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Abstract

This paper reports on the development of primal and dual greedy heuristics for the
generalized set covering problem (GSCP). _

The primal heuristics provide a feasible solution and, consequently, an upper bound on
the optimum for the GSCP. Dual based heuristics are used for obtaining and improving
lower bounds at optimal value. Both, the primal and dual procedures are described in this
paper and the corresponding computational complexity is studied.

Moreover, we present empirical results, obtained from computational experience with 34
instances of the GSCP. The test problems are related to the scheduling of bus drivers at
Rodovidria Nacionat a large transport operator in Portugal. In fact, this specific intéger
program, GSCP, has been widely used in crew scheduling applications.

These computational tests show that a combined primal-dual greedy heuristic procedure is
a reasonably accurate and fast tool at least to tackle with bus driver scheduling GSCP
instances. Taking this into account, another procedure, embedding the primal-dual greedy
heuristics in a lagrangean relaxation based method, has been deviced for the GSCP and is
presented in a different paper.
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1. INTRODUCTION
The generalized set covering problem can be stated as the following integer program:

(GSCP) min ¥ ¢; x

jeN

5.t. Z ajj xj 2 b; (icM) (1.1
jEN
OSXjShj GEN) (1.2)
Xj integer {je N}, (1.3)

where aj;, for ie M and je N, are equal to 0 or 1. When the integer variable-bounds h; are
all equal to 1 the GSCP has been referred in the literature as the multiple set covering
problem or the multicovering problem ({3]). When, on top of this, the integer values b;
are all equal to 1, the GSCP becomes the well known set covering model ([1], [2], [4])

where constraints (1.2) and (1.3) are replaced by xje {0, 1} (je N).

Like the classical set covering, the generalized and the multiple covering models are
closely related to some real life situations. Multicovering problems arise in communication
or distribution problems where reliability is important. The generalized set covering
problem is mainly related to personnel scheduling ([S] and {9]).

According to the usval, ¥ (GSCP) denotes the optimal value for GSCP and & (GSCP)
stands for the set of feasible solutions for GSCP.

The GSCP is well known as a NP-complete problem ([10]) and so, heuristic methods
come as a reasonable way of obtaining an approximation interval for v(GSCP).

In this paper, we present several heuristic techniques developed in order to produce
bounds, both from above and from below, on the optima! value for the GSCP. Hence,
the next section is devoted to describing primal greedy heuristics followed by local search
for the GSCP which provide feasible solutions and an upper bound on V{GSCP), In
section 3, dual greedy heuristics are studied for the purpose of obtaining lower bounds on
V(GSCP) and, possibly, improving the upper bounds.

Results on the computational complexity for each one of the algorithms are also
presented.

At last; in section 4, an empirical analysis obtained with a composed procedure
embedding all the heuristics is reported.

The GSCP instances considered for the experience belong to a particular type arrising
in bus driver scheduling applications. For these problems, N is the index set for the
feasible driver shifts or workdays, each one of them being assigned a cost, ¢;. The set M
corresponds to time periods requiring a minimal number of drivers defined through vector
b = (by)ie M- An element ajj is equal to 1 if period i is 2 working period of shift j and 0
otherwise. The particularity of the bus driver scheduling problem comes from the fact that
each column (81j)ie M consists of one or two strings of consecutive ones.

The composed procedure proves reasonable efficiency for those real life applications,
In faet it produced good upper bounds for the most of the test problems and even the
optimum for some of them. However, the lower bounds were not so accurate, requiring
further attempts to obtain improvements namely using lagrangean relaxation techniques as
described in [8]. Besides the procedure is relatively fast when the algorithms,
implemented in FORTRAN, run on a VAX 11/750 VMS (with EPA). Moreover, the
primal-dual greedy procedure can easily be implemented on a PC as reported in [5].

2. PRIMAL GREEDY HEURISTICS WITH LOCAL SEARCH

Greedy heuristics have been studied in deep detail for the classic set covering model
([1]) and the multicovering version ([3]). An cxtension of those techniques for a
generalized covering model related to scheduling problems has been presented in a
previous paper ([9]).

As described in there, and following the general pattern, the greedy heuristics construct
feasible solutions, step by step, selecting a row fo be covered and, then, a variable to
cover the unsatisfied demand for that row. Several row and column selection criteria can
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be combined for building up feasible solutions ([7], [8] and [9]) and consequently,
producing upper bounds on the optimal value ¥ (GSCP). Relatively to the value given to
the selected variable, different options can be taken too.

The primal greedy procedure is summarized below.

mput M, N, (6j)ie N M)jens Bidiems (@ijie M, jeN
output: (x )JE N» Zuy {feasible solution for GSCP and upper bound on W {GSCP} ]

1. [Initializing]

x:=0 e N)
Zy:=0
={jeN:a;=1) (ie M) [ indices for columns to cover row i ]
M;j: = {ieM: aj; =1} (je N) [ indices for rows to be covered by column j ]
pii= X b (jeN) [ weight for vaniable j ]
ie M;

)

2, [Selecting a row index i* according to criterion g{i)]
i*:=arg opt g@)

ieM
3. [Selecting a column index j* according to criterion £ (c;, p;)]
j¥:1=arg min £ (c;,

JEN
4. [Updating sets and values]

Ay = min {hy# - X%, v(bj, ieM¥)} [ the increase on the variable j* depends on

its upper bound hj* and on the criterion v{b;)]
Xpk —x*+A* Vot -zu+c*A*
update i\fl, t FOws to cover )
N, [ columns not fixed at their upper bounds ]
(bi) e Mp [ uncovered demand for row i ]

(Nidie M Mpjen and (pien

5. [Checking feasibility)

if M @ then poto 2 endif
stop

The computational complexity for this algorithm, considering any one of the criteria
explained in previous works, is O rax(IM, INI} %" a;; ).
ieM,jeN
After obtaining a greedy feasible solution, local improvements on the upper bound can
be attempted, amongst others, through a search procedure based on three main steps:
~ decreasing redundant colurmns and producing a prime solution;
- replacing one column in the current solution by a cheaper one;
- replacing a pair of columns in the current solution by a single column which
covers the same at less cost.
Follows the description of the local search procedure,

Procedure SEARCH
l“put M N ( ]: .]’ M; )jGN' (bp NI)IE M (xj)jEN’
output: (x;)en Zy [improved feasible solution and upper bound on V(GSCP)]

1. [Obtaining a prime solution]
calculate (5;)icm [ overcovered demand for row i ]

r= 2y
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S:={j: A;: = min [xj, s; over ie M;} 2 0} [ indices of redundant columns }
while S ® do
choose je § [ ] is selected for decrease ]
Xji=%-4) Zy =2y - ¢j Af
update (spic M, (Aj)je § and §
enddo

2, [Search for an improved solution changing one variable by another]
for j:=1,.,, INI'such that x>0 do

find a variable j such that €j < c¢; and covers binding constraints of M;
calculate A
Xji=x-A ; xj:=x5+4 Zyi=2zy- Ag-¢)

update  (s))ic
enddo

3. [Search for an improved solution changing a pair of variables by another]
for jy:=1,.,(Nl-1) such that Xj, >0 do

]
for j,:=(@;+1),.,INl do
if Xj, > 0 and Mj]n sz has no binding constraints  then

find variable j such that, ¢ <cj + cj-zand covers binding constraints of

M UM,

calculate A
xj1:=xj1-A =125 x5:=x5+4A; Zu==zu'A(le+Cj2'Cj)

update (8)ieMm
endif
enddo
enddo

4, [Checking local optimization]

if z,#2° then (z°:=z; and goto I) endif
stop

As shown in {6), the algorithm is polynomial on IMI and INI provided that the number
of iterations for the local search phase is previously fixed, In fact, there one proves that

the complexity of that local search procedure is given by O( INI® Y a5 ).
ie M jeN

3. DUAL GREEDY HEURISTICS ) i
Now, let us consider the linear program resulting from removing the integrality
conditons, that is, the linear relaxation for GSCP:

(GSCP) min z CJ' Xj

jeN

s.t. z Xj 2by (ie M) (3.1)
JEN;
0 SXj Shj (je N).

We denote by Y(GSCP) the optimal value for GSCP which has the following linear
dual problem:




José Paixdo et al{Primal and Dual Greedy Heuristics 7

(DGSCP) max Ebl u; - Zhj Vj

ieM jeN
st Y U - vy € ¢ (ieN) (3.2)
iEMj
v;20 (jeN)
;20 (ie M).

The constraints (3.2) can be rewritten, as

cj- Eui +v;20 (e N) (3.3
ie Mj
with the left-hand-side being the linear reduced cost for the variable Xj,

It is well known that, if GSCP is feasible, then ¥ (GSCP) = ¥(DGSCP) is a lower
bound on V(GSCP).

However, optimally solving GSCP (or DGSCP) can be expensive from a
computational point of view and a reasonably geod lower bound may be obtained with

less effort using heuristics to compute feasible solutions for DGSCP.

Such heuristics can be developed for the GSCP following a similar pattern to the dual
greedy heuristics developed by Balas and Ho [1] for the set covering problem, Hence the
dual greedy heuristic that we developed for the GSCP selects, in each iteration, a
particular element, say index i*, from a subset row RCM and assigns a feasible value to
the corresponding dual variable, u;*. The row index i* is then removed from R and the
process repeats until R becomes empty. If the initial R is strictly contained in M, the rows
of M-R can be considered in order to improve the lower bound.

Two possibilities were considered for initializing R:

R:=M (DUAL Q)
and

R:=(ieM: T x=b, with X € & (GSCP)}. (DUAL 1)
jeN;

The version DUAL 1 explicitly requires a feasible solution for GSCP which can be
obtained from the procedure presented in the previous section.

For selecting a row from R, several different criteria were considered in [8] and [9].
Concerning to the dual variables v; (je N), although they can be given positive values, our
own experience has shown that they seldom differ from zero in the best heuristic
solutions for the problems such that the variable-bounds h; are not very tight. In fact, this
is the case for the real life bus crew scheduling probfcms that we c¢onsidered and,
therefore, one forces the v; to be always at zero level.

Both DUAL 0 and DUAL 1, are synthetized in the following:

Proceduyre DUAL
input: M, N, (¢}, hj, Mpien, (b, Ndiems
(ij)je N (DUAL 1} {feasible solution for GSCP]

output:  ((upiem 0), z [feasible solution for DGSCP and lower bound on
V(GSCP)]
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1. [Initializing]
W= (ie M) [dual variable associated to row i]
M (DUAL )
R:= {
(ieM: » % =b;,%eF(GSCP)) (DUAL 1)
jeNj

zp:=0

2. [Selecting a row]
if R=® then goto 4

else choose i*eR
endif

3. [Assigning a value to the dual variable and updating}
ui* = 1min Cj

jE Ni‘
Zp =2y +u-1* bi"‘
Cj - ui* (jG Ni*)
g :={ [update j-th reduced cost]
C; (ie N-N*)
R:=R- {i*]
gofo 2

4, [Checking the terminal conditions] .
if (step 4 is entered for the first time ) then (R:=M-R and goto 2) endif
stop

In a rather straightforward implementation this procedure DUAL is O(Ml max (M,
INI}).

An attempt to improve Lhe bounds, both from below and from above, produced by the
heuristics PRIMAL and DUAL, can be made by trying to impose the linear

complementary conditions on the corresponding solutions. That is, if [%, (2,0)] is a pair

of primal and dual feasible solutions for GSCP one aims to impose;

25 (5 %-b)=0 (3.4

ieM jeN;
2 % (5 94-¢)=0. (3.5)
jeN 1EMj

Obviously,if % and (@1,0) satisfy (3.4) and (3.5) then they are optimal

solutions, respectively for GSCP and DGSCP. If % is feasible for GSCP then Y (GSCP)

= 2 Cj )-tj.

jeN

The procedure IMPROVE 1, which is briefly described next, performs linear
complementary improvement tests for a pair of dual and primal solutions.

Firstly, the primal solution is modified in order to satisfy (3.5) by setting %, =0 if

1 > 0. The resulting solution is unlike to be feasible and a

primal greedy heuristic technique is used to bring it into feasibility, Then, the row
complementary relations (3.4) are imposed to the dual solution relatively to the new
primal solution in the following way:
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- set, all the dual variables associated with positive surplus equal to zero;
- keeping dual feasibility, increase first the dual variables associated with zero
surplus and then increase the ones which are associated with positive surplus.
The process repeats itself until no changes in both solutions are produced or the
number of iterations exceeds a maximum value which, in our case, was fixed at 3.
The procedure IMPROVE 1 has the same complexity that the primal heuristic
procedure called as a subrouiine,
Another bound improving technique, ihat we named IMPROVE 2, was deviced as
follows:

1. initiatize N as the index set of columns for a primal feasible solution;
2. compute both primal and dval feasible solutions for the problem restricted to N;

3. find, among N-N, the variable with the most negative reduced cost for the
restricted dual solution; if no negative reduced cost variable exists, stop;

otherwise, include the selected variable in N and resume to 2.
The algorithm IMPROVE 2 has a computational complexity equal to INI times the
complexity of the primal-dual procedure called in step 2.

4, COMPUTATIONAL RESULTS

As we have seen in the previous sections of this paper the primal and dual heuristics
are polinomial algorithis on the dimensions of the GSCP, although, for some of the
henristics, the number of computing steps is bounded above by a polinornial in IMI NI
with high degree.

Besides, this worst-case computational study, an analysis of the heuristics from an
empirical point of view was carried out. The test problems that we considered are of the
bus crew scheduling type and so, exhibit the particularities mentioned in section 1.

All the test problems have the same number of covering consiraints, IMI =36,
corresponding to the working periods from 6 a.m. to midnight, The set of test problems,
consists of 30 instances generated according to the driver's contract rules in Rodovidria
Nacional (15 with 100 columns - R to R15 - and 15 with 865 - G1 to G15). The right-
hand-side numbers were randomly generaled in order to produce 3 different type of
distributions - unimodal, bimodat and irregular - for the demand pattern. The last 4 test
problems correspond to real bus crew scheduling situations at Rodovidria Nacional (RN1
to RIN4 also with 865 columns). The cost of each working shift is defined according to
the rules in use at Rodovidria Macional and consists of a fixed cost added by extra-costs
related either to the period of the day or overtime worling periods.

For a more detailed description of these problems see [7].

The combined procedure includes all heuristics described in this paper and gives a
feasible solution for the GSCP and simultaneously a lower bound that yields a measure
by excess of the error associated to the solution.

After performing extensive tests, we opted by a final version consisting of a
combination of procedure DUAL 0, DUAL 1 (both with two different selection criteria),
GREEDY PRIMAL (several row and column selection criteria) with SEARCH,
IMPROVE 1 and IMPROVE 2. Also dual linear penalties ([8]) were calculated in order to
tighten the variable-bounds, hj, or eventually eliminating the variables.

This experience is reported in Table I where the column (1) identifies the problem
which dimensions (IMI, IN! and density - number of ones over [M! INI) and optimal value
are shown, respectively, in columns (2} and (3).




10 José Paixdo et al/Primal and Dual Greedy Heuristics

TABLE 1
Coraputing times and quality of the bounds obtained with the primal-dual heuristic
procedure
Problem  Dimension Optimal Lower Upper Time

value % o sec

(1) (2) (3) @) (5) (6)
R1 Ml =36 51726 90.5 12 6.0
R2 INI=100 52268 96.3 0.7 6.3
R3 55% 84184 99.7 22 7.1
R4 85080 93.8 4.4 9.7
R5 120930 99.5 0.1 6.8
R6 48990 100.0 0.0 2.3
R7 27062 08.4 1.3 4.8
RS 55236 96.6 2.9 6.4
R9 47470 98.9 1.0 5.8
R10 26612 87.5 1.1 4.2
R11 98930 95.8 1.3 5.5
Ri12 512438 89.3 0.0 4.3
R13 49096 93.2 0.0 6.1
R14 40862 97.1 4.2 4.8
| R15 188598 94.4 3.6 6.6
Gl MI'=73§ 49972 92.2 3.2 316
G2 INI = 865 49326 96.3 0.8 28.6
G3 56% 80243 99.0 1.0 32.2
G4 79670 92.1 3.0 39.1
G5 115540 100.0 0.4 36.2
Gé6 48434 100.0 0.0 16.8
G7 24084 91.2 2.6 21.1
G8 51900 96.3 1.2 30.1
G9 45658 99.8 0.5 21.9
Gl10 25248 91.3 3.0 26.4
G11 93078 99.9 0.1 22.1
G112 51134 89.2 1.0 289
G13 47720 89.6 0.0 17.2
G14 36520 100.0 0.0 9.2
Gl15 167728 99.99 0.1 23.2
RN1 IMI =738 70418 96.0 0.1 40.4
RN2 fNI = 865 45952 98.3 4.4 36.8
RN3 56% 33360 83.4 0.5 31.2
RN4 80316 100.0 0.0 29.1

Average 05,5 1.5
Worst value 83.4 5.2
Number of optimal values 5 7

The remaining columns of Table I refer to the computing experience relative to the
primal-dual heuristic procedure that was carried out on a VAX 11/750 VMS with FPA
and FORTRAN compiler (similar to the one presented in [8]).

Columns (4) and (5) refer the quality for the final lower and upper bounds. Hence, in
column (4), the value (z 3 / V(GSCP)) 102 is shown for each test problem and, for

evaluating the upper bounds, we give the value 102 (zy - V(GSCP)) / ¥*(GSCP) in
column (5).

Finally column {6) shows the computing time in seconds.

From this experience we can see (column (5)) that the final upper bound is very good
for most of the test problems, In fact, the worst value (problem G1) was 5.2% above the
optimurm, and the upper bound is equal to the optimal value for 7 out of 34 test problems.
For the large real life problems (RN1 to RN4), the upper bound value proved cven better.
Concerning to the lower bound values, the procedure didn't prove as good as above,
Although, the lower bound value is within 1% of the optimum for 11 test problems, the
procedure failed to produce reasonably good results for some cases, in particular for
problem RN3.
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5. CONCLUSIONS

Finally, we can conclude that the primal-dual greedy procedure described in this paper
is a relatively easy method to tackle with the generalized set covering problem. In
particular, it proved to bec reasonably fast at least for the two-duty period bus driver
scheduling instances that we tried out to solve, The primal-dual heuristics implemented on
a microcoraputer have been in use at Rodovidria Nacional ([5]) with very good results for
the real bus crew scheduling problems.

Moreover, this procedure can be used as an initial step for a subgradient optimization
based technique to improve a lagrangean bound on the optitnum, It also can be embedded,
as the bounding tool, in a tree-search-method for optimally solving the GSCP,
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