
 
REM WORKING PAPER SERIES 

 
 

 
 

 
Nonparametric determinants of market 

Liquidity 
 

João A. Bastos, Fernando Cascão 
 
 

REM Working Paper 0332-2024 
 

July 2024 
 
 
 
 
 
 
 

REM – Research in Economics and Mathematics 
Rua Miguel Lúpi 20, 

1249-078 Lisboa, 
Portugal 

 
 
 
 
 

ISSN 2184-108X 
 

Any opinions expressed are those of the authors and not those of REM. Short, up to 
two paragraphs can be cited provided that full credit is given to the authors. 

 
 

 

 

 

  
 
 



 
 
 

REM – Research in Economics and Mathematics 
 
Rua Miguel Lupi, 20 
1249-078 LISBOA 
Portugal 
 
Telephone: +351 - 213 925 912 
E-mail: rem@iseg.ulisboa.pt 
 
https://rem.rc.iseg.ulisboa.pt/  

 
 

 
 
https://twitter.com/ResearchRem 
 
https://www.linkedin.com/company/researchrem/ 
 
https://www.facebook.com/researchrem/ 
 



Nonparametric determinants of market

liquidity

João A. Bastos Fernando Cascão

Lisbon School of Economics & Management (ISEG)

Universidade de Lisboa

Abstract

We examine the factors influencing equity market liquidity through explainable

machine learning techniques. Unlike previous studies, our approach is entirely non-

parametric. By studying daily placement orders for equity securities managed by

a European asset management institution, we uncover multiple nonlinear relation-

ships between market liquidity and placement characteristics typically not captured

by a traditional parametric model. As expected, the results show that liquidity

tends to increase in highly active markets. However, we also note that liquidity re-

mains relatively stable within certain trading volume ranges. Price volatility, broker

efficiency, and the market impact of the trade are important predictors of liquidity.

Price volatility shows a linear relationship with bid-ask spreads, whereas broker

efficiency and market impact have non-symmetric convex effects. Large bid-ask

spreads are linked to increased uncertainty and weak economic activity.

Keywords: Market liquidity; Equity markets; Bid-ask spreads, Nonparametric models;

Machine learning, Explainable AI.

1 Introduction

Equity markets provide a decentralized way of allocating resources. To operate efficiently,

buyers and sellers must be able to transact easily, meaning that markets must be liquid.

There is no single definition of ‘liquid’, as it depends on the context in which it is applied.

Generally, it refers to the ability to convert an asset into a form of payment. In finan-

cial markets, liquidity can be understood as the capacity to trade a specific quantity of

securities at the stated price without delay (Amihud et al., 2006). Market liquidity has

implications in asset pricing, investment management, corporate finance, banking opera-

tions, and the development of monetary and fiscal policies, among other critical areas of

1



economic activity (Acharya and Pedersen, 2019). The significance of liquidity highlights

the importance of understanding its determinants, which remains insufficiently explored

in the existing literature (Schwartz and Peng, 2022).

This paper presents a novel approach to understanding the most important factors

influencing liquidity in equity markets. Our liquidity measure is the quoted bid-ask

spread divided by its midpoint. This metric serves as a natural proxy for liquidity in

equity markets (Amihud and Mendelson, 1986; Stoll, 1989). The bid-ask spread is the

difference between the highest price at which a prospective buyer is prepared to acquire

an asset (known as the bid price) and the lowest price at which a seller is willing to divest

that same asset (referred to as the asking price). This differential provides information

on the ease of trading and the cost of immediate execution. Securities that are highly

liquid and are traded frequently tend to exhibit narrower spreads, whereas those that lack

liquidity or are thinly traded often display wider spreads. While the cost of transacting

could seem small, the volume of transactions makes the overall economic effect far from

negligible. High transaction costs increase the cost of capital for corporations and disrupt

the efficiency of portfolio allocation for investors, thus diminishing overall welfare (Biais

et al., 2005).

In contrast to prior literature, our approach is entirely nonparametric. This implies

we avoid making assumptions regarding the relationship between bid-ask spreads and

potential explanatory variables. Simply put, the market data determines the dependence

of bid-ask spreads on explanatory variables. This is significant because our results indicate

that the relationship between bid-ask spreads and their determinants is far from trivial

and can be highly nonlinear. Moreover, any approach relying on linear or polynomial

parametric regressions may fail to capture these dependencies. Using daily placement

orders for equity securities managed by a European asset management institution, we

constructed a novel dataset comprising many potential determinants of bid-ask spreads.

These determinants include characteristics of the placement order, characteristics of the

securities being traded, and systematic risk variables. To the best of our knowledge, this

study presents the most comprehensive evaluation of potential determinants of bid-ask

spread in the existing literature.

Our nonparametric model is based on ensembles of decision trees (Friedman, 2001).

These predictive models consistently outperform other machine learning models on var-

ious problems involving tabular data (Grinsztajn et al., 2022; Curth et al., 2024), and

this observation holds true in our dataset. However, these models are regarded as ‘black

boxes’, making it difficult to understand the relationship between the input variables

and the model’s outputs. To understand the effects of the covariates on bid-ask spreads,

we employed two recent frameworks from the realm of eXplainable Artificial Intelligence
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(XAI): SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) and Accumu-

lated Local Effects (ALE) (Apley and Zhu, 2020). SHAP values offer insights into the

relative importance of the explanatory variables and the average sign of their partial ef-

fects. ALE plots further help us discern whether the relationships between bid-ask spreads

and the covariates are positive or negative, linear or non-linear, convex or concave, and

so on.

Our results show that the nonparametric model captures relationships between bid-

ask spreads and the covariates that parametric linear models, commonly used in prior

literature, fail to capture. Indeed, many of these relationships are highly nonlinear and

non-monotonic. The findings indicate that trading features, including traded volume,

broker efficiency, trade impact on the market, and price volatility, are among the most

influential determinants of liquidity. However, the shape of the dependence varies for

each variable. While volatility exhibits a linear and nearly monotonic impact on bid-

ask spreads, broker efficiency, and market impact display a nonsymmetric convex effect.

As anticipated, a higher traded volume corresponds to a lower bid-ask spread. This

conclusion holds true whether we consider the average volumes of the day, the past 5

days, or the past 21 days before the respective transaction. We note, though, that within

specific volume ranges, bid-ask spreads do not change with traded volume. Characteristics

of the underlying entity, such as the country of the stock exchange where its equity is

traded and its market capitalization, also play a crucial role. We observe significant

variations in bid-ask spreads among different stock exchanges. Additionally, transactions

involving entities with larger market capitalization tend to exhibit lower spreads.

To incorporate into the model common risk factors for the overall market, often

referred to as the systematic risk factors (e.g. Tarashev et al., 2010; Gourieroux and

Monfort, 2013), we have included a range of variables that evaluate risk across various

regions, primarily focusing on the USA, Europe, and emerging markets. Our results show

increased uncertainty and volatility in financial markets lead to higher bid-ask spreads.

For instance, when the 10-year bond spread between Germany and Italy exceeds approxi-

mately 200 basis points, the bid-ask spread rises relative to the average spread. Moreover,

an inverted yield curve of US Treasuries is linked to lower liquidity. We also highlight the

significance of aggregated volatility measures, particularly the VIX index, which exhibits

a positive and nearly monotonic relationship with bid-ask spreads.

A parametric linear regression model uncovers some effects of the explanatory vari-

ables on bid-ask spreads. Yet, it falls short in capturing several interesting relationships,

such as the negative impact of daily volume on bid-ask spreads and the nonlinear mech-

anisms of the broker efficiency, market impact, and US yield curve. In summary, a non-

parametric model, coupled with eXplainable Artificial Intelligence (XAI) techniques, has
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a greater capacity to unveil patterns in equity market liquidity, with the added advantage

of not requiring a predetermined model specification. To the best of our knowledge, this is

the first study to apply XAI methodologies to understand bid-ask spreads. This approach

can serve as a benchmark for evaluating market liquidity during stressful conditions, a

matter of particular interest to regulatory authorities (e.g. ESMA, 2020).

The remainder of the article is structured as follows. Section 2 explores the concept

of market liquidity, detailing its multifaceted dimensions and potential determinants. To

contextualize our approach, we give some examples of the application of machine learning

methodologies in other liquidity domains. Section 3 describes the data under analysis,

outlines the determinants considered in our study, and presents the methodologies em-

ployed to predict and explain the dynamics of bid-ask spreads. Section 4 presents and

discusses the empirical results, and Section 5 concludes.

2 Assessing market liquidity

In practice, there is no single measure of liquidity, even within the same asset class.

This is attributed to its multifaceted nature, which can be categorized into five dimen-

sions: tightness, immediacy, depth, breadth, and resilience (Sarr and Lybek, 2002; Bervas,

2006). First, ‘tightness’ addresses the transaction costs market participants incur when

buying or selling a particular asset. A market is considered tight when these transaction

costs are notably high. Second, ‘immediacy’ concerns the speed at which orders can

be executed. In markets characterized by high immediacy, transactions among market

participants occur rapidly, with minimal delays. The third dimension, ‘depth’, refers to

the number of buying and selling orders clustered around equilibrium prices. A deep

market has a robust pool of orders, making it less susceptible to rapid price fluctuations.

The dimension ‘breadth’ assesses the diversity and volume of orders at different price

levels. A market is broad when it has several buying and selling orders with significant

trading volumes. Finally, ‘resilience’ characterizes the market’s capacity to absorb and

recover from unforeseen shocks or disruptions. Markets with resilience are equipped with

a surplus of orders capable of rectifying imbalances swiftly. A thorough examination of

metrics corresponding to each of these dimensions is provided by Dı́az and Escribano

(2020).

In equity markets, the bid-ask spread is a standard measure of liquidity (Amihud and

Mendelson, 1986; Stoll, 1989). This spread represents the difference between the highest

price a potential buyer is willing to pay for an asset and the lowest price at which a

seller is prepared to divest it. It quantifies the level of illiquidity in a market concerning

transaction and participation costs, representing the ‘tightness’ aspect of liquidity. A
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noteworthy perspective on the spread is its portrayal as a round-trip cost, as half of its

value is typically considered the cost incurred when executing the purchase or sale of

securities immediately (Schwartz and Peng, 2022).

Some general characteristics of trading are recognized as relevant for assessing market

liquidity. Schwartz and Peng (2022) underscore the importance of market depth, empha-

sizing that ‘spreads are wider, market impact greater, and price discovery less accurate

for thinner issues’. Furthermore, these authors consider that the structural mechanisms

of the market, including the roles played by brokers and market makers, have a profound

influence on the liquidity dynamics of individual securities. Also, upon this perspective,

Schwartz et al. (2020) underscore that finding liquidity in the marketplace is a perma-

nent challenge that ‘depends not only on a trader’s skill, but also on (1) the structure

of the market within which participants are operating, (2) the regulatory environment,

and (3) the traded stock itself’. Some authors have found a strong relationship between

stock market liquidity and the business cycle (Næs et al., 2011; Lu-Andrews and Glas-

cock, 2010). As Chordia et al. (2001) points out, if macroeconomic variables anticipate

economic downturns, they might also anticipate liquidity levels and trading activity in

equity markets.

When regressing market liquidity with explanatory variables, the methods considered

have been linear regressions (Chordia et al., 2001; Brennan et al., 2012) and quantile

regressions (Chuliá et al., 2023). Focusing on the tails of market liquidity, Chuliá et al.

(2023) find nonlinear associations between liquidity measures and their determinants.

These findings suggest using nonparametric techniques to uncover these nonlinear dy-

namics.

To the best of our knowledge, there is still no application of nonparametric methods in

the context of market liquidity in the existing literature. However, there have been notable

instances in other liquidity-related domains. Guerra et al. (2022) address liquidity from

the standpoint of central bank supervision, developing a multiple-class liquidity scoring

system based on banks’ risk levels. Notably, they highlight the superior performance of

machine learning techniques over logistic regression. Furthermore, Tavana et al. (2018)

assess the liquidity risk of a US bank using an approach that integrates two distinct

machine learning techniques: artificial neural networks and Bayesian networks. Neural

networks are employed to approximate the bank’s liquidity risk function, while Bayesian

networks are used to identify the most influential factors in the model. These early

studies underscore the potential of machine learning techniques for liquidity analysis and

risk assessment.
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3 Data and Methodology

3.1 Data description

We analyze daily placement orders for equity securities managed by a European asset

management institution. The set of features of each placement order was extracted via

Bloomberg and covers the period from 2017 through the first half of 2023. The asset

management institution trades securities on several stock exchanges, primarily located in

the USA and Europe. The raw data had 26,191 observations. To ensure data integrity and

statistical robustness, we excluded anomalous observations. First, we observed that 12.8%

of the placement orders had bid-ask spreads of zero, which were omitted from the analysis.

We noticed many orders exhibiting unusually high bid-ask spreads, lacking any evident

economic rationale. Following consultation with a director of the asset management

institution, we opted to exclude the top 2.5% of observations featuring the highest bid-

ask spreads. After these exclusions, we retained a total of 22,262 daily placement orders.

We use the data from 2017 to 2022 to train and validate the statistical models. The first

semester of 2023 data is withheld from the main analysis and exclusively reserved for an

out-of-time testing exercise.

0

1000
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3000

0 20 40
bid−ask spread (bps)

co
un

ts

Figure 1: Distribution of bid-ask spread (in basis points) for the daily placement orders.

The target variable in our analysis is derived from the quoted bid-ask spread at the

moment of the placement’s creation. We model the difference between ask and bid prices
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as a proportion of its midpoint,

bid-ask spread =
ask price− bid price

ask price+bid price
2

× 10000. (1)

This gives us a relative measure of bid-ask price differences expressed in basis points

(bps). Henceforth, whenever we mention bid-ask spreads, we refer to the metric defined

in Equation 1.

Year No. Obs. Mean Median q0.05 q0.95
2017 3330 5.3 3.5 1.1 16.8
2018 6430 6.2 4.1 1.3 18.7
2019 3602 6.5 4.0 1.2 19.4
2020 2437 9.0 5.1 1.3 29.6
2021 3441 7.3 4.0 1.1 25.1
2022 1952 9.1 6.1 1.2 27.6
2023 1070 7.9 5.8 1.3 22.7
All 22262 6.9 4.2 1.2 22.9

Table 1: Summary statistics of the bid-ask spreads by year: number of observations, the

sample mean, sample median, and the 0.05 and 0.95 empirical quantiles. The 2023 figures

pertain to the first semester.

Figure 1 shows the distribution of bid-ask spreads in basis points for our dataset

of daily placement orders. This measure is characterized by positive skewness. Table 1

reports summary statistics for the bid-ask spreads. The year 2018 had the highest number

of transactions. The mean bid-ask spreads increased during the 2020-2022 period. This

can be attributed to the market turmoil during the COVID-19 pandemic. Indeed, the

95% quantile indicates a larger occurrence of extreme bid-ask spreads during this period.

Regarding potential determinants of bid-ask spreads, the dataset includes 27 variables

specific to the order placements, 22 of which are numerical and 5 categorical. Addition-

ally, we collected 11 variables that aim to measure systematic risk across the world’s main

markets, including the USA, Europe, and emerging markets. These variables enhance the

model’s ability to capture the impact of macroeconomic and systematic factors on mar-

ket liquidity. We chose explanatory variables based on previous literature and intuitive

reasoning concerning factors that could influence the bid-ask spreads.

Table 2 describes the numeric trading features present in the dataset. Several vari-

ables are associated with the traded volume at various lags. As highlighted in Biais et al.

(2005), the trading volume makes the impact of transaction costs non-trivial. Further-

more, a positive relation between volume and liquidity has been suggested in Chordia

et al. (2001). Consequently, we anticipate a negative relationship between traded volume

and the bid-ask spread. Another crucial factor to consider is the price volatility of the
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Variable Description
aep vwap bp Difference between average execution price and volume-weighted average

price from order arrival until last fill, adjusted for limit price.
arrival bp Difference between the average execution price and the mid-price when the

order was received.
avg exe px Average execution price for the placement.
day cl px Closing price on the day the order is completed.
day op px Opening price on the day the order is received.
day rev bp Difference between placement’s last fill price and the closing price on the

day the placement is completed.
day volume Volume of the security on the day of the placement.
leak bp Difference between the placement’s first fill price and the placement’s arrival

price.
month cl px Closing price one month before the order is received.
mkt imp Bloomberg’s estimated market impact for the placement.
order momentum Percentage change in the price of the underlying during the order interval

(order arrival to last fill) relative to the side.
percent 21adv Placement size / 21-day average daily volume (up to, but not including the

placement date).
post momentum Percentage change between open price and close price the day after the

order is completed.
px daily range Relative difference between high and low prices on the day the order is

received.
value Value of executed shares.
vwap Volume-weighted average price from the placement arrival until that place-

ment’s last fill.
vwap 5min Volume-weighted average price calculated over five minutes starting from

that placement’s last fill.
week cl px Closing price one week before the order is received.
10day abs vol Last 10 days of absolute security volatility.
10day rel vol Last 10 days of the relative security volatility.
5day volume Average daily volume for the 5 days before placement arrival date.
21day volume Average daily volume for the 21 days before placement arrival date.

Table 2: Description of numeric trading features used in the analysis.

securities. Increased market volatility might adversely affect trading activity, potentially

undermining liquidity (Chuliá et al., 2023). We also examine the ‘market impact’ of the

trade (variable ‘mkt imp’) estimated by Bloomberg. This is computed using a propri-

etary model that Bloomberg keeps confidential. A significant market impact can lead

to limited market depth and breadth, resulting in wider bid-ask spreads (Schwartz and

Peng, 2022). Several variables representing the prices of the securities at different mo-

ments in time were also included in the analysis. The stock price dynamics may affect

the expectations of market participants, implying changes in demand for assets (Chuliá

et al., 2023).
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Variable Description
country Country of the exchange where the security is traded.
market cap Market capitalization of the underlying company (large, mid, small, or mi-

cro).
news heat Average value of news publication heat for the underlying company within

the order interval (0 to 4).
sector Sector of the security being traded.
side Side of the order (buy or sell).

Table 3: Description of categorical variables used in the analysis.

Schwartz and Peng (2022) emphasize that finding liquidity in the marketplace remains

an ongoing challenge, influenced by the trader’s skill, among other factors. Hence, we

also considered variables measuring the efficiency of the broker/trade, such as the variable

‘leak bp’ – the difference between the placement’s first fill price and the placement’s arrival

price.

Table 3 shows the categorical trading features used in the analysis. Five primary

attributes were collected: (i) order side (buy or sell), (ii) country of the stock exchange

where the security is traded, (iii) entity’s sector of the underlying security, (iv) entity’s

market capitalization, and (v) a variable indicating the extent of the entity’s news pub-

lication activity. These variables capture the side of the order and important elements

about the traded entity and the exchange where the security is listed, providing valuable

context for assessing bid-ask spreads. Brennan et al. (2012) find that buy and sell orders

impact illiquidity differently – market-wide sell illiquidity is generally greater than buy

illiquidity. The same authors suggest that liquidity problems are more prominent for

smaller stocks.

Schwartz and Peng (2022) also suggests that markets can be thinner for small-cap

and mid-cap stocks because, at any given moment, only a few individuals (if any) may

actively seek to buy or sell shares. The variable representing the average heat level of the

entity’s news publication within the order interval refers to the amount of unexpected

publication activity compared to the previous 45 days. Aman and Moriyasu (2022)

evaluate the impact of two major information sources – corporate disclosure and press

media – on market liquidity spreads. Their analysis suggests that bid-ask spreads tend to

widen upon corporate news disclosure. Conversely, greater press media coverage is linked

to a narrower spread. This variable consolidates all publications, serving as a proxy for

the market’s interest in the underlying entity.

Table 4 shows the systematic risk variables used in the analysis. We examined three

market volatility metrics: the CBOE options implied volatility index (VIX index), com-

monly employed in this context (Brennan et al., 2012; Chuliá et al., 2023), along with its

counterparts for the Eurozone (VSTOXX index) and emerging markets (VXEEM index).
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Variable Description
cds brazil Credit Default Swap for Brazil.
cds china Credit Default Swap for China.
cds turkey Credit Default Swap for Turkey.
cds uk Credit Default Swap for the United Kingdom.
spread ge fr 10yr 10-year sovereign bonds spread between Germany and France.
spread ge it 10yr 10-year sovereign bonds spread between Germany and Italy.
spread ge pt 10yr 10-year sovereign bonds spread between Germany and Portugal.
spread 2 10yr us US Treasury yield curve (10-year yield minus 2-year yield).
vol eu Euro STOXX 50 volatility index VSTOXX.
vol us CBOE volatility index (VIX).
vol emerging CBOE emerging markets ETF volatility index.

Table 4: Description of systematic risk variables used in the analysis.

Higher aggregated market volatility has been linked to greater liquidity demand (Kim

et al., 2023).

If macroeconomic variables anticipate economic downturns, they may also predict

reduced trading activity and liquidity in equity markets (Chordia et al., 2001). Some

authors find a strong relation between stock market liquidity and the business cycle (Lu-

Andrews and Glascock, 2010; Næs et al., 2011). During economic downturns, investors

typically demand a higher price for liquidity. Consequently, the illiquidity premium tends

to increase when economic activity is low. We excluded macroeconomic variables, such as

GDP growth, unemployment rate, consumption, or investment, from the analysis since

they are only available at low frequencies. Instead, we used 10-year European sovereign

spreads and the US Treasury yield curve as proxies for the macroeconomic and financial

landscape during each placement. In the absence of a common European debt market,

we selected the 10-year yield spreads between Italy’s, France’s, and Portugal’s sovereign

debt and Germany’s debt. Portugal was included due to the significant number of secu-

rities from the Portuguese stock exchange in the dataset. Germany was the benchmark

for comparing European sovereign spreads due to its consistent financial stability and

creditworthiness.

As mentioned in Chordia et al. (2001), an increase in default risk might increase the

perceived risk of holding inventory, subsequently reducing liquidity. Consequently, our

analysis incorporates the credit default swap (CDS) prices of four countries in different

regions: Turkey (MENA), China (East Asia), Brazil (South America), and the United

Kingdom (Europe).

The relationship between bid-ask spreads and the systematic risk variables is expected

to be nonlinear due to the asymmetric response of liquidity to market movements. Indeed,

lack of liquidity tends to increase more severely during market declines than it decreases

during market upswings (Chordia et al., 2001; Chuliá et al., 2023).
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3.2 Predictive models

Our predictive models are well-known in the finance literature and include a linear model

with and without regularization penalty, ensembles of decision trees, and feedforward

neural networks. Below is a concise summary of these models; please refer to James et al.

(2023) for a more comprehensive coverage.

3.2.1 Linear models

Let Y denote the observed bid-ask spread and X denote the characteristics of the place-

ment order, which are listed in Tables 2, 3 and 4. Let n denote the number of observations

in the training data. The simplest approach for modeling the bid-ask spreads is to assume

a linear relationship with the placement order characteristics,

f(X;w0,w) = w0 +w ·X, (2)

where (w0,w) is a vector of coefficients. These coefficients are obtained by minimization

of the loss function

J(w0,w) =
n∑

i=1

(Y − w0 −w ·X)2 + λ||w||1, (3)

where λ ≥ 0 is a constant and || · ||1 denotes the L1 norm. When λ = 0 we have the

workhorse of applied econometrics: the linear regression model estimated via ordinary

least squares. When λ > 0 we obtain the LASSO (Least Absolute Shrinkage and Selection

Operator) regression. LASSO introduces regularization by adding an L1 penalty on the

coefficients’ magnitude to the cost function. The penalty parameter λ determines the

extent of regularization. For sufficiently large λ values, LASSO regression eliminates less

influential explanatory variables by setting their coefficients to zero.

3.2.2 Tree-based ensembles

A decision tree is a nonparametric model that divides the regressor space into mutually

exclusive regions {Rm}Mm=1. The region Rm where an observation falls depends on a se-

quence of if-then-else tests performed on its regressor values, X. For example, a sequence

of tests can be something like X3 < c and X1 > c′ and X4 > c′′. Consequently, region

Rm is defined as:

Rm = {X : (X3 < c) ∧ (X1 > c′) ∧ (X4 > c′′)} . (4)

Formally, a decision tree model is represented by the equation:

f(X;w) =
M∑

m=1

wm · I(X ∈ Rm), (5)
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where I(X ∈ Rm) is an indicator function that evaluates to 1 if its argument is true and

0 otherwise. The weight wm represents the output of the model when an observation

falls into region Rm. In its simplest form, wm is calculated as the average Y -value of all

observations within the training data that belong to that specific region:

wm =

∑n
i=1 Yi · I(Xi ∈ Rm)∑n

i=1 I(Xi ∈ Rm)
(6)

Decision trees are not particularly accurate models on their own, yet they serve as the

building blocks of powerful models based on ensembles of decision trees. These ensembles

leverage the collective predictions of multiple trees to enhance predictive power.

Random forests (Breiman, 2001) is a simple yet powerful method for combining mul-

tiple individual decision trees. The process starts by creating a specified number of

bootstrap samples from the data, each containing the same number of observations as

the original dataset. Then, a decision tree is constructed for each of these bootstrap

samples. Only a random subset of explanatory variables is considered when dividing the

data into subsets for increased diversity among decision trees. Let’s suppose that we

have generated B bootstrap samples and let fb(X;w) denote a decision tree trained on

a specific bootstrap sample. The prediction provided by a random forest is simply the

average of the individual predictions given by the B trees:

f(X;w, B) =
1

B

B∑
b=1

fb(X;w) (7)

An alternative strategy for building ensembles is the ‘gradient boosting machine’

(Friedman, 2001). The predictions given by the gradient boosting machine involve sum-

ming the predictions of a collection of B decision trees {fb(X;w)}Bb=1:

f(X;w, B) =
B∑
b=1

fb(X;w). (8)

The initial tree, f1(X;w), is a standard decision tree trained on the original data. The

subsequent decision trees, {fb(X;w)}Bb=2, are incrementally added to the committee.

However, each new tree is trained on the errors produced by the trees already present in

the committee. This process aims to rectify the errors made by the existing set of trees.

During each iteration, the tree to be added is the one that minimizes the regularized loss

function:
n∑

i=1

L
(
Yi, Ŷ

(b−1)
i + fb(Xi;w)

)
+ γT +

1

2
λ||wb||2, (9)

where L(·) is the squared-error loss:

L
(
Yi, Ŷ

(b−1)
i + fb(Xi;w)

)
=

(
Yi − Ŷ

(b−1)
i − fb(Xi)

)2

. (10)
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The last two terms in Equation (9) are regularization terms that penalize complex trees,

thereby preventing the committee from overfitting the training data. The parameter γ is

a penalty on the number of terminal nodes in a tree, denoted by T , while λ is a penalty on

the magnitude of the tree weights wk. A gradient descent algorithm minimizes the loss

function when adding new trees. There are several efficient implementations of gradient

boosting. This study uses the most popular of these implementations: the ‘Extreme

Gradient Boosting’ algorithm (XGBoost) (Chen and Guestrin, 2016).

3.2.3 Feedforward neural network

The feedforward neural network (FNN) is a classical neural network architecture. This

model is characterized by the unidirectional flow of information from the inputs through

intermediate hidden layers ending at the output layer. Each layer is composed of a set

of computational units. Each unit is a function of a linear combination of the outputs

from the units preceding it. In particular, the units in the first hidden layer compute a

function of a linear combination of the input data. For example, the output of the j-th

unit in the first hidden layer is given by:

h
(1)
j = g(1)

(
w

(1)
0j +w

(1)
j ·X

)
, (11)

where g(1) is the activation function for the first hidden layer. Likewise, the output of

the j-th unit in the k-th hidden layer is:

h
(k)
j = g(k)

(
w

(k)
0j +w

(k)
j · h(k−1)

)
, (12)

Finally, the output of the model computes a function of a linear combination of the values

provided by the last hidden layer,

Y = g(o)
(
w

(o)
0 +w(o) · h(K)

)
. (13)

The activation function for the hidden layers {g(k)}Kk=1 is the rectified linear function (or

ReLU):

ReLU(z) = max(0, z) (14)

In regression problems where the dependent variable is numeric, the output unit typically

computes a linear combination of the values provided by the last hidden layer; that is,

g(o) is the identity function. However, bid-ask spreads are strictly positive. Therefore, we

also used a ReLU function for g(o), ensuring that the model output matches the range of

bid-ask spreads.

The model weights, w, are estimated by the backpropagation algorithm (Rumelhart

et al., 1986). This process involves multiple steps, known as epochs, aiming to minimize

a squared loss function. The minimization occurs through the gradient descent algorithm

known as Adam (Kingma and Ba, 2014).
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3.3 Model optimization and validation

The models described above include parameters known as ‘hyperparameters’ that are not

learned during training. Therefore, we must identify the hyperparameters that optimize

the performance of each method. Specifically, the LASSO regression has a single hyper-

parameter: the penalty parameter λ. To optimize the random forest models, we must

determine the ideal number of trees within the ensemble and the parameters that govern

the complexity of the individual trees. To optimize the gradient boosting machine, we

further identify an appropriate learning rate for the gradient descent algorithm that min-

imizes the loss function. For the neural network, we must choose the number of hidden

layers (typically 1 or 2) and the number of units within each layer. We also need to

choose the number of training epochs and the learning rate used by the gradient descent

algorithm.

We conduct a grid search over all possible hyperparameter combinations to obtain

the set with the lowest expected out-of-sample error. We implemented a 5-fold cross-

validation on the data from 2017 to 2022 to estimate the out-of-sample error. We start

by randomly dividing the data into five distinct folds. Then, we iterate through the five

subsets, treating one as the validation set while using the other four for estimation. This

is repeated until each subset has served as the validation set. The best hyperparameters

are the one that gives the smallest average root mean square error (RMSE) across the

five folds:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2, (15)

where Ŷ denotes the model predictions.

3.4 Explanation methodologies: SHAP and ALE

Simpler models, such as linear models, offer the advantage of being straightforward to

interpret and comprehend. They provide well-defined statistical tools to extract con-

clusions from the model. However, the simplicity of these models can be a limitation

when the true relationship between the explanatory variables and the target variable is

complex or highly nonlinear. In such cases, simpler models may yield inaccurate results

as they struggle to capture complex patterns in the data. On the other hand, complex

models – such as ensemble methods or neural networks – are ‘black boxes’ that do not

provide a straightforward path to understanding how they arrive at their predictions.

Several methodologies have recently been proposed to address this issue. These tech-

niques were designed to extract and quantify the influence of the model’s inputs on its

outputs, providing insights into the factors driving the predictions.
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One of these methodologies is SHapley Additive exPlanations (SHAP) (Lundberg and

Lee, 2017). SHAP is based on the concept of Shapley values proposed in the context of

cooperative game theory (Shapley, 1953). Shapley values define a way to distribute the

final payoff among individuals based on their contributions to the collective effort. This

player-payoff assignment has four essential properties: (i) efficiency, (ii) symmetry, (iii)

dummy player, and (iv) additivity (see, e.g. Roth, 1988; Aas et al., 2021). Let X\j denote

the subset of X that excludes regressor Xj, that is X\j ≡ X \Xj, and let S denote all

possible subsets of X\j. For instance, if we have p = 3 regressors, X = {X1, X2, X3},
and we exclude regressor X1 from X, then S = {∅, X2, X3, {X2, X3}}. The SHAP value

for Xj is a weighted sum of its marginal contribution to a prediction over all possible

coalitions that exclude it:

ϕ(Xj) =
∑

S⊆X\j

|S|! (p− 1− |S|)!
p!

[
fS∪Xj

(S ∪Xj)− fS(S)
]
. (16)

Each observation and explanatory variable is assigned a SHAP value. However, calcu-

lating these values can be computationally expensive, as it requires obtaining the model’s

predictions for every possible combination of variables. To address this issue, Lundberg

et al. (2018) introduced an algorithm for obtaining SHAP values when the model is based

on decision trees. This algorithm reduces the computational complexity from exponential

to polynomial time, ensuring the efficient computation of SHAP values, even for complex

ensembles with many decision trees and explanatory variables.

While SHAP values provide information on the relative importance of the explanatory

variables and the sign of the partial effects, accumulated local effects (ALE) (Apley and

Zhu, 2020) allow us to understand whether the relationship between bid-ask spreads and

the covariates are positive or negative, linear or non-linear, convex or concave, and so

on. For example, ALE plots show linear dependence if the true relationship is linear.

ALE plots are the state-of-the-art approach for visualizing relationships between a target

variable and the regressors when the regressors are not independent, which is the case

here.

Suppose we want to understand how regressor Xj affects the model’s output. First,

we divide its range using a grid with K bins. Let {Zk}Kk=0 denote the set of Xj values that

define the boundaries of these bins. For instance, the first bin encompasses all Xj values

between Z0 and Z1, while the last bin comprises all Xj values between ZK−1 and ZK .

Typically, the Zk values are selected as the (k/K)-quantiles of the empirical distribution

of Xj, where Z0 is chosen slightly below the smallest observation, and ZK equals the

largest observation.

Let Ik denote the set of indices corresponding to the observations where Zk−1 < Xj ≤
Zk, with k > 0. Each bin’s observation count is nk. The average local effect of Xj within
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a specific bin is given by:

1

nk

∑
i∈Ik

[
f(Zk,j,Xi,\j)− f(Zk−1,j,Xi,\j)

]
. (17)

The sum in Equation 17 loops over all observations in a given bin. For each of these

observations, we obtain the difference between the model predictions with Xj equal to

the upper limit of the bin, Zk, and Xj equal to the lower limit of the bin, Zk−1. We divide

this sum by the number of observations in that bin, nk, to obtain the average local effect

of Xj on the model’s output.

Now, let k(Xj) represent the index of the bin where a specific value of Xj is located,

with k(Xj) = 1 if Xj falls within the first bin, k(Xj) = 2 if it lies within the second

bin, and so on. The ‘accumulated local effect’ at value Xj is simply the sum of the local

effects from the first bin up to the bin where Xj is located:

fA(Xj) =

k(Xj)∑
k=1

1

nk

∑
i∈Ik

[
f(Zk,j,Xi,\j)− f(Zk−1,j,Xi,\j)

]
. (18)

This sum accumulates the local average effects up to a given value of Xj. The plot of

fA(Xj) as a function of Xj provides a visualization of the dependence of the Xj across its

range. It should be noted that the values fA(Xj) initiate at zero and subsequently ascend

or descend based on the sign of the average local effects. In other words, fA(Xj) estimates

the dependency of the model’s output on Xj apart from a constant factor. Therefore,

Apley and Zhu (2020) suggest subtracting the average ALE in all bins to center the ALE

plot at zero,

fA(Xj)← fA(Xj)−
1

n

K∑
k=1

nk × fA(Zk,j). (19)

4 Empirical results

4.1 Prediction accuracy

The five models under consideration vary in degrees of freedom and capacity to overfit

the training data. Therefore, evaluating the model’s performance requires using data not

seen during their training. Our initial focus is on the data between 2017 and 2022, aiming

to determine the out-of-sample accuracy of the observations during this period. This is

accomplished through a 5-fold cross-validation, as detailed in Section 3.3. Furthermore,

we use the first semester of 2023 to obtain out-of-time accuracy measures. To achieve

this, we trained the models using data from 2017 to 2022 and assessed their performance

using data from 2023.
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Model Out-of-sample Out-of-time
RMSE R2 ρ RMSE R2 ρ

OLS regression 6.47 27.88 52.79 6.65 21.68 46.56
LASSO regression 6.47 27.95 52.86 6.66 21.62 46.50
Random forest 4.24 69.51 83.37 5.47 49.58 70.41
Gradient boosting machine 4.06 71.59 84.60 5.65 50.00 70.71
Feedforward neural network 4.82 60.13 77.53 7.15 21.85 46.74

Table 5: Out-of-sample accuracy in 2017-2022, and out-of-time accuracy in 2023. Out-

of-sample accuracy is obtained from a 5-fold cross-validation procedure. The accuracy

metrics are the root mean square error (RMSE), the R2, and Pearson correlation coeffi-

cient (ρ).

In addition to the RMSE used for optimizing the hyperparameters of the models, we

have also calculated an R2 metric that compares the sum of squared residuals of the

trained models with that of a näıve model that always predicts the average outcome Ȳ :

R2 = 1−
∑n

i=1(Yi − Ŷi)
2∑n

i=1(Yi − Ȳ )2
(20)

Furthermore, we computed the Pearson correlation between the predicted and actual

values.

ρ =

∑n
i=1(yi − Ȳ )(Ŷi − ¯̂

Y )√∑n
i=1(Yi − Ȳ )2

√∑n
i=1(Ŷi − ¯̂

Y )2
(21)

Table 5 reports the out-of-sample accuracy measures in the period 2017–2022 and the

out-of-time accuracy in 2023. The two tree-based models better predict bid-ask spreads

in the cross-validation setting. In particular, these models exhibit a notable prediction

accuracy when compared to both the linear model estimated through ordinary least

squares and the linear model estimated using the LASSO penalized loss function1. This

highlights the importance of modeling bid-ask spreads with non-linear models, in contrast

with the practice in the literature. Additionally, the tree-based models outperformed the

neural networks. This is also unsurprising since tree-based models outperform neural

networks on many problems with tabular data (Grinsztajn et al., 2022; Curth et al.,

2024). In the out-of-time validation exercise, the relative rank of the models remains.

We also note that the neural network does not generalize well beyond the training set,

as its out-of-time performance in the 2023 test sample drops significantly, reaching levels

similar to the linear models. Most metrics indicate that the gradient boosting machine

outperforms the random forest in terms of predictive accuracy, so the former was selected

to derive the nonparametric determinants of bid-ask spreads.

1The performance of the OLS regression did not change substantially when we considered the log-

arithm of the bid-ask spread as the dependent variable, giving an R2 of 28.51 and 23.78 in the cross-

validation and out-of-time settings, respectively.

17



4.2 Parametric determinants

We start by analyzing the determinants of bid-ask spreads given by a linear regression

model estimated by least squares. Table 6 presents the estimated model.

Variable Coefficient std. err. t-stat p-value
Intercept 16.484 1.012 16.283 0.000
10day abs vol 0.218 0.044 5.001 0.000
10day rel vol 0.097 0.031 3.093 0.002
5day volume −1.4× 10−9 6.8× 10−9 -0.201 0.841
21day volume −3.9× 10−8 6.9× 10−9 -5.559 0.000
aep vwap bp -0.007 0.002 -4.508 0.000
arrival bp 0.005 0.002 2.238 0.025
avg exe px -0.001 0.010 -0.144 0.885
cds brazil 0.006 0.002 3.773 0.000
cds china -0.007 0.006 -1.266 0.206
cds turkey 4.4× 10−4 7.7× 10−4 0.567 0.571
cds uk 0.047 0.007 6.442 0.000
country belgium -3.276 0.390 -8.394 0.000
country denmark -4.773 0.391 -12.201 0.000
country france -4.061 0.144 -28.129 0.000
country germany -3.892 0.179 -21.704 0.000
country great britain -3.691 0.175 -21.143 0.000
country italy -1.006 0.285 -3.527 0.000
country netherlands -3.813 0.206 -18.519 0.000
country portugal 7.083 0.281 25.191 0.000
country spain 0.380 0.267 1.425 0.154
country sweden -4.158 0.306 -13.610 0.000
country switzerland -4.038 0.249 -16.184 0.000
country other 3.808 0.367 10.366 0.000
day cl px 9.1× 10−5 5.5× 10−4 0.168 0.867
day op px 6.6× 10−5 6.5× 10−4 0.102 0.919
day rev bp 1.5× 10−3 3.5× 10−4 4.278 0.000
day volume 5.6× 10−9 1.4× 10−9 1.892 0.058
leak bp -0.002 0.001 -1.629 0.103
market cap large -12.245 0.963 -12.718 0.000
market cap mid -9.413 0.956 -9.850 0.000
market cap small -7.295 1.106 -6.599 0.000
mkt imp -1.169 0.331 -3.531 0.000
month cl px 3.3× 10−5 3.3× 10−4 0.237 0.813
news heat -0.508 0.041 -12.252 0.000
order momentum -0.299 0.186 -1.610 0.107
percent 21adv 0.491 0.054 9.068 0.000
post momentum 0.042 0.026 1.621 0.105
px daily range 48.017 3.364 14.275 0.000
sector consumer discretionary 0.905 0.217 4.175 0.000
sector consumer staples 0.489 0.229 2.134 0.033
sector energy 0.652 0.256 2.549 0.011
sector financials 2.109 0.217 9.716 0.000
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Variable Coefficient SE t-stat p-value
sector health care 1.907 0.224 8.497 0.000
sector industrials 2.787 0.222 12.575 0.000
sector information technology 0.138 0.214 0.646 0.518
sector materials 3.362 0.251 13.415 0.000
sector real estate 1.915 1.256 1.525 0.127
sector utilities 0.621 0.330 1.883 0.060
side sell 0.093 0.091 1.025 0.306
spread ge fr 10yr -0.007 0.009 -0.777 0.437
spread ge it 10yr 0.004 0.001 2.732 0.006
spread ge pt 10yr -0.007 0.002 -3.966 0.000
spread 2 10yr us 0.003 0.002 1.657 0.098
value −1.8× 10−7 8.5× 10−8 -2.091 0.037
vol emerging -0.052 0.022 -2.407 0.016
vol eu 0.023 0.020 1.108 0.268
vol us 0.066 0.018 3.691 0.000
vwap 0.009 0.012 0.741 0.459
vwap 5min -0.007 0.003 -2.445 0.014
week cl px 5.6× 10−5 2.6× 10−4 0.212 0.832

Table 6: Linear regression model for bid-ask-spreads.

Concerning the variables representing the average traded volume in different time

periods (‘day volume’, ‘5day volume’ and ‘21day volume’), only the variable with the

longest lag – 21 days before the order placement – is significant at the 5% level. The

negative sign of the coefficient indicates that a higher ‘21day volume’ is related to a

narrower spread. However, contrary to expectations, the sign of the coefficient for the

daily volume (‘day volume’) is positive. Furthermore, we find a positive and significant

association between price volatility (measured by ‘10day abs vol’, ‘10day rel vol’, and

‘px daily range’) and bid-ask spreads. The impact of the trade on the market (measured

by the variable ‘mkt impact’ estimated by Bloomberg) is also significantly related to bid-

ask spreads. This variable has a negative effect on the observed bid-ask spread. The

variables related to the absolute security price at various lags (‘avg exe pc’, ‘day cl px’,

‘week cl px’ and ‘month cl px’) are not statistically significant at the 5% significance

level. This is also the case for the broker efficiency proxy, measured by the difference

between the arrival and fill prices (‘leak bp’).

Portugal has the stock exchange with the highest mean bid-ask spreads, followed

by countries representing less than 1% of the dataset (grouped in the dummy variable

‘country other’), and then Spain. It is estimated that the stock exchanges in Portugal

and this group of other countries have bid-ask spreads on average 7.1 bps and 3.8 bps

higher than those of the US stock exchanges (the base category), respectively. A narrower

spread was estimated for other European markets compared to the US, possibly because
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the dataset is overrepresented by their most liquid securities.

Moreover, a negative and significant relationship was found between the size of the

underlying entity and the estimated spread, suggesting that entities with larger market

capitalization tend to have greater liquidity. A similar conclusion is drawn regarding the

heat of news publication for the underlying company, with a higher index corresponding to

increased liquidity. Regarding the activity sector, we observed wider spreads for all sectors

compared to the reference sector, communication services. Materials and industrials were

identified as the activity sectors with the widest spreads.

Some of the systematic risk variables are significant at a 5% significance level. Specifi-

cally, a higher VIX index and a broader 10-year bond spread between Germany and Italy

are associated with lower market liquidity. Conversely, the 10-year bond spread between

Germany and Portugal and the emerging markets volatility index exhibits an opposite

effect. Credit default swap curves with positive and significant associations to bid-ask

spreads are observed for the UK and Brazil.

4.3 Nonparametric determinants

The global importance of a variable to a model can be determined by calculating the

mean absolute SHAP values for the individual observations:

n∑
i=1

|ϕi(Xj)| . (22)

The SHAP values for individual observations are usually represented in a beeswarm

plot. Figure 2 shows the beeswarm plot for our dataset. First, variables are ordered

by their global importance, that is, by their mean absolute SHAP value. To simplify the

exposition, we report the results for the covariates with a mean absolute SHAP value

greater than 0.2.

In Figure 2, we can observe that the dummy variable indicating the US as the country

where the security was traded is the most important variable on average. Each dot

represents an observation. The dot’s x-position represents its SHAP value. Shades of

grey display the variable’s value. Naturally, the dummy variable ‘country usa’ only has

two values (1 and 0) corresponding to the extreme shades of the palette. The value 1

is associated with positive SHAP values, whereas 0 is associated with negative SHAP

values. So, this dummy has a positive effect on the bid-ask spreads. The larger spread

for securities traded in the US may be attributed to the overrepresentation of securities

with greater liquidity when traded in other European markets. The opposite effect is

observed for the dummy that indicates whether or not the security traded belongs to an

entity with a large capitalization level (‘market cap large’). Considering the continuous
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Figure 2: Beeswarm plot for the most influential features according to the SHAP method-

ology.
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variable that measures the spread between the 10-year bonds of Germany and Italy

(‘spread ge it 10y’), we can see a positive association between this variable and bid-

ask spreads. For some variables, say the volume of the traded security (‘day volume’),

the partial effect’s direction is unclear. In those cases, we can inspect the ALE plot.

Notably, the volume of the traded security is the second most important variable for the

nonparametric model, while not statistically significant at the 5% level in the parametric

model.

−4

−3

−2

−1

0

0 50000000 100000000 150000000
day_volume

−1.2

−0.8

−0.4

0.0

0 50000000 100000000
5day_volume

−2

−1

0

0 25000000 50000000 75000000 100000000 125000000
21day_volume

−0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5
percent_21adv

Figure 3: ALE plots per variable.

ALE plots show the marginal effect of each explanatory variable on bid-ask spreads.

We applied a LOESS smoother to the ALE values to eliminate potential statistical arti-

facts. In addition, a confidence interval is plotted, quantifying the uncertainty associated

with the estimated smoothing curve. Figure 3 shows the ALE plots for the average

traded volume for the day, 5 days, and 21 days before the order placement. Given that

the curves decrease with volume, we can infer that matching bid and ask prices in highly

active markets is easier. For daily volume (‘day volume’), on the most active days, the

bid-ask spread can be 4 bps lower than on the days with the lowest activity. This contrasts

with the positive coefficient for ‘day volume’ in the OLS regression. Furthermore, the

relationship between market activity and liquidity is far from linear. For certain ranges

of traded volume, the bid-ask spreads do not change with market activity. For example,
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bid-ask spreads remain relatively constant for 5-day volumes above approximately 40 mil-

lion euros. We also find a strong non-linearity when analyzing the size of the placement

relative to the average daily volume of the previous 21 days (‘percent 21adv’). In this

case, the relationship is concave, reaching a maximum when the size of the placement is

approximately 75% of the average volume of the past 21 days.
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Figure 4: ALE plots per variable.

The first row in Figure 4 shows the ALE plots for the broker efficiency proxy (‘leak bp’)

and the market impact estimated by Bloomberg (‘mkt imp’). Bid-ask spreads exhibit

a dependence with a convex shape on these variables. Variations of up to 3 bps are

observed in the bid-ask spreads. It is worth noting that the broker efficiency proxy is not

significant in the OLS model (t-stat = -1.63). In contrast, the second row in Figure 4

shows a positive and approximately linear relationship between bid-ask spreads and the

price volatility, measured through the last 10 days (‘10day abs vol’) and the intraday

relative range (‘px daily range’). In the OLS model, ‘px daily range’ and ‘10day abs vol’

are highly significant, with t-stats of 14.28 and 5.00, respectively.

Figure 5 shows ALE plots for variables related to the underlying security price. In

particular, it reports ALE plots for the difference between the average execution price

and the volume-weighted average price from order arrival until last fill, adjusted for limit

price (‘aep vwap bp’), the average execution price for the placement (‘avg exe px’), the
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Figure 5: ALE plots per variable.

closing price on the day the order is completed (‘day cl px’), the difference between the

placement’s last fill price and the closing price on the day the placement is completed

(‘day rev bp’), the closing price one month before the order is received (‘month cl px’),

and the closing price one week before the order is received (‘week cl px’). Once more,

we observe a wide range of dependencies of bid-ask spreads on the covariates. The vari-

ables ‘day cl px’ and ‘avg exe px’ exhibit plateaus when the execution prices cross certain

thresholds, while the variables ‘day rev bp’ and ‘aep vwap bp’ show convex shapes. Over-

all, varying values of these variables may impact the bid-ask spread by approximately 2

bps.

Figure 6 presents the ALE plots for the most influential systematic risk variables.

Overall, we conclude that poor macroeconomic conditions and market illiquidity are

closely related. The bid-ask spread tends to be wider when the 10-year bond spread be-

tween Germany and Italy (‘spread ge it 10y’) is large, particularly when exceeding the 225

bps threshold. Analyzing the US debt market through the yield curve (‘spread 2 10yr us’),

we also observe an asymmetric response of bid-ask spreads to market dynamics. Indeed,

this variable provides information about market expectations for future economic condi-

tions, including economic growth, inflation, and monetary policy. An inverted yield curve

– where longer-term yields are lower than shorter-term yields, as represented in the first
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Figure 6: ALE plots per variable.

part of the curve – signals investors’ pessimism about the economic outlook, which leads

to lower market liquidity.

The plot in the bottom left corner of Figure 6 presents the ALE for the VIX index

(‘vol us’). As mentioned in the literature (e.g. Chuliá et al., 2023; Kim et al., 2023),

higher forward-looking implied volatility positively affects bid-ask spreads. Our results

demonstrate that this link has a close-to-monotonic trend compared to the average pre-

dicted spread. The equivalent index for the Eurozone (‘vol us’) also shows a positive

trend, though much less pronounced, possibly due to the higher proportion of securities

traded on US stock exchanges in the data under analysis.

5 Conclusion

Using a nonparametric model, this paper analyzes the factors influencing market liquid-

ity, quantified as the relative difference between quoted ask and bid prices. With this

approach, we refrained from making assumptions about the relationship between bid-ask

spreads and potential explanatory variables. That is, this relationship was determined

by the data itself. The nonparametric model also captures non-linear relationships that

a parametric linear model fails to detect. Using a novel dataset of placement orders for
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equities managed by a European asset management institution, we explored the most

influential determinants and their relationship with bid-ask spreads. The tools to achieve

this goal were SHAP values and accumulated local effects (ALE) plots.

Our results suggest that the country of the stock exchange and the size of the under-

lying entity are relevant in explaining the spreads on traded securities. Moreover, market

activity strongly defines spreads, with higher volumes associated with lower spreads. In

contrast, there is a positive effect of high price volatility, lower broker efficiency, and a

higher estimated impact on the market. Along the same lines, the variables related to the

increase in price differences within the trading interval are positively related to spreads.

Through systematic risk variables, we also demonstrate that periods marked by height-

ened uncertainty and weak economic activity are associated with lower market liquidity.

More precisely, in periods of higher sovereign bond spreads between Germany and Italy,

an inverted US Treasury yield curve or higher aggregate volatility can adversely affect

liquidity.

Overall, our results contribute to the existing literature by showing how trading activ-

ity, security characteristics, or the macroeconomic environment influence bid-ask spreads.

This work opens up room for further research. The analysis aimed to assess market

liquidity in terms of transaction and participation costs. However, liquidity has other

dimensions that are also important to consider for a comprehensive understanding of liq-

uidity in equity markets. Furthermore, there is interest in exploring how this approach

applies to other asset classes, such as fixed-income.

It is also important to note that the results are influenced by the securities traded by

the asset management institution that provided the data. Applying this approach to all

traded securities on one or several stock exchanges over a specific time period would offer

a more comprehensive view of market liquidity.
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