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Abstraet. This paper reports on the devclopment of special cutting planes for the
generalized set covering problem, GSCP, which is a covering problem where the variables and
the right-hand sides are allowed to have any positive integer value. Those inequalities are,
actually, a generalization of the cutting planes derived from conditional bounds and originally
presented by Balas (1980), for the set covering problem. More recently, Hall & Hochbaum
(1985) have extended those results for the multicovering problem. The géneralized inegualides
that we derive for the GSCP are proved to be of the covering type and, hence, keeping the
structure of the problemn constraints.
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1. Introduction
In this paper, we deal with the generalized set covering problem (GSCP), which can be stated

as the following mathematical program;
(GSCP) min Y, ¢j X;

jeN

sto Y, a;%; 2 by {ieM) (1)
jeN
0< x, <h; and integer (jeN) (2)

where M and N are the index sets of, respectively, the rows and columns for the problem, The
b; (ie M) and h; (jeN) are positive integer values. Also, one has a;€ {0,1} (ieM,jeN) and, in
order to avoid a trivial resolution, we assume that Z 2;;> 0. A vector x verifying the

N
constraints (1) and (2) is called a cover. Finally, and for the sake of simplicity of the notation,
we define the following two sets: Mj= {ieM: 8 = 1} and Nj= {jeN: 3 = 1). Then, for

instance, the covering constraints can be stated as ), x; 2 b; (ie M).
jeN;
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The GSCP has been widely used for several real life situations and a survey for that can be
found in Pato (1989). Most of those applications are related to personnel scheduling,
particularly the determining of the schedules for drivers in mass transit bus companies [Blais &
Rousseau (1982); Bodin, Rosenfield & Kydes (1981); Mitra & Welsh (1981); Paixéo et al
(1936); Shepardson & Marsten {1980); Yihua (1985)]. :

As suggested by the designation, the GSCP includes the well known set covenng problem

(SCP), where all the bj (ie M) and h; (je N) are equal to the unity. It also includes the so called

multicovering problem (MCP), where h; = 1 (je N) but the right-hand side values b; (ie M) can
be any positive integers. From that, it follows stratgthforwardly that the GSCP is an NP-hard
problem,

Hence, heuristics and LP-based techniques have been the approaches most used for the
GSCP. In particular, cutting plane methods have been applied as a way of dealing with
instances where a null linear gap occurs or a high number of alternative solutions exists
[Geoffrion & Marsten (1972); Wolfe (1984)]. That, actually, is the case of GSCPs related to
crew scheduling problems {Pato {1989)], for which lagrangean relaxation and tree-search

procedures have been applied too [Paixdo & Pato (1989); Shepardson & Marsten (1980)).
In the present paper, we extend to the GSCP a class of cufting planes that have been
described by Balas {(1980) and Balas & Ho (1980) for the SCP. Those cutting planes are

derived from conditional bounds following a general disjunctive approach [Balas (1975),

(1979)], and have been extended by Hall & Hochbaum (1985) for the MCP.

The paper is organized as follows. Next, in this section, we introduce the idea of cutting
planes from conditional bounds through an example, Some formal nolation is stated too.
Section 2 is devoted lo a single result leading to the obtaining of a valid inequality which is
strengthened in the following section. Then, in section 4, the example considered in' the
introduction is used for the purpose of lllusu'aUng the rcsults of the previous sections, Finally,
some remarks and conclusions are presented in section 5.

Before giving an example for introducing the idea of conditiona! bounds and the related

cntting planes, let us state some notation. We denote by GSCP the continuous version of the

GSCP, and the corresponding dual linear problem, DGSCP, has the following formulation:

(DGSCP) max 3 bju;- 3 hjv;

ieM ieN
s. to Zui—VjSCj (jeN) 3)
ieM;
vj2 0 {jeN) (4)
uyz0 {icM) (5)
The constraints (3) can be rewritten as rj= ¢j- 2 ui+v;j20 (je N), with 5 being

ie M;
demgnatcd as the reduced cost for the variable index j. A vector [u v] satisfying constraints (3)-
(5) is said to be a dual feasible @;mgn
Now, let us consider the following instance for the GSCP:
min 2x) + 2xp + x3 + LS5x4 + 2x5

5. to X + X3 + X5 2 4
x; + Xy + X522
X + X4 + X526

X1S1, X3 £2, X3, %4, %554

X1, .-+ %52 0 and integers,

Also, consider a cover given by X={0 2 2 4 0] and the dual feasible solution defined by
ii=[0 0 1.5]and V=[00000]. Hence, the optimum is a value between 9 and 12.
Suppose that the constraint x4 2 3 is added to the covering problem. Then, for this enlarged

instance, one may consider the previous dual feasible solution with an additional variable tig =
1. The optimal value for the enlarged instance is bounded from below by 12. This leads to the
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conclusion that the constraint x3 < 3 has to be satisfied by any feasible solution for the original
problem with an objective value less than 12. Combining this with the first constraint of the

covering problem, X3 + x3 + X5 2 4, one may conclude that x4 + Xs 2 2 is a valid inequality for
any cover with a better value than the current one. Note, that this new constraint is of the
covering type.
2. Weak Inequality

In this section, we derive a first valid inequality for the GSCP following the approach
proposed by Balas & Ho (1980) for the set covering problem, For that, a cover and a dual
feasible solution must be available. Consequently, an upper bound 2, for the optimal value of
the GSCP is known. Then, as suggesied in the example, additional constraints are determined
in such a way that the corresponding dual linear problem has an optimal value greater than or
equal 10 zy. Therefore, solutions strictly better than z, must viclate at least one of those
additional constraints. Finally, the corabining of this last disjunction to some of the covering
constraints for the original GSCP leads to a valid inequality for the feasible solutions with a
better value than the current one.

The required pair of feasible solutions, ¥ for the GSCP and [@ V] for the dual linear

problem (DGSCP), must verify the following conditions:

(2 Fj-b5)T;=0 (i M) (0

jeN;

Vi=max { 0,-¢;+ 2, 6;) - (e N) (7)
jEMi

*;-h)¥;=0 , GeN). (8)

We denote by Z, and Z y, respectively, the upper bound on the optimum provided by X and

the lower bound given by the associated dual feasible solution [§i ¥]. Those solutions can be

easily obtained through the using of primal-dual greedy heuristics presenied for the GSCP by
Paixdo & Pato (1987),

Now, let us define the set S = [je N : ij >0 and ’r'j > 0} with Tj being the reduced cost
produced by [ii ¥] for the 3* column. And, let § = (j(1),....i(p)) be a subset of § and integers
Sjm 2 ‘ijﬂ() (jﬂ()E S) such that:‘ '

mz;’“" Bg) 2 2~ 2y ®
where z,, is the best known upper bound on the optimurm for GSCP.
Note that such condition holds for the case where § = §, z, = z,, and Sj(k) = ij(k)-
Theorem 1. Let X and [ii ¥] be feasible salutions, respectively, for GSCP and DGSCP

verifying the conditions (6)-(8). Also, let Sj(k) (k=1,...,p) be integer values

for which (9} holds with z,,, 7 ; and I defined as above.
Then each feasible solution, x, whose value is less than z, must satisfy

2 %2 d (10)
JEW N
with ‘
d= min (bigy- Biy) + 1 11
e 'p( i) ~ Oj(k)) 1
W =k— U p(Ni(k) - Q]() (12)
where, i(k) is any index in M and Q4 € Nigq (k=1,...,p) verify
Y Foy < T GeN) (13)
ke i = Tj

Proof, Consider § = (j(1),...,j(p)} and a vector 8, both defined according to our
hypothesis. Let GSCP, denote the GSCP enlarged with the p additional
constraints:

j%kszﬁj(k) &=1l,...,p) (14)
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The dual linear of this enlarged problem has a feasible solution, given by [ ¥] plus p
variables associated to new constraints (14} and, respectively, equal to the reduced costs,
?}(l)'""?'(pr The definition of the sets Q. (k=1,...,p) guarantees the dual feasibility for this

‘enlarged” solution,
The value of this dual feasible solution for the enlarged problem is given by

Tt 12 Tit 809
= v*-up
which, according to (9), is greater than or equal to z, the upper bound for the optimal value.
From the weak duality theorem applied to the GSCP 4, one may conclude that the enlarged
problem has no feasible solution better than z,,. Then any feasible solution of GSCP better than

z, must violate at least one of the additional constraints (14). In other words, such cover must
satisfy the following disjunction

v (X %< i),
FN

k=l,..,p
which implies
v ( E X; 2 bi(k) - 5J(k) + l) (15)
k=l|-..|p jENi(k)-Qk
Now, if d and W are defined by (11)-(13), one has that Z xj2d is an inequality satisfied
W
by any solution with a value better than zy, ¢

The existence of the sets Qg (k = 1,..., p) is guaranteed and, next, we present a procedure
(denoted by QKAPA), which produces such a family of sets. There, we assume that Criterium
jr and Criterium ig have been established, respectively, for selecting a row and a column in each
iteration.

Using different criteria for determining j(k) and i(k) in the procedure QKAPA, several cuts
can be generated. Naturally, if we intend to obtain a strong cut, it is reasonable to keep the
cardinality of W as low as possible and, simultaneously, find a large value for d, the right-hand
side of the inequality. ‘

Hence, in order to reduce {W| one should try to add the least possible number of additional
constraints. This can be pursued through incloding the columns in S by decreasing order of the

reduced costs (Criterium jy). Of course, if z,=Z, and i = X;q then p is equal to 1Sl and
any sorting of the reduced costs is irrelevant.

Another way of reducing IW| consists of including as many variables as possible in the
additional constraints, while respecting dual feasibility. The reduction of IW| may also be
echieved by choosing, accordingly to Criterium iy, i(k} as the row with minimum cardinality

among the ones covered by columnn jik),

The determination of a large value d could be attained by taking Sj(k) = 'x'j(k) and by
choosing row i(k) in Mjg such that bi(k} is the largest one {Criterium i;).

Theréfore, the selection rules for column j(k) and row i(k) may be relevant. Unfortunately
these rules are not enough to ensure the elimination of any feasible solution for GSCP, which

is the main objective when deducing efficient cutting planes. In the next section we present and
discuss a way of achieving that.

procedure QKAPA (input: GSCP, 7, S ; ontput; Qy (k=1,....p) )
* initialization *
Aef 3 pe Sl
* jterations *
for k«1l,.p do
choose j(k) applying Criteriurm j,
Q « (i)
choose i(k) ¢ Mgy applying Crileriom i,
for je Ni(k)-s do
ir r? 2 Tiny then (Qq « QU (j) ) endif
enddo '
fer-Tie e
enddo
end DKAPA
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3. Strong Inequality
In this section, we define a cutting plane from conditional bounds that eliminates a
previously known nonredundant cover {one whose components cannot be reduced without

producing unfeasibilities). Also, it will be proved that such cut defines a facet of a GSCP
polyhedron,

First, let us define the following sets of variables:

sh=(jeN: X;=h;) (16)
T={ieM: ) &j=b) (17)
JeN;
Associated to a given variable j(k) we define a row:
i) TN Mgy such that Xj=0 for jeNjgy-S™{j(k)} (18)

In order to build up the sets Qx (k=1,...,p), we shall now consider this last condition in the
row selection criterium of the procedure QKAPA,

Theorem 2, Let X be a nonredundant cover for the GSCP, the sets Sh, Qr k=1,...,p)
and indices i(k) (k=1,...,p) be defincd as above. Also, let 7,2, P (@ V],
Z 4, T stand as in Theorem 1. Then every feasible solution to the GSCP
whose value is less than z,, verifies the following condition violated byx:

E x;21 (19)
W
where *
W= U (N, -Q,-8" 20
k:l....,p( i) ~ Qi - 8" (20)

Proof. Taking into account that $ = § and § = %, the assumptions of Theorem 1 are

verified for any z, < Z,,. Consider that the procedure QKAPA determines Qy
(k=1,..., p) with the further condition in selecting row i(k), given by (18).
As was seen in the proof of the first theorem, the improved solutions relatively to z,, violate
at least one of those additional constraints, That is, they satisfy the condition (15).
Now, let us rearrange the condition (15) in the following form:
k=lv p(. 2 hijbi(k)_zj(k)+ 1- 2 hj) {21)
P jeNjqy Qx-S € Migo-Qonsh
Note thal, from the definition, Sfj =h; forall je (Ni(k)-Qk)ﬂSh.
Since i(k)e T and (18) is verified for all k=1 » P, the above conditon (21) is equivalent to
k=1v p(. E hXjZl)
. jENi(k)-Qk~S
Now from the integrality of the GSCP variabies, one has the following inequality:
X;2 1 (22)
je U NgyQysh
=1,...,
which is valid for ;?ny feasible solution strictly better than z,,,
Since ')Ej ={ for je k=lU.. p(Ni(k) - Q- s, it comes straightforwardly that X is eliminated

by the deduced cut ¢

Note that the last result states that the cut (19) is a valid inequatity for the set of all INI-
dimensional vectors satisfying constraints (1) - (2) amended with E CjX;j < Z.

jeN

Now, one may generalize, for the GSCP, the known facet defining property of the similar
cut derived for the SCP [ Balas (1980) ]. Before stating that, let P be the convex hull of all
integer nonnegative INI-dimensional vectors satisfying (1) and (19). That is,

P=conv {xe R™, E X 2 b; {ie M), z Xj 2 1 and x; nonnegative integer (je N)} (23)

N W
Theorem 3. The culting plane (19), constructed according to the Theorem 2, defines a
facet of the polyhedron P given by (23).
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Proof. First let us prove that the index set W, defined through the hypothesis of Theorem
2, satisfies the following:

FreM:NC W (24
Consider %, the cover for the GSCP defined in that theorem, and the set of its positive
variables, Ng. = ( je N : X;> 0 ). Thus, one has Ny N Ny # ¢ for all ke M.

But X violates the ineguality (19) and, therefore Nz N W = &.Then, the statement {24) is

easily seen to be true. This will be used later on.

We already know that (19) is a valid inequality for the polyhedron P. Now, one aims to
build up INI linearly independent INI-dimensional nonnegative integer vectors satisfying (1) and
verifying (19) as an equality.

Let us assume without loss of generality that W is the set of the first p indexes in N.
Consider the INI vectors given by the rows of the following matrix:

Com p =3 e N-p ———n
100 ..., 00 & & 4., & U T
010 ... 00 2 4 2. 2 2
oo1,.. 00 2 ¢ 2 .., 2 2
. P
000 .. t0 & & t.. X 2 |
000 ... 01 & & :.. X 2 J
X=|100.. 0028 £t 2.,. 4 2 t
100 ,,. 00 £ 22 t... 4 2
10G ... 00 & 222 ... 2 %
: S I
100 ... 00 2 2 A.. 22 & |
100 ... 00 A2 4 A .. & 22 4

where £ = max b;.

ieM
Taking into account that (24} holds true for our case, cach one of these vectors verifies the
constraints (1). Moreover, it has nonnegative integer components and it satisfies strictly
inequality (19), once there is only one 1 in its first p components.
It now remains to show that X is a nonsingular matrix.

Let us define matrix Z by:

e P oemmmm——— = L N-p -——--7
1+Nlp 00 ... ©0 5 S | -1 1
‘Nkp 10 ... 00D SRS E| 14
MNp 01 ... 00 1141 K |

. v . P
Nep 60 ... 10 -t -1-1 .. -l |
Nkp 00 ..., 01 T O O I | {
AL 00 ... 00 20O ... 00O 1]
A2 00 ... 00 oLl ... 00
-1y4 00 ... o0 002 00

. Nl -p

/4 00 .., 00 00 0 .. AD !
-/ 00 ... 0O 000 ... 01 1

and see that X Z = Iy, where Iy stands for the INI X IN| jdentity matrix.
Hence, the INI vectors given above are linearly independent and the result comes

straightforwardly from the definition of facet of a INI-dimensional polyhedron. 0
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In the next page we describe the procedure CUT which, when successful, produces a
cutting plane under the conditions stated above.

However, the procedure CUT may fail in obtaining the 'strong’ cut that one aims for. This
is due to the fact that, for most of the instances, the hypothesis of Theorem 2, namely the one
expressed by the condition (18), can hardly be verified. This is completely different from the
case of the SCP and MCP where the variable upper bounds are all equal to the unity, For those
cases, the condition (18) is easily satisfied and the cuts from conditional bounds can be more

effective [ Balas & Ho (1980); Fernandez (1985); Halt & Hochbaum (1985) ].

procedure CUT ( input: GSCP, z,, %, Z,,, [0 ¥, %y and T satisfying the hypothesis of Theorem 2 ;
output: should the answer be true, cut Y, %21 )

* inilialization *
Deiy 5 kel 3 Wed Se [feN:% >0 ; Soc-{jeN:i'j=0]

s« {_ieN:ij=hj} i Te fieM: ¥ i:‘j=b-] e« F (eN) ; answer « true

ieN; ' ! !
* jlerations *
labe! 1: (k) « arg max ’r'j ¢ Criterium j; ¢
je§
O« ¢ 5 Te [ieTM: (N-S™()) A $0= (8™ (i) )
if T#9
then choose i(k)¢T with Criterium ig * select row index
else answer + false ; stop * cutting plane not determined
endifl

forje¢ (Ni(k -S-W) U {j0) do
ir T <?j(k)

then (if %; =0 then Oy « Op U (j) endif ) * variables for the cut

else r? - r? ~Tia * variables for the new additional constraint
endif
enddo
D« D+¥gy Ty 3 We WUQ, * verify validity of the cut  *
If D<z, then (§+«5-(joy} kek+l ; gotolabell)  endif
if W =25 then answer « false endif * optimal solution for GSCP found  *
end CUT

A further difficulty, in practical terms, comes from the fact that a valid inequality obained
from Theorem 2 eliminates the current feasible solution, but does not necessarily cut off other
solutions with the same value. And this is very frequent for the GSCP.

Thus the procedure without improvement tums out to be very slow. In fact, our personal
cxperience in using this approach for real life GSCPs proved to be very poor. The procedure
CUT was tried out for 34 inslances related to a real life scheduling application, all of them with
36 rows, 100 or 865 columns and high density - more than 50% of ls in the covering
constraint matrix [Paixdo & Pato (1989); Pato (1989)]. The primal and dual solutions needed
for generating the cuts were found by means of a combined primal-dual greedy and improving

heuristic procedure [see Paixdo & Pato (1987)]. However, we were not successful with any
one of the above test prablems.

4. Example
To illustrate the results of the previous sections we consider the example given in section 1

assuming that the same pair of feasible solutions is available and also that zy=Zy= 12, In this

case, one hasthat F=[2 051 0 0.5] and Z,=9. Since T383=1x3 and Z,-%, =
12 - 9, we may easily verify that the hypothesis of Theorem 1 is true, with S=(3} and p=1.
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Let us take Q) = 3, i(1)=1 and, then, calculate W = Nj1) - Q1 =Nj-Q1 = {2,5) andd =
biy-djy+1=b)-83+1=4-3+1=2.

The previously constructed valid inequality, X5 + X522, may now be derived in
accordance with the first theorem. '
Bearing in mind the same cover and the same dual feasible solution, along with the fact that

condition (9) is fulfilled with § = § and Bj(k) = Xj@ » we can see that § = {2,3} and so p=2, in
the hypothesis of Theorem 2.

Firstly, the column j(1) = 2 is chosen and any row selection criterium picks up i(1) = 3,
because it is the only one from set M3 = {1,3) satisfying condition (18). Thus Qy = {2,5) and
the reduced costs are updated: rA=[2 0 1 0 0]. At last j(2) = 3 and now i(2) = 1, the only
possible choice, leading to Q3 = {3}. The reduced costs for the enlarged problem become rA =
[20000]

As the set of variables equal to their upper bounds is SP = {2,4}, the variables with positive

cocfficient in the cut belong to the set W = {N3 - Qp - SP} U {Ny - Q2 - 8") = (5).

Thus, from Theorem 2, the valid cutting plane is x5 2 1, which is clearly violated by the
current cover and is verified by every strictly less-than-12 cover., As may be observed, the
three optimal alternative solutions with value 11 (x4 =2,%5=4; x3=1,x4=2,x5=3; x2=
X4 = x5 = 2) satisly this new valid inequality.

5. Remarks

In this paper, we have characlerized two families of valid inequalities for the GSCP. These
results correspond to a generalization of Balas’s cuts for the SCP. Those cuts keep the
covering structure.,

The first type, studied throughout section 2, can be defined from conditional bounds for
every GSCP, but does not necessarily eliminate one single feasible solution.

The other kind of cutting plane, also derived from conditional bounds (Theorem 2},
eliminates the current cover. However, very tight conditions are required and, thus, one gets a
barder process to generate the cuts for genuine GSCP instances. In fact, our computational
experience attested this difficulty,

The study of a less restrictive hypothesis in Theorem 2 could be a promising field of
research, and we hope that an algorithm combining these cuts with several heuristic or other
bounding tools will enable us to efficiently tackle the generalized set covering problem.
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