat suitability and prop-
agule pressure. However, our results suggest that this is likely to be a consequence of 
insufficient data to capture the species’ environmental requirements during the first 
decades, as they projected a potential for expansion lower than the real one.

While the common waxbill has been a highly successful avian invader across var-
ious continents and islands, its spatial spread appears more limited in comparison 
to other, predominantly older, Palearctic invaders worldwide, such as the European 
starling (Sturnus vulgaris) or the house sparrow (Passer domesticus). However, it seems 
to show a rather eclectic adaptation as these last two species colonise a great diversity 
of open and semi-open habitats, but not limited to human-made habitats (e.g., agri-
cultural habitats, gardens), but also to wetlands. Probably, its expansion is more com-
parable with a more recent invader: red-billed leiothrix (Leiothrix lutea) in Europe. 
Though this species is more associated with forest habitats and is likely to be more 
limited to tree-based habitats, it has been a very successful and established invader 
with populations in several European countries and regions (Pereira et al. 2019). It 
is worth noting that both the European starling and the house sparrow have much 
older introductions, with established populations in regions like North America and 
Australia. For instance, the European starling was successfully introduced to multiple 
areas during the same period, as in Australia (Stuart et al. 2023). Variances in prop-
agule pressures may offer a partial explanation for differences in range expansion.

Conclusions

Accurately anticipating the expansion of IAS is key to ensuring the successful imple-
mentation of preventive and mitigation actions. Forecasting invasions by means of 
different quantitative methods and modelling strategies have been used in the last 
decades, and new approaches are constantly emerging (Peterson 2003; Reino et al. 
2009; Jiménez-Valverde et al. 2011). However, predictions may be severely compro-
mised by different methodological options and their specific limitations. ENMs are 
powerful tools for predicting the spread of IAS and guide management. Although 
ENM enables predicting and evaluating biological invasions, it is often compromised 
by the amount (time-series length), quality (spatial and temporal resolution) and 
availability (data access) of distribution data in both native and invaded ranges. Our 
study evaluates the capacity of ENMs based on spatiotemporal data of invaded rang-
es only to forecast the potential distribution of IAS using common waybill dispersion 
analysis as a case study. We demonstrate that invaded range-only data may be used to 
accurately project the expansion of alien species in novel regions if enough time (at 
least three decades in our study model) is given to allow the species to expand and oc-
cupy the most suitable conditions. These results indicate that the invaded ranges-only 
ENMs are of limited utility in the early stages of invasion, while they clarify the need 
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for using an iterative approach where models are recurrently updated with the most 
recent distribution data of the species since establishment. This approach will con-
tribute to a better understanding of climatic niche changes during the expansion pro-
cess of alien species, and offers a solution to managers and scientists dealing with the 
scarcity and asymmetry of distribution data available for alien species worldwide, in 
their native and invaded ranges. Our study helps solve a much-discussed conundrum 
and offers a practical solution to better guide management actions and significantly 
improve stakeholders’ ability to halt biological invasions.
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