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Abstract
Lagrangean and linear penalties can be used for variable bounding in ILP. Such penaltics, embedded in a
branch-and-bound algorithm, yield remarkable reductions in the search procedure effort for large scale problems.
In this paper, four different ways of exlporing this idea for a covering problem with integer variables are
presented. Computing results taken from test problems have revealed the efficiency of the technique in reducing
the amplitude of variable intervals, and even in fixing them at feasible values,

Resumo

Num problema de PLI com varidveis limitadas os intervales de variagfio das varidveis podem ser "apertados”
tomando em consideragio penalidades lagrangeanas ou lineares, as quais v@m assim facilitar a enumeragio
implicita em PLI, especialmente se os problemas forem de grande dimens3o.

Para um problema de cobertura com varidveis inteiras limitadas apresentam-se guatro altemativas de aplicagio
desta ideia, bem como os resuftados computacionais chtidos num conjunte de problemas-tesie, A experiéncia
evidenciou a eficicia da técnica na fixagfio de varidveis e na redugfo, percentualmente elevada, da amplitude dos
intervalos.
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1 - Introduction

The purpose of this paper is to show how lagrangean and linear relaxations can be used for
variable bounding in integer linear problems with bounded variables (ILPs). Two general
results, stated in Section 2, validate the updated variable bounds for all the feasible solutions
better than a stipulated one. Such features have been called lagrangean or linear penalties though
they do not lead to penalties in the strict sense of the word. This nomenclature arises from the
penalization incurred when the solution goes outside the updated variable interval.

In Section 3, we shall point to different ways of defining lagrangean penalties for a
covering problem with integer variables, referred to as the generalized set covering problem
(Paixdo and Pato (1988)). Finally, some computational results will be given to ilustrate that
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penalties introduce remarkable reductions in the solution space, at least in the covering
problems tested so far.

Therefore, as this technique is very inexpensive computationalwise, it is most suitable for
accelerating the bounding procedure in large scale problems. )

Mention should be made of the following works, where lagrangean or linear penalties were
applied to several problems: Sweeney and Murphy (1981) — the multi-item scheduling problem;
Balas and Ho (1980), Hey (1980), Paixdo (1983), Beasley (1987) — the set covering problem;
Chan, Bean and Yano (1987) — the set partitioning problem; Hall and Hochbaum (1985) — the
multi-covering problem. It may be worth noting that, in these studies, the updating of the
variable bounds does no more than fix the variables at O or 1, because the problems are binary.
In the case of the ILP, Nemhauser and Wolsey (1988) present a linear penalty result which is
weaker than the one stated here. These authors apply the penalties to a binary problem - the
travelling salesman problem. In fact, the possibilities for bounding are much more relevant in
binary problems.

As is known similar penalties have already been derived from the linear relaxation by Beale
and Small (1965), Driebeek (1966) and Tomlin (1971). However such post-linear penalties are
extremely time-consuming as they require the optimal linear tablean.

2 - Linear and Lagrangean Penalties for ILP
Let us take the following integer linear problem with bounded variables:

(ILP) minimize cx
subject to Ax 2b
0<x <h
X integer

where ¢ is a real vector, b, h are integer vectors, A is an integer matrix, and all have
appropriate dimensions,

As we know, the linear relaxation of the integer linear problem is the ILP without the
integrality constraints, and is denoted by LinILP.

Now let Z be an upper bound on the optimal value of ILP, ZiLp, and [u v] a feasible
solution for the dual linear problem. As usual, r represents the reduced costs associated with
[u v] and z the dual objective value corresponding to [ v).

Following these definitions, consider the general result for linear penalization which can be
directly taken from duality:

Proposition 1
For a particular k,
«ifr. >0 then x <) (Z - 2)/ry |
in any feasible solution better than z.
(Jal - the largest integer strictly less than a )
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Now, rather than rejecting the integrality constraints, some of the main constraints are
rejected by embedding them in the objective function associated with non-negative multipliers,
A 2 0. Thus, this lagrangean relaxation of ILP may be presented as follows:

(LagyILP) minimize cx—A(AZx-bd
subject to Alx2p!
0<x<h
x integer

where the vectors and matrices have appropriate dimensions.

The decomposition of the constraint set into two blocks, Alx>p'and AZx2 bz, is
performed in such a way that Lag) ILP possesses the integrality property (Geoffrion (1974)). In
an extreme case, constraints Alx>p! may not exist. Thus, all constraints, with the exception
of the bounding ones, are relaxed.

Once more, let Z stand for an upper bound on z; p. Let Lag) ILP represent the optimal value
for LagyILP. Here vector t stands for the reduced lagrangean costs defined through the
expression
fj=cj— A AY _u* AY
where A is the vector of lagrangean multipliers and u* is the vector of optimal dual linear
variables corresponding to the constraints Alx2blin LagyILP.

One may, at this point, derive the second result for lagrangean penalization:

Proposition 2 '

For a particular k,
«if 8> 0 then x <} @ - 2L agyiLP)fx | (case 1)
e if ?k <0 then Xy 2 1 hk +{z — zLag;LILP)/?k [ (case 2)

in any feasible solution better than z.

(1a[ — the smallest integer strictly greater thana )
Proof

The main ideas involved are as follows.
In the first case, where # > 0, we include the following additional constraint in ILP
Xy 2 (Z = 210, 11p)/
which produces the enlarged problem, TLPE,

Firstly, the constraints A% x > b? are relaxed and associated with any vector of non-
negative multipliers A 2 ¢. Then we find problem Lag;LILPE.

The other constraints, A’ x > b', are now relaxed by taking u* as multipliers, which leads
to:

(Lag,*Lag,ILPY) minimize  c¢x—-A (AZx —bH-u* (Al ¥ —bY)
subjectto  0<x < h; and integer G=#k)
(Z - 2Lag, PRk Sxy SHy
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The optimal value for the enlarged doubly-relaxed problem verifies;
ZLag, #LagyILPE = ZLag L ag,ILP + R (Z — ZLag, iLp)/ Pk =

and thus, from the integrality of the involved problems, Lag,Lag)ILP and Lagy ILP, and the
specific selection of multipliers for the last relaxation, u*, the following equality arises:

= ZLagyILP — Z — ZLagyILP = Z-
Therefore, by applying the definition of lagrangean relaxation we have
ZppE2Z
that is, the additional constraint must be violated in a solution (to-the ILP) whose value is
greater than z, And from the integrality of this variable, x,, one may immediately conclude the
validity of the updated variable bound presented in this proposition (case 1),

For (case 2) the proof is similar, ¢

Returning to the two propositions stated above, we can see that penalties provide some kind
of valid inequalities for the feasible solutions better than z.

As has already been seen, these results simply require an upper bound on the optimal value
of the ILP, together with the by-products of a lagrangean relaxation (Proposition 2), or a
feasible dual linear solution (Proposition 1), They may therefore be easily computed.

For the above reasons such penalties may be used for variable bounding purposes in the
case of large scale ILPs,

3 - Linear and Lagrangean Penalties for the Generalized Set Covering Problem

Let us now take a pariicular ILP which is a covering problem, the so-called generalized set
covering problem, in short GSCP. It is expressed in the same way as the ILP, where matrix A
i$ a binary one,

Several relaxations were developed and tested on the GSCP (Paixdo and Pato (1988)).

One of them is the linear relaxation. Another corresponds to the relaxation of all covering
constraints in a lagrangean fashion. The corresponding relaxed problem is trivially solved by
inspection,

Two different lagrangean relaxations were also specially designed for the scheduling
applications of the GSCP, taking into account the structure of such instances. One of them, the
structural relaxation, includes a reformulation of the GSCP with redundant constraints. It then
relaxes some of the original constraints. The other one, the decomposition relaxation, comes
from a standard use of variable splitting, Both relaxed problems can be efficiently solved by a
minimum cost network flow code.
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Appropriate penalties were deduced from each of the four relaxations mentioned. These
penalties can be easily calculated through a heuristic-lagrangean procedure such as the
following:

INITIALIZE

'

PRIMAL-DUAL HEURISTICS

.

LINEAR PENALTIES

l<

SOLVE LAGRANGEAN RELAXATION

;

LAGRANGEAN PENALTIES

;

UPDATE MULTIPLIERS BY SUBGRADIENT OPTIMIZATION

L

MAXIMUM NUMBER OF ITERATIONS ?

no

yes

Figure 1 — Heuristic-Lagrangean Procedure

This heuristic-lagrangean algorithm with penalties (Figure 1) was devised to bound the
optimal value of the GSCP. In our case, it was used not only in the root node of a branch-and-
bound, but also — again for bounding purposes — in every node of the branching procedure. It
should be noted that in this algorithm the calculation was truncated when a maximum number of
generated nodes was reached. Such a combined procedure was tested in a set of medium-sized
GSCP instances, Some of them were taken from literature whereas others were not, They were

either derived through random generation, according to different patterns, or from scheduling
real applications,
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Structural relaxation was the most favourable of the three lagrangean relaxations in this
experiment,
Computing results for the-above truncated branch-and-bound using structural relaxation are
semmarized in the following table.

Table 1 - Summary of Typical Cases (Combined Procedure)

probl. | dimensions type effect a penalties
density references node zero relative behaviour
fixed reduction
(1) (2) (3) (4) (5) (6)
RN18| 36 x 865 | scheduling applications| 587 86% BETTER UPPER
56% Pato (1989) BETTER CPU
RN21| 36 x 865 idem 731 51% BETTER UPPER
56% BETTER CPU
OPTIMAL SOLUTION
RN7 | 46 x 1500 idem 103 80% BETTER UPPER
45% BETTER LOWER
BETTER CPU
RNPA| 41x378 idem 157  69% BETTER LOWER
52% BETTER CPU
OPTIMAL SOLUTION
CRF1| 47 x333 idem 18 83% BETTER LOWER
39% BETTER CPU
RN12| 36 x 865 idem 580 94% BETTER CPU
56%
HAH2| 50x200 random generation 144 10% WORSE UPPER
5% Hall and Hochbaum BETTER CPU
‘ (1985)
MOR1| 168 x 168 | scheduling applications| 0 0% —
24% Morris and Showalter
(1983)

This table sets out to demonstrate the effects of linear plus structural lagrangean penalties by
showing only one of each typical case found throughout the experiment. This small set of
problems (see column (1)) thus ilustrates all the relevant situations found so far.

Column (2) indicates the dimensions and density of the problems, whereas column (3)
indicates the type and source of each.

Column (4) represents the number of variables for which the upper and lower bounds were
fixed at equal values during the process. And column (5) gives the percentual reduction on
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interval width over non-fixed variables. All information given in columns (4) and (5) was
obtained at the end of node zero. _

As may be seen, the penalties were efficient in reducing the size of the solution space. This
resulted from the fixing of variables or the updating of their bounds. In fact, in some problems
the number of fixed variables was high. Moreover, in all cases with the exception of the last
two, the percentual reduction was significant. These exceptions were due to the poor quality of
the upper bound solutions produced by the heuristics.

The last column (6) shows the results at the end of the procedure. Not all the computational
results obtained through the tests are to be found in the table. We preferred to emphasize the
relative behaviour of this algorithm with penalties as compared to a version without penalties.

Let us now stress the results for the algorithm (with penalties):

— the final gap for the optimum was slightly better in most cases;

— the CPU time was lower in almost all problems and, in some cases, very much lower;

— on & number of occasions the algorithm optimally solved the problem before reaching
the stipulated maximum number of nodes — the version without penalties did not;

— in rare situations one found that the upper bound was worse.

One should add that, in many other problems, quality and time proved to be the same for
both versions.

In short, due to the high number of fixed variables and the significant reduction in variable
intervals, the performance of the combined procedure was improved by penalties — not to the
extent that one would have expected — but at no computer expense. One may add that its
behaviour proved to be better in the practical cases (the algorithm was, in fact, developed with
them in mind).

4 — Conclusions

Penalties from linear and lagrangean relaxations of ILPs are easily calculated and
computationally cheap. In addition, they can be effective in reducing the size of the problem by
fixing variables at particular values and shortening the width of variable intervals.

Literature presents the favourable application of these penalties for binary linear problems
and, as has been seen, the above experiment applies such penalties to medium-scale covering
problems with integer variables, Therefore, it is felt that similar results would be obtained from
other IPLs with bounded variables, whenever the resolution option includes relaxation
procedures and the problem dimensions are considerable.
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