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Resumo

O goraz (Pagellus bogaraveo), é um peixe comum nas águas do Oceano Atlântico oriental e Mar
Mediterrâneo, com um especial interesse comercial em Portugal. No entanto, apesar da sua importância
comercial, a avaliação do stock do goraz consiste num grande desafio devido à escassez de dados e à
complexidade dos seus processos biológicos. Apesar destes desafios, a avaliação do estado do stock e
a estimativa dos parâmetros biológicos da espécie são essenciais para antecipar cenários de alteração
do stock e ajustar as regras de exploração de modo a garantir a sustentabilidade. Estudos genéticos
revelaram diferenças entre populações de goraz nas regiões do Atlântico e do Mediterrâneo, destacando a
importância da compreensão da espécie que se encontra na área de Portugal continental especificamente.

Esta espécie possui um ciclo de vida e dinâmica populacional complexas, que a tornam sensíveis
à sobrepesca. O ciclo de vida inclui uma sequência de processos desde o estado de ovo a adulto, que
são influenciados por fatores externos como mudanças ambientais. Esses processos incluem migrações
ontogenéticas nas quais as fêmeas vão até as áreas costeiras desovar, os ovos eclodem nessa área e mais
tarde os indivíduos movimentam-se para águas mais profundas à medida que crescem. O goraz é também
uma espécie hermafrodita, o que significa que pode mudar de macho para fêmea ao longo da vida. Estas
características evidenciam a complexidade do goraz, e revelam a importância de estudar esses aspetos
para a gestão e conservação da espécie.

Apesar destes conhecimentos, os poucos dados existentes são um grande desafio para melhor conhecer
a espécie e estimar os seus parâmetros biológicos e abundância. Dessa forma esta tese tem como principal
objetivo desenvolver e implementar um modelo estatístico que permita estimar os parâmetros biológicos
e abundância, personalizado para a população no território continental português.

A metodologia utilizada neste estudo baseou-se em modelos de espaço de estados (MEE) com uma
abordagem bayesiana. Esses modelos permitem estimar os parâmetros biológicos dos processos dinâmi-
cos da população, incluindo Reprodução e Recrutamento, Mortalidade e Sobrevivência e Crescimento,
integrando conhecimentos prévios e acomodando não só a variabilidade dos estados, mas também a dos
dados. O modelo foi desenvolvido utilizando o pacote NIMBLE em R, aplicando a dados fornecidos
pelo Instituto Português do Mar e da Atmosfera (IPMA). Os dados incluem 8 anos de atividade pesqueira
(2014-2021), o número de indivíduos capturados e o seu tamanho em centímetros.

Reconhecendo as limitações dos modelos determinísticos para lidar com desafios proeminentes das
populações de peixes, como variabilidade e incerteza, os MEE com abordagem bayesiana emergem
como uma alternativa poderosa graças às suas características. O modelo divide o sistema em dois
processos representados como séries temporais estocásticas em paralelo: o processo de estados e o
processo observacional. O processo de estados descreve as mudanças de um estado de tempo para o
próximo, neste modelo irá descrever as dinâmicas populacionais do goraz ao longo de um ano, que foram
caracterizados através do uso de dez classes de tamanho dos indivíduos para melhor performance do
modelo. O processo observacional contém os dados, e estes são conectados aos estados não observados
e desconhecidos, neste caso conecta os dados providenciados pelo IPMA aos estados da população
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descritos no processo de estados. Essa estrutura permite que o MEE estime a abundância e os parâmetros
biológicos da espécie, considerando simultaneamente duas fontes de variação: variação do processo e erro
de observação, fontes que no caso de espécies de peixes tem elevada importância dado o desconhecimento
existente por falta de observação direta.

A abordagem bayesiana proporciona uma perspetiva distinta em relação a uma abordagem frequen-
tista, considerando os parâmetros como variáveis aleatórias, desta forma é possível não só informar o
modelo com conhecimento prévio sobre os parâmetros através das prioris, mas também considerar e quan-
tificar as incertezas. Optou-se pelo uso de prioris informativas, numa tentativa de melhor desempenho
do modelo.

Após o ajustamento do modelo aos dados, este é analisado através da comparação dos valores dos
dados com a média a posteriori das estimativas obtidas, os valores são próximos, indicando que o modelo
captura as tendências subjacentes nos dados e foram obtidas as estimativas pretendidas.

O modelo apresenta diferentes níveis de convergência em diferentes subprocessos e níveis de hierar-
quia do modelo, enquanto os valores estimados são biologicamente credíveis. Em todos os processos os
hiperparâmetros apresentam valores de medidas de convergência que indicam que ocorreu convergência.
Apesar dessa semelhança apenas no processo de Mortalidade e Sobrevivência é que os hiperparâmet-
ros possuem uma distribuição posteriori diferente da priori, o que pode estar relacionado com prioris
demasiado restritas nos outros processos.

Quanto aos parâmetros dos outros níveis de hierarquia, na Reprodução e Recrutamento houve uma
homogeneidade na convergência dos parâmetros para valores biologicamente plausíveis, no processo de
Crescimento embora a distribuição obtida para cada parâmetro seja credível, graças à grande presença
de zero as medidas de convergência desses parâmetros mostram algumas discrepâncias, no entanto é no
subprocesso da Mortalidade e Sobrevivência que existe um maior discrepância nos valores das medidas
de convergência, em que todos os parâmetros associados as classes de tamanho 2,3 e 10 demonstram ter
falhado na convergência, que mesmo após consideração de detalhes da estrutura dos dados e do modelo
não foi encontrada uma resposta plausível.

Quanto à abundância total do goraz na costa continental portuguesa, os parâmetros apresentam
intervalos de credibilidade estreitos, e bons valores nas medidas de análise de convergência. Os valores
estimados demonstram que existe um grande declínio na população a partir de 2018, o que corrobora
com estudos previamente realizados.

Após esta avaliação do modelo que foi estruturado utilizando 10 classes de tamanho, decidiu-se
adaptar os dados a um modelo reformulado com 5 classes de tamanho. Existiu uma simplificação na
estrutura do modelo, e uma redução de aproximadamente 50% dos parâmetros a estimar. No entanto,
após o ajuste desse novo modelo aos dados, a avaliação de convergência demonstrou piores medidas de
convergência na maioria dos parâmetros, principalmente nos níveis de hierarquia mais elevados. Essa
ocorrência pode ser explicada por falta de ajustamento das cinco classes ao ciclo de vida do goraz, isto
é, uma vez que maioria das equações que definem as dinâmicas populacionais no modelo dependem do
tamanho central da classe, um modelo com classes de menor amplitude pode ter uma melhor performance.
Sobretudo no processo de crescimento, onde o uso de 5 classes de tamanho faz com que a probabilidade
de os peixes alterarem de classe de tamanho de um ano para o outro seja baixa, acabando por existir uma
acumulação de indivíduos nas primeiras classes levando a um mau funcionamento do modelo.

De forma a validar os resultados obtidos, as médias à posteriori foram comparadas com resultados
obtidos noutros estudos sobre o goraz. O modelo de dez classes de tamanho revela pequenas disparidades
que se mantêm dentro do intervalo esperado quando comparados com os estudos de outros investigadores.
Por outro lado, o modelo de cinco classes de tamanho apresentou variações mais evidentes. Ao comparar
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Portugal continental com outras regiões, não foram encontradas evidências convincentes de desvios
significativos nos valores dos parâmetros biológicos.

As implicações deste estudo são significativas para a gestão e conservação da espécie em Portugal. Ao
melhorar a compreensão da dinâmica populacional do goraz, os gestores de pesca podem tomar decisões
mais informadas sobre políticas de exploração sustentável e medidas de conservação para garantir a saúde
a longo prazo desta espécie.

Em suma, esta pesquisa contribui não apenas para o avanço do conhecimento científico sobre a
ecologia e biologia do goraz, mas também para a promoção da gestão sustentável dos recursos pesqueiros
em Portugal, que tratando-se de uma área de extrema importância, no futuro seria relevante executar
o modelo com condições previamente descritas, usando um conjunto de dados maior do International
Council for the Exploration of the Sea (ICES), para analisar se os valores estimados mudam e se a
convergência melhora. Incorporando mais dados, o modelo pode capturar mais padrões e fornecer
estimativas mais robustas. Nesta tese, prioris informativas foram usadas para informar melhor o modelo
sobre crenças anteriores, no entanto, o uso de prioris vagas poderia levar o modelo a convergir para
valores diferentes, e seria valioso analisar essas diferenças realizando a repetição do estudo atual usando
diferentes distribuições para os hiperparâmetros.

Palavras chave: Goraz, Modelo Estatístico, Modelo Espaço de Estados, Inferência Bayesiana, Dinâmi-
cas Populacionais
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Abstract

The blackspot seabream (Pagellus bogaraveo) is a relevant species with commercial importance.
However, it is challenging to assess its stock due to scarce data and its complex biological dynamics. This
thesis aims to address some of the knowledge gaps by developing a tailored statistical model, specific for
mainland Portugal. By integrating previous knowledge, accommodating data variability, and considering
its complex life cycle, the model aims to estimate population parameters using a dataset provided by
IPMA. Utilizing State-Space Models with a Bayesian approach, implemented in R with the NIMBLE
package, the model allows for the estimation of biological parameters of the population dynamics, while
considering the dynamic interplay between observable data and hidden processes. Despite challenges
posed by scarce data, the model provides acceptable estimates for most parameters. Particularly, it is
effective in estimation of total abundance. Convergence analysis of parameters revealed varying levels of
convergence across different sub-processes and hierarchical levels. Most hyperparameters showed overlap
between prior and posterior distributions. Furthermore, comparison with other models and exploration
of parameter convergence further validated the model’s performance. This study contributes to a better
understanding of the blackspot seabream population dynamics, which is crucial for effective fisheries
management and conservation strategies in mainland Portugal.

Keywords: Blackspot seabream, Statistical modeling, State Space Model, Bayesian inference, Popu-
lation dynamics
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Chapter 1

Introduction

In a world marked by the increasing need to preserve biodiversity and ensure the sustainability of
marine resources, the application of statistical models emerges as a crucial tool for understanding and
managing ecosystem complexities. These models play a vital role in our understanding of intricate
systems marked by uncertainty, unknown states, and enigmas, addressing complex issues like population
ecology (Koller and Friedman, 2009).

Within the realm of ecology, statistics play a pivotal role in studying relationships between organisms
and their environments, aiding conservation efforts and sustainable resource management (Guillot et al.,
2022; King, 2014). When considering population ecology, a key sub-discipline focusing on individual
species, a quantitative approach becomes essential. This would allow a more precise and comprehensive
understanding of the dynamics and interactions governing populations, providing a foundation for deeper
insights and informed decision-making. Here, ecological data must be modeled and analyzed to make
inferences about each species, leading to the emergence of population dynamic models that offer insights
into species characteristics and predict population development (King et al., 2009).

This thesis focuses on Pagellus bogaraveo (Brünnich, 1768), herein blackspot seabream. This species
has complex reproductive and life cycles. The estimation of biological parameters and of the abundance
of this species, in other geographical locations, has proven to be challenging due to its particularities
(Lorance, 2011). Additionally, the fishery data in mainland Portugal is scarce, adding to the challenge
and relevance of developing this model. Considering the importance and utility of modeling species, this
thesis’ focus is to build a statistical model for blackspot seabream in mainland Portugal.

The information derived from this model could be valuable for management decision, explaining past
events, predicting future scenarios, such as population collapses, and providing essential insights into the
species’ evolution over time (Newman et al., 2009). Species dynamics are related to aspects with high
uncertainty, which increases when dealing with species, due to the observation of the states becomes
indirect and uncertainty gains a main role. Therefore, statistical models’ importance and utility become
more evident. Statistical models serve as vital instruments for understanding hidden states and uncertain
parameters.

The management of fisheries resources plays a critical role in maintaining the ecological balance of
our oceans and ensuring a sustainable food supply for the growing global population (Newman et al.,
2009). In this pursuit, State Space Models (SSM) have emerged as a powerful and versatile tool, offering
a dynamic framework to analyze and understand complex systems with inherent uncertainties. These
models allow for the explicit modeling of the underlying dynamics of a system and also the uncertainties
associated with the observed data. This capability makes SSM valuable in ecological studies, where they
enable a more detailed and comprehensive analysis of species dynamics while accounting for various
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sources of uncertainty.
The blackspot seabream is a demersal species belonging to the Perciformes order and Sparidae family

(Martins and Carneiro, 2018; Micale et al., 2011). Its distinctive biological characteristics and complex
life cycle, comprehensively described in Chapter 2, make it exceptionally susceptible to the adverse effects
of overfishing (Lorance, 2011). However, incomplete knowledge of its spatial dynamics contributes to
the uncertainty about the current state of the stock (M. Pinho et al., 2014). Understanding the causes
associated with blackspot seabream fluctuation of abundance in relation to fishing is crucial, and provide
valuable insights for stock management decisions. The complexity of its biological dynamics and
limited data availability make this task particularly challenging. Therefore, predictive studies regarding
population dynamics, despite being highly relevant, are extremely challenging.

Modeling population dynamics is a relevant topic that can have different levels of complexity, de-
pending on the population dynamics and the questions under consideration. The construction of a model
involves numerous possibilities, and the key to success lies in clearly defining its purpose to address the
precise research questions under consideration.

In this thesis, a tailored statistical model has been developed to estimate the abundance of blackspot
seabream and its biological parameters in mainland Portugal. This model adopts a State Space Model
framework with Bayesian inference through the Markov Chain Monte Carlo algorithms, offering a robust
methodology for capturing the intricate dynamics of the population.

The primary objective of this research is to formulate a stock assessment model that delves into the
dynamic interplay between observable data and hidden processes associated to the blackspot seabream
population dynamics. To achieve this, Bayesian inference, Markov Chain Monte Carlo algorithms, and
tools such as the NIMBLE package (version 1.0.1) are employed in R (version 4.3.1). These statistical
techniques, described in Chapter 4, facilitate the extraction of inferences about the species, addressing
and overcoming challenges presented by limited data and complex biological dynamics. The overarching
aim is to provide a comprehensive understanding of the blackspot seabream population, contributing
valuable insights for effective fisheries management and conservation efforts in the region.

In particular, this thesis’s objectives are:

• Understand population dynamics of blackspot seabream;
• Review models applied to population dynamics within the context of fish ecology;
• Design and develop a model tailored for blackspot seabream population dynamics;
• Evaluate the model under different scenarios and datasets;
• Analyze the estimates obtained and comparing them with values from other authors.

This thesis is organized into several chapters, each serving a specific purpose, including the following
items:

• Chapter 2 - Literature Review of Pagellus bogaraveo: Investigate the physical characteristics
influencing blackspot seabream population dynamics; Analyze the life cycle stages and their
implications for population dynamics; Explore spatial distribution patterns and the environmental
factors shaping them; Examination of historical overview of early studies on blackspot seabream;
Identification of knowledge gaps that the present thesis aims to address;

• Chapter 3 - Dataset used: Presentation of the dataset used; Analysis of these data;
• Chapter 4 - Methodology and Resources: Presentation of historical evolution of fish model methods;

Presentation of State Space Models as an alternative methodology; Bayesian inference using the
Markov Chain of Monte Carlo (MCMC) algorithms;
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• Chapter 5 - The Model developed: Description of the model developed; Detailed presentation of
equation used; Introduction to prior distributions used; Respective references;

• Chapter 6 - Analysis of Results: Analysis of the results obtain from the model presented and other
alternatives; Comparison with results from other authors;

• Chapter 7- Conclusion and future possible studies.
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Chapter 2

Literature review of Pagellus bogaraveo

The blackspot seabream was first described by Brünnich in 1768 (Brünnich,1768), is a demersal
species of the Perciformes order and Sparidae family (Martins and Carneiro, 2018). This species is
predominantly found in the eastern Atlantic Ocean and the Mediterranean Sea (Micale et al., 2011).
Notably, countries with coastlines along the Mediterranean, including Spain, France, Italy, and Greece,
have shown considerable fishing interest in it, due to its esteemed culinary value and popularity. Concerns
about the population’s status emerged toward the end of the 20th century, when landings decreased
(Lorance, 2011).

This chapter provides an overview of the blackspot seabream’s biological characteristics. It includes
physical features that are relevant to distinguishing this species from others, essential knowledge for
fisheries and biologists when collecting data, as the data used in this thesis. Next, an overview of the
species dynamics, that are fundamental to stock assessment, and central to the aims of this thesis that
rely on available information about life cycle stages and biological processes, is presented. Finally, the
spatial predominance of the species and its connection to genetic differences are explained.

2.1 Physical characteristics

The blackspot seabream can be distinguished from other species by its physical characteristics, as
illustrated in Figure 2.1. It has a rounded head profile and relatively large eyes compared to the length
of its snout, the dorsal scales end between the posterior margin and the middle of the eye. It possesses
pointed teeth at the front and molar-like teeth at the back, displays a grayish-reddish coloration and often
exhibits a prominent black spot at the origin of its lateral line, although this spot may be absent in young
individuals (Martins and Carneiro, 2018). Blackspot seabream grows to at least 70 cm standard length
(Lorance, 2011), it is important to acknowledge that fish may undergo unintended modifications, such as
tail loss. Consequently, two fish length measurements exist: fork-length and total-length.

(a) Description of physical characteristics (b) Illustration of appearance

Figure 2.1: Physical characteristics of blackspot seabream adult phase. These images are adapted from Martins
and Carneiro, 2018
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2.2 Life Cycle

While physical characteristics enable differentiation of blackspot seabream from other species, the
most distinctive aspect lies in its biological dynamics.

The life cycle is a sequence of biological processes through witch the species passes during its
development from an egg into an adult, going through larvae and juvenile stages. Blackspot seabream
exhibits complex biological dynamics (Krug, 1990, 1998; Lorance, 2011). Biological processes include
growth, sex change, reproduction and survival. Transitions between life stages can be influenced by
external factors, adding another layer of complexity (Wingfield, 2013).

The life cycle of the blackspot seabream, illustrated on Figure 2.2, includes external fertilization of
eggs, fertilized eggs develop into larvae stage, lasting approximately 40 days, based on species of the
same genus. During this stage, blackspot seabream drifts in shallow waters columns, with low survival
rate, very dependent on environmental conditions such wind direction (Araújo et al., 2016; M. Pinho
et al., 2014; Stockley et al., 2005; Teixeira, 2013).

Larvae undergo growth and survival processes until reaching the juvenile stage, when individual
obtain 22cm fork length (Krug, 1998; Micale et al., 2011). The initial years of these individuals are
spent in coastal areas, then juveniles migrate to deeper waters, while continuing to grow, during witch
they recruit to exploited population (Araújo et al., 2016; M. Pinho et al., 2014; Sobrino and Gil, 2001;
Teixeira, 2013).

When reaching the adult stage, blackspot seabream migrates further to deeper water. This means
that larger, and older, fish are found in deeper waters than juveniles, excluding when they are spawning
(Lorance, 2011).

Blackspot seabream is a protandric hermaphrodite species, i.e., it changes from male to female (Krug,
1986, 1990; Lorance, 2011; Sobrino and Gil, 2001). The majority of individuals are firstly functional
males, and then they undergo a sex change, becoming functional females. The change of sex occurs
between 27 and 34 cm, with males dominating intervals between 21-26 cm fork length, and females are
more abundant when the fork length is bigger than 35 cm (Krug, 1986).

The ratio of females and their maturation status is contingent upon population abundance, where a
decrease in species abundance corresponds to an elevated proportion of females (Krug, 1998; Lorance,
2011).

In the adult stage, fish became able to reproduce. Maturation involves an increase and the development
of adult characteristics, including gonad development. Fecundity (female fecundity, referring to the
number of ripening eggs before spawning) is directly related to length (Krug, 1986, 1990; Micale et al.,
2011). According to studies conducted in the Azores, males attain maturity at around 27 cm fork length,
while females achieve it at approximately 29 cm fork length (Krug, 1986; Lorance, 2011; Micale et al.,
2011). Mature adults migrate to coastal areas and release their sexual products (eggs and sperm) during
the spawning process (Krug, 1986).
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Figure 2.2: Blackspot seabream life cycle. Sequential stages and pivotal events from Egg to Adult. These stages
include Egg, Larvae, Juvenile and Adult, encompassing notable transitions such as sex-change, growth, maturation
and migrations.

Biological dynamics of blackspot seabream are complex, including ontogenetic migrations, discon-
tinuous habitat, hermaphroditism, slow growth and seasonal development of gonads (Krug, 1990, 1998;
Lorance, 2011; Micale et al., 2011). Due to its particular biology, blackspot seabream may be particularly
sensitive to overfishing (Lorance, 2011).

2.3 Spatial distribution

Blackspot seabream has also a complex spatial distribution. It is primarily found in the eastern
Atlantic Ocean and the Mediterranean Sea (Micale et al., 2011).

In Figure 2.3, The Food and Agriculture Organization (FAO) Major Fishing Area 27, encompassing the
Atlantic Northeast and its subareas (represented by red traces), is depicted along with the corresponding
ecoregion as defined by the International Council for the Exploration of the Sea (ICES). This visual
representation aids in understanding the following description of blackspot seabream spatial distribution
(FAO, n.d.; International Council for the Exploration of the Sea (ICES), 2023).

Understanding this is fundamental for sustainable fisheries management (e.g. preventing overex-
ploitation in specific areas) and scientific research (e.g. studying population dynamics).

This thesis, with a specific focus in mainland Portugal, places major importance on unraveling the
spatial distribution of the blackspot seabream. The emphasis lies in gaining a nuanced understanding
of how this population segregates and distinguishes itself from counterparts in different geographical
locations, as well as comprehending the intricate dynamics of their interactions.
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Figure 2.3: ICES fishing regions: Image collected from ICES documents (“ICES - Maps”, n.d.)

The stock structure of blackspot seabream in ICES area is considered unknown. Despite that and
for assessment purposes, ICES considers three assessment units, Subareas 6 to 10 (6-9 being Atlantic
Iberian waters and 10 Azores region). According to recent reports by ICES those components consider
migrations between subareas 6, 7, and 8 to the southern part of division 9.a and genetic differences
between populations of division 10.a.2 and 9.a (ICES, 2022).

In Subareas 6, 7, and 8, blackspot seabream was heavily exploited by the French and Spanish. Since
the mid-1970’s, the fishery targeting this species in these regions has significantly declined, which was
associated to a depletion of the stock. In recent years, species catches have mainly been bycatch, meaning
that this species has not been directly targeted and catches happen while targeting other species. Reflecting
the critical state of this stock, ICES advice from 2020 is that a precautionary approach with zero catch
recommendations for 2021 and 2022 (ICES, 2022).

In Subarea 9, the majority of the landings come from Portugal (±55%) and Spain (±45%). In
mainland Portugal, blackspot seabream is mainly caught as bycatch. The ICES advice of 2020 was “that
when the precautionary approach is applied, catches should be no more than 119 tonnes in each of the
years 2021 and 2022.” (ICES, 2022).

In Subarea 10.a.2, the Azores have a historical fishery for blackspot seabream, however landings have
fluctuated over the years (M. Pinho et al., 2014; M. R. Pinho and Menezes, 2009). In recent years landing
have decreased, ICES advice a maximum of 610 tonnes catches for area 10 in 2022 (ICES, 2022). A
minimum landing size of 33cm has been adopted by European Union (EU) for this species.

The management strategies for blackspot seabream differ among regions. Understanding the spatial
distribution of the species is highly relevant for the development of species dynamic model.

Genetic studies on blackspot seabream populations, revealed limited genetic differentiation between
populations in the Mediterranean Sea and those found along the Atlantic continental shelf (Robalo et al.,
2021). Recent genetic inquiries have shed light on distinct genetic variations between blackspot seabream
populations in the Azores (ICES Subdivision 10.a.2) and those in mainland Portugal within ICES Division
9.a (ICES, 2022). These studies contribute for the understanding of blackspot seabream stock dynamics.
Specifically, they highlight the presence of genetic differences between populations in the Azores and
mainland Portugal, indicating unique dynamics within these regions.

In conclusion, the spatial distribution of blackspot seabream presents unique challenges for sustainable
management, with significant differences between subareas. Understanding these discrepancies under-
scores the complexity of blackspot seabream stock dynamics, a crucial aspect for fisheries management
and conservation efforts.
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2.4 Early studies

Early studies on blackspot seabream provide valuable insights into various aspects of this species,
turning out to be virtuous supplies to this thesis.

Helena Krug has been a big contributor to blackspot seabream studies, primarily using data collected
of the Azores population. Her work spans various topics, covering all processes and stages of blackspot
seabream’s life cycle, including age and growth, and reproduction (Krug, 1986, 1989, 1990, 1998). The
equations derived from her discoveries have been relevant to modeling blackspot seabream population
dynamics, forming the basis for subsequent studies, including the present thesis. The specific application
of these equations in this thesis will be detailed in the Chapter 5.

In 2011, Pascal Lorence made significant contributions by reconstructing a time-series of landings
from the Bay of Biscay and analyzing size compositions within these landings. Additionally, a dynamic
model was applied to gain a better understanding of blackspot seabream population dynamics (Lorance,
2011).

Genetic studies, played a crucial role for understanding the stock structure of blackspot seabream
populations (Robalo et al., 2021; Stockley et al., 2005). Genetic differences in different geographical
areas offer a comprehensive view of genetic variations essential for understanding genetic diversity and
population structure (Robalo et al., 2021; Stockley et al., 2005).

In 2019 IPMA presented a scientific and technique report on species maturation, providing detailed
information on maturaty macroscopic observations (Farias and Figueiredo, 2019).

In addition to those studies, ICES at the working group on the biology and assessment of deep-sea
fisheries resources (WGDEEP), provides in annual reports descriptive analyzes of blackspot seabream
populations based on landing data from various regions. These reports can offer valuable historical
context and insights into broader trends in fisheries. Data from mainland Portugal was recently been
reported independently.

Although these earlier studies have made substantial contributions to the field, they also pinpoint
areas where further research is imperative. This becomes even more evident when data sources are scarce
or where findings from previous studies remain inconclusive, reinforcing the importance of this thesis.

This thesis, unlike the previously presented studies, will focus on the population of mainland Portugal
and estimate parameters of various processes of the biological dynamics of the blackspot seabream
simultaneously. To achieve this, it also employs a different framework from other studies,using SSM with
bayesian approach, as presented in Chapter 4.
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Chapter 3

The data

In this chapter, the data available and used in this thesis is presented. This is relevant as it will allow
a better understanding of how the statistical methods can be applied to the available data.

The dataset used in this thesis, provided by the IPMA, includes the number of individuals caught
between 2014 and 2021 by total length classes of one centimeter range (19cm-60cm), as outlined in Table
3.1.

Table 3.1: Dataset Excerpt: First and last six rows of the dataset provided by IPMA

YearLength
(cm) 2014 2015 2016 2017 2018 2019 2020 2021

19 0 84 0 0 0 0 0 0
20 0 336 0 0 0 0 0 0
21 0 839 0 0 0 0 0 121
22 0 611 214 362 0 0 0 182
23 210 366 641 0 273 0 556 303
24 914 204 855 432 1211 41 2779 91

(...)
55 92 211 293 0 0 35 0 0
56 0 235 506 175 256 0 0 366
57 0 471 0 67 0 0 0 0
58 0 0 0 0 0 0 0 0
59 0 235 0 0 0 0 0 0
60 92 0 0 67 0 65 0 0

Most biological features of fish are related to length, making it a good measure to organize and split
the sample. Length is a direct measure, making it easier to use, in comparison to age which requires
indirect measures (Blomstedt et al., 2015).

The dataset is restricted to Peniche fishing area, and it is important to emphasize that the primary
fishing activity did not exclusively target blackspot seabream, (see Chapter 2). To better understand the
data, a descriptive analysis is presented in the next section.

3.1 Descriptive Analysis

An overview of the number of fishes caught by year is shown in Figure 3.1 (a). There is a substantial
decline in total catches in 2019 when compared to previous years. From 2014 to 2018, the total catch
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consistently exceeded 93207 (the total catch of 2015), whereas from 2019 forward, it did not surpass the
44841 (the total catch of 2019). Blackspot seabream catches varied along years (Figure 3.1 (b)), highest
frequencies occur between 30 cm to 40 cm. This preliminary analysis aligns with the studies mentioned
in the previous Chapter2, which reported landings decreasing in recent years and more adult individuals
caught by fisheries (ICES, 2022; Lorance, 2011).

(a) Annual total catch of blackspot seabream in
Peniche

(b) Length frequency distribution of blackspot
seabream from catches

Figure 3.1: Graphs that present the distribution of catches by year and length: In the left Figure, each point
represents the total number of fish caught each year. In the right Figure, each bar represents the total number of
fish caught at each size

Length of exploited population is presented in Figure 3.2. In 2021 length of specimen caught were
higher as evident in the boxplots presented in Figure 3.2. In 2020, characterized by lower values (Figure
3.2), the only blue point below the 33 cm line is the year 2020, with a mean of approximately 30.81 cm
(being 33cm the minimum landing size mentioned in Chapter 2).

Figure 3.2: Boxplots presenting the distribution of fish length in catches by year: Each box represents the size
distribution of catches for each respective year, with blue points indicating the mean size for each year. The dashed
blue line represents the 33cm length.

When comparing Figure 3.2 with a similar graph showed by ICES, 2022, where data from blackspot
seabream fishery in the Strait of Gibraltar a noticeable distinction arises: the data utilized in this thesis,
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pertaining to mainland Portugal, exhibits lower values than those of in the Strait of Gibraltar. This can
indicate differences between the two population that could be explored.

In this project, the use of size-class, which involves grouping lengths into distinct categories, was
adopted. The use of size-classes introduces a level of flexibility and simplifies the modeling process by
reducing the number of parameters. The definition of these size-classes took into consideration the data
collected, the life cycle described in the previous Chapter 2, and considerations for model convenience.
Ten size-classes were defined, starting with an initial length of 11 cm, which marks the point when the
fish becomes part of the population, approximately one year after birth. Each size-class encompasses 5
distinct lengths. These intervals with uniform amplitudes play a crucial role in defining the subsequent
model and applying most equations, as it is going to be presented in the following Chapter 5. Table 3.2
provides a representation of all the size-classes along with descriptions of the most pertinent features
associated with each class.

Table 3.2: Size-classes adopted in this study: This table presents 10 size-classes, each defined by length class
intervals of 5 cm, along with descriptions of characteristics associated with each class.

Size-Class Interval Description

Class 1 [11,16[ Recruits: Newly born fish are expected to be recruit to this class a year after
being born. Those individual are not targeted by fisheries.

Class 2 [16,21[ Juveniles: Live near the coast and are not caught in fishery

Class 3 [21,26[ Pre-sex-change adults: Adult fish before undergoing sex change, predomi-
nantly male.

Class 4 [26,31[ Sex-change period: Transition period where sex change occurs, with an in-
creasing number of females and maturation.

Class 5 [31,36[ Higher maturity: High proportion of mature individuals, with a significant
increase in catches.

Class 6 [36,41[ Mature females: Mature females with fecundity higher than in the previous.

Class 7 [41,46[ Older mature females: Similar to mature females but with increased fecundity
due to age/length.

Class 8 [46,51[ High fecundity: Individuals in this class have high fecundity, but catches
decrease.

Class 9 [51,56[ Older individuals: Similar behavior to the previous class, but catches decrease.

Class 10 [56,60[ Rarely caught older individuals: High natural death rates with catches being
rare or not observable. For proper functioning of the model this class encom-
passes 5 distinct lengths and there is no higher size-class, if individuals get
expected length higher than 60cm the expected outcome is to be considered to
belong to this size-class.

These size-classes offer a structured framework for analysis, taking into account the life cycle of the
species and facilitating the modeling process for subsequent chapters. Figure 3.3 shows that across all
years, catches tend to cluster around the middle size-classes, a pattern consistent with the observations
in Graph (b) of Figure 3.1. Specifically, the modal size-class is [31,36[ in all years, except for 2016 and
2021, where the modal classes are [26,31[ and [36,41[ respectively. Additionally, a striking disparity in
the number of catches can be observed, especially, in the last three years. Between 2019 and 2021, when

11



compared to the previous years a considerable reduction in catch quantities was found.

Figure 3.3: Graphs representing catches by size-class on different years: Each graph offers a detailed depiction of
the division of catches by size-class

Figure 3.4, using a color scale, provides a distinctive insight into the catch distribution, disregarding
the total number of individuals captured. In 2021, with the bar appearing darker, meaning that, there was
a predominance of catches in higher size-classes. In contrast, the year 2020 appears lighter in comparison
with the previous years that looked balanced in terms of distribution.

Figure 3.4: Graph of size-classes distribution over the years: Each bar represents 100% of catches for a given year,
with colors dividing the bar to represent the distribution of size-classes across each year
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Chapter 4

Methodology and resources

This chapter provides a comprehensive understanding of fish modeling and introduce State Space
Models (SSM) as an approach to stock assessment modeling. It also explores methods for inference and
relevant software tools. The details presented here are selected based on their relevance to the primary
objectives of this thesis and the dataset discussed in Chapter 3.

Mathematical models utilize data from scientific surveys looking for insights into the dynamics of
fish populations. Estimation of key parameters, such as population size, recruitment, natural mortality,
and fishing mortality, improves the knowledge about the species and allows decision-makers to formulate
well-informed regulations regarding catch limits, fishing seasons, and other governing measures. Fish
stock assessment face multifarious challenges, including limitations associated with data quality and
uncertainties.

First development in fish stock assessment was by Baranov catch Equation (4.1). The equation
describe the population dynamics, it includes two key mortalities: fishing (F) and natural mortality (M),
applied to an initial cohort of N0 fishes. This equation allows to calculate the number of fish caught (C)
at a specific time-step (T). Although this equation laid the foundation for early studies and algorithms, its
deterministic nature limited its ability to account for uncertainty measures or predict future stock sizes
(Aeberhard et al., 2018).

C =
F

F +M
(1− e−(F+M)T )N0 (4.1)

Later, researchers have developed more complex equations and models incorporating additional
parameters and biological processes. Two seminal books, Hilborn and Walters, 1992 and Quinn and
Deriso, 1999, have been foundational references for fish modeling, offering comprehensive insights into
a diverse array of methods and models used to characterize fish population dynamics (Newman et al.,
2009).

In the context of fish dynamics studies, the distinction between process variation and observation
error is crucial because it acknowledges the considerable amount of information that remains unknown
or uncertain in fisheries research. The omission of this distinction in modeling approaches can lead
to significant information loss when dealing with fishing-related data. However, due to limitations in
computational methods, the first fish models do not address this topic (Newman et al., 2009).

Recent developments in computational resources have enabled studies to consider such informa-
tion, consequently, it becomes imperative to take these factors into account when developing a more
comprehensive model.
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4.1 State Space Models

Deterministic models exhibit inherent limitations, particularly in handling prominent challenges of
fish populations as: variability, quantifying uncertainty, or provide forecasts. Addressing uncertainty
in fisheries modeling becomes imperative due to imprecise fishing data, observed data to unknown
quantities, and incomplete understanding of system dynamics (Aeberhard et al., 2018; Thomas et al.,
2005). Acknowledging these limitations and the demand for a probabilistic approach, State Space
Models (SSM) within a Bayesian framework emerge, among others, as a powerful alternative (Durbin
and Koopman, 2001).

Under SSM, the system is divided into two processes represented as stochastic time series running
in parallel: the state process and the observation process. The state process describes the unobserved
information, while the observation process contains the observed information, connecting it to the
unobserved and unknown states (Kitagawa and Gersch, 1996; Newman et al., 2009). The SSMs allows to
estimate the abundance and biological parameters of the species, maintaining consistency in population
dynamics while, simultaneously, considering two critical sources of variation: process variation and
observation error. This variation is a crucial topic when evaluating fish species, so SSM have emerged
as a flexible and robust alternative to the methods previously mentioned (Aeberhard et al., 2018; Auger-
Méthé et al., 2020; Newman et al., 2009; Thomas et al., 2005).

Since the late 1980s, early SSM applications, especially in fishes, like in Mendelssohn, 1988 and
Sullivan, 1992, opened the way for multiplied adoption of the method. Recent advancements in computing
efficiency have further enhanced SSM, enriching them with innovative approaches.

This thesis seeks to explore and apply State Space Models as a versatile and potent tool for assessing
blackspot seabream stock.

4.1.1 Mathematical definition of State Space Models

SSM are hierarchical, being characterized by two parallel time series processes: the state process and
the observation process (Auger-Méthé et al., 2020).

The state process, typically unobserved and hidden, describes the changes from a state Nt to Nt+1,
where t stands for time-step, t ≥ 1 and to simplify notation, it is here assumed discrete evenly spaced time
indices. The state Nt+1 only depends on the previous state (Nt), constituting a first-order Markov chain
(Newman et al., 2009; Thomas et al., 2005). A first order Markov chain is a stochastic process Nt : t ∈ T
where the distribution of Nt+1, knowing all previous values N1, ...,Nt , only depends on Nt . Considering
the state space S a first order Markov chain can be define as in Equation (4.2).

P(Nt+1 = st+1|N1 = s1;N2 = s2; ...;Nt = st) = P(Nt+1 = st+1|Nt = st) (4.2)

These state transitions, from a state Nt to a Nt+1, are encapsulated by a conditional function, denoted
the probability density function (pdf) as gt where θ ∈ Θ the vector of all model parameters such as the
state process distribution is defined in Equation (4.3).

gt(Nt |Nt−1;θ) (4.3)

This function is often challenging to analyze due to be a representation of a sequence of stochastic
sub-processes, instead it can be expressed as a product, implying distinct sub-processes with individual
probability distributions and its specific parameters as defined in Equation (4.4) (Newman et al., 2009).
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gt(Nt+1|Nt ;θ) = ∏
i

gt,i(Nt+1,i|Nt,i;θi) (4.4)

The decomposing of the state process into sub-processes facilitates the description and analysis
of specific aspects. The sub-processes produce an essential tool when studying population dynamics,
dividing complex systems as a life cycle, which, consequently, makes them easier to model (Newman
et al., 2009; Thomas et al., 2005).

The state vector is generally unknown or uncertain. Therefore, to make inferences regarding the state
model, it is necessary to consider the data that will inform it. Conversely, the observation process is the
bridge between the data collected, yt , the observation vector, and the state vector Nt . The observational
model, as the state process, is modeled by a conditional pdf denoted ft defined in Equation (4.5).

ft(yt |Nt ;θ) (4.5)

These processes are modeled separately at different levels of the model hierarchy, assuming that
states are autocorrelated and observations are independent. This dependence is accounted for in the
states. Figure 4.1 illustrates how observation independence is achieved (Auger-Méthé et al., 2020).

Figure 4.1: Scheme depicting the correlation between non-observational and observational states: Blue circles
represent the non-observable states Nt , green circles represent the observational states, blue arrows represent the
correlation between non-observational states Yt , and orange arrows represent the correlation relationships between
non-observable and observable states

Combining these processes with an initial state g0, that can be assumed known, viewed as an unknown
constant, or can be described as a stochastic process, defined in Equation (4.6) (Kitagawa and Gersch,
1996).

g0(N0|θ) (4.6)

The mathematical description of SSM can be done using the three probability density functions, that
represent the hierarchical structure of SSM. The top level of hierarchy that links the data to the unknown
states, is represented by the observation state Equation (4.5), then the process distribution Equation (4.3)
representing a second level where the underlying dynamics of the states are defined, and the initial state
Equation (4.6) (Aeberhard et al., 2018).

In summary, the mathematical foundations of SSM provide a framework that captures the inter-
play between unobservable states and observed data, with a keen focus on addressing uncertainty and
variability.

4.2 Bayesian approach applied to State Space Models

The Bayesian approach provides a distinctive perspective compared to frequentist methods. In
frequencist approaches each parameter is treated as fixed unknown constants. In contrast, the Bayesian

15



approach considers parameters as random variables, relying on its posterior density to make inference
about it. This fundamental difference enables Bayesian methods to comprehensively account for and
quantify uncertainties (Auger-Méthé et al., 2020).

In Bayesian inference for SSM, the models account for process variation and observational uncertainty
while also leverages prior distributions to include existing knowledge about parameters, independently of
the data used in the model, that were not taken into account in non-Bayesian models (Mäntyniemi et al.,
2015).

After defining the questions and hypothesis of a research about θ ∈ Θ, the use of a Bayesian approach
involves the following steps (van de Schoot et al., 2021):

• Formalize prior distributions, which reflect using a probability distribution, initial beliefs or previ-
ous knowledge about θ before seeing the data, denoted as p(θ).

• Determinate the Likelihood function, which consist in defining the probability distribution of the
data (y) conditional to the given parameter vector θ , that is used as constants, p(y|θ).

• Obtain the posterior distribution, which contains the updated belief about the parameter given the
observed data, being the probability distribution of θ as a function of both the specified prior and
the likelihood function, p(θ |y).

This approach adds to the complexity of the SSM previous described, adding two new equations that
encompass the bayesian approach. A parameter function that describes the stochasticity in θ where Γ is
a hyperparameter, as defined in Equation (4.7). And the second function, the prior function, includes the
initial beliefs about those hyperparameters, as defined in Equation (4.8) (Newman et al., 2014).

h(θ |Γ) (4.7)

π(Γ) (4.8)

The SSM formulation now includes those two new functions ((4.7) and (4.8)) that give extra
deeper levels to the hierarchical structure of SSM (Aeberhard et al., 2018). Using those five equa-
tions (4.3),(4.6),(4.5)(4.8)and (4.7) states and parameters posterior can be described assuming that prior
distribution to the unknown state N1:T was defined in Equation (4.9) (Newman et al., 2014).

π(N1:T ,Γ|y1:T ) ∝ f (y1:T |N1:T ,Γ) ·g0(N0|θ) ·
T

∏
t=1

[ ft(yt |Nt ,θ) ·gt(Nt |Nt−1,θ)] ·h(θ |Γ) ·π(Γ) (4.9)

Priors have a high relevance on a Bayesian approach, reducing the uncertainty about θ , by reflecting
previous information about it. They are often characterized by hyperparameters, parameters of the prior
distribution (for example mean and variance for a normal prior) (van de Schoot et al., 2021). A non-
informative prior function that reflects complete uncertainty about the parameters prior can be used to
maximize the influence of the data on the posterior, although they still contribute to shaping the outcomes.
Instead, to help ensure that the data inform the model and that the posterior is well behaved, Gelfand and
Sahu, 1999 suggested using a weakly informative function, that has information about the parameter but
is not as precise as an informative prior (Auger-Méthé et al., 2020).

This Bayesian framework is going to give in this thesis an iterative, refined understanding of parame-
ters, to make more informed inferences about the population dynamics of blackspot seabream. All prior
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used and state definitions are presented later in Chapter 5.

4.3 Markov Chain Monte Carlo Algorithms

As discussed in the preceding section, Bayesian inference primarily centers on the posterior distribu-
tion. However, this distribution of interest often requires the integration of high-dimensional functions,
making it challenging to calculate analytically and computationally complex. Methods based on Monte
Carlo methods, like Sequential Importance Sampling (SIS) or Markov chain Monte Carlo (MCMC)
attempt to simulate direct draws from the posterior distribution. This is an important feature to address
the complexity problem, as detailed in the following section (Ehlers, 2003; Kitagawa and Gersch, 1996;
Newman et al., 2009; Roberts and Rosenthal, 2004; Turkman and Paulino, 2015; Walsh, 2004).

The MCMC stands out as one of the most widely used algorithms in the Bayesian statistical community
(Roberts and Rosenthal, 2004) and the chosen method for the purpose of Bayesian inference on SSM. It
is considered by, Newman et al., 2009, the “gold standard” for cases where data are informative to priors.
Therefore, it is the chosen method for this thesis and is introduced in the following sections.

4.3.1 Simple Monte Carlo

To understand MCMC its basics should be understood to simplify a simpler notation is used. Here,
g(θ) is a mathematical function, and the parameter θ has density function p(θ). Starting with the simple
Monte Carlo method, the goal is to calculate an integral writing it as the expected value, as defined in
Equation (4.10) (Ehlers, 2003; Turkman and Paulino, 2015).

I =
∫

g(θ)p(θ)dθ = E[g(θ)] (4.10)

Then a simple algorithm to solve this is (Ehlers, 2003):

1. Generate a samples for θ , (θ1, ...θn), using the distribution of p(θ).

2. Calculate g(θ1),...,g(θn).

3. Calculate the average value as g = 1
n ∑

n
i=1 g(θi)

4. Finally Î = g

Due to the complexity of the probability distribution p(θ) obtaining samples became challenging.
To solve this, methods like MCMC are used (Walsh, 2004).

4.3.2 Sampling Algorithm on Markov Chain Monte Carlo

Markov chain Monte Carlo serves as a method to generate the samples. It is an iterative method,
which means that uses iterative simulation techniques based on Markov chains, making the generated
values of the sample not independent (Ehlers, 2003; Roberts and Rosenthal, 2004).

This method implies that the chain is not only a Markov chain described on Equation (4.2) but also
that the chain fulfill the following conditions, given Xt (t ∈ T ) a Markov chain with state space S and
m-step probabilities p(m)

i j = P(Xt+m = s j|Xt = si), si,s j ∈ S:

• Homogeneity, the transition probabilities are independent of the time. Meaning, for all P(Xt+1 =

s j|Xt = si) = P(Xγ+1 = s j|Xγ = si) for all si,s j ∈ S and all t,γ ∈ T ;

17



• Irreducibility, any state can be reached from any other state, i.e., ∀si,s j ∈ S ∃m ≤ 1 : p(m)
i j > 0 ;

• Aperiodic, which means that there are no absorbing states. In other words, the chain is not forced
into some cycle of fixed length between certain states.

Gibbs sampler or Metropolis-Hastings algorithm are the most used algorithms inside the MCMC
method, and they are presented in this thesis. They differ in the way that they approach sampling,
but the main idea is always to start from an initial value, generate a sample, and use it to update the
previous distribution/knowledge. Repeating this sampling and updating until convergence to a stationary
distribution, the desired posterior distribution (Ehlers, 2003).

4.3.2.1 Metropolis-Hastings’s algorithm

Metropolis-Hastings’s Algorithm is commonly used, due to its effectiveness even when there is little
information about the distribution of interest.

Defining θ t as the state at the moment t, q(·|θ) the proposed distribution and π as the distribution of
interest. This algorithm can be resumed in five steps:

1. Start iterations with a initial value for the parameter, θ (0) ;

2. Generate a new value θ ′ from q(·|θ);

3. Calculate the probability of acceptance of the new value, α(θ ,θ ′) defined as α(θ ,θ ′) =

min(1, π(θ ′)q(θ |θ ′)
π(θ)q(θ ′|θ) ) and generate u ∼U(0,1);

4. If u ≤ α the new value is accepted and θ t+1 = θ ′, on the other hand if u > α the value is reject and
θ t+1 = θ ;

5. Then a new iteration begins back to step two.

Note that the new value θ t+1 only depend on θ t and not (θ (0), ...,θ t−1). Due to its feature to
calculating the probabilities of a new value being accepted it is not necessary for π to being entirely
known, only the target ratio π(θ ′)

π(θ) ., which is fundamental to the Bayesian approach where the posterior
distribution is often not entirely known (Ehlers, 2003).

4.3.2.2 Gibbs sampler

In the previous algorithm, depending on the accepting probability, the value could be the same for
some iterations if new value were rejected. This does not happen in Gibbs, that is a special case of the
previously presented method (Walsh, 2004), where the value is always moving to a new one, i.e. the
probability of acceptance is always one.

The dth component of the Gibbs sampler is defined such that θ t
d leaves all components besides d

unchanged and replace the d component by a draw from the full conditional distribution of π conditional
on all the other components (Roberts and Rosenthal, 2004).

The algorithm can be resumed in the following steps:

1. Star iteration and set initial values such as θ (0) = (θ
(0)
1 , ...θ

(0)
d )′;
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2. Obtain a new value of θ (t) fromθ (t−1) from successive generation of values

θ
(t)
1 ∼ π(θ1|θ (t−1)

2 ,θ
(t−1)
3 , ...,θ

(t−1)
d ),

θ
(t)
1 ∼ π(θ1|θ (t−1)

3 ,θ
(t−1)
4 , ...,θ

(t−1)
d ),

...,

θ
(t)
d ∼ π(θd |θ

(t−1)
1 ,θ

(t−1)
2 , ...,θ

(t−1)
d−1 )

;

3. Then a new iteration begins back to step two.

4.3.3 NIMBLE Package

To implement the SSM using MCMC in this thesis, the R package NIMBLE is employed. NIMBLE
stands for Numerical Inference for Statistical Models for Bayesian and Likelihood Estimation it offers
flexible means to construct and analyze hierarchical and computationally-intensive statistical models,
primarily through a Bayesian approach. This package empowers the project with the ability to employ
MCMC to generate new samples and conduct Bayesian inference. The package uses BUGS language to
create flexible models and uses C++ to compile the model (de Valpine et al., 2017, 2023a, 2023b).

The first task in implementing the model on NIMBLE is to write the code to the model, where all
nodes, variables and their relationships are defined along with the prior distributions. It incorporates the
biological aspects described in Chapter 2, considering NIMBLE specifications and language, as explained
in Chapter 5. Before starting the MCMC all constants, data and initial values are set.

For each stochastic node, a sampler is assigned, as described in the previous section of this chapter.
The default sampler algorithms are assigned as described in Section 7.2.1.1 of the NIMBLE user manual
(de Valpine et al., 2023b).

These steps result in obtaining posterior samples and posterior summary statistics. These outputs are
useful for analyzing results and making inferences about parameters and states.

In conclusion, in this thesis, in order to implement the SSM using MCMC on the NIMBLE package,
the first step involves specifying prior distributions and initial state vectors. Then, on each iteration, a
candidate value for each parameter is generated at time t. Subsequently, in a hierarchical manner, the
state vectors are sequentially generated, assuming that all components of the state vector at time t are
generated simultaneously (Newman et al., 2009). At the end of the iteration, all the states and parameters
are updated.

4.4 Convergence of MCMC

Convergence is a critical aspect of MCMC methods. As an iterative technique, it is important for the
chain approach its stationary distribution, and the samples of θ are samples from p(θ). In other way,
when the model’s states and parameters, henceforth referred to collectively as parameters, reach a stage
that can be considered a sample from the posterior distribution.

In MCMC, achieving convergence often requires running long simulations with a sufficiently high
number of iterations. The more iterations, the higher the likelihood of the algorithm reaching a rep-
resentative stationary distribution of the posterior, in other words, reaching the equilibrium state of the
chain where the probability distribution if the parameters no longer changes with new iterations. This is
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a challenge, as it can be time consuming and require a high computational effort. However, there is no
fixed number for the right amount of iterations, and it depends on the complexity of the model (Aeberhard
et al., 2018; Newman et al., 2009).

Running multiple chains can be useful to analyze convergence in a more accurate way, and to test
different initial values. So typically, more than one chain runs with different initial values. Presenting
new challenges, convergence within and between chains and getting the right number of chains, which
make some authors believe that, sometimes, one chain is enough (Vehtari et al., 2021). In this thesis,
given the level of uncertainty about the parameters, multiple chains were used, this way was possible to
explore the effect of different initial values on model results. To maintain computational efficiency five
chains were executed.

The first iterations are often referred to as the burn-in period, during this phase the samples may
not accurately represent the stationary distribution of interest because the chain has not yet converged.
Typically, those samples are disregarded until the algorithm reaches convergence. Determining the
appropriate burn-in period is challenging and influenced by factors such as poor initial values or vague
prior distributions (Walsh, 2004).

After the burn-in period, considered B iterations, being N the number of iterations that is the sum of
the Burn-in B, and the retain samples M, so N = M+B, as defined in Equation (4.11).

θ1,θ2, ...θB,︸ ︷︷ ︸
Burn−in

θB+1,θb+2, ...θN ,︸ ︷︷ ︸
M Samples from the posterior

(4.11)

A problem affecting model convergence is auto-correlation, causing slow mixing, where consecutive
samples are correlated rather than independent, leading to inefficient sampling and biased parameter
estimates. One strategy to help with it is thinning the output, i.e. after the burn-in period storing only
every ith point (Walsh, 2004), so the number of samples of the posterior distribution after thinning is M

I ,
where I is the sampling interval used in the thinning, as defined in Equation (4.12).

θ1,θ2, ...θB,︸ ︷︷ ︸
Burn−in

θB+1,θB+2, ...θN ,︸ ︷︷ ︸
θB+1,θB+1+i,θB+1+2i, ...︸ ︷︷ ︸

Sample of the posterior distribution after thin

(4.12)

The convergence of the MCMC algorithms can be analyzed using graphs and statistical measures. The
R packages CODA and MCMCVis are used to produce trace and density plots and calculate the potential
scale reduction factor (R̂) and the effective sample size (ESS) (defined below), for each parameter. The
analysis can be found in the Chapter 6.

The trace plot represents the evolution of the specified parameter as a time series. The aim is for
the plot to present the convergence of the parameter to a specific value. Getting the convergence point,
the parameter will oscillate between the neighborhood of that value, showing a well mixed chain. When
there’s minimal overlap between traces of distinct chains, suggesting divergent convergence paths and
poor mixing between chains. These indications may flag potential issues and that the output of the
MCMC algorithm is not a representative sample of the posterior distribution (Plummer et al., 2005). In
this thesis, the trace plot function plotted the last 5000 iterations of each chain (Casey Youngflesh, 2023).

Density plots represent the estimated density of the posterior distribution for each parameter. This
type of graph is very useful to have a better understanding of the posterior distribution and allow the
comparison between the prior and posterior distribution.

In models like the one developed in this thesis, with a relatively large number of parameters, as
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explained in Chapter 5, the use of summary statistics became simpler than analyzing plots for each
parameter and are relatively quick manner to reveal potential problems in the model (Vehtari et al., 2021).

The potential scale reduction factor, R̂ (Brooks and Gelman, 1998; Gelman and Rubin, 1992), is
calculated for each parameter a value that is the square root of the ratio of two estimators for the target
variance σ2. Being σ2 the variance of the target posterior distribution of each parameter. The aim is
that all chains are at equilibrium, making R̂ near 1, declaring convergence. If the chains do not converge
to a common distribution, R̂ is going to be greater than one. According to Gelman and Rubin, 1992 the
ideal scenario would be sample until all parameters have R̂ below 1.1.(Stan Development Team, 2024;
Vats and Knudson, 2020; Vehtari et al., 2021). It is considered that R̂ can fail to diagnose poor mixing,
so this measure is not enough to make a convergence diagnostic and should not be used as a default rule.
Instead, should be analyzed in parallel with other statistics, such as the ESS (Vehtari et al., 2021).

The effective sample size answers the question, “How many independent samples from the posterior
distribution contain the same amount of information?” (Plummer et al., 2005; Vats and Knudson, 2020).
So, the higher the ESS the better the convergence, Vehtari et al., 2021 suggests considering as a standard
recommendation rely on the R̂ measure if ESS value is at least 50 if only one chain runs or at least 400
otherwise. Properly managing the burn-in period and the total number of samples is crucial for obtaining
a high ESS by ensuring that the samples used for analysis are representative of the target distribution and
have lower autocorrelation.

Nevertheless, in this thesis, both methods, graphical and summary statistics, were analyzed in order
to have a better view of if and where potential problems appear.
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Chapter 5

The Model

This chapter outlines the application of the methodologies of Chapter 4 to the blackspot seabream
data presented in Chapter 3.

The methodologies previously presented offer a powerful framework for modeling complex systems,
in particularly for blackspot seabream in mainland Portugal. Its specific features give the possibility
of dividing the state process from the observational process. The state process of the model used here
describes the biological characteristics of the species as described in Chapter 2. The complexity of
population dynamics and the life cycle of blackspot seabream, renders the state process function, gt ,
hard to formulate and analyze. To accommodate the complexity of the state process, this is decomposed
into the sub-processes: Growth, Survival and Mortality, and Reproduction and Recruitment. The initial
sub-process, shapes the population distribution, affecting the fish distribution between size-classes. The
remaining sub-processes influence the population composition, causing the maintenance, removal, or
introduction of individuals within the existing population.

Each sub-process is characterized by a function, which is, in turn, associated with a stochastic process.
The gt function is thus a set of several stochastic processes as defined in Equation (5.1)(Newman et al.,
2009; Whitlock et al., 2018). The strategy adopted allows the use of a simpler framework, facilitating the
implementation of a complex model and granting the analysis of the state vector after each sub-process.
It also allows for a detailed analyses of the population state at each time-step. In modelling procedure
the sub-processes will be sequential, though in nature, some processes happen simultaneously (Newman
et al., 2009).

gt(Nt |Nt−1,θ) = g3,t(g2,t(g1,t(Nt−1,θ),θ),θ) (5.1)

Where g1,t , g2,t e g3,t are the pdfs representing the processes of Reproduction and Recruitment, Survival
and Mortality and Growth. And θ is the parameters vector.

The observational process links the model to data on blackspot seabream catches in mainland Portugal
(Chapter 3). This data informs the model about population parameters and states.

Model initialization requires priors distributions and initial values. The priors, as explained in Chapter
4, are critical and challenging, particularly in data-scarce scenarios, and are informed by previous studies.
Selecting appropriate initial values can significantly enhance the efficiency of the model, because well-
chosen initial values can help the model converge more quickly (de Valpine et al., 2023b). Prior research
offers valuable guidelines for these selections. Following a suggestion made in Walsh, 2004, the initial
values where defined close to the center of the prior distribution, as it can facilitate faster convergence.

The models’ structure is based on the general population dynamics model in Mäntyniemi et al., 2015;
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Mäntyniemi, Haapasaari, et al., 2013 and Blomstedt et al., 2015. It is based on a size-class structured
population model derived from the blackspot seabream life cycle information presented in the dedicated
Chapter 2 and the size-classes presented in Chapter 3.

5.1 Population Dynamics Processes

Considering that the total number of fish in the beginning of the year t + 1, Nt+1, is equal to the
number of fish that survive year t (NtSt , where St is the proportion of survival the time-step t) plus the
recruits entering the population at the beginning of year t +1 (Rt+1), that were born at year t.

Nt+1 = NtSt +Rt+1 (5.2)

However, as explained in Mäntyniemi et al., 2015, as data consists in catches, they provide more
information on temporal changes in population size rather than its absolute abundance. As a result, states
of the model are going to have a high posterior correlation with the general population abundance and
size of the population, of each time-step. To address these challenges and enhance the convergence of the
MCMC, a reparameterization is used. The reparameterization involves a new N∗ parameter, representing
the overall abundance in the first year, and redefines all subsequent parameters on a relative scale instead
of using absolute numbers. This approach helps in dealing with the high posterior correlations and
improves the efficiency of the MCMC algorithm by stabilizing the parameter estimation process and
reducing the complexity of the model (Mäntyniemi, Haapasaari, et al., 2013).

Having a total number of individuals on the first time-step (t = 1) defined as N∗, and setting N1 = 1,
it is possible to describe the total number of individuals on time-step t, on relative scale to the first
time-step. The absolute population size at time-step t can be obtained as the product N∗Nt . With this
new parameterization the Equation (5.2) is the same but Rt+1 is, as Nt , no longer the absolute number, it
is the proportional number.

Fish population dimensions are usually unknown, so for lack of previous information and inability to
arrange a stable estimated value, N∗ is set as a constant equal to 1×107.

Instead of working with the number of fish in each size-class, the model works with vectors that
represent the distribution of the population at time-step t on the ten size-classes. The vector Φt =

(φt,1,φt,2, ...,φt,10) defines the state of the population at the beginning of the time-step t, in terms of
relative size-class frequencies (Mäntyniemi et al., 2015). To give some variation this vector follows a
Dirichlet distribution.

The forthcoming sections will expand upon the varied assumptions and notations underpinning each
sub-process in the model. To facilitate this classification, a set of notations is introduced on Table 5.1. A
description of all the parameters used in the model and its notation used in code are in the Table A.1 in
Annex A.
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Table 5.1: Initial notation used along the model

Notation Meaning
i and j Size-class (see Table 3.2)

t Time-step in years. t ∈ {1, ..,8} corresponding to the collection period spanning eight
years from 2014 to 2021

I Breakpoints for the Size-class i, where Ii and Ii+1 are, respectively, the lower and
upper bounds for the Size-class i. (see Table 3.2)

li Midpoint of size-class i (see Table 3.2)

5.1.1 Reproduction and Recruitment

This process is a complex one for blackspot seabream, as explained in Chapter 2. The reproduction
of the species depends on several parameters, such as the number of females and their stage of maturity.

Beginning with the Recruits, that are considered to be individual born at t that join the general
population, at size-class 1, at t +1. The proportional number of recruits, Rt+1, defined by the Equation
(5.3), is calculated based on the total number of survival eggs produced by the mature females on year t.
Being Et the proportional total number of eggs produced at the time-step t and πE the survival probability
of the egg until recruitment (Mäntyniemi et al., 2015).

Rt+1 = Etπ
E (5.3)

Note that, it is assumed that R1 = 0, so there is no recruitment on the first time-step. And to simplify
the model πE was set constant, with a value of 1× 10−6, based on values presented in Mäntyniemi,
Haapasaari, et al., 2013 and Mäntyniemi, Uusitalo, et al., 2013.

The value of Et is calculated multiplying the number of eggs produced by size-class (Eggi) by the
relative number of individuals in that size-class (φt,iNt) as defined in Equation (5.4).

Et = Nt

Class

∑
i=1

Eggiφt,i (5.4)

The spawning capacity female of each size-class, defined in Equation (5.5) is given by the fecundity
of the mature females on each size-class, Feci, having in account the probability of being a mature female
on each size-class, πF

i πM
i , where πF

i and piMi are the probability of being female and being mature in
each size-class respectively.

Eggi = π
F
i π

M
i Feci (5.5)

Although, some previous studies belief that the proportion of mature females change over the years
depending on the abundance, to simplify the model and reduce computational effort these parameters
do not change over the years. It is assumed that the probability of being female in each size-class is
defined as in Equation (5.6), based on equations presented in Krug, 1998, and that γF

i follows a Normal
distribution with a mean value such as: E[γF

i ] = αF +βF li, and a standard deviation σF .

π
F
i =

eγF
i

1+ eγF
i

(5.6)

Re-parameterizing, using the length where there is 50% of individuals are male and 50% are female,
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L(50)
F = −αF

βF
it is possible to define prior distributions for L(50)

F and for βF , which controls the curve’s

softness. After re-parameterizing E[γF
i ] =−L(50)

F βF +βF li (Krug, 1998).

A similar approach is used to define the probability of being mature in each size-class, based on Equation
1 of Krug, 1998, defined at Equation (5.7). Where γM

i follows a Normal distribution with a mean value
such as: E[γM

i ] = αM +βMli, and standard deviation σM. Re-parameterizing, in terms of the length where
there are 50% of individual mature and 50% immature, L(50)

M = −αM
βM

setting prior distributions for L(50)
M

and for βM, which controls the softness curve. After re-parameterize E[γM
i ] = −L(50)

M βM +βMli (Krug,
1998).

π
M
i =

eγM
i

1+ eγM
i

(5.7)

The fecundity is considered to follows a Log-Normal distribution, facilitating some calculus, once the
logarithm of the variable is normal distributed and ensuring that the fecundity can not be negative. The
mean value of fecundity is based on Krug, 1986 equation that defines fecundity of blackspot seabream,

E[Feci] =
lβFec
i
αFec

. And the standard deviation of the distribution is defined using the variation coefficient
CVFec.

All hyperparameters related to the Reproduction and Recruitment process described above, are
discriminated on Table 5.2 as their prior distributions and references.

Table 5.2: Hyperparameters from the Reproduction and Recruitment process

Parameter Prior Mean* Sd* Reference

L(50)
F Normal 29 1 Based on values of Krug, 1986

βF Normal 0.2 0.06 Based on values Table 4 of Krug, 1998
σF and σM Gamma 1.4 0.1 (Arbitrarily)
L(50)

M Normal 34 1 Based on values of Table 1 on (Krug, 1998)
βM Normal 0.5 0.3 Based on values on Table 1 of Krug, 1998
αFec Normal 9.3 1 Based on values of Krug, 1986
βFec Normal 6.9 1 Based on values of Krug, 1986
CVFec Uniform 0.5 0.29 (Arbitrarily)
*These are rounded values

5.1.2 Survival and Mortality

Individuals are going to be subject to the Survival and Mortality process. Here there are different
possible out-comings: surviving (S), or death, being the last one divided in two, being catch (C) and
natural (D) death. Each individual can experience only one of those outcomes.

The probabilities of each outcome are constant over each time-step and all individuals in the same
size-class have the same probability of each event. For each time-step and each size-class, the vector
of probabilities (πS

t,i,π
C
t,i,π

D
t,i) can be defined using the Baranov equations as they are in Equation (5.8),

where Zt,i, the total mortality rate, is the sum of fishing mortality and natural mortality (Zt,i = Ft,i +Mt,i)

(Blomstedt et al., 2015).

π
S
t,i = e−Zt,i
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π
C
t,i =

Ft,i

Zt,i
(1− e−Zt,i) (5.8)

π
D
t,i =

Mi

Zt,i
(1− e−Zt,i)

The natural mortality is assumed to follow a Log-Normal distribution, which ensures that those values
are positive, where the standard deviation is defined using the variation coefficient ,CVD, and the expected
value of natural mortality, depending on the length, is based on Charnov defined in Equation (3) (Charnov
et al., 2012), E[Mi] = k( li

L∞
)
−1.5, being k and L∞ growth parameters presented in Table 5.4. Note that for

better model performance, the natural mortality in the first size-class is fixed to 0.25.
Fishing mortality is given by the multiplication of maximum instantaneous fishing mortality at year

t, Fmax
t , and selectivity of the fishing gear for each size-class, fi, as it is defined in Equation (5.9).

Ft,i = Fmax
t fi (5.9)

The maximum fishing mortality is assumed to vary over each time-step, Fmax
t follows a Log-Normal

distribution with a mean value µFmax and where the standard deviation is defined using the variation
coefficient CVFmax .

The selectivity of the fishing gear is defined similarly to the female and mature probability, as defined
in Equation (5.10). Where γ

f
i follows a Normal distribution with a mean value based on Czerwinski et al.,

2009 such as E[γ f
i ] = α f +β f li, and a standard deviation σ f . Re-parameterizing, in terms of the length

where there is 50% of selectivity, L(50)
f =

−α f
β f

where it is define prior distributions for L(50)
f and for β f ,

which controls the softness of the selection curve. After re-parameterize E[γ f
i ] =−β f L

(50)
f +β f li.

fi =
eγ

f
i

1+ eγ
f

i

(5.10)

The proportion of survivors in each year (St) follows a Beta distribution, with the expected value
being the sum of proportional survivors from each size-class, such as E[St ] = ∑

10
i=1 πS

t,iφt,i (Mäntyniemi
et al., 2015).

The size-class distribution of the survivors on time-step t is represented by the vector
ΦS

t = (φ S
t,1, ...,φ

S
t,10), and once again, to give some variation, this vector follows a Dirichlet distribution.

All hyperparameters related to the Survival and Mortality process described above, are discriminated
on Table 5.3 as their prior distributions and references.

Table 5.3: Hyperparameters from the Survival and Mortality process

Parameter Prior Mean* Sd* Reference
CV D and CVFmax Uniform 0.5 0.29 (Arbitrarily)
µFmax Log-Normal 0.4 0.25 Based on values of Blomstedt et al., 2015
L(50)

f Normal 31 1 Based on values from Table 3 of Czerwinski et
al., 2009

β f Normal 0.35 0.1 Based on values from Table 3 of Czerwinski et
al., 2009

σ f Gamma 1.4 0.1 (Arbitrarily)
*These are rounded values
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5.1.3 Growth

The growth process consists in moving from a size-class to another. In each time-step, the age
distribution of the survivors ΦG

t is given by the multiplication between the vector of survivors ΦS
t and

the probability of moving to a size-class j, knowing that in the previous time-step, it was on size-class i
(gi, j). This probability, defined in Equation (5.11), rely on the expected fish length at year t +1, knowing
that it was in size-class i on year t (µ i

L), where σL is the correspondent standard deviation is fixed to 1,
and µ i

L is defined using the Von Bertalanffy curve as µ i
L = (L∞ − li)(1− exp(−k))+ li. For simplicity,

this parameter is assumed to be constant over the years. To add more variation, g follows a Dirichlet
distribution.

gi, j =
Φ(

I j+1−µ i
L

σL
)−Φ(

I j−µ i
L

σL
)

Φ(
Im+1−µ i

L
σL

)−Φ(
I1−µ i

L
σL

)
(5.11)

The vector ΦG
t = (φ G

t,1,φ
G
t,2, ...,φ

G
t,i) represents the state of the population at the end of the year t, after

the population got through all the sub-process. This vector is used to update the Φt vector presented on
the beginning as the size-class distribution, at the being each time-step.

All hyperparameters related to the Growth processes described above are discriminated on Table 5.4
as their prior distributions and references.

Table 5.4: Hyperparameters from the Growth process

Parameter Prior Mean* Sd* Reference
k Uniforme 0.12 0.02 Based on values from Table 5 of Lorance, 2011 and

Erzini et al., 2006
L∞ Normal 57 3 Based on values from Table 5 of Lorance, 2011 and

Erzini et al., 2006
*These are rounded values

5.2 Observation Model

The observation model establishes the connection between observed data and the state process. The
data is assumed to be observed with errors, as described before, so it follows a distribution with support
based on the estimate values.

Two sources inform the observation model: total catch per size-class in numbers and the size-class
distribution of catches. Although the fundamental processes remain consistent across both approaches,
each data type is linked to the model in distinct manners.

Firstly, the observed total catch, NO
t,i, follows a Normal distribution, centered around NC

t,i, the es-
timated number of fish caught by the model (defined in Equation (5.12)), and with standard devia-
tion of σO (Mäntyniemi, Haapasaari, et al., 2013). Where σO was set constant in each size-class
σO = (10,10,1000,1000,10000,10000,1000,1000,100). Equation (5.13) defines this part of the obser-
vational model.

NC
t,i = π

C
t,iφt,iNtN∗ (5.12)

NO
t,i ∼ Normal(NC

t,i;σ
O
i ) (5.13)

27



Secondly, as defined in Equation (5.14), the observed size-class distribution of catches ,φ O
t , follows

a Multinomial distribution with probabilities πC
t , and the total sample size adjusted to 10000 fish caught

per year.

φ
O
t ∼ Multinomial(πC

t ;10000) (5.14)

The Figure 5.1 is a simplified illustration of how the model behave between two time-steps Nt−1 and
Nt having in attention the processes mentioned before. The code developed based on the model described
can be found in the repository created for the purpose of this thesis1.

Figure 5.1: Diagram illustrating the developed model: Each rectangle represents a sub-process of the model,
with blue indicating the initial state, in yellow representing reproduction/recruitment processes, green denoting
survival/mortality sub-processes, purple indicating growth, and red representing observational process. Flag icons
represent state vectors, triangles symbolize constants, circles depict states, and diamonds represent probabilities
and taxes. All notation used in this diagram is presented in the above text and Table A.1 in Annex A

1GitHub repository:Pagellus bogaraveo - Bayesian SSM
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Chapter 6

Analyzes of Results

In this section, the results obtained undergo analysis for convergence and biological acceptance. As
mentioned before, all results were obtained using the R package NIMBLE (de Valpine et al., 2023b).

The initial number of iterations was 11000000, with a burn-in period of 1000000, and a thin of 1000.
It took 10000 samples per chain, with a total of 5 chains executed. Each successive chain initiated with
the final value of the preceding chain. The computational execution lasted approximately 62 hours (±2.5
days).

The same order used in Chapter 2 and Chapter 5 is maintained to simplify analyses. For each process,
summary statistics tables, trace plots, and density plots, generated using the MCMCvis package, are
analysed (Casey Youngflesh, 2023).

6.1 Reproduction and Recruitment

The hyperparameter results, presented in Table 6.1, align well with biological expectations. Specif-
ically, the values are consistent with those previously reported for this species, and no anomalous or
illogical values were observed.

A comparison with the initial assumptions presented in Table 5.2 indicates that all hyperparameter
results, except for βFec, are closer to the initial beliefs, suggesting a posterior distribution overlapping the
prior distribution for most parameters. Having in mind the previous mentioned measures that evaluate
convergence, all have R̂ near 1, all smaller than 1.1, and high values of ESS (≥ 15130).
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Table 6.1: Summary of results obtained for hyperparameters from the Reproduction and Recruitment process.
Displays measures considering the five chains: the mean, quantiles (2.5%, 50% and 97.5%), Gelman-Rubin
convergence statistic (R̂), and the number of effective samples (ESS)

Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS

L(50)
F 29.024 1.008 27.052 29.025 30.999 1 50000

βF 0.193 0.062 0.072 0.194 0.314 1 48428
L(50)

M 34.01 1.009 32.04 34.004 35.981 1 49954
βM 0.466 0.304 -0.068 0.459 1.076 1 15439
αFec 9.761 0.968 7.871 9.758 11.669 1 44020
βFec 5.382 0.323 4.722 5.392 5.984 1.02 15130
σF 1.372 0.098 1.186 1.371 1.571 1 49558
σM 1.374 0.098 1.188 1.372 1.571 1 50345
CVFec 0.547 0.287 0.031 0.572 0.981 1.01 35815

By observing trace and density plots, obtained using the MCMCtrace function of the MCMCvis
package. Reproduction and Recruitment hyperparameters have converged, with trace plots showing
well-mixed chains oscillating around a specific neighborhood. On the density plots, only βFec exhibits
noteworthy differences between its prior and posterior distributions. All graphs can be found in the
repository created for the purpose of this thesis1.

A representative portion of the graphical representations mentioned above (see Figure 6.1) showcases
an example from the hyperparameter σM, which exhibited R̂ equal to 1 and had the highest ESS of
all hyperparameters in Table 6.1. Conversely, the parameter βFec that had the poorest measures of
convergence and diverged more from initial beliefs. In both trace plots, values stabilized around certain
ranges and the chains were well-mixed. However, the density plots, reveal that while σM presents an
overlap between the prior and posterior distributions of 98.2%, βFec shows no overlap (0%).

(a) Trace and density plots of parameter σM (b) Trace and density plots of parameter βFec

Figure 6.1: Trace and density plots from the Reproduction and Recruitment process’ hyperparameters. The Graph
(a) illustrate the trace and density plots of σM and in Graph (b) the trace and density plot of βFec. The red line on
the density plot represents the prior distribution, while other colors, in both trace and density plots, denote different
chains. On the right density plot the red line is not visible given the 0% overlap between prior and posterior
distribution

1GitHub repository:Pagellus bogaraveo - Bayesian SSM
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These hyperparameters are used to determine the distribution of other parameters within this process,
constituting a second level of hierarchy, which includes Feci, γF

i , and γM
i . The summary statistics of

these parameters are presented on Table B.1 in Annex B, and their respective trace and density plots
are presented in the repository1. All these parameters demonstrate biological plausibility, supported by
convergence measures and trace and density plots that exhibit similar patterns to the hyperparameters.
All parameters exhibit R̂ values near 1 (R̂ ∈ [1;1.11]) and possess a high number of effective sample sizes
(ESS ∈ [3546;50514]).

Analysis of the probability of being female and mature in each size-class, depicted in Graph (a) of
Figure 6.2, reveals expected behavior, as explain in Chapter 2. It is noteworthy that the credibility interval
(95%) for the probability of a female be mature, it remains wide across all size-classes, while the female
probability narrows as the size-classes advance, indicating more precise estimates of the probability of
being female in higher size-classes. Fecundity in each size-class follows the anticipated pattern, ascending
through the different size-classes, as illustrated in Graph (b) of Figure 6.2. Initially low in the first 5
size-classes, the mean fecundity value doubles upon reaching size-class 6, with increments becoming
clearer thereafter. The dashed lines representing the credibility intervals suggest that as fish size (or
size-class) increases, uncertainty also tends to increase.

(a) Graph depicting the probability of be-
ing female (yellow) and being mature (red)
within each size-class

(b) Graph depicting the fecundity within each
size-class

Figure 6.2: Graphs illustrating reproductive parameters (πF , πM and Fec) across different size-classes: In both
Graphs (a) and (b), the points represent the posterior mean value and the dashed lines the credibility intervals of
95%

Lastly, Figure 6.3 presents the estimated proportional number of recruits for each year (Rt). The
mean trend over time exhibits fluctuations, with years 7, 8 and 9 having lower mean values but never
reaching zero, and particularly notable peaks in years 2 and 4, where the proportional number of recruits
is higher compared to other years, with wider credibility intervals. This is further analyzed and discussed
in Chapter 7.
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Figure 6.3: Graph showing the proportional number of recruits by year: the points represent the posterior mean
value and the dashed lines the credibility intervals of 95%

6.2 Survival and Mortality

Regarding the Survival and Mortality process, the summary of the hyperparameters obtained from
the model are presented in Table 6.2. Observing the results in this process, there are some differences
between the prior and posterior distributions, even though they still biological accepted, meaning that no
anomalous or illogical values were observed. One example of it is the hyperparameter β f , that shows a
posterior distribution with a much lower mean value, and lower standard deviation.

When analyzing the convergence measures, the hyperparameters µFmax , CVFmax and CVD show a R̂
equal to 1.1 or 1, and a high number of ESS, even though CVD has less than the other two, it still high.
The other tree hyperparameters β f , L(50)

f and σ f show higher R̂ (R̂ ∈ [1.18;2.36]), leading to believe in
some convergence issue, despite their high ESS values (ESS ∈ [41578;48802]).

Table 6.2: Summary of results obtained for hyperparameters from the Survival and Mortality process. Displays
measures considering the five chains: the mean, quantiles (2.5%, 50% and 97.5%), Gelman-Rubin convergence
statistic (R̂), and the number of effective samples (ESS)

Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
µFmax 0.97 0.192 0.649 0.951 1.399 1 40392
CVFmax 0.973 0.026 0.904 0.98 0.999 1 49264
CV D 0.2 0.077 0.087 0.187 0.383 1.11 12087
β f 0.091 0.08 -0.035 0.075 0.274 2.35 41578
L(50)

f 31.956 1.274 29.537 31.923 34.51 1.27 48802
σ f 1.964 0.103 1.766 1.963 2.168 1.18 44995

When analyzing the trace and density plots of the hyperparameters, all presented in the repository 1,
it is possible to confirm the previous information. All chains in the trace plots show oscillations, smooth,
overlapping traces with no obvious trends, and density plots show fusion between chains, except for β f ,
as illustrated in Graph (a) of the Figure 6.4, which exhibits varying results in different chains, there is no
good representation of mixing between chains, and the different color are more identifiable. Furthermore,
in contrast with what happen in the Reproduction and Recruitment process, all hyperparameters exhibit

1GitHub repository:Pagellus bogaraveo - Bayesian SSM
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low overlap (≤ 33.8%) between the posterior and the prior distribution, indicating a departure from prior
beliefs, as in Graph (a) of Figure 6.4, L(50)

f is an exception, it shows an overlap with the prior distribution
of 67.6%, as depicted in Graph (b) of Figure 6.4.

(a) Trace and density plots of parameter β f (b) Trace and density plots of parameter L(50)
f

Figure 6.4: Trace and density plots from the Survival and Mortality process’ hyperparameters. The Graph (a)
illustrate the trace and density plots of β f and Graph (b) the trace plot of L(50)

f . The red line on the density plot
represents the prior distribution, while other colors, in both trace and density plots, denote different chains

These hyperparameters are used to estimate other Survival and Mortality parameters, including Fmax
t ,

Mi, and γ
f

i . The summary statistics for these parameters are included in Table B.2 of Annex B, and all
trace and density plots are also provided in the repository 1.

The convergence of these parameters differs from that of the Reproduction and Recruitment process,
with some parameters displaying poorer convergence diagnosis, characterized by higher R̂ values and
lower ESS. Specifically, the parameters associated with size-classes 2, 3, and 10 (γ f

2 , γ
f

3 , γ
f

10, M2, M3, and
M10), as well as those pertaining to years 7 and 8 (Fmax

7 and Fmax
8 ) but, not quite as severe. In contrast, all

other parameters appear to demonstrate convergence, as they exhibit lower R̂ values (R̂ ∈ [1;1.05]) and
higher ESS (ESS ∈ [10128;45960]).

Graph (a) of Figure 6.5 depicts the parameter γ
f

3 , which serves as a clear example of poor mixing
between chains, despite apparent convergence within each individual chain. This phenomenon is also
observed in the other mentioned parameters (γ f

2 , γ
f

3 , γ
f

10, M2, M3, and M10, Fmax
7 , and Fmax

8 ). However, this
issue is not observed in the other parameters, which trace and density plots, exhibit well-mixed chains,
as illustrated in Graph (b) of Figure 6.5.

(a) Trace and density plots of parameter γ
f

3
(b) Trace and density plots of γ

f
4

Figure 6.5: Trace and density plot from the Survival and Mortality process. The Graph (a) illustrate the trace and
density plots of γ

f
3 and Graph (b) the trace plot of γ

f
4 . Difference colors, in both trace and density plots, denote

different chains

1GitHub repository:Pagellus bogaraveo - Bayesian SSM
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To explore the probability of each of the three outcomes in each size-class by year (natural mortality,
fishing, and survival), Figure 6.6 illustrates the mean value of each probability for each of the three
outcomes evaluated across different size-classes and years. Upon analyzing the differences between
years, it becomes evident that the various outcomes exhibit similar behavior in the initial size-classes
across the years. However, they display distinct patterns across the other size-classes in different years.
In t = 7 and t = 8 the fishing mortality mean value, at the middle size-classes, reach higher probability
values than in the other years.

Figure 6.6: Graph illustrating how the probability of the three outcomes changes across size-classes in each year:
Each circle represents the posterior mean value of each probability. The red line represents natural mortality, green
represents survival, and blue represents fishing mortality

6.3 Growth

The summary of the Growth hyperparameters obtained from the model is presented in Table 6.3. k
shows a higher mean value and smaller standard deviation, while L∞, with smaller differences, shows a
lower mean value and standard deviation. Both hyperparameters show R̂ values close to 1 and high ESS
values, representing good convergence measures.

Table 6.3: Summary of results obtained for hyperparameters from the Growth process. Displays measures
considering the five chains: the mean, quantiles (2.5%, 50% and 97.5%), Gelman-Rubin convergence statistic (R̂),
and the number of effective samples (ESS)

Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
k 0.135 0.014 0.094 0.139 0.15 1.05 39610
L∞ 56.478 2.603 51.353 56.46 61.644 1.06 40222

The convergence can also be observed in the trace and density plots depicted in Figure 6.7, on Graph
(a), it is apparent that k, originated from a vague prior, converged to a posterior distribution with a higher
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mean value and smaller standard deviation. Meanwhile, L∞ demonstrates convergence and appears to be
well-mixed, with the posterior distribution overlapping with the prior distribution by 90.7%.

(a) Trace and density plots of k (b) Trace and density plots of L∞

Figure 6.7: Trace and density plots of Growth parameters (k and L∞):The red line on the density plots represents
the prior distribution, while other colors, in both trace and density plots denote different chains.

The hyperparameters were used to estimate the distribution of the probability of changing size-class.
The trace and density plots for each parameter, are included in the repository 1. However, analyzing Table
B.3 of Annex B, it is notable that most parameters display R̂ values close to 1, and some slightly higher
(R̂ ∈ [1;2.78]). High values of ESS (ESS ∈ [34711;50197]) where also seen.

Based on the obtained values, the Table 6.4 presents the mean value of the size-classes change
probabilities, rounded to 3 decimal places. Observing this table, it becomes apparent that up to the 4th

size-class (inclusive), the highest probability is for a fish in size-class i at year t to move to size-class i+1
at year t + 1. From the 5th size-class forward, it becomes more likely for a fish to remain in the same
class.

Table 6.4: Probability of size-class changes: Each cell represents the posterior mean value of the probability of
transitioning (rounded with 3 decimal places) to the size-class indicated by the row if in the previous year the
individual was in the size-class indicated by the column

To (at t)
From (at t −1) Class 01 Class 02 Class 03 Class 04 Class 05 Class 06 Class 07 Class 08 Class 09 Class 10

Class 01 0.05 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002
Class 02 0.748 0.062 0.001 0.004 0.033 0.018 0.001 0.001 0.002 0.001
Class 03 0.035 0.923 0.141 0.025 0.043 0.022 0.002 0.001 0.001 0.001
Class 04 0.023 0.003 0.847 0.245 0.045 0.023 0.001 0.001 0.002 0.002
Class 05 0.022 0.002 0.002 0.597 0.345 0.023 0.001 0.001 0.002 0.001
Class 06 0.021 0.001 0.001 0.022 0.342 0.599 0.002 0.001 0.002 0.001
Class 07 0.027 0.001 0.002 0.028 0.052 0.247 0.879 0.003 0.002 0.002
Class 08 0.023 0.002 0.001 0.025 0.045 0.024 0.11 0.954 0.012 0.001
Class 09 0.026 0.002 0.002 0.026 0.048 0.026 0.001 0.034 0.968 0.055
Class 10 0.025 0.002 0.002 0.026 0.046 0.015 0.001 0.001 0.009 0.934

1GitHub repository:Pagellus bogaraveo - Bayesian SSM
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6.4 General Population Dynamics

To analyze the estimated number of fish abundances for each year in proportion to the first year
(Nt), Graph 6.8 displays the mean value and credibility intervals of that parameter. It is evident that
the proportional number of fish decreases constantly, with a smaller slope from year 5 (2018), where N
reaches values near zero (between 0.002 and 0.045). The narrow dashed lines suggest that the estimated
values are precise.

Figure 6.8: Proportional total number of fish by year: the points represent the posterior mean value and the dashed
lines the credibility intervals of 95%

However, as mentioned before, fishery data can provide more information about changes in population
dynamics than general abundance. Therefore, when analyzing the vector Φt = (φt,1, ...,φt,10) presented
in Figure B.1 in Annex B, that display the 50% and 95% credibility intervals and the median value, is
evident that the distribution of individuals over the years varies. There are differences in the way fish are
divided by size-classes in different years, however, there is no specific graphical pattern that would make
possible to predict the distribution in next time-step.

6.5 Model Adjustment

An analysis of the adequacy of the model for the data is presented to understand how well the model’s
estimated values adjust to the observed data. Graph (a) of Figure 6.9 illustrates the goodness of fit of
the model to the data, the alignment of the model’s estimates with the observed data is evident from
the proximity of the points to the dashed diagonal line, which represents equality between the observed
data and the model mean value estimates. There are some points that are slightly more distant from the
dashed line, but in general, most points align around it. When the data values are low, it seems to have
bigger differences between the data and the mean estimated values, this is explained by the use of the
log-transformation.

Graph (b) of Figure 6.9, illustrates the residuals on the original scale, the differences between the
observed data and the model’s estimated values, the majority of the residuals have values near zero. The
few residuals that deviate more significantly from zero all have negative values, suggesting that the model
underestimates these values.
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(a) Scatter plot Log-Transformed mean of Es-
timate Samples vs. Data Values

(b) Scatter plot of residuals (Mean of Esti-
mate Samples- Data values)

Figure 6.9: Model adjustment: comparison between mean of sampled values and data values

6.6 Five Size-Classes Model

The results from the presented model are compared with those arising from an alternative. Given
the results previously presented, some modifications were introduced, these variations in the model were
conceived with the aim of reducing the number of parameters, simplifying the model architecture, and
improving performance through more optimal convergence of parameters situated at higher hierarchical
levels.

The modification applied to the base model involved reducing the number of size-classes from 10
to 5. This change resulted in a reduction of approximately 50% of the parameters, as all parameters
previously calculated by size-class are now halved and the computational time taken was only 38 hours.
The five size-classes were obtained by pairing the original ten size-classes while maintaining uniform
amplitude intervals, crucial for the model’s equations implementation, and still considering the life cycle
of blackspot seabream:

• Size-Class 1: old size-classes 1 and 2, includes recruits and juveniles usually not caught in fisheries;

• Size-Class 2: old size-classes 3 and 4, includes adults on the sex-change process with low tax of
maturation;

• Size-Class 3: old size-classes 5 and 6, includes adults with high proportion of mature females;

• Size-Class 4: old size-classes 7 and 8, includes adults with high proportion of mature females and
higher fecundity;

• Size-Class 5: old size-classes 9 and 10, includes higher natural death and rare catches.

Analyzing the Reproduction and Recruitment process, as expected, the mean and quantile val-
ues change with the reduction in the size-classes, but they remain biologically acceptable. However,
when comparing the convergence measures results, the five-classes model generally exhibits higher R̂
values, with some reaching exceedingly high numbers, particularly in the non-hyperparameters, with
the highest being γ5, reaching 1605.69. However, there was a higher ESS for the hyperparameters
(ESS ∈ [78547;126165]) but a much lower ESS for the other parameters (ESS ∈ [8;52]). These measures
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indicate poorer convergence in this second model, as evident when analyzing the Reproduction and Re-
cruitment trace and density plots, as exemplified in Graph (a) of Figure 6.10, where the same parameter
shown in Graph (a) of Figure 6.1 are represented, additionally the chains do not mix as effectively as
before.

When analyzing the mortality parameters, similar differences in the convergence measures were
observed, almost all parameters exhibit higher R̂ values, except for β f and L(50)

f , which, as illustrated in
Graph (b) of Figure 6.10, demonstrate better chain mixing compared to the ten size-classes model.

(a) Trace and density plots of parameter σM (b) Trace and density plots of parameter βFec

Figure 6.10: Trace and density plots from the Reproduction and Recruitment process’ hyperparameters: Five
size-classes model. The Graph (a) illustrate the trace and density plots of σM and Graph (b), the trace and density
plot of βFec. The red line on the density plot represents the prior distribution, while other colors, in both trace and
density plots, denote different chains.

The Growth process exhibits a different behavior compared to the previous process, all parameters
demonstrate improved convergence measures while maintaining biological consistency. Now, all param-
eters have R̂ ≥ 1.07 and ESS ≥ 106071. Table 6.5 shows that using five size-class the probability of being
in the same size-classes in years t and t −1 gets higher, which is what is expected because this means that
when using wider size-classes the fish spends more time in that size-class.

Table 6.5: Probability of size-class changes (Five Size-classes Model): Each cell represents the mean value of the
probability of transitioning (rounded with 3 decimal places) to the size-class indicated by the row if in the previous
year the individual was in the size-class indicated by the column

To (at t)
From (at t −1) Class 01 Class 02 Class 03 Class 04 Class 05

Class 01 0.059 0.001 0.001 0.001 0.001
Class 02 0.241 0.992 0.002 0.002 0.002
Class 03 0.244 0.004 0.994 0.001 0.001
Class 04 0.254 0.002 0.002 0.994 0.004
Class 05 0.201 0.002 0.002 0.001 0.992

Analyzing the general population dynamics, particularly the proportional total number of fish by year,
notable differences between the two models were found. Figure 6.11 illustrates these distinctions. Unlike
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the model with ten size-classes (see Figure 6.8), the mean estimates in the five size-classes model do
not exhibit significant declines, and in the final year, the values are not as close to zero. However, the
credibility intervals are considerably wider, indicating that the estimates are less precise compared to the
model with ten size-classes.

Figure 6.11: Proportional total number of fish by year (Five Size-classes Model):the points represent the posterior
mean value and the dashed lines the credibility intervals of 95%

When analyzing the model fit, there is an unexpected result, the model appears to have an almost
perfect fit, with all the residuals very close to zero, except for one point with a residual around -300, as
shown in Figure 6.12.

Figure 6.12: Scatter plot of Residuals (mean Estimate Samples- Data values): Five Size-classes Model

In summary, the 5 size-classes model although also be a candidate to model the population dynamics
of the blackspot seabream, exhibit different performance than the 10 size-classes model. When comparing
the Widely Applicable Information Criterion (WAIC), a measure commonly used to assess the goodness
of fit of Bayesian models (Turkman and Paulino, 2015), the ten size-classes model exhibits a WAIC
value of 40420.08, whereas the five size-classes model shows a value more than 5000000 times greater
(220595728033), which means that the balance between the model complexity and fit to the data reveals
that the 10 size-classes model is the best of the two models for a given dataset.

In this thesis, the five size-classes model was used to implement supplementary datasets obtained
from ICES, to compare and validate the results obtained by using different datasets from different areas.
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However, given the extended time frame covered by these datasets, the number of parameters increases,
and even with the five size-classes model the computational effort is too high and it was not possible to
get results. After ±26 days running, the model can not even start the sampling because it is still checking
model calculations and has already stored ≥ 60.67GiB.

6.7 Comparison with Published Data

In this section, the results obtained are compared with those obtained by other authors, this comparison
aims to understand the differences between the results and to determine whether any disparities can be
attributed to differences in modeling approaches, datasets, or study areas.

Table 6.6 displays only the parameters results that were transversal in other papers, looking at the
βM parameter, its values vary across the studies, the rounded posterior mean value obtained with the ten
size-classes model is equal to the second estimation of Krug, 1998. The mean value obtained with the
five size-classes model is lower from all values presented, being more than 6 times less. The parameter
L(50)

M , there is less variance compering to βM, and none of the values presented seem to be extremely
distant from each other. Analyzing the fecundity parameters, it is difficult to make a clear comparison
given the few values to compare, but it is possible to see that there are some differences between studies.

The growth parameters vary across the different studies, and while the area of Bay of Biscay shows
lower values of L∞ and higher values of k compared with the other areas, there is no other specific pattern
noteworthy.

Overall, the 10 size-classes provided similar estimation to others published. The advantages and
disadvantages will be discussed in further detail in Chapter 7.

Table 6.6: Comparison of results with different authors

References Area βM L(50)
M αFec βFec k L∞

Present Study (10 size-classes) Mainland portugal 0.466 34.01 9.761 5.382 0.135 56.478
Present Study (5 size-classes) Mainland portugal 0.066 34.196 6.139 6.351 0.143 60.101

0.413 34.45
0.466 33.93Krug, 1998 Azores
0.794 32.31

Krug, 1986 Azores 9.2935 6.9194
0.117 58.5

Krug, 1989 Azores
0.102 57.45

Castro Uranga, 1990 Bay of Biscay 0.174 54.2
Menezes et al., 2001 Azores 0.136 63.8
Sobrino and Gil, 2001 Strait of gilbrata 0.169 58
Ramos, 1967 Bay of Biscay 0.174 53.9
Sánchez, 1983 Bay of Biscay 0.209 51.56
Lorance, 2011 Carabian 0.128 53.86
Alcazar et al., 1987 Bay of Biscay 0.196 48.06
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Chapter 7

Conclusion

As previously mentioned, others studies have analyzed the blackspot seabream. A consensus among
all those studies was that, despite the commercial interest and of being a well known species, it is also a
species with knowledge gaps. Its complex biological dynamics pose challenges for parameters estimation,
and knowing the species abundance its particularly difficult (Lorance, 2011).

In this thesis, it was proposed to address some of these gaps for the species found in mainland Portugal,
by employing a tailored model that integrates: previous knowledge about the species, accommodates data
variability, accounts for its complex life cycle, and uses the dataset provided by IPMA.

After a review on population dynamics models and the advantages of SSM, to accommodate all those
specifications, a special model was developed and coded in R using the NIMBLE, facilitating parameter
estimation via Bayesian inference.

A SSM methodology was applied, allowing to run the model using two parallel time series: one
for the state, where the population dynamics were considered. And one observational model, linked to
the data, provided by IPMA, the population dynamics. The times series for the state included events
of population dynamics that were divided into 3 major sub-processes (Reproduction and Recruitment;
Survival and Mortality; Growth). It is also important to note that the data used in the observational
model included 8 years of data describing the numbers and length of caught fish by year. Together, the
features of the state and observational models provided a solid base for developing the model described
here including previous knowledge about the species while granting a way to account for observational
error.

The model developed and described in this thesis uses 10 size-classes to better operation. To define
the state process, especially each sub-process of the population dynamics, an exhaustive review of the
blackspot seabream was conducted. Several equations and insights into the species were identified,
such as equations to calculate probability of being a mature female related to length took from Krug,
1998. These were incorporated into the tailored model, and adjusted to the model specification due to its
complexity. One of these adjustment that is relevant to enumerate were the processes that change over
time were modified to only change over size-classes. An example of this was the probability of being a
mature female, which biologically varies over time. However, in the model, it was considered constant
over time to reduce the number of parameters and improve the efficiency of the model. Although this
information was omitted, the anticipated changes over the years are not expected to vary enough over the
year to make major differences in the estimation results.

After running the developed model with the IPMA dataset, all these parameters demonstrate biological
plausibility, because they were in the range of values previously reported and no anomalous or illogical
values were observed (e.g:Krug, 1998; Lorance, 2011). Additionally, when comparing the data values
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with the posterior mean of the estimates obtained, those were similar, indicating that the model accurately
captures the underlying trends in the data and, therefore, it can be considered a good fit.

The results indicate different levels of convergence across different sub-processes and hierarchical
levels. In the Reproduction and Recruitment process, all hyperparameters and parameters demonstrate
high-quality convergence measures (R̂ ≤ 1.11 and ESS ≥ 3546), with most hyperparameters showing
overlap between prior and posterior distributions.

Regarding the Growth process, both hyperparameters demonstrate convergence (R̂ ≤ 1.06 and ESS ≥
39610). Biologically, it is impossible for a fish to decrease in size over time. However, for the model
to function effectively, the probability of transitioning from size-class i at year t to size-class j, where
j < i at year t + 1, is sometimes low but not zero. Due to this calculation method, which includes a
high number of values near zero, the convergence of these parameters presents peculiar pattern in the
convergence analysis.

In the Survival and Mortality process, while hyperparameters also exhibit high-quality convergence
measures, except β f , (R̂ ≤ 1.27 and ESS ≥ 12087), they diverge from the initial beliefs. No specific
explanation could be identified for the poorer convergence measures of β f , an analysis with different
priors could help to get further insight. At the second hierarchical level, some parameters show poorer
convergence, more specifically the parameters regarding size-classes 2,3 and 10. This could possibility
be explained by some data structure or model structure, but even after those considerations, no clear
justification could be found. The analysis of the five size-classes model would help to understand if this
occurrence could be replicated.

The model produces estimates with narrow credibility intervals for biological parameters of interest,
particularly in the estimation of total abundance (on a proportional scale to the first year). However, the
significant decrease in population abundance deserves a careful consideration. With the model results
showing a big decline from N1 = 1 (1×107 in absolute numbers) in year 1 (2014) to N9 approximately
0.002 (2×104 in absolute numbers) by the beginning of year 9 (2022) in population abundance. It might
be interesting to explore whether this decline is related to the exclusion of fishing effort in the model.
Since the results in this thesis were obtain using only catches from fisheries data without accounting for
fishing effort, it would be valuable to investigate if including this information, when available, affects the
total abundance estimates. This aspect should be kept in mind for future studies.

Additionally, the model provides estimates for the population distribution over size-classes, although
some of these show less precision and do not show any specific pattern that allows identification of
changes in the population distribution over time.

A simplified model was applied, which used 5 size-classes, this model showed improved adjustments
on the model computational performance. However, most parameters showed a poorer convergence,
and less precise estimates, that remained within biologically possible values. One possible explanation
could be the suitability of the model’s structure to the life cycle of the species. When working with
10 size-classes, there are instances where the probability of transitioning between size-classes is higher
than remaining in the same size-class. However, with 5 size-classes, it is more probable for individuals
to remain in the same size-class, leading to an increase in the distribution of individuals in the initial
size-class which makes the model have worst performance.

Careful consideration, of whether the trade-offs are worthwhile to simplify the model, is essential
when selecting the appropriate size-class structure for modeling purposes. However, while the ten size-
classes model appears to better fulfill the aim of this thesis, a simpler model is essential when dealing
with denser datasets. In this thesis, despite some limitations, the five size-classes model was applied
to compare the obtained results with results using larger datasets from ICES, which included a wider
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time-frame and data from other regions. The computational effort, even with the five size-classes model,
required for those datasets proved to be impractical, due to time constrictions and software complications.
Consequently, it was not possible to compare the results of the model using different datasets with the
model developed in this thesis. Due to it, the results of the model developed here were compared with
the results of relevant publications. The results generated by the ten size-classes model reveal minimal
disparities that remain within the expected range when considering the findings of other researchers.
While the five-size classes model exhibited noticeable variations. Comparing mainland Portugal with
other regions, no compelling evidence emerged to suggest significant deviations in biological parameter
values.

In the future, would be relevant to run the model with the conditions previous described, using larger
dataset from ICES, to analyze if the results change and if convergence improves. By incorporating
more data, the model may be able to capture more patterns and provide more robust estimates. Next
future research could include repetition of the current study using different prior distributions for the
hyperparameters. In this thesis, informative priors were used to better inform the model about prior
beliefs, however, using vague priors could lead the model to converge to different values, and it would
be valuable to analyze these differences. Other interesting approach to future work would be conducting
the study using simulated data, that allows for controlled experimentation and evaluation of the model’s
performance under various scenarios, providing insights into its strengths and limitations in different
conditions.

In conclusion, this study could contribute to the understanding of the dynamics of the blackspot
seabream population in mainland Portugal through the design, development, and application of a tailored
statistical model. Integrating existing knowledge of the species and employing a state-space modeling
approach with Bayesian inference, produced a model capable to estimate biological parameters crucial
to understanding complex population dynamics and for effective management and conservation efforts.
However, the exploration of statistical models to assess species with complex population dynamics, such
as the blackspot seabream, remains an ongoing subject.
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Appendix A

Table A.1: Notation of the model and respective Code Notation

Notation Meaning Code Notation
N∗ Total number of individual on the first time-step N0
Nt Total number of individual on time-step t on relative scale

to the first time-step
N[t]

Φt = (φt,1, ...,φt,10) State of the population at the beginning of a time-step t in
terms of relative size-class frequencies

Phi[t,i]

St Proportion that survives time-step t to the next time-step S[t]
Rt Recruits on time-step t on relative scale to the first time-

step
R[t]

πE Probability of survival from the egg stage until recruitment Egg_surv
Et Number of eggs spawned on time-step t on relative scale

to the first time-step
Eggs[t]

Eggi Number of eggs spawned by size-class i eggs_class[i]
πF

i Probability of being female belonging to size-class i Fem[i]
πM

i Probability of being mature belonging to size-class i Mat[i]
γF

i Auxiliary parameter to calculate πF
i Fem.Logit[i]

L(50)
F The length at 50% female li.50.female
βF Parameter that controls the curve’s softness beta.F
σF Standard deviation of the distribution of γF

i Fem.Sd
γM

i Auxiliary parameter to calculate πM
i Mat.Logit[i]

L(50)
M The length at 50% maturity li.50.mature
βM Parameter that controls the curve’s softness beta.M
σM Standard deviation of the distribution of γM

i Mat.Sd
Feci Fecundity of a individual on size-class i Fec[i]
βFec Parameter that controls the curve’s softness b
L(50)

f The length at 50% selectivity li.50.sele
CVFec Variation coefficient of fecundity Fec.Cv
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Continuation of Table A.1:
Notation Meaning Code Notation

πC
t,i Probability of a size-class i fish being caught on time-step

t
Pi.C

πD
t,i Probability of a size-class i fish suffers natural death on

time-step t
Pi.D

πS
t,i Probability of a size-class i survive time-step t Pi.S

Zt,i Total mortality rate Z[t,i]
Ft,i Fishing mortality rate Fish[t,i]
fi Selectivity of the gear for size-class i Sele[i]

γ
f

i Auxiliary parameter to calculate fi f.Logit[i]
σ f Standard deviation of the distribution of γ

f
i f.Sd

Fmax
t Maximum instantaneous fishing mortality on time-step t F.max[t]

µFmax Mean maximum instantaneous fishing mortality F.max.Mu
CVFmax Variation coefficient of µFmax F.max.Cv

Mi Natural mortality rate Mort[i]
ΦS

t = (φ S
t,1, ...,φ

S
t,10) Size-class distribution of survivors on each time-step PhiS[t,i]

k Parameter from the Von Bertalanffy curve k
L∞ Parameter from the Von Bertalanffy curve L.inf
σL Standard deviation of the distribution of the growth pro-

cess
L.Sigma

gi, j Probability of moving to a size-class i at year t +1, when
at time-step t was in size-class j

g[i,j]

ΦG
t = (φ G

t,1, ...,φ
G
t,10) Size-class distribution of survivors after growing on each

time-step
PhiG[t,i]
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Appendix B

Table B.1: Summary of Others Reproduction and Recruitment parameters

Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
Fec1 134.756 148.777 15.232 98.012 481.738 1.04 10253
Fec2 780.368 892.401 81.383 569.886 2849.442 1.04 9253
Fec3 2979.429 3677.714 287.07 2146.808 11031.204 1.06 6984
Fec4 8494.123 9814.49 813.014 6171.073 31285.537 1.05 7366
Fec5 21327.812 29859.93 1773.052 15020.464 80765.052 1.11 6856
Fec6 47410.643 78232.01 3765.376 32368.955 179095.606 1.11 5818
Fec7 64954.715 87929.451 6603.204 48889.503 219306.703 1.06 4463
Fec8 145659.659 200222.024 12298.829 107747.469 488508.275 1.05 4322
Fec9 260580.103 389076.097 20058.377 188016.964 886045.598 1.05 3546
Fec10 565098.703 665870.471 38181.622 412695.733 1878115.052 1.06 3812

γF
1 -3.102 1.704 -6.475 -3.099 0.23 1 50000

γF
2 -2.138 1.556 -5.19 -2.132 0.901 1 50296

γF
3 -1.163 1.442 -3.974 -1.166 1.658 1 49449

γF
4 -0.215 1.389 -2.94 -0.215 2.531 1 50514

γF
5 0.767 1.414 -1.992 0.765 3.528 1 49537

γF
6 1.746 1.492 -1.191 1.746 4.641 1 49947

γF
7 2.437 1.792 -1.117 2.48 5.867 1 48189

γF
8 3.628 1.848 -0.007 3.632 7.243 1 50125

γF
9 4.622 2.043 0.608 4.628 8.637 1 49519

γF
10 5.639 2.217 1.362 5.622 10.072 1 47917

γM
1 -9.802 6.556 -23.018 -9.616 1.792 1 15874

γM
2 -7.458 5.087 -17.795 -7.317 1.648 1 16322

γM
3 -5.129 3.658 -12.54 -5.022 1.474 1 17061

γM
4 -2.829 2.349 -7.68 -2.744 1.482 1 20878

γM
5 -0.479 1.517 -3.485 -0.46 2.457 1 48236

γM
6 1.875 1.916 -1.682 1.8 5.801 1 32120

γM
7 3.978 3.338 -2.324 4.026 10.532 1 16393

γM
8 6.498 4.554 -1.759 6.393 15.631 1 16903

γM
9 8.84 5.985 -1.913 8.694 20.878 1 16104

γM
10 11.274 7.328 -1.042 10.999 26.175 1 15629
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Table B.2: Summary of Others Survival and Mortality parameter

Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
Fmax

1 0.127 0.014 0.101 0.127 0.157 1.01 26701
Fmax

2 5.928 0.599 4.853 5.892 7.214 1.01 19474
Fmax

3 0.664 1.557 0.24 0.32 7.465 1.04 14107
Fmax

4 0.205 0.044 0.129 0.201 0.304 1.01 10128
Fmax

5 3.594 0.41 2.872 3.566 4.473 1.02 25323
Fmax

6 5.54 0.659 4.37 5.501 6.947 1.05 13299
Fmax

7 12.666 2.591 8.082 12.03 18.089 1.7 6048
Fmax

8 35.513 4.607 27.199 35.58 44.666 1.31 7197
γ

f
1 -14.472 0.48 -15.566 -14.418 -13.696 1.03 49249

γ
f

2 -7.043 3.323 -8.995 -8.595 1.637 6.14 14989
γ

f
3 -3.025 0.501 -3.84 -2.841 -2.219 2 4944

γ
f

4 3.583 0.992 1.933 3.478 5.808 1.01 45960
γ

f
5 -1.19 0.169 -1.432 -1.21 -0.61 1.03 21976

γ
f

6 -1.851 0.107 -2.054 -1.853 -1.62 1.02 18418
γ

f
7 -1.566 0.169 -1.893 -1.568 -1.228 1.02 24727

γ
f

8 -3.351 0.18 -3.718 -3.347 -3.012 1 38134
γ

f
9 -4.711 0.09 -4.893 -4.709 -4.536 1.01 18001

γ
f

10 -4.093 4.811 -6.682 -6.441 7.882 7 16459
M1 0.25 0 0.25 0.25 0.25 0
M2 452.174 1209.519 0 0.029 4643.637 2.22 7588
M3 1.416 1.017 0 1.777 3.004 1.96 1915
M4 4.945 0.425 4.01 4.944 5.783 1.02 25876
M5 0.001 0.002 0 0 0.005 1.01 34531
M6 0.001 0.002 0 0 0.006 1.01 37141
M7 4.127 0.503 3.2 4.102 5.178 1.03 22628
M8 3.43 0.572 2.337 3.421 4.586 1 38227
M9 0.006 0.013 0 0.001 0.043 1.01 37518
M10 128.539 259.648 0 0.021 728.602 9.87 9104
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Table B.3: Summary of Others Growth parameters

Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
g1,1 0.05 0.162 0 0 0.682 1.05 38063
g2,1 0.002 0.029 0 0 0 1.04 49609
g3,1 0.002 0.028 0 0 0 1.01 47803
g4,1 0.001 0.024 0 0 0 1.04 47449
g5,1 0.001 0.024 0 0 0 1.07 45850
g6,1 0.001 0.022 0 0 0 1.05 49590
g7,1 0.002 0.028 0 0 0 1.02 50000
g8,1 0.001 0.026 0 0 0 1.02 48948
g9,1 0.001 0.024 0 0 0 1 47548
g10,1 0.002 0.029 0 0 0 1 50000
g1,2 0.748 0.375 0.057 1 1 2.54 40889
g2,2 0.062 0.185 0 0 0.779 1.03 39406
g3,2 0.001 0.025 0 0 0 1.02 44215
g4,2 0.004 0.023 0 0 0.039 1.09 45776
g5,2 0.033 0.052 0 0 0.146 1.84 43641
g6,2 0.018 0.047 0 0 0.136 1.76 41834
g7,2 0.001 0.024 0 0 0 1.01 47845
g8,2 0.001 0.026 0 0 0 1.01 46120
g9,2 0.002 0.035 0 0 0 1.03 34711
g10,2 0.001 0.027 0 0 0 1.01 45929
g1,3 0.035 0.095 0 0 0.221 1.12 40736
g2,3 0.923 0.201 0.173 1 1 1.02 39544
g3,3 0.141 0.262 0 0.002 0.938 1.02 39581
g4,3 0.025 0.056 0 0 0.175 2.55 50000
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Continuation of Table B.3:
Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
g5,3 0.043 0.06 0 0 0.176 2.41 45691
g6,3 0.022 0.052 0 0 0.161 2.08 44355
g7,3 0.002 0.03 0 0 0 1.02 45669
g8,3 0.001 0.025 0 0 0 1.01 48916
g9,3 0.001 0.025 0 0 0 1.02 44718
g10,3 0.001 0.025 0 0 0 1.01 48294
g1,4 0.023 0.055 0 0 0.162 1.94 43328
g2,4 0.003 0.041 0 0 0 1.01 49617
g3,4 0.847 0.27 0.053 0.996 1 1.02 39344
g4,4 0.245 0.306 0 0.112 0.988 1.07 38142
g5,4 0.045 0.064 0 0 0.187 2.34 44479
g6,4 0.023 0.052 0 0 0.166 2.4 48427
g7,4 0.001 0.025 0 0 0 1.01 47981
g8,4 0.001 0.026 0 0 0 1.02 49466
g9,4 0.002 0.029 0 0 0 1.01 46969
g10,4 0.002 0.029 0 0 0 1.01 48714
g1,5 0.022 0.052 0 0 0.155 2.14 46178
g2,5 0.002 0.029 0 0 0 1 48093
g3,5 0.002 0.028 0 0 0 1.01 48536
g4,5 0.597 0.383 0.01 0.724 1 1.46 40994
g5,5 0.345 0.335 0.001 0.167 0.999 1.33 40897
g6,5 0.023 0.053 0 0 0.166 2.32 46604
g7,5 0.001 0.024 0 0 0 1.03 48133
g8,5 0.001 0.024 0 0 0 1.03 47780
g9,5 0.002 0.03 0 0 0 1 48353
g10,5 0.001 0.024 0 0 0 1.02 48787

53



Continuation of Table B.3:
Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
g1,6 0.021 0.05 0 0 0.148 1.83 46224
g2,6 0.001 0.025 0 0 0 1.04 47385
g3,6 0.001 0.026 0 0 0 1.01 48772
g4,6 0.022 0.052 0 0 0.163 2.16 48645
g5,6 0.342 0.341 0 0.152 0.999 1.41 41248
g6,6 0.599 0.373 0.026 0.704 1 1.44 41799
g7,6 0.002 0.028 0 0 0 1.02 50000
g8,6 0.001 0.025 0 0 0 1 48985
g9,6 0.002 0.03 0 0 0 1.01 49136
g10,6 0.001 0.025 0 0 0 1.01 46040
g1,7 0.027 0.063 0 0 0.184 1.99 49487
g2,7 0.001 0.027 0 0 0 1.01 48643
g3,7 0.002 0.031 0 0 0 1.02 49050
g4,7 0.028 0.063 0 0 0.201 2.78 48103
g5,7 0.052 0.071 0 0 0.21 2.78 46233
g6,7 0.247 0.294 0 0.129 0.971 1.07 40555
g7,7 0.879 0.235 0.127 0.998 1 1.01 44945
g8,7 0.003 0.038 0 0 0 1 48539
g9,7 0.002 0.027 0 0 0 1.02 49256
g10,7 0.002 0.029 0 0 0 1.05 49303
g1,8 0.023 0.054 0 0 0.162 2.18 45784
g2,8 0.002 0.028 0 0 0 1.02 46905
g3,8 0.001 0.027 0 0 0 1.02 46833
g4,8 0.025 0.057 0 0 0.178 2.43 48510
g5,8 0.045 0.064 0 0 0.186 2.34 45469
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Continuation of Table B.3:
Parameter Mean Sd 2.5% 50% 97.5% R̂ ESS
g6,8 0.024 0.056 0 0 0.173 2.19 45503
g7,8 0.11 0.226 0 0.001 0.854 1.02 44677
g8,8 0.954 0.15 0.4 1 1 1.01 50000
g9,8 0.012 0.079 0 0 0.129 1.01 46881
g10,8 0.001 0.026 0 0 0 1.02 48729
g1,9 0.026 0.063 0 0 0.172 1.67 41084
g2,9 0.002 0.03 0 0 0 1.01 47739
g3,9 0.002 0.031 0 0 0 1.04 46697
g4,9 0.026 0.059 0 0 0.187 2.47 49650
g5,9 0.048 0.067 0 0 0.194 2.59 50007
g6,9 0.026 0.059 0 0 0.187 2.68 47523
g7,9 0.001 0.025 0 0 0 1 47375
g8,9 0.034 0.13 0 0 0.499 1.01 50000
g9,9 0.968 0.126 0.521 1 1 1 46584
g10,9 0.055 0.161 0 0 0.653 1.01 49270
g1,10 0.025 0.062 0 0 0.169 1.63 44218
g2,10 0.002 0.029 0 0 0 1.03 49194
g3,10 0.002 0.03 0 0 0 1.02 47614
g4,10 0.026 0.058 0 0 0.181 2.31 48053
g5,10 0.046 0.065 0 0 0.188 2.37 40792
g6,10 0.015 0.04 0 0 0.119 1.83 42689
g7,10 0.001 0.025 0 0 0 1.01 43835
g8,10 0.001 0.025 0 0 0 1.01 48698
g9,10 0.009 0.065 0 0 0.057 1.01 50000
g10,10 0.934 0.176 0.291 1 1 1.01 50197
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(a) Φ1 (b) Φ2 (c) Φ3

(d) Φ4 (e) Φ5 (f) Φ6

(g) Φ7 (h) Φ8

Figure B.1: Caterpillar plots of Population distribution by size-class in each year (Φt = (φt,1, ...,φt,10)):Each
graph represents a different year.Points represent posterior medians. Thick and thin lines represent 50% and 95%
credibility intervals, respectively
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