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Resumo .

O problema tratado neste anigo refere-se A classificacho de N elementos num niimero méximo de M grupos
disjuntos, satisfazendo as resiriges de capacidade destes e as de precedéncia no agrupamento dos elementos, Como
critério de agregagdo usa-se a minimizagfio da dissemelhanga total entre ¢lementos colocados no mesmo grupo.
Este problema de classificagfio pode ser aplicado, por exemplo, 20 desenho de software.

apresentada uma heurfstica genética com base numa codificagfio dos agrupamentos, caracterizada pela
identificagdo do fndice do grupa em que cada elemento & colocado. Os resultados da experiéneia computacional
envolvendo a comparagio da heurfstica genética com uma heurfstica melhorativa, ¢ uma hibrida, indicam um
melhor comportamento da heurfstica genética para problemas de pequena dimensfio e para 0s problemas sem
testri¢6es de capacidade. Em relagio ao tempo computacional a genética monstrou-se mais desfavordvel do quo a
melhoraliva,

Abstract ,

Our paper reports on the clustering of N items inte a maximum of M non-overlapping groups subject 10
capacity and precedence constrainis when grouping the items. The clustering crilerion employed is that of 1otal
dissimilarity of items grouped together, This classification problem can, for instance, be applied to the clustering
of tasks in software production projects,

The authors developed a genetic heuristic, based on a specific encoding 1o identify the group in which each
element is inserted. Results of the computational experiments, involving comparison of the genetic heuristic
with another improvement heuristic and a hybrid heuristic, indicate a favourable behaviour of the basic genctic
for the smaller problems, as well as for the uncapacitaled problems, in terms of the quality of the solution.
However, for problems with a larger number of items, the genetic and the hybrid heusistics did not perform so
well as the standard improvement heuristic. Although, in terms of computing time, the genetic heuristic is more
expensive compared wilh the standard improvement heuristic, these experiements will encourage us o redefine
the genetic procedure.
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1. Introduction

When dealing with a huge number of items identified by specific characteristics, it is often
necessary 1o cluster them in order to study each group separately, or even to take each group as
a single entity. Determination of the number of groups required for clustering, together with
selection of the criterion used for the grouping are the first steps of cluster analysis, This is
followed by the task of clustering the items on the basis of the criterion chosen and according to
the specific nature of the situation.

Cluster analysis problems arise in many scientific areas such as biology, medicine,
psychology, economics, computer science and even literature. A survey of methods and
applications may be found, for. instance, in Duran and Odell5 or in Gnanadesikan and
Kettenrings8,

In this paper we study a specific cluster analysis problem - the Clustering with Precedence
Constraints Problem - where a maximum number of groups is pre-defined, as well as
subsidiary constraints on group capacities and precedence constraints in the grouping of ifems.
The clustering criterion calls for total dissimilarities among the items clustered in the same
groups. The major applications for this problem are related to the assignment of tasks to work
groups in large software production projects.

Some authors have formulated the ‘problem as a mixed integer linear problem, and have
used heuristics and branch-and-bound methods to tackle it. The problems solved are of small
and medium size, and one may speculate that if the number of items ranges from some tens to
hundreds, the methods, as they stand, would not be applicable, and enhanced heuristic versions
should be developed. As constructive heuristics and standard exchange scheme heuristics could
not, apparently, be significantly perfected, we decided to explore the evolutionary approach.
Though the problem is highly constrained, the genetic algorithm may be used if the encoding
and genetic operators incorporate all the problem constraints reasonably well,

The Clustering with Precedence Constraints Problem is described in Section 2. Section 3
presents a genetic algorithm for that problem, while Section 4 gives the results of the
computational experiments for small and medium-sized instances, partly taken from literature.
Section 5, the final section, points to modifications that could lead us to handle larger problems
through genetic search.

2. The Clustering with Precedence Constraints Problem

Let us consider N items and real numbers djj (i=1,..., N-1; j=i+1,..., N), which stand for
the dissimilarities between each pair of items. Known data include the maximum number of
groups, M, the weight of each item (p;, i=1,..., N), the upper bound on the number of items
per group (B, k=1,..., M), and on the weight of each group (Cy, k=1,..., M), besides several
precedence constraints that prevent items from being clustered in a group if their preceding
jtems have not, as yet, been placed in the current group, or in any previous group.
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The Clustering with Precedence Constraints Problem (CPCP) addresses the partition of the
set of items into a maximum of M disjoint subsets, according to the criterion of minimization of
the total amount of the dissimilarities among items placed together, while satisfying the capacity
and precedence constraints explained earlier.

This problem has been proposed by Karimi!3 and Klein, Beck and Konsynskil4 to process
organization in an information system. The processes of a system and their connections may
reach a high level of complexity and in that case clustering into modules with minimum
interconnections is a way of organizing the overall system.

Further possible applications suggested concern support for CAD/CAM software
production, production of sofware for industrial process control and robotics. The problem of
assigning jobs to independent processors of a computer, referred to in Sofianopoulou!8, with a
slightly different clustering criterion (minimizing costs of communication between jobs, as well
as the execution costs of the jobs) may share the same kind of constraints as the CPCP, besides
a similar objective function,

Arenson and Klein! formulated the CPCP as an extension of another formulation!4 for a
CPCP without capacity constraints. In the abovementioned CPCP formulation?, the following
parameters are required:

M - maximum number of groups, M 2 2 and integer;

N - number of items, N > M and integer;

dij - dissimilarity between item i and item j, dij >0fori=1,..,N-1 and j=i+1,..., N;
By, - maximum number of itemns for group k, By 2 0 and integer for k=1,..., M;

Cy - maximum weight for group k, Cy =0 fork=1,...,M;

p;- weight of item i,p;20fori=1,...,N.

Moreover, the precedence relations for some pairs of items, say (i,j), require that item j may
only be grouped if item i has already been placed in a previous group. This assumes that the
groups are ranked according to a specific order.

Let us now present the objective function and the model constraints:

N-t N

minimize  z=Y, Y, dj yjj ©)
i=l  j=it+l

subject to

Xik + xjk - yij <1 (i=l,..., N-1; j=i+1,..., N; k=1,..., M) (1)

M

Y xj = 1 (i=1,..., N) )

k=1

N

Y, xii < By (k=1,..., M) (3)

i=t
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N

2. Pixik < Gy (k=1,..., M) @

i=1

M M

2 kxS 3 kX (for each pair (i,j) such that i precedes j) o)

k=] k=1

y;j20 Gi=1,..., N-1; j=itl,..., N) (6)
- Xig = 0,1 (i=1,..,, N; k=1,..., M) 0

The variable xj (for all i and k) takes the value 1 if item i is clustered into group k, or 0
otherwise. As for the variable ¥ij (also defined for all i and all j greater than i), when it is equal
to 1 it means that items i and j belong to the same group, being 0 otherwise, Constraints {6) on
the variables y;; are simply of the non-negativity type, because minimization of the objective
function (0) and constraints (1) and (7) force such variables to be binary in the optimum,
without the need to impose the binary conditions.

As for the objective function (0), it represents the total sum of the dissimilarities for the
items grouped together,

The first set of constraints (1) establishes the relation between the Xik and the y;; variables.
The following set (2) enforces each item to be assigned to a unique group, whilst constraints (3)
and (4) are defined to limit the number of elements and the total weight of each group. Finally,
the precedence constraints are expressed in terms of inequalities (5).

In this formulation the size of the instances tends to be very high, even for small-sized
problems. For instance, if the CPCP is used to classify 13 items into 8 groups with 12
precedence relations, the formulation has 182 variables and 685 constraints, without
considering the constraints for definition of the variables ((6) and (7))

Moreover, the CPCP is a generalization of a clustering problem classified as NP-hard in
Garey and Johnson?, thus placing the CPCP itself in the NP-hard class.

Therefore LP based techniques are not advisable and of course a complete enumeration of
solutions is impracticable. Hence heuristics arise as natural approaches, at least for the
larger-sized problems that may not be solved by exact methods within a reasenable amount of
computing time,

Let us now refer to other similar clustering problems that could lead to different
formulations and solution-finding methods,

It should be remembered that in formulation (0) to (7) for the CPCP, the ¥ij variables are
used to establish the objective criterion, whereas the other variables, the Xik5, are used to
impose the clustering restrictions.

If neither capacity nor precedence restrictions were imposed on the CPCP, the problem
could be viewed as a quadratic semi-assignment problem, as shown in Gondran and Minoux19
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(page 467). In their formulation, the unique set of {binary) variables translates the objective
criterion and determines where each element should be placed. But if we consider precedence
constraints, this quadratic model cannot be adapted to the situation. However, even if it were
possible to model the CPCP as a binary quadratic problem, it would not be advisable to do so in
view of the computing difficulties known for that kind of problem.

On the other hand, Jensen!2 presented a dynamic programming formulation for clustering
N items into M groups without constraints, where the dissimilarities among the items placed in
a group are penalized through the inverse of the cardinality of that group. Such a dynamic
model may be applied, with minor modifications, to our CPCP, as the capacity and precedence
constraints could easily be imposed on the model. But unfortunately dynamic programming
calculations remain very hard to handle, Even in the case of small-sized problems, it would be
difficult to solve this problem within a reasonable amount of computing time.

3. The Genetic Heuristic

Genetic heuristics are search procedures that rely to a large extent on basic biological rules
for genetics. Holland! is considered to be the father of genetic algorithms as applied within the
field of combinatorial optimization. Goldberg?, Davis4 and Michalewics!6 present the main
features of genetic heuristics and the corresponding algorithms, besides many bibliographical
references concerning their applications. Although theoretical support for genetics is, to date,
mainly restricted to conventional binary codes, which should be applied only to particular
problems (see for instance Reeves!?), the genetic-based methodology has proved to be
successful in practice, even for highly constrained combinatorial problems.

Literature has already referred to several uses of genetic algorithms in clustering problems
(Michalewics!® and Faulkenauer5), though they are simpler than our Clustering with
Precedence Constraints Problem, as they do not etnbed precedence constraints,

On the other hand, Reeves!? refers to a successful application of such algorithms to a
problem with precedence constraints which, broadly speaking, is also a clustering problem - the
instruction scheduling problem (Beaty2),

We shall now begin by explaining the genetic heuristic developed for the CPCP
(Lourengo!3), The algorithm is given in Subsection 3.1, while the four subsections that follow
are devoted to the chromosome encoding and to the selection, crossover and mutation
operators,

3.1 The Algorithm

The genetic algorithm, called GENET, is summarized in Figure 1,

Each individual of the population is identified by a chromosome encoding a feasible
solution for the CPCP. The initial population has P individuals (here, the dimension of the
population P was set to 20). Three of these 20 feasible solutions are created by a constructive
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heuristic!3 briefly presented in Subsection 4.2, whereas the remaining 17 feasible solutions are
randomly generated, following a procedure also given in that work15,

procedure GENET
generate the population with P individuals
compute the fitness value for each individual
identify the fittest individual
gener=1
while gener < maxgener do
act with selection operator
act with crossover operator and update the fittest individual
act with mutation operator and update the fittest individual
gener = gener + 1
end GENET
Figure 1 - The Genetic Algorithm GENET
In each iteration of the algorithm or generation a new population is created. On 20

occasions, in each generation, the selection operator chooses one chromosome from the
population, based on its fitness. Then the crossover, as well as the mutation operator, acts on
the 20 chromosomes selected, thus creating the population for the subsequent generation,

When the maximum number of maxgener (here, equal to 100) generations is reached, the
algorithm stops and produces the best individual (chromosome) found so far and the
corresponding solution.

The features used in the algorithm were suggested by the abovementioned literature, as well
as our own computing experience. Other versions were tried out but abandoned in view of their
poorer behaviour, when compared to GENET, such as those below:

- a direct binary encoding scheme;
- the selection operator, acting only once at the initialization step;
- a crossover, where offsprings always replace parents if feasible,

3.2 The Encoding

Each individual is associated with one chromosome representing a feasible solution for the
problem. The chromosome consists of a string of N genes, each standing for an item and
indicating, through its allele, the group in which the item is ptaced (Figure 2).

L1 [ T..  Tallele=group [ .. ] |
T 2 3 . gene=item ,,, N .

. Figure 2 - A Chromosome
Let us consider a small instance of the CPCP, where 13 items are to be clustered into 8
groups. Other data for this case are:
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dili=1,..., N-1; j=2,...,N =

0.304 08 06 02 0.1 05 09 06 04 0.1 0.6
- 02 07 08 03 07 06 06 03 05 09 05
- - 08 01 07 06 05 05 0.8 0.1 0.4 05
- - - 09 02 06 09 05 0.6 03 03 04
- - - - 04 05 04 02 07 04 07 07
- - - - - 06 09 03 01 08 03 02
- - - - - .01 04 07 05 05 08
- - -« - - - . 08 03 06 06 0.8
- - - - - . . . 08 0505 06
- - - - o o o o 7 04 04 01
e e e e - 09 07
— - - - - - - - - - - 0‘8_l
Bl k=1,... . M=[56543 4 8 §]

[Cd k=1,.,., M=[9.0 15.0 14.0 40 9.0 3.0 10.0 12.0]
[pil i=1,...,N={14 2.6 3.1 2.8 2.0 1.2 22 22 1.9 2.4 2.2 1.0 1.8]
Finally, precedence constraints for this instance are given in Figure 3.

Figure 3 - Precedence Constraints for the Example
A clustering that fulfils all constraints for this case is illustrated in Figure 4. Here groups
have the following composition: g;={2), g,={5,9}, gy=(13}, g4=14), g5=(1,6}, ge=(11),
£7,=(3,12} and gg=(7,8,10).
The given encoding represents the specific clustering for the CPCP instance by the
chromosome:

(Lo I T T7742 TSTET8 121816 17]13]
Here, item 13 is clustered in group 3 (the last gene with its allele in bold print) and both
itemns 5 and 9 fall into group 2 (the fifth and ninth genes, respectively).
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Figure 4 - A Clustering for the Example
We now have the corresponding solution for the CPCP formulation of Section 2; x;5 = X9,
= X37 = Xg4 = K53 = Kgs = X7 = Xgg = Xo3 = X10,8 = X116 = X12,7= X133= 1, Y50 = ¥3,12 =
Y16 = ¥78 = ¥7,10 = ¥s,10= 1 ; and all others equal to 0.

3.3 The Selection Operator

The selection of chromosomes to remain in the population for the current generation is
based on their fitness values, that is, the probability of selection of an individual chromosome is
proportional to its fitness, The fitness of each chromosome is supposed to reflect the objective
value of our problem, which represents total dissimilarity of the corresponding feasible
solution, Thus, the fitness value must be better for the lower dissimilarity chromosomes and
always positive,

Considering that the minimization of the objective function of the CPCP given by (0) is
equivalent to

N-1 N

maximize  z'=- Y 3 dj y; (8)
=1 j=i+l
and also o
N1 N N1 N
maximize  z'=- Y, E dyii+ 2, D, dy )

i=1 j=itl =1 jeiwl
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the fitness value for each chromosome will be expressed by the value of this last objective
function (9) calculated in the respective feasible solution. Therefore, the fitness values are
positive, as required, and better for the lower dissimilarity chromosomes.

The selection operator performs like a roulette wheel, where the fittest chromosome is
associated with the largest sector of the wheel, thus having the greatest probability of being
chosen.

Let us show how the roulette works in a case taken from the example. Take 5 chromosomes
from the population and suppose that the corresponding feasible solutions have the following
total dissimilarities or values of the objective function (0): 14.5, 3.6, 10.0, 10.6 and 7.0. These
dissimilarities amount to 40.3 and, bearing in mind the reformulation of the objective given by
(%), we find the following fitness values for the 5 chromosomes to be: 25.8, 36.7, 30.3, 29.7
and 33.3, Figure 5 displays the roulette for this selection process.

Figure 5 - Roulette for an Hlustrative Case

Let us assume that the (uniformly) random generation of a real number between 0.0 and
155.8 produces number 65.0. The chromosome selected is therefore the third one, whose
fitness value is 30.3, In fact, the addition of the first two fitness values gives 62.5 (below 65.0)
and the addition of the first three values gives 92.8 (above 65.0).

The selection operator is repeated a certain number of times - in GENET on 20 occasions -
and the resulting chromosomes build the population for the current generation. Some of the
chromosomes may ultimately be identical.

3.4 The Crossover Operator
The number of crossovers in a generation is randomly generated between 1 and 5. These
figures were set in accordance with the parameter for the dimension of the population (P = 20).
For each crossover a pair of chromosomes (the parents) is chosen by the roulette, thus
giving priority to the fittest chromosomes. Then, in order to create the child-chromosomes,
approximately 1/3 of the N genes are randomly chosen and their alleles are swapped from one
chromosome to the other of the same pair.
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As an illustration, let us take two parent-chromosomes of the instance given above:

[P TJT7T35Ta 5 T8 T8 121816 7]13]

L1 12 73371 JTTTT2TZ 1372127172
Here [13x1/3} = 4, and so the offsprings will have 4 genes whose values result from

swapping the corresponding alleles of their parents (all in bold print in the parents):
L7 1T 3 [STT ST J2T8T6 73]

1 12 1771374 TJ1T8T2T273T172 1271727
These correspond to the following two groupings respectively, and in this case happen to
be feasible:
- 51={2,5,7), =09}, £3=(3,13), g4={ ), g5={4.6}, ge=[11}, gz=(1,12} and
gz=(8,10); _
- 81=(1,6}, 2,=(2,8,9,11,12,13}, g3={4), g4=(5), gs={ }, g={ }, g;=(3} and
ge={7]).
This crossover operator was designed with the single purpose of creating solutions that are
partly similar to the original ones, without considering the feasibility,
The two child-chromosomes, if feasible, substitute their parents, but only if they are better,
If only one of the descendants is feasible, this feasible chromosome replaces the most ill-fitted
parent. The parent-chromosomes may be selected for crossover twice or more often in the same
generation.

As the population dimension is 20, once the crossovers occur, more than half of the
population is kept identical to the previous generation and the remainder does at least retain
some characteristics of their parents,

3.5 The Mutation Operator
The mutation operator may act on up to 1/5 of the population's chromosomes. In other
words, the number of mutants can be 0, 1, 2, 3 or 4, in the case of the present implementation.
Each chromosome in which mutation will occur is randomly chosen among the population.
This method also applies in the selection of two of its genes. For each of these two genes
(items) the corresponding allele (the group wherein the item is clustered) is compared with the
central index group (in the case of an even number of items, the central group is considered as
the average of the two central index groups):
- if the allele is below the central group, one unit is added to it, i. e. the item shifts to
the subsequent group;
- if the allele is above the central group, one unit is subtracted, and the item shifts to
the previous group. This mutated chromosome is then tested against all the
constraints, and only if it is feasible, does it replace the original,
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To illustrate this operator, let us consider a chromosome for the same example problem:

C7 IO I3TS T 5T 118 J27816T17T3]
1 2 3 4 5 6 7 & 9 10 11 12 13
central genes

which, after random determination of the two genes - the fourth and the ninth - mutates into;

L7 11 (37471 51178 [3 18[]6 73]
The second chromosome still represents a feasible solution: g,=(2,5,7}, g,={ },
83=(3.9,13}, g4={4}, gs=(6}, ge={11}, g7={1,12} and gg=(8,10).
This chromosome-mutating operator was designed with two main aims, One is to
concentrate the items in the neighbourhood of the central group. Such chromosomes will differ
from those created by the constructive and improvement heuristics (see Subsection 4.2) because

these procedures concentrate the items in the first and last groups, respectively. The other aim is
to ensure a frequent verification of precedence constraints. However, as a lot of mutants are not
feasible (often they do not respect group capacities) and are therefore omitted, we mutate
frequently (up to 4 times in 20 chromosomes) to bring about some diversification among
individuals in the population. In fact this operation is not rare in genetic heuristics, as opposed
to natural biological evolution.

4. Computational Experiment

Computational experiments were carried out to test the performance of the genetic heuristic
GENET following the algorithm of Figure | and two other heuristics: an improvement heuristic
based on exchanges of items and a hybrid heuristic, produced by combining the improvement
with the genetic procedure.

All the algorithms were coded in PASCAL and ran in a HP 486/33 VL personal computer.

We shall begin by describing the test instances in Subsection 4.1. This is followed by a
short presentation of the comparison heuristics, in Subsection 4.2, Results are finally given in
Subsection 4.3 and commented upon in Subsection 4.4,

4.1 Instances

The test instances came from a semi-random generation process, following the rules and
parameters given in Aronson and Klein! (who took partial data for some problems from
Tongel?), as no complete set of data for this kind of clustering problem - the CPCP - was
found. The only exception is an instance to be referred to in Subsection 4.4, belonging to Type
C problems.

Parameters of test problems were randomly generated within the bounds stated in Table 1:
the number of groups, the maximum number of items, the maximum weight for groups and the
weights of the items.
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Generation of the dissimilarity matrix was carried out following two different rules:

- rule 1 - each element of the matrix is randomly drawn from the interval [0.1,0.91;

- rule 2 - two spatial coordinates are randomly generated between 1 and 100 for each
item, Euclidean distances for each pair of items are then calculated, which leads to
the dissimilarity matrix.

The precedence constraints were also set semi-randomly for some instances!S, whilst others
were taken from literature - Class 2 problems.

Four different classes of instances were considered - Class 1 to Class 4 - and, for each one,
25 problems were generated by changing one of the parameters within the bounds.

For Class 1 two sets of 13 and 12 problems each were considered: problems Type A, with
2 to 5 groups and problems Type B, with 6 to 8 groups. Similar differences exhibit the
following pairs of problem Types created respectively for Classes 2, 3 and 4:

- Type C (12 problems) and Type D (13 problems);

- Type E (7 problems) and Type F (18 problems};

- Type G (7 problems) and Type H (18 problems).

Some problems from Types C and D have a dissimilarity matrix copied from Aronson and
Kleinl,

Class 1 Class 2 Class 3 Class 4

Types A and B | Types C and D| Types E and F | Types G and H
N 13 23 32 70
M 2-8 3-8 4-9 3-30
n® of precedence constraints 12 25 25 | 86
maximum n® of items per group 3-8 6-14 6-14 3-30
maximum weight per group 3.0-150 8.6-250 8.6-280 |320,0-1400.0
weight of items 0.1- 3.1 0.1- 6.0 0.1- 60 1.0 - 319.0
dissimitarities 0.1 - 0.9 (rule )] 0.1 - 09 Gule [0.1 - 0.9 (e 1)] (ke 2)

Table 1 - Bounds for Data of Test Problems

4.2 Other Heuristics

An exchange-based improvement heuristic and a hybrid genetic heuristic were used to
assess the behaviour of the genetic heuristic.

Let us begin by briefly presenting the improvement heuristic IMPROVE, suggested in
reference! and extensively described in the dissertation!5.

It starts from any feasible solution of the CPCP, in particular from one built through a
constructive procedure that clusters the items according to increasing weights, filling the groups
ranked by increasing products of the parameters By and Cy. These two building criteria -
increasing weights of items and increasing products of group capacities - are used to cluster the
greatest quantity of items in the less favourable groups first. This constructive procedure is also
used to build 3 of the individuals of the initial population of GENET, as mentioned earlier.
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As such a classification of items tends to leave the last groups empty, the improvement
heuristic runs through the groups, starting by taking the last and continuing in decreasing group
index order, displacing to the current group all items with their successors in the current group
or in the groups analysed before the current group (that is, the groups with a higher index).

The criterion for choosing items to be displaced at each stage is determined by taking into
account the maximum reduction that may be achieved in the total dissimilarity.

The hybrid heuristic, HYB'RJD, is basically a genetic search, characterized by the fact that,
at the end of each generation, it calls the above improvement procedure from the chromosomes
(feasible solutions) of the population.

4.3 Results

The measures used to evaluate the heuristics were the solution guality and the computing
time in seconds. For each problem Type, average values were calculated, as seen in Table 2.

To assess the quality of the solution, we used the percentual gap between the total
dissimilarity of the solution obtained by the genetic-based heuristics (GENET or HYBRID) and
the value given by IMPROVE, that is, 100x(2IMP-zgenetic)/7IMP These values are listed in
columns (5) and (8).

For the genetic heuristic GENET the percentage of non-discarded or accepted chromosomes
over created chromosomes, in all the 100 generations, is also given. Columns (6) and (7) of
Table 2 present these figures for the crossover and for the mutation respectively.

Table 3 presents similar results to those of Table 2 but refers only to the 4 problems with no
capacity constraints that were vsed in our tests,

As for computing times, IMPROVE took up to 2 seconds for each of these 100 instances,
whereas GENET on average spent about 14 seconds per instance and HYBRID, on average,
took 39 seconds per instance,

problem Types | N M  |n®of prec, GENET HYBRID
constr. | diss.gap acc.cro. acc.mut. diss.gap
(%) (%) (%) (%)
(1) 21 3) (4 (5 © )] (8
A 13 | 2-5 12 10 64 32 8
B 13 | 6-8 12 12 86 40 5
Cc 23 1 3-5 25 2 56 28 3
D 23 | 6-8 25 11 73 48 10
E 32 | 4-6 25 -15 53 29 -9
F 32 |7-9 25 -9 79 35 -4
G 70 | 3-10 86 -1 63 15 -4
H 70 |i1-30 86 -12 70 27 1

Table 2 - Computational Results - Average Values
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problem (Type)| N M |n®of prec. GENET HYBRID
constr. | diss.gap acc.cro. acc.mut, diss.gap
(%) (%) (%) (%}
(1) | (2) (3) (4 (5) (6) (7 (8)
problem 10 (A) | 13 5 12 28 82 49 23
problem 35 (C) | 23 3 12 28 47 5 14
problem 60 (F) | 32 8 25 21 82 21 26
problem 85 (G)| 70 9 86 10 79 27 10

Table 3 - Computational Results for Uncapacitated Problems
4.4 Comments ,

As Table 2 shows, heuristic GENET performed better, in terms of solution quality, over the
shorter instances (problem Types A, B, C and D), whereas the IMPROVE outperformed it in
the larger-sized instances (problem Types E, F, G and H). The hybrid process (column (8))
stands between the other two single heuristics - IMPROVE and GENET.

The occurrence of these instances with a poorer behaviour is due to the small number of
individuals in the population - fixed and equal to 20 - with respect to the problem size, a direct
consequence of the number of items which, for these instances, is N = 32 or 70. Such results
are to be expected, as literature suggests higher cardinality populations for larger problems. The
enlargement of the dimension of the population has not yet been tried for all the instances of
CPCP, as the available computing resources were insufficient. However, in some cases we
simulated that situation (enlargement of the population) and found a much better performance of
both genetic-based heuristics.

As can be seen in Table 2, columns (6) and (7), the number of discarded chromosomes is
very high as compared to the chromosomes included in the population (corresponding to
feasible clusterings). We also observed through our experiment - though not noticeable in
Tables 2 and 3 - that, in instances with a lower percentage of feasible chromosomes the results
were worst.

This leads us to think that we could develop operators to attain feasibility more frequently
or, alternatively, procedures to restore feasibility after performing the crossover and mutation
operators.

The computing time is higher for the genetic-based heuristics but this measurement of
heuristic behaviour is not significant if we assume that the CPCP is a problem whose solution is
not called frequently.

It should be stressed that GENET obtained much better solutions than IMPROVE for the
problems with no capacity constraints - column (5) of Table 3.

Comparison of the above figures with results found in literaturel:!4 is only partially
possible, as authors give neither complete problem data nor similar solution quality results.
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Moreover, computing times are not comparable, in view of the considerable differences in
computing resources.

However, Aronson and Klein! do provide some information. Where solution quality is
concerned, they present the optimum value (19.7) for a single problem only (which is precisely
one of ours belonging to the Type C problems). They also add that their constructive heuristic
produced a solution with total dissimilarity equal to approximately seven times the optimum
value, and that their improvement scheme (similar to the one described in Subsection 4.2)
reduced the value to 25.4. Our results for this problem are: 25.4, 21.9 and 22.3 respectively for
the three heuristics IMPROVE, GENET and HYBRID.

According to the authors quoted, the total of 29 problems tested (25 with parameter ranges
similar to ours, and 1 with 140 items and 3 groups), the constructive heuristic failed to build up
a feasible solution in 4 cases, whereas their specialized branch-and-bound method, embedding
the constructive and improvement heuristics; produced the optimal solution in all other cases -
though high computing expenses were incurred in some cases. The branch-and-bound is a
generalization of Balas's method to embed multi-branches representing the groups, whilst the
levels represent the items. Such 2 method is not suitable for larger problems.

The results of Klein, Beck and Konsynskil4 are even more difficult to compare with ours,
as their test problems are CPCPs without capacity constraints, involving 10 to 20 items and 3
groups, and they used a standard ILP code to optimally solve the problems.

Though problems of Table 3 are also uncapacitated CPCPs, they cannot be considered for
comparison with the above work!4 as the size and data generation processes are different.

On the strength of the above comparisons and computational results, one may conclude that
the genetic-based heuristics we developed for the CPCP behaved well in the set of uncapacitated
test instances, and poorly at capacitated medium sized test instances.

5. Conclusions and Future Work

This paper presented a clustering problem, where clusters are built up by considering both
maximum capacities and precedence constraints when grouping the items, using a total
dissimilarity clustering criterion, This is a typical highly constrained problem and the plain
version of the genetic heuristic developed in this case performed fairly well for the set of small
and medium sized test instances - at least when compared with results obtained from an
improvement scheme, also custom-made for the CPCP,

Computing times are higher for the genetic and the hybrid heuristics, thdugh this is not
significant in viéw of the strategic nature of the applications for the CPCP mentioned earlier.

The computational experiments performed point to the interest in trying different genetic
heuristic versions, characterized by irnposing the feasibility over solutions created by crossover
or mutation, or alternatively by an encoding process that naturally conveys most of the problem
constraints through the operation of crossover and mutation (Caldas?). This should help to
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reduce the non-productive computing time resulting from discarding non-feasible
chromosomes,

We also suspect that, for the larger problems, an increase in the number of individuals in
the pobulation would produce much better results,

We would like to study lower bounds on the optimal total dissimilarity, so as to evaluate the
quality of heuristic solution in absolute terms. We consider this to be one of the next most
important steps to take in the study of heuristics for the CPCP. Lower bounds could be
obtained through exploitation of the dynamic quality of the CPCP. This may involve the study
of state space relaxations for dynamic programming formulations similar to or even different
from the dynamic programming model referred to in Section 2.

Finally, we look forward te finding real situations to which the CPCP may be applied and
therein experiment methodology developed to date. It is commonly known that huge software
companies spend a large amount of their budgets on overtime and extra-fees due to delays, If
tasks were better organized, resources would be more profitably used. We believe that these
would be successful fields of application for the Clustering with Precedence Consiraints
Problem,
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